EMISSION CONTROL SYSTEM SECTION EFF & ECC

.

CONTENTS

PRECAUTIONS	EC-	3
ENGINE AND EMISSION CONTROL PARTS LOCATIONEF &	EC-	4
E.C.C.S. DIAGRAM EF &	EC-	5
E.C.C.S. CHART EF &	EC-	7
FUEL FLOW SYSTEM DESCRIPTION EF &	EC-	9
AIR FLOW SYSTEM DESCRIPTION EF &	EC-	10
E.C.C.S. CIRCUIT DIAGRAM EF &	EC-	11
E.C.C.S. WIRING DIAGRAM EF &	EC-	12
E.C.C.S. DESCRIPTION EF &	EC-	14
DIAGNOSTIC PROCEDURE EF &	EC-	31
SELF-DIAGNOSIS		
ELECTRONIC CONTROL SYSTEM INSPECTIONEF &	EC-	82
CRANK ANGLE SENSOR EF &		
AIR FLOW METER EF &		
CYLINDER HEAD TEMPERATURE SENSOREF &	EC-	88
VEHICLE SPEED SENSOR EF &	EC-	90
IGNITION SIGNAL EF &		
FUEL PUMP EF &		
IDLE SWITCH EF &		
ENGINE CONTROL UNIT EF &		
E.G.R. FUNCTION EF &		
EXHAUST GAS SENSOR EF &		
DETONATION SENSOR EF &		
EXHAUST GAS TEMPERATURE SENSOR EF &		
FUEL TEMPERATURE SENSOR EF &		
THROTTLE SENSOR EF &		
INJECTOR LEAK EF &		
START SIGNAL EF &		
INJECTOR	EC-1	20
POWER SOURCE & GROUND CIRCUIT FOR E.C.U	EC-1	22

Contents (Cont'd)		
A.I.V. CONTROL SOLENOID VALVE	EF &	EC-124
E.G.R. CONTROL SOLENOID VALVE	EF &	EC-126
IDLE-UP SOLENOID VALVE	EF &	EC-128
A.A.C. VALVE	EF &	EC-130
NEUTRAL/INHIBITOR SWITCH	EF &	EC-132
P.R. CONTROL SOLENOID VALVE	EF&	EC-134
AIR REGULATOR	EF&	EC-136
E.C.U. INPUT/OUTPUT SIGNAL INSPECTION	EF &	EC-138
MIXTURE RATIO FEEDBACK SYSTEM INSPECTION	EF &	EC-143
FUEL SYSTEM INSPECTION	EF &	EC-148
TURBOCHARGER INSPECTION	EF &	EC-151
EVAPORATIVE EMISSION CONTROL SYSTEM	EF &	EC-153
E.G.R. SYSTEM INSPECTION	EF &	EC-155
CRANKCASE EMISSION CONTROL SYSTEM	EF &	EC-156
A.I.V. SYSTEM INSPECTION	EF &	EC-157
SERVICE DATA AND SPECIFICATIONS (S.D.S.)	EF &	EC-159

When you read wiring diagrams:

.

• Read GI section, "HOW TO READ WIRING DIAGRAMS".

• See EL section, "POWER SUPPLY ROUTING" for power distribution circuit.

E.C.U.

- Do not disassemble E.C.C.S. control unit.
- Do not turn diagnosis mode selector forcibly.
- Do not disassemble the E.C.U. (the E.C.C.S. control unit).
- If a battery terminal is disconnected, the memory will return to the ROM value. The E.C.C.S. will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WIRELESS EQUIPMENT

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far as possible away from the electronic control units.
- 2) Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls. Do not let them run parallel for a long distance.
- 3) Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- 4) Be sure to ground the radio to vehicle body.

INJECTOR

BATTERY

running.

power source.

Do not disconnect injector harness connectors with engine running.

Always use a 12 volt battery as

Do not attempt to disconnect

battery cables while engine is

 Do not apply battery power directly to injectors.

E.C.C.S. PARTS HANDLING

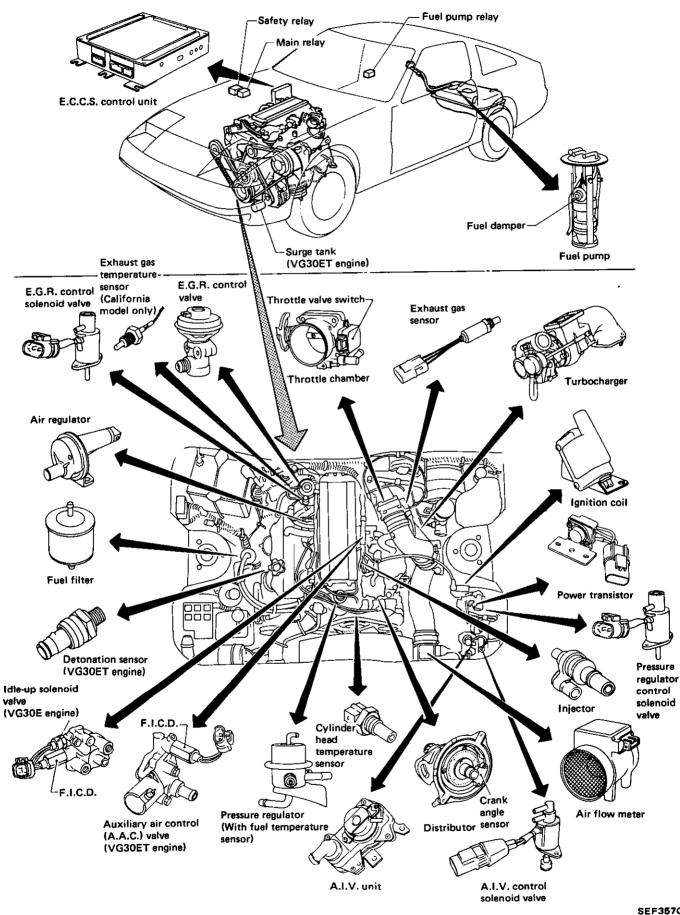
- Handle air flow meter carefully to avoid damage.
- Do not disassemble air flow • meter.
- Do not clean air flow meter with any type of detergent.
- Do not disassemble auxiliary air control valve (VG30ET engine).
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the crank angle sensor.

WHEN STARTING

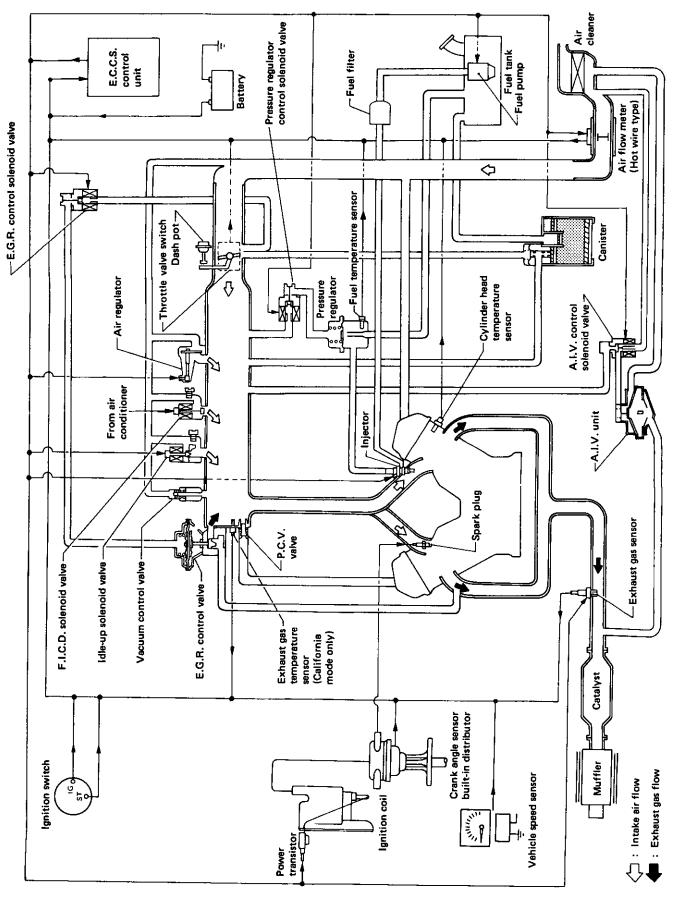
- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up enigne unnecessarily.
- Do not rev up engine just prior to shutdown.

FUEL PUMP

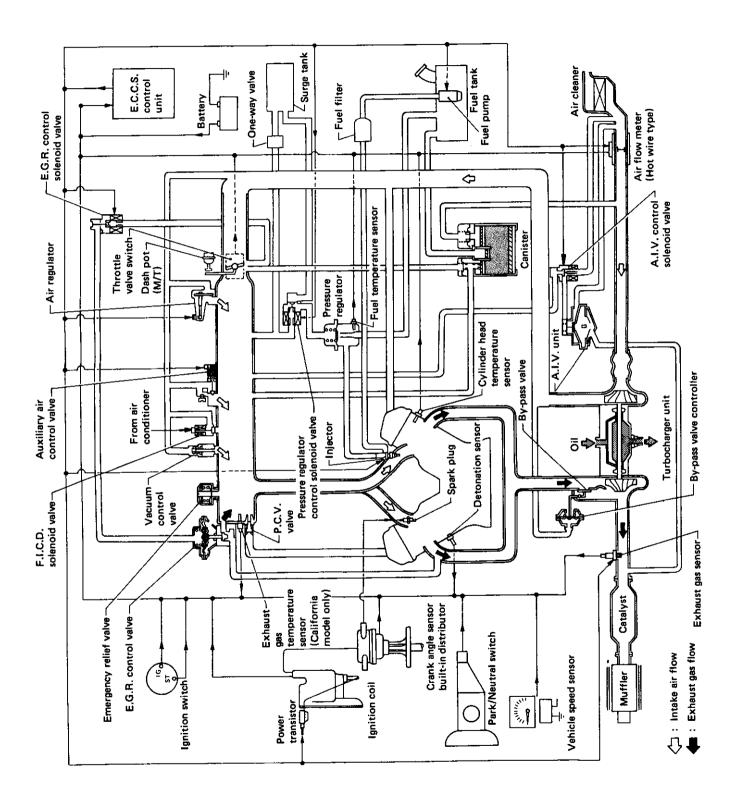
- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.


E.C.C.S. PARTS HANDLING

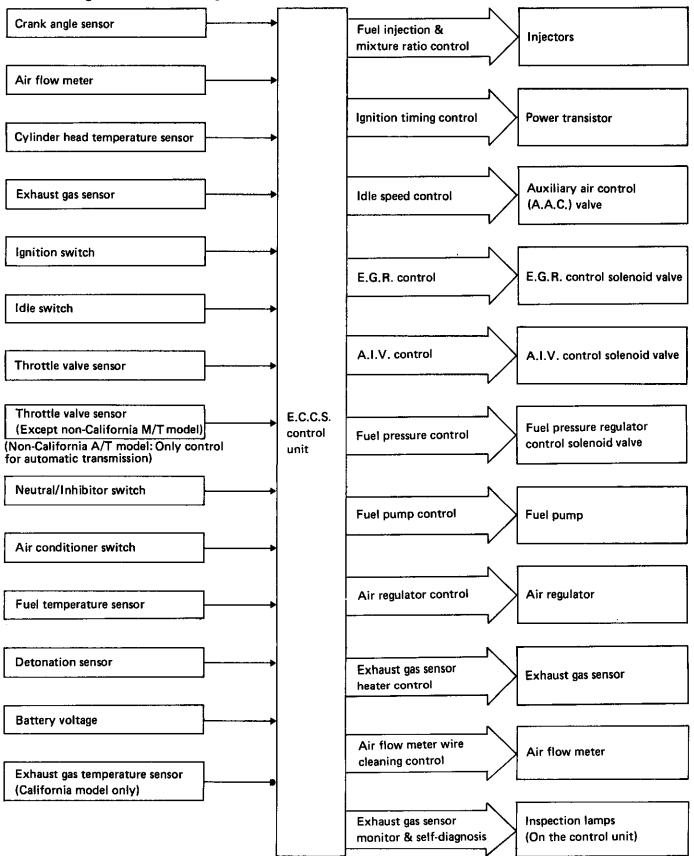
Securely connect E.C.C.S. harness connectors.

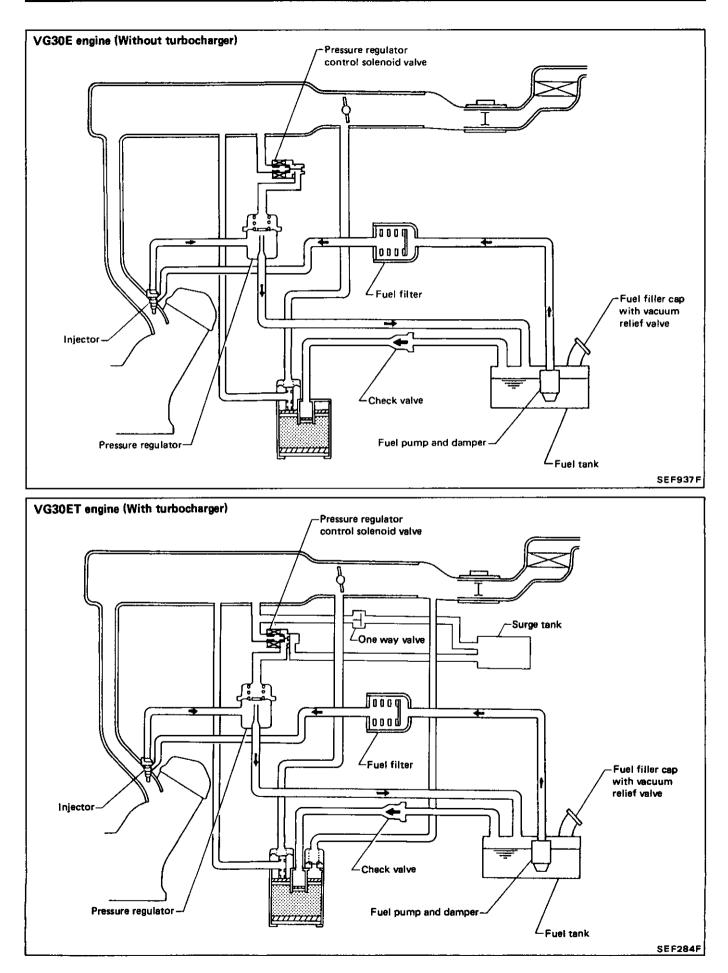

A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.

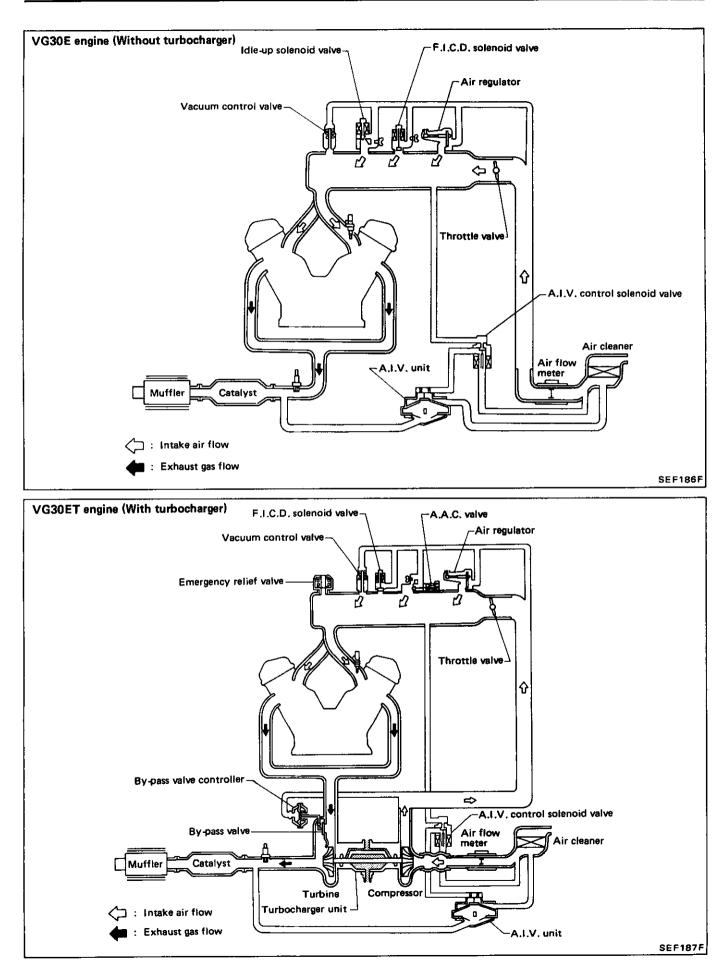
- Keep E.C.C.S. harness at least 10 cm (3.9 in) away from adjacent harnesses, to prevent an E.C.C.S. system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep E.C.C.S. parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable. SEF179F

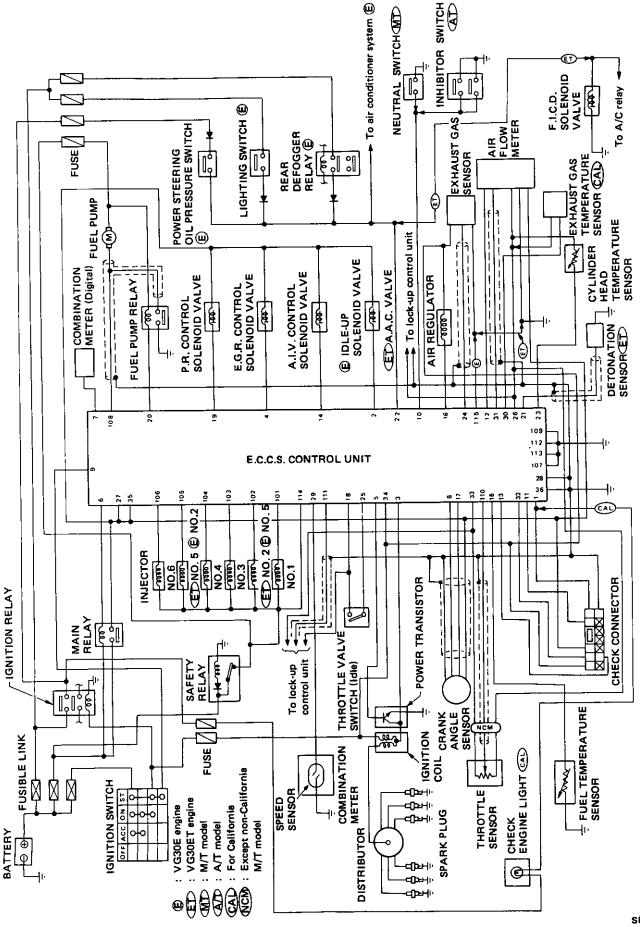

ENGINE AND EMISSION CONTROL PARTS LOCATION

VG30E engine (Without turbocharger)


VG30ET engine (With turbocharger)

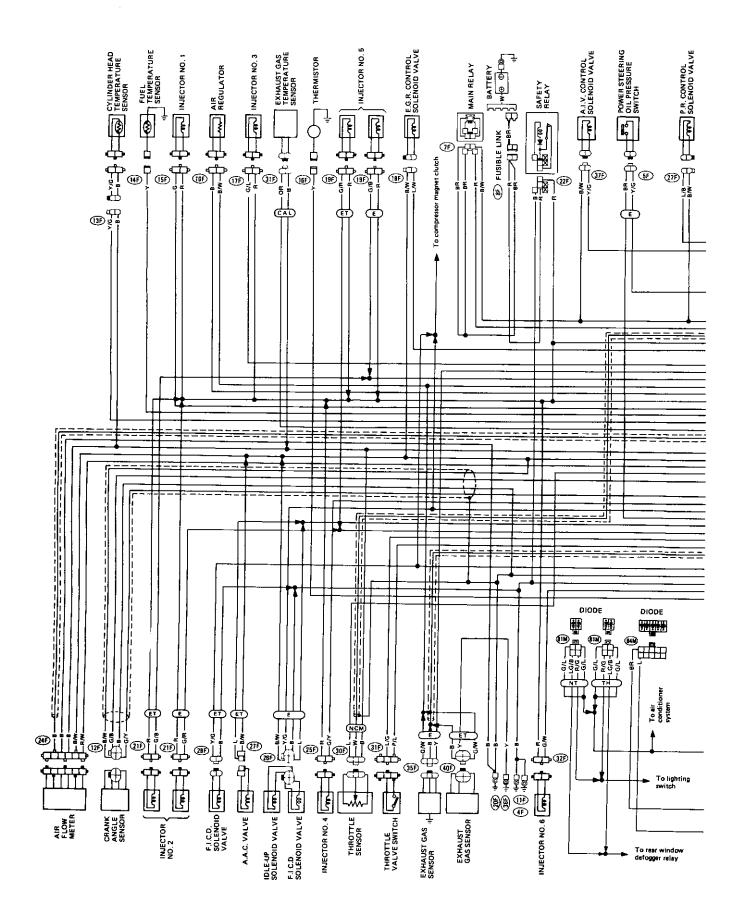

VG30E Engine (Without turbocharger)


VG30ET Engine (With turbocharger)

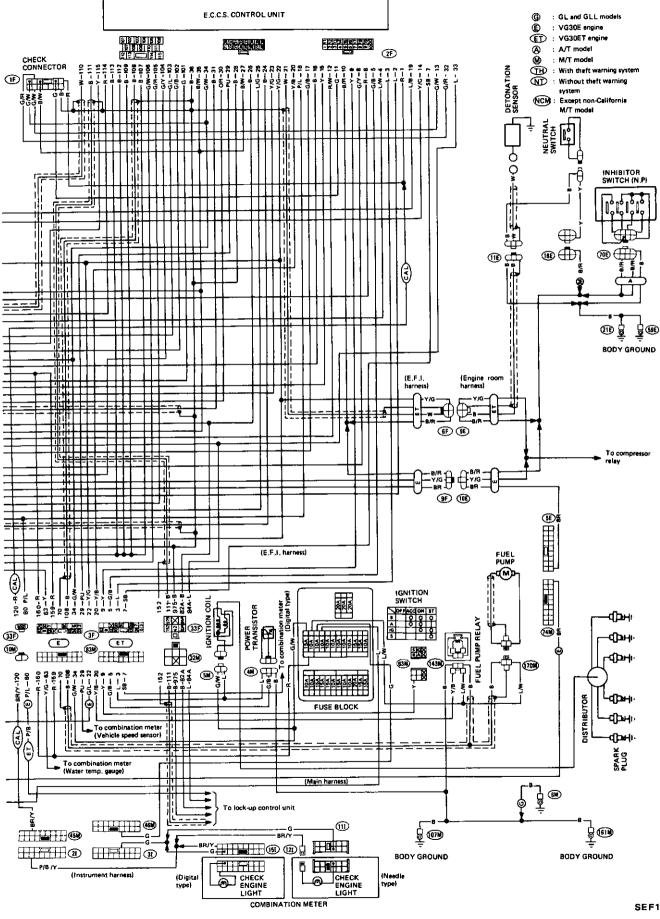


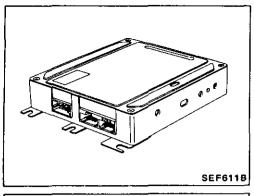
FUEL FLOW SYSTEM DESCRIPTION

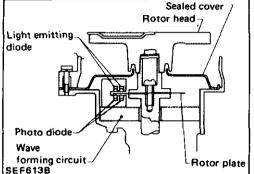
AIR FLOW SYSTEM DESCRIPTION

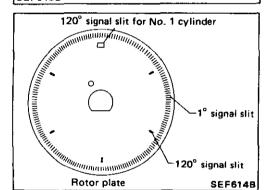


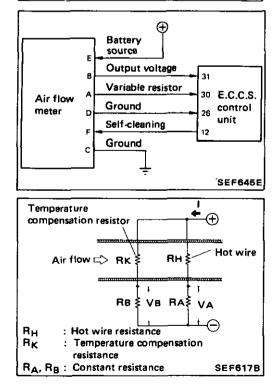
E.C.C.S. CIRCUIT DIAGRAM


EF & EC-11


SEF155G


E.C.C.S. WIRING DIAGRAM




E.C.C.S. WIRING DIAGRAM

Components

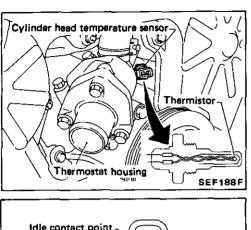
E.C.U. (E.C.C.S. control unit)

The E.C.U. consists of a microcomputer, inspection lamps, a diagnostic mode selector, and connectors for signal input and output, and for power supply. The unit has control of the engine.

CRANK ANGLE SENSOR

The crank angle sensor is a basic component of the entire E.C.C.S. It monitors engine speed and piston position, and sends to the E.C.U. signals on which the controls of fuel injection, ignition timing and other functions are based.

The crank angle sensor has a rotor plate and a wave forming circuit. The rotor plate has 360 slits for 1° signal (crank angle signal) and 6 slits for 120° signal (engine speed signal). Light Emitting Diodes (L.E.D.) and Photo Diodes are built in the wave forming circuit.

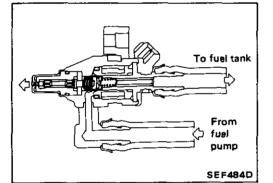

When the rotor plate passes the space between the L.E.D. and the Photo Diode, the slits of the rotor plate continually cut the light which is sent to the photo diode from the L.E.D. This causes generating rough-shaped pulses. They are then converted into on-off pulses by the wave forming circuit, which are sent to the E.C.U.

AIR FLOW METER

The air flow meter measures the mass flow rate of intake air. Measurements are made in such a manner that the control circuit emits an electrical output signal in relation to the amount of heat dissipated from the hot wire placed in the stream of intake air.

The air flowing around the hot wire removes the heat from the hot wire. The temperature of the hot wire is very sensitive to the mass flow rate of the air. The higher the temperature of the hot wire, the higher its resistance value. This change in the temperature (or: resistance) is determined by the mass flow rate of the air. The control circuit accurately regulates current (I) in relation to the varying resistance value (R_H) so that V_A always equals V_B . The air flow meter transmits an output for voltage V_A to the control unit where the output is converted into an intake air signal.


Also, this air flow meter has self-burning off system in order to make hot wire clean.



Components (Cont'd) CYLINDER HEAD TEMPERATURE SENSOR

The cylinder head temperature sensor, built into the cylinder head, monitors changes in cylinder head temperature and transmits a signal to the E.C.U.

The temperature sensing unit employs a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

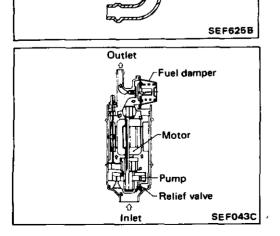
Pressure regulator

The idle switch is attached to the throttle chamber and actuates in response to accelerator pedal movement.

This switch has idle contact and full throttle contact. The idle contact is used for engine control. It closes when the throttle valve is positioned at idle, and opens when it is at any other position.

FUEL INJECTOR

The fuel injector is a small, precision solenoid valve. As the E.C.U. outputs an injection signal to each fuel injector, the coil built into the injector pulls the needle valve back, and fuel is injected through the nozzle to intake manifold. The amount of fuel injected is controlled by the E.C.U. as an injection pulse duration.


FUEL TEMPERATURE SENSOR

The fuel temperature sensor is built into the pressure regulator, and senses fuel temperature. When the fuel temperature is higher than the specified level, the E.C.U. enriches fuel injected.

Do not remove fuel temperature sensor from pressure regulator. Always replace as an assembly.

FUEL PUMP

The fuel pump with a fuel damper is an in-tank type, that is the pump and damper are located in the fuel tank. The vane rollers are directly coupled to a motor which is cooled by fuel.

 \odot

Fuel temperature sensor

Components (Cont'd)

IDLE-UP SOLENOID VALVE [VG30E]

The idle-up solenoid value is attached to the intake collector. The solenoid value actuates to stabilize idle speed when engine load is heavy because of electric load, power steering oil pump, etc.

A.A.C. (AUXILIARY AIR CONTROL) VALVE [VG30ET]

The A.A.C. valve is attached to the intake collector. The E.C.U. actuates the A.A.C. valve by an ON/OFF pulse of approximately 160 Hz. The longer that ON duty is left on, the larger the amount of air that will flow through the A.A.C. valve.

DETONATION SENSOR [VG30ET]

The detonation sensor is attached to the cylinder block and senses engine knocking conditions.

A knocking vibration from the cylinder block is applied as pressure to the piezoelectric element. This vibrational pressure is then converted into a voltage signal which is delivered as output.

Air flow

SEF636B

Idle speed adjusting screw -

SEF130C

F.I.C.D. solenoid valve

Idle speed

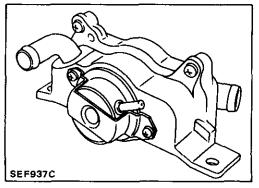
adjusting screw

SEF189F

SEF626B

Idle-up solenoid valve

F.I.C.D. solenoid valve F.I.C.D. adjusting screw

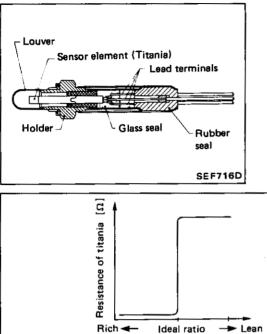

-A.A.C. valve

Weight

Piezoelectric

Terminal

Reed plate

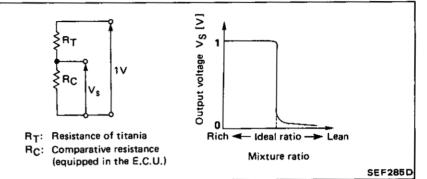

AIR REGULATOR

The air regulator provides an air by-pass when the engine is cold for the purpose of a fast idle during warm-up.

A bimetal, heater and rotary shutter are built into the air regulator. When the bimetal temperature is low, the air by-pass port is open. As the engine starts and electric current flows through a heater, the bimetal begins to rotate the shutter to close off the by-pass port. The air passage remains closed until the engine is stopped and the bimetal temperature drops.

A.I.V. (AIR INDUCTION VALVE)

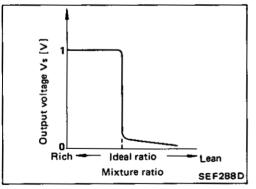
The air induction valve sends secondary air to the exhaust manifold, utilizing a vacuum caused by exhaust pulsation in the exhaust manifold. When the exhaust pressure is below atmospheric pressure (negative pressure), secondary air is sent to the exhaust manifold. When the exhaust pressure is above atmospheric pressure, the reed valves prevent secondary air from being sent back to the air cleaner.

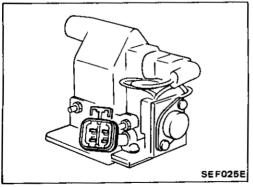

Components (Cont'd)

EXHAUST GAS SENSOR (Titania type) [VG30ET]

The exhaust gas sensor, which is placed in the exhaust tube, monitors the amount of oxygen in the exhaust gas.

This sensor is made of ceramic titania which electric resistance drastically changes at the ideal air-fuel ratio.

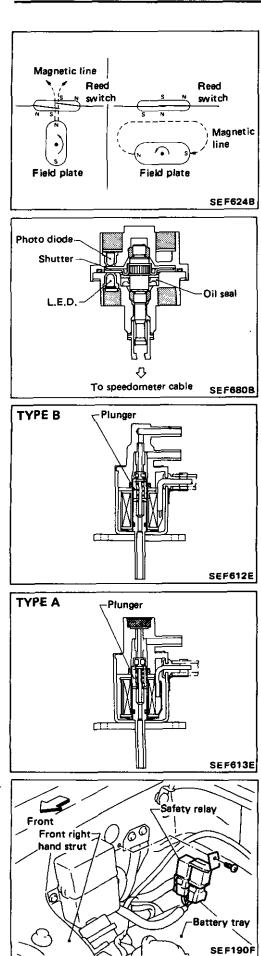

The E.C.U. supplies the sensor with approximately 1V and takes an output voltage of the sensor depending on its resistance. In order to activate the sensor element, it is equipped with a heater.



Louver Zirconia tube Holder Holder Connector Isolation bushing Contact plate

Mixture ratio

SEF336A


EXHAUST GAS SENSOR (Zirconia type) [VG30E]

The exhaust gas sensor, which is placed into the exhaust manifold, monitors the amount of oxygen in the exhaust gas.

The sensor has a closed-end tube made of ceramic zirconia. The outer surface of the tube is exposed to exhaust gas, and the inner surface to atmosphere. The zirconia of the tube compares the oxygen density of exhaust gas with that of atmosphere, and generates electricity. In order to improve generating power of the zirconia, its tube is coated with platinum. The voltage is approximately 1V in a richer condition of the mixture ratio than the ideal air-fuel ratio, while approximately 0V in leaner conditions. The radical change from 1V to 0V occurs at around the ideal mixture ratio. In this way, the exhaust gas sensor detects the amount of oxygen in the exhaust gas and sends the signal of approximately 1V or 0V to the E.C.U.

POWER TRANSISTOR AND IGNITION COIL

The ignition signal from the E.C.U. is amplified by the power transistor, which turns the ignition coil primary circuit on and off, inducing the proper high voltage in the secondary circuit.

Components (Cont'd) VEHICLE SPEED SENSOR

The vehicle speed sensor provides a vehicle speed signal to the E.C.U.

• Needle type speedometer models

The speed sensor consists of a reed switch, which is installed in the speed meter unit and transforms vehicle speed into a pulse signal.

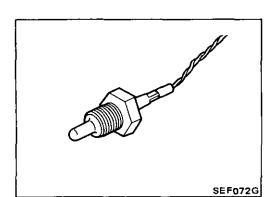
Digital type speedometer models

The speed sensor consists of an L.E.D., photo diode, shutter and wave forming circuit. Its principle is the same as that of the crank angle sensor.

A.I.V. CONTROL SOLENOID VALVE (TYPE B)

The A.I.V. control solenoid valve cuts intake manifold vacuum signal for A.I.V. control. The solenoid valve actuates in response to the ON/OFF signal from the E.C.U. When the solenoid is off, the vacuum signal from the intake manifold is cut. As the control unit outputs an ON signal, the coil pulls the plunger downward, and feeds the vacuum signal to the A.I.V. control valve.

E.G.R. CONTROL SOLENOID VALVE (TYPE A)


The E.G.R. system is controlled only by the E.C.U. At both low and high speed revolution of engine, the solenoid valve turns on and accordingly the E.G.R. valve cuts the exhaust gas leading to the intake manifold.

P.R. (PRESSURE REGULATOR) CONTROL SOLENOID VALVE (VG30E: TYPE A, VG30ET: TYPE B)

The solenoid valve actuates in response to the ON/OFF signal from the E.C.U. When it is off, a vacuum signal from the intake manifold is fed into the pressure regulator. As the control unit outputs an ON signal, the coil pulls the plunger downward, and cuts the vacuum signal.

SAFETY RELAY

Safety relay, which is located behind the right side of hoodledge, prevents any damage to the E.C.U. and injectors when battery terminals are connected in reverse.

Components (Cont'd) EXHAUST GAS TEMPERATURE SENSOR

EXHAUSI GAS TEMPERATU [Carifornia model]

[Carifornia model]

The exhaust gas temperature sensor is located near E.G.R. valve, detects exhaust gas temperature and emits signals to the E.C.U. This part employs a thermistor which is sensitive to changes in temperature. The electric resistance of a thermistor decreases in response to a temperature rise.

Engine speed and piston position Crank angle sensor Amount of intake air Air flow meter Engine temperature Cylinder head temperature sensor Density of oxygen in exhaust gas Exhaust gas sensor Throttle valve idle position Idle switch E.C.C.S. control Injector Gear position unit Neutral/Inhibitor switch (VG30ET) Vehicle speed Vehicle speed sensor Start signal Ignition switch Fuel temperature Fuel temperature sensor Battery voltage Battery

Fuel Injection Control

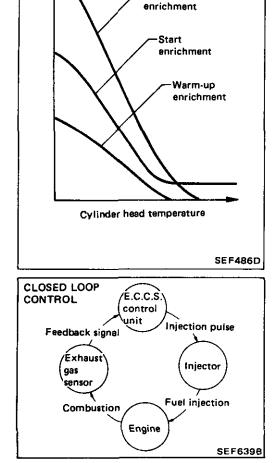
Fuel Injection Control (Cont'd)

The E.C.U. calculates the basic injection pulse width by processing signals from crank angle sensor and air flow meter. Receiving signals from each sensor which detects various engine conditions, the E.C.U. adds various enrichments, which are pre-programmed in the control unit, to the basic injection amount. Thus, the optimum amount of fuel is injected through the injectors.

1) Fuel enrichment

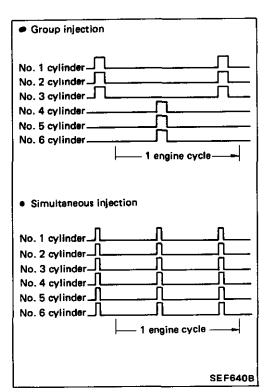
In each of the following conditions, fuel is enriched.

- During warm-up
- When starting
- After idle
- With heavy load
- When cylinder head temperature is high.


The enrichment rate for "when accelerating" and "with heavy load" are pre-programmed for engine speed and basic injection pulse width.

2) Mixture ratio feedback control

The mixture ratio feedback system is designed to control the mixture ratio precisely to the stoichiometric point so that the three-way catalyst can minimize CO, HC and NOx emissions simultaneously. This system uses an exhaust gas sensor located in the exhaust manifold to give an indication of whether the air-fuel ratio is richer or leaner than the stoichiometric point. The control unit adjusts the injection pulse width according to the sensor voltage so the mixture ratio will be within the narrow window around the stoichiometric air fuel ratio.


However, this system will open under the following conditions:

- When starting.
- When engine and exhaust gas sensor is cold.
- When driving at high speeds or under heavy load.
- At idle
- When exhaust gas sensor monitors a too lean condition for more than 10 seconds.
- When fuel shut-off is in operation.
- When exhaust gas sensor is malfunctioning.
- When pressure regulator control system is in operation.

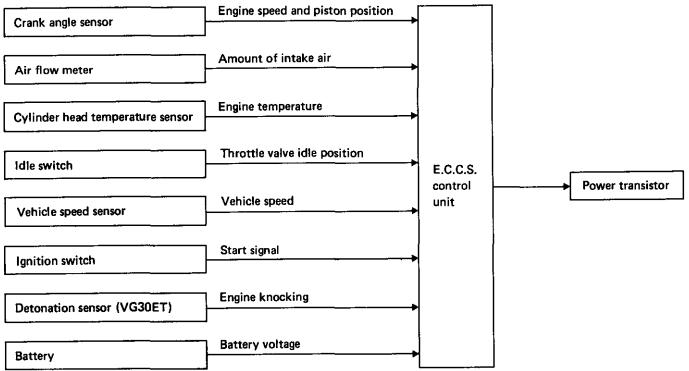
After idle

Rich

Fuel Injection Control (Cont'd)

3) Injection timing

Two types of fuel injection systems are used – simultaneous injection and group injection. In the former, fuel is injected into all six cylinders simultaneously twice each engine cycle.


In other words, pulse signals of the same width are simultaneously transmitted from the E.C.U. to the six injectors two times for each engine cycle.

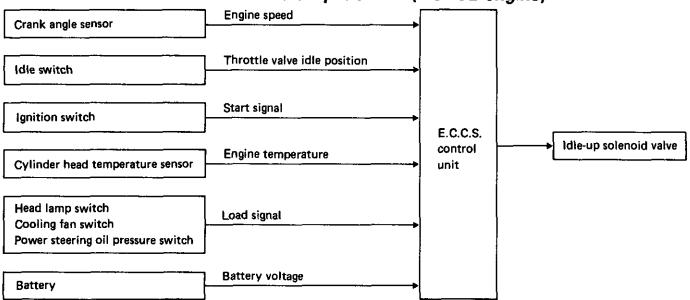
In the group injection system, six injectors are divided into two groups - No. 1, No. 2, No. 3 and No. 4, No. 5, No. 6. And fuel is injected into each group separately once each engine cycle.

When any of the following conditions are met, fuel injection shifts to simultaneous injection from group injection.

- Engine speed is more than 3,000 rpm.
- Cylinder head temperature is below 60°C (140°F).
- When starting.

Ignition Timing Control

Ignition timing is controlled, corresponding to the engine operating conditions, by the E.C.U.: that is, as the optimum ignition timing in each driving condition has been pre-programmed in the control unit, the ignition timing is determined by electrical signals processed in the unit.

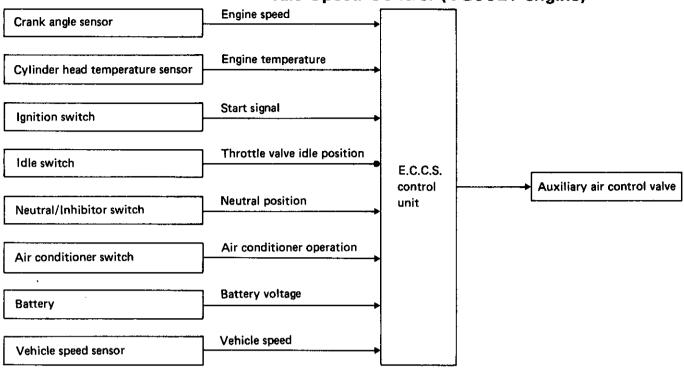

The signal from the E.C.U. is transmitted to power transistor, and controls ignition timing.

Ignition Timing Control (Cont'd)

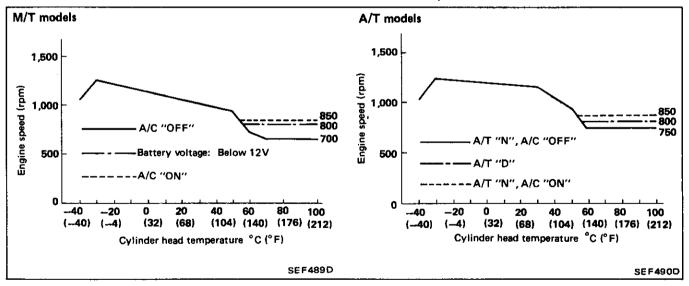
Detonation feedback operation

The retard system by detonation sensor is designed only for emergencies on VG30ET engines. The basic ignition timing is pre-programmed within the anti-knocking zone, even if recommended fuel is used under dry conditions. Consequently, the retard system does not operate under normal driving conditions.

However, if engine knocking occurs, the detonation sensor monitors the knocking condition and the signal is transmitted to the E.C.U. After receiving it, the control unit retards the ignition timing to avoid the knocking condition.

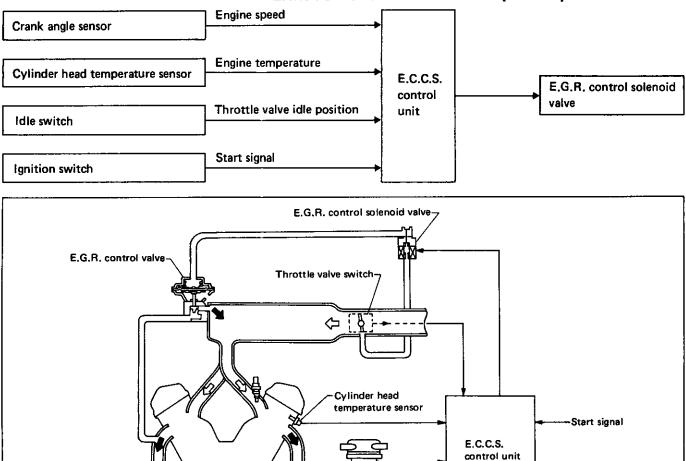

Idle-up Control (VG30E engine)

The idle speed is compensated by the E.C.U. to prevent rough idle when any of the following conditions are met.


The control unit senses the idle condition, and determines ON/OFF signal. The signal from the control unit is transmitted to the idle-up solenoid valve to stabilize idle speed.

Operation

Condition	Idle-up solenoid operation
During engine start	
20 seconds after engine start	
Battery voltage is below 12V	ON
Headlamp switch ON	
Cooling fan switch ON	
Power steering oil pressure switch ON	
Except above	OFF

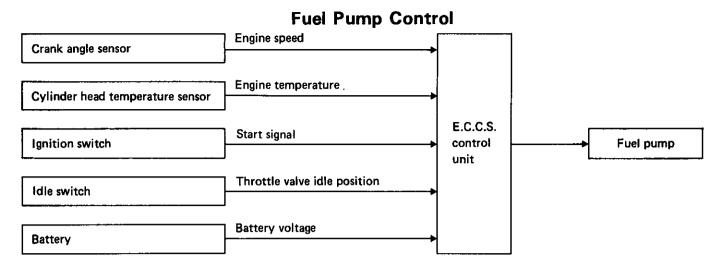


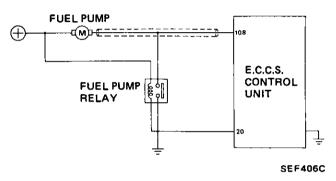
The idle speed is controlled by the E.C.U., corresponding to the engine operating conditions. The E.C.U. senses the engine condition and determines the best idle speed at each cylinder head temperature and gear position. The control unit then sends an electronic signal corresponding to the difference between the best idle speed and the actual idle speed to the A.A.C. valve.

Idle Speed Control (VG30ET engine)

Crank angle sensor

OPERATION


In the exhaust gas recirculation system, some of the exhaust gas is returned to the combustion chamber to lower the flame temperature during combustion. This results in a reduction of the nitrogen oxide density in the exhaust gas.


When the E.G.R. control valve is open, some of the exhaust gas is led from the exhaust manifold to the E.G.R. tube. The exhaust gas is then regulated by E.G.R. valve, and is introduced into the intake manifold.

The signal from the E.C.U. is sent to the E.G.R. control solenoid valve, which cuts the vacuum line for the E.G.R. control valve when any of the following conditions are met.

Condition	E.G.R. control solenoid	E.G.R. system
Engine starting Idle switch "ON" Under heavy load driving Low engine temperature High engine temperature Engine speed above 2,700 rpm	ON	Does not operate
Except above	OFF	Operates

SEF642B

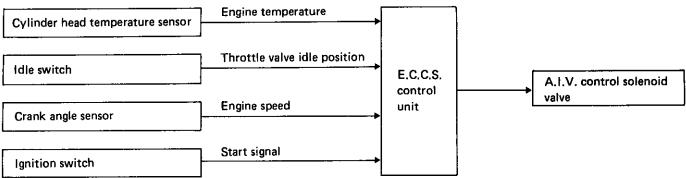
Description

The fuel pump is controlled by the E.C.U. adjusting the output voltage supplied to the fuel pump.

Fuel pump ON-OFF control

1) Fuel pump ON-OFF control (terminal (108))

Condition	Fuel pump operation
Ignition switch is tunred to ON.	Operates for 5 seconds
Engine running and cranking	Operates
When engine is stopped	Stops in 1 second
Except as shown above	Stops


2) Fuel pump relay ON-OFF control (terminal 20)

Condition	Fuel pump relay operation	Fuel pump operation
Ignition switch is turned to ON	ON for 5 seconds	Operates for 5 seconds
When engine is starting [Engine temp.: above 100°C (212°F)]	ON	Operates
After started [Engine temp.: above 100°C (212°F)]	ON for 30 seconds	Operates
When engine stalls and except as shown above	OFF	Stops

Fuel pump voltage control

Conditions	Voltage
5 seconds after ignition switch is turned to ON	
Engine cranking	
30 seconds after engine start [above 50°C (122°F)]	0.1 - 0.3 V
Engine temp. above 90°C (194°F) [Idle switch "OFF"]	
Engine temp. below 10°C (50°F)	
Except above	9 - 14 V

Air Induction Valve (A.I.V.) Control

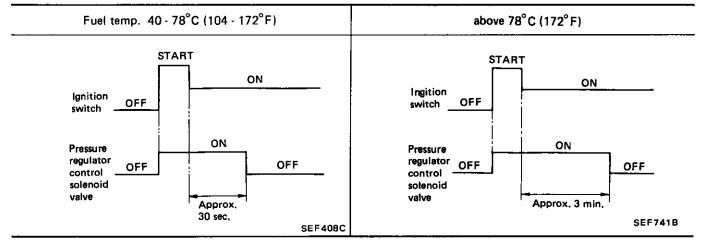
The air induction system is designed to send secondary air to the exhaust manifold, utilizing a vacuum caused by exhaust pulsation in the exhaust manifold.

The exhaust pressure in the exhaust manifold usually pulsates in response to the opening and closing of the exhaust valve and it decreases below atmospheric pressure periodically.

If a secondary air intake pipe is opened to the atmosphere under vacuum conditions, secondary air can be drawn into the exhaust manifold in proportion to the vacuum.

The air induction valve is controlled by the E.C.U., corresponding to the engine temperature. When the engine is cold, the A.I.V. control system operates to activate the 3-way catalytic converter quickly. This system also operates during deceleration for the purpose of blowing off water around the air induction valve.

Condition	A.I.V. control solenoid	A.I.V. control system	
Low engine temp.		Operates	
During deceleration		Operates	
Except above*	OFF	Does not operate	


*: Including cylinder head temperature sensor circuit malfunctioning

Pressure Regulator Control Fuel temperature sensor Fuel temperature Ignition switch Start signal Ignition switch Engine speed Crank angle sensor Engine speed Air flow meter Amount of intake air

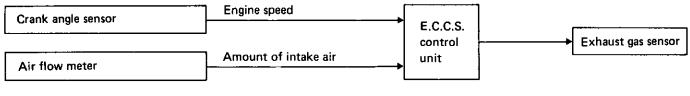
This system improves the startability in hot condition by cutting off the intake manifold vacuum and increasing the fuel pressure.

For VG30ET engine, the fuel line is imparted with high pressure which has been stored in the surge tank while the engine was running with turbocharger.

Operation

Air Regulator Control

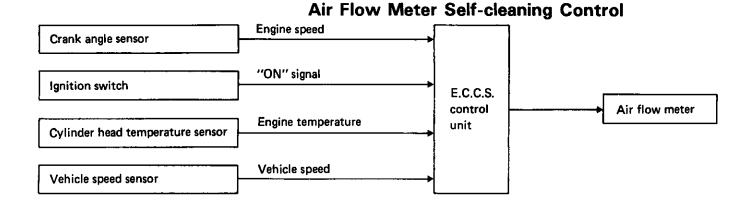
Crank angle sensor	Engine speed]	
		E.C.C.S. control		Air regulator
Ignition switch	Start signal	unit		

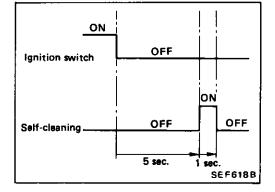

Description

The air regulator is controlled by the E.C.U. at the same time as fuel pump ON-OFF control.

Operation (Air regulator ON-OFF control)

Condition	Air regulator operation
Ignition switch is turned to ON	Operates for 5 seconds
While engine is running and cranking	Operates
When engine is stopped	OFF in 1 second
Except as shown above	OFF


Exhaust Gas Sensor Heater Control [VG30E]



The E.C.U. controls the heater operation in the following way.

Operation

	Condition	Exhaust gas sensor heater
	Engine speed is less than 2,800 rpm. Except under heavy load	ON
Exce	pt as shown above	OFF

Description

After the engine is stopped, the E.C.U. heats up the hot wire to approximately $1,000^{\circ}$ C ($1,832^{\circ}$ F) to burn out dust which adhered to the hot wire.

Operation

Condition	Self-cleaning system
 Engine speed has not exceeded 1,500 rpm before key off. 	
 Vehicle speed has not exceeded 20 km/h (12 MPH) before key off. 	Does not operate
 Cylinder head temperature is higher than 115°C (239°F) when key off. 	
 Engine stall with key in ON position. 	
Except as shown above	Operates

Fail-safe System

AIR FLOW METER

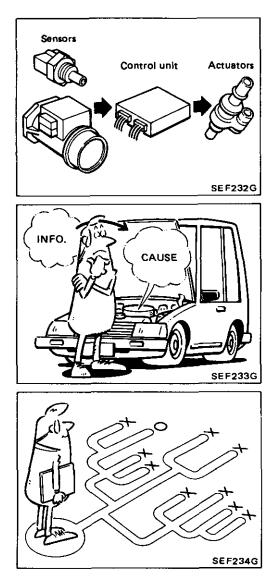
Description

When the output voltage of air flow meter is lower than the preprogrammed value, the E.C.U. judges it as a malfunctioning of air flow meter. The E.C.U. fixes the systems in the following condition.

Operation

System	Fixed condition					
E.G.R. control system	OFF					
Idle speed control system	A duty ratio is fixed at the preprogrammed value.					
Fuel injection control system	Fuel is shut off above 2,000 rpm. (Engine speed does not exceed 2,000 rpm.)					

CYLINDER HEAD TEMPERATURE SENSOR


Description

When the output signal of cylinder head temperature sensor is abnormal the E.C.U. judges it as a malfunctioning of cylinder head temperature sensor.

The E.C.U. decides the cylinder head temperature according to the time from ignition switch ON.

Operation

Condition	Cylinder head temperature decided
Just as ignition switch is turned ON or Start	20°C (68°F)
More than 6 minutes after ignition ON or Start	80°C (176°F)
Except as shown above	20 - 80°C (68 - 176°F) (Depends on the time)

Introduction


The engine has an electronic control unit to control major systems such as fuel control, ignition control, idle speed control, etc. The control unit accepts input signals from sensors and instantly drives actuators. It is essential that both kinds of signals are proper and stable. At the same time, it is important that there are no conventional problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or faulty wiring. In this case, careful checking of suspicious circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with a circuit tester connected to a suspected circuit should be performed.

Before undertaking actual checks, take just a few minutes to talk with a customer who approaches with a driveability complaint. The customer is a very good supplier of information on such problems, especially intermittent ones. Through the talks with the customer, find out what symptoms are present and under what conditions they occur.

Start your diagnosis by looking for "conventional" problems first. This is one of the best ways to troubleshoot driveability problems on an electronically controlled engine vehicle.

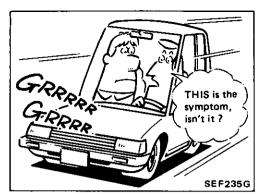
Work Flow

KEY POINTS

WHAT	Vehicle & engine model
WHEN	Date, Frequencies
WHERE	Road conditions
HOW	Operating conditions,
	Weather conditions,
	Symptoms

Diagnostic Worksheet

There are many kinds of operating conditions that lead to malfunctions on engine components,

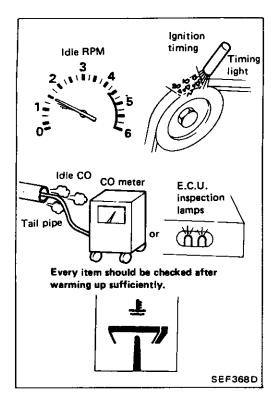

A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, feelings for a problem depend on each customer. It is important to fully understand the symptoms or under what conditions a customer complains.

Make good use of a diagnostic worksheet such as the one shown below in order to utilize all the complaints for troubleshooting.

Customer nan	ne MR/MS	Model & Year VIN	
Engine #		Trans. Mileage	
Incident Date		Manuf. Date In Service Date	
	□ Startability	 Impossible to start No combustion Partial combustion affected by throttle position Partial combustion NOT affected by throttle position Possible but hard to start Others []
Sumatoma	🗆 Idling	 No fast idle Unstable High idle Low idle Others [] 	
Symptoms	Driveability	Stumble Surge Detonation Lack of power Intake backfire Exhaust backfire Others []	
	Engine stall	At the time of start While idling While accelerating While decelerating Just after stopping While loading	
Incident occurrence		 Just after delivery Recently In the morning At night In the daytime 	
Frequency		□ All the time □ Under certain conditions □ Sometimes	
Weather cond	itions	Not effected	
	Weather	🗇 Fine 🗆 Raining 🗆 Snowing 🗆 Others []
	Temperature	□ Hot □ Warm □ Cool □ Cold □ Humid °F	
Engine condit	ions	Cold During warm-up After warm-up	
Road conditions		□ In town □ In suburbs □ Highway □ Off road (up/down)	
Driving condi	tions	Not affected At starting While idling At racing While accelerating While cruising While decelerating While turning (RH/LH) Vehicle speed 10 20 30 40 50 60 MPH	
Check engine	light	□ Turned on □ Not turned on	

WORKSHEET SAMPLE



Intermittent Problem Simulation

In order to duplicate an intermittent problem, it is effective to create similar conditions for component parts, under which the problem might occur.

Perform the activity listed under <u>Service procedure</u> and note the result.

		1	T	· · · ·
\square	Variable factor	Influential part	Target condition	Service procedure
1	Mixture ratio	Pressure regulator	Made lean	Remove vacuum hose and apply vacuum.
		riessure regulator	Made rich	Remove vacuum hose and apply vacuum. Remove vacuum hose and apply pressure. Rotate distributor clockwise. Rotate distributor counterclockwise. Disconnect exhaust gas sensor harness connector. heck Perform self-diagnosis (Mode I/II) at 2,000 rpm. Turn idle adjust screw counterclockwise. Turn idle adjust screw clockwise. Tap or wiggle. Present rapidly. See if the torque reaction of the engine unit causes electric breaks. Cool with an icing spray or similar device. Heat with a hair drier. [WARNING: Do not directly pour water on components. Use a mist sprayer.] Turn on head lights, air conditioner, rear defogger, etc.
2	Ignition timing	Distributor	Advanced	Rotate distributor clockwise.
2	ignición cining		Retarded	Rotate distributor counterclockwise,
3	Mixture ratio	Exhaust gas sensor	Suspended	Disconnect exhaust gas sensor harness connector.
	feedback control	Control unit	Operation check	Perform self-diagnosis (Mode I/II) at 2,000 rpm.
4	Idle speed	I.A.A. unit	Raised	Turn idle adjust screw counterclockwise.
			Lowered	Turn idle adjust screw clockwise.
	Electric connection	Harness connectors	Poor electric	Tap or wiggle.
5	(Electric continuity)	and wires	connection or faulty wiring	
			Cooled	Cool with an icing spray or similar device.
6	Temperature	Control unit	Warmed	
7	Moisture	Electric parts	Damp	[WARNING: Do not directly pour water on
8	Electric loads	Load switches	Loaded	
9	Idle switch condition	Control unit	ON-OFF switching	Perform self-diagnosis (Mode IV).
10	Ignition spark	Timing light	Spark power check	Try to flash timing light for each cylinder.

Specifications

1) Idle speed

VG30E (M/T & A/T in "D" position): 700±50 rpm at sea level 650±50 rpm at high altitudes VG30ET:

M/T; 700±50 rpm A/T; 650±50 rpm (in "D" position)

2) Ignition timing

VG30E:

M/T; 15°±2° B.T.D.C. A/T; 20°±2° B.T.D.C.

- VG30ET:
 - M/T; 10°±2° B.T.D.C.
 - A/T; 15°±2° B.T.D.C.
- 3) Idle CO
- O 0.2 8.0% (in tail pipe)
 - Throttle valve switch harness connector disconnected (No A.I.V. controlled condition)
 - Cylinder head temperature sensor harness connector disconnected and then 2.5 kΩ resistor connected.
 - Exhaust gas sensor harness connector disconnected.
- Flashes of E.C.U. red inspection lamp in mode II (If flashes, O.K.)
- 4) Mixture ratio at approximately 2,000 rpm of engine speed. Number of flashes of E.C.U. inspection green lamp in mode I:
 - 5 times or more/10 seconds
- 5) Engine speed of idle switch OFF \rightarrow ON
 - M/T: Idle speed + 250±150 rpm
 - A/T: Engine speed (In "N" position) + 250±150 rpm

Diagnostic Table

To assist with your troubleshooting, some typical diagnostic procedures for the following symptoms are described.

CONTENTS

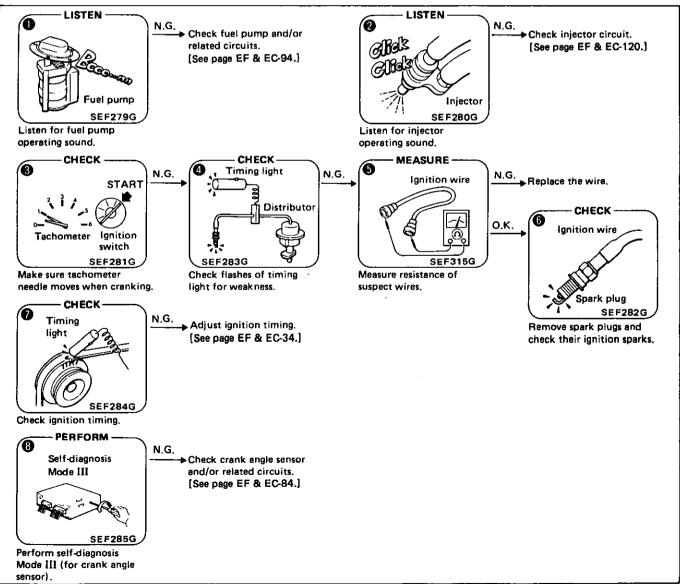
2. 3.	Impossible to start Impossible to start	 no combustion	. EF . EF	& &	EC-37 EC-38
6. 7.	Hard to start Hard to start Hard to start Hard to start	 before warm-up after warm-up every time morning after a rainy day 	. EF . EF	& &	EC-41 EC-42
10.	Abnormal idling Abnormal idling Abnormal idling	 no fast idle low idle (after warm-up) high idle (after warm-up) 	. EF	8	EC-45
	Unstable idling Unstable idling	 before warm-up after warm-up 			
15. 16.	Poor driveability Poor driveability Poor driveability Poor driveability	 stumble (while accelerating) surge (while cruising) lack of power detonation 	. EF . EF	8. &	EC-50 EC-51
19. 20. 21. 22.	Engine stall Engine stall Engine stall Engine stall Engine stall Engine stall	 during start-up while idling while accelerating while cruising while decelerating/just after stopping while loading (power steering, air conditioner, headlamps, etc.) 	. EF . EF . EF . EF	& & & & &	EC-54 EC-55 EC-56 EC-57
-	Backfire Backfire	 through the intake through the exhaust 			

REMARKS

In the following pages, the numbers such as ①, ② in the above chart correspond to those in the service procedure described below.

Possible causes can be checked through the service procedure shown by the mark "O".

Diagnostic Table (Cont'd)

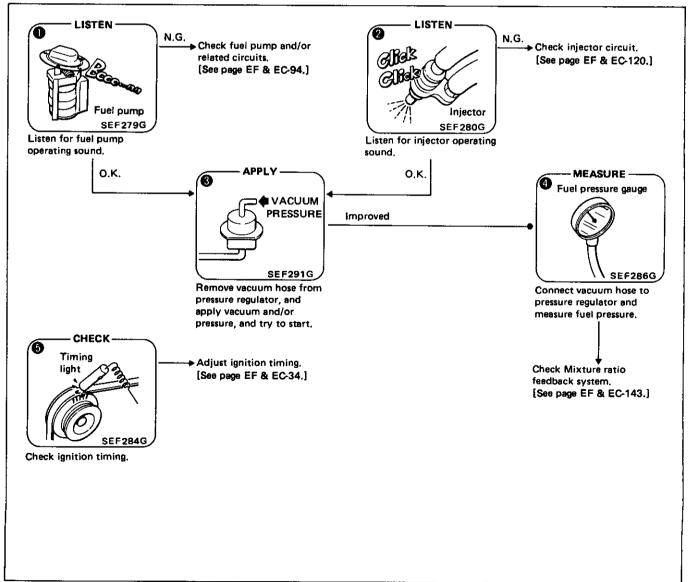

SYMPTOM & CONDITION

Impossible to start - no combustion

	POSSIBLE CAUSES	0	0	6	4	6	6	0	8
SPECIFICATIONS	Mixture ratio (too lean)	0	0						
	Ignition sparks (weak, missing)				0	0	0		
	Ignition timing							0	
FUEL SYSTEM	Fuel pump (no operation)	0							
	Fuel pump relay (open circuited)	0							
	Injectors (no operation, clogged)		Ó						
IGNITION SYSTEM	Ignition switch	0	0	0	0			0	
	Main relay	0	0	0	0			0	
	Power transistor			0	0			0	
	Ignition coil				0			0	
	Center cable (ignition leaks)			1	0			0	
	Ignition wires (ignition leaks)		1		0	0			Γ
	Spark plugs		1			[0		
CONTROL SYSTEM	Crank angle sensor	0	0	Τ	0			0	0

1

SERVICE PROCEDURE


Diagnostic Table (Cont'd)

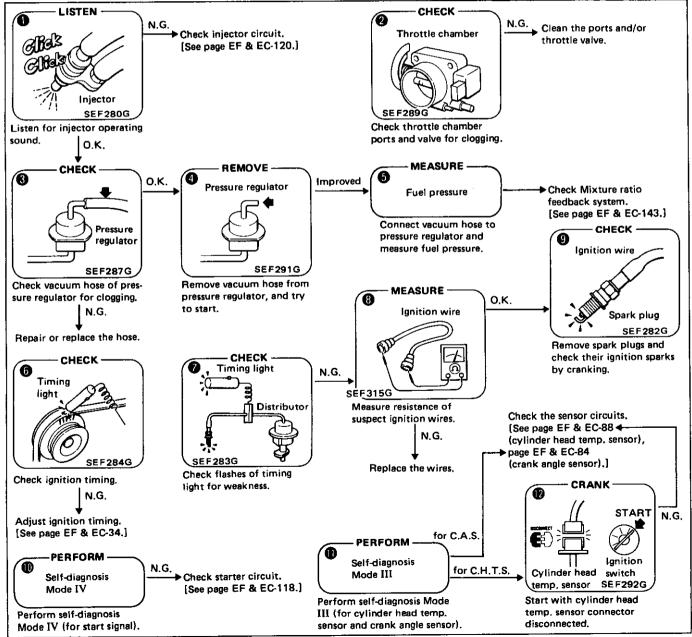
SYMPTOM & CONDITION

2 Impossible to start – partial combustion

	POSSIBLE CAUSES	0	2	8	4	6
SPECIFICATIONS	Mixture ratio	0	0	0		
	Fuel pressure (too low)				0	
	Ignition timing					0
FUEL SYSTEM	Fuel pump	0				
	Fuel pump relay (open circuited)	 0				
	Injectors (clogged)		0		1	

SERVICE PROCEDURE

EF & EC-37

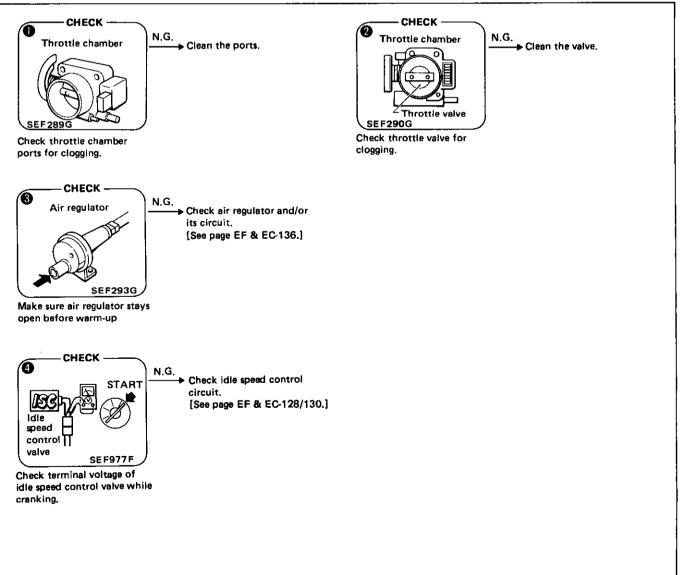

•

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 3 Impossible to start – partial combustion (not affected by throttle position

	POSSIBLE CAUSES		0	0	0	0	0	0	0	Ø	•	•	•
SPECIFICATIONS	Mixture ratio	0		0	0								
	Fuel pressure (too low)		ľ	0	0	0							Ĺ
	Ignition timing					}	0						
FUEL SYSTEM	Fuel filter (clogged)					0							
	Fuel line (clogged)	T -		Ī		0							
	Injectors (clogged)	0		[
	Pressure regulator	. T			0					Γ			
	Pressure regulator vacuum hose (clogged)			0									
IGNITION SYSTEM	Ignition wires (ignition leaks)		I					0	0				
	Spark plugs (wet with fuel)			1						0	Į		
	Ignition switch	_ o ∣				ì		0	Γ		0		
INTAKE SYSTEM	Throttle chamber (with ports clogged)	1	0										
	Throttle valve (clogged)		0					[
CONTROL SYSTEM	Cylinder head temperature sensor											\circ	C
	Crank angle sensor	0		1				0	Γ			0	Γ

SERVICE PROCEDURE


Diagnostic Table (Cont'd)

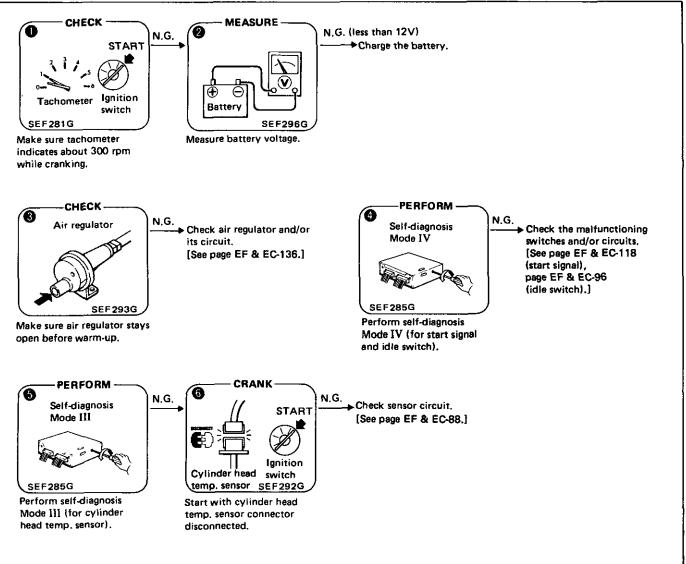
SYMPTOM & CONDITION

4 Impossible to start – partial combustion (throttle position changes combustion quality)

	POSSIBLE CAUSES	0	0	8	0
INTAKE SYSTEM	Throttle chamber (with ports clogged)	0			
	Throttle valve (clogged)		0		_
	Air regulator (stuck closed)		Γ	0	
	Idle speed control valve				0
CONTROL SYSTEM	Cylinder head temperature sensor				0
	Idle switch	1			0
	Neutral switch				0

SERVICE PROCEDURE

Diagnostic Table (Cont'd)


SYMPTOM & CONDITION

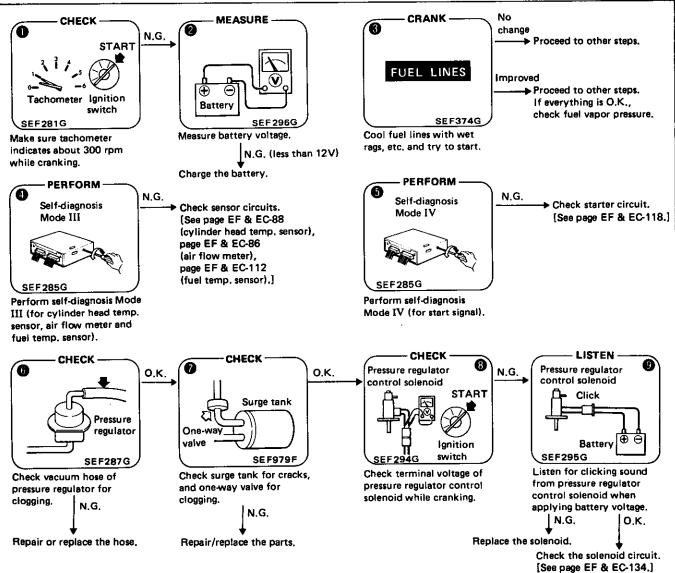
Hard to start – before warm-up

	POSSIBLE CAUSES	0	0	8	0	0	0
SPECIFICATIONS	Mixture ratio			0			0
IGNITION SYSTEM	Ignition switch (no start signal)	0			0		
INTAKE SYSTEM	Air regulator			0		Γ_	
CONTROL SYSTEM	Cylinder head temperature sensor					0	0
	Idle switch				0		
	Neutral switch	0					
OTHERS	Starter (operation too slow)	0				<u> </u>	
	Battery (voltage too low)	0	0				

5

SERVICE PROCEDURE

Diagnostic Table (Cont'd)


SYMPTOM & CONDITION

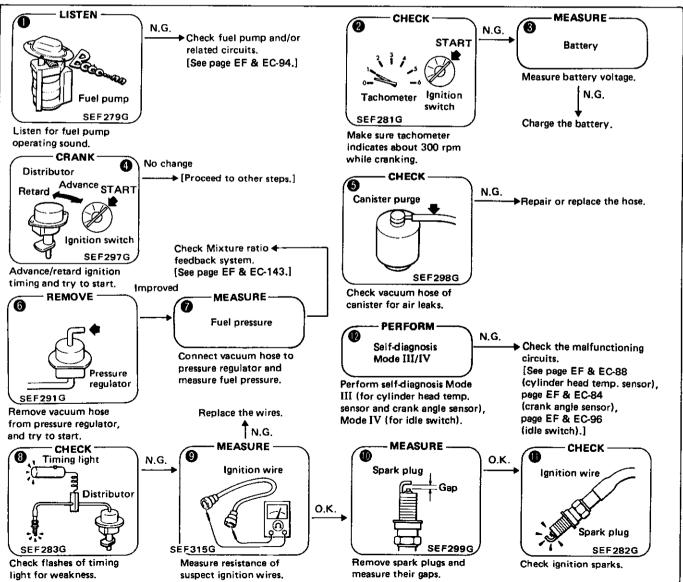
Hard to start - after warm-up

	POSSIBLE CAUSES	0	2	0	0	6	6	0	8	0
SPECIFICATIONS	Mixture ratio		[0			0	0		
	Fuel pressure			0			0	0	0	
FUEL SYSTEM	Fuel line (hot fuel)			0						
	Pressure regulator (low fuel pressure)						0			L
	Pressure regulator vacuum hose (clogged)						0			
	Pressure regulator control solenoid	Ī			I				0	0
	Pressure regulator control solenoid vacuum hose					ł	0			
	Surge tank (cracks)							0		
	Fuel temperature sensor (open circuited)				0					
IGNITION SYSTEM	Ignition switch (no start signal)	0				0				
CONTROL SYSTEM	Cylinder head temperature sensor				0			Ţ.		
	Air flow meter				0					
OTHERS	Starter (operation too slow)	0								
	Battery (voltage too low)	0	0							

6

SERVICE PROCEDURE

Diagnostic Table (Cont'd)

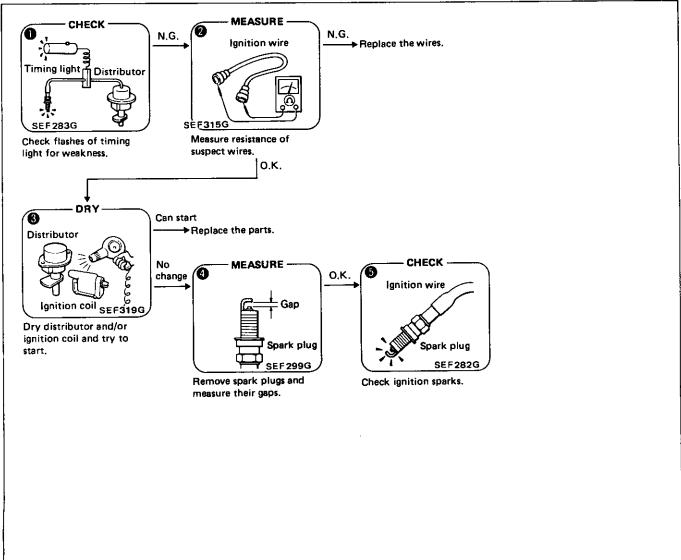

SYMPTOM & CONDITION

Hard to start - every time

7

	POSSIBLE CAUSES	0	0	0	0	6	6	0	8	0	•	•	
SPECIFICATIONS	Mixture ratio	0				0	0	1		-			
	Fuel pressure						0	0					
	Ignition sparks (missing)		 	<u> </u>				<u> </u>	0	0		0	
	Ignition timing			1	0			1-					
FUEL SYSTEM	Fuel pump (improper operation)	0											
	Fuel line (clogged)							0	Î.				
	Canister (air leaks)					0		1					
	Pressure regulator (low fuel pressure)						0						
IGNITION SYSTEM	Ignition wires (ignition leaks)								0	0			
	Spark plugs (improper gap)			1							0		
CONTROL SYSTEM	Crank angle sensor	0							0				0
	Cylinder head temperature sensor						-						0
	Idle switch												0
	Neutral switch		0]				
OTHERS	Starter (operation too slow)	T	0										
	Battery (voltage too low)		0	0									

SERVICE PROCEDURE

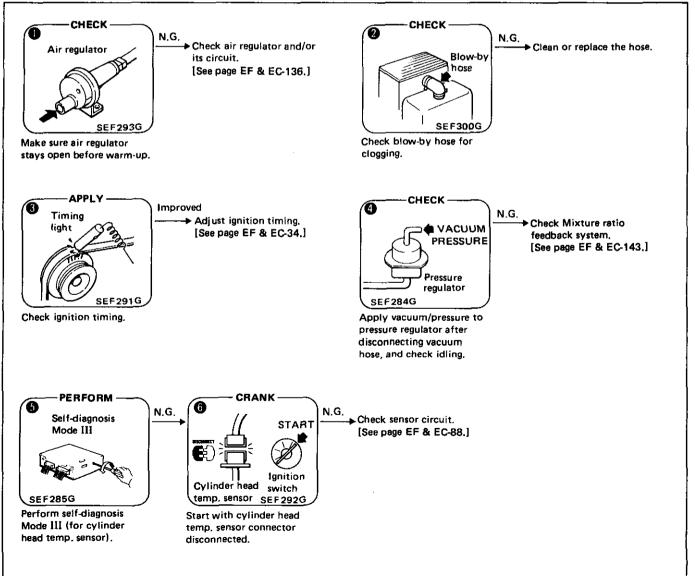

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION

8 Hard to start - morning after a rainy day

	POSSIBLE CAUSES		0	6	0	6
SPECIFICATIONS	Ignition sparks (weak)	 0	0			0
IGNITION SYSTEM	Power transistor	0				0
	Ignition coil	0		0		0
	Center cable (ignition leaks)	 0				0
	Ignition wires (ignition leaks)	0	0			0
	Distributor cap (ignition leaks)	0		0		0
	Spark plugs (improper gap)				0	0

SERVICE PROCEDURE

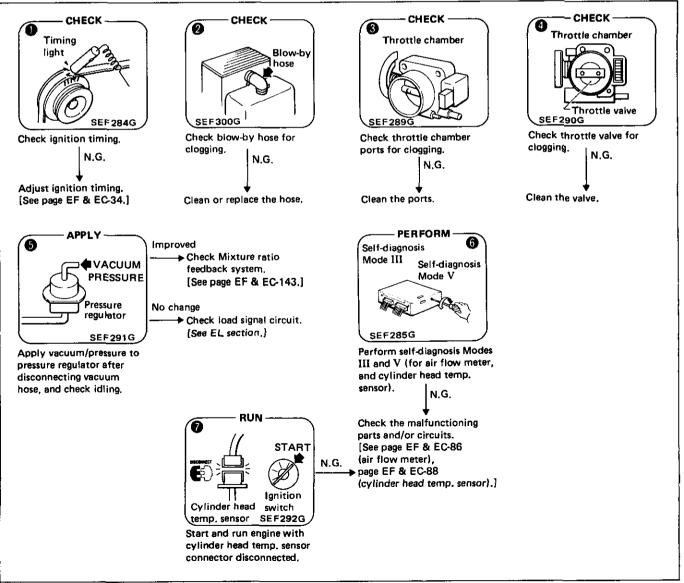

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION

9 Abnormal idling – no fast idle

	POSSIBLE CAUSES	0	0	0	4	6	6
SPECIFICATIONS	Mixture ratio	0	0		0		
	Ignition timing			0			
INTAKE SYSTEM	Blow-by hose (clogged)		0				
	Air regulator (stuck closed)	0					
CONTROL SYSTEM	Cylinder head temperature sensor					0	0

SERVICE PROCEDURE

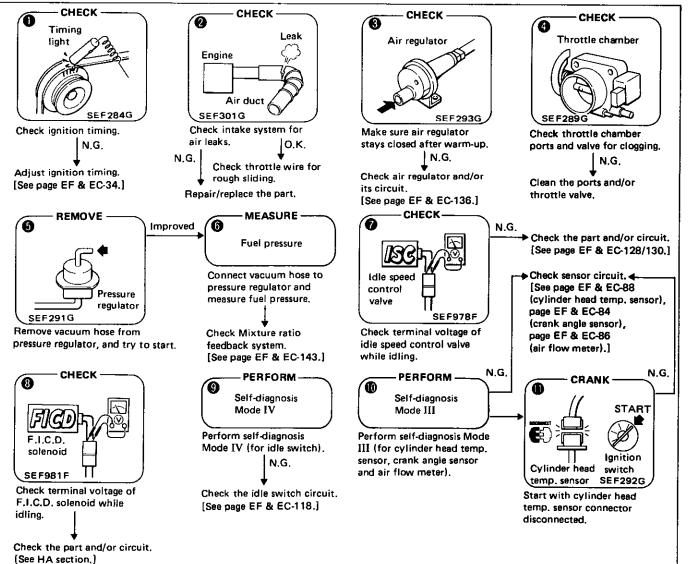


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 10 Abnormal idling – low idle (after warm-up)

	POSSIBLE CAUSES	0	0	0	4	6	6	0
SPECIFICATIONS	Mixture ratio		0			0		
	Ignition timing (too retarded)	0		1				
INTAKE SYSTEM	Throttle chamber (with ports clogged)			0				-
	Throttle valve (clogged)				0			
CONTROL SYSTEM	Crank angle sensor						0	
	Air flow meter						0	
	Cylinder head temperature sensor						0	0
	Load switches (remaining OFF)		1	1		1		

SERVICE PROCEDURE

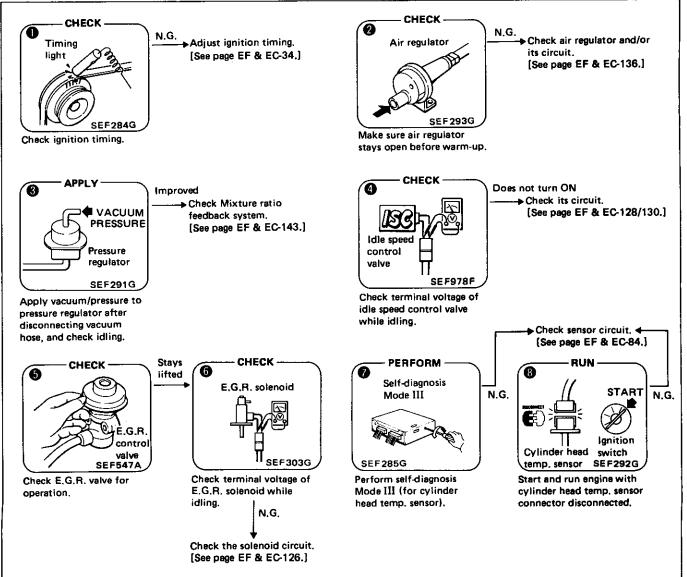

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 11

Abnormal idling - high idle (after warm-up)

	POSSIBLE CAUSES	0	0	8	0	6	6	0	8	0	●	•
SPECIFICATIONS	Mixture ratio		0	0		0	0			0		
	Ignition timing (too advanced)	0			1	1						
INTAKE SYSTEM	Air duct (leaks)		0									
	Throttle chamber (air leaks)				0	1						
	Throttle valve (stuck control wire)				0		F					
	Intake manifold (gasket) (air leaks)		0		1	-						
	Air regulator (stuck open)			0		1						-
	Idle speed control valve (remaining ON)							0				-
	F.I.C.D. solenoid (remaining ON)				1				0			
CONTROL SYSTEM	Crank angle sensor										0	
	Air flow meter			Γ							0	
	Cylinder head temperature sensor					<u> </u>					0	0
	Idle switch (remaining OFF)			<u> </u>				0		0		
Í	Load switches (remaining ON)		 					0	0			
OTHERS	Battery (voltage too low)											

SERVICE PROCEDURE

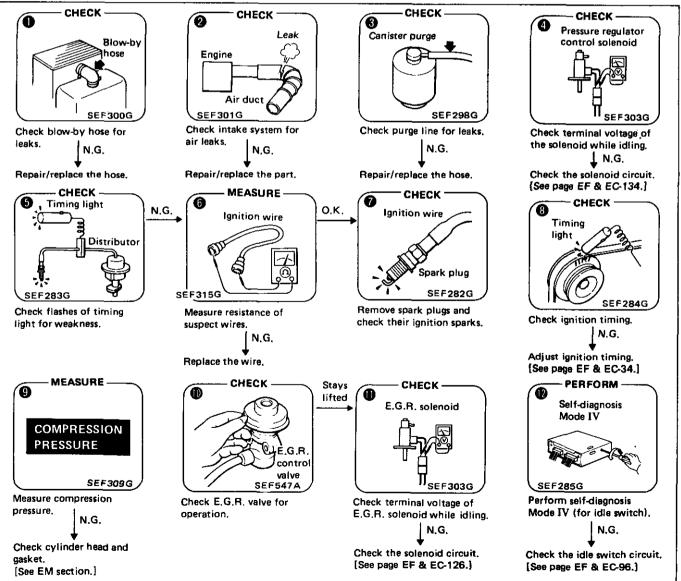


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 12 Unstable idling – before warm-up

<u></u>	POSSIBLE CAUSES	0	0	8	9	0	6	0	8
SPECIFICATIONS	Mixture ratio		0	0					
	Ignition timing	0							
INTAKE SYSTEM	Air regulator (not open enough)		0						
	Idle speed control valve (remaining OFF)		Ι		0				
CONTROL SYSTEM	Cylinder head temperature sensor							0	0
E.G.R. SYSTEM	E.G.R. control valve (stuck open)					0			
	E.G.R. solenoid (remaining OFF)					0	0		

SERVICE PROCEDURE



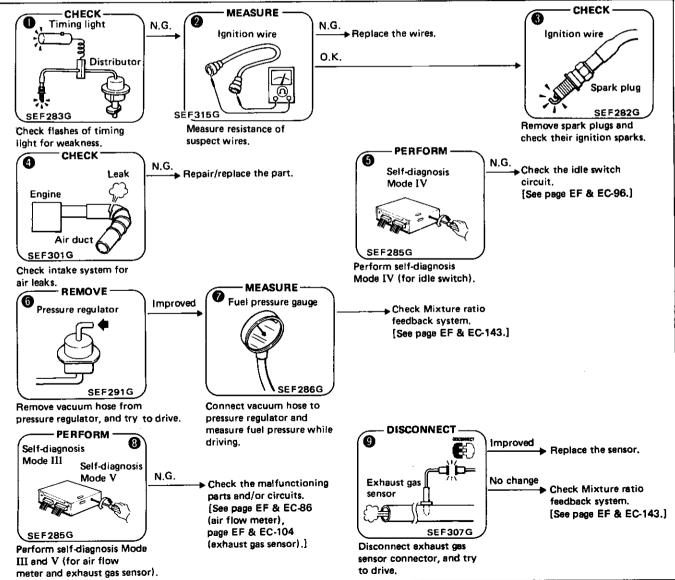
Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 13 Unstable idling – after warm-up

	POSSIBLE CAUSES	0	0	0	0	0	6	0	6	0	•		
SPECIFICATIONS	Mixture ratio	0	0	0	0	<u> </u>		<u> </u>	-			-	<u> </u>
	Ignition sparks		+		†	0	0	10					
	Ignition timing					<u> </u>			0				
	Compression pressure					<u> </u>				0			
FUEL SYSTEM	Fuel line (clogged)											_	
	Canister (air leaks)			0									<u> </u>
	Pressure regulator control solenoid				0								
IGNITION SYSTEM	Power transistor					0		0					
	Ignition coil			-		0		0					
	Ignition wires					0	0	0					
INTAKE SYSTEM	Blow-by hose (leaks)	0											
	Air duct (leaks)		0										·
CONTROL SYSTEM	Idle switch												0
	Load switches												
E.G.R. SYSTEM	E.G.R. control valve								-		0		
	E.G.R. solenoid				• •				1		0	0	

SERVICE PROCEDURE

·-----

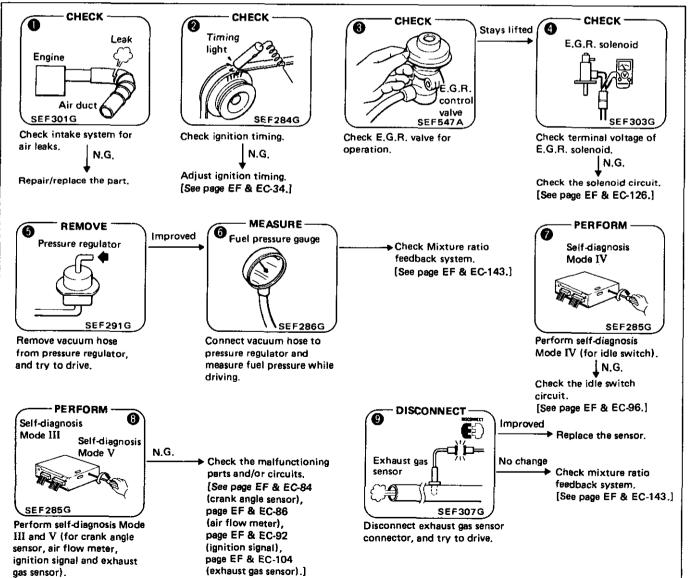

DIAGNOSTIC PROCEDURE

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 14 Poor driveability – stumble (while accelerating)

	POSSIBLE CAUSES	0	0	6	0	6	6	0	8	0
SPECIFICATIONS	Mixture ratio				0		0	0		0
	Fuel pressure						0	0		
FUEL SYSTEM	Fuel filter (clogged)							0		
	Fuel line (clogged)							0		
	Injectors (clogged)							0		
IGNITION SYSTEM	Power transistor	0		0						
	Ignition coil	0		0						
	Ignition wires (ignition leaks)	0	0	0						
	Spark plugs (ignition leaks, improper gap)			0						
INTAKE SYSTEM	Air duct (leaks)				0					
CONTROL SYSTEM	Crank angle sensor	0							0	
	Air flow meter]		0	
	Cylinder head temperature sensor	0							0	
	Exhaust gas sensor								Ő	0
	Idle switch (remaining OFF)					0				L
OTHERS	Fuel (poor quality)									

SERVICE PROCEDURE

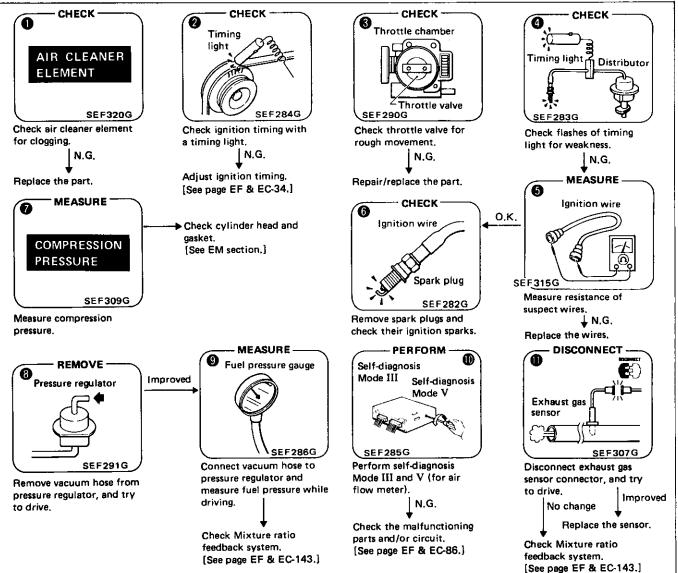

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 15

Poor driveability - surge (while cruising)

	POSSIBLE CAUSES	0	0	0	0	0	6	0	8	Ø
SPECIFICATIONS	Mixture ratio (too lean)	0	ľ			0	0		1	0
	Fuel pressure (low)			[0	0			
	Ignition timing		0							
IGNITION SYSTEM	(missing)								0	
INTAKE SYSTEM	Air duct (leaks)	0						·		
	Throttle chamber (air leaks)	0								
	Intake manifold (gasket) (air leaks)	0								
CONTROL SYSTEM	Crank angle sensor			····					0	
	Air flow meter								0	
	Exhaust gas sensor								0	0
	Idle switch							0		
E.G.R. SYSTEM	E.G.R. control valve (stuck open)			0						
	E.G.R. solenoid (remaining OFF)			0	0					
	E.G.R. vacuum hose (removed)			0						

SERVICE PROCEDURE

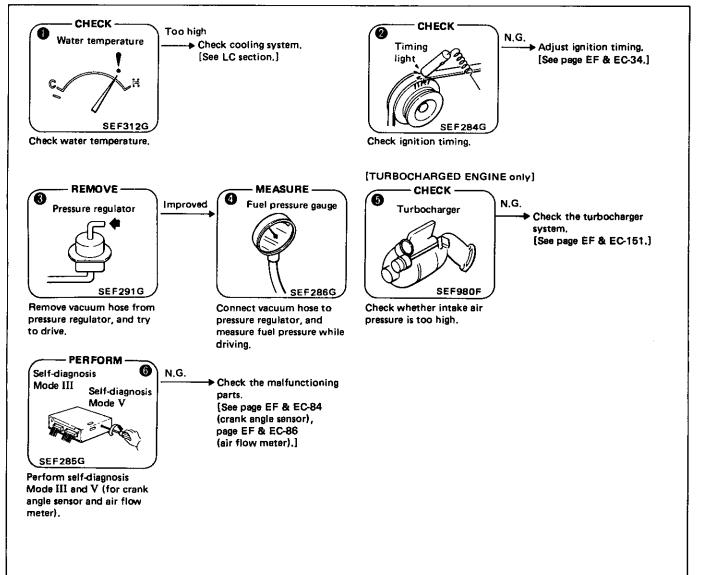


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 16 Poor driveability – lack of power

	POSSIBLE CAUSES	Ð	0	3	0	6	6	0	8	0	•	0
SPECIFICATIONS	Fuel pressure			† –					0	0		
	Ignition timing		0	T								
	Compression pressure (too low)							0				
FUEL SYSTEM	Fuel pump (low fuel output)									0		
	Fuel filter (clogged)									0		
	Fuel line (clogged)	11				1				0		
	Injectors (clogged)			1						0		
IGNITION SYSTEM	Ignition wires (ignition leaks)		1		0	0	0	Γ				
	Spark plugs (improper gap)						0					
INTAKE SYSTEM	Air cleaner element (clogged)	0		1								
	Throttle chamber (clogged)		1	0								
	Throttle valve (not open enough)		T	0								
CONTROL SYSTEM	Air flow meter		1								0	
	Exhaust gas sensor											Ó

SERVICE PROCEDURE

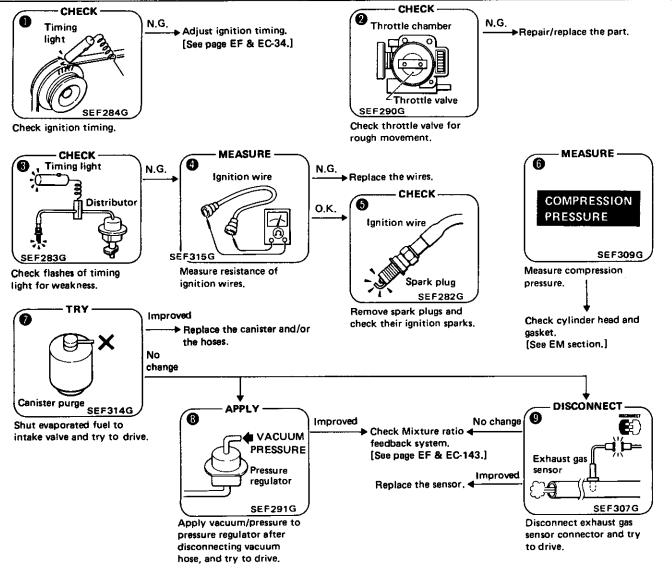


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 17 | Poor driveability – detonation

	POSSIBLE CAUSES	0	0	6	0	6	6
SPECIFICATIONS	Mixture ratio (too lean)			0	0		
	Fuel pressure (low)			0			
	Ignition timing (too advanced)		0				
FUEL SYSTEM	Fuel filter (clogged)				0		
	Fuel line (clogged)				0		
	Injectors (clogged)				0		
INTAKE SYSTEM	Turbocharger (too high pressure)					0	
CONTROL SYSTEM	Crank angle sensor (improper 1°-signals)						0
	Air flow meter						0
	Cylinder head temperature sensor						0
OTHERS	Water temperature (too high)	0					
	Fuel (low octane rating, poor quality)						

SERVICE PROCEDURE

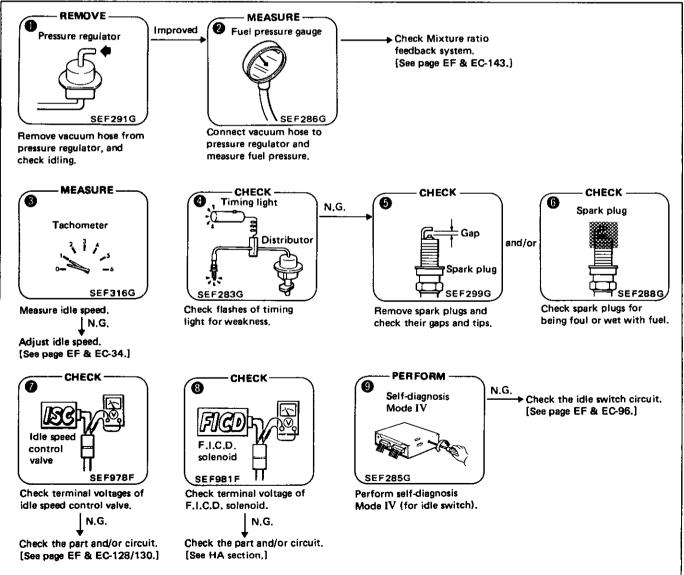


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 18 Engine stall – during start-up

	POSSIBLE CAUSES	0	0	6	0	6	6	0	8	9
SPECIFICATIONS	Mixture ratio (too rich/too lean)					[.		0	0	0
	Ignition sparks (weak)			0	0					
	Ignition timing	0								
	Compression pressure (too low)						0			
FUEL SYSTEM	Canister (too much evaporation to intake)							0		
IGNITION SYSTEM	Ignition wires (ignition leaks)	i i		0	0	0				
	Spark plugs (wet with fuel, improper gap)					0				
INTAKE SYSTEM	Throttle valve (not open enough)		0							

SERVICE PROCEDURE

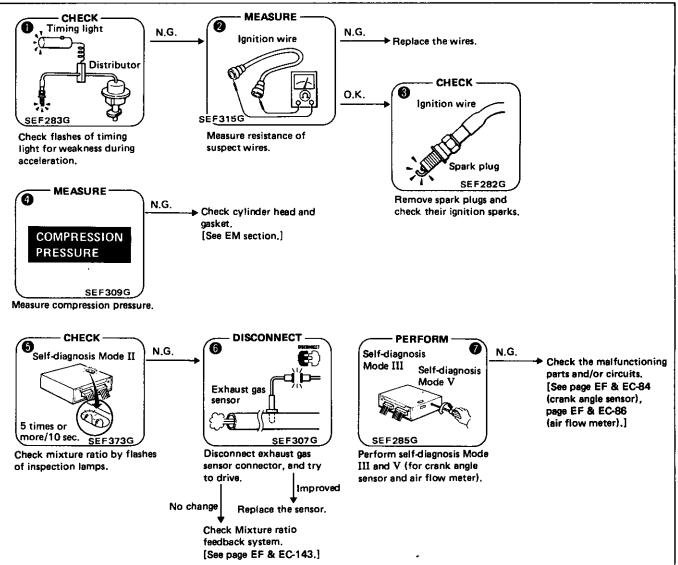

Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 19 | Eng

Engine stall - while idling

	POSSIBLE CAUSES	0	0	8	0	6	6	0	8	0
SPECIFICATIONS	Mixture ratio (too rich/too lean)	0	0							
	Fuel pressure (low)	0	0							
	Ignition sparks (weak, missing)				0			-		
	Idle speed (low)	1		0			 			
FUEL SYSTEM	Fuel line (clogged)	1	0							
IGNITION SYSTEM	Spark plugs (wet with fuel, improper gap)					0	0			
INTAKE SYSTEM	Idle speed control valve (improper operation)			0				0		
	F.I.C.D. solenoid (improper operation)			0					0	
CONTROL SYSTEM	Idle switch (remaining OFF)		-	-						0
	Neutral switch (remaining OFF)	1		0						
	Load switches (remaining OFF)							0	0	

SERVICE PROCEDURE

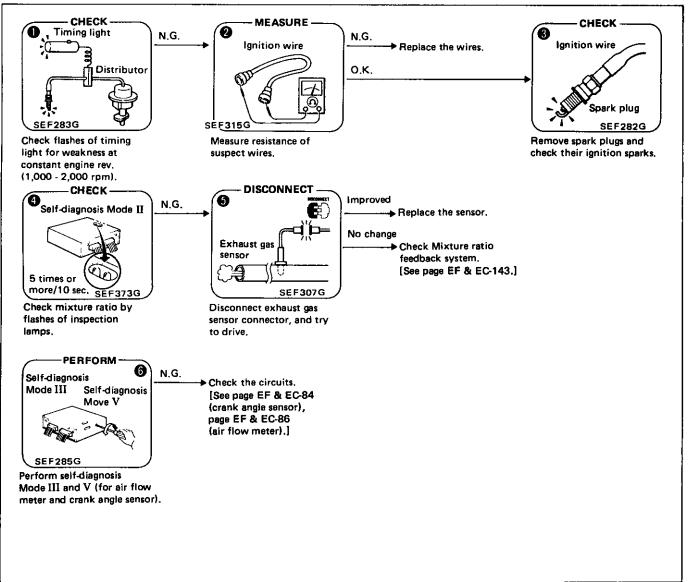


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 20 | Engine stall – while accelerating

	POSSIBLE CAUSES	0	0	6	4	6	6	0
SPECIFICATIONS	Mixture ratio				[0	0	
	Ignition sparks (weak, missing)	0	0	0			-	
	Compression pressure (low)				0			
CONTROL SYSTEM	Crank angle sensor	0						0
	Air flow meter							0
	Exhaust gas sensor					0	0	

SERVICE PROCEDURE

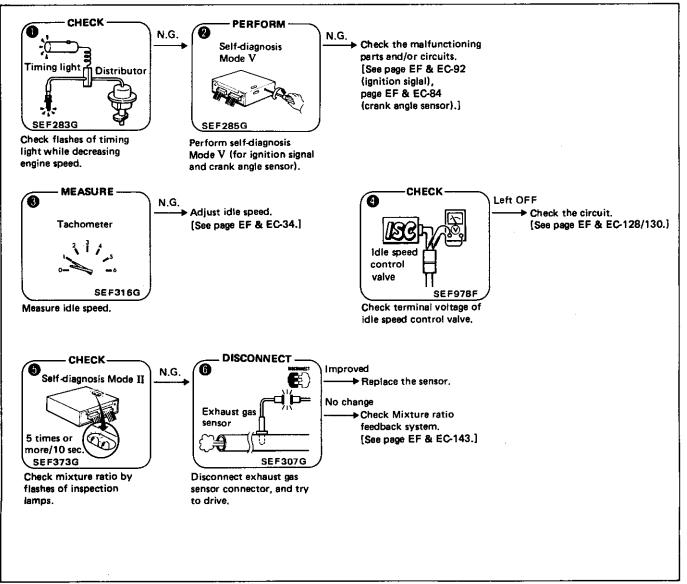


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 21 | Engine stall – while cruising

	POSSIBLE CAUSES	0	0	6	0	6	0
SPECIFICATIONS	Mixture ratio				0	0	
	Ignition sparks (weak, missing)	0	0	0			
CONTROL SYSTEM	Crank angle sensor						0
	Air flow meter						0

SERVICE PROCEDURE

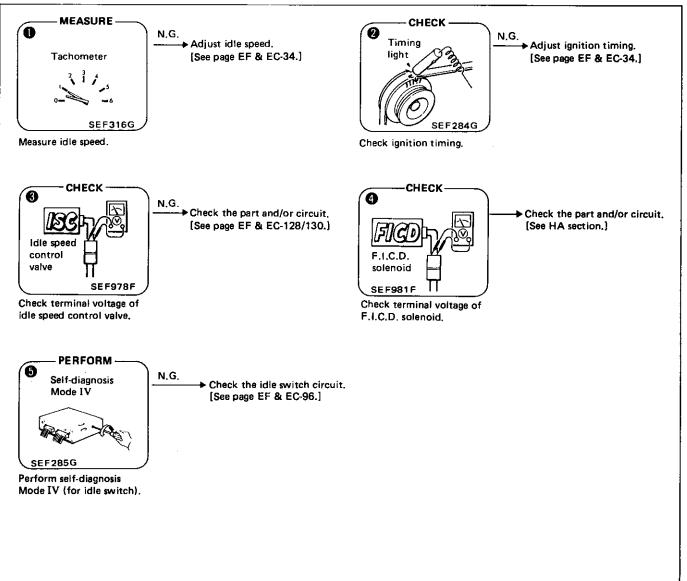


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 22 Engine stall – while decelerating/just after stopping

	POSSIBLE CAUSES	0	0	8	0	6	0
SPECIFICATIONS	Mixture ratio					0	0
	Ignition sparks (missing)	0		Ì			
	Idle speed (too low)			0			
IGNITION SYSTEM	(missing)	0	0				
INTAKE SYSTEM	Idle speed control valve (remaining OFF)			0	0		
CONTROL SYSTEM	Exhaust gas sensor (malfunctioning feedback control)	Π.				0	0
	Crank angle sensor		0				
	Idle switch (remaining OFF)			0			
	Load switches (remaining OFF)			0	0		

SERVICE PROCEDURE

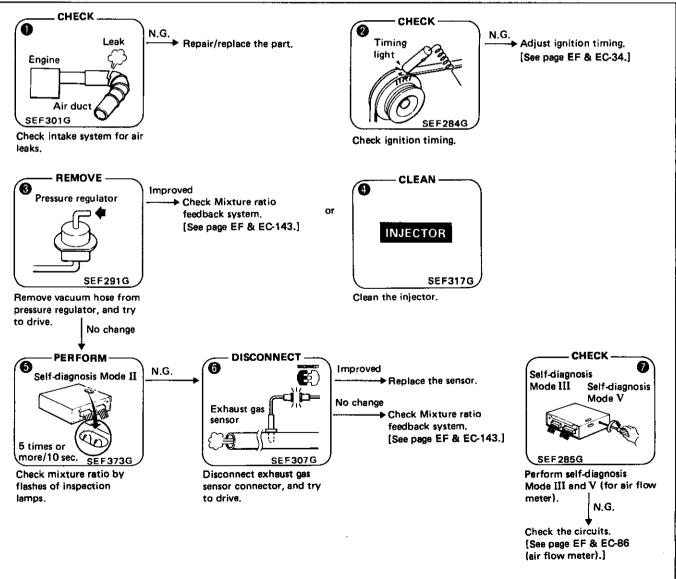


Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 23 Engine stall – while loading

	POSSIBLE CAUSES	0	0	0	0	0
SPECIFICATIONS	Ignition timing		0			
	Idle speed (too low)	0				
INTAKE SYSTEM	Idle speed control valve (remaining OFF)	0		0		
	F.I.C.D. solenoid (remaining OFF)	0			0	
CONTROL SYSTEM	Idle switch (remaining OFF)	0				0
	Load switches (remaining OFF)	0		0	0	

SERVICE PROCEDURE

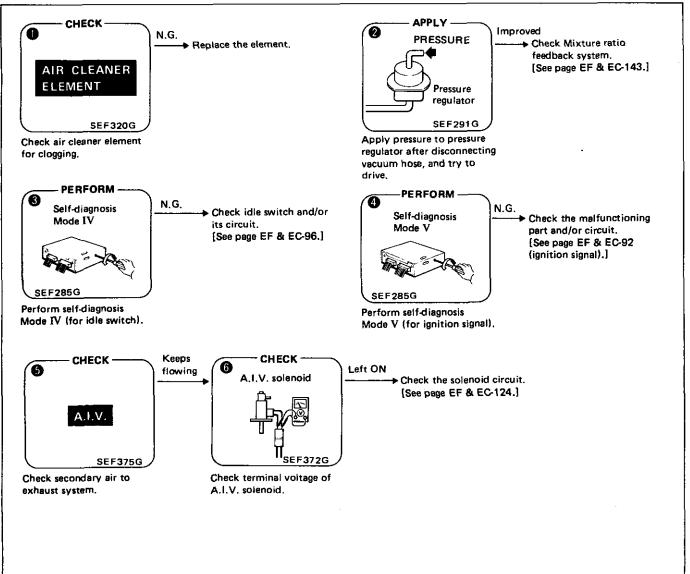


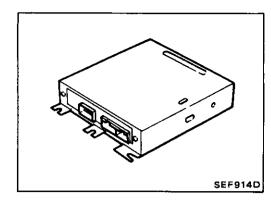
Diagnostic Table (Cont'd)

SYMPTOM & CONDITION 24 Backfire - through the intake

	POSSIBLE CAUSES	0	0	6	0	6	6	0
SPECIFICATIONS	Mixture ratio (too lean)	0	[0		0	0	
	Ignition timing (too retarded)		0					
FUEL SYSTEM	Injectors (clogged)		1		0			
INTAKE SYSTEM	Air duct (air leaks)	0						
	Intake manifold (gaskets) (air leaks)	0						
CONTROL SYSTEM	Air flow meter							0
	Exhaust gas sensor					0	0	

SERVICE PROCEDURE


Diagnostic Table (Cont'd)

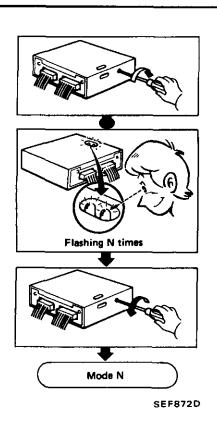

SYMPTOM & CONDITION 25

Backfire — through the exhaust

	POSSIBLE CAUSES	(D	Ø	6	0	6	6
SPECIFICATIONS	Mixture ratio (too rich)		5	ō				
FUEL SYSTEM	Injectors (fuel leaks)			0_				
IGNITION SYSTEM	(missing)					0		
INTAKE SYSTEM	Air cleaner element (clogged)	(Ъ	_				
	A.I.V. (always operating)						0	
	A.I.V. solenoid (remaining ON)						0	0
CONTROL SYSTEM	Idle switch (remaining OFF)		Ì	_	0			

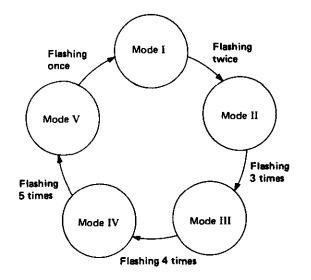
SERVICE PROCEDURE

Description


The self-diagnosis is useful to diagnose malfunctions in major sensors and actuators of the E.C.C.S. system. There are 5 modes in the self-diagnosis system.

- 1. Mode I Mixture ratio feedback control monitor A
- During closed loop condition: The green inspection lamp turns ON when lean condition is detected and goes OFF by rich condition.
- During open loop condition: The green inspection lamp remains ON or OFF.
- Mode II Mixture ratio feedback control monitor B The green inspection lamp function is the same as Mode I.
- During closed loop condition: The red inspection lamp turns ON and OFF simultaneously with the green inspection lamp when the mixture ratio is controlled within the specified value.
- During open loop condition: The red inspection lamp remains ON or OFF.
- 3. Mode III Self-diagnosis

This mode is the same as the former self-diagnosis in selfdiagnosis mode.


- 4. Mode IV Switches ON/OFF diagnosis During this mode, the inspection lamps monitor the switch ON-OFF condition.
- Idle switch
- Starter switch
- Vehicle speed sensor
- 5. Mode V Real time diagnosis

The moment the malfunction is detected, the display will be presented immediately. That is, the condition at which the malfunction occurs can be found by observing the inspection lamps during driving test.

Description (Cont'd) SWITCHING THE MODES

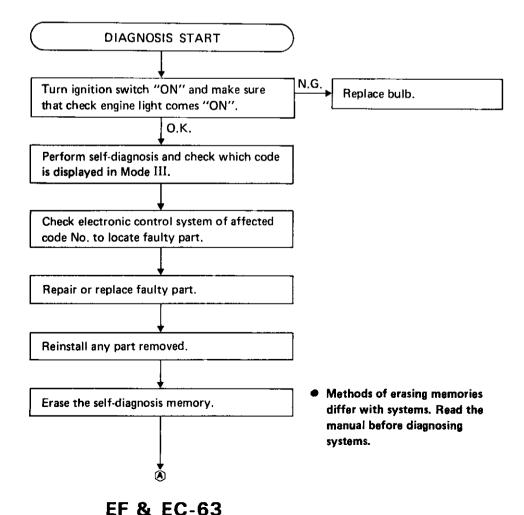
- 1. Turn ignition switch "ON".
- 2. Turn diagnostic mode selector on E.C.U. fully clockwise and wait the inspection lamps flash.
- 3. Count the number of the flashing time, and after the inspection lamps have flashed the number of the required mode, turn diagnostic mode selector fully counterclockwise immediately.

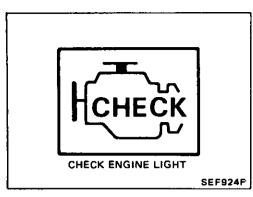
SEF989D

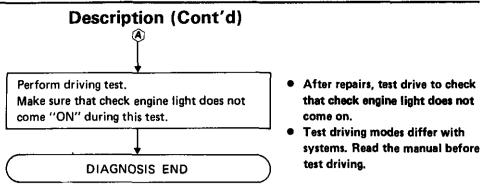
When the ignition switch is turned off during diagnosis, in each mode, and then turned back on again after the power to the E.C.U. has dropped off completely, the diagnosis will automatically return to Mode I.

The stored memory would be lost if:

- 1. Battery terminal is disconnected.
- After selecting Mode III, Mode IV is selected. However, if the diagnostic mode selector is kept turned fully clockwise, it will continue to change in the order of Mode I
 → II → III → IV → V → I ... etc., and in this state the stored memory will not be erased.


Description (Cont'd)


CHECK ENGINE LIGHT HETER (For California only) This vehicle has a check engine light on instrument panel. This light comes ON under the following conditions:


- 1) When ignition switch is turned "ON" (for bulb check).
- 2) When systems related to emission performance malfunction in Mode I (with engine running).
- This check engine light always illuminates and is synchronous with red L.E.D.
- Malfunction systems related to emission performance can be detected by self-diagnosis, and they are clarified as selfdiagnostic codes in Mode III.

Code No.	Malfunction				
12	Air flow meter circuit				
14	Vehicle speed sensor circuit				
23	Idle switch circuit				
31	E.C.U. (E.C.C.S. control unit)				
32	E.G.R. function				
33	Exhaust gas sensor circuit				
45	Injector leak				

Use the following diagnostic flowchart to check and repair a malfunctioning system.

Modes I & II — Mixture Ratio Feedback Control Monitors A & B

In these modes, the control unit provides the Air-fuel ratio monitor presentation and the Air-fuel ratio feedback coefficient monitor presentation.

Mode	LED	Engine stopped (Ignition switch "ON")	Engine running			
			Open loop condition	Closed loop condition		n
	Green	ON	*Remains ON or OFF	Blinks		
Mode I (Monitor A)	Red	ON	Except for California model ● OFF	 For California model ON: when the CHECK ENGINE LIGHT ITEMS are stored in the E.C.U. OFF: except for the above condition 		
	Green	ON	*Remains ON or OFF	Blinks		
Mode II (Monitor B)			····	Compensating mixture ratio		
	Red	OFF	*Remains ON or OFF (synchronous with green LED)	More than 5% rich	Between 5% lean and 5% rich	Моге
				OFF	Synchronized with green LED	Remains ON

*: Maintains conditions just before switching to open loop

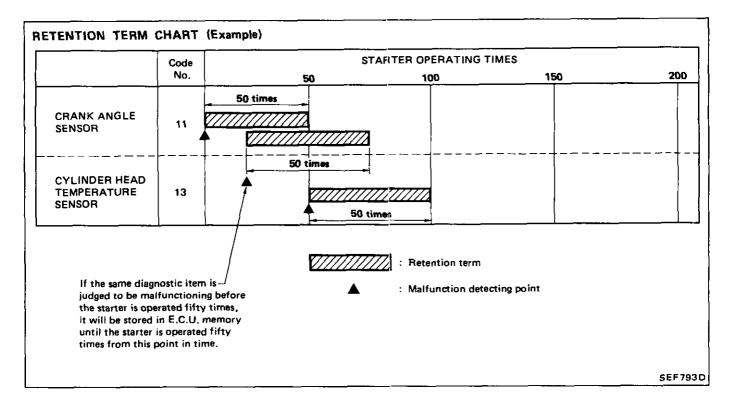
Mode III — Self-diagnostic System

The E.C.U. constantly monitors the function of these sensors and actuators, regardless of ignition key position. If a malfunction occurs, the information is stored in the E.C.U. and can be retrieved from the memory by turning on the diagnostic mode selector, located on the side of the E.C.U. When activated, the malfunction is indicated by flashing a red and a green L.E.D. (Light Emitting Diode), also located on the E.C.U. Since all the self-diagnostic results are stored in the E.C.U.'s memory even intermittent malfunctions can be diagnosed.

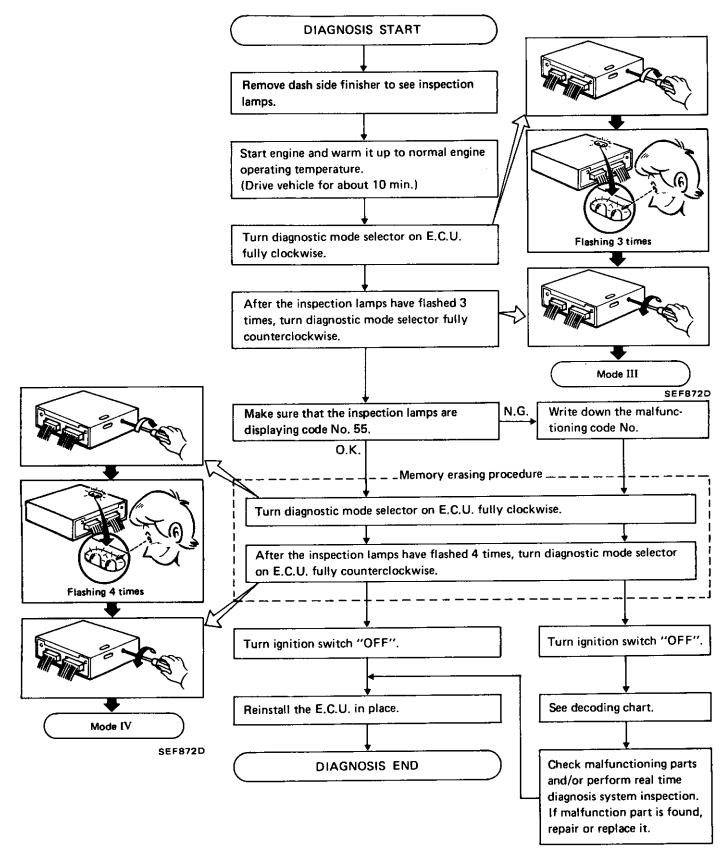
A malfunctioning part's group is indicated by the number of both the red and the green L.E.D.s flashing. First, the red L.E.D. flashes and the green flashes follow. The red L.E.D. refers to the number of tens while the green one refers to the number of units. For example, when the red L.E.D. flashes once and then the green one flashes twice, this means the number "12" showing the air flow meter signal is malfunctioning. In this way, all the problems are classified by the code numbers.

- When engine fails to start, crank engine more than two seconds before starting self-diagnosis.
- Before starting self-diagnosis, do not erase stored memory. If doing so, self-diagnosis function for intermittent malfunctions would be lost.

The stored memory would be lost if:

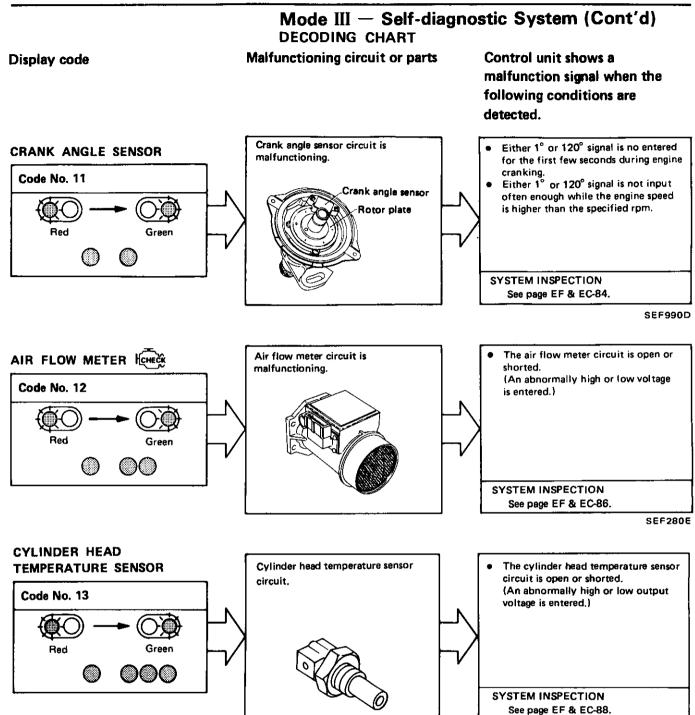

- 1. Battery terminal is disconnected.
- 2. After selecting Mode III, Mode IV is selected.

Non-Califor-Code No. Detected items California nia 11 Crank angle sensor ciruit Х х 12 Air flow meter circuit Х Х 13 Cylinder head temperature sensor circuit Х Х 14 Vehicle speed sensor circuit Х Х Х Х 21 Ignition signal missing in primary coil 22 Fuel pump circuit Х Х 23 Idle switch circuit Х Х Х Х 31 E.C.U. (E.C.C.S. control unit) 32 Х E.G.R. function Х 33 Exhaust gas sensor circuit Х 34 Х Х Detonation sensor circuit [VG30ET] 35 Exhaust gas temperature circuit Х 42 Fuel temperature sensor circuit Х Х 43 Throttle sensor circuit Х _ Х 45 Injector leak _ Х х 55 No malfunction in the above circuit X: Available -: Not available

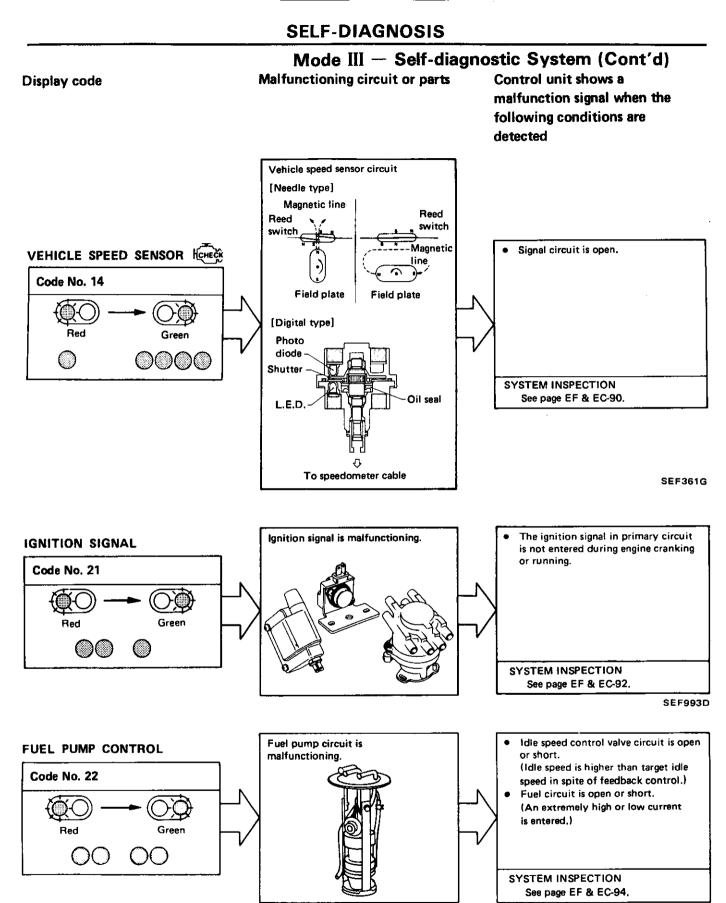

DISPLAY CODE TABLE

Mode III - Self-diagnostic System (Cont'd) RETENTION OF DIAGNOSTIC RESULTS

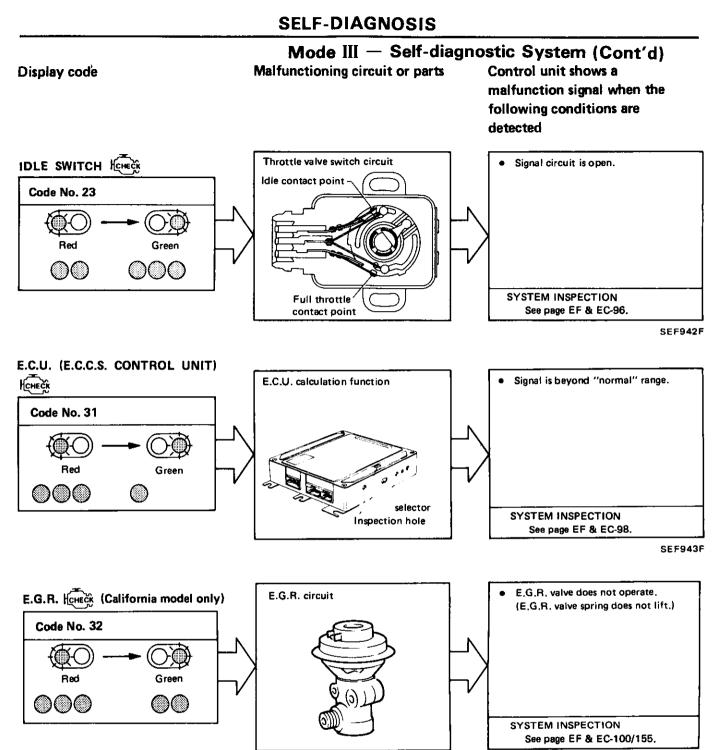
The diagnostic result is retained in E.C.U. memory until the starter is operated fifty times after a diagnostic item is judged to be malfunctioning. The diagnostic result will then be cancelled automatically. If a diagnostic item which has been judged to be malfunctioning and stored in memory is again judged to be malfunctioning before the starter is operated fifty times, the second result will replace the previous one. It will be stored in E.C.U. memory until the starter is operated fifty times more.

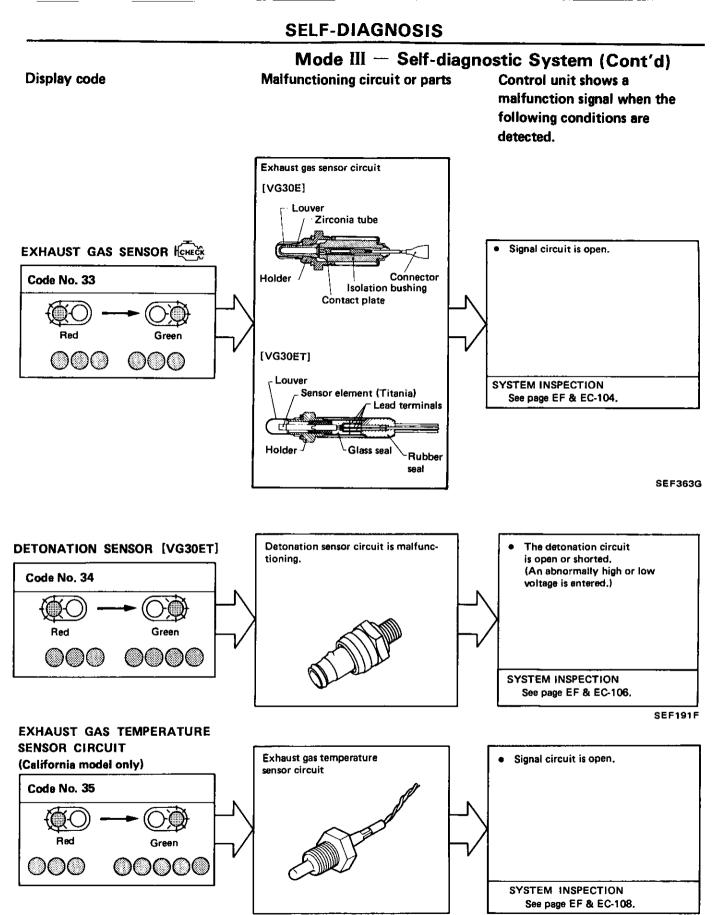


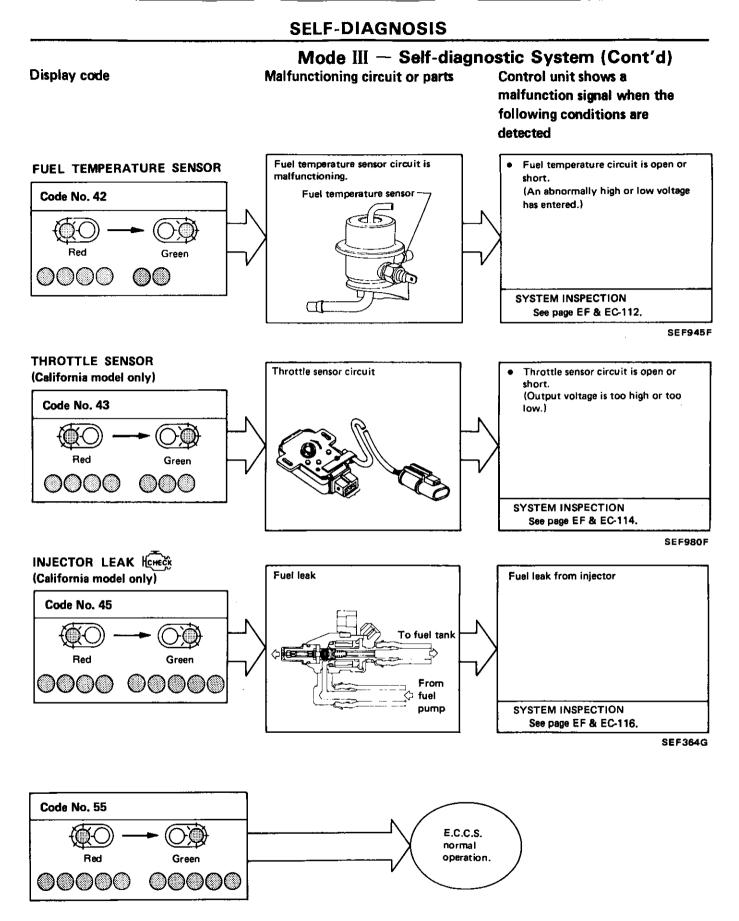
Mode III — Self-diagnostic System (Cont'd) SELF-DIAGNOSTIC PROCEDURE



CAUTION:


During displaying code No. in self-diagnosis mode (mode III), if the other diagnostic mode should be done, make sure to write down the malfunctioning code No. before turning diagnostic mode selector on E.C.U. fully clockwise, or select the diagnostic mode after turning switch "OFF". Otherwise self-diagnosis information stored in E.C.U. memory until now would be lost.


SEF833C


SEF994D

SEF238G

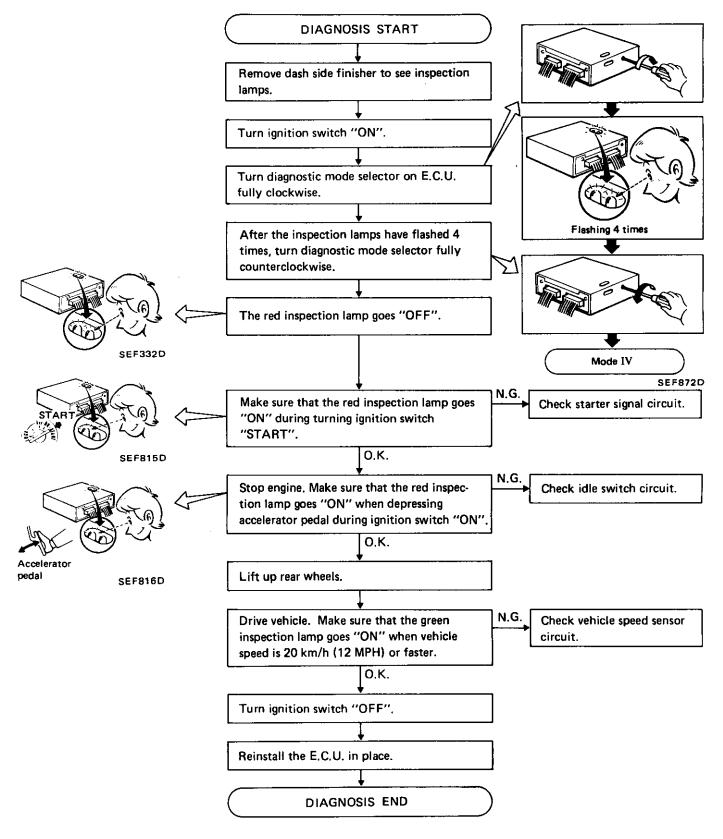
SEF239G

SEF946F

Mode IV — Switches ON/OFF Diagnostic System

In switches ON/OFF diagnosis system, ON/OFF operation of the following switches can be detected continuously.

- Idle switch
- Starter switch
- Vehicle speed sensor
- (1) Idle switch & Starter switch


The switches ON/OFF status at the point when mode IV is selected is stored in E.C.U. memory. When either switch is turned from "ON" to "OFF" or "OFF" to "ON", the red L.E.D. on E.C.U. alternately comes on and goes off each time switching is detected.

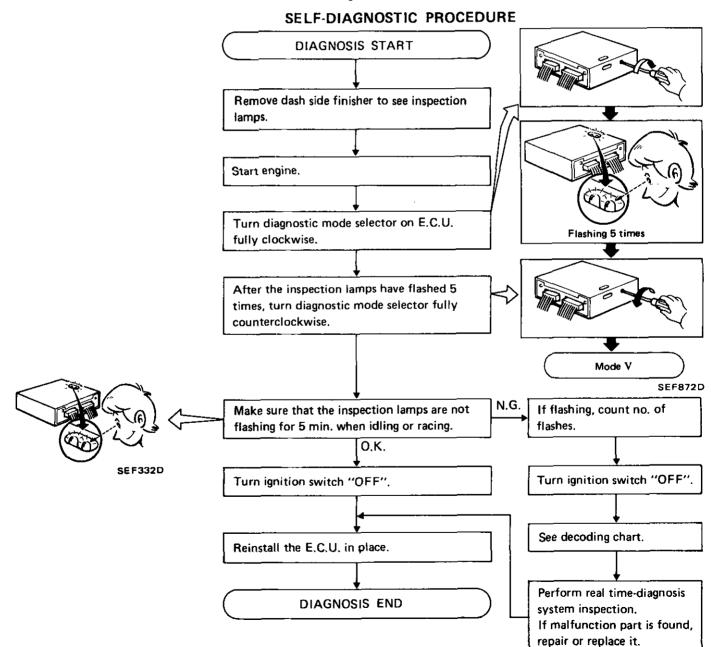
(2) Vehicle Speed Sensor

The switches ON/OFF status at the point when mode IV is selected is stored in E.C.U. memory. When vehicle speed is 20 km/h (12 MPH) or slower, the green L.E.D. on E.C.U. is off. When vehicle speed exceeds 20 km/h (12 MPH), the green L.E.D. on E.C.U. comes "ON".

Mode IV — Switches ON/OFF Diagnostic System (Cont'd)

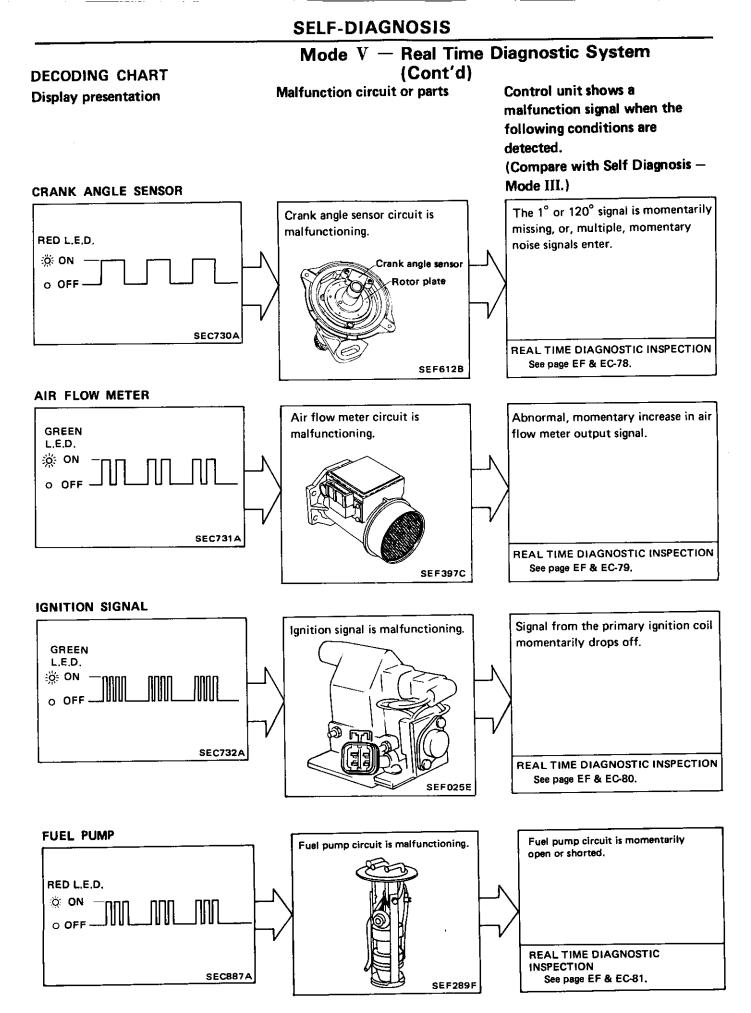
SELF-DIAGNOSTIC PROCEDURE

CAUTION:


• For safety, do not drive rear wheels at higher speed than required.

Mode V — Real Time Diagnostic System

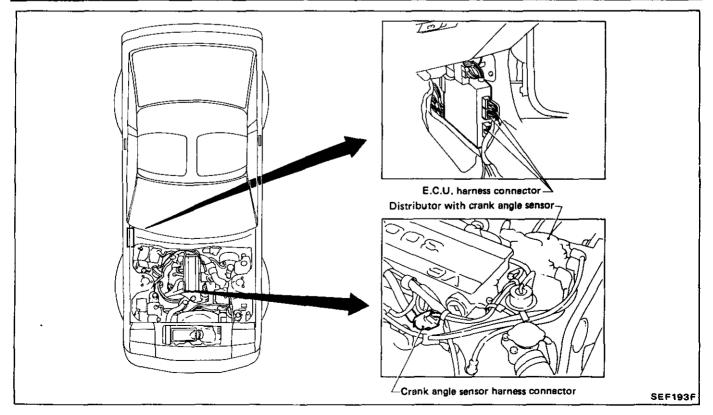
In real time diagnosis, if any of the following items are judged to be faulty, a malfunction is indicated immediately.


- Crank angle sensor (120° signal & 1° signal)
- Ignition signal
- Air flow meter output signal
- Fuel pump

Consequently, this diagnosis is a very effective measure to diagnose whether the above systems cause the malfunction or not, during driving test. Compared with self-diagnosis, real time diagnosis is very sensitive, and can detect malfunctioning conditions in a moment. Further, items regarded to be malfunctions in this diagnosis are not stored in E.C.U. memory.

CAUTION:

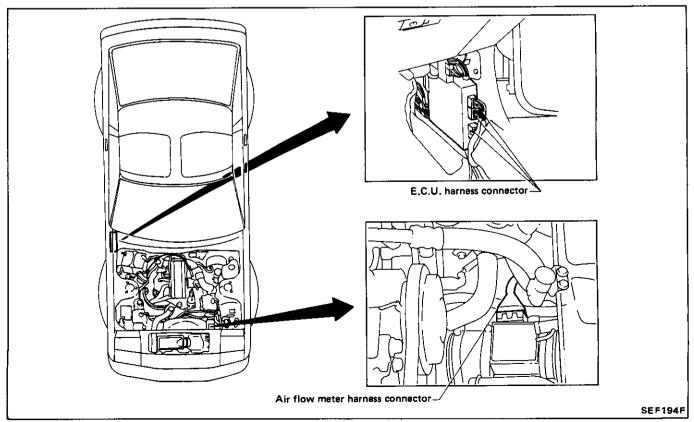
In real time diagnosis, pay attention to inspection lamp flashing. E.C.U. displays the malfunction code only once, and does not memorize the inspection.



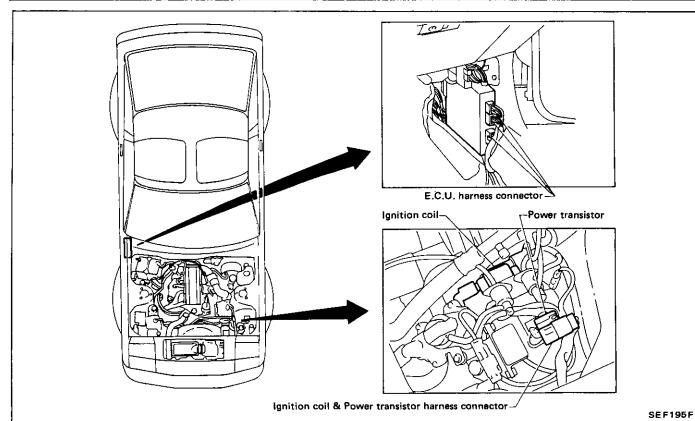
Mode V — Real Time Diagnostic System (Cont'd)

REAL TIME DIAGNOSTIC INSPECTION

Crank Angle Sensor

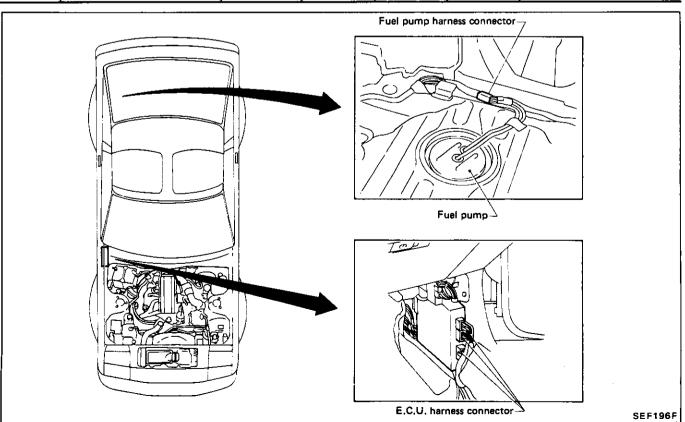

Check sequence	Check items	Check conditions	Check parts			
			Crank angle sensor harness connector	Sensor & actuator	E.C.U. 20- & 16-pin connector	If malfunction, perform the following items.
1	Tap and wiggle harness con- nector or component during real time diagnosis.	During real time diagnosis	0	0	0	Go to check item 2.
2	Check harness continuity at connector.	Engine stopped	0	x	×	Go to check item 3.
3	Disconnect harness con- nector, and then check dust adhesion to harness connector.	Engine stopped	0	х	0	Clean terminal surface.
4	Check pin terminal bend.	Engine stopped	x	х	0	Take out bend.
5	Reconnect harness con- nector and then recheck harness continuity at connector.	Engine stopped	0	x	×	Replace terminal.
6	Tap and wiggle harness con- nector or component during real time diagnosis,	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina

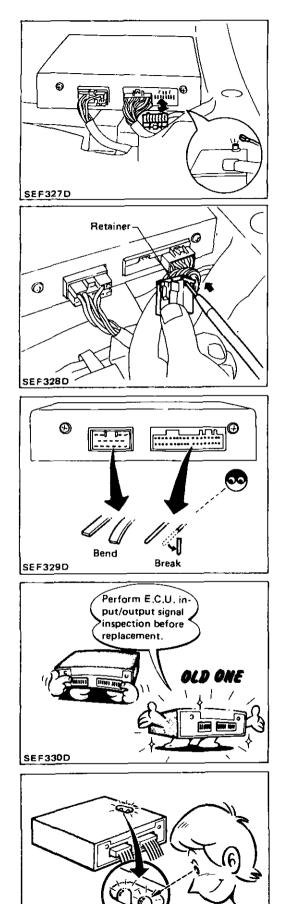
Mode V — Real Time Diagnostic System (Cont'd)


Air Flow Meter

Check sequence	Check items	Check conditions	Check parts			
			Air flow meter harness connector	Sensor & actuator	E.C.U. 20- & 16-pin connector	If malfunction, perform the following items.
1	Tap and wiggle harness con- nector or component during real time diagnosis.	During real time diagnosis	0	0	0	Go to check item 2.
2	Check harness continuity at connector.	Engine stopped	0	x	x	Go to check item 3.
3	Disconnect harness con- nector, and then check dust adhesion to harness connector.	Engine stopped	0	x	0	Clean terminal surface.
4	Check pin terminal bend.	Engine stopped	x	x	0	Take out bend.
5	Reconnect harness con- nector and then recheck harness continuity at connector.	Engine stopped	0	×	×	Replace terminal.
6	Tap and wiggle harness con- nector or component during real time diagnosis,	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace terminal

Mode V — Real Time Diagnostic System (Cont'd)

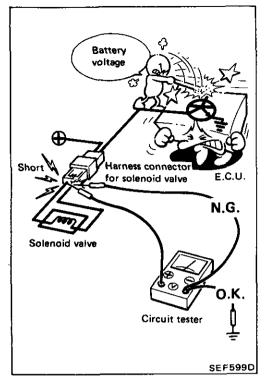

Check sequence	Check items	Check conditions	Check parts			
			Ignition signal harness connector	Sensor & actuator	E.C.U. 20- & 16-pin connector	If malfunction, perform the following items.
1	Tap and wiggle harness con- nector or component during real time diagnosis.	During real time diagnosis	0	0	ο	Go to check item 2.
2	Check harness continuity at connector.	Engine stopped	0	x	×	Go to check item 3.
3	Disconnect harness con- nector, and then check dust adhesion to harness connector.	Engine stopped	0	x	0	Clean terminal surface.
4	Check pin terminal bend.	Engine stopped	×	×	0	Take out bend.
5	Reconnect harness con- nector and then recheck harness continuity at connector.	Engine stopped	0	x	x	Replace terminal.
6	Tap and wiggle harness con- nector or component during real time diagnosis.	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina



Mode V — Real Time Diagnostic System (Cont'd)

Fuel pump

Check sequence	Check items	Check conditions	Check parts			
			Fuel pump harness connector	Sensor & actuator	E.C.U. 20- & 16-pin connector	If malfunction, perform the following items.
1	Tap and wiggle harness con- nector or component during real time diagnosis.	During real time diagnosis	0	0	0	Go to check item 2.
2	Check harness continuity at connector.	Engine stopped	0	x	x	Go to check item 3.
3	Disconnect harness con- nector, and then check dust adhesion to harness connector.	Engine stopped	0	x	0	Clean terminal surface.
4	Check pin terminal bend.	Engine stopped	×	×	0	Take out bend.
5	Reconnect harness con- nector and then recheck harness continuity at connector.	Engine stopped	0	х	x	Replace terminal.
6	Tap and wiggle harness con- nector or component during real time diagnosis,	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina


CAUTION:

- Before connecting or disconnecting E.C.U. harness connector to or from any E.C.U., be sure to turn the ignition switch to the "OFF" position and disconnect the negative battery terminal in order not to damage E.C.U. as battery voltage is applied to E.C.U. even if ignition switch is turned off. Otherwise, there may be damage to the E.C.U.
- 2. When performing E.C.U. input/output signal inspection, remove pin terminal retainer from 20- and 16-pin connector to make it easier to insert tester probe into connector.

- 3. When connecting pin connectors into E.C.U. or disconnecting them from E.C.U., take care not to damage pin terminal of E.C.U. (Bend or break).
- 4. Make sure that there are not any bends or breaks on E.C.U. pin terminal, when connecting pin connectors into E.C.U.
- 5. Before replacing E.C.U., perform E.C.U. input/output signal inspection and make sure whether E.C.U. functions properly or not. (See page EF & EC-138.)

6. After performing this "ELECTRONIC CONTROL SYSTEM INSPECTION", perform E.C.C.S. self-diagnosis and driving test.

SEF332D

7. When measuring supply voltage of E.C.U. controlled components with a circuit tester, separate one tester probe from the other.

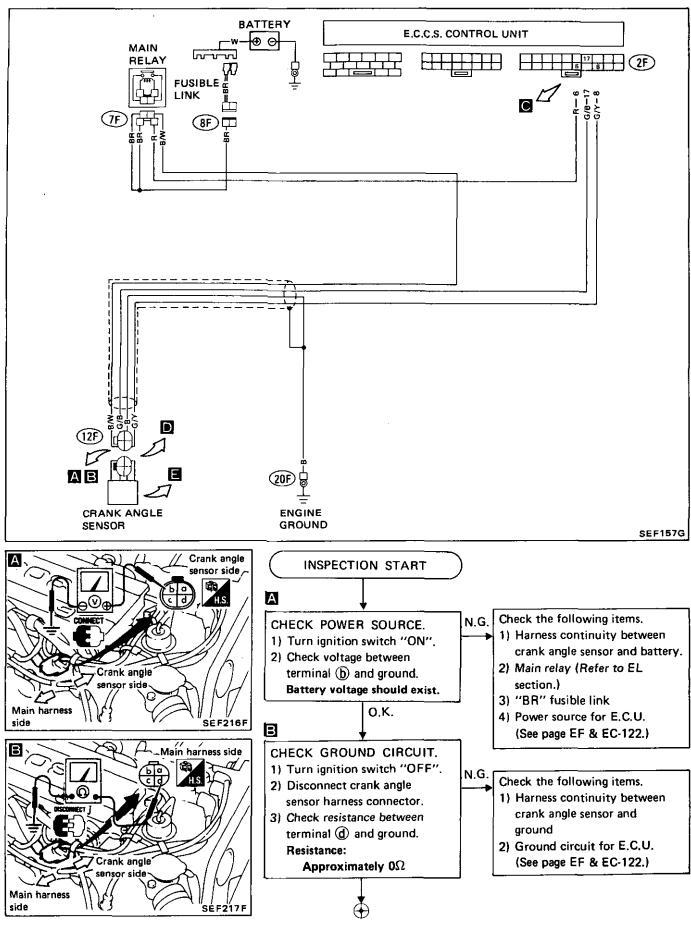
If the two tester probes accidentally make contact with each other during measurement, the circuit will be shorted, resulting in damage to the power transistor of the control unit.

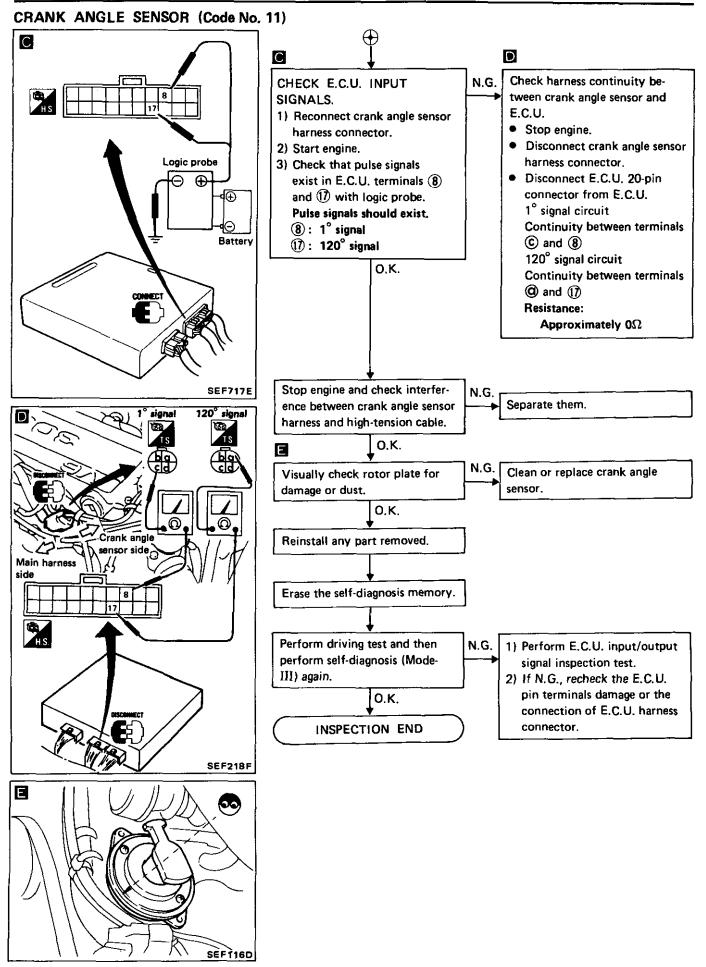
8. Keys to symbols

Check after disconnecting the connector to be measured.

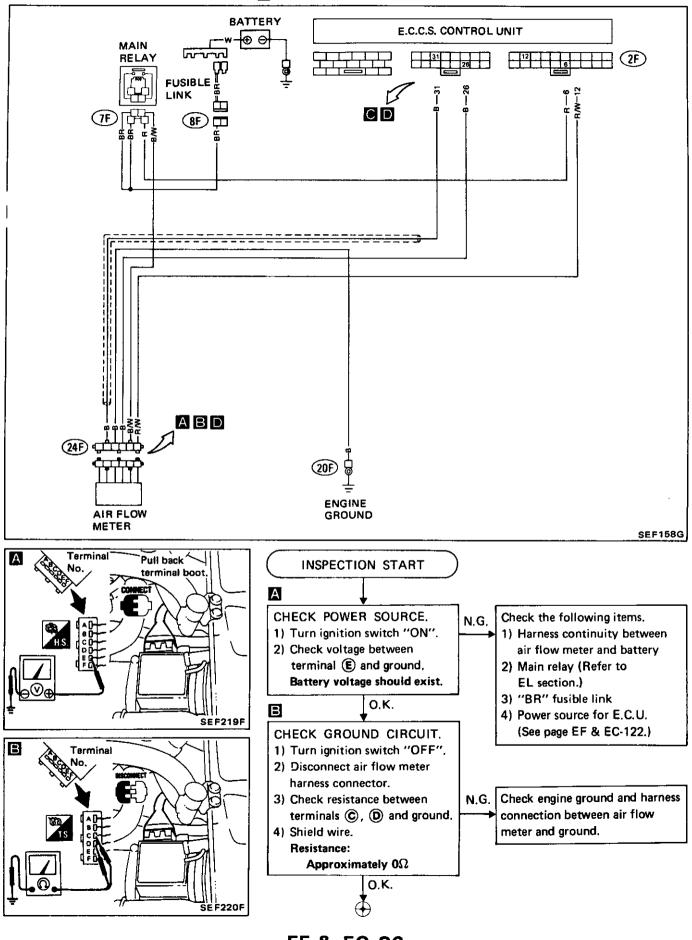
: Check after connecting the connector to be measured.

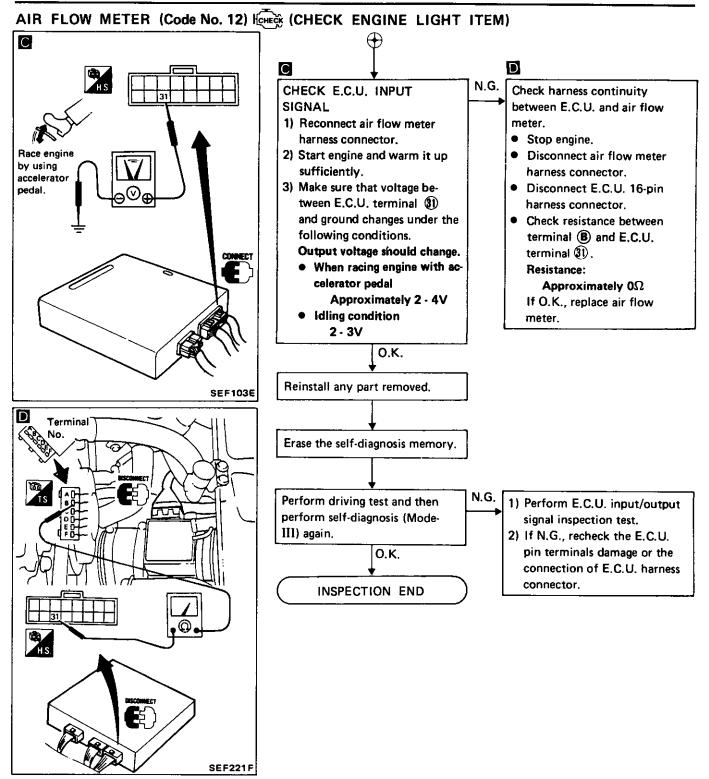
9. When measuring voltage or resistance at connector with tester probes, there are two methods of measurement; one is done from terminal side and the other from harness side. Before measuring, confirm symbol mark again.

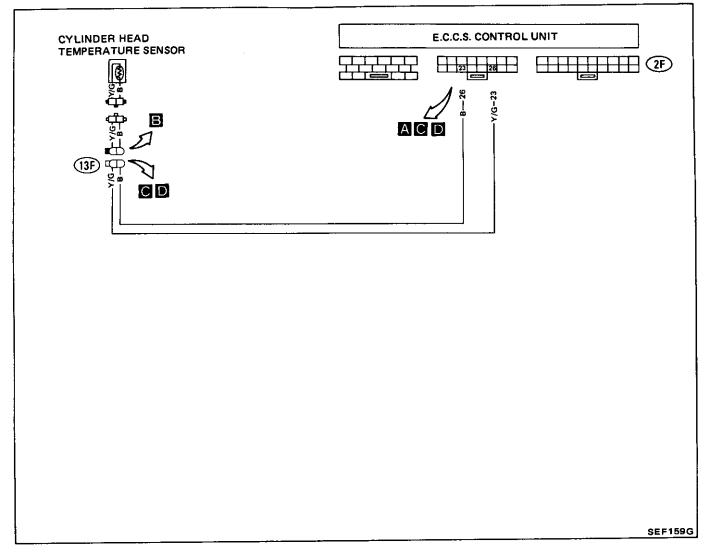

Inspection should be done from harness side.

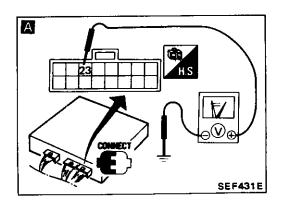

: Inspection should be done from terminal side.

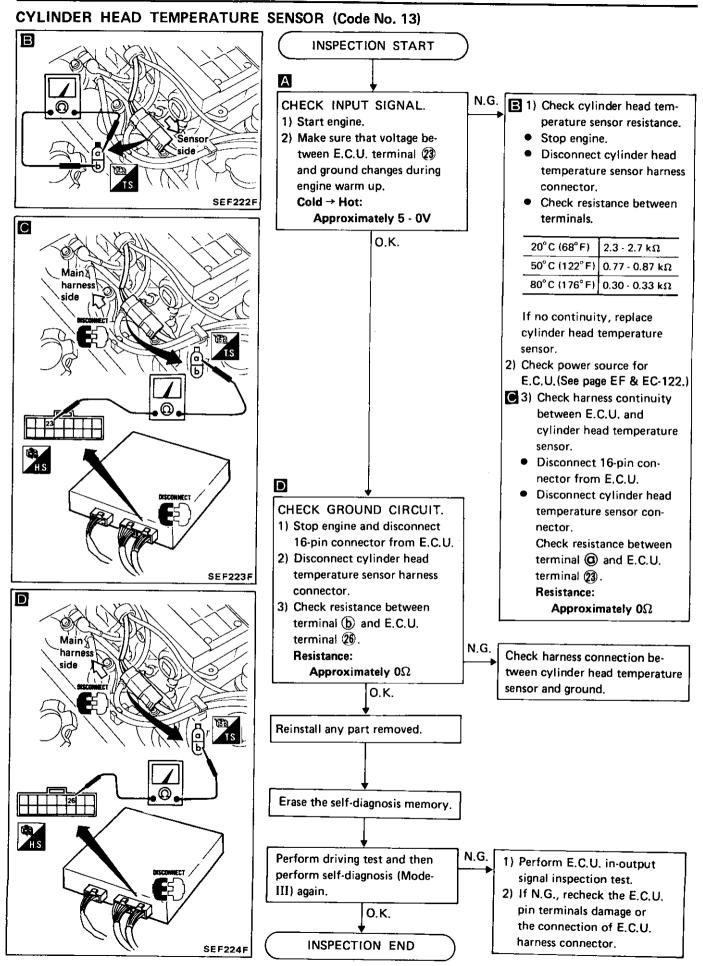
Refer to GI section.

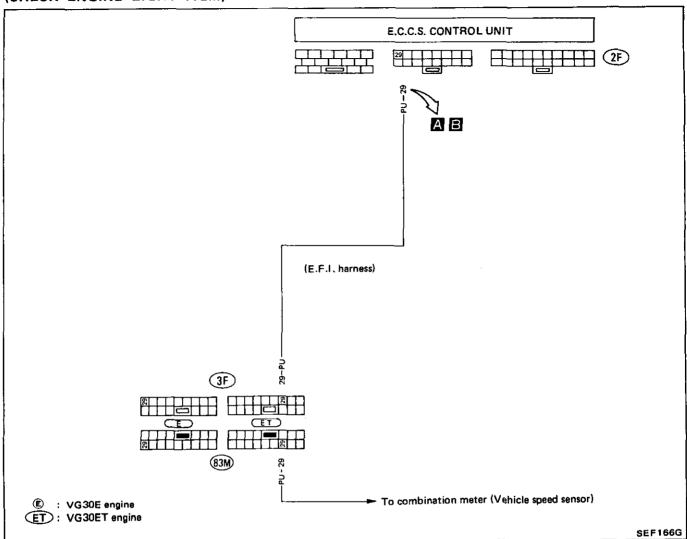

10. As for continuity check of joint connector, refer to EL section.

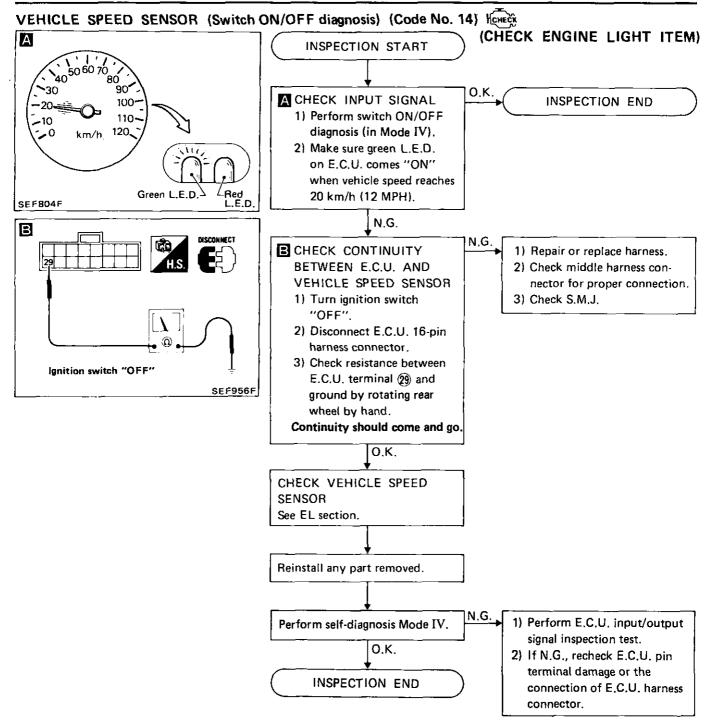

CRANK ANGLE SENSOR (Code No. 11)



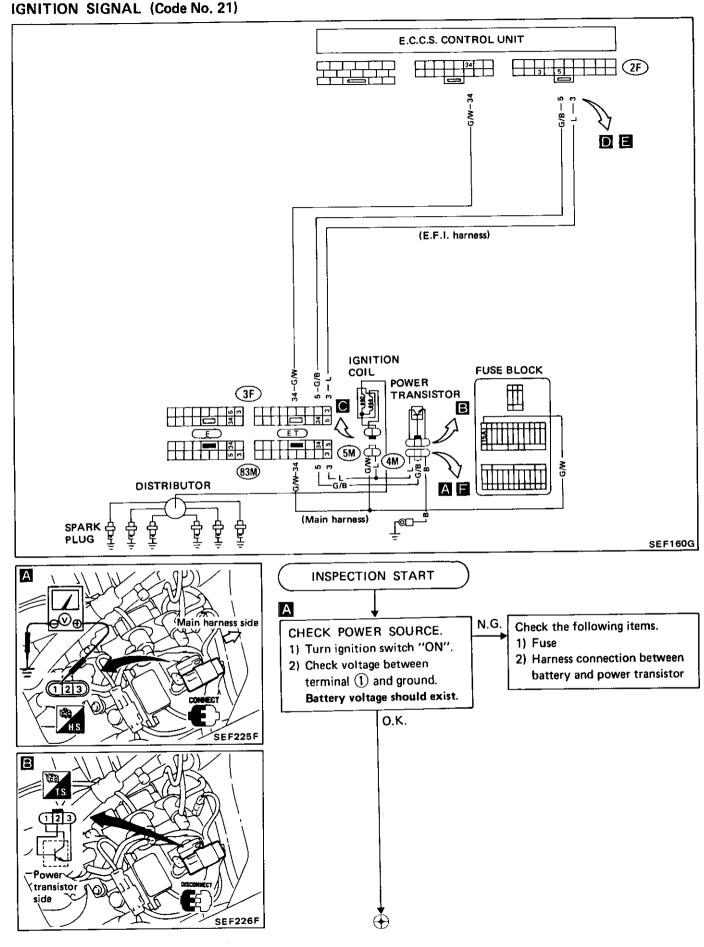


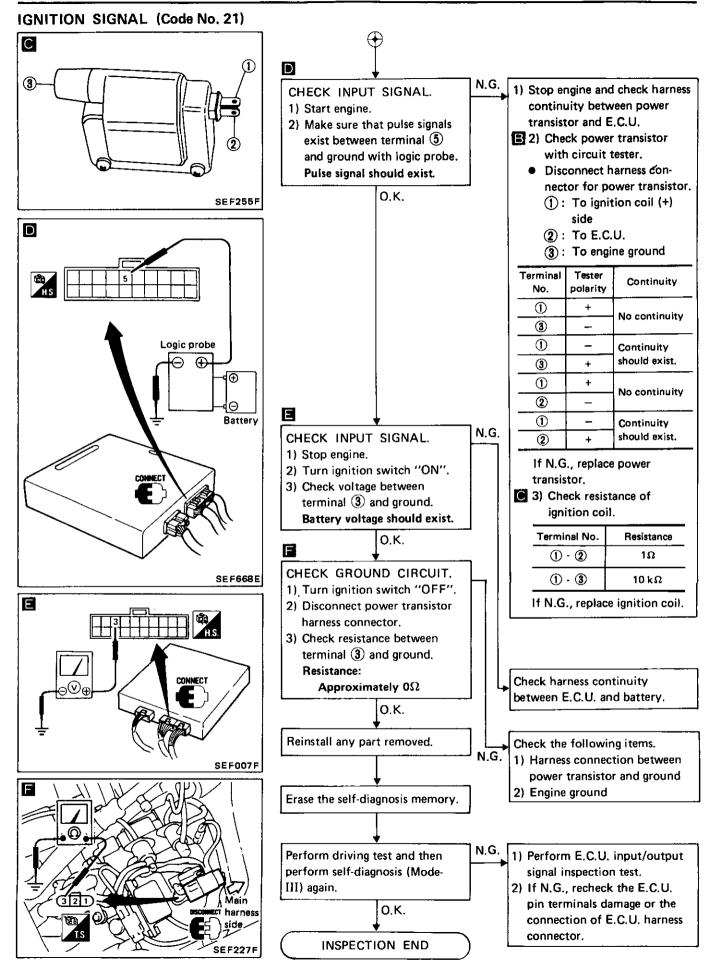



CYLINDER HEAD TEMPERATURE SENSOR (Code No. 13)

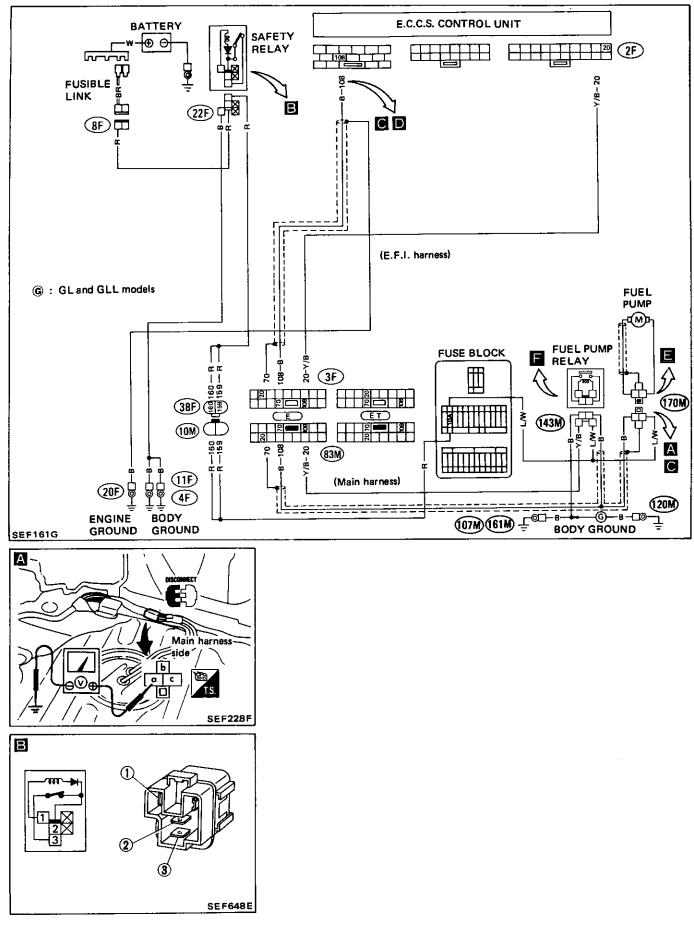


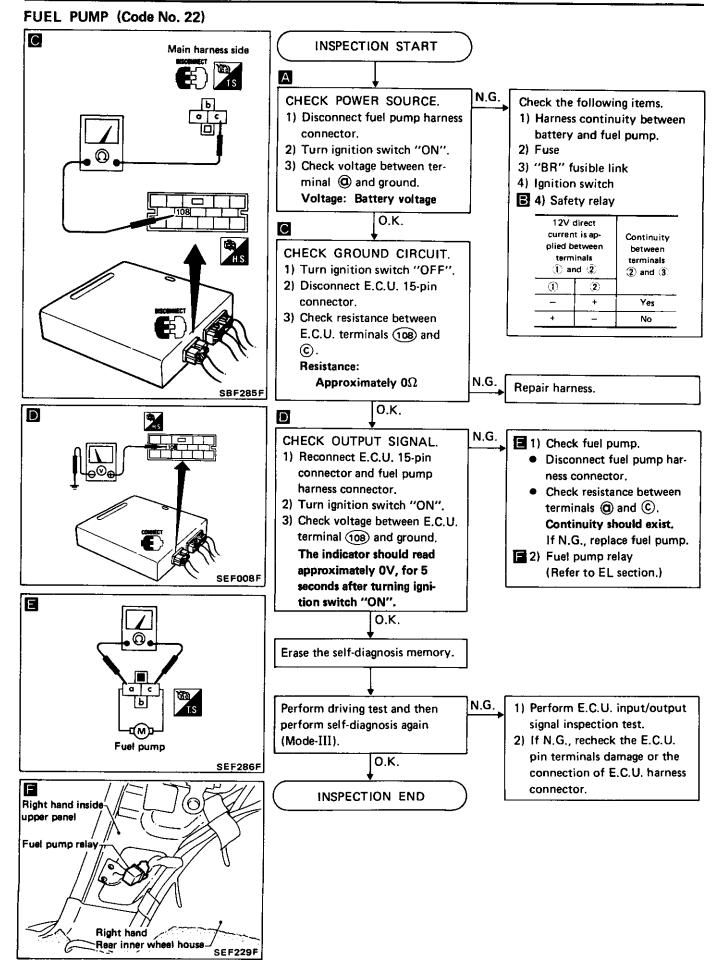
VEHICLE SPEED SENSOR (Switch ON/OFF diagnosis) (Code No. 14)

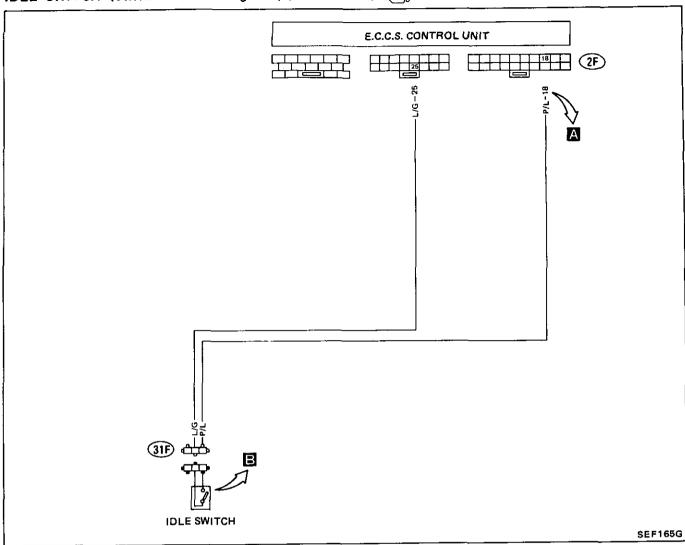



The following is necessary to perform this inspection.

- 1. Pull out E.C.U. from passenger's dash side.
- 2. Jack up rear wheels.

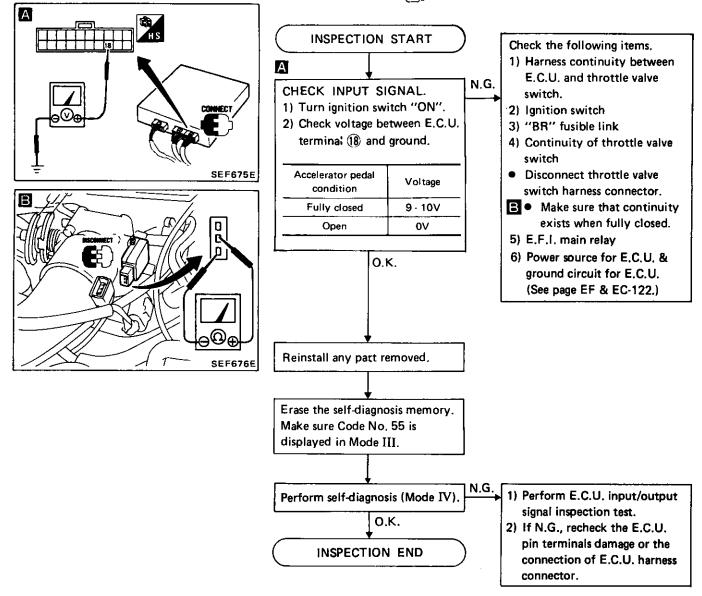

_ _

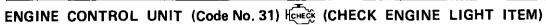


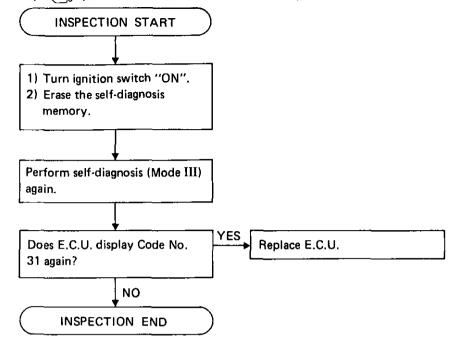


EF & EC-93

FUEL PUMP (Code No. 22)

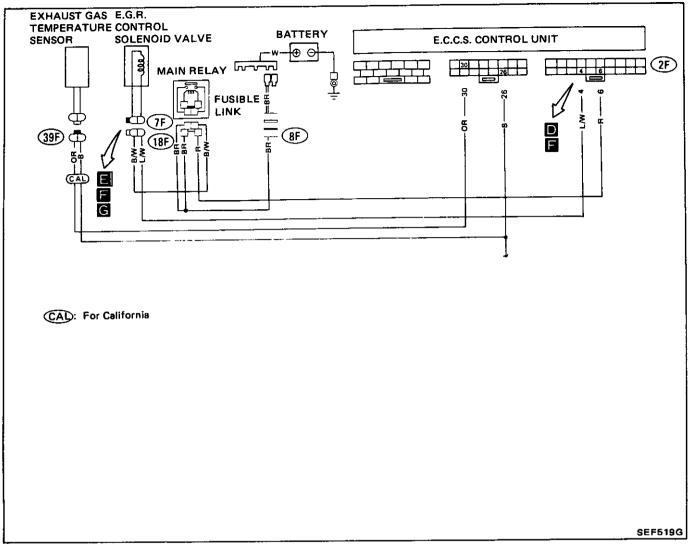




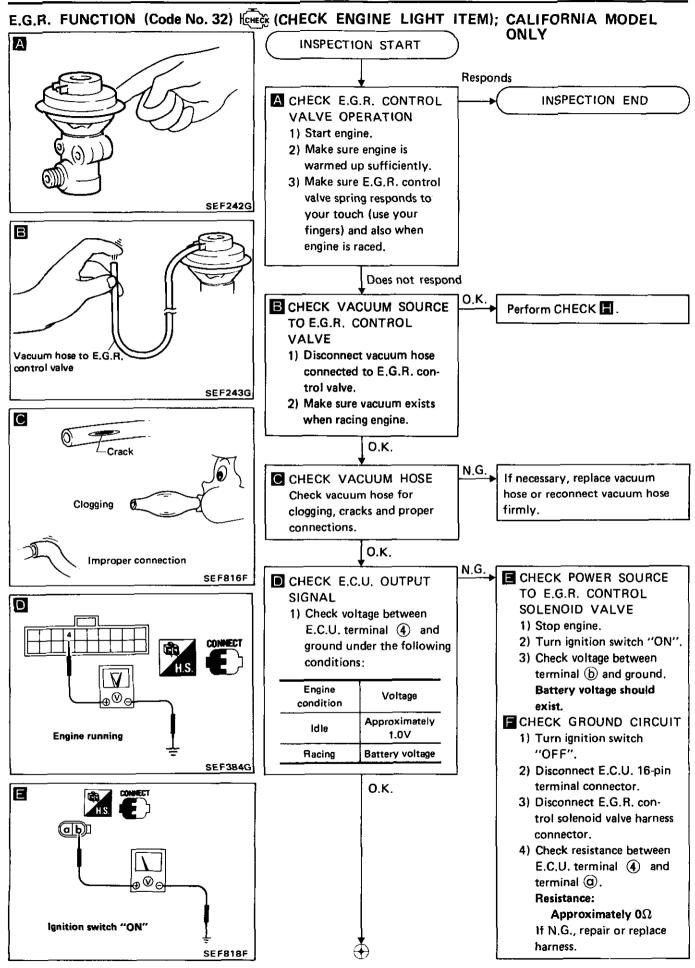

IDLE SWITCH (Switch ON/OFF diagnosis) (Code No. 23)

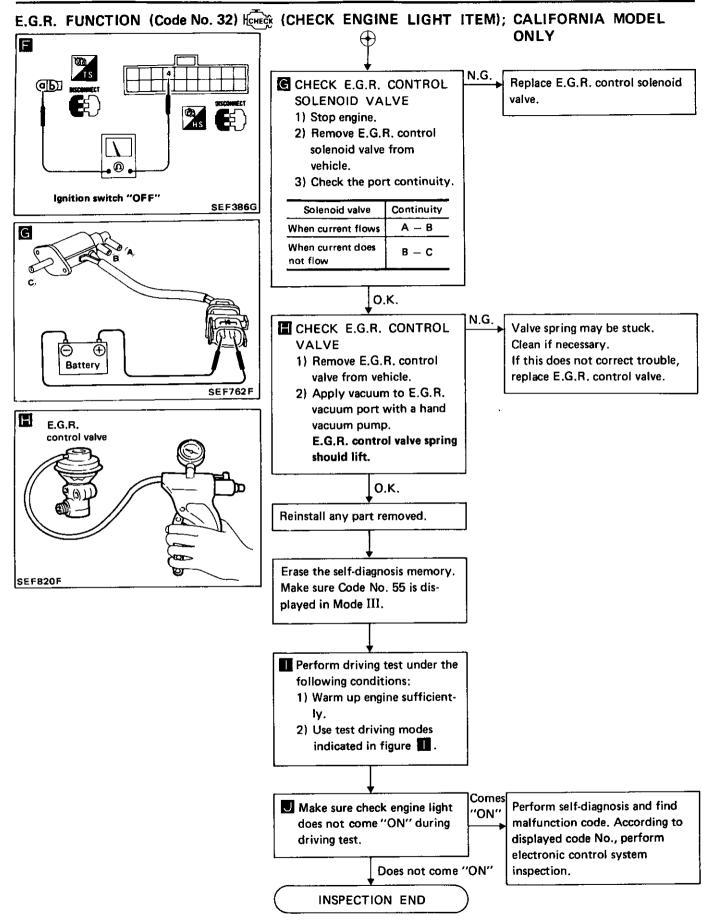
The following is necessary to perform this inspection. Pull out E.C.U. from passenger's dash side.

IDLE SWITCH (Switch ON/OFF diagnosis) (Code No. 23)

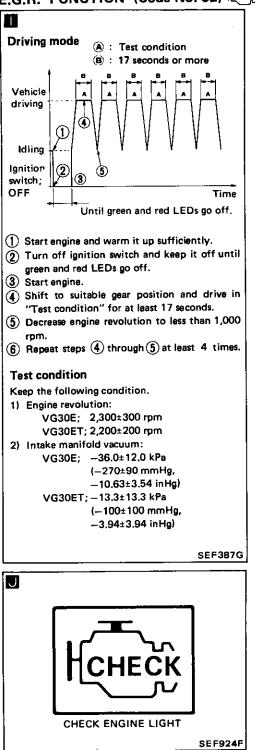


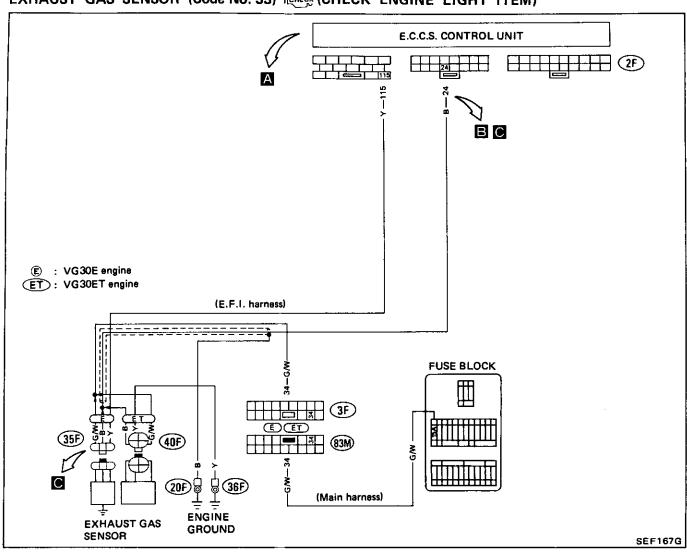
._____


NOTE


E.G.R. FUNCTION (Code No. 32)

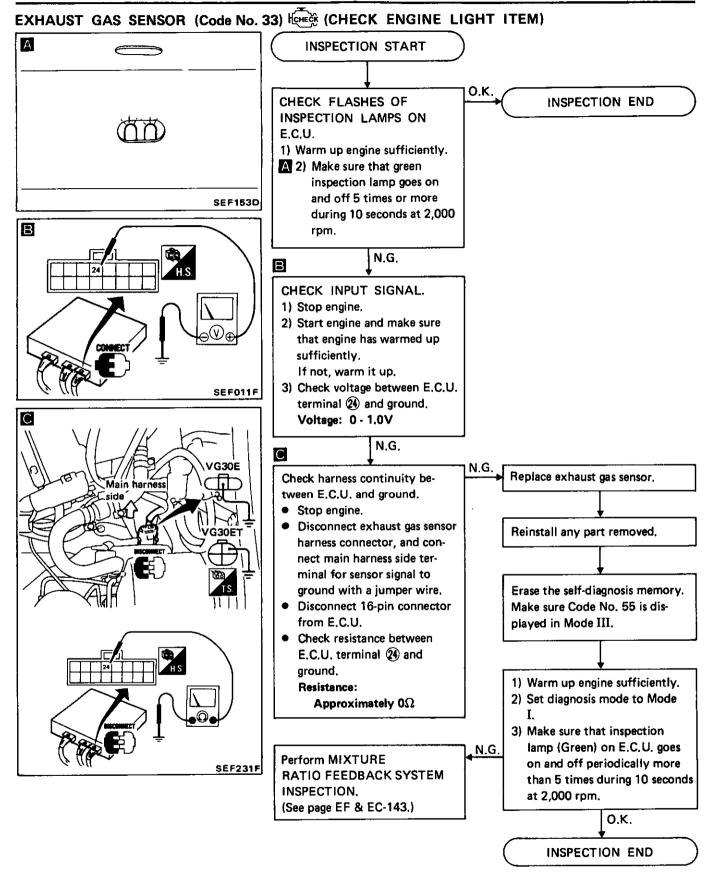
The following is necessary to perform this inspection.

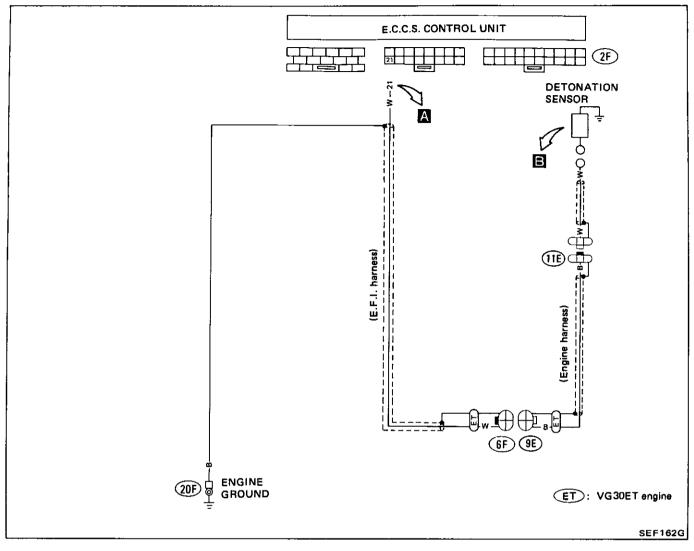

1. Pull out E.C.U. from passanger's 2. Warm up engine sufficiently. dash side.

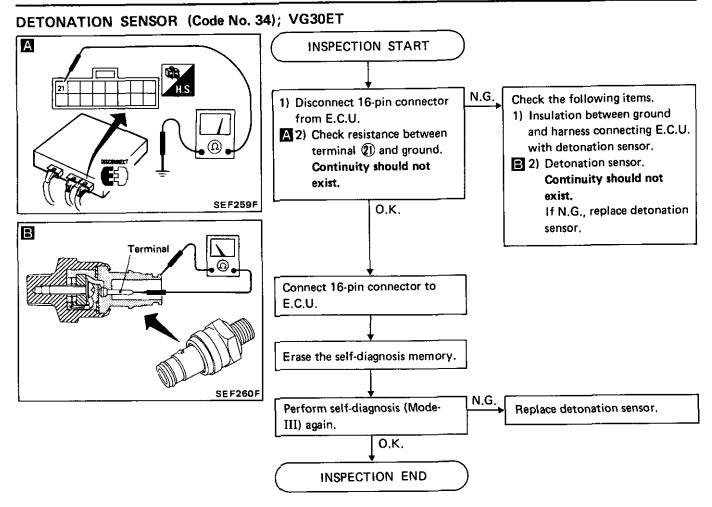


ONLY

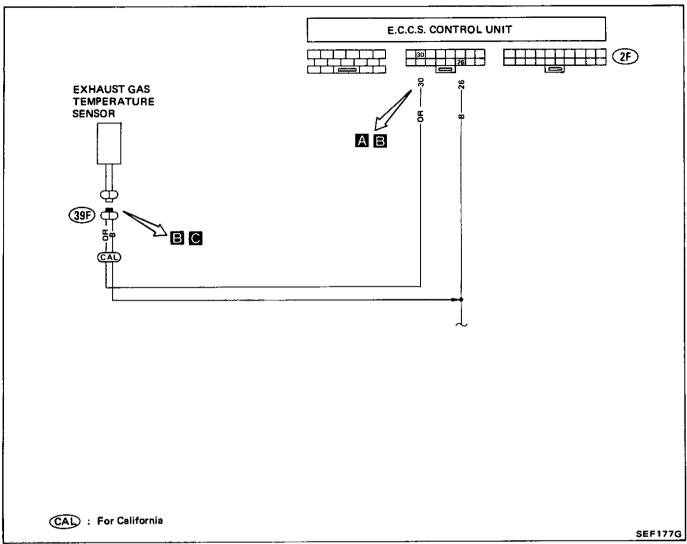
E.G.R. FUNCTION (Code No. 32)



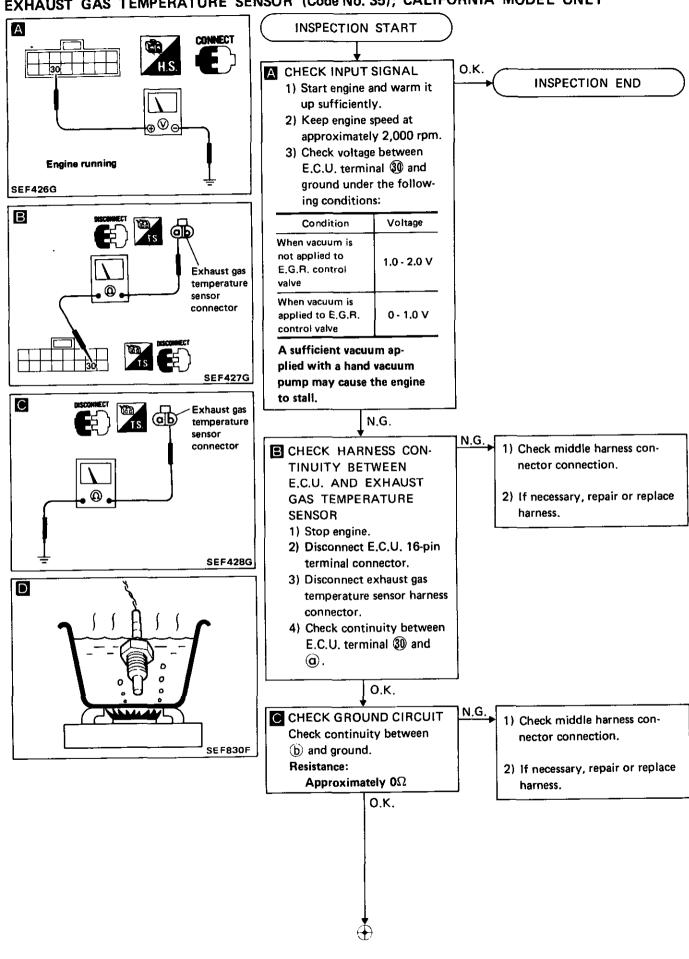

EXHAUST GAS SENSOR (Code No. 33) Here (CHECK ENGINE LIGHT ITEM)

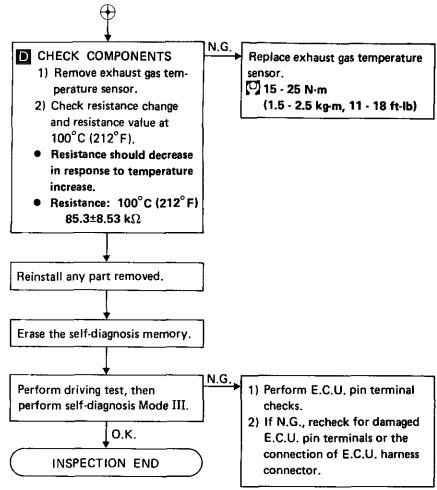

The following is neccessary to perform this inspection.

- 1. Pull out E.C.U. from passenger's dash side.
- 2. Warm up engine sufficiently.



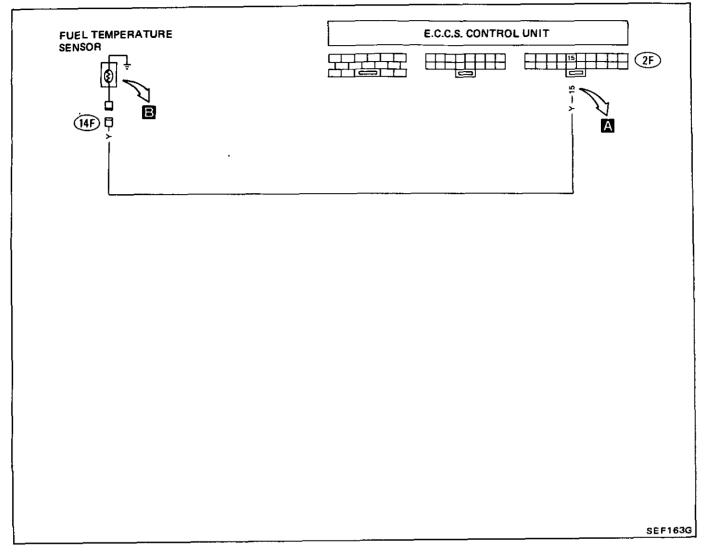
DETONATION SENSOR (Code No. 34); VG30ET

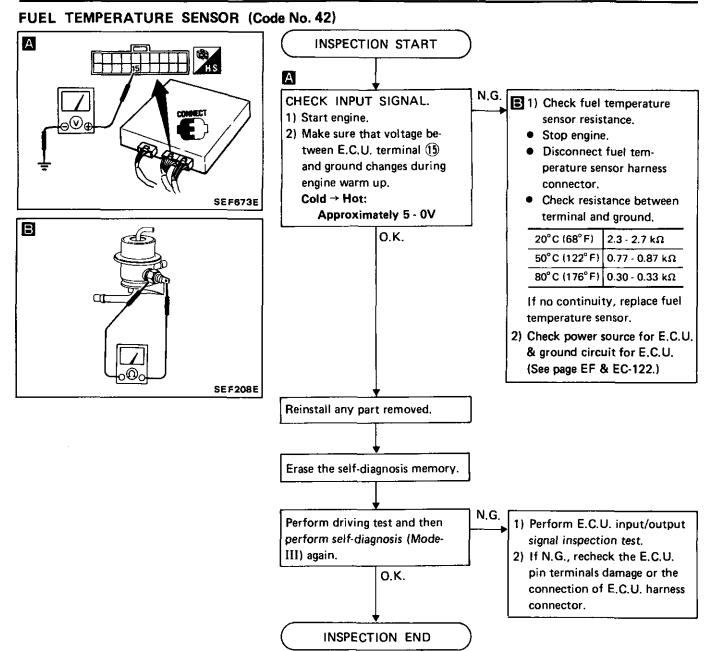

EXHAUST GAS TEMPERATURE SENSOR (Code No. 35); CALIFORNIA MODEL ONLY

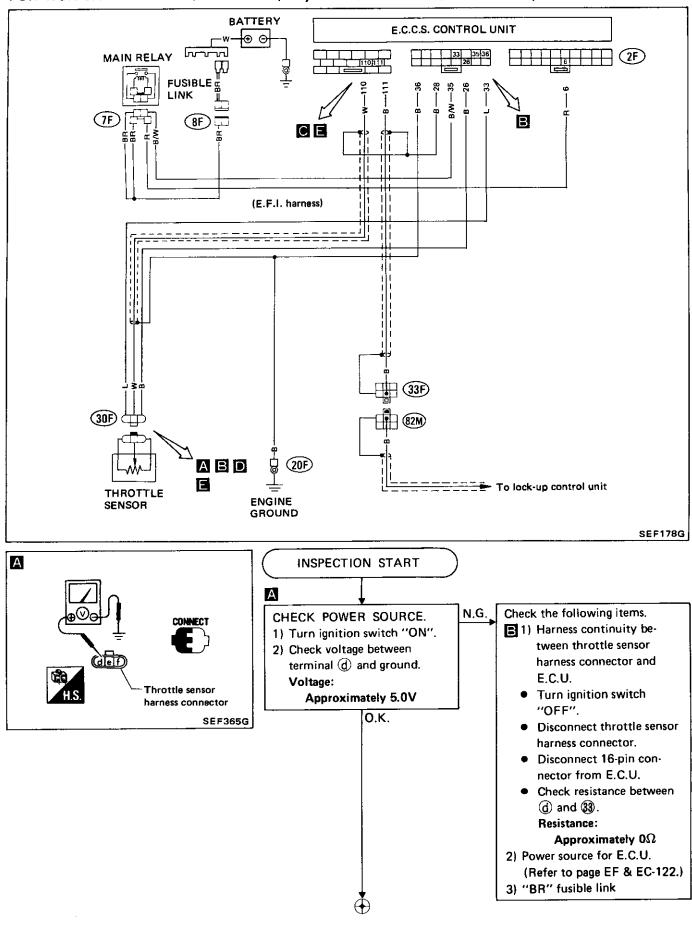

The following is necessary to perform this inspection.

- 1. Pull out E.C.U. installed passenger's dash side.
- 2. Disconnect vacuum hose connected to E.G.R. control valve.
 - Connect a hand vacuum pump to E.G.R. control valve.
- 3. Warm up engine sufficiently.

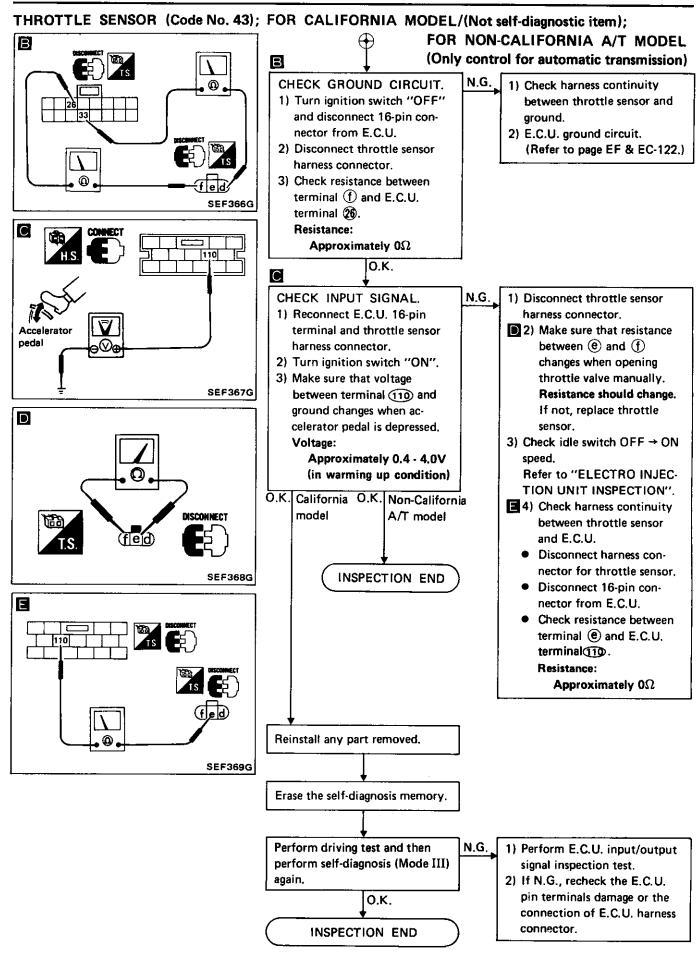
EXHAUST GAS TEMPERATURE SENSOR (Code No. 35); CALIFORNIA MODEL ONLY

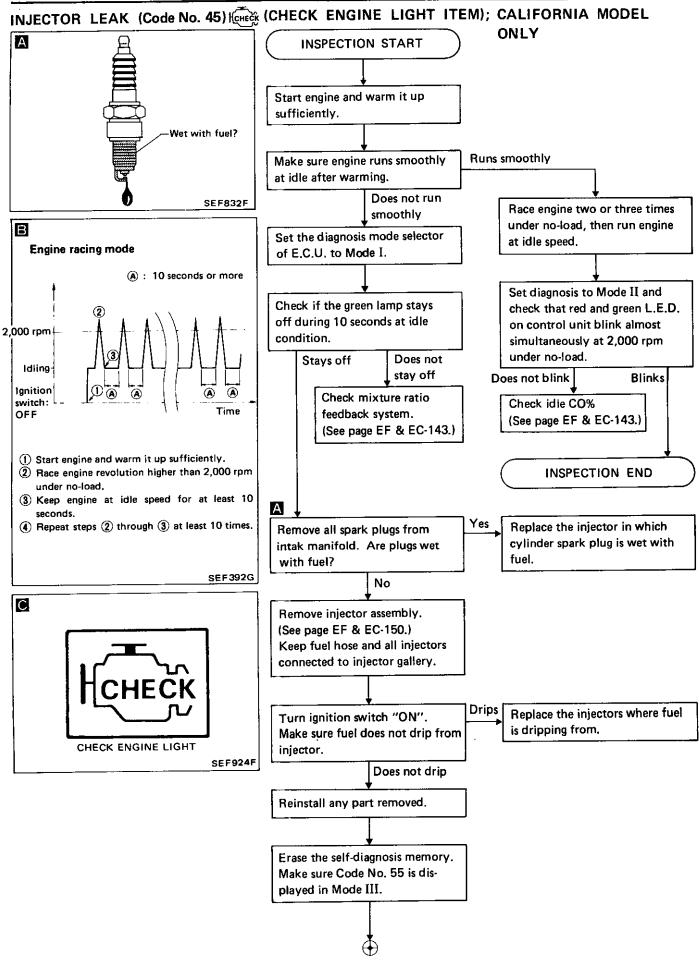



EXHAUST GAS TEMPERATURE SENSOR (Code No. 35); CALIFORNIA MODEL ONLY

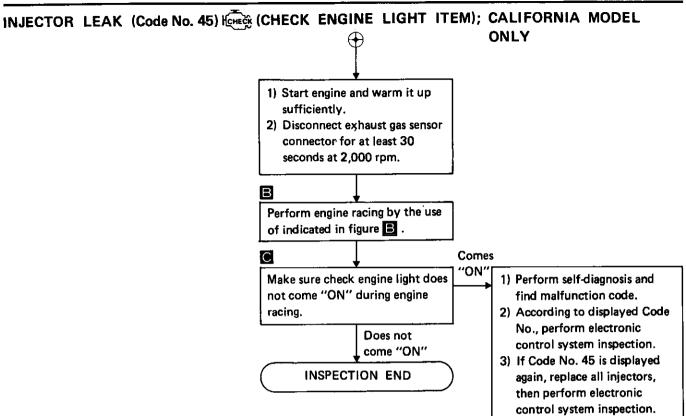

NOTE

FUEL TEMPERATURE SENSOR (Code No. 42)

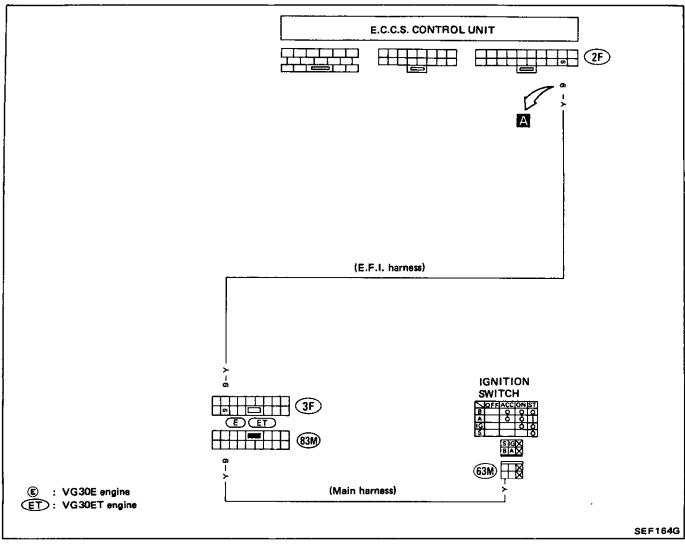


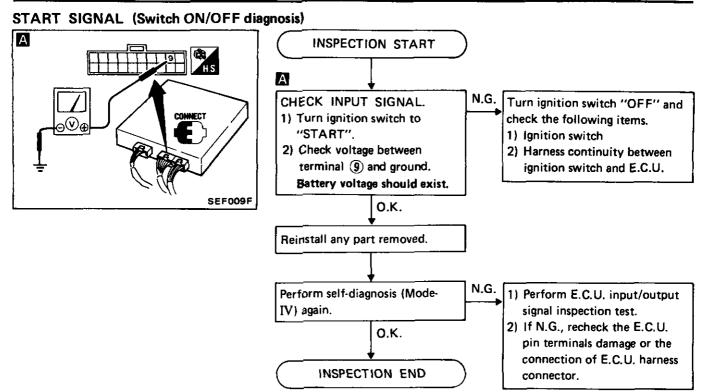


THROTTLE SENSOR (Code No. 43); FOR CALIFORNIA MODEL/(Not self-diagnostic item); FOR NON-CALIFORNIA A/T MODEL (Only control for automatic transmission)

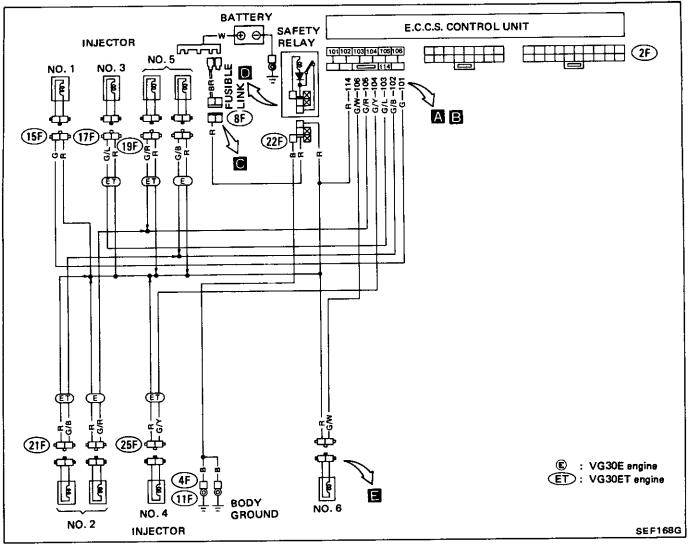


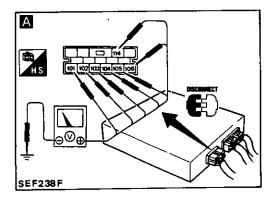
EF & EC-114

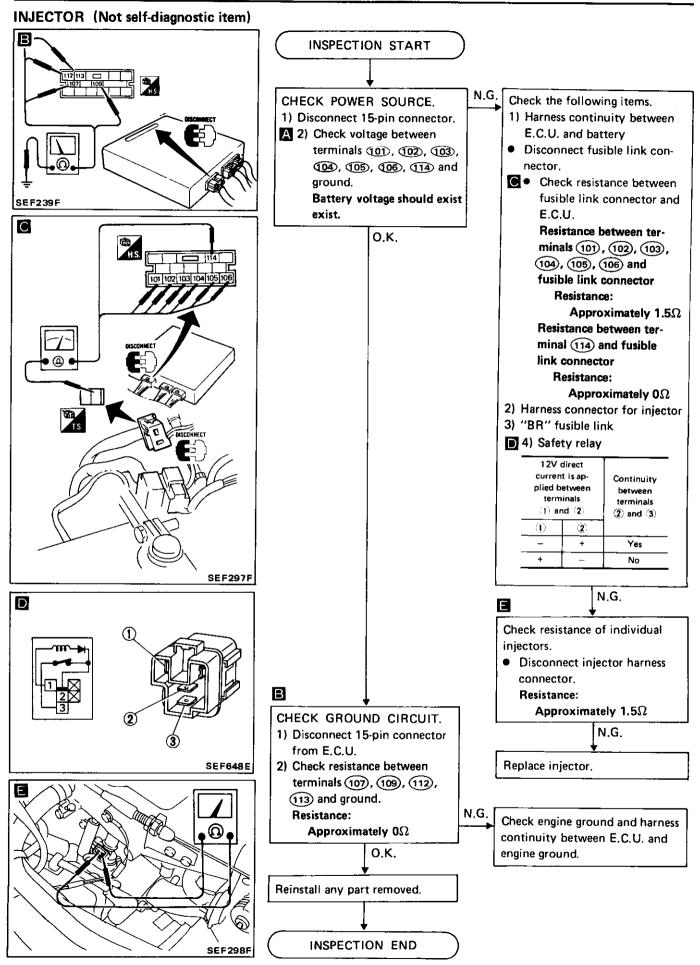




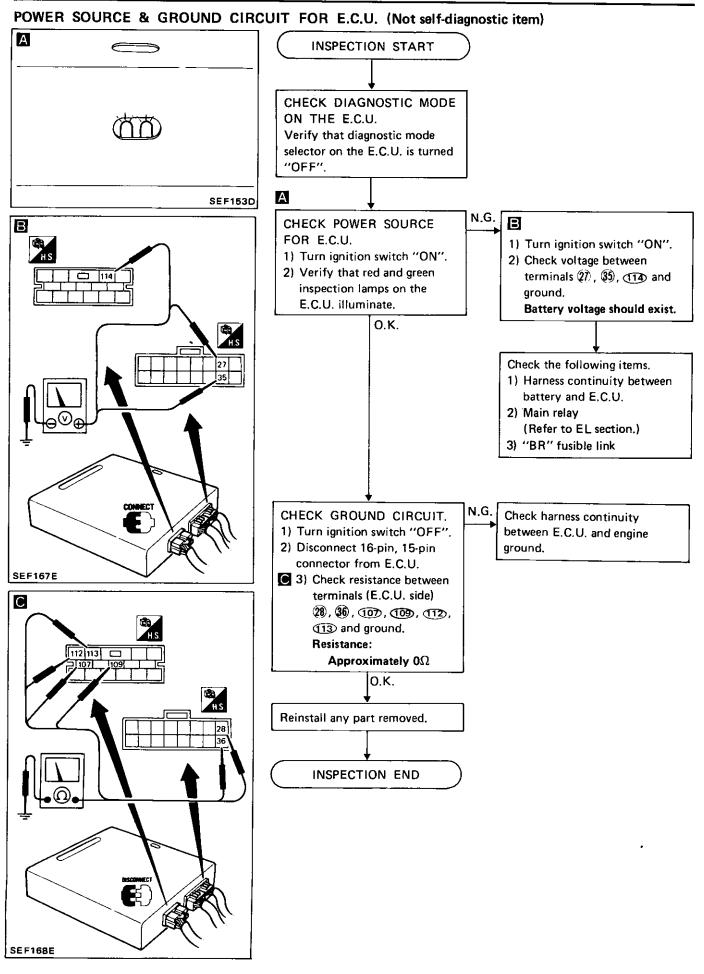
EF & EC-116

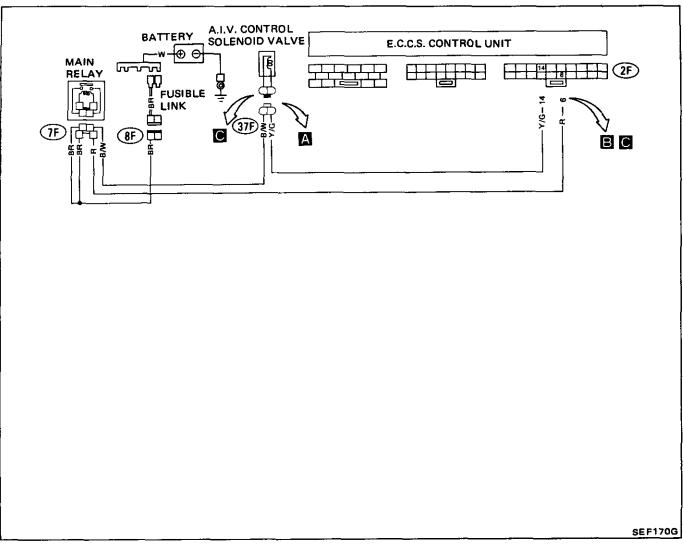


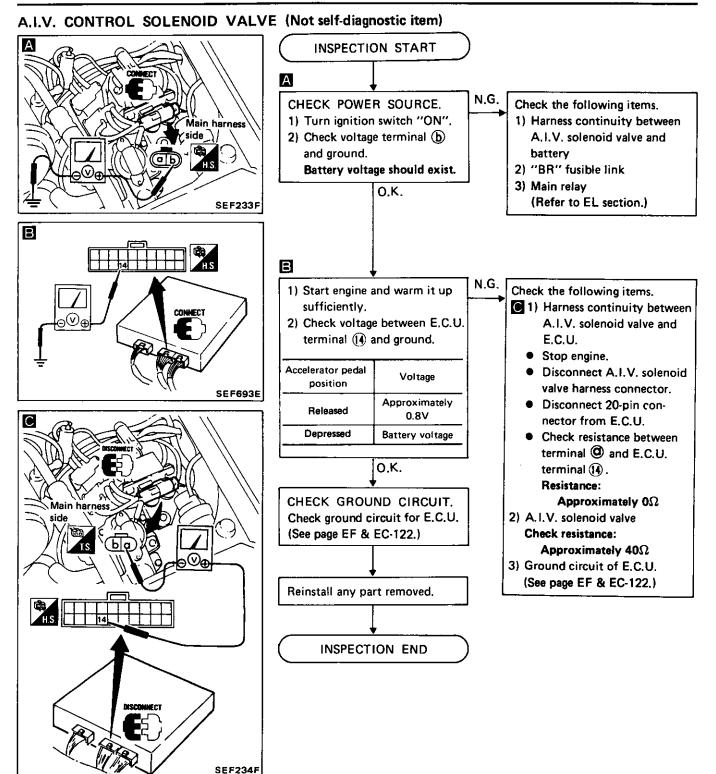

START SIGNAL (Switch ON/OFF diagnosis)



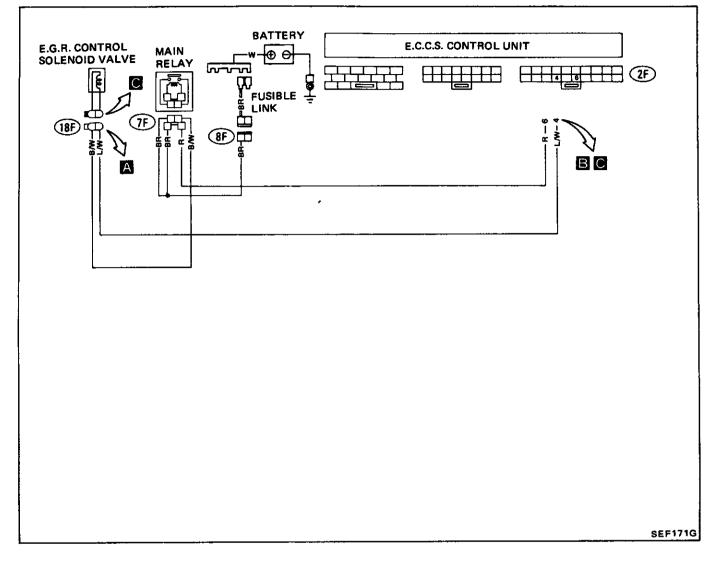
INJECTOR (Not self-diagnostic item)

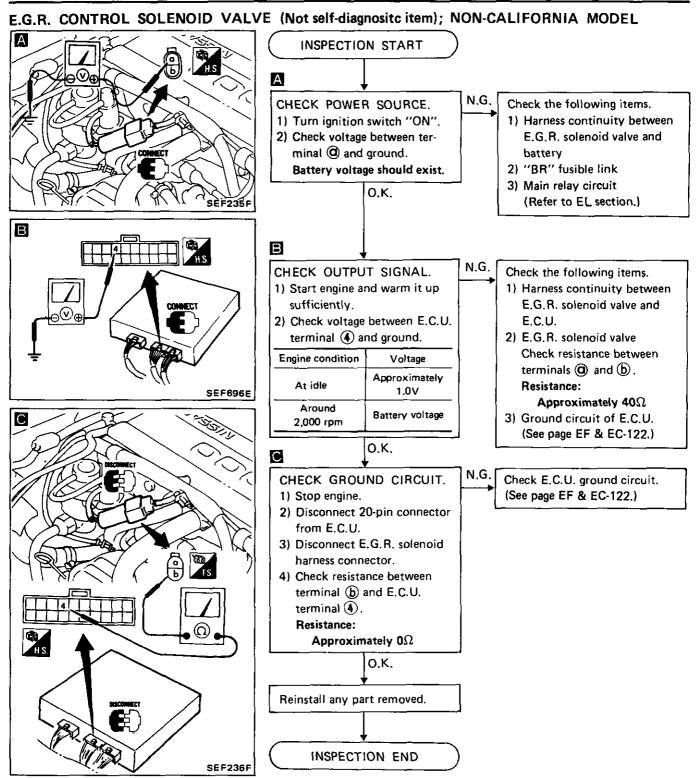

.

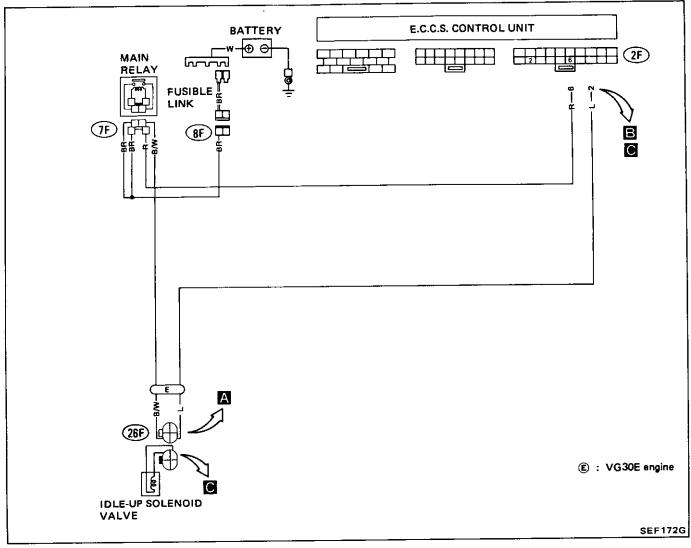

EF & EC-121

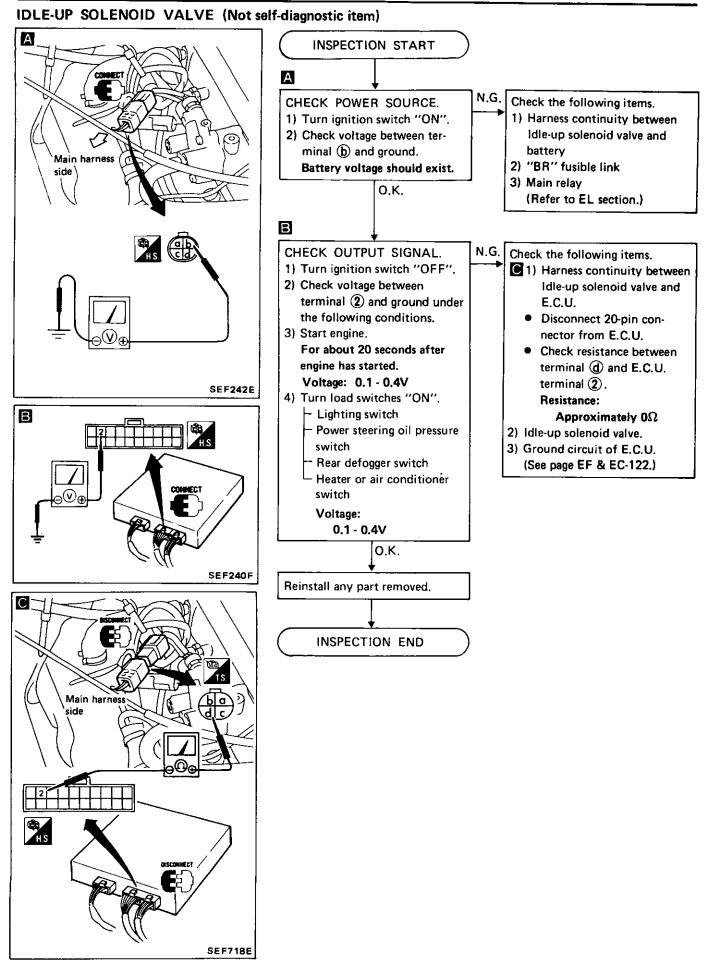

BATTERY E.C.C.S. CONTROL UNIT ⊕⊖ w MAIN **K** 34 35 36 27 28 RELAY 107 112 112 113 LD. FUSIBLE LINK Ē А 创印 (8F) 🖽 ВС ВC (E.F.I. harness) FUSE BLOCK ş 8 JE SF (E) ; VG30E engine (ET): VG30ET engine Ē **19 3 83**M NΘ T P 36F 🔓 (IIF) (4F) (Main harness) ENGINE BODY GROUND GROUND SEF169G

POWER SOURCE & GROUND CIRCUIT FOR E.C.U. (Not self-diagnostic item)

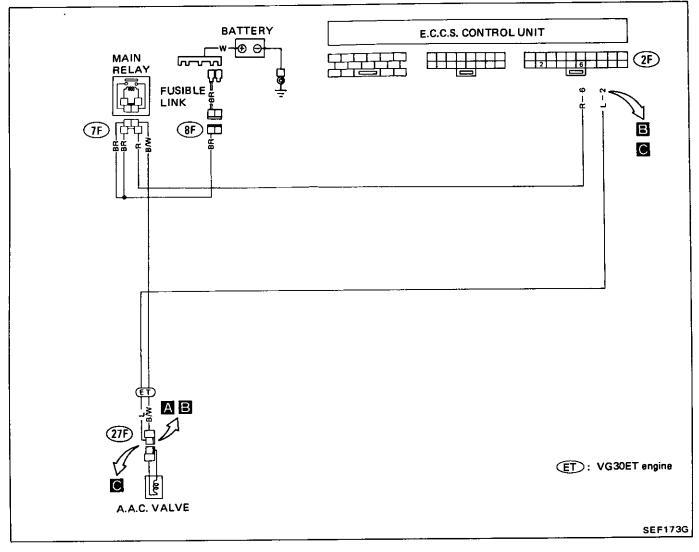


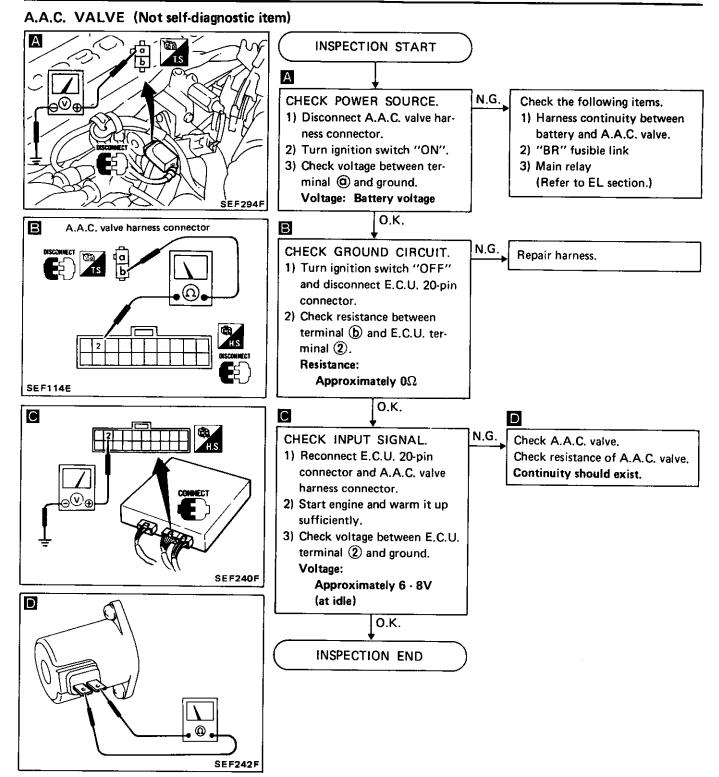




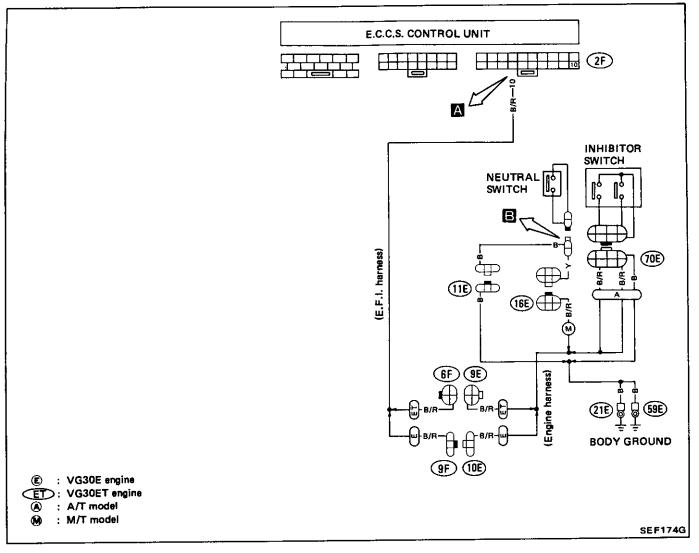

E.G.R. CONTROL SOLENOID VALVE (Not self-diagnostic item); NON-CALIFORNIA MODEL

IDLE-UP SOLENOID VALVE (Not self-diagnostic item)

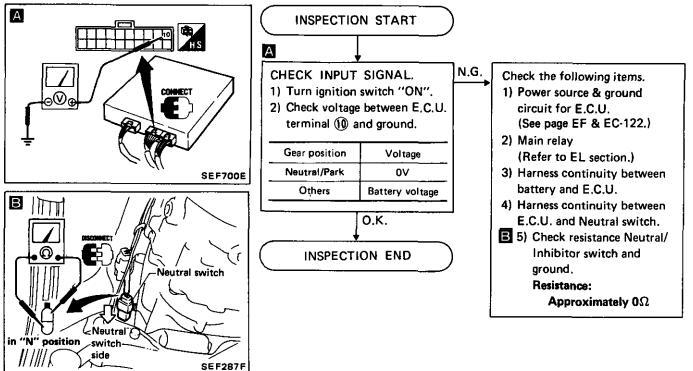


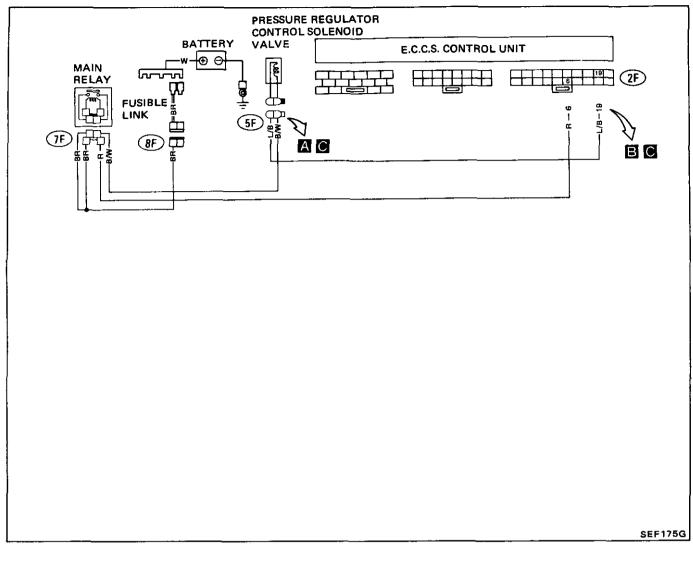


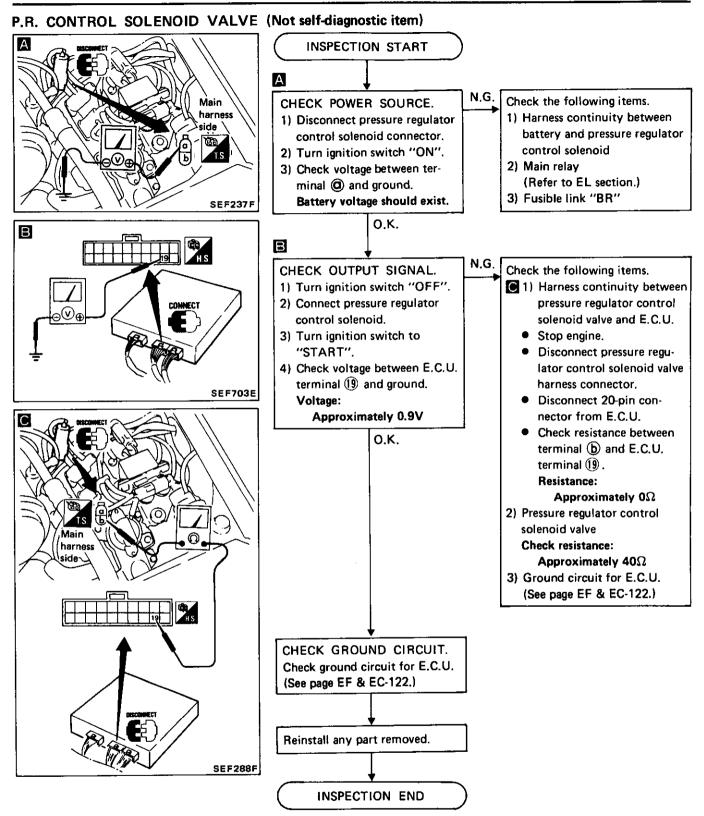
.....



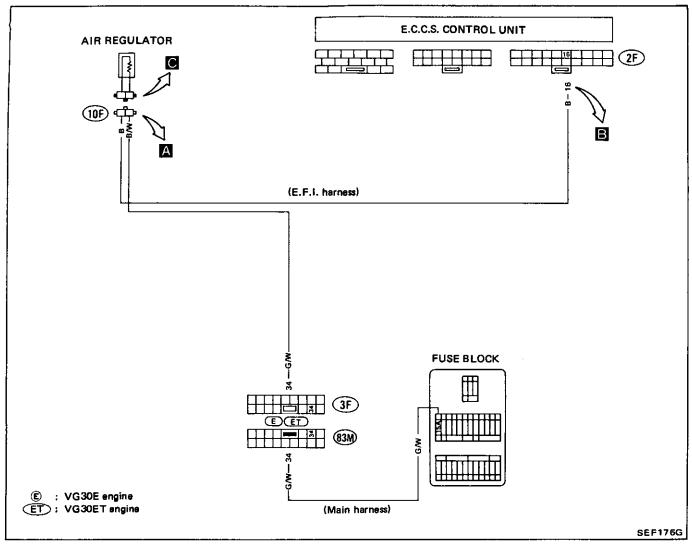
A.A.C. VALVE (Not self-diagnostic item)

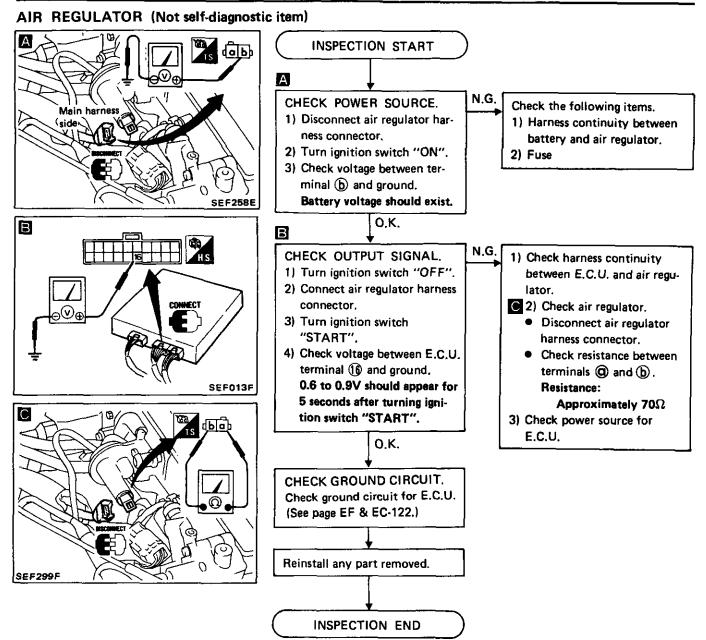


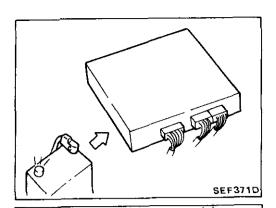

NEUTRAL/INHIBITOR SWITCH (Not self-diagnostic item)



NEUTRAL/INHIBITOR SWITCH (Not self-diagnostic item)




P.R. CONTROL SOLENOID VALVE (Not self-diagnostic item)



AIR REGULATOR (Not self-diagnostic item)

Retainer

O

SEF3280

Battery

MEASUREMENT VOLTAGE OR RESISTANCE OF E.C.U.

- 1. Disconnect battery ground cable.
- 2. Disconnect 20- and 16-pin connectors from E.C.U.

3. Remove pin terminal retainer from 20- and 16-pin connectors to make it easier to insert tester probes.

- 4. Connect 20- and 16-pin connectors to E.C.U. carefully.
- 5. Connect battery ground cable.
- 6. Measure the voltage at each terminal by following "E.C.U. inspection table".

CAUTION:

SEF370D

SEF374D

- a. Perform all voltage measurements with the connectors connected.
- b. Perform all resistance measurements with the connectors disconnected.
- c. Make sure that there is not any bend or break on E.C.U. pin terminal before measurements.
- d. Do not touch tester probes between terminals (2) and (3),
 (3) and (3).

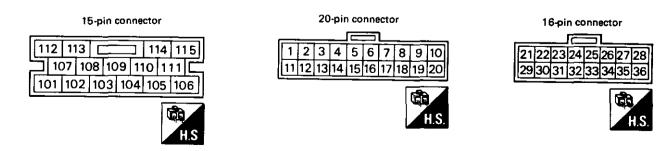
E.C.U. inspection table

*Data are reference values.

TERMI- NAL NO.	ITEM	CONDITION	*DATA
2	ldle-up solenoid valve (VG30E)	Engine is running and gear position is in P or N (A/T). For about 20 seconds after starting engine Steering wheel is turned. Blower and air conditioner switches are "ON". Lighting switch is "ON".	0.1 - 0.4V
		Engine is running. Except the conditions shown above	BATTERY VOLTAGE (11 - 14V)
	A.A.C. valve (VG30ET)	Engine is running. L	6.0 - 8.0V
3	Ignition check	Engine is running.	9 - 12V (Decreases as engine is revved up.)
4	E.G.R. control solenoid valve	Engine is running after being warmed up. High engine revolution Idle speed (Throttle valve switch "ON".)	Approximately 1.0V
		Engine is running. Low engine revolution	BATTERY VOLTAGE (11 - 14V)
5	Ignition signal	Engine is running.	0.4 - 0.6V
		Engine is running. Engine speed is 2,000 rpm.	1.2 - 1.5V
6	E.C.C.S. relay-1 (Main relay)	Engine is running. Ignition switch "OFF" For approximately 8 seconds after turning ignition switch "OFF"	0.7 - 0.9V
		Ignition switch "OFF" Within approximately 8 seconds after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)

*Data are reference values.

TERMI- NAL NO.	ITEM	CONDITION	*DATA
8	Crank angle sensor (Position signal)	Engine is running. Do not run engine at high speed under no-load.	2.5 - 2.7V
9	Start signal	Cranking	8 - 12V
10	Neutral switch (M/T) Inhibitor switch (A/T)	Ignition switch "ON" Gear position is in Neutral or Parking.	٥V
		Ignition switch "ON" Any gear position except Neutral or Parking	BATTERY VOLTAGE (11 - 14V)
12	Air flow meter burn-off signal	Engine revolution is above 1,500 rpm and vehicle speed is more than 20 km/h (12MPH). Ignition switch "OFF" For 6 seconds after turning ignition switch "OFF"	٥V
		Engine revolution is above 1,500 rpm and vehicle speed is more than 20 km/h (12 MPH). Ignition switch "OFF" For 1 second after the above 6 seconds have passed.	9.0 - 10.0V
14	A.I.V. control solenoid valve	Ignition switch "ON" — Release accelerator pedal. (Throttle valve switch "ON")	0.7 - 0.9V
		Ignition switch "ON" Depress accelerator pedal. (Throttle valve switch "OFF")	BATTERY VOLTAGE (11 - 14V)
15	Fuel temperature sensor	Engine is running.	0.5V Output voltage varies with engine temperature.
16	Air regulator	Engine is running.	0.6 - 0.9V
17	Crank angle sensor (Reference signal)	Engine is running. Do not run engine at high speed under no-load.	0.2 - 0.4V


*Data are reference values.

TERMI- NAL NO.	ITEM	CONDITION	*DATA
18	Throttle valve switch (⊖ side)	Ignition switch "ON" Release accelerator pedal. (Throttle valve switch "OFF")	9.0 - 10.0V
		Ignition switch "ON" Depress accelerator pedal. (Throttle valve switch "ON")	OV
19	Pressure regulator control solenoid valve	Stop and restart engine after warming it up. L-For 30 seconds	0.8 - 1.0V
		Stop and restart engine after warming it up. After 3 minutes	BATTERY VOLTAGE (11 - 14V)
20	Fuel pump relay	Engine is running.	BATTERY VOLTAGE (11 - 14V)
22	Load signal	Engine is running and gear position is in P or N (A/T). Steering wheel is turned. Blower and air conditioner switchs are "ON". Lighting switch is "ON".	BATTERY VOLTAGE (11 - 14V)
		Engine is running. Except conditions shown above	ov
23	Cylinder head temperature sensor	Engine is running.	0 - 5.0V Output voltage varies with engine temperature.
24	Exhaust gas sensor	Engine is running. After warming up sufficiently	0 - Approximately 1.0V
25	ldle switch (⊕side)	Ignition switch "ON"	9.0 - 10.0V
27 35	Power source for E.C.U.	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
29	Vehicle speed sensor	Ignition switch "ON" — While rotating rear wheel slowly	0 or 7.4V

*Data are reference values.

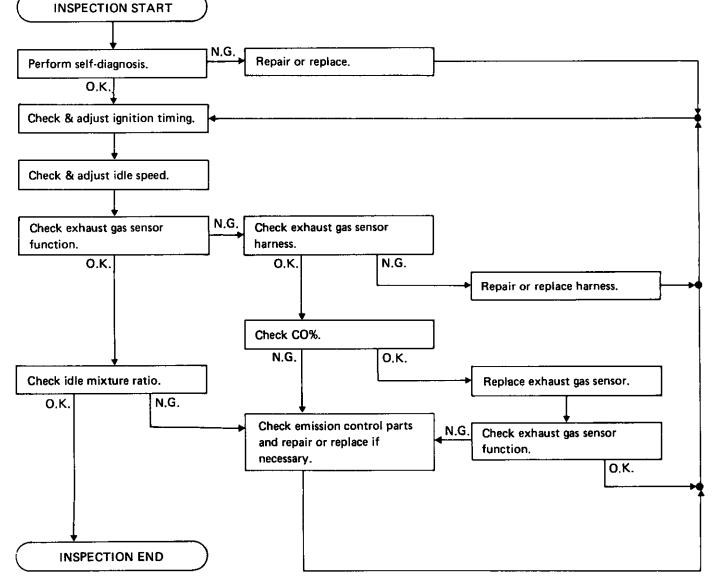
TERMI- NAL NO.	ITEM	CONDITION	*DATA
30	Exhaust gas temperature sensor (Only for California model)	Engine is running.	1.0 - 2.0V
		Engine is running. E.G.R. system is operating.	0 - 1.0V
31	Air flow meter	Engine is running. Do not run engine at high speed under no-load.	2.0 - 4.0V Output voltage varies with engine re- volution and throttle valve movement.
34	Ignition switch signal	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
101 102 103 104 105 106 114	Injector	Engine is running.	BATTERY VOLTAGE (11 - 14V)
108	Fuel pump	Ignition switch "ON" For 5 seconds after turning ignition switch "ON"	0.1 - 0.3V
		Ignition switch "ON" — After 5 seconds have passed	9 - 14V
110	Throttle sensor (Only for California model)	Ignition switch "ON"	0.4 - 4.0V
115	Exhaust gas sensor heater	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

VG30 PIN CONNECTOR TERMINAL LAYOUT

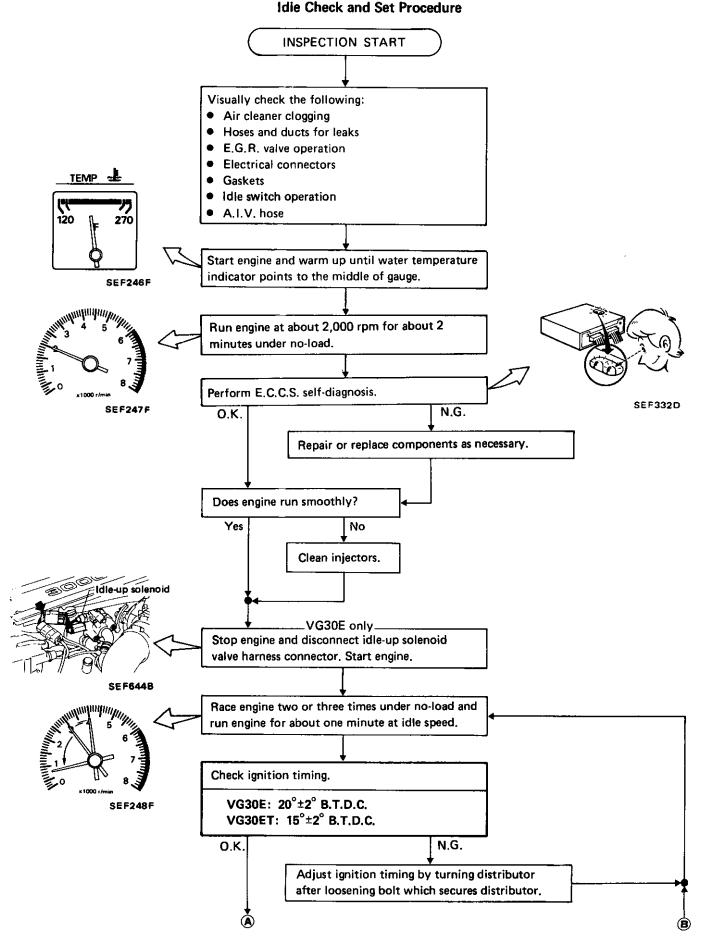
SEF262F

MIXTURE RATIO FEEDBACK SYSTEM INSPECTION

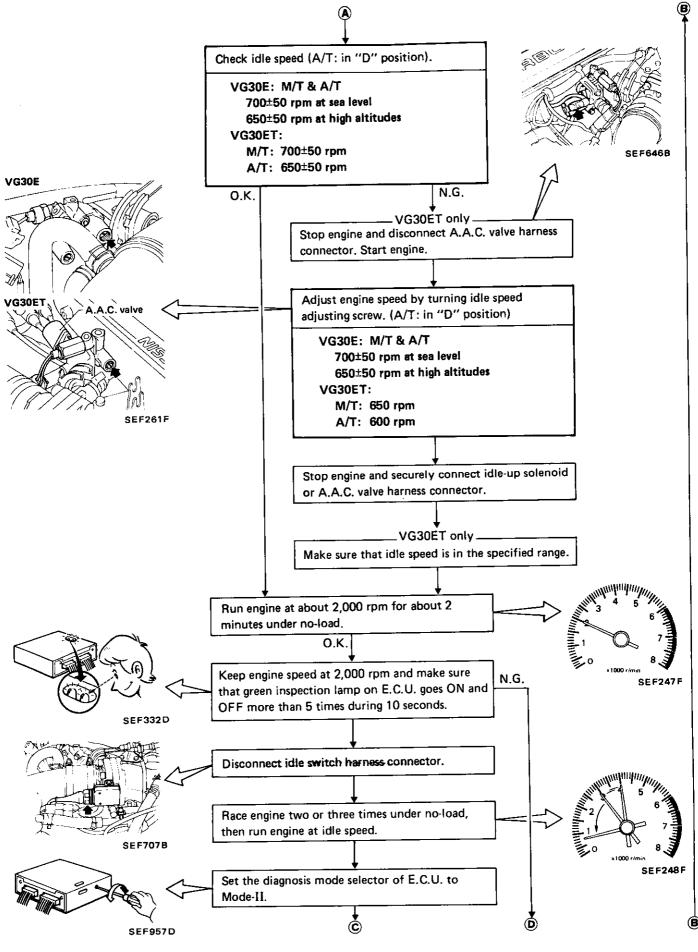
PREPARATION

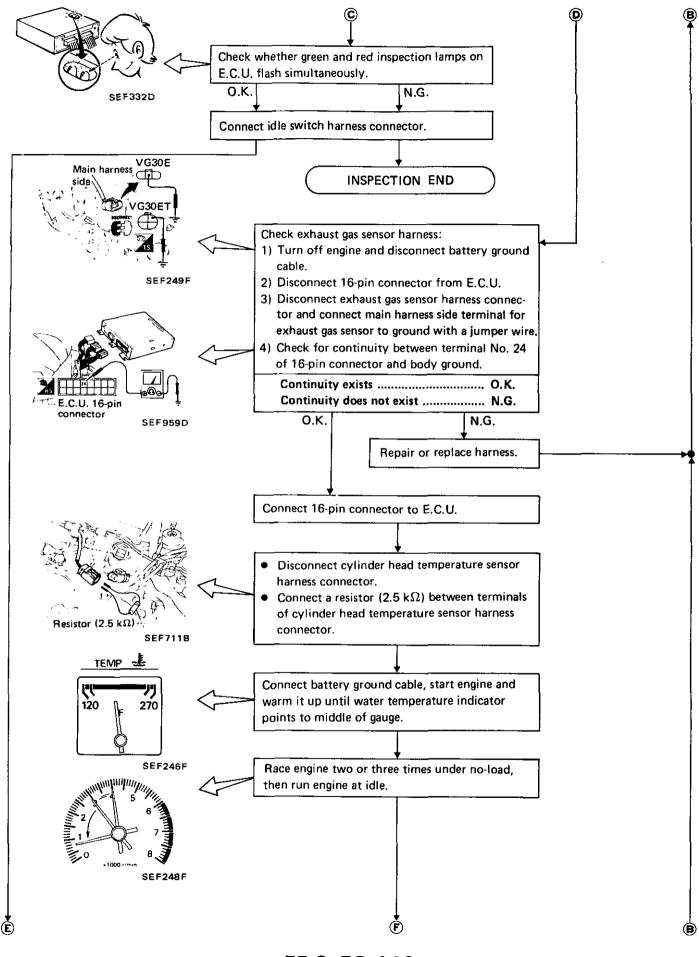

- 1. Make sure that the following parts are in good order.
- Battery
- Ignition system
- Engine oil and coolant levels
- Fuses
- E.C.U. harness connectors
- Vacuum hoses
- Air intake system (oil filler cap, oil level gauge, etc.)
- Fuel pressure
- A.I.V. hose
- Engine compression
- E.G.R. valve operation
- Throttie valve

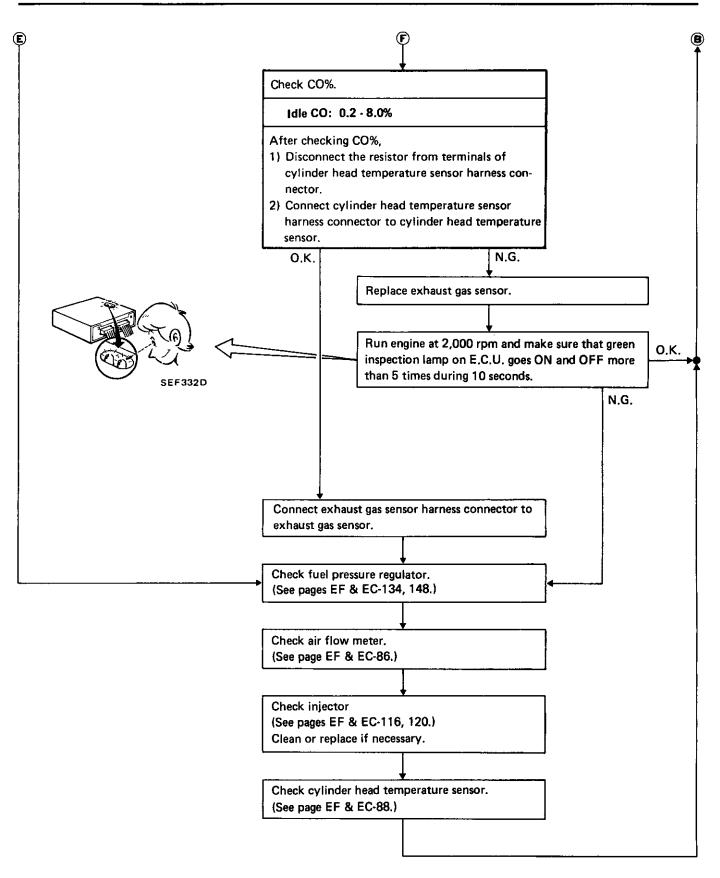
Overall inspection sequence

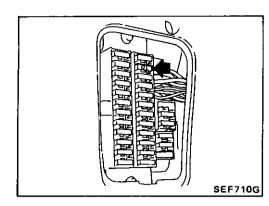

- On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- 3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "D" position.
- 4. When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.

WARNING:


- a. When selector lever is shifted to "D" position, apply parking brake and block both front and rear wheels with chocks.
- b. Depress brake pedal while racing the engine to prevent forward surge of vehicle.
- c. After the adjustment has been made, shift the lever to the "N" or "P" position and remove wheel chocks.

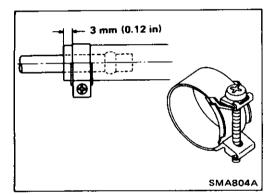

MIXTURE RATIO FEEDBACK SYSTEM INSPECTION

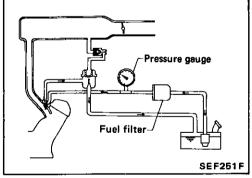

MIXTURE RATIO FEEDBACK SYSTEM INSPECTION

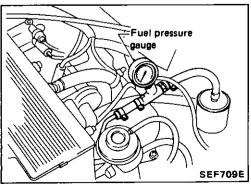

MIXTURE RATIO FEEDBACK SYSTEM INSPECTION

MIXTURE RATIO FEEDBACK SYSTEM INSPECTION

FUEL SYSTEM INSPECTION


Releasing Fuel Pressure


WARNING:


Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

- 1. Remove fuse for fuel pump.
- 2. Start engine.
- 3. After engine stalls, crank engine two or three times to make sure that pressure is released.
- 4. Turn ignition switch off and install the fuse.

Erase the memory (Code No. 22) of the self-diagnosis in E.C.C.S. control unit.

Fuel Pressure Check

- a. Tighten the clamp so its end is 3 mm (0.12 in) from the hose end.
- b. Make sure that the screw of the clamp does not contact with any adjacent parts.
 - 🖸 : Fuel hose clamps
 - 1.0 1.5 N·m
 - (0.10 0.15 kg-m, 0.7 1.1 ft-lb)
- c. Disconnect pressure regulator control solenoid valve harness connector.
- d. Use Pressure Gauge to check fuel pressure.

- 1. Release fuel pressure to zero.
- 2. Disconnect fuel hose between fuel filter and fuel tube (engine side).
- 3. Install pressure gauge between fuel filter and fuel tube.

FUEL SYSTEM INSPECTION

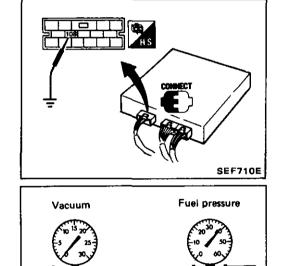
Fuel Pressure Check (Cont'd)

- 4. Start engine and check for fuel leakage.
- 5. Read the indication of fuel pressure gauge.

At idling:

Approximately 206 kPa

(2.1 kg/cm², 30 psi)


The moment accelerator pedal is fully

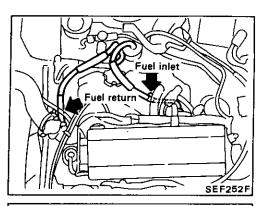
depressed :

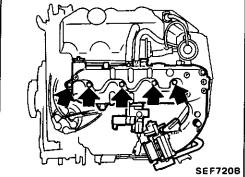
[VG30E]

Approximately 255 kPa (2.6 kg/cm², 37 psi) [VG30ET] Approximately 304 kPa

- (3.1 kg/cm², 44 psi)
- 6. Stop engine and disconnect fuel pressure regulator vacuum hose from intake collector.
- 7. Plug intake collector with a rubber cap.
- 8. Connect a handy vacuum pump to fuel pressure regulator.
- 9. Jump No. 108 connector of E.C.U. to body ground,

L To pressure regulator

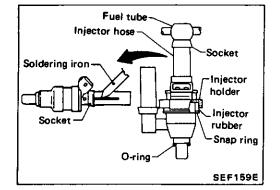

SEF718B


10. Turn ignition switch to "ON" and read the indication of fuel pressure gauge as vacuum is changed.

Vacuum kPa (mmHg, inHg)	Fuel pressure kPa (kg/cm², psi)		
0 (0, 0)	248.1 - 255.0 (2.53 - 2.60, 36.0 - 37.0)		
16.9 (127, 5.00)	227.5 - 241.3 (2.32 - 2.46, 33.0 - 35.0)		
33.9 (254, 10.00)	213.8 - 220.7 (2.18 - 2.25, 31.0 - 32.0)		
50.8 (381, 15.00)	200.1 - 206.9 (2.04 - 2.11, 29.0 - 30.0)		
67.7 (508, 20.00)	179.5 - 193.2 (1.83 - 1.97, 26.0 - 28.0)		

• Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

FUEL SYSTEM INSPECTION



Injector Removal and Installation

- 1. Release fuel pressure to zero.
- 2. Disconnect the following from intake collector.
- Air duct
- Accelerator wire
- Blow-by hoses
- Air regulator hose
- E.G.R. tube
- 3. Disconnect fuel hoses.
- 4. Remove intake collector.

- Harness clamps
- Harness connectors
- Intake collector cover
- Water hoses

- 5. Remove bolts securing fuel tube.
- 6. Remove bolts securing injectors and remove injectors, fuel tubes and pressure regulator as an assembly.

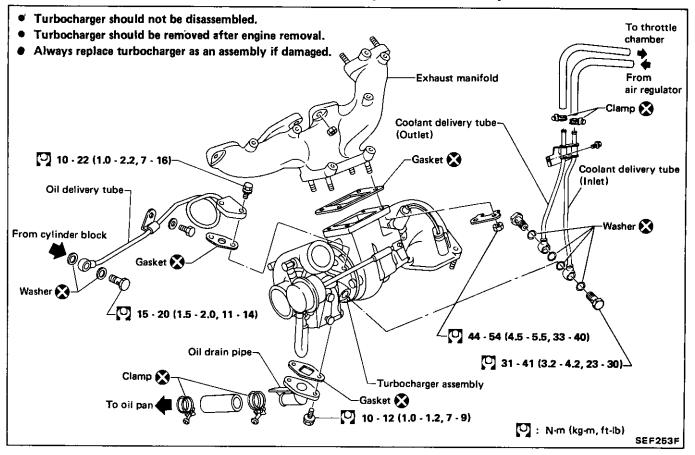
- 7. Remove fuel hose.
- 1) Heat sharp knife for 15 minutes. Cut into hose braided reinforcement from mark to socket end and fuel tube end.

Do not allow sharp knife to cut all the way through the hose and touch injector tail piece.

2) Then pull rubber hose out with hand,

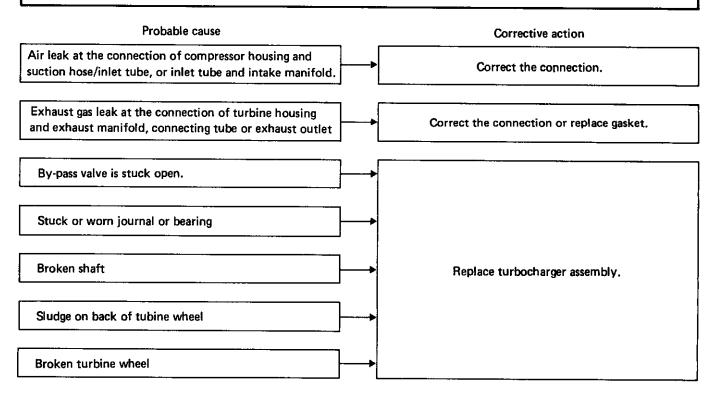
Never place injector in a vise when disconnecting rubber hose.

- 8. Install fuel hose as follows:
- 1) Clean exterior of injector tail piece and fuel tube end.
- 2) Wet inside of new rubber hose with fuel.
- 3) Push end of rubber hose with hose sockets onto injector tail piece and fuel tube end by hand as far as they will go.

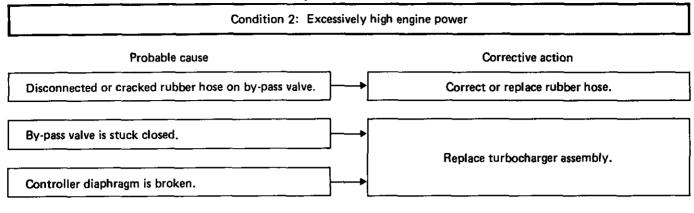

Clamp is not necessary at the connections.

CAUTION:

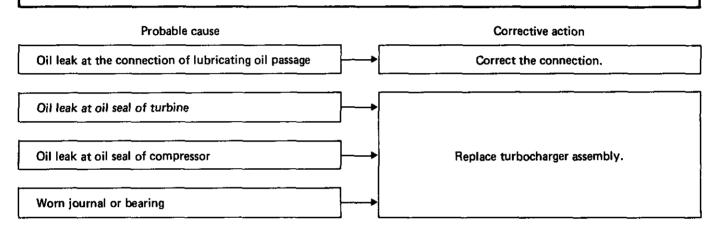
After properly connecting fuel hose to injector and fuel tube, check connection for fuel leakage.

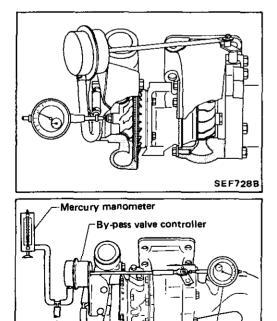

TURBOCHARGER INSPECTION

Disassembly and Assembly


Inspection

Condition 1: Low engine power




TURBOCHARGER INSPECTION

Inspection (Cont'd)

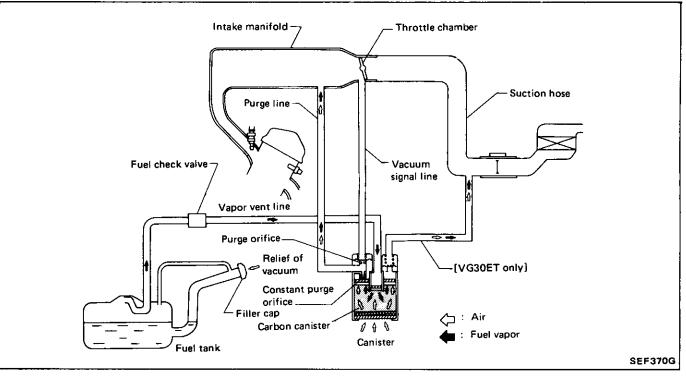
Condition 3: Excessively high oil consumption or exhaust shows pale blue smoke

Dial indicator

SEF7278

îì

Compressed

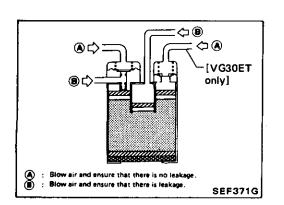

air

- 1. Inspect turbine and compressor wheel as follows:
- Visually check for cracks, clogging, deformity or other damage.
- Revolve wheels to make sure that they turn freely without any abnormal noise or friction.
- Measure play in axial direction.
 Play (axial direction):
 0.013 0.091 mm (0.0005 0.0036 in)
- 2. Check operation of by-pass valve controller.
- Move by-pass value to make sure that it is not sticking or scratched.
- Measure rod end play of the by-pass valve controller.

Do not apply more than 66.7 kPa (500 mmHg, 19.69 inHg) pressure to controller diaphragm.

By-pass valve controller stroke/pressure: 0.38 mm (0.0150 in)/35.2 - 40.5 kPa (264 - 304 mmHg, 10.39 - 11.97 inHg)

EVAPORATIVE EMISSION CONTROL SYSTEM

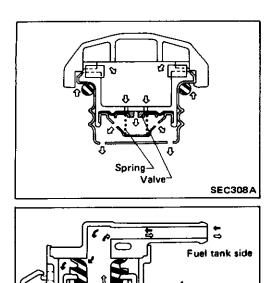

Description

The evaporative emission control system is used to reduce hydrocarbons emitted to the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the carbon canister.

The fuel vapor from the sealed fuel tank is led into the canister which contains activated carbon and the vapor is stored there when the engine is not running.

The canister retains the fuel vapor until the canister is purged by the air drawn through the bottom of the canister to the intake manifold when the engine is running. When the engine runs at idle, the purge control valve is closed.

Only a small amount of stored vapor flows into the intake manifold through the constant purge orifice. As the engine speed increases, and the throttle vacuum rises higher, the purge control valve opens and the vapor is sucked into the intake manifold through both the main purge orifice and the constant purge orifice.



Inspection CARBON CANISTER

Check carbon canister as follows.

- A : Blow air and ensure that there is no leakage.
- B : Blow air and ensure that there is leakage.

EVAPORATIVE EMISSION CONTROL SYSTEM

🗆 Air

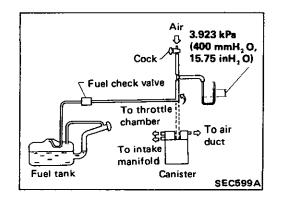
Carbon canister side

Fuel vapor

SEC309A

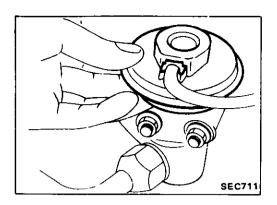
Inspection (Cont'd)

FUEL TANK VACUUM RELIEF VALVE


- 1. Wipe clean valve housing.
- Inhale air through the cap. A slight resistance accompanied by valve clicks indicates that valve is in good mechanical condition. Note also that, by further inhaling air, the resistance should be disappeared with valve clicks.
- 3. If value is clogged, or if no resistance is felt, replace cap as an assembly.

FUEL CHECK VALVE

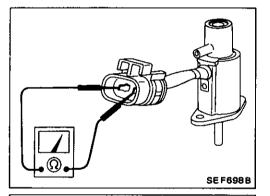
- Blow air through connector on fuel tank side.
 A considerable resistance should be felt and a portion of air flow be directed toward the canister.
- Blow air through connector on the canister side. Air flow should be smoothly directed toward fuel tank.
- 3. If fuel check valve is suspected of not being properly functioning in steps 1 and 2 above, replace it.


VAPOR VENT LINE

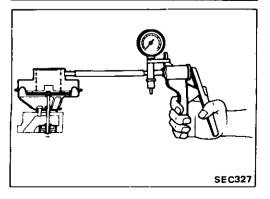
- 1. Check hoses and fuel tank filler cap.
- 2. Disconnect the vapor vent line connecting carbon canister to fuel tank.

- 3. Connect a 3-way connector, a manometer and a cock (or an equivalent 3-way charge cock) to the end of the vent line.
- 4. Supply fresh air into the vapor vent line through the cock little by little until pressure becomes 3.923 kPa (400 mmH₂O, 15.75 inH₂O).
- 5. Shut the cock completely and leave it unattended.
- 6. After 2.5 minutes, measure the height of the liquid in the manometer.
- 7. Variation in height should remain at 0.245 kPa (25 mmH₂ O, 0.98 inH₂ O).
- 8. When filler cap does not close completely, the height should drop to zero in a short time.
- 9. If the height does not drop to zero in a short time when filler cap is removed, the cause is a blocked hose or a clogged fuel check valve.

In case the vent line is blocked, the fuel tank is not vented properly causing insufficient deliver of fuel to engine, or vapor lock. It must, therefore, be repaired.



E.G.R. SYSTEM


Ensure that E.G.R. system is functioning properly by placing your finger on E.G.R. control valve diaphragm.

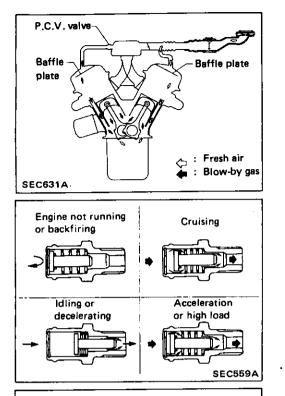
Make sure that E.G.R. control valve operates as follows.

Conditions	E.G.R. control solenoid	E.G.R. system	
 Engine starting Throttle valve switch "ON" Low engine temperature High engine temperature High engine speed With heavy load 	ON	Does not operate	
Except above	OFF	Operates	

Atmosphere Filter To E.G.R. To E.G.R. Valve Control valve Valve When applying From intake 12 volts manifold SEF792B

E.G.R. CONTROL SOLENOID VALVE

1. Check the solenoid value for electric continuity, after disconnecting the harness connector. Resistance: $30 \cdot 40\Omega$


2. Check the solenoid valve for normal operation as shown.

CAUTION:

- Be sure to connect \oplus terminal of battery with white harness of solenoid valve.
- Perform E.G.R. circuit test. (See pages EF & EC-100, 126.)
- Perform E.C.U. input/output test. (See page EF & EC-138.)

E.G.R. CONTROL VALVE

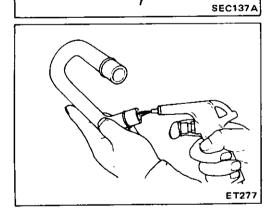
- 1. Supply the E.G.R. control valve with vacuum using a handy vacuum pump.
- 2. Place a finger on the diaphragm of the valve, and make sure that the diaphragm lifts up and down in response to the vacuum leading to the valve.

Description

The fuel vapor from the sealed fuel tank is led into the canister which contains activated carbon. The vapor is stored there when the engine is not running.

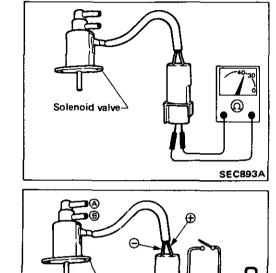
The canister retains the fuel vapor until the canister is purged by the air drawn through the purge line to the intake manifold when the engine is running. When the engine is at idle, the purge control valve is closed.

Only a small amount of purged air flows into the intake manifold through the constant purge orifice. As the engine speed increases, and the throttle vacuum rises higher the purge control valve opens and the vapor is drawn into the intake manifold through both the purge orifice and the constant purge orifice.



P.C.V. VALVE

With engine running at idle, remove ventilation hose from P.C.V. valve; if valve is working properly a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.


- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

VISUAL CHECK

Check the hoses and tubes for loosening, flatting damage or faulty connections, and each part for proper installation.

• Replace, if necessary.

© \ Solenoid valve

A.I.V. CONTROL SOLENOID

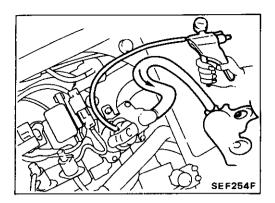
Subject the solenoid valve to independent inspection, after disconnecting the harness connector and all the vacuum hoses.

1) Check it for electric continuity.

Resistance: Approximately 40Ω

2) Check the solenoid valve for normal operation. Supply it with battery voltage, and check whether there is continuity between ports A, B and C.

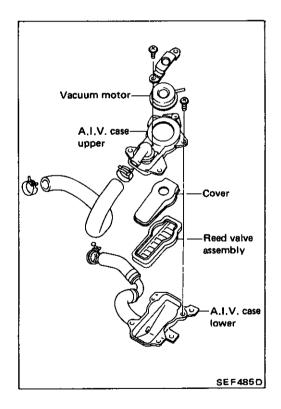
Solenoid valve	OFF	ON
Continuity	B-C	A-B


CAUTION:

θ

Battery

SEC549A


- Be sure to connect
 terminal of battery with white harness of solenoid valve.
- Perform A.I.V. circuit test. (See page EF & EC-124.)
- Perform E.C.U. input/output test. (See page EF & EC-138.)

A.I.V. UNIT

- 1. Disconnect vacuum hose leading to vacuum motor and set a handy vacuum pump there.
- 2. Disconnect hose between A.I.V. unit and air cleaner.
- Subject A.I.V. unit to inspection in the following way. Connect suitable hose to A.I.V. unit and try to blow A.I.V. unit through the hose, when vacuum is lead to vacuum motor and when no vacuum exists.

	Vacuum	No vacuum	Parts condition
Can you blow?	Yes	No	0.K <i>.</i>
	No	Yes	N.G.

4. If the inspection shows N.G., disassemble the A.I.V. case and check such parts as the reed valve, the vacuum motor, and the connecting hoses.

SERVICE DATA AND SPECIFICATIONS (S.D.S.)

General Specifications

Fuel pump Cut-off discharge pressure kPa (kg/cm², psi)	422 - 490 (4.3 - 5.0, 61 - 71) 250 (2.55, 36.3)	
Pressure regulator Regulated pressure kPa (kg/cm², psi)		
Air regulator Air flow amount [at 20°C (68°F)] m ³ (cu ft)/hr	14.5 (512)	

kPa (kg/cm², psi)

Approximately

206 (2.1, 30)

Approximately

255 (2.6, 37) Approximately

304 (3.1, 44)

2 - 4V

Item

The moment accelerator pedal is fully depressed kPa (kg/cm², psi)

Voitage between terminals B and D

Fuel pressure

At idle

VG30E

VG30ET

Air flow meter

Item	
Cylinder head temperature sensor and fuel temperature sensor Thermistor resistance at 20°C (68° F)	2.3 - 2.7 kΩ
at 50°C (122°F)	0.77 - 0.87Ω
at 80°C (176°F)	0.30 - 0.33Ω
Idle switch Engine speed when idle switch is turned from "OFF" to "ON"	Idle speed + 250 rpm allowance: ±150 rpm
Dash pot rpm	
Touch speed	VG30E: 2,200 - 2,800 VG30ET (M/T model only): 2,200 - 2,800

Inspection and Adjustment

Tightening Torque

Unit	N∙m	kg-m	ft-lb
Throttle chamber securing bolt	18 - 22	1.8 - 2.2	13 • 16
Intake collector cover bolt	6-8	0.6 - 0.8	4,3 - 5,8
Intake collector bolt	18 - 22	1,8 - 2,2	13 - 16
Cylinder head temperature sensor	12 - 16	1.2 - 1.6	9 - 12
Exhaust gas sensor (VG30E)	40 - 50	4.1 - 5.1	30 - 37
(VG30ET)	18 - 24	1.8 - 2.4	13 - 17
E.G.R. control valve	18 - 23	1.8 - 2.3	13 - 17
E.G.R. tube	34 - 44	3.5 - 4.5	25 - 33
Fuel hose clamp	1.0 - 1,5	0.10 - 0.15	0.7 - 1.1