GENERAL INFORMATION GI

MA

SECTION G

EF & EC

۶į

EM

CONTENTS

PRECAUTIONS	2
Precautions for Supplemental Restraint System	
"AIR BAG"	2
General Precautions	2
Precautions for Multiport Fuel Injection System	
or ECCS Engine	4
Precautions for Three Way Catalyst	4
Precautions for Turbocharger	4
Engine Oils	5
Precautions for Fuel	6
HOW TO USE THIS MANUAL	7
HOW TO READ WIRING DIAGRAMS	9
HOW TO PERFORM EFFICIENT DIAGNOSIS	
FOR AN ELECTRICAL INCIDENT	12
Work Flow	12
Incident Simulation Tests	13
Circuit Inspection	17

HOW TO FOLLOW FLOW CHART IN		CL
TROUBLE DIAGNOSES	23	
CONSULT CHECKING SYSTEM		
Function and System Application		1MT
Checking Equipment		
IDENTIFICATION INFORMATION		AT
Model Variation	27	<i>L</i> AVI
Identification Number		
Dimensions		PD
Wheels and Tires	31	
LIFTING POINTS AND TOW TRUCK TOWING		
Garage Jack and Safety Stand	32	FA
2-pole Lift		
Tow Truck Towing		കര
TIGHTENING TORQUE OF STANDARD BOLTS		RA
SAE J1930 TERMINOLOGY LIST		
	-	BR
		ັບບານ

5

ST

RS

BT

HA

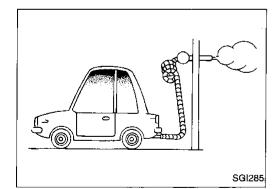
Ë

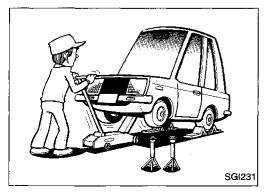
Observe the following precautions to ensure safe and proper servicing.

Precautions for Supplemental Restraint System "AIR BAG"

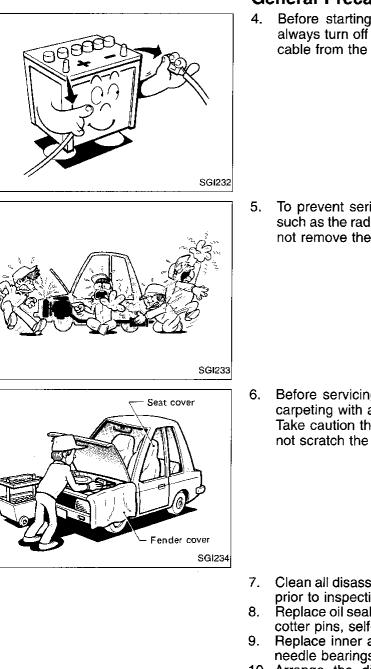
The Supplemental Restraint System "Air Bag", used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger in a frontal collision. The Supplemental Restraint System consists of air bag modules (located in the center of the steering wheel and on the instrument panel on the passenger side), sensors, a diagnosis unit, warning lamp, wiring harness and spiral cable. Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:


- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- All SRS electrical wiring harnesses and connectors are covered with yellow outer insulation. Do not use electrical test equipment on any circuit related to the SRS.


General Precautions

- 1. Do not operate the engine for an extended period of time without proper exhaust ventilation.
 - Keep the work area well ventilated and free of any inflammable materials. Special care should be taken when handling any inflammable or poisonous materials, such as gasoline, refrigerant gas, etc. When working in a pit or other enclosed area, be sure to properly ventilate the area before working with hazardous materials.


Do not smoke while working on the vehicle.

- 2. Before jacking up the vehicle, apply wheel chocks or other tire blocks to the wheels to prevent the vehicle from moving. After jacking up the vehicle, support the vehicle weight with safety stands at the points designated for proper lifting before working on the vehicle.
- These operations should be done on a level surface.
- 3. When removing a heavy component such as the engine or transaxle/transmission, be careful not to lose your balance and drop them. Also, do not allow them to strike adjacent parts, especially the brake tubes and master cylinder.

PRECAUTIONS

General Precautions (Cont'd)

 Before starting repairs which do not require battery power, always turn off the ignition switch, then disconnect the ground cable from the battery to prevent accidental short circuit.

MA

GI

EM

LC

5. To prevent serious burns, avoid contact with hot metal parts such as the radiator, exhaust manifold, tail pipe and muffler. Do not remove the radiator cap when the engine is hot.

FE

GL

MT

 Before servicing the vehicle, protect fenders, upholstery and carpeting with appropriate covers. Take caution that keys, buckles or buttons on your person do not scratch the paint.

PD

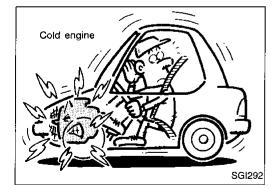
FA

- RA
- 7. Clean all disassembled parts in the designated liquid or solvent prior to inspection or assembly.
- Replace oil seals, gaskets, packings, O-rings, locking washers, cotter pins, self-locking nuts, etc. with new ones.
- Replace inner and outer races of tapered roller bearings and needle bearings as a set.
- 10. Arrange the disassembled parts in accordance with their assembled locations and sequence.
- Do not touch the terminals of electrical components which use microcomputers (such as ECMs). Static electricity may damage internal electronic components.
- After disconnecting vacuum or air hoses, attach a tag to indicate the proper connection.
- 13. Use only the fluids and the lubricants specified in MA section and HA section or their equivalents.
- 14. Use approved bonding agent, sealants or their equivalents when required.
- 15. Use tools and recommended special tools where specified for safe and efficient service repairs.
- 16. When repairing the fuel, oil, water, vacuum or exhaust systems, check all affected lines for leaks.
- 17. Dispose of drained oil or the solvent used for cleaning parts in an appropriate manner.

GI-3

HA

Precautions for Multiport Fuel Injection System or ECCS Engine


- 1. Before connecting or disconnecting multiport fuel injection system or ECM (ECCS control module) harness connector, be sure to turn the ignition switch to the "OFF" position and disconnect the negative battery terminal.
- Otherwise, there may be damage to ECM. 2. Before disconnecting pressurized fuel line from fuel pump to
- Before disconnecting pressurized fuel line from fuel pump to injectors, be sure to release fuel pressure to eliminate danger.
- 3. Be careful not to jar components such as ECM and mass air flow sensor.

Precautions for Three Way Catalyst

If a large amount of unburned fuel flows into the converter, the converter temperature will be excessively high. To prevent this, follow the procedure below:

- 1. Use unleaded gasoline only. Leaded gasoline will seriously damage the three way catalyst.
- 2. When checking for ignition spark or measuring engine compression, make tests quickly and only when necessary.
- 3. Do not run engine when the fuel tank level is low, otherwise the engine may misfire causing damage to the converter.

Do not place the vehicle on flammable material. Keep flammable material off the exhaust pipe and the three way catalyst.

Precautions for Turbocharger

The turbocharger turbine revolves at extremely high speeds and becomes very hot. Therefore, it is essential to maintain a clean supply of oil flowing through the turbocharger and to follow all required maintenance instructions and operating procedures. For proper operation of the system, follow the procedure below.

- Always use the recommended oil. Follow the instructions for proper time to change the oil and proper oil level.
- 2. Avoid accelerating engine to a high rpm immediately after starting.
- 3. If engine had been operating at high rpm for an extended period of time, let it idle for a few minutes prior to shutting it off.

Engine Oils

Prolonged and repeated contact with used engine oil may cause skin cancer. Try to avoid direct skin contact with used oil. If skin contact is made, wash thoroughly with soap or hand cleaner as soon as possible. MA

HEALTH PROTECTION PRECAUTIONS

- Avoid prolonged and repeated contact with oils, particularly EM 1. used engine oils.
- 2. Wear protective clothing, including impervious gloves where practicable.
- 3. Do not put oily rags in pockets.
- 4. Avoid contaminating clothes, particularly underpants, with oil. EF &
- 5. Heavily soiled clothing and oil-impregnated footwear should not be worn. Overalls must be cleaned regularly,
- First Aid treatment should be obtained immediately for open 6. cuts and wounds.
- 7. Use barrier creams, applying them before each work period, to help the removal of oil from the skin.
- 8. Wash with soap and water to ensure all oil is removed (skin GL cleansers and nail brushes will help). Preparations containing lanolin replace the natural skin oils which have been removed.
- 9. Do not use gasoline, kerosine, diesel fuel, gas oil, thinners or MAT solvents for cleaning skin.
- 10. If skin disorders develop, obtain medical advice without delay.
- Where practicable, degrease components prior to handling.
- 12. Where there is a risk of eye contact, eye protection should be worn, for example, chemical goggles or face shields; in addition an eye wash facility should be provided. PD

ENVIRONMENTAL PROTECTION PRECAUTIONS

FA Burning used engine oil in small space heaters or boilers can be recommended only for units of approved design. The heating system must meet the requirements of HM Inspectorate of Pollution for small burners of less than 0.4 MW. If in doubt check with the RA appropriate local authority and/or manufacturer of the approved appliance.

Dispose of used oil and used oil filters through authorized waste BR disposal contractors to licensed waste disposal sites, or to the waste oil reclamation trade. If in doubt, contact the local authority for advice on disposal facilities. ST

It is illegal to pour used oil on to the ground, down sewers or drains, or into water courses.

The regulations concerning the pollution of the environment RS will vary from country to country.

BT

GL

LC

EC

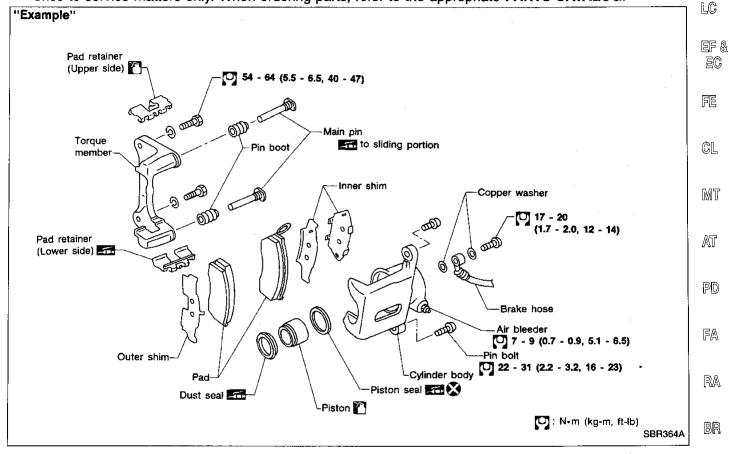
FE

AT

HA

EL

Precautions for Fuel


To maintain engine and exhaust system durability and performance, UNLEADED PREMIUM gasoline with an octane rating of at least 91 AKI (Research octane number 96) must be used. If premium unleaded gasoline is not available, REGULAR UNLEADED gasoline with an octane rating of 87 AKI (Research octane number 91) may be used temporarily, but only under the following conditions:

 The fuel tank should be filled only partially with unleaded regular gasoline, and filled up with premium unleaded gasoline as soon as possible.

• Full throttle driving and abrupt acceleration should be avoided.

Use UNLEADED fuel only. Under no circumstances should leaded gasoline be used. Lead gasoline will damage the three way catalyst and increase dangerous emissions from the vehicle exhaust.

- 1. ALPHABETICAL INDEX is provided at the end of this manual so that you can rapidly find the item and page you are searching for.
- 2. A QUICK REFERENCE INDEX, a black tab (e.g. ER) is provided on the first page. You can quickly find the first page of each section by mating it to the section's black tab.
- 3. THE CONTENTS are listed on the first page of each section.
- 4. THE TITLE is indicated on the upper portion of each page and shows the part or system.
- 5. THE PAGE NUMBER of each section consists of two letters which designate the particular section and a number (e.g. "BR-5").
- 6. THE LARGE ILLUSTRATIONS are exploded views (See below.) and contain tightening torques, lubrication points and other information necessary to perform repairs. The illustrations should be used in reference to service matters only. When ordering parts, refer to the appropriate PARTS CATALOG.

- 7. **THE SMALL ILLUSTRATIONS** show the important steps such as inspection, use of special tools, knacks of work and hidden or tricky steps which are not shown in the previous large illustrations. Assembly, inspection and adjustment procedures for complicated units such as the automatic transaxle or transmission, etc. are presented in a step-by-step format where necessary.
 - RS

GI

MA

BT

HA

ΞL

1DX

8. The following SYMBOLS AND ABBREVIATIONS are used:

0	: Tightening torque	Tool	: Special Service Tools
2 50	: Should be lubricated with grease.	ATF	: Automatic Transmission Fluid
	Unless otherwise indicated, use rec-	D1	: Drive range 1st gear
	ommended multi-purpose grease.	D_2	: Drive range 2nd gear
	: Should be lubricated with oil.	D ₃	: Drive range 3rd gear
	: Sealing point	D ₄	: Drive range 4th gear
	: Checking point	OD	: Overdrive
\otimes	: Always replace after every disassem-	2 _{2.}	: 2nd range 2nd gear
	bly.	2_	: 2nd range 1st gear
e (P)	: Apply petroleum jelly.	1,	: 1st range 2nd gear
ATF *	: Apply ATF.	1,	: 1st range 1st gear
	: Select with proper thickness.	FR, RR	: Front, Rear
☆ ~~~~	: Adjustment is required.	2WD	: 2-Wheel Drive
SDS	: Service Data and Specifications	A/C	: Air Conditioner
LH, RH	: Left-Hand, Right-Hand	P/S	: Power Steering
M/T	: Manual Transaxle/Transmission	SAE	0
A/T	: Automatic Transaxle/Transmission	SAE	: Society of Automotive Engineers, Inc.

9. The **UNITS** given in this manual are primarily expressed as SI UNITS (International System of Unit), and alternately expressed in the metric system and in the yard/pound system.

"Example"

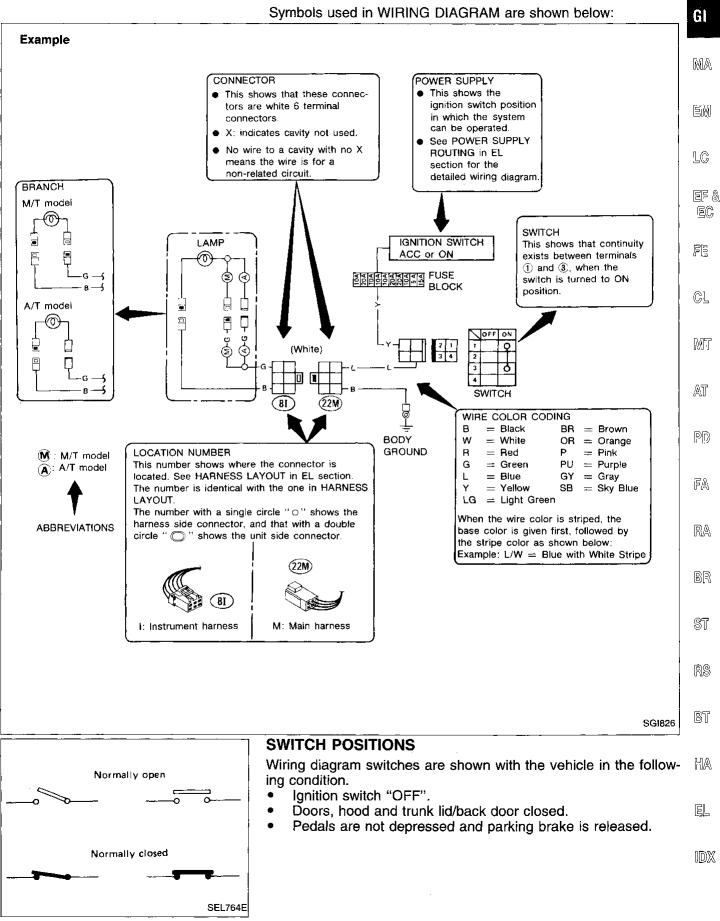
Tightening torque:

59 - 78 N·m (6.0 - 8.0 kg-m, 43 - 58 ft-lb)

10. **TROUBLE DIAGNOSES** are included in sections dealing with complicated components.

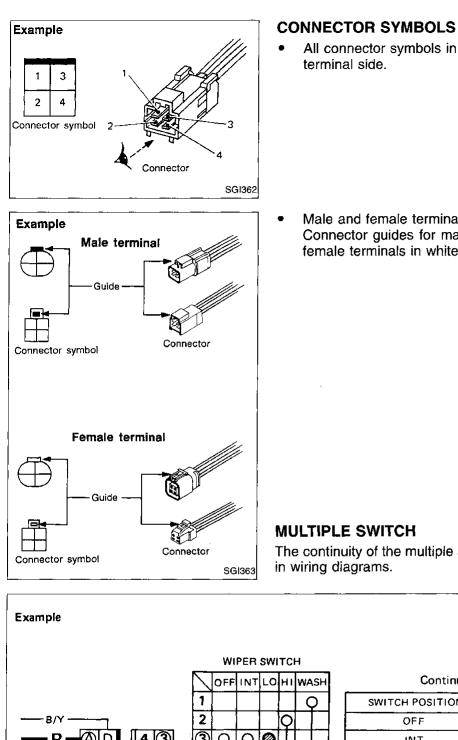
11. SERVICE DATA AND SPECIFICATIONS are contained at the end of each section for quick reference of data.

12. The captions **WARNING** and **CAUTION** warn you of steps that must be followed to prevent personal injury and/or damage to some part of the vehicle.


GI-8

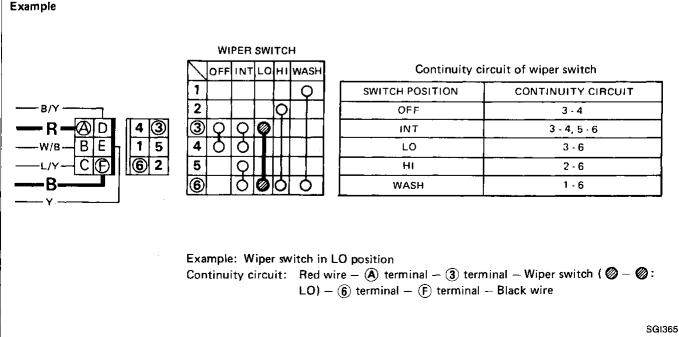
• WARNING indicates the possibility of personal injury if instructions are not followed.

• CAUTION indicates the possibility of component damage if instructions are not followed.


BOLD TYPED STATEMENTS except WARNING and CAUTION give you helpful information.

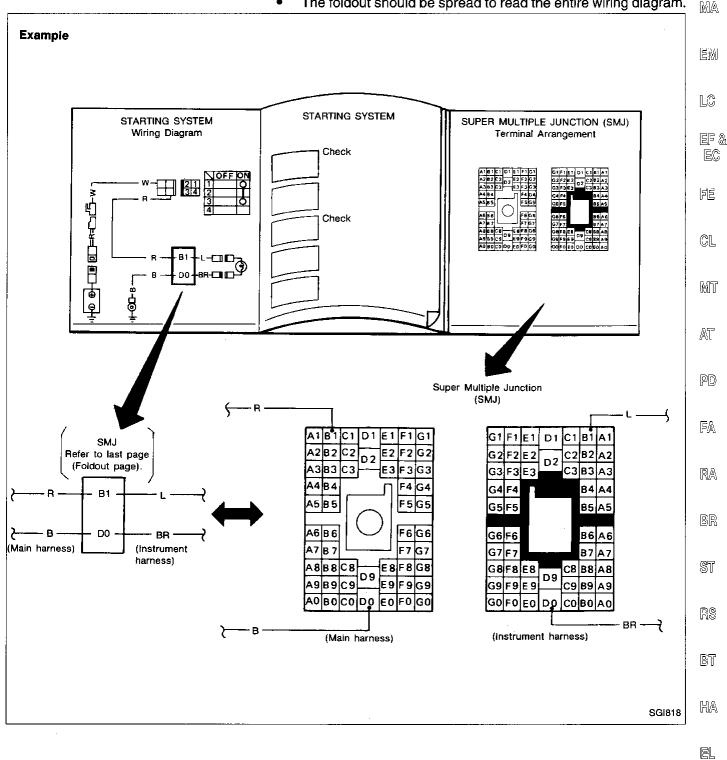
WIRING DIAGRAM

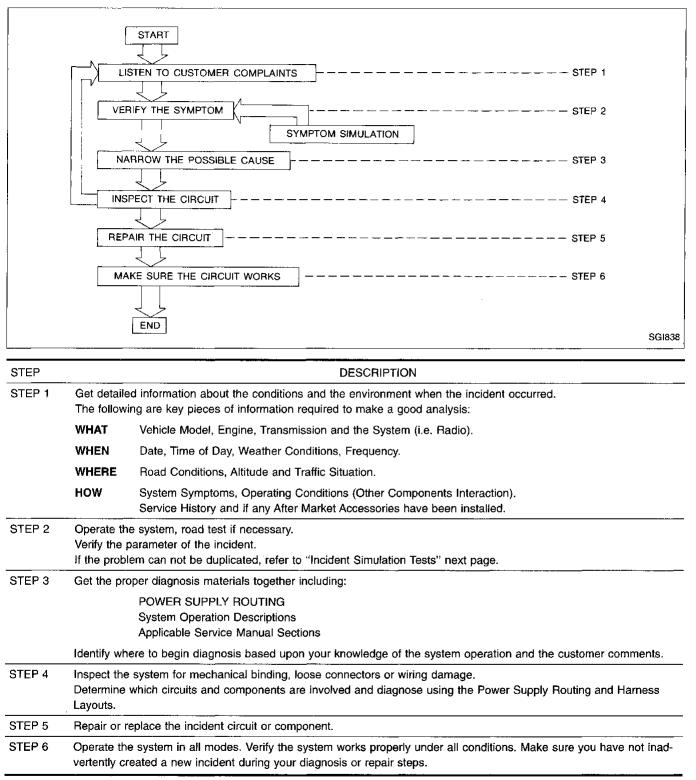
GI-9


13

All connector symbols in wiring diagrams are shown from the

Male and female terminals Connector guides for male terminals are shown in black and female terminals in white in wiring diagrams.

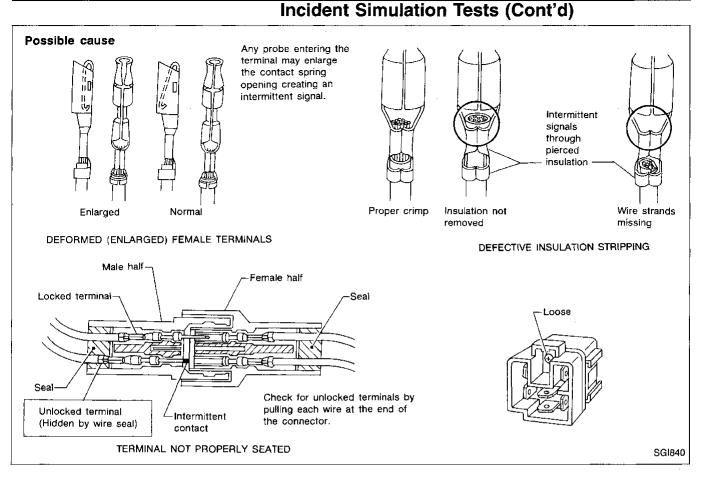

The continuity of the multiple switch is identified in the switch chart

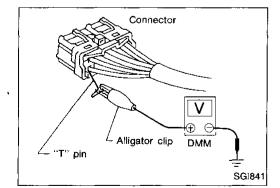

.

SUPER MULTIPLE JUNCTION (SMJ)

- The "SMJ" indicated in wiring diagrams is shown in a simpli-GI fied form. The terminal arrangement should therefore be referred to in the foldout at the end of the Service Manual.
- The foldout should be spread to read the entire wiring diagram. .

Work Flow




Incident Simulation Tests

INTRODUCTION	GI
Sometimes the symptom is not present when the vehicle is brought in for service. Therefore, it is necessary to simulate the conditions and environment when the incident occurred. Otherwise, only a No Trouble Found Diagnosis may be found. The following section illustrates ways to simulate the conditions/environment under which the owner experiences an electrical incident.	MA
The section is broken into the six following topics: 1. Vehicle vibration	EM
 Heat sensitive Freezing 	LC
 Water intrusion Electrical load Cold or hot start up 	ef & EC
Get a thorough description of the incident from the customer. It is important for simulating the conditions of the problem.	FE
VEHICLE VIBRATION	
The problem may occur or become worse while driving on a rough road or when engine is vibrating (idle with A/C on). In such a case, you will want to check for a vibration related condition. Refer to the illustration below.	CL
Connectors & harness	MT
Determine which connectors and wiring harness would affect the electrical system you are inspecting. Gen- tly shake each connector and harness while monitoring the system for the incident you are trying to dupli- cate. This test may indicate a loose or poor electrical connection.	AT
Hint	PD
Connectors can be exposed to moisture. It is possible to get a thin film of corrosion on the connector termi-	ru
nals. A visual inspection may not reveal this without disconnecting the connector. If the problem occurs intermittently, perhaps the problem is caused by corrosion. It is a good idea to disconnect, inspect and clean the terminals on related connectors in the system.	Fa
Sensors & relays	RA
Gently apply a slight vibration to sensors and relays in the system you are inspecting.	
This test may indicate a loose or poorly mounted sensor or relay.	BR
Vibration test	
	st
	RS
Shake gently.	BT
Bend gently. SGI839	

HA

EL

Tester probe

When probing a connector it is possible to enlarge the contact spring opening. If this occurs it may create an intermittent signal in the circuit. When probing a connector, use care not to enlarge the opening. The probe of the Digital Multimeter (DMM) may not fit into the connector cavity. In such cases make an extension of a "T" pin and probe it from the harness side of the connector. Most DMMs have accessory alligator clips. Slide these over the probe to allow clipping the "T" pin for a better contact. If you have any difficulty probing a terminal, inspect the terminal. Ensure you have not accidentally opened the contact spring or pulled a wire loose.

Incident Simulation Tests (Cont'd)

Engine compartment

There are several reasons a vehicle or engine vibration could cause an electrical complaint. Some of the things to check for are:

- A. Connectors which are inaccessible for diagnosis probing.
- B. Connectors which may not fully be seated.
- C. Wiring harness which are not long enough and are being stressed during engine vibrations or rocking.
- D. Wires laying across brackets or moving components.
- E. Loose, dirty or corroded ground wires.
- F. Wires routed too close to hot components.

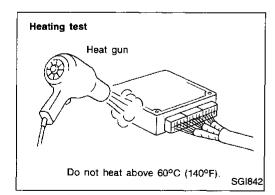
LC

To inspect components under the hood, start by verifying the integrity of ground connections. (Refer to GROUND INSPECTION described later.) First check that the system is properly grounded. Then check for loose connection by **gently shaking** the wiring or components as previously explained. Using the wiring diagrams inspect the wiring for continuity.

Behind the instrument panel

CL

AT


Improperly routed or improperly clamped harness can become pinched during accessory installation. Vehicle vibration can aggravate a harness which is routed along a bracket or near a screw method or below the dash.

Under seating areas

An unclamped or loose harness can cause wiring to be pinched by seat components (such as slide guides) during vehicle vibration. If the wiring runs under seating areas inspect wire routing for possible damage or pinching.

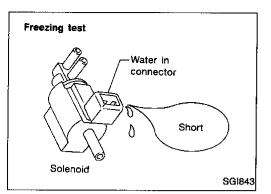
FA

RA

HEAT SENSITIVE

The owner's problem may occur during hot weather or after car has BR sat for a short time. In such cases you will want to check for a heat sensitive condition.

To determine if an electrical component is heat sensitive, heat the strong component with a heat gun or equivalent.

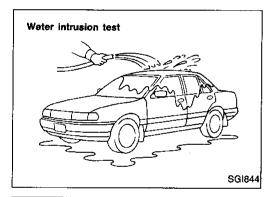

Do not heat components above 60°C (140°F). If incident occurs while heating the unit, either replace or properly insulate the component.

BT

HA

٤L

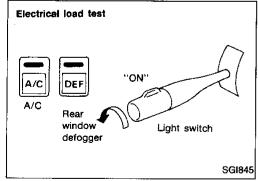
1DX


Incident Simulation Tests (Cont'd)

FREEZING

The customer may indicate the incident goes away after the car warms up (winter time). In such cases the cause could be related to water freezing somewhere in the wiring/electrical system.

There are two methods to check for this. The first is to arrange for the owner to leave his car overnight. Make sure it will get cold enough to demonstrate his complaint. Leave the car parked outside overnight. In the morning, do a quick and thorough diagnosis of those electrical components which could be affected.


The second method is to put the suspect component into a freezer long enough for any water to freeze. Reinstall the part into the car and check for the reoccurrence of the incident. If it occurs, repair or replace the component.

WATER INTRUSION

The incident may occur only during high humidity or in rainy/snowy weather. In such cases the incident could be caused by water intrusion on an electrical part. This can be simulated by soaking the car or running it through a car wash.

Do not spray water directly on any electrical components.

ELECTRICAL LOAD

The incident may be electrical load sensitive. Perform diagnosis with all accessories (including A/C, rear window defogger, radio, fog lamps) turned on.

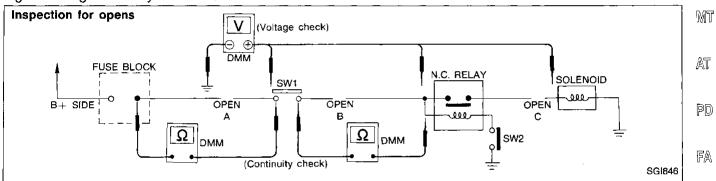
COLD OR HOT START UP

On some occasions an electrical incident may occur only when the car is started cold. Or it may occur when the car is restarted hot shortly after being turned off. In these cases you may have to keep the car overnight to make a proper diagnosis.

Circuit Inspection

INTRODUCTION

In general, testing electrical circuits is an easy task if it is approached in a logical and organized method. Before beginning it is important to have all available information on the system to be tested. Also, get a thorough MA understanding of system operation. Then you will be able to use the appropriate equipment and follow the correct test procedure.


You may have to simulate vehicle vibrations while testing electrical components. Gently shake the wiring EM harness or electrical component to do this.

- OPEN A circuit is open when there is no continuity through a section of the circuit.
- SHORT There are two types of shorts.

1. SHORT CIRCUIT	When a circuit contacts another circuit and causes the normal resistance to change.
2. SHORT TO GROUND	When a circuit contacts a ground source and grounds the circuit.

TESTING FOR "OPENS" IN THE CIRCUIT

Before you begin to diagnose and test the system, you should rough sketch a schematic of the system. This ĈL will help you to logically walk through the diagnosis process. Drawing the sketch will also reinforce your working knowledge of the system.

Continuity check method

The continuity check is used to find an open in the circuit. The Digital Multimeter (DMM) set on the resistance function will indicate an open circuit as over limit (OL, no beep tone or no ohms symbol). Make sure to always start with the DMM at the highest resistance level.

To help in understanding the diagnosis of open circuits please refer to the schematic above.

- 1. Disconnect the battery negative cable.
- 2. Start at one end of the circuit and work your way to the other end. (At the fuse block in this example)
- 3. Connect one probe of the DMM to the fuse block terminal on the load side.
- RS 4 Connect the other probe to the fuse block (power) side of SW1. Little or no resistance will indicate that portion of the circuit has good continuity. If there were an open in the circuit, the DMM would indicate an over limit or infinite resistance condition. (point A)
- 5. Connect the probes between SW1 and the relay. Little or no resistance will indicate that portion of the cir-BT cuit has good continuity. If there were an open in the circuit, the DMM would indicate an over limit or infinite resistance condition. (point B)
- 6. Connect the probes between the relay and the solenoid. Little or no resistance will indicate that portion of HA the circuit has good continuity. If there were an open in the circuit, the DMM would indicate an over limit or infinite resistance condition. (point C) EL

Any circuit can be diagnosed using the approach in the above example.

GI

[LC

EF & EC

FE

RA

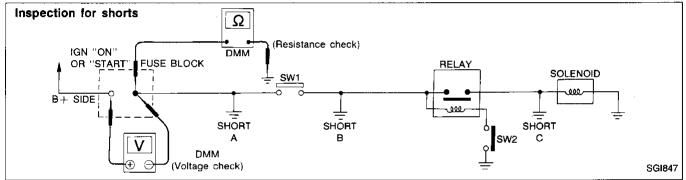
BR

ST

GI-17

Circuit Inspection (Cont'd)

Voltage check method


To help in understanding the diagnosis of open circuits please refer to the previous schematic. In any powered circuit, an open can be found by methodically checking the system for the presence of voltage. This is done by switching the DMM to the voltage function.

- 1. Connect one probe of the DMM to a known good ground.
- 2. Begin probing at one end of the circuit and work your way to the other end.
- With SW1 open, probe at SW1 to check for voltage. voltage; open is further down the circuit than SW1. no voltage; open is between fuse block and SW1 (point A).
- 4. Close SW1 and probe at relay. voltage; open is further down the circuit than the relay. no voltage; open is between SW1 and relay (point B).
- 5. Close the relay and probe at the solenoid. voltage; open is further down the circuit than the solenoid. no voltage; open is between relay and solenoid (point C).

Any powered circuit can be diagnosed using the approach in the above example.

TESTING FOR "SHORTS" IN THE CIRCUIT

To simplify the discussion of shorts in the system please refer to the schematic below.

Resistance check method

- 1. Disconnect the battery negative cable and remove the blown fuse.
- 2. Disconnect all loads (SW1 open, relay disconnected and solenoid disconnected) powered through the fuse.
- 3. Connect one probe of the ohmmeter to the load side of the fuse terminal. Connect the other probe to a known good ground.
- With SW1 open, check for continuity. continuity; short is between fuse terminal and SW1 (point A). no continuity; short is further down the circuit than SW1.
- 5. Close SW1 and disconnect the relay. Put probes at the load side of fuse terminal and a known good ground. Then, check for continuity.

continuity; short is between SW1 and the relay (point B).

no continuity; short is further down the circuit than the relay.

- 6. Close SW1 and jump the relay contacts with jumper wire. Put probes at the load side of fuse terminal and a known good ground. Then, check for continuity.
 - continuity; short is between relay and solenoid (point C). no continuity; check solenoid, retrace steps.

Voltage check method

22

- 1. Remove the blown fuse and disconnect all loads (i.e. SW1 open, relay disconnected and solenoid disconnected) powered through the fuse.
- 2. Turn the ignition key to the ON or START position. Verify battery voltage at the B+ side of the fuse terminal (one lead on the B+ terminal side of the fuse block and one lead on a known good ground).
- 3. With SW1 open and the DMM leads across both fuse terminals, check for voltage.
- voltage; short is between fuse block and SW1 (point A). no voltage; short is further down the circuit than SW1.
- 4. With SW1 closed, relay and solenoid disconnected and the DMM leads across both fuse terminals, check for voltage.

Circuit Inspection (Cont'd)

short is between SW1 and the relay (point B). voltage; short is further down the circuit than the relay. no voltage: GI 5. With SW1 closed, relay contacts jumped with fused jumper wire check for voltage. short is down the circuit of the relay or between the relay and the disconnected solenoid voltage; (point C). MA no voltage; retrace steps and check power to fuse block. **GROUND INSPECTION** EM Ground connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works. LĊ Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even ËF & when the ground connection looks clean, there can be a thin film of rust on the surface. EC When inspecting a ground connection follow these rules: 1. Remove the ground bolt screw or clip. 2. Inspect all mating surfaces for tarnish, dirt, rust, etc. FĒ 3. Clean as required to assure good contact. 4. Reinstall bolt or screw securely. Inspect for "add-on" accessories which may be interfering with the ground circuit. ĈL 6. If several wires are crimped into one ground evelet terminal, check for proper crimps. Make sure all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one evelet make sure no ground wires have excess wire insulation. MT **Ground Inspection** AT PD FA RA BR Remove bolt (screw). Reinstall bolt (screw) Inspect mating surfaces for tarnish, dirt, rust, etc. securely. ST Clean as required to assure good contact. RS SGI853 BT HA

EL

ЮX

Circuit Inspection (Cont'd)

VOLTAGE DROP TESTS

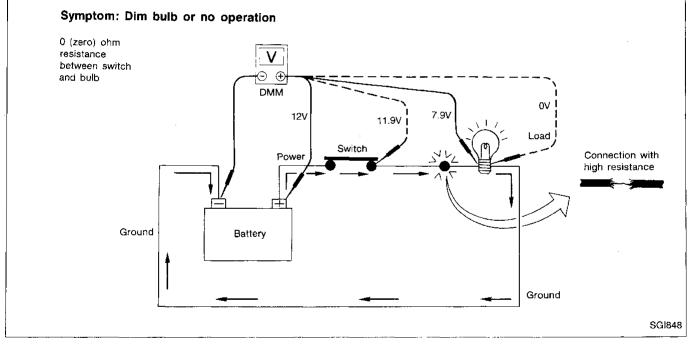
Voltage drop tests are often used to find components or circuits which have excessive resistance. A voltage drop in a circuit is caused by a resistance when the circuit is in operation.

Check the wire in the illustration. When measuring resistance with ohmmeter, contact by a single strand of wire will give reading of 0 ohms. This would indicate a good circuit. When the circuit operates, this single strand of wire is not able to carry the current. The single strand will have a high resistance to the current. This will be picked up as a slight voltage drop.

Unwanted resistance can be caused by many situations as follows:

Undersized wiring (single strand example)

Corrosion on switch contacts


Loose wire connections or splices.

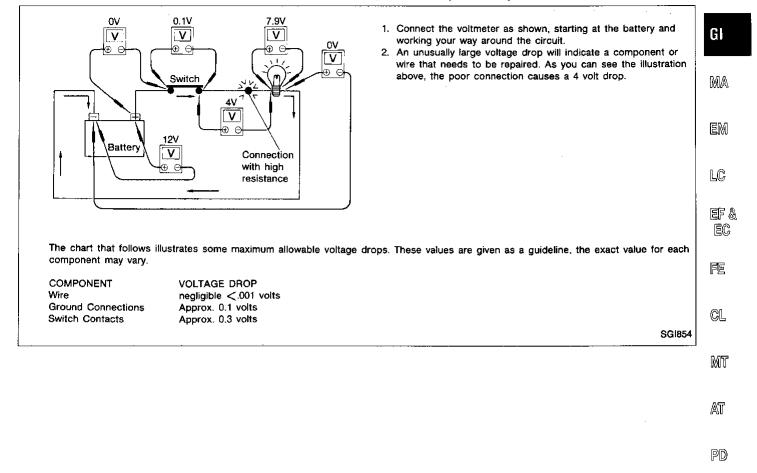
If repairs are needed always use wire that is of the same or larger gauge.

Measuring voltage drop — Accumulated method

- 1. Connect the voltmeter across the connector or part of the circuit you want to check. The positive lead of the voltmeter should be closer to power and the negative lead closer to ground.
- 2. Operate the circuit.
- The voltmeter will indicate how many volts are being used to "push" current through that part of the circuit.

Note in the illustration that there is an excessive 4.1 volt drop between the battery and the bulb.

Measuring voltage drop — Step by step


The step by step method is most useful for isolating excessive drops in low voltage systems (such as those in "Computer Controlled Systems").

Circuits in the "Computer Controlled System" operate on very low amperage.

The (Computer Controlled) system operations can be adversely affected by any variation in resistance in the system. Such resistance variation may be caused by poor connection, improper installation, improper wire gauge or corrosion.

The step by step voltage drop test can identify a component or wire with too much resistance.

Circuit Inspection (Cont'd)

FA

BR

ST

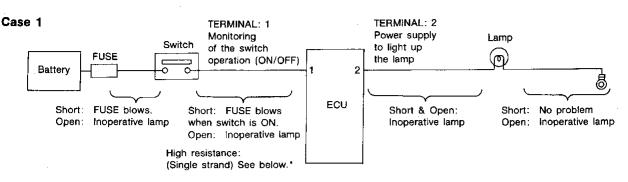
RS

BT

RA

EL

HA

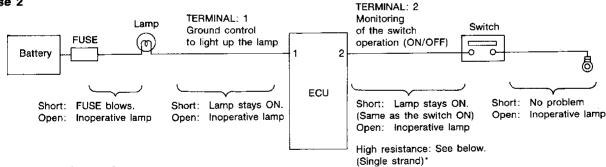

(D)X

25

Circuit Inspection (Cont'd)

Relationship between open/short (high resistance) circuit and the ECU pin control

System Description: When the switch is ON, the ECU lights up the lamp.


Input-output voltage chart

Pin No.	ltem	Condition	Voltage value [V]	In case of high resistance such as single strand [V] *
1	Switch	Switch ON	Batterγ voltage	Lower than battery voltage Approx. 8 (Example)
		OFF	Approx. 0	Approx. 0
2	Lamp	Switch ON	Battery voltage	Approx. 0 (Inoperative lamp)
		OFF	Approx. 0	Approx. 0

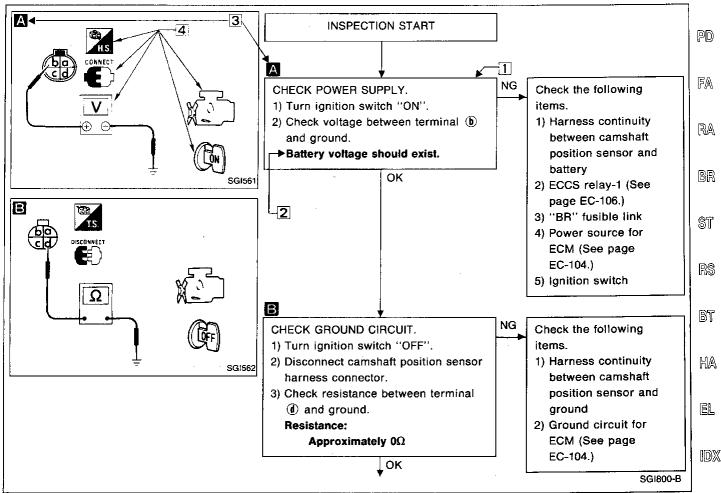
The voltage value is based on the body ground.

; If high resistance exists in the switch side circuit (caused by a single strand), terminal 1 does not detect battery voltage. ECM does not detect the switch is ON even if the switch does turn ON. Therefore, the ECM does not supply power to light up the lamp.

Case 2

Input-output voltage chart

Pin No.	ltem	Condition	Voltage value [V]	In case of high resistance such as single strand [V] *
1	Lamp	Switch ON	Approx. 0	Battery voltage (Inoperative lamp)
		OFF	Battery voltage	Battery voltage
2	Switch	Switch ON	Approx. 0	Higher than 0 Approx. 4 (Example)
		OFF	Approx. 5	Approx. 5


The voltage value is based on the body ground.

* : If high resistance exists in the switch side circuit (caused by a single strand), terminal 2 does not detect approx. 0V. ECM does not detect the switch is ON even if the switch does turn ON. Therefore, the ECM does not control ground to light up the lamp.

NOTICE

The flow chart indicates work procedures required to diagnose problems effectively. Observe the following instructions before diagnosing.

- 1) Use the flow chart after locating probable causes of a problem following the "Preliminary Check" or the "Symptom Chart".
- After repairs, re-check that the problem has been completely eliminated.
- Refer to Component Parts and Harness Connector Location for the Systems described in each section for identification/location of components and harness connectors.
- 4) Refer to the Circuit Diagram for Quick Pinpoint Check.
 If you must check circuit continuity between harness connectors in more detail, such as when a sub-harness is used, refer to Wiring Diagram in each individual section and Harness Layout in EL section for identification of harness connectors.
- 5) When checking circuit continuity, ignition switch should be "OFF".
- 6) Before checking voltage at connectors, check battery voltage.
- After accomplishing the Diagnostic Procedures and Electrical Components Inspection, make sure that all harness connectors are reconnected as they were.

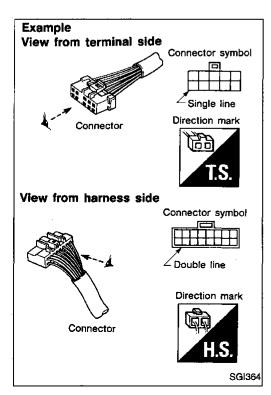
Example

HOW TO FOLLOW THIS FLOW CHART

1 Work and diagnostic procedure

Start to diagnose a problem using procedures indicated in enclosed blocks, as shown in the following example.

А


- CHECK POWER SUPPLY.
- 1) Turn ignition switch "ON".

- Check item being performed.
- 2) Check voltage between terminal (b) and
 - ground.
 - Battery voltage should exist.
- Procedure, steps or measurement results
- 2 Measurement results
 - Required results are indicated in bold type in the corresponding block, as shown below:
 - These have the following meanings:
 - Battery voltage \rightarrow 11 14V or approximately 12V Voltage: Approximately $0V \rightarrow Less$ than 1V
- 3 Cross reference of work symbols in the text and illustrations

Illustrations are provided as visual aids for work procedures. For example, symbol A indicated in the left upper portion of each illustration corresponds with the symbol in the flowchart for easy identification. More precisely, the procedure under the "CHECK POWER SUPPLY" outlined previously is indicated by an illustration A

4 Symbols used in illustrations

Symbols included in illustrations refer to measurements or procedures. Before diagnosing a problem, familiarize yourself with each symbol.

Direction mark

A direction mark is shown to clarify the side of connector (terminal side or harness side).

Direction marks are mainly used in the illustrations indicating terminal inspection.

: View from terminal side ... TS

All connector symbols shown from the terminal side are enclosed by a single line.

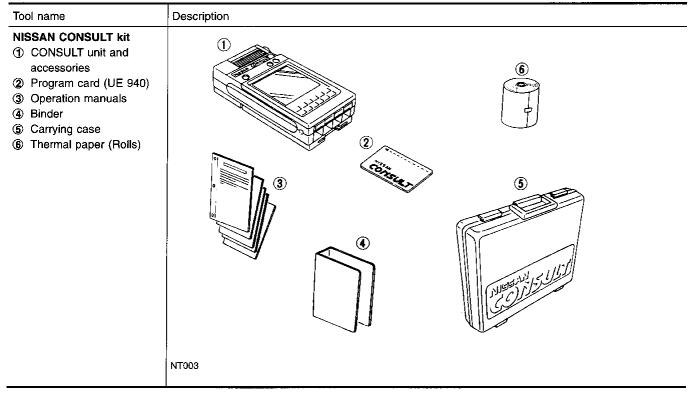
: View from harness side ... HS

All connector symbols shown from the harness side are enclosed by a double line.

HOW TO FOLLOW FLOW CHART IN TROUBLE DIAGNOSES

Symbol	Symbol explanation	Symbol	Symbol explanation
	Check after disconnecting the connector to be measured.		Procedure without CONSULT
	Check after connecting the connector to be measured.		A/C switch is "OFF".
(+=)	Insert key into ignition switch.	ArC)	A/C switch is "ON".
(GFF)	Turn ignition switch to "OFF" position.		REC switch is "ON".
(Can)	Turn ignition switch to "ON" position.	l q	REC switch is "OFF".
(II)	Turn ignition switch to "START" position.		DEF switch is "ON".
COFF- ACC	Turn ignition switch from "OFF" to "ACC" position.		Fan switch is "ON". (At any position except for "OFF" position)
(ACO OFF	Turn ignition switch from "ACC" to "OFF" position.		Fan switch is "OFF".
OFFON	Turn ignition switch from "OFF" to "ON" position.	BI	Apply fused battery positive voltage directly to components.
CONMEF	Turn ignition switch from "ON" to "OFF" position.		Drive vehicle.
	Do not start engine, or check with engine stopped.		Disconnect battery negative cable.
	Start engine, or check with engine run- ning.		Depress brake pedal.
de la	Apply parking brake.		Release brake pedal.
ale a	Release parking brake.		Depress accelerator pedal.
с_{Д_н	Check after engine is warmed up sufficiently.		Release accelerator pedal.
	Voltage should be measured with a volt- meter.		Pin terminal check for SMJ type ECM and A/T control unit connectors.
	Circuit resistance should be measured with an ohmmeter.		For details regarding the terminal arrangement, refer to the foldout page.
	Current should be measured with an ammeter.		
	Procedure with CONSULT	<u>+</u>	

Key to symbols signifying measurements or procedures


Diagnostic test mode	Function	ECCS	Auto A/C	A/T	HICAS	Air bag	ASCD
Work support	This mode enables a technician to adjust some devices faster and more accurately by follow- ing the indications on CON- SULT.	x	x			_	
Self-diagnostic results	Self-diagnostic results can be read and erased quickly.	х	x	x	x	x	х
Data monitor	Input/Output data in the ECM can be read.	х	x	х	х		x
Active test	Diagnostic Test Mode in which CONSULT drives some actua- tors apart from the ECMs and also shifts some parameters in a specified range.	х	x		х		_
ECM part number	ECM part number can be read.	Х	-	Х	Х	_	—
Function test	Conducted by CONSULT instead of a technician to deter- mine whether each system is "OK" or "NG".	x	_	—	_		_

Function and System Application

X: Applicable

Checking Equipment

When ordering the below equipment, contact your NISSAN distributor.

IDENTIFICATION INFORMATION

Dest	lination	Body	M	odel	Engine	Transmission	Differential carrier	
		Standard roof	<u></u>	RL-JU		RS5R30A		
			2 seater	KRL-XU	VG30DE	RS5R30A	R200V	
		ł		KRL-XAU		RE4R01A		
	No	T-bar roof		KRL-XSU	VG30DETT	RS5R30A	R230V	
	Non- California	1-0411001		KRL-XASU	VGSODEN	RE4R03A	n230V	
			2+2	KRLG-XU	VG30DE	RS5R30A	R200V	
			272	KRLG-XAU	VGJUDE	RE4R01A	112001	
U.S.A. California	ł	Convertible	2 seater	CRL-JU	VG30DE	RS5R30A	R200V	
	[Convertible	2 Sediei	CRL-JAU	VGSUDE	RE4R01A	H200V	
		Standard roof	-	RL-JV		RS5R30A		
			2 seater	KRL-XV	VG30DE	RS5R30A	R200V	
				KRL-XAV		RE4R01A		
		T-bar roof		KRL-XSV	VG30DETT	RS5R30A	R230V	
		California	1-0411001		KRL-XASV	VGSODETT	RE4R03A	n200V
				2+2	KRLG-XV	VG30DE	RS5R30A	R200V
			<u><u></u></u>	KRLG-XAV	VUSUDE	RE4R01A	12000	
		Convertible	2 seater	CRL-JV	VG30DE	RS5R30A	R200V	
		Convertible	2 300101	CRL-JAV	VGOODE	RE4R01A	12004	
				KRL-XN	VG30DE	RS5R30A	R200V	
			2 seater	KRL-XAN	VUSUDE	RE4R01A	12000	
		T-bar roof	2 300101	KRL-XSN	- VG30DETT	RS5R30A	R230V	
Car	nada			KRL-XASN		RE4R03A	112001	
			2+2	KRLG-XN	VG30DE	RS5R30A	R200V	
			272	KRLG-XAN	VGJUDE	RE4R01A	12000	
		Convertible	2 seater	CRL-JN	VG30DE	RS5R30A	R200V	

Model Variation

BR

st

RS

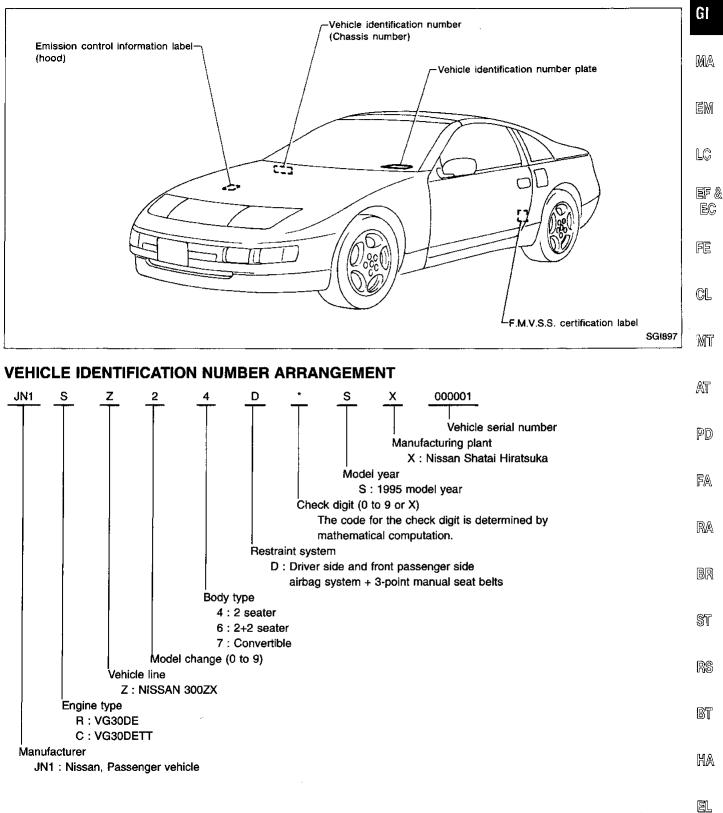
BT

HA

EL

IDX

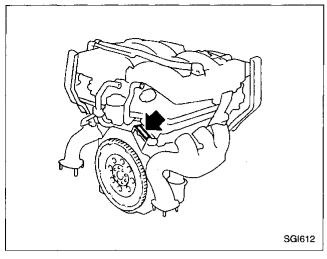
GI-27

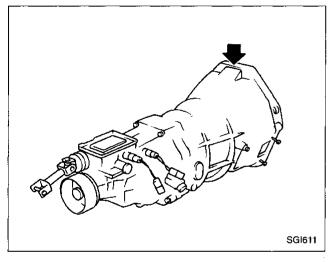

31

IDENTIFICATION INFORMATION Model Variation (Cont'd) Prefix and suffix designations: R \square **Z**32 Κ Х S U А U : Non-California, U.S.A. V: California, U.S.A. N : Canada S: Twin turbochargers □: Non-turbocharger A : Automatic transmission □ : Manual transmission $\mathbf{J}:\mathbf{GL}$ X : GLL Model G:2+2 □:2 seater L : Left-hand drive R : VG30DE or VG30DETT engine K : T-bar roof C : Convertible

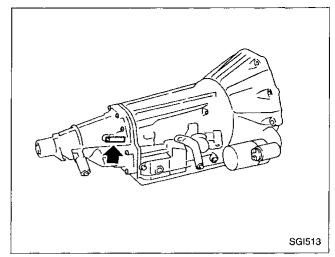
□ : Standard roof

Note:
means no indication.


Identification Number


ЮX

IDENTIFICATION INFORMATION


ENGINE SERIAL NUMBER

MANUAL TRANSMISSION NUMBER

Identification Number (Cont'd) AUTOMATIC TRANSMISSION NUMBER

Dimensions

				Unit: mm (in)	GI
Model		2 seater	2+2 seater	Convertible	
Overall length	mm (in)	4,310 (169.7)	4,525 (178.1)	4,310 (169.7)	MA
Overall width	mm (in)	1,790 (70.5)	1,800 (70.9)	1,790 (70.5)	0000-0
Overall height	mm (in)				ena
T-bar		1,250 (49.2)	1,255 (49.4)		EM
Standard	· • • • • • • • • • • • • • • • • • • •	1,245 (49.0)	—	1,255 (49.4)	
Wheelbase	mm (in)	2,450 (96.5)	2,570 (101.2)	2,450 (96.5)	LC
Tread	mm (in)				
Front		1,495 (58.9)	1,495 (58.9)	1,495 (58.9)	EF & EC
Rear	:	1,535 (60.4)*1 1,555 (61.2)*2	1,535 (60.4)	1,535 (60.4)	FE

*1: VG30DE engine model

*2: VG30DETT engine model

Wh

Road wheel	Aluminum	Steel	Offset mm (in)
Conventional	16 x 7.5JJ 16 x 8.5JJ*1	_	45 (1.77) 35 (1.38)*1
Spare			
T-type*4	_	16 x 4T	30 (1.18)
Space-saver tire*5	15 x 5J*6	15 x 5J*7	30 (1.18)
ire size			
Conventional		P225/50R16 91V	
		P225/50R16 92V	
		P225/50ZR16*2	
		P245/45ZR16*3	
Spare			
T-type*4		T125/90D16	
Space-saver tire*5		165/80D15FS	
Rear wheel for VG3	BODETT engine mo	odel	
Front tire for VG30	-		
Rear tire for VG30E	ETT engine mode		
2+2 seater model			
2 seater model			
seater model			

*6: VG30DETT engine model

*7: VG30DE engine model

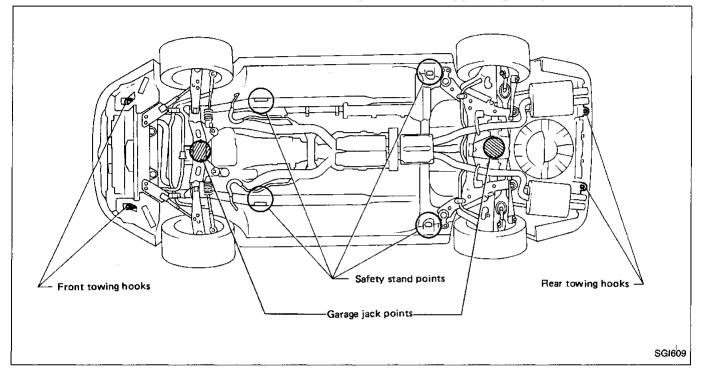
35

HA

EL

IDX

CL

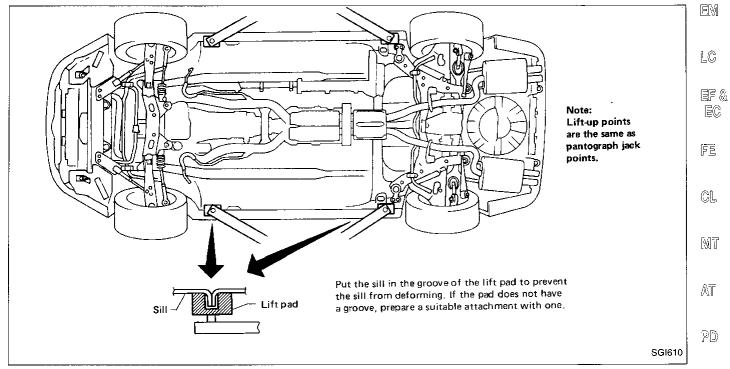

Garage Jack and Safety Stand

WARNING:

- Never get under the vehicle while it is supported only by the jack. Always use safety stands to support the frame when you have to get under the vehicle.
- Place wheel chocks at both front and back of the wheels on the ground.

CAUTION:

Place a wooden or rubber block between safety stand and vehicle body when the supporting body is flat.



2-pole Lift

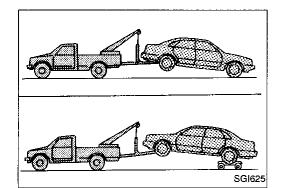
WARNING:

When lifting the vehicle, open the lift arms as wide as possible and ensure that the front and rear of the vehicle are well balanced.

When setting the lift arm, do not allow the arm to contact the brake tubes and fuel lines.

Tow Truck Towing

CAUTION:


- All applicable state or Provincial (in Canada) laws and local laws regarding the towing operation must be RA obeyed.
- It is necessary to use proper towing equipment to avoid possible damage to the vehicle during towing operation. Towing is in accordance with Towing Procedure Manual at dealer.
- When towing with the rear wheels on the ground, release ST the parking brake and move the gearshift lever to neutral position ("N" position).

ണ്

EA

GI

MA

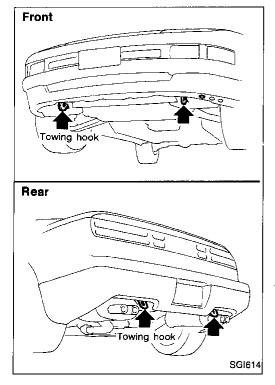
NISSAN recommends that vehicle be towed with the driving (rear) wheels off the ground as illustrated.

ĒL

Tow Truck Towing (Cont'd)

TOWING AN AUTOMATIC TRANSMISSION MODEL WITH FOUR WHEELS ON GROUND OR TOWING WITH FRONT WHEELS RAISED (With rear wheels on ground)

Observe the following restricted towing speeds and distances.


Speed:

Below 50 km/h (30 MPH)

Distance:

Less than 65 km (40 miles)

If the speed or distance must necessarily be greater, remove the propeller shaft beforehand to prevent damage to the transmission.

TOWING POINT

- Always pull the cable straight out from the vehicle. Never pull on the hook at a sideways angle.
- Remove the first bolt under the front fender protector when using the front towing hooks.

TIGHTENING TORQUE	OF STANDARD BOLTS
--------------------------	-------------------

		Bolt diam-			Tigh	tening torque	(Without lubr	icant)		
Grade	Bolt size	eter*	Pitch mm	n Hexagon head bolt		Hexagon head bolt Hexagon flange bolt		Hexagon flange bolt	bolt	
		mm	ĺ	N∙m	kg-m	ft-lb	N∙m	kg-m	ft-lb	
-	M6	6.0	1.0	5.1	0.52	3.8	6.1	0.62	4.5	
	M8		1.25	13	1.3	9	15	1.5	11	_
	IVIO	8.0	1.0	13	1.3	9	16	1.6	12	
4 T	M10	10.0	1.5	25	2.5	18	29	3.0	22	
4T	M10	10.0	1.25	25	2.6	19	30	3.1	22	_
	M12	10.0	1.75	42	4.3	31	51	5.2	38	
	IVI12	12.0	1.25	46	4.7	34	56	5.7	41	
	M14	14.0	1.5	74	7.5	54	88	9.0	65	
	M6	6.0	1.0	8.4	0.86	6.2	10	1.0	7	
!	140	8.0	1.25	21	2.1	15	25	2.5	18	
	M8	0.0	1.0	22	2.2	16	26	2.7	20	
7T	M10	10.0	1.5	41	4.2	30	48	4.9	35	
		10.0	1.25	43	4.4	32	51	5.2	38	
	M12	12.0	1.75	71	7.2	52	84	8.6	62	_
		12.0	1.25	77	7.9	57	92	9.4	68	
	M14	14.0	1.5	127	13.0	94	147	15.0	108	
	M6	6.0	1.0	12	1.2	9	15	1.5	11	_
		8.0	1.25	29	3.0	22	35	3.6	26	
	M8	0.0	1.0	31	3.2	23	37	3.8	27	_
oT		10.0	1.5	59	6.0	43	70	7.1	51	
9T	M10	10.0	1.25	62	6.3	46	74	7.5	54	_
	M12	12.0	1.75	98	10.0	72	118	12.0	87	
	IVI I Z	12.0	1.25	108	11.0	80	137	14.0	101	
	M14	14.0	1.5	177	18.0	130	206	21.0	152	

Special parts are excluded.
 This standard is applicable to bolts having the following marks embossed on the bolt head.

Grade		Mark
4T	••••••	4
7T		7
9T		9

*: Nominal diameter	৫ন
$\frac{M}{T}$	01
Nominal diameter of bolt threads (Unit: mm)	RS
Metric screw threads	BT

BR

HA

1DX

All emission related terms used in this publication in accordance with SAE J1930 are listed. Accordingly, new terms, new acronyms/abbreviations and old terms are listed in the following chart.

***: Not applicable

NEW TERM	NEW ACRONYM / ABBREVIATION	OLD TERM
Air cleaner	ACL	Air cleaner
Barometric pressure	BARO	***
Barometric pressure sensor-BCDD	BAROS-BCDD	BCDD
Camshaft position	CMP	***
Camshaft position sensor	CMPS	Crank angle sensor
Carburetor	CARB	Carburetor
Charge air cooler	CAC	Intercooler
Closed loop	CL	Closed loop
Closed throttle position switch	CTP switch	Idle switch
Clutch pedal position switch	CPP switch	Clutch switch
Continuous fuel injection system	CFI system	***
Continuous trap oxidizer system	CTOX system	***
Crankshaft position	СКР	***
Crankshaft position sensor	CKPS	***
Data link connector	DLC	***
Data link connector for CONSULT	DLC for CONSULT	Diagnostic connector for CONSULT
Diagnostic test mode	DTM	Diagnostic mode
Diagnostic test mode selector	DTM selector	Diagnostic mode selector
Diagnostic test mode I	DTM	Mode I
Diagnostic test mode II	DTM II	Mode II
Diagnostic trouble code	DTC	Malfunction code
Direct fuel injection system	DFI system	***
Distributor ignition system	DI system	Ignition timing control
Early fuel evaporation-mixture heater	EFE-mixture heater	Mixture heater
Early fuel evaporation system	EFE system	Mixture heater control
Electrically erasable programmable read only memory	EEPROM	***
Electronic ignition system	El system	Ignition timing control
Engine control module	ECM	ECCS control unit
Engine coolant temperature	ECT	Engine temperature
Engine coolant temperature sensor	ECTS	Engine temperature sensor
Engine modification	EM	***
Engine speed	RPM	Engine speed
Erasable programmable read only memory	EPROM	***
Evaporative emission system	EVAP system	Evaporative emission control system
Exhaust gas recirculation valve	EGR valve	EGR valve

SAE J1930 TERMINOLOGY LIST

		***: Not applicable	∍_
NEW TERM	NEW ACRONYM / ABBREVIATION	OLD TERM	
Exhaust gas recirculation control -BPT valve	EGRC-BPT valve	BPT valve	-
Exhaust gas recirculation control -solenoid valve	EGRC-solenoid valve	EGR control solenoid valve	- [
Exhaust gas recirculation temperature sensor	EGR temperature sensor	Exhaust gas temperature sensor	-
Flash electrically erasable programmable read	FEEPROM	***	-
Flash erasable programmable read only memory	FEPROM	***	- - (
Flexible fuel sensor	FFS	***	
Flexible fuel system	FF system	***	-
Heated oxygen sensor	HO2S	Exhaust gas sensor	•
dle air control system	IAC system	Idle speed control	•
Idle air control valve-air regulator	IACV-air regulator	Air regulator	
Idle air control valve-auxiliary air control valve	IACV-AAC valve	Auxiliary air control(AAC) valve	-
Idle air control valve-FICD solenoid valve	IACV-FICD solenoid valve	FICD solenoid valve	- (
Idle air control valve-idle up control solenoid valve	IACV-idle up control solenoid valve	Idle up control solenoid valve	-
Idle speed control-FI pot	ISC-FI pot	Fi pot	- [
dle speed control system	ISC system	***	-
Ignition control module	ICM	***	
Indirect fuel injection system	IFI system	***	-
Intake air temperature sensor	IATS	Air temperature sensor	- [
Knock	***	Detonation	•
Knock sensor	KS	Detonation sensor	- i
Malfunction indicator lamp	MIL	Check engine light	• •
Manifold absolute pressure	МАР	***	
Manifold absolute pressure sensor	MAPS	***	- 10
Manifold differential pressure	MDP	***	-
Manifold differential pressure sensor	MDPS	***	-
Manifold surface temperature	MST	***	-
Manifold surface temperature sensor	MSTS	***	- 90
Manifold vacuum zone	MVZ	***	-
Manifold vacuum zone sensor	MVZS	***	- F
Mass air flow sensor	MAFS	Air flow meter	-
Mixture control solenoid valve	MC solenoid valve	Air-fuel ratio control solenoid valve	- - [
Multiport fuel injection System	MFI system	Fuel injection control	• Ľ
Neutral position switch	***	Neutral switch	• ^
Non-volatile random access memory	NVRAM	***	- [}
On-board diagnostic system	OBD system	Self-diagnosis	•
Open loop	OL	Open loop	
Oxidation catalyst	oc		-

SAE J1930 TERMINOLOGY LIST

***: Not applicable

NEW TERM	NEW ACRONYM / ABBREVIATION	OLD TERM
Oxidation catalytic converter system	OC system	***
Oxygen sensor	O2S	Exhaust gas sensor
Park position switch	***	Park switch
Park/neutral position switch	PNP switch	Park/neutral switch
Periodic trap oxidizer system	PTOX system	***
Powertrain control module	РСМ	***
Programmable read only memory	PROM	***
Pulsed secondary air injection control solenoid valve	PAIRC solenoid valve	AIV control solenoid valve
Pulsed secondary air injection system	PAIR system	Air induction valve(AIV) control
Pulsed secondary air injection valve	PAIR valve	Air induction valve
Random access memory	RAM	***
Read only memory	ROM	***
Scan tool	ST	***
Secondary air injection pump	AIR pump	***
Secondary air injection system	AIR system	***
Sequential multiport fuel injection system	SFI system	Sequential fuel injection
Service reminder indicator	SRI	***
Simultaneous multiport fuel injection system	***	Simultaneous fuel injection
Smoke puff limiter system	SPL system	***
Supercharger	SC	***
Supercharger bypass	SCB	***
System readiness test	SRT	4**
Thermal vacuum valve	TVV	Thermal vacuum valve
Three way catalyst	TWC	Catalyst
Three way catalytic converter system	TWC system	***
Three way+oxidation catalyst	TWC+OC	Catalyst
Three way+oxidation catalytic converter system	TWC+OC system	***
Throttle body	ТВ	Throttle chamber
		SPI body
Throttle body fuel injection system	TBI system	Fuel injection control
Chrottle position	ТР	Throttle position
Fhrottle position sensor	TPS	Throttle sensor
Throttle position switch	TP switch	Throttle switch
Forque converter clutch solenoid valve	TCC solenoid valve	Lock-up cancel solenoid
		Lock-up solenoid
Furbocharger	тс	Turbocharger
/ehicle speed sensor	VSS	Vehicle speed sensor
/olume air flow sensor	VAFS	Air flow meter

SAE J1930 TERMINOLOGY LIST

***: Not applicable NEW ACRONYM / GI NEW TERM OLD TERM ABBREVIATION WU-OC Catalyst Warm up oxidation catalyst MA *** Warm up oxidation catalytic converter system WU-OC system WU-TWC Warm up three-way catalyst Catalyst EM *** Warm up three-way catalytic converter system WU-TWC system WOTP switch Full switch Wide open throttle position switch LC

EF & EC

FE

CL

MT

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL