SECTION TRANSAXLE \& TRANSMISSION

CONTENTS

7AT: RE7R01A (VQ35HR)
BASIC INSPECTION 7
DIAGNOSIS AND REPAIR WORK FLOW 7
Diagnosis Flow7
Question sheet 8
SYSTEM DESCRIPTION 10
A/T CONTROL SYSTEM 10
System Diagram 10
System Description 10
Component Parts Location 11
Component Description 12
LINE PRESSURE CONTROL 13
System Diagram 13
System Description 13
Component Parts Location 15
Component Description 16
SHIFT CHANGE CONTROL 17
System Diagram 17
System Description 17
Component Parts Location 20
Component Description 21
SHIFT PATTERN CONTROL 22
ASC (ADAPTIVE SHIFT CONTROL) 22
ASC (ADAPTIVE SHIFT CONTROL) : System Di- agram 22
ASC (ADAPTIVE SHIFT CONTROL) : System Description 22
ASC (ADAPTIVE SHIFT CONTROL) : Compo- nent Parts Location 24
ASC (ADAPTIVE SHIFT CONTROL) : Compo- nent Description 25
MANUAL MODE 25
MANUAL MODE : System Diagram 26
MANUAL MODE : System Description 26
MANUAL MODE : Component Parts Location 27
MANUAL MODE : Component Description 28
LOCK-UP CONTROL 29
System Diagram 29
System Description 29
Component Parts Location 31
Component Description 32
SHIFT MECHANISM 33
Cross-Sectional View 33
System Diagram 35
System Description 35
Component Parts Location 58
Component Description 58
SHIFT LOCK SYSTEM 59
System Description 59
Component Parts Location 60
Component Description 60
ON BOARD DIAGNOSTIC (OBD) SYSTEM 61
Diagnosis Description 61
DIAGNOSIS SYSTEM (TCM) 62
CONSULT-III Function (TRANSMISSION) 62
DTC/CIRCUIT DIAGNOSIS 68
U1000 CAN COMM CIRCUIT 68
Description 68
DTC Logic 68
Diagnosis Procedure 68
P0615 STARTER RELAY 69
Description 69
DTC Logic 69
Diagnosis Procedure 69
P0705 TRANSMISSION RANGE SWITCH A 71
Description 71
DTC Logic 71
Diagnosis Procedure 71
P0710 TRANSMISSION FLUID TEMPERA- TURE SENSOR A 72
Description 72
DTC Logic 72
Diagnosis Procedure 72
P0717 INPUT SPEED SENSOR A 74
Description 74
DTC Logic 74
Diagnosis Procedure 74
P0720 OUTPUT SPEED SENSOR 76
Description 76
DTC Logic 76
Diagnosis Procedure 77
P0725 ENGINE SPEED 78
Description 78
DTC Logic 78
Diagnosis Procedure 78
P0729 6GR INCORRECT RATIO 80
Description 80
DTC Logic 80
Diagnosis Procedure 81
P0730 INCORRECT GEAR RATIO 82
Description 82
DTC Logic 82
Diagnosis Procedure 82
P0731 1GR INCORRECT RATIO 84
Description 84
DTC Logic 84
Diagnosis Procedure 85
P0732 2GR INCORRECT RATIO 86
Description 86
DTC Logic 86
Diagnosis Procedure 87
P0733 3GR INCORRECT RATIO 88
Description 88
DTC Logic 88
Diagnosis Procedure 89
P0734 4GR INCORRECT RATIO 90
Description 90
DTC Logic 90
Diagnosis Procedure 91
P0735 5GR INCORRECT RATIO 92
Description 92
DTC Logic 92
Diagnosis Procedure 93
P0740 TORQUE CONVERTER 94
Description 94
DTC Logic 94
Diagnosis Procedure 94
P0744 TORQUE CONVERTER 96
Description 96
DTC Logic 96
Diagnosis Procedure 96
P0745 PRESSURE CONTROL SOLENOID A 97
Description 97
DTC Logic 97
Diagnosis Procedure 97
P0750 SHIFT SOLENOID A 98
Description 98
DTC Logic 98
Diagnosis Procedure 98
P0775 PRESSURE CONTROL SOLENOID 100
Description 100
DTC Logic 100
Diagnosis Procedure 100
P0780 SHIFT 101
Description 101
DTC Logic 101
Diagnosis Procedure 101
P0795 PRESSURE CONTROL SOLENOID C
Description 102
DTC Logic 102
Diagnosis Procedure 102
P1705 TP SENSOR 103
Description 103
DTC Logic 103
Diagnosis Procedure 103
P1721 VEHICLE SPEED SIGNAL 105
Description 105
DTC Logic 105
Diagnosis Procedure 106
P1730 INTERLOCK 107
Description 107
DTC Logic 107
Judgment of A/T Interlock 107
Diagnosis Procedure 108
P1734 7GR INCORRECT RATIO 109
Description 109
DTC Logic 109
Diagnosis Procedure 110
P1815 M-MODE SWITCH 111
Description 111
DTC Logic 111
Diagnosis Procedure 111
Component Inspection (Manual Mode Switch) 113
P2713 PRESSURE CONTROL SOLENOID D. 114
Description 114
DTC Logic 114
Diagnosis Procedure 114
P2722 PRESSURE CONTROL SOLENOID E. 115
Description 115
DTC Logic 115
Diagnosis Procedure 115
P2731 PRESSURE CONTROL SOLENOID F. 116
Description 116
DTC Logic 116
Diagnosis Procedure 116
P2807 PRESSURE CONTROL SOLENOID 117
Description 117
DTC Logic 117
Diagnosis Procedure 117
MAIN POWER SUPPLY AND GROUND CIR- CUIT 119
Description 119
Diagnosis Procedure 119
SHIFT POSITION INDICATOR CIRCUIT 121
Description 121
Component Function Check 121
Diagnosis Procedure 121
SHIFT LOCK SYSTEM 122
Description 122
Wiring Diagram - A/T SHIFT LOCK SYSTEM 122
Component Function Check 124
Diagnosis Procedure 125
Component Inspection (Shift Lock Solenoid) 127
Component Inspection (Stop Lamp Switch) 127
SELECTOR LEVER POSITION INDICATOR 129
Description 129
Component Function Check 129
Diagnosis Procedure 129
Component Inspection (Selector Lever Position Indicator) 132
ECU DIAGNOSIS INFORMATION 133
TCM 133
Reference Value 133
Wiring Diagram - A/T CONTROL SYSTEM 140
Fail-Safe 146
Protection Control 149
DTC Inspection Priority Chart 150
DTC Index 150
SYMPTOM DIAGNOSIS 152
SYSTEM SYMPTOM 152
Symptom Table 152
PRECAUTION 157
PRECAUTIONS 157
Precaution for Supplemental Restraint System(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-SIONER"157
General Precautions 157
Service Notice or Precaution 158
PREPARATION 159
PREPARATION 159
Commercial Service Tool 159
PERIODIC MAINTENANCE 160
A/T FLUID 160
Changing 160
Adjustment 161
A/T FLUID COOLER 163
Cleaning 163
Inspection 165
STALL TEST 166
Inspection and Judgment 166
A/T POSITION 167
Inspection and Adjustment 167
REMOVAL AND INSTALLATION 168
A/T SHIFT SELECTOR 168
Exploded View 168
Removal and Installation 169
Inspection and Adjustment 170
CONTROL ROD 171
Exploded View 171
Removal and Installation 171
Inspection and Adjustment 171
OIL PAN 172
Exploded View 172
Removal and Installation 172
Inspection and Adjustment 173
AIR BREATHER HOSE 174
2WD 174
2WD : Exploded View 174
2WD : Removal and Installation 174
AWD 175
AWD : Exploded View 175
AWD : Removal and Installation 175
FLUID COOLER SYSTEM 176
2WD 176
2WD : Exploded View 176
2WD : Removal and Installation 176
2WD : Inspection and Adjustment 177
AWD 178
AWD : Exploded View 178
AWD : Removal and Installation 178
AWD : Inspection and Adjustment 180
UNIT REMOVAL AND INSTALLATION 181
TRANSMISSION ASSEMBLY 181
2WD 181
2WD : Exploded View 181
2WD : Removal and Installation 181
2WD : Inspection and Adjustment 183
AWD 183
AWD : Exploded View 184
AWD : Removal and Installation 184
AWD : Inspection and Adjustment 186
SERVICE DATA AND SPECIFICATIONS (SDS) 187
SERVICE DATA AND SPECIFICATIONS (SDS) 187
General Specification 187
Vehicle Speed at Which Gear Shifting Occurs 187
Vehicle Speed at Which Lock-up Occurs/Releas-188
Stall Speed 188
Torque Converter 188
7AT: RE7R01B (VK50VE)
BASIC INSPECTION 189
DIAGNOSIS AND REPAIR WORK FLOW 189
Diagnosis Flow 189
Question sheet 190
SYSTEM DESCRIPTION 192
A/T CONTROL SYSTEM 192
System Diagram 192
System Description 192
Component Parts Location 193
Component Description 194
LINE PRESSURE CONTROL 195
System Diagram 195
System Description 195
Component Parts Location 197
Component Description 198
SHIFT CHANGE CONTROL 199
System Diagram 199
System Description 199
Component Parts Location 202
Component Description 203
SHIFT PATTERN CONTROL 204
ASC (ADAPTIVE SHIFT CONTROL) 204
ASC (ADAPTIVE SHIFT CONTROL) : System Di-
agram 204
ASC (ADAPTIVE SHIFT CONTROL) : System Description 204
ASC (ADAPTIVE SHIFT CONTROL) : Compo- nent Parts Location 206
ASC (ADAPTIVE SHIFT CONTROL) : Compo- nent Description 207
MANUAL MODE 207
MANUAL MODE : System Diagram 208
MANUAL MODE : System Description 208
MANUAL MODE : Component Parts Location 209
MANUAL MODE : Component Description 210
LOCK-UP CONTROL 211
System Diagram 211
System Description 211
Component Parts Location 213
Component Description 214
SHIFT MECHANISM 215
Cross-Sectional View 215
System Diagram 216
System Description 216
Component Parts Location 239
Component Description 239
SHIFT LOCK SYSTEM 240
System Description 240
Component Parts Location 241
Component Description 241
ON BOARD DIAGNOSTIC (OBD) SYSTEM 242
Diagnosis Description 242
DIAGNOSIS SYSTEM (TCM) 243
CONSULT-III Function (TRANSMISSION) 243
DTC/CIRCUIT DIAGNOSIS 249
U1000 CAN COMM CIRCUIT 249
Description 249
DTC Logic 249
Diagnosis Procedure 249
P0615 STARTER RELAY 250
Description 250
DTC Logic 250
Diagnosis Procedure 250
P0705 TRANSMISSION RANGE SWITCH A 252
Description 252
DTC Logic 252
Diagnosis Procedure 252
P0710 TRANSMISSION FLUID TEMPERA- TURE SENSOR A 253
Description 253
DTC Logic 253
Diagnosis Procedure 253
P0717 INPUT SPEED SENSOR A 255
Description 255
DTC Logic 255
Diagnosis Procedure 255
P0720 OUTPUT SPEED SENSOR 257
Description 257
DTC Logic 257
Diagnosis Procedure 258
P0725 ENGINE SPEED 259
Description 259
DTC Logic 259
Diagnosis Procedure 259
P0729 6GR INCORRECT RATIO 261
Description 261
DTC Logic 261
Diagnosis Procedure 262
P0730 INCORRECT GEAR RATIO 263
Description 263
DTC Logic 263
Diagnosis Procedure 263
P0731 1GR INCORRECT RATIO 264
Description 264
DTC Logic 264
Diagnosis Procedure 265
P0732 2GR INCORRECT RATIO 266
Description 266
DTC Logic 266
Diagnosis Procedure 267
P0733 3GR INCORRECT RATIO 268
Description 268
DTC Logic 268
Diagnosis Procedure 269
P0734 4GR INCORRECT RATIO 270
Description 270
DTC Logic 270
Diagnosis Procedure 271
P0735 5GR INCORRECT RATIO 272
Description 272
DTC Logic 272
Diagnosis Procedure 273
P0740 TORQUE CONVERTER 274
Description 274
DTC Logic 274
Diagnosis Procedure 274
P0744 TORQUE CONVERTER 276
Description 276
DTC Logic 276
Diagnosis Procedure 276
P0745 PRESSURE CONTROL SOLENOID A 277
Description 277
DTC Logic 277
Diagnosis Procedure 277
P0750 SHIFT SOLENOID A 278
Description 278
DTC Logic 278
Diagnosis Procedure 278
P0775 PRESSURE CONTROL SOLENOID B 279
Description 279
DTC Logic 279
Diagnosis Procedure 279
P0780 SHIFT 280
Description 280
DTC Logic 280
Diagnosis Procedure 280
P0795 PRESSURE CONTROL SOLENOID C 281
Description 281
DTC Logic 281
Diagnosis Procedure 281
P1705 TP SENSOR 282
Description 282
DTC Logic 282
Diagnosis Procedure 282
P1721 VEHICLE SPEED SIGNAL 284
Description 284
DTC Logic 284
Diagnosis Procedure 285
P1730 INTERLOCK 286
Description 286
DTC Logic 286
Judgment of A/T Interlock 286
Diagnosis Procedure 287
P1734 7GR INCORRECT RATIO 288
Description 288
DTC Logic 288
Diagnosis Procedure 289
P1815 M-MODE SWITCH 290
Description 290
DTC Logic 290
Diagnosis Procedure 291
Component Inspection (Manual Mode Switch) 294
Component Inspection [Paddle Shifter (Shift-up)]. 294
Component Inspection [Paddle Shifter (Shift-down)]295
P2713 PRESSURE CONTROL SOLENOID D 296
Description 296
DTC Logic 296
Diagnosis Procedure 296
P2722 PRESSURE CONTROL SOLENOID E 297
Description 297
DTC Logic 297
Diagnosis Procedure 297
P2731 PRESSURE CONTROL SOLENOID F 298
Description 298
DTC Logic 298
Diagnosis Procedure 298
P2807 PRESSURE CONTROL SOLENOID G 299
Description 299
DTC Logic 299
Diagnosis Procedure 299
MAIN POWER SUPPLY AND GROUND CIR- CUIT 301
Description 301
Diagnosis Procedure 301
SHIFT POSITION INDICATOR CIRCUIT 303
Description 303
Component Function Check 303
Diagnosis Procedure 303
SHIFT LOCK SYSTEM 304
Description 304
Wiring Diagram - A/T SHIFT LOCK SYSTEM 304
Component Function Check 306
Diagnosis Procedure 307
Component Inspection (Shift Lock Solenoid) 309
Component Inspection (Stop Lamp Switch) 309
SELECTOR LEVER POSITION INDICATOR 311
Description 311
Component Function Check 311
Diagnosis Procedure 311
Component Inspection (Selector Lever Position Indicator) 314
ECU DIAGNOSIS INFORMATION 315
TCM 315
Reference Value 315
Wiring Diagram - A/T CONTROL SYSTEM 322
Fail-Safe 328
Protection Control 331
DTC Inspection Priority Chart 332
DTC Index 332
SYMPTOM DIAGNOSIS 334
SYSTEM SYMPTOM 334
Symptom Table 334
PRECAUTION 339
PRECAUTIONS 339
Precaution for Supplemental Restraint System(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-SIONER"339
General Precautions 339
Service Notice or Precaution 340
PREPARATION 341
PREPARATION 341
Commercial Service Tool 341
PERIODIC MAINTENANCE 342
A/T FLUID 342
Changing 342
Adjustment 343
A/T FLUID COOLER 345
Cleaning 345
Inspection 347
STALL TEST 348
Inspection and Judgment 348
A/T POSITION 349
Inspection and Adjustment 349
REMOVAL AND INSTALLATION 350
A/T SHIFT SELECTOR 350
Exploded View 350
Removal and Installation 351
Inspection and Adjustment 352
CONTROL ROD 353
Exploded View 353
Removal and Installation 353
Inspection 353
PADDLE SHIFTER 354
Exploded View 354
Removal and Installation 354
OIL PAN 355
Exploded View 355
Removal and Installation 355
Inspection and Adjustment 356
AIR BREATHER HOSE 357
Exploded View 357
Removal and Installation 357
FLUID COOLER SYSTEM 359
Exploded View 359
Removal and Installation 359
Inspection and Adjustment 361
UNIT REMOVAL AND INSTALLATION 362
TRANSMISSION ASSEMBLY 362
Exploded View 362
Removal and Installation 362
Inspection and Adjustment 364
SERVICE DATA AND SPECIFICATIONS (SDS) 365
SERVICE DATA AND SPECIFICATIONS (SDS) 365
General Specification 365
Vehicle Speed at Which Gear Shifting Occurs 365
Vehicle Speed at Which Lock-up Occurs/Releas- es 366
Stall Speed 366
Torque Converter 366

DIAGNOSIS AND REPAIR WORK FLOW

< BASIC INSPECTION >
[7AT: RE7R01A (VQ35HR)]

Diagnosis Flow

1. OBTAIN INFORMATION ABOUT SYMPTOM

1. Refer to TM-8, "Question sheet" and interview the customer to obtain the malfunction information (conditions and environment when the malfunction occurred) as much as possible when the customer brings in the vehicle.
2. Check the following:

- Service history
- Harnesses and connectors malfunction. Refer to Gl-36, "Intermittent Incident".

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC
3. Before checking the malfunction, check whether any DTC exists.
4. If DTC exists, perform the following operations.

- Record the DTC and freeze frame data. (Print out the data using CONSULT-III and affix to the Work Order Sheet.)
- Erase DTCs.
- Check the relationship between the cause that is clarified with DTC and the malfunction information described by the customer. TM-152, "Symptom Table" is effective.

3. Check the information of related service bulletins and others also.

Do malfunction information and DTC exist?
Malfunction information and DTC exists. >>GO TO 3.
Malfunction information exists, but no DTC. >>GO TO 4.
No malfunction information, but DTC exists. >>GO TO 5.
3. REPRODUCE MALFUNCTION SYMPTOM

Check any malfunction described by a customer, except those with DTC on the vehicle.
Also investigate whether the symptom is a fail-safe or normal operation. Refer to TM-146, "Fail-Safe".
When a malfunction symptom is reproduced, the question sheet is effective. Refer to TM-8, "Question sheet". Verify the relationship between the symptom and the conditions in which the malfunction described by the customer occurs.

$$
\text { >> GO TO } 5 .
$$

4.REPRODUCE MALFUNCTION SYMPTOM

Check the malfunction described by the customer on the vehicle.
Also investigate whether the symptom is a fail-safe or normal operation. Refer to TM-146, "Fail-Safe".
When a malfunction symptom is reproduced, the question sheet is effective. Refer to TM-8, "Question sheet". Verify the relationship between the symptom and the conditions in which the malfunction described by the customer occurs.

$$
\text { >> GO TO } 6 .
$$

5. PERFORM "DTC CONFIRMATION PROCEDURE"

Perform "DTC CONFIRMATION PROCEDURE" of the appropriate DTC to check if DTC is detected again. Refer to TM-150, "DTC Inspection Priority Chart" when multiple DTCs are detected, and then determine the order for performing the diagnosis.
NOTE:
If no DTC is detected, refer to the freeze frame data.
Is any DTC detected?
YES >> GO TO 7.
NO >> Check according to Gl-36, "Intermittent Incident".

DIAGNOSIS AND REPAIR WORK FLOW

< BASIC INSPECTION >
[7AT: RE7R01A (VQ35HR)]
6. IDENTIFY MALFUNCTIONING SYSTEM WITH "DIAGNOSIS CHART BY SYMPTOM"

Use TM-152, "Symptom Table" from the symptom inspection result in step 4. Then identify where to start performing the diagnosis based on possible causes and symptoms.
>> GO TO 8.

7. REPAIR OR REPLACE THE MALFUNCTIONING PARTS

Repair or replace the detected malfunctioning parts.
Reconnect parts or connector after repairing or replacing, and then erase DTC if necessary.

$$
\text { >> GO TO } 8 .
$$

8. FINAL CHECK

Perform "DTC CONFIRMATION PROCEDURE" again to make sure that the repair is correctly performed. Check that malfunctions are not reproduced when obtaining the malfunction information from the customer, referring to the symptom inspection result in step 3 or 4.
Is DTC or malfunction symptom reproduced?
YES-1 >> DTC is reproduced: GO TO 5.
YES-2 >> Malfunction symptom is reproduced: GO TO 6.
NO >> Before delivering the vehicle to the customer, make sure that DTC is erased.

Question sheet

DESCRIPTION

There are many operating conditions that may cause a malfunction of the transmission parts. By understanding those conditions properly, a quick and exact diagnosis can be achieved.
In general, customers have their own criteria for a problem. Therefore, it is important to understand the symptom and status well enough by asking the customer about the concerns carefully. In order to systemize all the information for the diagnosis, prepare the question sheet referring to the question points.

WORKSHEET SAMPLE

Question Sheet				
Customer name MR/MS	Engine \#		Manuf. Date	
	Incident Date		VIN	
	Model \& Year		In Service Date	
	Trans.		Mileage	$\mathrm{km} /$ Mile

DIAGNOSIS AND REPAIR WORK FLOW

< BASIC INSPECTION >
[7AT: RE7R01A (VQ35HR)]

Question Sheet						
Symptoms		\square Vehicle does not move (\square Any position \square Particular position)
		\square No up-shift $\quad(\square 1 \mathrm{GR} \rightarrow 2 \mathrm{GR} \quad \square 2 \mathrm{GR} \rightarrow 3 \mathrm{GR} \quad \square 3 \mathrm{GR} \rightarrow 4 \mathrm{GR} \quad \square 4 \mathrm{GR} \rightarrow 5 \mathrm{GR} \quad \square 5 \mathrm{GR} \rightarrow$6GR $\quad \square 6 \mathrm{GR} \rightarrow 7 \mathrm{GR})$				
		\square No down-shift ($\square 7 \mathrm{GR} \rightarrow 6 \mathrm{GR} \quad \square 6 \mathrm{GR} \rightarrow 5 \mathrm{GR} \quad \square 5 \mathrm{GR} \rightarrow 4 \mathrm{GR} \quad \square 4 \mathrm{GR} \rightarrow 3 \mathrm{GR} \quad \square 3 \mathrm{GR} \rightarrow$2GR $\square 2 \mathrm{GR} \rightarrow 1 \mathrm{GR})$				
		\square Lock-up malfunction				
		\square Shift point too high or too low				
		\square Shift shock or slip				
		\square Noise or vibration				
		\square No kick down				
		\square No pattern select				
		\square Others				
Frequency		\square All the time \quad U Under certain conditions		\square Sometimes (times a day)		
Weather conditions		\square Not affected				
	Weather	\square Fine $\quad \square$ Clouding	\square Raining	\square Snowing	\square Other ()
	Temp.	\square Hot $\quad \square$ Warm	$\square \mathrm{Cool}$	\square Cold	\square Temp. [Approx. ${ }^{\circ} \mathrm{F}$)]	${ }^{\circ} \mathrm{C}($
	Humidity	\square High $\quad \square$ Middle	\square Low			
Transmission conditions		\square Not affected				
		\square Cold $\quad \square$ During warm-up		\square After warm-up		
		\square Engine speed (rpm		rpm)		
Road conditions		\square Not affected				
		\square In town \square In suburbs $\quad \square$ Freeway $\quad \square$ Off road (Up / Down)	Freeway	\square Off road (Up / Down)		
Driving conditions		\square Not affected				
		\square At starting $\quad \square$ While idling While accelerating	\square While en \square While de	racing ating		While cruis- ight / Left)
		\square Vehicle speed [km/h (MPH)]		
Other conditions						

System Diagram

System Description

INPUT/OUTPUT SIGNAL CHART

Switch, Sensor or Signal		TCM function		Actuator
- Transmission range switch - Accelerator pedal position signal - Closed throttle position signal - Wide open throttle position signal - Engine speed signal - A / T fluid temperature sensor - Output speed sensor - Vehicle speed signal - Manual mode switch signal - Stop lamp switch signal - Side G sensor signal - Input speed sensor 1, 2	\Rightarrow	- Line pressure control (TM-13) - Shift change control (TM-17) - Shift pattern control - Shift pattern (TM-22) - Manual mode (TM-26) - Lock-up control (TM-29) - Fail-safe control (TM-146) - Self-diagnosis (TM-62) - CONSULT-III communication line (TM62) - CAN communication line (TM-68)	\Rightarrow	- Input clutch solenoid valve - Direct clutch solenoid valve - Front brake solenoid valve - High and low reverse clutch solenoid valve - Low brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve - 2346 brake solenoid valve - A/T CHECK indicator lamp - Back-up lamp relay - Starter relay

SYSTEM DESCRIPTION

- The A/T senses vehicle operating conditions through various sensors or signals. It always controls the optimum shift position and reduces shifting and lock-up shocks.
- Receive input signals transmitted from various switches and sensors.
- Determine required line pressure, shifting point, lock-up operation, etc.
- Transmit required output signals to the respective solenoids.

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*: Control valve with TCM is included in A/T assembly.

Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Transmission range switch	TM-71, "Description"
Output speed sensor	TM-76, "Description"
Input speed sensor 1	
Input speed sensor 2	,
A/T fluid temperature sensor	TM-72, "Description"
Input clutch solenoid valve	TM-100, "Description"
Front brake solenoid valve	TM-102, "Description"
Direct clutch solenoid valve	TM-117, "Description"
High and low reverse clutch solenoid valve	TM-114, "Description"
Low brake solenoid valve	TM-115, "Description"
Anti-interlock solenoid valve	TM-98, "Description"
2346 brake solenoid valve	TM-116, "Description"
Line pressure solenoid valve	TM-97, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
Accelerator pedal position sensor	TM-103, "Description"
Manual mode switch	TM-111, "Description"
Starter relay	TM-69, "Description"
A/T CHECK indicator lamp	When the ignition switch is pushed to the ON position, the light comes on for 2 seconds.
Stop lamp switch	TM-122. "Description"
ECM	EC-30, "System Description"
BCM	BCS-6, "System Description"
Unified meter and A / C amp.	MWI-6. "METER SYSTEM : System Description"
ABS actuator and electric unit (control unit)	BRC-29, "System Description"
Yaw rate/side G sensor	BRC-77, "Description"

LINE PRESSURE CONTROL

System Diagram

System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Line pressure control	Line pressure solenoid valve Pressure regulator valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal ${ }^{*}$		
	Engine and A / T integrated control signal (Engine torque)*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

- When an engine and A / T integrated control signal (engine torque) equivalent to the engine drive force is transmitted from the ECM to the TCM, the TCM controls the line pressure solenoid valve.
This line pressure solenoid controls the pressure regulator valve as the signal pressure and adjusts the pressure of the operating oil discharged from the oil pump to the line pressure most appropriate to the driving state.
- The TCM has stored in memory a number of patterns for the optimum line pressure characteristic for the driving state.
- In order to obtain the most appropriate line pressure characteristic to meet the current driving state, the TCM controls the line pressure solenoid current value and thus controls the line pressure.
Normal Control

Each clutch is adjusted to the necessary pressure to match the engine drive force.

Back-up Control (Engine Brake)
When the select operation is performed during driving and the A / T is shifted down, the line pressure is set according to the vehicle speed.

During Shift Change
The necessary and adequate line pressure for shift change is set. For this reason, line pressure pattern setting corresponds to engine torque and gearshift selection. Also, line pressure characteristic corresponds to engine speed, during engine brake operation.

At Low Fluid Temperature

When the A/T fluid temperature drops below the prescribed temperature, in order to speed up the action of each friction element, the line pressure is set higher than the normal line pressure characteristic.

Component Parts Location

(4)

2. A / T shift selector assembly
5. Accelerator pedal position sensor
8. A / T CHECK indicator lamp
3. A / T assembly connector
6. Manual mode indicator
A. Center console
B. A / T assembly
C. Accelerator pedal
D. Combination meter

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*: Control valve with TCM is included in A/T assembly.
Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-72, "Description"
Line pressure solenoid valve	TM-97, "Description"
Pressure regulator valve	Adjusts the oil discharged from the oil pump to the optimum pressure (line pressure) for the driving state.
ECM	EC-30, "System Description"

SHIFT CHANGE CONTROL

System Diagram

INFOID:0000000005249998

System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Shift change control	- High and low reverse clutch solenoid valve - Direct clutch solenoid valve - Input clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Front brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
	Closed throttle position signal*		
	Engine and A / T integrated control signal (Engine torque)*		
BCM	Stop lamp switch signal*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

The clutch pressure control solenoid is controlled by the signals from the switches and sensors. Thus, the clutch pressure is adjusted to be appropriate to the engine load state and vehicle driving state. It becomes
possible to finely control the clutch hydraulic pressure with high precision and a smoother shift change characteristic is attained.

Shift Change
The clutch is controlled with the optimum timing and oil pressure by the engine speed, engine torque information, etc.

Shift Change System Diagram

*1: Full phase real-time feedback control monitors movement of gear ratio at gear change, and controls oil pressure in real-time to achieve the best gear ratio.

Blipping Control
This system makes transmission clutch engage readily by controlling (synchronizing) engine revolution according to the (calculation of) engine revolution after shifting down.

- "BLIPPING CONTROL" functions.
- When downshifting by accelerator pedal depression.
- When downshifting by the manual mode.

Operation Area			
Downshifting by accelerator pedal depression			Downshifting by the manual mode
Accelerator opening	Semessh akslaralas Medal aッ 	Accelerator opening	(1)
	Vehicle speed		Vehicle speed
			JSDIA0826GB

SHIFT CHANGE CONTROL

- TCM selects "BLIPPING CONTROL" or "NORMAL SHIFT CONTROL" according to the gear position, the selector lever position, the engine torque and the speed when accelerating by pedal depression.
- Engine speed control demand signal is transmitted from TCM to ECM under "BLIPPING CONTROL".
- ECM synchronizes the engine speed according to the engine speed control demand signal.

Downshifting by accelerator pedal depression

Downshifting by the manual mode

1. Selector lever position indicator
2. Control valve with TCM^{*}
3. Shift position indicator
A. Center console
D. Combination meter
4. A / T shift selector assembly
5. Accelerator pedal position sensor
6. A/T CHECK indicator lamp
B. A / T assembly

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1, 2
- Output speed sensor

3. A/T assembly connector
4. Manual mode indicator
C. Accelerator pedal

- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*: Control valve with TCM is included in A/T assembly.
Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-72, "Description"
Input clutch solenoid valve	TM-100, "Description"
Front brake solenoid valve	TM-102, "Description"
Direct clutch solenoid valve	TM-117, "Description"
High and low reverse clutch solenoid valve	TM-114, "Description"
Low brake solenoid valve	TM-115, "Description"
Anti-interlock solenoid valve	TM-98, "Description"
2346 brake solenoid valve	TM-116, "Description"
Line pressure solenoid valve	TM-97, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
ECM	EC-30, "System Description"
BCM	BCS-6, "System Description"

SHIFT PATTERN CONTROL

ASC (ADAPTIVE SHIFT CONTROL)
ASC (ADAPTIVE SHIFT CONTROL) : System Diagram
INFOID:0000000005250002

ASC (ADAPTIVE SHIFT CONTROL) : System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Shift pattern control	- High and low reverse clutch solenoid valve - Direct clutch solenoid valve - Input clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Front brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
	Closed throttle position signal*		
	Engine and A/T integrated control signal (engine torque)*		
ABS actuator and electric unit (control unit)	Side G sensor signal*		
BCM	Stop lamp switch signal*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

ASC (Adaptive Shift Control)

It automatically selects the shift pattern (such as road environment and driving style) suitable for the various situations so as to allow the vehicle to be driven efficiently and smoothly.

For example.....

- When driving on an up/down slope

ASC judges up/down slope according to engine torque data transmitted from the ECM and vehicle speed. Fixing at 4GR, 5GR or 6GR on an up-slope prevents shift hunting and controls the vehicle to gain optimum driving force. On a down-slope, automatic shift-down to 4GR, 5 GR or 6GR controls to gain optimum engine brake.

- When driving on a curve TCM receives the side G sensor signal from the ABS actuator and electric unit (control unit). It locks to 4GR, $5 G R$ or 6 GR position in moderate cornering or to 3GR position in sharp cornering based on this signal. This prevents any upshift and kickdown during cornering, maintaining smooth vehicle travel.

DS Mode

- Changes to the shift schedule that mainly utilizes the high engine speed zone when ASC is active.
- DS mode can be switched according to the following method.
- When the selector lever is in the "D" position, shifting the selector lever to manual shift gate enables switching to DS mode.
- When in DS mode, shifting the selector lever to the main gate enables to cancel DS mode.

SHIFT PATTERN CONTROL

ASC (ADAPTIVE SHIFT CONTROL) : Component Parts Location

1. Selector lever position indicator
2. Control valve with TCM^{*}
3. A / T shift selector assembly
4. Shift position indicator
A. Center console
D. Combination meter
5. Accelerator pedal position sensor
6. A/T CHECK indicator lamp
B. A / T assembly

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor

3. A/T assembly connector
4. Manual mode indicator
C. Accelerator pedal

- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*: Control valve with TCM is included in A/T assembly.
ASC (ADAPTIVE SHIFT CONTROL) : Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-72, "Description"
Input clutch solenoid valve	TM-100, "Description"
Front brake solenoid valve	TM-102, "Description"
Direct clutch solenoid valve	TM-117, "Description"
High and low reverse clutch solenoid valve	TM-114, "Description"
Low brake solenoid valve	TM-115, "Description"
Anti-interlock solenoid valve	TM-98, "Description"
2346 brake solenoid valve	TM-116, "Description"
Line pressure solenoid valve	TM-97, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
ECM	EC-30, "System Description"
BCM	BCS-6, "System Description"
ABS actuator and electric unit (control unit)	BRC-29, "System Description"

MANUAL MODE

MANUAL MODE : System Description
INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Output speed sensor	Vehicle speed	Shift pattern control	- High and low reverse clutch solenoid valve - Direct clutch solenoid valve - Input clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Front brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
Unified meter and A/C amp.	Manual mode signal*		
	Non-manual mode signal*		
	Manual mode shift up signal*		
	Manual mode shift down signal*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

Manual Mode

- The TCM receives the manual mode signal, non-manual mode signal, manual mode shift up signal and manual mode shift down signal from unified meter and A / C amp. via CAN communication line. The TCM shifts shift pattern control to the manual mode based on these signals, and then shifts the A/T by operating each solenoid valve according to the shift operation of the driver.
- The TCM prohibits the manual mode while being in fail-safe mode due to an A / T malfunction, etc. Refer to TM-146, "Fail-Safe".
- The TCM transmits the manual mode shift refusal signal to the unified meter and A/C amp. if the TCM refuses the transmission from the driving status of vehicle when the selector lever shifts to UP or DOWN side. The unified meter and A/C amp. blinks shift indicator on the combination meter and sounds the buzzer to indicate the driver that the shifting is not performed when receiving this signal. However, the TCM does not transmit the manual mode shift refusal signal in the conditions as per the following.
- When the selector lever shifts to DOWN side while driving in 1GR.
- When the selector lever shifts to UP side while driving in 7GR.

MANUAL MODE : Component Parts Location

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*: Control valve with TCM is included in A/T assembly.
MANUAL MODE : Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
A/T fluid temperature sensor	TM-72, "Description"
Input clutch solenoid valve	TM-100, "Description"
Front brake solenoid valve	TM-102, "Description"
Direct clutch solenoid valve	TM-117, "Description"
High and low reverse clutch solenoid valve	TM-114, "Description"
Low brake solenoid valve	TM-115, "Description"
Anti-interlock solenoid valve	TM-98, "Description"
2346 brake solenoid valve	TM-116, "Description"
Line pressure solenoid valve	TM-97, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
ECM	EC-30, "System Description"
BCM	BCS-6, "System Description"
Unified meter and A / C amp.	MWI-6, "METER SYSTEM : System Description"

LOCK-UP CONTROL

System Diagram
INFOID:0000000005250010

System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Lock-up control	Torque converter clutch solenoid valve \downarrow Torque converter clutch control valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
	Closed throttle position signal*		
	Engine and A / T integrated control signal (Engine torque)*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

The torque converter clutch piston in the torque converter is engaged to eliminate torque converter slip to increase power transmission efficiency.
The torque converter clutch control valve operation is controlled by the torque converter clutch solenoid valve, which is controlled by a signal from TCM, and the torque converter clutch control valve engages or releases the torque converter clutch piston.
Lock-up operation condition table

| Selector lever | "D" position | | | | | "M" position | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gear position | 7 | 6 | 5 | 4 | 3 | 2 | 7 | 6 | 5 | 4 | 3 | 2 |
| Lock-up | \times | - | - | - | - | - | \times | \times | \times | \times | \times | \times |
| Slip lock-up | \times |

[^0]Lock-up control system diagram

Lock-up released

- In the lock-up released state, the torque converter clutch control valve is set into the unlocked state by the torque converter clutch solenoid and the lock-up apply pressure is drained.
in this way, the torque converter clutch piston is not coupled.
Lock-up Applied
- In the lock-up applied state, the torque converter clutch control valve is set into the locked state by the torque converter clutch solenoid and lock-up apply pressure is generated.
In this way, the torque converter clutch piston is pressed and coupled.

Smooth Lock-up Control

When shifting from the lock-up released state to the lock-up applied state, the current output to the torque converter clutch solenoid is controlled with the TCM. In this way, when shifting to the lock-up applied state, the torque converter clutch is temporarily set to the half-clutched state to reduce the shock.

Half-clutched State

- The current output from the TCM to the torque converter clutch solenoid is varied to steadily increase the torque converter clutch solenoid pressure.
In this way, the lock-up apply pressure gradually rises and while the torque converter clutch piston is put into half-clutched states, the torque converter clutch piston operating pressure is increased and the coupling is completed smoothly.

Slip Lock-up Control

- In the slip region, the torque converter clutch solenoid current is controlled with the TCM to put it into the half-clutched state. This absorbs the engine torque fluctuation and lock-up operates from low speed.
This raises the fuel efficiency for 2GR, 3GR, 4GR, 5GR, 6GR and 7GR.

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*: Control valve with TCM is included in A/T assembly.
Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-72, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
Torque converter clutch control valve	Switches the lock-up to operating or released. Also, by performing the lock-up operation transiently, lock-up smoothly.
ECM	EC-30, "System Description"

Cross-Sectional View

2WD MODELS

1. Low brake
2. High and low reverse clutch
3. Mid carrier
10.*3 Front carrier
4. Front brake
5. Torque converter
19.*3 Under drive internal gear
22.* ${ }^{* 1}$ Mid internal gear
6. High and low reverse clutch hub
7. Rear extension
*1: 6 and 22 are one unit.
*2: 9 and 18 are one unit.
*3: 10 and 19 are one unit.
*4: 15 and 20 are one unit.
8. Reverse brake
9. 2nd one-way clutch
10. Input clutch
11. Under drive carrier
12. 2346 brake
13. Oil pump
20.*4 Front internal gear
14. Rear sun gear
15. Control valve with TCM
16. Output shaft
17. Direct clutch
6.*1 Rear carrier
9.*2 Front sun gear
18. 1st one-way clutch
15.*4 Input shaft
18.*2 Under drive sun gear
19. Mid sun gear
20. Rear internal gear
21. Parking gear

AWD MODELS

1. Low brake
2. High and low reverse clutch
3. Mid carrier
10.*3 Front carrier
4. Front brake
5. Torque converter
19.*3 Under drive internal gear
22.* ${ }^{* 1}$ Mid internal gear
6. High and low reverse clutch hub
7. Adapter case
*1: 6 and 22 are one unit.
*2: 9 and 18 are one unit.
*3: 10 and 19 are one unit.
*4: 15 and 20 are one unit.
8. Reverse brake
9. 2nd one-way clutch
10. Input clutch
11. Under drive carrier
12. 2346 brake
13. Oil pump
20.*4 Front internal gear
14. Rear sun gear
15. Control valve with TCM
16. Output shaft
17. Direct clutch
6.*1 Rear carrier
9.*2 Front sun gear
18. 1st one-way clutch
15.*4 Input shaft
18.*2 Under drive sun gear
19. Mid sun gear
20. Rear internal gear
21. Parking gear

System Description

With the use of 4 sets of planetary gears, A/T enables 7 -speed transmission for forward and 1 -speed transmission for backward, depending on the combination of 3 sets of multiple-disc clutches, 4 sets of multiple-disc brakes and 2 sets of one-way clutches.

CLUTCH AND BAND CHART

Name of the part Shift position		I/C	D/C		H\&LR/C	F/B	L/B		2346/B	REV/B	$\begin{gathered} \text { 1st } \\ \text { OWC } \end{gathered}$	2nd OWC	Remarks	
		FRONT	REAR	INNER			OUTER							
P						\triangle	\triangle							Park position
					\rangle	\rangle				\bigcirc	()	($)$	Reverse position	
N					\triangle	\triangle							Neutral position	
D, DS	1st				\star	*	\bigcirc	\bigcirc			(0)	(0)	Automatic shift $1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4 \Leftrightarrow 5 \Leftrightarrow 6 \Leftrightarrow 7$	
	2nd						\bigcirc	\bigcirc	\bigcirc			()		
	3rd		\bigcirc	\bigcirc			\bigcirc		\bigcirc					
	4th		\bigcirc	\bigcirc	\bigcirc				\bigcirc					
	5th	\bigcirc		\bigcirc	\bigcirc									
	6th	\bigcirc			\bigcirc				\bigcirc					
	7th	\bigcirc			\bigcirc	\bigcirc								
7M	7th	\bigcirc			\bigcirc	\bigcirc							Locks* (held stationary) in 7GR	
6M	6th	\bigcirc			\bigcirc				\bigcirc				Locks* (held stationary) in 6GR	
5M	5th	\bigcirc		\bigcirc	\bigcirc								Locks* (held stationary) in 5GR	
4M	4th		\bigcirc	\bigcirc	\bigcirc				\bigcirc				Locks* (held stationary) in 4GR	
3M	3rd		\bigcirc	\bigcirc			\bigcirc		\bigcirc				Locks* (held stationary) in 3GR	
2M	2nd				\rangle		\bigcirc	\bigcirc	\bigcirc			()	Locks* (held stationary) in 2GR	
1M	1st				\rangle	\diamond	\bigcirc	\bigcirc			©	©	Locks (held stationary) in 1GR	

- Operates

© - Operates during "progressive" acceleration.
\diamond - Operates and affects power transmission while coasting
\triangle - Line pressure is applied but does not affect power transmission.
$\hat{\imath}$ - Operates at the fixed speed or less.

POWER TRANSMISSION

" N " Position

Since the low brake is released, torque from the input shaft drive is not transmitted to the output shaft.

- The same as for the " N " position, since the low brake is released, so torque from the input shaft drive is not transmitted to the output shaft.
- The parking pawl linked with the selector lever meshes with the parking gear and fastens the output shaft mechanically.
"D1" and "DS1" Positions

- The 1st one-way clutch regulates counterclockwise rotation of the under drive carrier.
- The 2nd one-way clutch regulates counterclockwise rotation of the rear sun gear.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"M1" Position

- The 1st one-way clutch and the front brake regulate counterclockwise rotation of the under drive carrier. NOTE:
The front brake operates only while coasting.
- The 2nd one-way clutch and the high and low reverses clutch regulate counterclockwise rotation of the rear sun gear.
NOTE:
The high and low reverse clutch operates only while coasting.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear

Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"D2" and "DS2" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The 2nd one-way clutch regulates counterclockwise rotation of the rear sun gear.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"M2" Position

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The 2nd one-way clutch and the high and low reverse clutch regulate counterclockwise rotation of the rear sun gear.
NOTE:
The high and low reverse clutch operates only while coasting.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"D3", "DS3" and "M3" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The direct clutch gets engaged and connects the rear sun gear with the rear carrier.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the rear internal gear	Same number of revolution as the rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"D4", "DS4" and "M4" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The direct clutch gets engaged and connects the rear sun gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the rear internal gear	Same number of revolution as the rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the mid internal gear	Same number of revolution as the mid internal gear	Same number of revolution as the rear carrier

"D5", "DS5" and "M5" Positions

- The input clutch gets engaged and connects the mid internal gear with the rear carrier.
- The direct clutch gets engaged and connects the rear sun gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters the state described below.

Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	input/Output	-
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the rear carrier	Same number of revolution as the input shaft	Same number of revolution as the rear carrier
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the mid internal gear	Same number of revolution as the mid internal gear	Same number of revolution as the input shaft

[^1]

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The input clutch gets engaged and connects the mid internal gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Input/Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from rear carrier	Same number of revolution as the input shaft	Same number of revolution as the front carrier
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from mid internal gear	Acceleration from mid internal gear	Same number of revolution as the input shaft

"D7", "DS7" and "M7" Positions

- The under drive carrier is fixed by the front brake.
- The input clutch gets engaged and connects the mid internal gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Input/Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from rear carrier	Same number of revolution as the input shaft	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from mid internal gear	Acceleration from mid internal gear	Same number of revolution as the input shaft

"R" Position

- The 1st one-way clutch and the front brake regulates counterclockwise rotation of the under drive carrier. NOTE:
The front brake operates at the fixed speed or less.
- The rear carrier and the mid internal gear are fixed by the reverse brake.
- The mid sun gear rotates at the same speed as the rear sun gear by operation of the 2nd one-way clutch and the high and low reverse clutch.
NOTE:
The high and low reverse clutch operates at the fixed speed or less.
- Each planetary gear enters the state described below.

Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Output	Fixed	Input
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from rear internal gear	-	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Input	Output	Fixed
Direction of rotation	Counterclockwise revolution	Counterclockwise revolution	-
Number of revolutions	Same number of revolution as the rear sun gear	Deceleration from mid sun gear	-

Component Parts Location

Refer to TM-33, "Cross-Sectional View".
Component Description

Name of the Part (Abbreviation)	Function
Front brake (FR/B)	Fastens the under drive carrier.
Input clutch (I/C)	Connects the mid internal gear and the rear carrier.
Direct clutch (D/C)	Connects the rear carrier and the rear sun gear.
High and low reverse clutch (HLR/C)	Connects the rear sun gear and the mid sun gear.
Reverse brake (R/B)	Fastens the rear carrier.
Low brake (L/B)	Fastens the mid sun gear.
2346 brake (2346/B)	Fastens the under drive sun gear.
1st one-way clutch (1st OWC)	Allows the under drive carrier to turn freely in the forward direction but fastens it for reverse rotation.
2nd one-way clutch (2nd OWC)	Allows the rear sun gear to turn freely in the forward direction but fastens it for reverse ro- tation.
Torque converter	Amplifies driving force the engine, and transmits it to transmission input shaft.
Oil pump	Driven by the engine, oil pump supplies oil to torque converter, control valve assembly, and each lubricating system.

SHIFT LOCK SYSTEM

System Description

- Shift lock prevents an unintentional start of the vehicle that may be caused by an incorrect operation while selector lever is in the " P " position.
- Selector lever can be shifted from the "P" position to another position when the following conditions are satisfied.
- Ignition switch ON
- Stop lamp switch is ON (brake pedal is depressed)
- Selector lever knob button is pressed

SHIFT LOCK OPERATION AT "P" POSITION

 the brake pedal is not depressed while the ignition switch is ON. The lock plate (B) lowers according to the downward movement of the position pin (C) when the selector button (D) is pressed, and presses only slider $B(E)$ into the shift lock unit. Slider $A(F)$ located below the lock plate prevents the downward movement of the lock plate with the spring force. The selector lever cannot be shifted from the " P " position for this reason.However, slider A is forcibly pressed into the shift lock unit, allowing the selector lever to shift if the shift lock release button is pressed.

When Brake Pedal Is Depressed (Shift Operation Allowed)
The shift lock solenoid (A) inside the shift lock unit is energized and the relative positions of sliders $A(B)$ and $B(C)$ are maintained when the brake pedal is depressed while the ignition switch is ON.
The lock plate (D) lowers according to the downward movement of the position pin (E), thrusting away sliders A and B, when the selector button (F) is pressed.
The position pin lowers to the position that allows shift operation for this reason. As a result, the selector lever can be shifted out of the P position.

OPERATION AT OTHER THAN "P" POSITION

The shift lock function will not operate at any position other than " P " because the lock plate (A) is only set for the "P" position. Accordingly, the selector lever can be shifted to any position regardless of the brake operation.
The position pin (B) enters the "P" position thrusting away the lock plate when the selector lever is shifted to the " P " position. Then, the shift mechanism is locked when the selector button (C) is released.

"P" POSITION RETAINING MECHANISM (IGNITION SWITCH LOCK)
When ignition switch is not in the ON position, power is not applied to the shift lock solenoid in the shift lock unit. This causes shift lock state, and then "P" position is retained.
When an actuating system in the shift lock unit has a malfunction, selector lever is unable to operate from the "P" position even when pressing the brake pedal with the ignition switch ON. However, when pressing the shift lock release button, slider A is forcibly pressed into the shift lock unit. This allows shift lock to be released and selector lever enables the select operation from the "P" position.
CAUTION:

SHIFT LOCK SYSTEM

Never use the shift lock release button except when the select lever is inoperative even when pressing the brake pedal with the ignition switch ON.

1. Position pin
2. Slider A
3. Slider B
4. Shift lock cover *
A. A/T shift selector assembly
B. Brake pedal, upper
C. Center console
*: Shift lock release button becomes operative by removing shift lock cover.

Component Description

2. Shift lock unit
3. A/T shift selector connector
4. Stop lamp switch
5. Shift lock solenoid
6. Lock plate
7. Brake pedal

Component		Function
Shift lock unit	Shift lock solenoid	Activated by the ignition switch and stop lamp signals, it holds the relative positions of sliders A and B.
	Lock plate	Restricts position pin moving.
	Shift lock release button	Pressing the shift lock release button cancels the shift lock forcibly.
Position pin	Links with selector knob button and restricts selector lever shift operation.	
Stop lamp switch	- When brake pedal is depressed, stop lamp switch turns ON. - When stop lamp switch turns ON, power is supplied to shift lock unit.	

ON BOARD DIAGNOSTIC (OBD) SYSTEM

< SYSTEM DESCRIPTION >

ON BOARD DIAGNOSTIC (OBD) SYSTEM

Diagnosis Description

The A/T system has two self-diagnostic systems.
The first is the emission-related on board diagnostic system (OBD-II) performed by the TCM in combination with the ECM. A malfunction is indicated by the MIL (malfunction indicator lamp) and is stored as a DTC in the ECM memory and in the TCM memory.
The second is the TCM original self-diagnosis indicated by the TCM. A malfunction history is stored in the TCM memory. The detected items are overlapped with OBD-II self-diagnostic items. For details, refer to EC541, "DTC Index".

OBD FUNCTION

The ECM provides emission-related on board diagnostic (OBD-II) functions for the A/T system.
One function is to receive a signal from the TCM used with OBD-related parts of the A/T system. The signal is sent to the ECM when a malfunction occurs in the corresponding OBD-related part.
The other function is to indicate a diagnostic result by means of the MIL (malfunction indicator lamp) on the instrument panel. Sensors, switches and solenoid valves are used as sensing elements.
The MIL automatically illuminates in "One or Two Trip Detection Logic" when a malfunction is sensed in relation to A/T system parts. For details, refer to EC-111, "Diagnosis Description".

CONSULT-III APPLICATION ITEMS

Diagnostic test mode	Function
Self Diagnostic Results	Retrieve DTC from ECU and display diagnostic items.
Data Monitor	Monitor the input/output signal of the control unit in real time.
CAN Diagnosis	This mode displays a network diagnosis result about CAN by a diagram.
CAN Diagnostic Support Monitor	It monitors the starts of CAN communication.
DTC \& SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECU Identification	Display the ECU identification number (part number etc.) of the selected system.
Function Test*	This mode can show results of self-diagnosis of ECU with either "OK" or "NG". For engine, more prac- tical tests regarding sensors/switches and/or actuators are available.
Special Function*	Other results or histories, etc. that are recorded in ECU are displayed.

*: Although "Function Test" and "Special Function" are selectable, do not use its.

SELF-DIAGNOSTIC RESULTS

Display Items List
Refer to TM-150, "DTC Index".
DATA MONITOR
Display Items List

		X: Standard, 一: Not applicable, $\boldsymbol{\nabla}$: Option			
Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
VHCL/S SE-A/T	(km/h or mph)	X	X	∇	Displays the vehicle speed calculated by the TCM from the output shaft revolution.
ESTM VSP SIG	(km/h or mph)	X	-	∇	Displays the vehicle speed signal received via CAN communication.
OUTPUT REV	(rpm)	X	X	∇	Displays the output shaft revolution calculated from the pulse signal of output speed sensor.
INPUT SPEED	(rpm)	X	X	∇	Displays the input shaft revolution calculated from front sun gear revolution and front carrier revolution.
F SUN GR REV	(rpm)	-	-	∇	Displays the front sun gear revolution calculated from the pulse signal of input speed sensor 1.
F CARR GR REV	(rpm)	-	-	∇	Displays the front carrier gear revolution calculated from the pulse signal of input speed sensor 2.
ENGINE SPEED	(rpm)	X	X	∇	Displays the engine speed received via CAN communication.
TC SLIP SPEED	(rpm)	-	X	∇	Displays the revolution difference between input speed and engine speed.
ACCELE POSI	(0.0/8)	X	-	∇	Displays the accelerator position estimated value received via CAN communication.
THROTTLE POSI	(0.0/8)	X	X	∇	Displays the throttle position received via CAN communication.

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
ATF TEMP 1	$\left({ }^{\circ} \mathrm{C}\right.$ or $\left.{ }^{\circ} \mathrm{F}\right)$	X	X	∇	Displays the ATF temperature of oil pan calculated from the signal voltage of A / T fluid temperature sensor.
ATF TEMP 2	$\left({ }^{\circ} \mathrm{C}\right.$ or $\left.{ }^{\circ} \mathrm{F}\right)$	X	X	∇	Displays the ATF temperature estimated value of torque converter outlet calculated from the signal voltage of A / T fluid temperature sensor.
ATF TEMP SE 1	(V)	-	-	∇	Displays the signal voltage of A / T fluid temperature sensor.
BATTERY VOLT	(V)	X	-	∇	Displays the power supply voltage of TCM.
LINE PRES SOL	(A)	-	X	∇	Displays the command current from TCM to the line pressure solenoid.
TCC SOLENOID	(A)	-	X	∇	Displays the command current from TCM to the torque converter clutch solenoid.
L/B SOLENOID	(A)	-	X	∇	Displays the command current from TCM to the low brake solenoid.
FR/B SOLENOID	(A)	-	X	∇	Displays the command current from TCM to the front brake solenoid.
HLR/C SOL	(A)	-	X	∇	Displays the command current from TCM to the high and low reverse clutch solenoid.
I/C SOLENOID	(A)	-	X	∇	Displays the command current from TCM to the input clutch solenoid.
D/C SOLENOID	(A)	-	X	∇	Displays the command current from TCM to the direct clutch solenoid.
2346/B SOL	(A)	-	X	∇	Displays the command current from TCM to the 2346 brake solenoid.
L/P SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the line pressure solenoid, and displays the monitor value.
TCC SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the torque converter clutch solenoid, and displays the monitor value.
L/B SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the low brake solenoid, and displays the monitor value.
FR/B SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the front brake solenoid, and displays the monitor value.
HLR/C SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the high and low reverse clutch solenoid, and displays the monitor value.
I/C SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the input clutch solenoid, and displays the monitor value.
D/C SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the direct clutch solenoid, and displays the monitor value.
2346/B SOL MON	(A)	-	-	∇	Monitors the command current from TCM to the 2346 brake solenoid, and displays the monitor value.
GEAR RATIO		-	X	∇	Displays the gear ratio calculated from input revolution and output revolution.

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
ENGINE TORQUE	(Nm)	-	-	∇	Displays the engine torque estimated value received via CAN communication.
ENG TORQUE D	(Nm)	-	-	∇	Displays the engine torque estimated value reflected the requested torque of each control unit received via CAN communication.
INPUT TRQ S	(Nm)	-	-	∇	Displays the input torque using for the oil pressure calculation process of shift change control.
INPUT TRQ L/P	(Nm)	-	-	∇	Displays the input torque using for the oil pressure calculation process of line pressure control.
TRGT PRES L/P	(kPa, $\mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of torque converter clutch solenoid valve calculated by the oil pressure calculation process of lock-up control.
TRGT PRES TCC	(kPa, $\mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of torque converter clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRES L/B	(kPa, $\mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of low brake solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRE FR/B	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of front brake solenoid valve calculated by the oil pressure calculation process of shift change control.
TRG PRE HLR/C	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of high and low reverse clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRES I/C	(kPa, $\mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of input clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRES D/C	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of direct clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRG PRE 2346/B	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of 2346 brake solenoid valve calculated by the oil pressure calculation process of shift change control.
SHIFT PATTERN		-	-	∇	Displays the gear change data using the shift pattern control.
VEHICLE SPEED	(km/h or mph)	-	-	∇	Displays the vehicle speed for control using the control of TCM.
RANGE SW 4	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 4.
RANGE SW 3	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 3.
RANGE SW 2	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 2.
RANGE SW 1	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 1.
SFT DWN ST SW	(ON/OFF)	X	-	∇	- Displays the operation status of paddle shifter (down switch). - Not mounted but displayed.

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
SFT UP ST SW	(ON/OFF)	X	-	∇	- Displays the operation status of paddle shifter (up switch). - Not mounted but displayed.
DOWN SW LEVER	(ON/OFF)	X	-	∇	Displays the operation status of selector lever (down switch).
UP SW LEVER	(ON/OFF)	X	-	∇	Displays the operation status of selector lever (up switch).
NON M-MODE SW	(ON/OFF)	X	-	∇	Displays whether the selector lever is in any position other than manual shift gate position.
MANU MODE SW	(ON/OFF)	X	-	∇	Displays whether the selector lever is in the manual shift gate position.
DS RANGE	(ON/OFF)	-	-	∇	Displays whether it is the DS mode.
1 POSITION SW	(ON/OFF)	X	-	∇	- Displays the reception status of 1 position switch signal received via CAN communication. - Not mounted but displayed.
OD CONT SW	(ON/OFF)	X	-	∇	- Displays the reception status of overdrive control switch signal received via CAN communication. - Not mounted but displayed.
BRAKESW	(ON/OFF)	X	-	∇	Displays the reception status of stop lamp switch signal received via CAN communication.
POWERSHIFT SW	(ON/OFF)	X	-	∇	- Displays the reception status of POWER mode signal received via CAN communication. - Not mounted but displayed.
ASCD-OD CUT	(ON/OFF)	X	-	∇	Displays the reception status of ASCD OD cancel request signal received via CAN communication.
ASCD-CRUISE	(ON/OFF)	X	-	∇	Displays the reception status of ASCD operation signal received via CAN communication.
ABS SIGNAL	(ON/OFF)	X	-	∇	Displays the reception status of ABS operation signal received via CAN communication.
TCS GR/P KEEP	(ON/OFF)	X	-	∇	Displays the reception status of TCS gear keep request signal received via CAN communication.
TCS SIGNAL 2	(ON/OFF)	X	-	∇	Displays whether the reception value of A / T shift schedule change demand signal received via CAN communication is "cold".
TCS SIGNAL 1	(ON/OFF)	X	-	∇	Displays whether the reception value of A / T shift schedule change demand signal received via CAN communication is "warm".
LOW/B PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of low brake.
HC/IC/FRB PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of high and low reversed clutch, input clutch or front brake.
IC/FRB PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of input clutch or front brake.

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	$\begin{aligned} & \text { SELEC- } \\ & \text { TION } \\ & \text { FROM } \\ & \text { ITEM } \end{aligned}$	
HLR/C PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of high and low reversed clutch.
W/O THL POS	(ON/OFF)	X	-	∇	Displays the kickdown condition signal status received via CAN communication.
CLSD THL POS	(ON/OFF)	X	-	∇	Displays the idling status signal status received via CAN communication.
DRV CST JUDGE	(DRIVE/COAST)	-	-	∇	Displays the judgment results of "driving" or "coasting" judged by TCM.
SHIFT IND SIGNAL		-	-	∇	Displays the transmission value of shift position signal transmitted via CAN communication.
STARTER RELAY	(ON/OFF)	-	-	∇	Displays the command status from TCM to starter relay.
F-SAFE IND/L	(ON/OFF)	-	-	∇	Displays the transmission status of A/T CHECK indicator lamp signal transmitted via CAN communication.
ATF WARN LAMP	(ON/OFF)	-	-	∇	- Displays the transmission status of ATF temperature signal transmitted via CAN communication. - Not mounted but displayed.
MANU MODE IND	(ON/OFF)	-	-	∇	Displays the transmission status of manual mode signal transmitted via CAN communication.
ON OFF SOL MON	(ON/OFF)	-	-	∇	Monitors the command value from TCM to the anti-interlock solenoid, and displays the monitor status.
START RLY MON	(ON/OFF)	-	-	∇	Monitors the command value from TCM to the starter relay, and displays the monitor status.
ON OFF SOL	(ON/OFF)	-	-	∇	Displays the command status from TCM to antiinterlock solenoid.
SLCT LVR POSI		-	X	∇	Displays the shift positions recognized by TCM.
GEAR		-	X	∇	Displays the current transmission gear position recognized by TCM.
NEXT GR POSI		-	-	∇	Displays the target gear position of gear change that is calculated based on the vehicle speed information and throttle information.
SHIFT MODE		-	-	∇	Displays the transmission driving mode recognized by TCM.
D/C PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of direct clutch.
FR/B PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of front brake.
2346/B PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of 2346 brake.
2346B/DC PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of 2346 brake or direct clutch.

DTC \& SRT CONFIRMATION

DTC Work Support

Item	Description	Check item
1ST GR FNCTN P0731	Following items for "1GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	- Input clutch solenoid valve - Front brake solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Output speed sensor - Input speed sensor 1, 2 - Each clutch and brake - Hydraulic control circuit - Harness or connectors - Torque converter clutch solenoid valve - Torque converter - Input speed sensor 1, 2 - Hydraulic control circuit
2ND GR FNCTN P0732	Following items for "2GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
3RD GR FNCTN P0733	Following items for "3GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
4TH GR FNCTN P0734	Following items for "4GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
5TH GR FNCTN P0735	Following items for "5GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
6TH GR FNCTN P0729	Following items for "6GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
7TH GR FNCTN P1734	Following items for "7GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
TCC SOL FNCTN CHECK	Following items for "TCC solenoid function" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	

DTC/CIRCUIT DIAGNOSIS U1000 CAN COMM CIRCUIT

Description

CAN (Controller Area Network) is a serial communication line for real-time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent malfunction detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independently). In CAN communication, control units are connected with 2 communication lines (CAN-H line, CAN-L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
U1000	CAN Communication Line	TCM cannot transmit or receive CAN communication signals continuously for 2 seconds or more when the ignition switch is ON.	• Harness or connectors (CAN communication line is open or shorted.)
		TCM	

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Run engine for at least 2 consecutive seconds at idle speed.
3. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sist) With GST
Follow the procedure "With CONSULT-III"
Is "U1000" detected?
```
YES >> Go to TM-68, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

P0615 STARTER RELAY

Description

TCM prohibits cranking other than at " P " or " N " position.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0615	Starter Relay Circuit	The starter monitor value is OFF when the ignition switch is ON at the" P" and "N" positions.	• Harness or connectors (Starter relay and TCM circuit is open or shorted.) - Starter relay circuit

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Shift the selector lever to " P " and " N " positions.
2. Turn ignition switch ON and wait 2 seconds or more.
3. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P0615" detected?

```
YES >> Go to TM-69, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

INFOID:0000000005250029

1.check starter relay signal

1. Turn ignition switch ON.
2. Check voltage between IPDM E/R connector terminal and ground.

| IPDM E/R connector | | | Condition | |
| :---: | :---: | :---: | :---: | :---: |\quad Voltage (Approx.)

Is the inspection result normal?

YES >> Check starter relay circuit. Refer to STR-10, "Wiring Diagram - STARTING SYSTEM -".
NO >> GO TO 2.
2. CHECK HARNESS BETWEEN A/T ASSEMBLY AND IPDM E/R (PART 1)

1. Turn ignition switch OFF.
2. Disconnect A / T assembly connector and IPDM E/R connector.
3. Check the continuity between A / T assembly vehicle side harness connector terminal and IPDM E/R vehicle side harness connector terminal.

A/T assembly vehicle side harness connector		IPDM E/R vehicle side harness connector		Continuity
Connector	Terminal	Connector	Terminal	
F51	9	E5	30	Existed

Is the inspection result normal?
YES >> GOTO 3.
NO >> Repair or replace damaged parts.
3. CHECK HARNESS BETWEEN A/T ASSEMBLY AND IPDM E/R (PART 2)

Check the continuity between A/T assembly vehicle side harness connector terminal and ground.

A/T assembly vehicle side harness connector		Ground	Continuity
Connector	Terminal		
	F51	9	

Is the inspection result normal?
YES >> GO TO 4.
NO >> Repair or replace damaged parts.
4. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0705 TRANSMISSION RANGE SWITCH A

Description

INFOID:0000000005250030
The transmission range switch detects the selector lever position and transmits a signal to the TCM.
DTC Logic
INFOID:0000000005250031

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause		
P0705		Transmission Range Sensor A Circuit (PRNDL Input)	Transmission range switch sig- nals input with impossible pat- tern.		• Harness or connectors
:---					
(Transmission range switch-					
es 1, 2, 3, 4 and TCM circuit					
is open or shorted.)					
- Transmission range switches					
$1,2,3$ and 4					

DTC CONFIRMATION PROCEDURE
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "ACCELE POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Shift the selector lever throughout the entire shift position from "P" to "D". (Hold the selector lever at each position for 2 seconds or more)
4. Drive vehicle and maintain the following conditions for 2 seconds or more.
```
ACCELE POSI : More than 1.0/8
VHCL/S SE-A/T : 10 km/h (7 MPH) or more
```

5. Perform "Self Diagnostic Results" in "TRANSMISSION".
(오한) With GST
Follow the procedure "With CONSULT-III".
Is "P0705" detected?
```
YES >> Go to TM-71, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD:
Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0710 TRANSMISSION FLUID TEMPERATURE SENSOR A
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01A (VQ35HR)]

P0710 TRANSMISSION FLUID TEMPERATURE SENSOR A

Description

The A/T fluid temperature sensor detects the A/T fluid temperature and transmits a signal to the TCM.

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0710	Transmission Fluid Temperature Sensor A Circuit	TCM judges that the A / T fluid temperature is $-40^{\circ} \mathrm{C}(-40$ ${ }^{\circ} \mathrm{F}$) or less continuously for 5 seconds while driving at 10 km / h (7 MPH) or more.	- Harness or connectors (Sensor circuit is open.) - A / T fluid temperature sensor
		TCM judges that the A / T fluid temperature is $180^{\circ} \mathrm{C}(356$ ${ }^{\circ} \mathrm{F}$) or more continuously for 5 seconds.	- Harness or connectors (Sensor circuit is short.) - A/T fluid temperature sensor
		TCM judges the following conditions while driving the vehicle at $10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more: - The time required for A / T fluid temperature to rise by $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ exceeds 14 minutes when A / T fluid temperature is $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$ or less. - The time required for A / T fluid temperature to rise by $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ exceeds 7 minutes when A / T fluid temperature is between $-19{ }^{\circ} \mathrm{C}\left(-2^{\circ} \mathrm{F}\right)$ and $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$. - The time required for A / T fluid temperature to rise by $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ exceeds 4 minutes when A / T fluid temperature is between $1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$ and $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.	- Harness or connectors (Sensor circuit is stuck.) - A/T fluid temperature sensor

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

2. CHECK DTC DETECTION

(7) With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 14 minutes or more.

SLCT LVR POSI	$: D$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sis) With GST
Follow the procedure "With CONSULT-III".
Is "P0710" detected?
```
YES >> Go to TM-72, "Diagnosis Procedure".
```

NO >> INSPECTION END

Diagnosis Procedure

P0710 TRANSMISSION FLUID TEMPERATURE SENSOR A

< DTC/CIRCUIT DIAGNOSIS >
Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0717 INPUT SPEED SENSOR A

P0717 INPUT SPEED SENSOR A

Description

The input speed sensor detects input shaft rpm (revolutions per minute). It is located on the input side of the $A /$ T. Monitors revolution of sensor 1 and sensor 2 for non-standard conditions.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0717	Input/Turbine Speed Sensor A Circuit No Signal	The revolution of input speed sensor 1 and/or 2 is 270 rpm or less.	• Harness or connectors (Sensor circuit is open.) Input speed sensor 1 and/or 2

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

```
>> GO TO 2.
```


2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI", "GEAR", "VHCL/S SE-A/T", "CLSD THL POS" and "ENGINE SPEED" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

CAUTION:
Keep the same gear position.
NOTE:
Driving the vehicle uphill (increased engine load) will help maintain the driving conditions required for this test.

SLCT LVR POSI	$:$ D
GEAR	: 2 nd, 3 rd, 4 th, 5 th or 6 th
VHCL/S SE-A/T	: More than $40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$
CLSD THL POS	: OFF
ENGINE SPEED	: More than $1,500 \mathrm{rpm}$

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(©s5) With GST

Follow the procedure "With CONSULT-III".
Is "P0717" detected?

```
YES >> Go to TM-74, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?

P0717 INPUT SPEED SENSOR A

< DTC/CIRCUIT DIAGNOSIS >
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD: Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0720 OUTPUT SPEED SENSOR

P0720 OUTPUT SPEED SENSOR

Description

The output speed sensor detects the revolution of the parking gear and emits a pulse signal. The pulse signal is transmitted to the TCM which converts it into vehicle speed.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0720	Output Speed Sensor Circuit	- The vehicle speed detected by the output speed sensor is $5 \mathrm{~km} / \mathrm{h}$ (3MPH) or less when the vehicle speed transmitted from the unified meter and $A /$ C amp. to TCM is $20 \mathrm{~km} / \mathrm{h}$ or more. (Only when starts after the ignition switch is turned ON.) - The vehicle speed transmitted from the unified meter and $\mathrm{A} / \mathrm{C} \mathrm{amp}$. to TCM does not decrease despite the 36 $\mathrm{km} / \mathrm{h}(23 \mathrm{MPH}$) or more of deceleration in vehicle speed detected by the output speed sensor. when the vehicle speed detected by the output speed sensor is $36 \mathrm{~km} / \mathrm{h}$ (23 MPH) or more and the vehicle speed transmitted from the unified meter and A / C amp. to TCM is 24 (15 MPH) or more.	- Harness or connectors (Sensor circuit is open.) - Output speed sensor

DTC CONFIRMATION PROCEDURE CAUTION:

- Always drive vehicle at a safe speed.
- Be careful not to rev engine into the red zone on the tachometer.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "ESTM VSP SIG" in "Data Monitor" in "TRANSMISSION"
3. Drive vehicle and maintain the following conditions for 60 seconds or more.

ESTM VSP SIG : $40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$ or more
4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sist) With GST
Follow the procedure "With CONSULT-III".
Is "P0720" detected?

```
YES >> Go to TM-77, "Diagnosis Procedure".
NO >> INSPECTION END
```


P0720 OUTPUT SPEED SENSOR

< DTC/CIRCUIT DIAGNOSIS >

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0725 ENGINE SPEED

Description

The engine speed signal is transmitted from the ECM to the TCM with CAN communication line.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0725	Engine Speed Input Circuit	- TCM does not receive the CAN communication signal from the ECM. - The engine speed is more less 150 rpm even if the vehicle speed is more than $10 \mathrm{~km} /$ h (7 MPH).	Harness or connectors (ECM to TCM circuit is open or shorted.)

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.
```
SLCT LVR POSI : D
VHCL/S SE-A/T : More than 10km/h (7 MPH)
```

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P0725" detected?
YES >> Go to TM-78, "Diagnosis Procedure".
NO >> INSPECTION END
Diagnosis Procedure

1.CHECK DTC OF ECM

With CONSULT-III

1. Turn ignition switch ON.
2. Perform "Self Diagnostic Results" in "ENGINE".

Is the inspection result normal?

YES >> GO TO 2.

NO >> Check DTC detected item. Refer to EC-124, "CONSULT-III Function".
2. CHECK DTC OF TCM

With CONSULT-III

Perform "Self Diagnostic Results" in "TRANSMISSION".
Is any DTC other than "P0725" detected?
YES >> GOTO 3.
NO >> Check DTC detected item. Refer to TM-62, "CONSULT-III Function (TRANSMISSION)".
3. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0729 6GR INCORRECT RATIO

< DTC/CIRCUIT DIAGNOSIS >

[7AT: RE7R01A (VQ35HR)]

P0729 6GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 6GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0729	Gear 6 Incorrect Ratio	The gear ratio is: - 0.914 or more - 0.810 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-81, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. check atf Temperature
(7) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1 \quad: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "6TH GR FNCTN P0729" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 6$ th
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0729" is detected, check the DTC. Refer to TM150, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 6 \mathrm{th}$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0729" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-81, "Diagnosis Procedure".
YES-4 >> "P0729" is detected: Go to TM-81, "Diagnosis Procedure".
NO >> GOTO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0730 INCORRECT GEAR RATIO

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]

P0730 INCORRECT GEAR RATIO

Description

- TCM detects a high-rpm state of the under drive sun gear.
- The number of revolutions of the under drive sun gear is calculated with the input speed sensor 1 and 2.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0730	Incorrect Gear Ratio	The revolution of under drive sun gear is 8,000 rpm or more. NOTE: Not detected when in "P" or "N" position and during a shift to "P" or "N" position.	• 2346 brake solenoid valve • Front brake solenoid valve Input speed sensor 1, 2

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-82, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "Self Diagnostic Results" in "ENGINE".
3. Drive vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.
Hold the accelerator pedal as steady as possible.

ENGINE SPEED	Same value as the Freeze Frame Data.
VEHICLE SPEED	Same value as the Freeze Frame Data.
B/FUEL SCHDL	Same value as the Freeze Frame Data.

[^2]
P0730 INCORRECT GEAR RATIO

$\frac{\text { < DTC/CIRCUIT DIAGNOSIS > }}{\text { NO >> Repair or replace damaged parts. }}$

P0731 1GR INCORRECT RATIO

P0731 1GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 1GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0731	Gear 1 Incorrect Ratio	The gear ratio is: - 5.219 or more - 4.629 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-85, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. check atf Temperature
(7) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "1ST GR FNCTN P0731" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 1 \mathrm{st}$
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0731" is detected, check the DTC. Refer to TM150, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 1 \mathrm{st}$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0731" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-85, "Diagnosis Procedure".
YES-4 >> "P0731" is detected: Go to TM-85, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0732 2GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 2GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0732	Gear 2 Incorrect Ratio	The gear ratio is: - 3.386 or more - 3.002 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-87, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. check atf Temperature

(i) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "2ND GR FNCTN P0732" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 2 \mathrm{nd}$
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0732" is detected, check the DTC. Refer to TM150, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 2 n d$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0732" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-87, "Diagnosis Procedure".
YES-4 >> "P0732" is detected: Go to TM-87, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0733 3GR INCORRECT RATIO

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]

P0733 3GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 3GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0733	Gear 3 Incorrect Ratio	The gear ratio is: - 2.166 or more - 1.920 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-89, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. check atf Temperature
(7) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?
YES >> GOTO 3.
NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "3RD GR FNCTN P0733" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 3 \mathrm{rd}$
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0733" is detected, check the DTC. Refer to TM150, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 3 r d$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0733" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-89, "Diagnosis Procedure".
YES-4 >> "P0733" is detected: Go to TM-89, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0734 4GR INCORRECT RATIO

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]

P0734 4GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 4GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0734	Gear 4 Incorrect Ratio	The gear ratio is: - 1.497 or more - 1.327 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-91, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. check atf Temperature
(7) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1 \quad: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "4TH GR FNCTN P0734" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 4$ th
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0734" is detected, check the DTC. Refer to TM150, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 4$ th
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0734" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-91, "Diagnosis Procedure".
YES-4 >> "P0734" is detected: Go to TM-91, "Diagnosis Procedure".
NO >> GOTO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0735 5GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 5GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0735	Gear 5 Incorrect Ratio	The gear ratio is: - 1.060 or more - 0.940 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-93, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.

2. check atf temperature

(9) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "5TH GR FNCTN P0735" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 5$ th
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0735" is detected, check the DTC. Refer to TM150, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 5$ th
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0735" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-93, "Diagnosis Procedure".
YES-4 >> "P0735" is detected: Go to TM-93, "Diagnosis Procedure".
NO >> GOTO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0740 TORQUE CONVERTER

Description

- The torque converter clutch solenoid valve is activated, with the gear in D2, D3, D4, D5, D6, D7, M2, M3, M4, M5, M6 and M7 by the TCM in response to signals transmitted from the vehicle speed sensor and accelerator pedal position sensor (throttle position sensor). Torque converter clutch piston operation will then be controlled.
- Lock-up operation, however, is prohibited when A / T fluid temperature is too low.
- When the accelerator pedal is depressed (less than 1.0/8) in lock-up condition, the engine speed should not change abruptly. If there is a big jump in engine speed, there is no lock-up.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0740	Torque Converter Clutch Cir-	The torque converter clutch so- lenoid valve monitor value is 0.4 A or less when the torque con- verter clutch solenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.)
		Torque converter clutch sole- noid valve	

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VEHICLE SPEED" in "Data Monitor" in "TRANSMISSION"
3. Drive vehicle and maintain the following conditions for 30 seconds or more.

NOTE:
Driving the vehicle uphill (increased engine load) will help maintain the driving conditions required for this test.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 2 \mathrm{nd}$
VEHICLE SPEED	$: 40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(s) With GST

Follow the procedure "With CONSULT-III".
Is "P0740" detected?
YES >> Go to TM-94, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

P0740 TORQUE CONVERTER

< DTC/CIRCUIT DIAGNOSIS >
Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0744 TORQUE CONVERTER

Description

This malfunction is detected when the A/T does not lock-up as instructed by the TCM. This is not only caused by electrical malfunction (circuits open or shorted) but also by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0744	Torque Converter Clutch Circuit Intermittent	The lock-up is not performed in spite of within the lock-up area.	- Harness or connectors - Torque converter clutch solenoid valve - Torque converter - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "MANU MODE SW", "GEAR" and "VEHICLE SPEED" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 10 seconds or more.

NOTE:
Driving the vehicle uphill (increased engine load) will help maintain the driving conditions required for this test.

MANU MODE SW	$:$ ON
GEAR	$: 2 \mathrm{nd}$
VEHICLE SPEED	$: 40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(esis) With GST
Follow the procedure "With CONSULT-III".
Is "P0744" detected?
YES >> Go to TM-96, "Diagnosis Procedure".
NO >> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD: Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0745 PRESSURE CONTROL SOLENOID A

< DTC/CIRCUIT DIAGNOSIS >

[7AT: RE7R01A (VQ35HR)]

P0745 PRESSURE CONTROL SOLENOID A

Description

The line pressure solenoid valve regulates the oil pump discharge pressure to suit the driving condition in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0745	Pressure Control Solenoid A	The line pressure solenoid valve monitor value is 0.4 A or less when the line pressure so- lenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.) - Line pressure solenoid valve

DTC CONFIRMATION PROCEDURE
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT" and "SLCT LVR POSI" in "Data Monitor" in "TRANSMISSION".
3. Shift the selector lever to " N " position.
4. Maintain the following conditions for 5 seconds or more.
```
BATTERY VOLT : 9 V or more
SLCT LVR POSI : N/P
```

5. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sist) With GST
Follow the procedure "With CONSULT-III".
Is "P0745" detected?
```
YES >> Go to TM-97, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0750 SHIFT SOLENOID A

P0750 SHIFT SOLENOID A

Description

- Anti-interlock solenoid valve prevents the simultaneous activation of the input clutch and the low brake.
- The anti-interlock solenoid valve is an ON/OFF type solenoid valve.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0750	Shift Solenoid A	- The anti-interlock solenoid valve monitor value is ON when the anti-interlock solenoid valve command value is OFF. - The anti-interlock solenoid valve monitor value is OFF when the anti-interlock solenoid valve command value is ON .	- Harness or connectors (Solenoid valve circuit is open or shorted.) - Anti-interlock solenoid valve

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 1 \mathrm{st}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(sis) With GST

Follow the procedure "With CONSULT-III".
Is "P0750" detected?
YES >> Go to TM-98, "Diagnosis Procedure".
NO >> INSPECTION END
Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).

NO >> Repair or replace damaged parts.

P0775 PRESSURE CONTROL SOLENOID B
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01A (VQ35HR)]

P0775 PRESSURE CONTROL SOLENOID B

Description

- The Input clutch solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The Input clutch solenoid valve controls the input clutch control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0775	Pressure Control Solenoid B	The input clutch solenoid valve monitor value is 0.4 A or less when the input clutch solenoid valve command value is more than 0.75 A.	- Harness or connectors (Solenoid valve circuit is open or shorted.) Input clutch solenoid valve

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 1$ st
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(esti) With GST

Follow the procedure "With CONSULT-III".
Is "P0775" detected?
YES >> Go to TM-100, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

1.CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0780 SHIFT

Description

The TCM detects the malfunction of low brake solenoid valve. This is not only caused by electrical malfunction (circuits open or shorted) but also by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0780	Shift Error	- TCM judges that the gear ratio is not switched to that of 4GR (1.412) while shifting from 3GR to 4GR in "D" position. - TCM judges that the engine speed is more than the specified one while shifting from 5GR to 6GR or from 6GR to 7GR in "D" position.	- Anti-interlock solenoid valve - Low brake solenoid valve - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2.CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI", "ACCELE POSI" and "GEAR" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions.

SLCT LVR POSI	$: D$
ACCELE POSI	$:$ More than $1.0 / 8$
GEAR	$: 3$ rd $\rightarrow 4$ th

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sisi) With GST
Follow the procedure "With CONSULT-III".
Is "P0780" detected?

> YES >> Go to TM-101, "Diagnosis Procedure".

NO >> INSPECTION END

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P0795 PRESSURE CONTROL SOLENOID C

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]

P0795 PRESSURE CONTROL SOLENOID C

Description

- The front brake solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The front brake solenoid valve controls the front brake control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0795	Pressure Control Solenoid C	The front brake solenoid valve monitor value is 0.4 A or less when the front brake solenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.) • Front brake solenoid valve

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 7$ th
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(esti) With GST

Follow the procedure "With CONSULT-III".
Is "P0795" detected?
YES >> Go to TM-102, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

1.cheCk intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P1705 TP SENSOR

< DTC/CIRCUIT DIAGNOSIS >

P1705 TP SENSOR

Description

- The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly.
- The accelerator pedal position sensor detects the accelerator position.
- The accelerator pedal position sensor transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM.
- The TCM receives accelerator pedal position signal from the ECM via CAN communication.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1705	Accelerator Pedal Position Sen- sor Signal	TCM detects the difference be- tween two accelerator pedal po- sition signals received from ECM via CAN communication.	Harness or connectors (Sensor circuit is open or short- ed.)

DTC CONFIRMATION PROCEDURE CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

SLCT LVR POSI	$: D$
VHCL/S SE-A/T	$: 5 \mathrm{~km} / \mathrm{h}(3 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P1705" detected?

```
YES >> Go to TM-103, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1.CHECK DTC OF ECM

With CONSULT-III

1. Turn ignition switch ON .
2. Perform "Self Diagnostic Results" in "ENGINE".

Is any DTC detected?

$$
\begin{array}{ll}
\text { YES } & \gg \text { Check DTC detected item. Refer to EC-541, "DTC Index". } \\
\text { NO >> GO TO 2. } \\
\text { 2.CHECK DTC OF TCM }
\end{array}
$$

(1) With CONSULT-III

Perform "Self Diagnostic Results" in "TRANSMISSION".
Is any DTC other than "P1705" detected?

YES >> Check DTC detected item. Refer to TM-150, "DTC Index".
NO >> GO TO 3.
3. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P1721 VEHICLE SPEED SIGNAL

Description

The vehicle speed signal is transmitted from unified meter and A/C amp. to TCM by CAN communication line. The signal functions as an auxiliary device to the output speed sensor when it is malfunctioning. The TCM will then use the vehicle speed signal.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1721	Vehicle Speed Signal	- The vehicle speed transmitted from the unified meter and A / C amp. to TCM is $5 \mathrm{~km} /$ h (3MPH) or less when the vehicle speed detected by the output speed sensor is 20 km / h or more. (Only when starts after the ignition switch is turned ON.) - The vehicle speed detected by the output speed sensor does not decrease despite the $36 \mathrm{~km} / \mathrm{h}(23 \mathrm{MPH})$ or more of deceleration in vehicle speed received from the unified meter and A / C amp. when the vehicle speed transmitted from the unified meter and A/C amp. to TCM is $36 \mathrm{~km} / \mathrm{h}$ (23 MPH) or more and the vehicle speed detected by the output speed sensor is 24 (15 MPH) or more.	Harness or connectors (Sensor circuit is open or shorted.)

DTC CONFIRMATION PROCEDURE CAUTION:

- Always drive vehicle at a safe speed.
- Be careful not to rev engine into the red zone on the tachometer.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

```
>> GO TO 2.
```

2. CHECK DTC DETECTION

(i) With CONSULT-III

1. Start the engine.
2. Select "ESTM VSP SIG" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 60 seconds or more.

$$
\text { ESTM VSP SIG } \quad: 40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH}) \text { or more }
$$

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P1721" detected?

```
YES >> Go to TM-106, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

1. CHECK DTC OF UNIFIED METER AND A/C AMP.

(1) With CONSULT-III

Perform "Self Diagnostic Results" in "METER/M\&A".
Is any DTC detected?
YES >> Check DTC detected item. Refer to MWI-119, "DTC Index".
NO >> GO TO 2.
2. CHECK DTC OF TCM
(D) With CONSULT-III

Perform "Self Diagnostic Results" in "TRANSMISSION".
Is any DTC other than "P1721" detected?
YES >> Check DTC detected item. Refer to TM-150, "DTC Index".
NO >> GO TO 3.
3. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P1730 INTERLOCK

Description

Fail-safe function to detect interlock conditions.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1730	Interlock	The output speed sensor detects the deceleration of $12 \mathrm{~km} /$ h (7 MPH) or more for $1 \mathrm{sec}-$ ond.	- Harness or connectors (Solenoid valve circuit is open or shorted.) - Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Hydraulic control circuit

NOTE:

When the vehicle is driven fixed in second gear, a input speed sensor malfunction is displayed, but this is not a input speed sensor malfunction.

DTC CONFIRMATION PROCEDURE

CAUTION:

- "TM-108, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "GEAR" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle the following condition.
```
SLCT LVR POSI : D
GEAR : 1st through 7th
```

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(혼) With GST
Follow the procedure "With CONSULT-III".
Is "P1730" detected?
YES >> Go to TM-108, "Diagnosis Procedure".
NO >> INSPECTION END
Judgment of A/T Interlock
Refer to TM-146, "Fail-Safe".

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P1734 7GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 7GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1734	Gear 7 Incorrect Ratio	The gear ratio is: - 0.818 or more - 0.728 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-110, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

>> GO TO 2.
 2. check atf temperature

(1) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284{ }^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

(1) With CONSULT-III

1. Select "7TH GR FNCTN P1734" of "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR : 7th
ACCELE POSI : $0.7 / 8$ or more
VEHICLE SPEED : $10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH}$) or more
3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P1734" is detected, check the DTC. Refer to TM150, "DTC Index".

(sis) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 7$ th
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P1734" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-110, "Diagnosis Procedure".
YES-4 >> "P1734" is detected: Go to TM-110, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1 GR to 7 GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure
3. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P1815 M-MODE SWITCH

Description

- The manual mode switch [manual mode select switch and manual mode position select switch (shift-up/shiftdown)] is installed in the A / T shift selector assembly. It transmits manual mode switch, shift up and shift down switch signals to unified meter and A / C amp. Then unified meter and A / C amp. transmits signals to TCM via CAN communication.
- Manual mode select switch transmits manual mode switch signal or non-manual mode switch signal to unified meter and A / C amp. Then TCM receives signals from unified meter and A / C amp. via CAN communication.
- The manual mode position select switch (shift-up) transmits manual mode shift up signal to the unified meter and A / C amp. Then TCM receives signal from the unified meter and A / C amp. via CAN communication.
- The manual mode position select switch (shift-down) transmits manual mode shift down signal to the unified meter and A / C amp. Then TCM receives signal from the unified meter and $A / C a m p$. via CAN communication.
- The TCM transmits manual mode indicator signal to the unified meter and A / C amp. via CAN communication line.
DTC Logic
INFOID:0000000005250101
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1815	Manual Mode Switch Circuit	TCM monitors manual mode, non manual mode, up or down switch signal, and detects as ir- regular when impossible input pattern occurs 2 second or more.	• Harness or connectors (These switches circuit is open or shorted.) Manual mode select switch (Into A/T shift selector) Manual mode position select switch (Into A/T shift selector)

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Turn ignition switch ON.
2. Select "SLCT LVR POSI" and "MANU MODE SW" in "Data Monitor" in "TRANSMISSION".
3. Maintain the following each conditions more than 2 seconds.
```
SLCT LVR POSI : D
MANU MODE SW : ON
```

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P1815" detected?

$$
\begin{array}{ll}
\text { YES } & \text { >> Go to TM-111, "Diagnosis Procedure". } \\
\text { NO } & >\text { INSPECTION END }
\end{array}
$$

Diagnosis Procedure

1. CHECK MANUAL MODE SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect A / T shift selector connector.
3. Turn ignition switch ON .
4. Check voltage between A / T shift selector vehicle side harness connector terminals.

A/T shift selector vehicle side harness connector			Voltage (Approx.)
Connector	Terminal		
	+	-	
M137	1	4	Battery voltage
	2		
	3		
	5		

Is the inspection result normal?
$\begin{array}{ll}\text { YES } & >\text { GOTO } 2 . \\ \text { NO }\end{array}>$ GOTO 3.
NO >> GO TO 3.
2. CHECK MANUAL MODE SWITCH

1. Turn ignition switch OFF.
2. Check manual mode switch. Refer to TM-113, "Component Inspection (Manual Mode Switch)". Is the inspection result normal?
YES >> GOTO 6.
NO >> Repair or replace damaged parts.
3. check ground circuit
4. Turn ignition switch OFF.
5. Check continuity between A / T shift selector vehicle side harness connector terminal and ground.

A/T shift selector vehicle side harness connector	Ground	Continuity	
Connector			
M137			Existed

Is the inspection result normal?
YES >> GOTO 4.
NO >> Repair or replace damaged parts.
4. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND UNIFIED METER AND A/C AMP. (STEP 1)

1. Disconnect unified meter and A / C amp. connector.
2. Check continuity between A / T shift selector vehicle side harness connector terminals and unified meter and A / C amp. vehicle side harness connector terminals.

A/T shift selector vehicle side harness connector		Unified meter and A/C amp. vehicle side harness connector		Continuity
Connector	Terminal	Connector	Terminal	
M137	1	M66	10	Existed
	2		25	
	3		5	
	5		11	

Is the inspection result normal?
YES >> GOTO 5.
NO >> Repair or replace damaged parts.
5. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND UNIFIED METER AND A/C AMP. (STEP 2)

Check continuity between A/T shift selector vehicle side harness connector terminals and ground.

A/T shift selector vehicle side harness connector			
M137	Ground	Continuity	
	Terminal		
		1	
	2		Not existed

Is the inspection result normal?
YES >> GO TO 6.
NO >> Repair or replace damaged parts.
6. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> GO TO 7.
NO >> Repair or replace damaged parts.
7. CHECK UNIFIED METER AND A/C AMP.

1. Reconnect all the connectors.
2. Turn ignition switch ON.
3. Select "M RANGE SW", "NM RANGE SW", "AT SFT UP SW" and "AT SFT DWN SW" in "Data Monitor" in "METER/M\&A".
4. Check the On/Off operations of each monitor item. Refer to MWI-96, "Reference Value".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD: Exploded View" (AWD).
NO >> Replace unified meter and A/C amp. Refer to MWI-148, "Exploded View".
Component Inspection (Manual Mode Switch)

1. CHECK MANUAL MODE SWITCH

Check continuity between A/T shift selector connector terminals.

A/T shift selector connector			Condition	Continuity
Connector	Terminal			
M137	1	4	Selector lever is shifted to manual shift gate side	Existed
			Other than the above	Not existed
			Selector lever is shifted to - side	Existed
			Other than the above	Not existed
	3		Selector lever is shifted to + side	Existed
			Other than the above	Not existed
	5		Selector lever is shifted to manual shift gate side	Not existed
			Other than the above	Existed

Is the inspection result normal?

YES >> INSPECTION END
NO >> Repair or replace damaged parts. Refer to TM-168, "Exploded View".

P2713 PRESSURE CONTROL SOLENOID D
 < DTC/CIRCUIT DIAGNOSIS >

P2713 PRESSURE CONTROL SOLENOID D

Description

- The high and low reverse clutch solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The high and low reverse clutch solenoid valve controls the high and low reverse clutch control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P2713	Pressure Control Solenoid D	A DTC is set if the high and low reverse clutch solenoid valve monitor value is 0.4 A or less when the high and low reverse clutch solenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.)
High and low reverse clutch solenoid valve			

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive the vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 3 \mathrm{rd}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(sist) With GST

Follow the procedure "With CONSULT-III".
Is "P2713" detected?
YES >> Go to TM-114, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?

YES	\gg Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD :
	\quad Exploded View" (AWD).
NO	\gg Repair or replace damaged parts.

P2722 PRESSURE CONTROL SOLENOID E
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01A (VQ35HR)]

P2722 PRESSURE CONTROL SOLENOID E

Description

- The low brake solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The low brake solenoid valve controls the low brake control valve in response to a signal transmitted from the TCM.
DTC Logic
INFOID:0000000005250110
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P2722	Pressure Control Solenoid E	A DTC is set if the low brake so- lenoid valve monitor value is 0.4 A or less when the low brake solenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.) - Low brake solenoid valve

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 1 \mathrm{st}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(stㄴ) With GST

Follow the procedure "With CONSULT-III".
Is "P2722" detected?

```
YES >> Go to TM-115, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P2731 PRESSURE CONTROL SOLENOID F
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01A (VQ35HR)]

P2731 PRESSURE CONTROL SOLENOID F

Description

- The 2346 brake solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The 2346 brake solenoid valve controls the 2346 brake control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P2731	Pressure Control Solenoid F	A DTC is set if the 2346 brake solenoid valve monitor value is 0.4 A or less when the 2346 brake solenoid valve command value is more than 0.75 A .	- Harness or connectors (Solenoid valve circuit is open or shorted.) - 2346 brake solenoid valve

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 2 \mathrm{nd}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(돈) With GST

Follow the procedure "With CONSULT-III".
Is "P2731" detected?
YES >> Go to TM-116, "Diagnosis Procedure".
NO >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD : Exploded View" (AWD).
NO >> Repair or replace damaged parts.

P2807 PRESSURE CONTROL SOLENOID G

< DTC/CIRCUIT DIAGNOSIS >

[7AT: RE7R01A (VQ35HR)]

P2807 PRESSURE CONTROL SOLENOID G

Description

- The direct clutch solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The direct clutch solenoid valve controls the direct clutch control valve in response to a signal transmitted from the TCM.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P2807		A DTC is set if the direct clutch solenoid valve monitor value is	• Harness or connectors (Solenoid valve circuit is open or shorted.)
	Pressure Control Solenoid G0.4 A less when the direct clutch solenoid valve command value is more than 0.75 A.	Direct clutch solenoid valve	

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:
If "DTC CONFIRMATION PROCEDURE" has been previously performed, always turn ignition switch OFF. Then wait at least 10 seconds before performing the next test.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

(1) With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 1 \mathrm{st}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(玉stis) With GST
Follow the procedure "With CONSULT-III".
Is "P2807" detected?
```
YES >> Go to TM-117, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

NO >> Repair or replace damaged parts.

MAIN POWER SUPPLY AND GROUND CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[7AT: RE7R01A (VQ35HR)]

MAIN POWER SUPPLY AND GROUND CIRCUIT

Description

Supply power to TCM.
Diagnosis Procedure

1. CHECK TCM POWER SOURCE (PART 1)
2. Turn ignition switch OFF.
3. Disconnect A / T assembly connector.
4. Check voltage between A/T assembly vehicle side harness connector terminal and ground.

assembly v	ess conne	Ground	Condition	Voltage (Approx.)
Connector	Terminal			
F51	2		Always	Battery voltage

Is the inspection result normal?

$$
\text { YES } \quad \gg \text { GO TO } 2 .
$$

$$
\mathrm{NO} \quad \gg \mathrm{GO} \text { TO } 4
$$

2. CHECK TCM POWER SOURCE (PART 2)

Check voltage between A/T assembly vehicle side harness connector terminals and ground.

A/T assembly vehicle side harness connector		Ground	Condition	Voltage (Approx.)
Connector	Terminal			
F51	1		Turn ignition switch ON	Battery voltage
			Turn ignition switch OFF	0 V
	6		Turn ignition switch ON	Battery voltage
	6		Turn ignition switch OFF	0 V

Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES >> GO TO } 3 . \\
\text { NO } & \gg \text { GO TO } 5 .
\end{array}
$$

3. CHECK TCM GROUND CIRCUIT

Check continuity between A/T assembly vehicle side harness connector terminals and ground.

A/T assembly vehicle side harness connector			Continuity
Connector	Terminal		
F51	5		Existed

Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
4.DETECT MALFUNCTIONING ITEM

Check the following.

- Harness for short or open between battery positive terminal and A / T assembly vehicle side harness connector terminal 2. Refer to PG-6, "Wiring Diagram - BATTERY POWER SUPPLY -".
- Battery
- 10A fuse (No.36, located in the fuse, fusible link and relay box). Refer to PG-157, "Fuse and Fusible Link Arrangement".
Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.

MAIN POWER SUPPLY AND GROUND CIRCUIT
< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]

5. CHECK HARNESS BETWEEN IPDM E/R AND A/T ASSEMBLY (PART 1)
6. Turn ignition switch OFF.
7. Disconnect IPDM E/R connector.
8. Check continuity between IPDM E/R vehicle side harness connector terminal and A / T assembly vehicle side harness connector terminals.

IPDM E/R vehicle side harness connector		A/T assembly vehicle side harness connector		Continuity
Connector	Terminal	Connector	Terminal	
E7	58	F51	1	Existed
			6	

Is the inspection result normal?
YES >> GOTO 6.
NO >> Repair or replace damaged parts.
6. CHECK HARNESS BETWEEN IPDM E/R AND A/T ASSEMBLY (PART 2)

Check continuity between A / T assembly vehicle side harness connector terminal and ground.

$\mathrm{A} /$ T assembly vehicle side harness connector			Ground
Connector	Terminal	Continuity	
E51	1		Not existed
	6		

Is the inspection result normal?
YES >> GO TO 7.
NO >> Repair or replace damaged parts.
7. DETECT MALFUNCTIONING ITEM

Check the following.

- Harness for short or open between ignition switch and IPDM E/R. Refer to PG-81, "Wiring Diagram - IGNITION POWER SUPPLY -".
- Ignition switch
- 10A fuse (No.43, located in the IPDM E/R). Refer to PG-158, "Fuse, Connector and Terminal Arrangement".
- IPDM E/R

Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.

SHIFT POSITION INDICATOR CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]

SHIFT POSITION INDICATOR CIRCUIT

Description

TCM transmit the switch signals to unified meter and A/C amp. by CAN communication line. Then manual mode switch position is indicated on the shift position indicator.

Component Function Check

1. CHECK A/T INDICATOR

1. Start the engine.
2. Check the actual selector lever position ("P", "R", "N" and "D") and the indication of the shift position indicator mutually coincide.
3. Drive vehicle in the manual mode, and then check that the actual gear position and the indication of the position indicator mutually coincide when the selector lever is shifted to "UP (+ side)" or "DOWN (- side)" side ($1 \mathrm{GR} \Leftrightarrow 7 \mathrm{GR}$).
Is the inspection result normal?
```
YES >> INSPECTION END
NO >> Go to TM-121, "Diagnosis Procedure".
```


Diagnosis Procedure

1. CHECK INPUT SIGNALS

(1) With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" in "Data Monitor" in "TRANSMISSION".
3. Check the actual selector lever position ("P", "R", "N" and "D") and the indication of the "SLCT LVR POSI" mutually coincide. Refer to TM-133, "Reference Value".
4. Drive vehicle in the manual mode, and then check that the actual gear position and the indication of the "SLCT LVR POSI" mutually coincide when the selector lever is shifted to the "UP (+ side)" or "DOWN (side)" side ($1 \mathrm{GR} \Leftrightarrow 7 \mathrm{GR}$). Refer to TM-133, "Reference Value".
Is the inspection result normal?

YES >> INSPECTION END

NO-1 [The actual gear position does not change, or shifting into the manual mode is not possible (no gear shifting in the manual mode possible). Or the shift position indicator is not indicated.]>>•Check manual mode switch. Refer to TM-113, "Component Inspection (Manual Mode Switch)".

- Check A/T main system (Fail-safe function actuated).
- Perform "Self Diagnostic Results" mode for "TRANSMISSION". Refer to TM-150, "DTC Index".

NO-2 (The actual gear position changes, but the shift position indicator is not indicated.)>>•Perform "Self Diagnostic Results" mode for "TRANSMISSION". Refer to TM-150, "DTC Index".
NO-3 (The actual gear position and the indication on the shift position indicator do not coincide.) >>•Perform "Self Diagnostic Results" mode for "TRANSMISSION". Refer to TM-150, "DTC Index".
NO-4 (Only a specific position or positions is/are not indicated on the shift position indicator.)>>•Check the unified meter and A / C amp. Refer to $\mathrm{MWI}-4$, "Work flow".

Description

Refer to TM-59, "System Description".

Component Function Check
1.CHECK A/T SHIFT LOCK OPERATION (PART 1)

1. Turn ignition switch ON.
2. Shift the selector lever to "P" position.
3. Attempt to shift the selector lever to any other position with the brake pedal released.

Can the selector lever be shifted to any other position?

```
    YES >> Go to TM-125, "Diagnosis Procedure".
```

 NO >> GO TO 2.
 2. CHECK A/T SHIFT LOCK OPERATION (PART 2)

Attempt to shift the selector lever to any other position with the brake pedal depressed.
Can the selector lever be shifted to any other position?
YES >> INSPECTION END
NO >> Go to TM-125, "Diagnosis Procedure".

Diagnosis Procedure

1. CHECK POWER SOURCE (PART 1)
2. Turn ignition switch OFF.
3. Disconnect A / T shift selector connector.
4. Turn ignition switch ON.
5. Check voltage between A / T shift selector vehicle side harness connector terminal and ground.

A/T shift selector vehicle side harness connector		Ground	Condition	Voltage (Approx.)
Connector	Terminal			
M137	8		Depressed brake pedal.	Battery voltage
			Released brake pedal.	0 V

Is the inspection result normal?
YES >> GOTO 2.
NO >> GO TO 5.
2. check ground circuit

Check continuity between A/T shift selector vehicle side harness connector terminal and ground.

A/T shift selector vehicle side harness connector	Ground	Continuity	
Connector			
M137			Existed

Is the inspection result normal?
YES >> GOTO 3.
NO >> Repair or replace damaged parts.
3. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND SHIFT LOCK UNIT

1. Disconnect shift lock unit connector.
2. Check continuity between A / T shift selector connector terminals and shift lock unit A / T shift selector side connector terminals.

A/T shift selector connector		Shift lock unit A/T shift selector side connector		Continuity
Connector	Terminal	Connector	Terminal	
M137	8	M222	3	Existed
	4		4	

Is the inspection result normal?
YES >> GOTO 4.
NO >> Repair or replace damaged parts.
4. CHECK SHIFT LOCK UNIT

1. Remove shift lock unit. Refer to TM-168, "Exploded View".
2. Check shift lock unit. Refer to TM-127, "Component Inspection (Shift Lock Solenoid)".

Is the inspection result normal?

> YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident". NO >> Replace shift lock unit. Refer to TM-168, "Exploded View".

SHIFT LOCK SYSTEM

< DTC/CIRCUIT DIAGNOSIS >
5. CHECK POWER SOURCE (PART 2)

1. Turn ignition switch OFF.
2. Disconnect stop lamp switch connector.
3. Turn ignition switch ON.
4. Check voltage between stop lamp switch vehicle side harness connector terminal and ground.

Stop lamp switch vehicle side harness connector			Ground
Connector	Terminal	Voltage (Approx.)	

Is the inspection result normal?
YES >> GOTO 6.
NO >> GO TO 9.
6. CHECK STOP LAMP SWITCH (PART 1)

Check stop lamp switch. Refer to TM-127, "Component Inspection (Stop Lamp Switch)".
Is the inspection result normal?
YES >> GO TO 7.
NO >> GO TO 12.
7. CHECK HARNESS BETWEEN STOP LAMP SWITCH AND SHIFT SELECTOR (PART 1)

Check continuity between stop lamp switch vehicle side harness connector terminal and A/T shift selector vehicle side harness connector terminal.

Stop lamp switch vehicle side harness connector		A / T shift selector vehicle side harness connector		Continuity
Connector	Terminal	Connector	Terminal	
E110	4	M137	8	Existed

Is the inspection result normal?
YES >> GO TO 8.
NO >> Repair or replace damaged parts.
8. CHECK HARNESS BETWEEN STOP LAMP SWITCH AND SHIFT SELECTOR (PART 2)

Check continuity between stop lamp switch vehicle side harness connector terminal and ground.

Stop lamp switch vehicle side harness connector		Ground	Continuity
Connector	Terminal		
E110	4		Not existed

Is the inspection result normal?
YES >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
9. CHECK HARNESS BETWEEN FUSE BLOCK (J/B) AND STOP LAMP SWITCH (PART 1)

1. Turn ignition switch OFF.
2. Disconnect fuse block (J/B) connector.
3. Check continuity between fuse block (J/B) vehicle side harness connector terminal and stop lamp switch vehicle side harness connector terminal.

Fuse block (J/B) vehicle side harness connector		Stop lamp switch vehicle side harness connector		Continuity
Connector	Terminal	Connector	Terminal	
E103	4 F	E 110	3	Existed

Is the inspection result normal?
YES >> GO TO 10.
NO >> Repair or replace damaged parts.
10. CHECK HARNESS BETWEEN FUSE BLOCK (J/B) AND STOP LAMP SWITCH (PART 2)

SHIFT LOCK SYSTEM

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01A (VQ35HR)]
Check continuity between fuse block (J/B) vehicle side harness connector terminal and ground.

Fuse block (J/B) vehicle side harness connector		Ground	Continuity
Connector	Terminal		
E103	4F		Not existed

Is the inspection result normal?
YES >> GO TO 11.
NO >> Repair or replace damaged parts.
11. detect Malfunctioning item

Check the following.

- Harness for short or open between ignition switch and fuse block (J/B). Refer to PG-81, "Wiring Diagram IGNITION POWER SUPPLY -".
- Ignition switch
- 10A fuse [No.3, located in the fuse block (J/B)]. Refer to PG-156, "Fuse, Connector and Terminal Arrangement".
- Fuse block (J/B)

Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
12. CHECK INSTALLATION POSITION OF STOP LAMP SWITCH

Adjust stop lamp switch position. Refer to BR-7, "Inspection and Adjustment".

$$
\text { >> GO TO } 13 .
$$

13. CHECK STOP LAMP SWITCH (PART 2)

Check stop lamp switch. Refer to TM-127, "Component Inspection (Stop Lamp Switch)".
Is the inspection result normal?

```
YES >> INSPECTION END
NO >> Replace stop lamp switch. Refer to BR-18, "Exploded View".
```

Component Inspection (Shift Lock Solenoid)
INFOID:0000000005250127
1.CHECK SHIFT LOCK SOLENOID

Apply voltage to terminals 3 and 4 of shift lock unit connector, and then check that shift lock solenoid is activated.
CAUTION:
Connect the fuse between the terminals when applying the voltage.

Shift lock unit connector			Condition	Status
Connector	Terminal			
	+ (fuse)	-		
M222	3	4	Apply 12 V direct current between terminals 3 and 4.	Shift lock solenoid operates

Can the lock plate be moved up and down?
YES >> INSPECTION END
NO >> Replace shift lock unit. Refer to TM-168, "Exploded View".
Component Inspection (Stop Lamp Switch)

1. CHECK STOP LAMP SWITCH

Check continuity between stop lamp switch connector terminals.

Stop lamp switch connector			Condition	Continuity
Connector	Terminal			
E110	3	4	Depressed brake pedal.	Existed
		Released brake pedal.	Not existed	

[^3]
SELECTOR LEVER POSITION INDICATOR

Description

Component Function Check

1. CHECK SELECTOR LEVER POSITION INDICATOR (PART 1)

1. Turn ignition switch ON.
2. Check that each position indicator lamp of the selector lever position indicator turns on when shifting the selector lever from " P " to " M " position.
Is the inspection result normal?
```
YES >> GO TO 2.
NO >> Go to TM-129, "Diagnosis Procedure".
2. CHECK SELECTOR LEVER POSITION INDICATOR (PART 2)
```

Check that the night illumination of the selector lever position indicator turns on when setting the lighting switch in 1st position.
Is the inspection result normal?

```
YES >> INSPECTION END
NO >> Go to TM-129, "Diagnosis Procedure".
```

Diagnosis Procedure

1. CHECK MALFUNCTIONING ITEM

Which item is abnormal?
Position indicator lamp>> GO TO 2. Illumination lamp>> GO TO 11.
2. CHECK POWER SOURCE

1. Turn ignition switch OFF.
2. Disconnect A / T shift selector connector.
3. Turn ignition switch ON.
4. Check voltage between A / T shift selector vehicle side harness connector terminals.

A/T shift selector vehicle side harness connector		Ground	Voltage (Approx.)
Connector	Terminal		
	M137		

Is the inspection result normal?
YES \gg GO TO 3.
NO \gg GO TO 8.
3. CHECK GROUND CIRCUIT

1. Turn ignition switch OFF.
2. Check continuity between A / T shift selector vehicle side harness connector terminal and ground.

A/T shift selector vehicle side harness connector		Ground	Continuity
Connector	Terminal		
			Existed

[^4]
SELECTOR LEVER POSITION INDICATOR
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01A (VQ35HR)]

1. Disconnect shift position switch connector.
2. Check continuity between A / T shift selector harness connector terminals and shift position switch connector terminals.

A / T shift selector harness connector		Shift position switch connector		Condition	Continuity
Connector	Terminal	Connector	Terminal		
M137	4	M221	7	Selector lever in "D" position.	Existed
			2, 3, 4, 5, 6, 9, 10, 11		No existed
			9	Selector lever in "M" position.	Existed
			2, 3, 4, 5, 6, 7, 10, 11		No existed
	10		2, 6	Selector lever in "N" and "M" position.	Existed
			3, 4, 5, 7, 9, 10, 11		No existed
			3,6	Selector lever in "D" position.	Existed
			$2,4,5,7,9,10,11$		No existed
			4,6	Selector lever in "R" position.	Existed
			2, 3, 5, 7, 9, 10, 11		No existed
			5,6	Selector lever in "P" position.	Existed
			$2,3,4,7,9,10,11$		No existed

Is the inspection result normal?
YES >> GOTO 5.
NO >> Repair or replace damaged parts. Refer to TM-168, "Exploded View".
5. CHECK HARNESS BETWEEN SHIFT POSITION SWITCH AND SELECTOR LEVER POSITION INDICATOR (PART 1)

1. Disconnect selector lever position indicator connector.
2. Check continuity between shift position switch harness connector terminals and selector lever position indicator connector terminals.

Shift position switch harness connector		Selector lever position indicator harness connector		Continuity
Connector	Terminal	Connector	Terminal	
M221	2	M223	3	Existed
	3		4	
	4		5	
	5		7	
	6		6	
	7		8	
	9		2	

Is the inspection result normal?
YES >> GO TO 6.
NO >> Repair or replace damaged parts. Refer to TM-168, "Exploded View".
6. CHECK HARNESS BETWEEN SHIFT POSITION SWITCH AND SELECTOR LEVER POSITION INDICATOR (PART 2)
Check harness cladding between shift position switch connector and selector lever position indicator connector for damage.
Is the inspection result normal?

```
YES >> GO TO 7.
NO >> Repair or replace damaged parts. Refer to TM-168, "Exploded View".
7. CHECK SELECTOR LVEVR Postron NOCACATOR
```

Check selector lever position indicator. Refer to TM-132, "Component Inspection (Selector Lever Position Indicator)".

Is the inspection result normal?
YES >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
NO >> Replace damaged parts.
8. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND BCM (PART 1)

1. Turn ignition switch OFF.
2. Disconnect BCM connector.
3. Check continuity between A / T shift selector vehicle side harness connector terminal and BCM vehicle side harness connector terminal.

A/T shift selector vehicle side harness connector	BCM vehicle side harness connector		Continuity	
Connector	Terminal	Connector		Existed
M137	10	M122	96	

Is the inspection result normal?
YES >> GOTO 9.
NO >> Repair or replace damaged parts.
9. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND BCM (PART 2)

Check continuity between A / T shift selector vehicle side harness connector terminal and ground.

A/T shift selector vehicle side harness connector		Ground	Continuity
Connector	Terminal		
M137	10		Not existed

Is the inspection result normal?
YES >> GO TO 10.
NO >> Repair or replace damaged parts.
10. CHECK BCM INPUT/OUTPUT SIGNAL

Check BCM input/output signal. Refer to BCS-45, "Reference Value".
Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
11. CHECK POWER SOURCE

1. Turn ignition switch OFF.
2. Disconnect A / T shift selector connector.
3. Turn ignition switch ON.
4. Check voltage between A / T shift selector vehicle side harness connector terminals.

A/T shift selector vehicle side harness connector			Condition	Voltage (Approx.)
Connector	Terminal			
	+	-		
M137	7	9	Lighting switch 1ST	Battery voltage

Is the inspection result normal?
YES >> GO TO 12.
NO >> Check illumination circuit. Refer to INL-89, "Wiring Diagram - ILLUMINATION -".
12. CHECK SHIFT POSITION SWITCH

1. Disconnect shift position switch connector.
2. Check continuity between A/T shift selector harness connector terminals and shift position switch connector terminals.

SELECTOR LEVER POSITION INDICATOR
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01A (VQ35HR)]

A/T shift selector harness connector		Shift position switch connector		Continuity
Connector	Terminal	Connector	Terminal	
M137		M221	10	Existed
			$2,3,4,5,6,7,9,11$	No existed
	9		11	Existed
			$2,3,4,5,6,7,9,10$	No existed

Is the inspection result normal?
YES >> GO TO 13.
NO >> Repair or replace damaged parts. Refer to TM-168, "Exploded View".
13. CHECK HARNESS BETWEEN SHIFT POSITION SWITCH AND SELECTOR LEVER POSITION INDI-

CATOR (PART 3)

1. Disconnect selector lever position indicator connector.
2. Check continuity between shift position switch harness connector terminals and selector lever position indicator connector terminals.

Shift position switch harness connector		Selector lever position indicator harness connector		Continuity
Connector	Terminal	Connector	Terminal	
	10	M223	1	Existed
	11		9	

Is the inspection result normal?
YES >> GOTO 6.
NO >> Repair or replace damaged parts. Refer to TM-168, "Exploded View".
Component Inspection (Selector Lever Position Indicator)
INFOID:0000000005250133

1. CHECK SELECTOR LEVER POSITION INDICATOR

Check that selector lever position indicator lamps turn on.
CAUTION:
Connect the fuse between the terminals when applying the voltage.

Selector lever position indicator connector			Condition	Status
Connector	Terminal			
	+ (fuse)	-		
M223	1	9	Apply 12 V direct current between terminals 1 and 9.	Illumination lamp turns on.
	3	8	Apply 12 V direct current between terminals 3 and 8.	"N" position indicator lamp turns on.
	4		Apply 12 V direct current between terminals 4 and 8.	"D" position indicator lamp turns on.
	5		Apply 12 V direct current between terminals 5 and 8.	"R" position indicator lamp turns on.
	7		Apply 12 V direct current between terminals 7 and 8 .	"P" position indicator lamp turns on.
	6	2	Apply 12 V direct current between terminals 6 and 2.	"M" mode indicator lamp turns on.

Is the inspection result normal?
YES >> INSPECTION END
NO >> Replace the selector lever position indicator. Refer to TM-168, "Exploded View".

ECU DIAGNOSIS INFORMATION
 TCM

Reference Value

VALUES ON DIAGNOSIS TOOL
 NOTE:

1. The CONSULT-III electrically displays shift timing and lock-up timing (that is, operation timing of each solenoid).
Check for time difference between actual shift timing and the CONSULT-III display. If the difference is noticeable, mechanical parts (except solenoids, sensors, etc.) may be malfunctioning. Check mechanical parts using applicable diagnostic procedures.
2. Shift schedule (which implies gear position) displayed on CONSULT-III and that indicated in Service Manual may differ slightly. This occurs because of the following reasons:

- Actual shift schedule has more or less tolerance or allowance
- Shift schedule indicated in Service Manual refers to the point where shifts start
- Gear position displayed on CONSULT-III indicates the point where shifts are completed

3. Display of solenoid valves on CONSULT-III changes at the start of shifting, while gear position is displayed upon completion of shifting (which is computed by TCM).
CONSULT-III MONITOR ITEM

Item name	Condition	Value / Status (Approx.)
VHCL/S SE-A/T	During driving	Approximately matches the speedometer reading.
ESTM VSP SIG	During driving	Approximately matches the speedometer reading.
OUTPUT REV	During driving (lock-up ON)	Tachometer/Gear ratio
INPUT SPEED	During driving (lock-up ON)	Approximately matches the engine speed.
F SUN GR REV	During driving	Revolution of front sun gear is indicated.
F CARR GR REV	During driving	Revolution of front carrier is indicated.
ENGINE SPEED	Engine running	Closely matches the tachometer reading.
TC SLIP SPEED	During driving	Engine speed - Input speed
ACCELE POSI	Released accelerator pedal	0.0/8
	Fully depressed accelerator pedal	8.0/8
THROTTLE POSI	Released accelerator pedal	0.0/8
	Fully depressed accelerator pedal	8.0/8
ATF TEMP 1	Ignition switch ON	Temperature of ATF in the oil pan is indicated.
ATF TEMP 2	Ignition switch ON	Temperature of ATF at the exit of torque converter.
ATF TEMP SE 1	$0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)-20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$	$3.3-2.7-0.9 \mathrm{~V}$
BATTERY VOLT	Ignition switch ON	Battery voltage ($11 \mathrm{~V}-14 \mathrm{~V}$)
LINE PRES SOL	During driving	0.2-0.6 A
TCC SOLENOID	Slip lock-up is active	0.2-0.8 A
	Lock-up is active	0.8 A
	Other than the above	0 A
L/B SOLENOID	Low brake engaged	0.6-0.8 A
	Low brake disengaged	$0-0.05 \mathrm{~A}$

Item name	Condition	Value / Status (Approx.)
FR/B SOLENOID	Front brake engaged	0.6-0.8 A
	Front brake disengaged	$0-0.05 \mathrm{~A}$
HLR/C SOL	High and low reverse clutch disengaged	0.6-0.8 A
	High and low reverse clutch engaged	$0-0.05 \mathrm{~A}$
I/C SOLENOID	Input clutch disengaged	0.6-0.8 A
	Input clutch engaged	$0-0.05 \mathrm{~A}$
D/C SOLENOID	Direct clutch disengaged	0.6-0.8 A
	Direct clutch engaged	$0-0.05 \mathrm{~A}$
2346/B SOL	2346 brake engaged	0.6-0.8 A
	2346 brake disengaged	$0-0.05 \mathrm{~A}$
L/P SOL MON	During driving	0.2-0.6 A
TCC SOL MON	Slip lock-up is active	0.2-0.8 A
	Lock-up is active	0.8 A
	Other than the above	0 A
L/B SOL MON	Low brake engaged	$0.6-0.8 \mathrm{~A}$
	Low brake disengaged	$0-0.05 \mathrm{~A}$
FR/B SOL MON	Front brake engaged	$0.6-0.8 \mathrm{~A}$
	Front brake disengaged	$0-0.05 \mathrm{~A}$
HLR/C SOL MON	High and low reverse clutch disengaged	0.6-0.8 A
	High and low reverse clutch engaged	$0-0.05 \mathrm{~A}$
I/C SOL MON	Input clutch disengaged	0.6-0.8 A
	Input clutch engaged	$0-0.05 \mathrm{~A}$
D/C SOL MON	Direct clutch disengaged	0.6-0.8 A
	Direct clutch engaged	$0-0.05 \mathrm{~A}$
2346/B SOL MON	2346 brake engaged	$0.6-0.8 \mathrm{~A}$
	2346 brake disengaged	$0-0.05 \mathrm{~A}$
GEAR RATIO	Driving with 1GR	4.924
	Driving with 2GR	3.194
	Driving with 3GR	2.043
	Driving with 4GR	1.412
	Driving with 5GR	1.000
	Driving with 6GR	0.862
	Driving with 7GR	0.772
ENGINE TORQUE	During driving	Changes the value according to the acceleration or deceleration.
ENG TORQUE D	During driving	Changes the value according to the acceleration or deceleration.
INPUT TRQ S	During driving	Changes the value according to the acceleration or deceleration.
INPUT TRQ L/P	During driving	Changes the value according to the acceleration or deceleration.
TRGT PRES L/P	Selector lever in "P" and "N" positions	490 kPa
	Other than the above	$490-1370 \mathrm{kPa}$
TRGT PRES TCC	Slip lock-up is active	$0-600 \mathrm{kPa}$
	Lock-up is active	600 kPa
	Other than the above	0 kPa

TCM

< ECU DIAGNOSIS INFORMATION >

Item name	Condition	Value / Status (Approx.)
TRGT PRES L/B	Low brake engaged	1370 kPa
	Low brake disengaged	0 kPa
TRGT PRES FR/B	Front brake engaged	1370 kPa
	Front brake disengaged	0 kPa
TRG PRE HLR/C	High and low reverse clutch disengaged	1370 kPa
	High and low reverse clutch engaged	0 kPa
TRGT PRES I/C	Input clutch disengaged	1370 kPa
	Input clutch engaged	0 kPa
TRGT PRES D/C	Direct clutch disengaged	1370 kPa
	Direct clutch engaged	0 kPa
TRG PRE 2346/B	2346 brake engaged	1370 kPa
	2346 brake disengaged	0 kPa
SHIFT PATTERN	During normal driving (without shift changes)	FF
VEHICLE SPEED	During driving	Approximately matches the speedometer reading.
RANGE SW 4	Selector lever in "P" and "N" positions	ON
	Other than the above	OFF
RANGE SW 3	Selector lever in "P", "R" and " N " positions	ON
	Other than the above	OFF
RANGE SW 2	Selector lever in "P" and "R" positions	ON
	Other than the above	OFF
RANGE SW 1	Selector lever in "P" position	ON
	Other than the above	OFF
SFT DWN ST SW*	Paddle shifter (shift-down) is pulled	ON
	Other than the above	OFF
SFT UP ST SW*	Paddle shifter (shift-up) is pulled	ON
	Other than the above	OFF
DOWN SW LEVER	Selector lever is shifted to - side	ON
	Other than the above	OFF
UP SW LEVER	Selector lever is shifted to + side	ON
	Other than the above	OFF
NON M-MODE SW	Selector lever is shifted to manual shift gate side	OFF
	Other than the above	ON
MANU MODE SW	Selector lever is shifted to manual shift gate side	ON
	Other than the above	OFF
DS RANGE	Driving with DS mode	ON
	Other than the above	OFF
1 POSITION SW*	Selector lever in "1" position	ON
	Other than the above	OFF
OD CONT SW*	When overdrive control switch is depressed	ON
	When overdrive control switch is released	OFF
BRAKESW	Depressed brake pedal	ON
	Released brake pedal	OFF
POWERSHIFT SW*	Power mode	ON
	Other than the above	OFF
Revision: 2009 August	TM-135	2010 FX35/FX50

Item name	Condition	Value / Status (Approx.)
ASCD-OD CUT	When TCM receives ASCD OD cancel request signal	ON
	Other than the above	OFF
ASCD-CRUISE	ASCD operate	ON
	Other than the above	OFF
ABS SIGNAL	ABS operate	ON
	Other than the above	OFF
TCS GR/P KEEP	When TCM receives TCS gear keep request signal	ON
	Other than the above	OFF
TCS SIGNAL 2	When the reception value of A / T shift schedule change demand signal is "cold"	ON
	Other than the above	OFF
TCS SIGNAL 1	When the reception value of A / T shift schedule change demand signal is "warm"	ON
	Other than the above	OFF
LOW/B PARTS	At 4GR - 5GR - 6GR shift control	FAIL
	Other than the above	NOTFAIL
HC/IC/FRB PARTS	At 1GR - 2GR - 3GR shift control	FAIL
	Other than the above	NOTFAIL
IC/FRB PARTS	At 4GR-5GR-6GR shift control	FAIL
	Other than the above	NOTFAIL
HLR/C PARTS	At 4GR - 5GR - 6GR shift control	FAIL
	Other than the above	NOTFAIL
W/O THL POS	Fully depressed accelerator pedal	ON
	Released accelerator pedal	OFF
CLSD THL POS	Released accelerator pedal	ON
	Fully depressed accelerator pedal	OFF
DRV CST JUDGE	Depressed accelerator pedal	DRIVE
	Released accelerator pedal	COAST

Item name	Condition	Value / Status (Approx.)
SHIFT IND SIGNAL	When the selector lever is positioned in between each position	OFF
	Selector lever in "P" position	P
	Selector lever in "R" position	R
	Selector lever in "N" position	N
	Selector lever in "D" position	
	Selector lever in "D" position: 7GR	
	Selector lever in "D" position: 6GR	6
	Selector lever in "D" position: 5GR	5
	Selector lever in "D" position: 4GR	4
	Selector lever in "D" position: 3GR	3
	Selector lever in "D" position: 2GR	2
	Selector lever in "D" position: 1GR	1
	Selector lever in "M" position: 1GR	M1
	Selector lever in "M" position: 2GR	M2
	Selector lever in "M" position: 3GR	M3
	Selector lever in "M" position: 4GR	M4
	Selector lever in "M" position: 5GR	M5
	Selector lever in "M" position: 6GR	M6
	Selector lever in "M" position: 7GR	M7
	Driving with DS mode	DS
STARTER RELAY	Selector lever in "P" and "N" positions	ON
	Other than the above	OFF
F-SAFE IND/L	For 2 seconds after the ignition switch is turned ON	ON
	Other than the above	OFF
ATF WARN LAMP*	When TCM transmits the ATF indicator lamp signal	ON
	Other than the above	OFF
MANU MODE IND	Driving with manual mode	ON
	Other than the above	OFF
ON OFF SOL MON	Selector lever in "P" and "N" positions	ON
	Driving with 1GR to 3GR	ON
	Other than the above	OFF
START RLY MON	Selector lever in "P" and "N" positions	ON
	Other than the above	OFF
ON OFF SOL	Selector lever in "P" and "N" positions	ON
	Driving with 1GR to 3GR	
	Other than the above	OFF

Item name	Condition	Value / Status (Approx.)
SLCT LVR POSI	Selector lever in "N" and "P" positions	N/P
	Selector lever in "R" position	R
	Selector lever in "D" and "DS" positions	D
	Selector lever in "M" position: 7GR	
	Selector lever in "M" position: 6GR	6
	Selector lever in "M" position: 5GR	5
	Selector lever in "M" position: 4GR	4
	Selector lever in "M" position: 3GR	3
	Selector lever in "M" position: 2GR	2
	Selector lever in "M" position: 1GR	1
GEAR	During driving	1st, 2nd, 3rd, 4th, 5th, 6th, 7th
NEXT GR POSI	During driving	1st, 2nd, 3rd, 4th, 5th, 6th, 7th
SHIFT MODE	Driving with the D position	0 or 3
	Driving with the manual mode	4 or 8
D/C PARTS	At 1GR - 2GR shift control	FAIL
	Other than the above	NOTFAIL
FR/B PARTS	At control fixed to 1GR	FAIL
	Other than the above	NOTFAIL
2346/B PARTS	At control fixed to 1GR	FAIL
	Other than the above	NOTFAIL
2346B/DC PARTS	At 2GR - 3GR - 4GR shift control	FAIL
	Other than the above	NOTFAIL

*: Not mounted but always display as OFF.
TERMINAL LAYOUT

SCIA1658E

PHYSICAL VALUES

Terminal (Wire color)		Description		Condition	Value (Approx.)
+	-	Signal name	Input/ Output		
$\begin{gathered} 1 \\ (\mathrm{Y}) \end{gathered}$	Ground	Power supply	Input	Ignition switch ON	Battery voltage
				Ignition switch OFF	0 V
$\begin{gathered} 2 \\ (\mathrm{BR}) \end{gathered}$	Ground	Power supply (Memory back-up)	Input	Always	Battery voltage
$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	-	CAN-H	Input/ Output	-	-

Terminal (Wire color)		Description		Condition		Value (Approx.)
+	-	Signal name	Input/ Output			
$\begin{gathered} 4 \\ (\mathrm{~V}) \end{gathered}$	-	K-line	Input/ Output		-	-
$\begin{gathered} 5 \\ \text { (B) } \end{gathered}$	Ground	Ground	Output		Always	0 V
$\begin{gathered} 6 \\ (\mathrm{Y}) \end{gathered}$	Ground	Power supply	Input	Ignition switch ON		Battery voltage
				Ignition switch OFF		0 V
$\begin{gathered} 7 \\ \text { (R) } \end{gathered}$	Ground	Back-up lamp relay	Input	Ignition switch ON	Selector lever in "R" position.	0 V
					Selector lever in other positions.	Battery voltage
$\begin{gathered} 8 \\ (P) \end{gathered}$	-	CAN-L	Input/ Output		-	-
$\begin{gathered} 9 \\ \text { (GR) } \end{gathered}$	Ground	Starter relay	Output	Ignition switch ON	Selector lever in "N" and "P" positions.	Battery voltage
					Selector lever in other positions.	0 V
$\begin{aligned} & 10 \\ & \text { (B) } \end{aligned}$	Ground	Ground	Output		Always	0 V

Fail-Safe

TCM has the electrical fail-safe mode. The mode is divided into a maximum of 3 phases (1st Fail-Safe, 2nd Fail-Safe and Final Fail-Safe) and functions so that the operation can be continued even if the signal circuit of the main electronically controlled input/output parts is damaged.
Even if the electronic circuit is normal, the fail-safe mode may start under special conditions (such as when the brake pedal is depressed suddenly from a hard wheel spin status to stop the rotation of wheels). In this case, turn the ignition switch OFF and back to ON after 5 seconds to resume the normal shift pattern.

Consequently, the customer's vehicle may already return to the normal condition. Refer to TM-7, "Diagnosis Flow".

1st fail-safe	The mode that the vehicle can stop safely, to prompt the driver to stop if the malfunction occurs and to shift to 2nd Fail-Safe early. It shifts to 2nd Fail-Safe or Final Fail-Safe after the vehicle stopped.
2nd fail-safe	The mode that the vehicle shifts to Final Fail-Safe without changing the behavior, by identifying the malfunc- tioning parts in the condition that the driving force required for the driving is secured.
Final fail-safe	- Selects the shifting pattern that the malfunctioning parts identified at 1st and 2nd Fail-Safe are not used, and then secure the driving force that is required for the driving. - The mode that the shifting performance does not decrease by normal shift control.

FAIL-SAFE FUNCTION

DTC	Vehicle condition	Vehicle behavior for 1st fail-safe	Vehicle behavior for 2nd fail-safe	Vehicle behavior for final fail-safe
P0615	-	Starter is disabled	-	Starter is disabled
P0705	-	- Fixed in the "D" position (The shifting can be performed) - 30 km/h (19MPH) or less - Lock-up is prohibited - The shifting between the gears of 3-4-5-6-7 can be performed - Manual mode is prohibited - Shift position indicator is switched OFF - Starter relay is switched OFF (starter is disabled) - Back-up lamp is OFF - Large shift shock	-	- Fixed in the "D" position (The shifting can be performed) - $30 \mathrm{~km} / \mathrm{h}$ (19MPH) or less - Lock-up is prohibited - The shifting between the gears of 3-4-5-6-7 can be performed - Manual mode is prohibited - Shift position indicator is switched OFF - Starter relay is switched OFF (starter is disabled) - Back-up lamp is OFF - Large shift shock
P0710	Between the gears of 1-2-3	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited	-	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited
	Between the gears of 4-5-6-7	- Fix the gear while driving - Manual mode is prohibited	-	
P0717	Between the gears of 1-2-3	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited	-	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited
	Between the gears of 4-5-6-7	- Fix the gear while driving - Manual mode is prohibited	-	
P0720	Between the gears of 1-2-3	- Only downshift can be performed - Manual mode is prohibited - A vehicle speed signal from the unified meter and A / C amp. is regarded as an effective signal.	-	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited
	Between the gears of 4-5-6-7	- Fix the gear at driving - Manual mode is prohibited - A vehicle speed signal from the unified meter and A / C amp. is regarded as an effective signal.	-	

DTC	Vehicle condition	Vehicle behavior for 1st fail-safe	Vehicle behavior for 2nd fail-safe	Vehicle behavior for final fail-safe
	Neutral malfunction between the gears of 1-2-3 and 7	- Locks in 4GR - Manual mode is prohibited - Neutral	-	- Locks in 1GR - The shifting between the gears of 1-2 can be performed - The shifting between the gears of 1-2-3 can be performed - The shifting between the gears of 4-5-6 can be performed - Manual mode is prohibited
$\begin{aligned} & \text { P0732 } \\ & \text { P0733 } \\ & \text { P0734 } \\ & \text { P0735 } \\ & \text { P1734 } \end{aligned}$	Other than the above	- Driving with the gear ratio between 1GR and 2GR - Driving with the gear ratio between 2GR and 3GR - Locks in 3GR - Locks in 4GR - Fix the gear while driving - Manual mode is prohibited - Neutral	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited	- Locks in 1GR - The shifting between the gears of 1-2 can be performed - The shifting between the gears of 1-2-3 can be performed - The shifting between the gears of 2-3-4 can be performed - The shifting between the gears of 3-4 can be performed - The shifting between the gears of 4-5-6 can be performed - Manual mode is prohibited
P0730	-	- Manual mode is prohibited - Neutral	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited	- Locks in 1GR - The shifting between the gears of 1-2 can be performed - The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited
P0740	-	- Lock-up is prohibited - Slip lock-up is prohibited	-	- Lock-up is prohibited - Slip lock-up is prohibited
P0744	-	- Lock-up is prohibited - Slip lock-up is prohibited	-	- Lock-up is prohibited - Slip lock-up is prohibited
$\begin{aligned} & \text { P0750 } \\ & \text { P0775 } \\ & \text { P0795 } \\ & \text { P2713 } \\ & \text { P2722 } \\ & \text { P2731 } \\ & \text { P2807 } \end{aligned}$	-	- Locks in 2GR, 3GR, 4GR, 5GR, 6GR or 7GR - Manual mode is prohibited	-	- Locks in 1GR - The shifting between the gears of 1-2-3 can be performed - The shifting between the gears of 3-4-5 can be performed - The shifting between the gears of 4-5-6 can be performed - The shifting between the gears of 1-2-3-4-5-6 can be performed - Manual mode is prohibited
P0780	-	- Manual mode is prohibited - Neutral	-	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited
P1705	-	- Downshift when accelerator pedal is depressed is prohibited - Upshift when accelerator pedal is released is prohibited - Manual mode is prohibited	- Downshift when accelerator pedal is depressed is prohibited - Upshift when accelerator pedal is released is prohibited - Manual mode is prohibited	- Downshift when accelerator pedal is depressed is prohibited - Upshift when accelerator pedal is released is prohibited - Manual mode is prohibited
P1730	-	- Neutral - Driving with the gear ratio between 2GR and 3GR - Locks in 5GR, 6GR or 7GR - Manual mode is prohibited	- The shifting between the gears of 1-2-3 can be performed - Manual mode is prohibited	- Locks in 1GR - The shifting between the gears of 2-3-4 can be performed - The shifting between the gears of $3-4$ can be performed - The shifting between the gears of 4-5-6 can be performed - Manual mode is prohibited
P1815	-	Manual mode is prohibited	-	Manual mode is prohibited

DTC	Vehicle condition	Vehicle behavior for 1st fail-safe	Vehicle behavior for 2nd fail-safe	Vehicle behavior for final fail-safe
U1000	Between the gears of $1-2-3$	- The shifting between the gears of $1-2-3$ can be performed - Manual mode is prohibited	Between the gears of $4-5-6-7$	- Fix the gear at driving - Manual mode is prohibited
	-	Locks in 5GR	-	The shifting between the gears of $1-2-3$ can be performed Line pressure is set to the maxi- mum hydraulic pressure Manual mode is prohibited

Protection Control

The TCM becomes the protection control status temporarily to protect the safety when the safety of TCM and transmission is lost. It automatically returns to the normal status if the safety is secured.
The TCM has the following protection control.
REVERSE INHIBIT CONTROL
Intercepts the torque transmission and shift to the neutral status if the selector lever is shifted to " R " position while the vehicle moves forward at the vehicle speed $10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more.

Malfunction detection condition	Vehicle speed: $10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more
Control at malfunction	Neutral
Normal return condition	- Vehicle speed: $8 \mathrm{~km} / \mathrm{h}(5 \mathrm{MPH})$ or less - Engine speed: $2,200 \mathrm{rpm}$ or less
Vehicle behavior	- The torque transmission cannot be performed - There is a shock just before a vehicle stop

1ST ENGINE BRAKE PROTECTION CONTROL
Controls the engine brake so as not to make effective by turning the front brake solenoid output to OFF when each solenoid becomes the electricity pattern of 1st engine brake during driving at the vehicle speed $25 \mathrm{~km} / \mathrm{h}$ or more in any positions other than "R" position or 1GR.

Malfunction detection condition	- Select lever and gear: Except for "R" position and 1GR and - Vehicle speed: More than $25 \mathrm{~km} / \mathrm{h}(16 \mathrm{MPH})$
Control at malfunction	Front brake solenoid output signal; OFF
Normal return condition	Other than malfunction detection condition
Vehicle behavior	Does not exist

TCM HIGH TEMPERATURE PROTECTION CONTROL
Limit the accelerator opening and forcibly control the vehicle to the low torque driving when the electronic substrate in TCM reaches the high temperature.

	TCM electronic substrate temperature Malfunction detection condition $145^{\circ} \mathrm{C}\left(293^{\circ} \mathrm{F}\right)$ and 120 seconds or - $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$
Control at malfunction	Accelerator opening: $0.5 / 8$ or less
Normal return condition	- TCM electronic substrate temperature: Less than $140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$ and - Vehicle speed: $5 \mathrm{~km} / \mathrm{h}(3 \mathrm{MPH})$ or less
Vehicle behavior	Accelerator opening: output torque of approximately $0.5 / 8$

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the priority as per the following list.

Priority	Detected items (DTC)	Reference
1	U1000 CAN COMM CIRCUIT	TM-68, "DTC Logic"
2	P0615 STARTER RELAY	TM-69, "DTC Logic"
	P0705 T/M RANGE SWITCH A	TM-71, "DTC Logic"
	P0710 FLUID TEMP SENSOR A	TM-72, "DTC Logic"
	P0717 INPUT SPEED SENSOR A	TM-74, "DTC Logic"
	P0720 OUTPUT SPEED SENSOR	TM-76, "DTC Logic"
	P0740 TORQUE CONVERTER	TM-94, "DTC Logic"
	P0745 PC SOLENOID A	TM-97, "DTC Logic"
	P0750 SHIFT SOLENOID A	TM-98, "DTC Logic"
	P0775 PC SOLENOID B	TM-100, "DTC Logic"
	P0795 PC SOLENOID C	TM-102, "DTC Logic"
	P2713 PC SOLENOID D	TM-114, "DTC Logic"
	P2722 PC SOLENOID E	TM-115, "DTC Logic"
	P2731 PC SOLENOID F	TM-116, "DTC Logic"
	P2807 PC SOLENOID G	TM-117. "DTC Logic"
3	P0729 6GR INCORRECT RATIO	TM-80, "DTC Logic"
	P0730 INCORRECT GR RATIO	TM-82, "DTC Logic"
	P0731 1GR INCORRECT RATIO	TM-84, "DTC Logic"
	P0732 2GR INCORRECT RATIO	TM-86, "DTC Logic"
	P0733 3GR INCORRECT RATIO	TM-88, "DTC Logic"
	P0734 4GR INCORRECT RATIO	TM-90, "DTC Logic"
	P0735 5GR INCORRECT RATIO	TM-92, "DTC Logic"
	P0744 TORQUE CONVERTER	TM-96, "DTC Logic"
	P0780 SHIFT	TM-101. "DTC Logic"
	P1730 INTERLOCK	TM-107, "DTC Logic"
	P1734 7GR INCORRECT RATIO	TM-109, "DTC Logic"
4	P0725 ENGINE SPEED	TM-78, "DTC Logic"
	P1705 TP SENSOR	TM-103, "DTC Logic"
	P1721 VEHICLE SPEED SIGNAL	TM-105, "DTC Logic"
	P1815 M-MODE SWITCH	TM-111, "DTC Logic"

DTC Index

NOTE:

If some DTCs are displayed at the same time, perform inspections one by one based on the priority as per the following list. Refer to TM-150, "DTC Inspection Priority Chart".

Items (CONSULT-III screen terms)	DTC"2 *		Reference		
	MLL "1, "ENGINE" with CONSULT-III or GST	CONSULT-III only "TRANSMISSION"			
STARTER RELAY	-	P0615	TM-69		
T/M RANGE SWITCH A	P0705	P0705	TM-71		
FLUID TEMP SENSOR A	P0710	P0710	TM-72		
Revision: 2009 August	TM-150				2010 FX35/FX50

Items (CONSULT-III screen terms)	DTC*2		Reference
	MIL", "ENGINE" with CONSULT-III or GST	CONSULT-III only "TRANSMISSION"	
INPUT SPEED SENSOR A	P0717	P0717	TM-74
OUTPUT SPEED SENSOR	P0720	P0720	TM-76
ENGINE SPEED	-	P0725	TM-78
6GR INCORRECT RATIO	P0729	P0729	TM-80
INCORRECT GR RATIO	P0730	P0730	TM-82
1GR INCORRECT RATIO	P0731	P0731	TM-84
2GR INCORRECT RATIO	P0732	P0732	TM-86
3GR INCORRECT RATIO	P0733	P0733	TM-88
4GR INCORRECT RATIO	P0734	P0734	TM-90
5GR INCORRECT RATIO	P0735	P0735	TM-92
TORQUE CONVERTER	P0740	P0740	TM-94
TORQUE CONVERTER	P0744	P0744	TM-96
PC SOLENOID A	P0745	P0745	TM-97
SHIFT SOLENOID A	P0750	P0750	TM-98
PC SOLENOID B	P0775	P0775	TM-100
SHIFT	P0780	P0780	TM-101
PC SOLENOID C	P0795	P0795	TM-102
TP SENSOR	-	P1705	TM-103
VEHICLE SPEED SIGNAL	-	P1721	TM-105
INTERLOCK	P1730	P1730	TM-107
7GR INCORRECT RATIO	P1734	P1734	TM-109
M-MODE SWITCH	-	P1815	TM-111
PC SOLENOID D	P2713	P2713	TM-114
PC SOLENOID E	P2722	P2722	TM-115
PC SOLENOID F	P2731	P2731	TM-116
PC SOLENOID G	P2807	P2807	TM-117
CAN COMM CIRCUIT	U1000	U1000	TM-68

*1: Refer to TM-61, "Diagnosis Description".
*2: These numbers are prescribed by SAE J2012.

IGN COUNTER

IGN counter indicates the number of items that ignition switch is turned ON after DTC is detected.

- CAN malfunction
- The number is 0 when a malfunction is detected now.
- The number increases like $1 \rightarrow 2 \rightarrow 3 \ldots 38 \rightarrow 39$ after returning to the normal condition whenever ignition switch OFF \rightarrow ON.
- The number is fixed to 39 until self-diagnosis results are erased if it is over 39.
- Except for CAN malfunction
- The number is 0 when a malfunction is detected now.
- The number increases like $1 \rightarrow 2 \rightarrow 3 \ldots 254 \rightarrow 255$ after returning to the normal condition whenever ignition switch OFF \rightarrow ON.
- The number is fixed to 255 until self-diagnosis results are erased if it is over 255.

SYMPTOM DIAGNOSIS

SYSTEM SYMPTOM

Symptom Table

The diagnostics item numbers show the sequence for inspection. Inspect in order from item 1.
CAUTION:
If any malfunction occurs in the RE7R01A transmission, replace the A/T assembly.

Symptom					Diagnostic item																	
															0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 10 7 7 2 1 1		TM-114 High and low reverse clutch solenoid valve					
Poor performance	Driving performance	Shift point is high in "D" position.				1		2			3											
		Shift point is low in "D" position.				1		2														
		Large shock	When shifting gears	\rightarrow "D" position	3			6	5		5	4	2		1						2	5
				\rightarrow "R" position	3			6	5		5	4	2						1			5
				1GR $\Leftrightarrow 2 \mathrm{GR}$		3		1	5	3	3									2		4
				2GR $\Leftrightarrow 3 \mathrm{GR}$		3		1	5	3	3								2			4
				3GR $\Leftrightarrow 4 \mathrm{GR}$		3		1	5	3	3				2		2					4
				$4 \mathrm{GR} \Leftrightarrow 5 \mathrm{GR}$		3		1	5	3	3							2		2		4
				5GR $\Leftrightarrow 6 \mathrm{GR}$		3		1	5	3	3								2	2		4
				$6 \mathrm{GR} \Leftrightarrow 7 \mathrm{GR}$		3		1	5	3	3					2				2		4
				Downshift when accelerator pedal is depressed		2		1	4	2	2											3
				Upshift when accelerator pedal is released		2		1	4	2	2											3
				Lock-up		3		1	3	3	3			2								4
		Judder		Lock-up				2	1	1	4			3								
	Strange noise			In "R" position		2			1													
				In "N" position		2			1													
				In "D" position		2			1													
				Engine at idle		2			1													

mptom			Diagnostic item																
												0 2 0 3 	TM-102 Front brake solenoid valve						
Function trouble	Power transmission cannot be performed	Vehicle cannot run in all position.	3					2		1	1	1	1	1	1	1	1	1	
		Driving is not possible in "D" position.	3					2		1	1	1	1	1	1	1	1	1	
		Driving is not possible in " R " position.	3					2		1						1		1	
		Engine stall		3	4	4	5		2		1								
		Engine stalls when selector lever shifted "N" \rightarrow "D" or "R".		3	4	4		2			1								
		Engine does not start in " N " or " P " position.	3				1	2											1
		Engine starts in position other than " N " or " P ".	3					2											1
	Poor operation	Vehicle does not enter parking condition.	1					2											
		Parking condition is not cancelled.	1					2											
		Vehicle runs with A / T in "P" position.	1					2											
		Vehicle moves forward with the "R" position.	1					2											
		Vehicle runs with A/T in "P" position.	1					2											
		Vehicle moves backward with the "D" position.	1					2											

PRECAUTION
PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT

 PRE-TENSIONER"The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the "SRS AIR BAG" and "SEAT BELT" of this Service Manual.
WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the "SRS AIR BAG".
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.
PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS
WARNING:
- When working near the Air Bag Diagnosis Sensor Unit or other Air Bag System sensors with the ignition ON or engine running, DO NOT use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
- When using air or electric power tools or hammers, always switch the ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

General Precautions

- Turn ignition switch OFF and disconnect the battery cable from the negative terminal before connecting or disconnecting the A/T assembly harness connector. Because battery voltage is applied to TCM even if ignition switch is turned OFF.

- Perform "DTC (Diagnostic Trouble Code) CONFIRMATION PROCEDURE" after performing each TROUBLE DIAGNOSIS. If the repair is completed DTC should not be displayed in the "DTC CONFIRMATION PROCEDURE".
- Always use the specified brand of ATF. Refer to MA-12, "Fluids and Lubricants".
- Use lint-free paper not cloth rags during work.
- Dispose of the waste oil using the methods prescribed by law, ordinance, etc. after replacing the ATF.
- Before proceeding with disassembly, thoroughly clean the outside of the transmission. It is important to prevent the internal parts from becoming contaminated by dirt or other foreign matter.

- Disassembly should be done in a clean work area.
- Use lint-free paper or towels for wiping parts clean. Common shop rags can leave fibers that could interfere with the operation of the transmission.
- Place disassembled parts in order for easier and proper assembly.
- All parts should be carefully cleaned with a general purpose, non-flammable solvent before inspection or reassembly.
- Gaskets, seals and O-rings should be replaced any time the A / T is disassembled.
- It is very important to perform functional tests whenever they are indicated.
- The valve body contains precision parts and requires extreme care when parts are removed and serviced. Place disassembled valve body parts in order for easier and proper assembly. Care will also prevent springs and small parts from becoming scattered or lost.
- Properly installed valves, sleeves, plugs, etc. will slide along bores in valve body under their own weight.
- Before assembly, apply a coat of recommended ATF to all parts. Apply petroleum jelly to protect O-rings and seals, or hold bearings and washers in place during assembly. Never use grease.
- Extreme care should be taken to avoid damage to O-rings, seals and gaskets when assembling.
- Clean or replace ATF cooler if excessive foreign material is found in oil pan or clogging strainer. Refer to TM158, "Service Notice or Precaution".
- When the A/T drain plug is removed, only some of the ATF is drained. Old ATF will remain in torque converter and ATF cooling system.
Always follow the procedures under "Changing" when changing ATF. Refer to TM-160, "Changing".
- Occasionally, the parking gear may be locked with the torque insufficiently released, when stopping the vehicle by shifting the selector lever from " D " or " R " to "P" position with the brake pedal depressed.
In this case, the shock with a thud caused by the abrupt release of torque may occur when shifting the selector lever from "P" position to other positions.
However, this symptom is not a malfunction which results in the damage of parts.

Service Notice or Precaution

ATF COOLER SERVICE

If ATF contains frictional material (clutches, bands, etc.), or if an A / T is repaired, overhauled, or replaced, inspect and clean the A/T fluid cooler mounted in the radiator or replace the radiator. Flush cooler lines using cleaning solvent and compressed air after repair. For A/T fluid cooler cleaning procedure, refer to TM-163. "Cleaning". For radiator replacement, refer to CO-14, "Exploded View".
Tool number
Tool name

1. 315268E000*
O-ring
310811EA5A*
Charging pipe
[^5]
PERIODIC MAINTENANCE

A/T FLUID

Changing

```
ATF : Refer to TM-187, "General Specification".
Fluid capacity : Refer to TM-187, "General Specification".
```

CAUTION:

- Use only Genuine NISSAN Matic S ATF. Never mix with other ATF.
- Using ATF other than Genuine NISSAN Matic S ATF will cause deterioration in driveability and A/T durability, and may damage the A/T, which is not covered by the INFINITI new vehicle limited warranty.
- When filling ATF, be careful not to scatter heat generating parts such as exhaust.

1. Step 1
a. Install the O-ring (315268E000) (A) to the charging pipe (310811EA5A) (B).

2. Step 2
a. Use CONSULT-III to check that the ATF temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less.
b. Lift up the vehicle.
c. Remove the drain plug from the oil pan, and then drain the ATF.
d. When the ATF starts to drip, temporarily tighten the drain plug to the oil pan.

NOTE:
Never replace drain plug and drain plug gasket with new ones yet.
e. Remove overflow plug from oil pan.
f. Install the charging pipe (A) to the overflow plug hole.

CAUTION:
Tighten the charging pipe by hand.
g. Install the bucket pump hose (B) to the charging pipe.

CAUTION:
Insert the bucket pump hose all the way to the end of the charging pipe.
h. Fill approximately 3 liters ($3-1 / 8$ US qt, 2-5/8 Imp qt) of the ATF.
i. Remove the bucket pump hose to remove the charging pipe, and then temporarily tighten the overflow plug to the oil pan. CAUTION:

Quickly perform the procedure to avoid ATF leakage from the oil pan.
j. Lift down the vehicle.
k. Start the engine and wait for approximately 3 minutes.
l. Stop the engine.
3. Step 3
a. Repeat "Step 2".
4. Final Step

A/T FLUID

< PERIODIC MAINTENANCE >
[7AT: RE7R01A (VQ35HR)]
a. Use CONSULT-III to check that the ATF temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less.
b. Lift up the vehicle.
c. Remove the drain plug from the oil pan, and then drain the ATF.
d. When the ATF starts to drip, tighten the drain plug to the oil pan to the specified torque. Refer to TM-172. "Exploded View".
CAUTION:
Never reuse drain plug and drain plug gasket.
e. Remove overflow plug from oil pan.
f. Install the charging pipe (A) to the overflow plug hole. CAUTION:
Tighten the charging pipe by hand.
g. Install the bucket pump hose (B) to the charging pipe. CAUTION:
Insert the bucket pump hose all the way to the end of the charging pipe.
h. Fill approximately 3 liters ($3-1 / 8 \mathrm{US}$ qt, $2-5 / 8 \mathrm{Imp} q \mathrm{t}$) of the ATF.
i. Remove the bucket pump hose to remove the charging pipe, and then temporarily tighten the overflow plug to the oil pan. CAUTION:

- Use only Genuine NISSAN Matic S ATF. Never mix with other ATF.
- Using ATF other than Genuine NISSAN Matic S ATF will cause deterioration in driveability and A/T
durability, and may damage the A/T, which is not covered by the INFINITI new vehicle limited war-
- Using ATF other than Genuine NISSAN Matic S ATF will cause deterioration in driveability and A/T
durability, and may damage the A/T, which is not covered by the INFINITI new vehicle limited warranty.
- When filling ATF, be careful not to scatter heat generating parts such as exhaust.
- Always maintain the ATF temperature within between $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$ and $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ while checking with CONSULT-III when the ATF level adjustment is performed.

ATF	$:$ Refer to TM-187, "General Specification".
Fluid capacity	$:$ Refer to TM-187, "General Specification".

CAUTION:

A/T FLUID

1. Install the O-ring (315268E000) (A) to the charging pipe (310811EA5A) (B).
2. Start the engine.
3. Make the ATF temperature approximately $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.

NOTE:
The ATF level is greatly affected by the temperature. Always check the ATF temperature on "ATF TEMP 1" of "Data Monitor" using CONSULT-III.
4. Park vehicle on level surface and set parking brake.
5. Shift the selector lever through each gear position. Leave selector lever in "P" position.

6. Lift up the vehicle.
7. Check the ATF leakage from transmission.
8. Remove overflow plug from oil pan.
9. Install the charging pipe (A) to the overflow plug hole. CAUTION:
Tighten the charging pipe by hand.
10. Install the bucket pump hose (B) to the charging pipe. CAUTION:
Insert the bucket pump hose all the way to the end of the charging pipe.
11. Fill approximately 0.5 liters ($1 / 2 \mathrm{US} q \mathrm{q}, 1 / 2 \mathrm{Imp} q \mathrm{t}$) of the ATF.
12. Check that the ATF leaks when removing the charging pipe and the bucket pump hose. If the ATF does not leak, refill the ATF.

13. When the ATF starts to drip, tighten the overflow plug to the oil pan to the specified torque. Refer to TM-172, "Exploded View". CAUTION: Never reuse overflow plug.

A/T FLUID COOLER

Cleaning

Whenever an A / T is replaced, the A / T fluid cooler mounted in the radiator must be inspected and cleaned. Metal debris and friction material, if present, can become trapped in the A / T fluid cooler. This debris can contaminate the newly serviced A/T or, in severe cases, can block or restrict the flow of ATF. In either case, malfunction of the newly serviced A/T may result.
Debris, if present, may build up as ATF enters the cooler inlet. It will be necessary to back flush the cooler through the cooler outlet in order to flush out any built up debris.

CLEANING PROCEDURE

1. Position an oil pan under the A / T inlet and outlet cooler hoses.
2. Identify the inlet and outlet fluid cooler hoses.
3. Disconnect the A/T fluid cooler inlet and outlet rubber hoses from the steel cooler tubes or by-pass valve.
NOTE:
Replace the cooler hoses if rubber material from the hose remains on the tube fitting.
4. Allow any ATF that remains in the cooler hoses to drain into the oil pan.

5. Insert the extension adapter hose of a can of Transmission Cooler Cleaner (Nissan P/N 999MP-AM006) into the cooler outlet hose.
CAUTION:

- Wear safety glasses and rubber gloves when spraying the Transmission Cooler Cleaner.
- Spray Transmission Cooler Cleaner only with adequate ventilation.
- Avoid contact with eyes and skin.
- Never breath vapors or spray mist.

6. Hold the hose and can as high as possible and spray Transmission Cooler Cleaner in a continuous stream into the cooler outlet hose until ATF flows out of the cooler inlet hose for 5 seconds.
7. Insert the tip of an air gun into the end of the cooler outlet hose.
8. Wrap a shop rag around the air gun tip and of the cooler outlet hose.
9. Blow compressed air regulated to 5 to $9 \mathrm{~kg} / \mathrm{cm}^{2}$ (71 to 128 psi) through the cooler outlet hose for 10 seconds to force out any remaining ATF.
10. Repeat steps 5 through 9 three additional times.
11. Position an oil pan under the banjo bolts that connect the A / T fluid cooler steel lines to the A/T.
12. Remove the banjo bolts.

13. Flush each steel line from the cooler side back toward the A / T by spraying Transmission Cooler Cleaner in a continuous stream for 5 seconds.
14. Blow compressed air regulated to 5 to $9 \mathrm{~kg} / \mathrm{cm}^{2}$ (71 to 128 psi) through each steel line from the cooler side back toward the A/T for 10 seconds to force out any remaining ATF.
15. Ensure all debris is removed from the steel cooler lines.
16. Ensure all debris is removed from the banjo bolts and fittings.
17. Perform "DIAGNOSIS PROCEDURE".

A/T FLUID COOLER

< PERIODIC MAINTENANCE >
[7AT: RE7R01A (VQ35HR)]

DIAGNOSIS PROCEDURE

NOTE:

Insufficient cleaning of the cooler inlet hose exterior may lead to inaccurate debris identification.

1. Position an oil pan under the A / T inlet and outlet cooler hoses.
2. Clean the exterior and tip of the cooler inlet hose.
3. Insert the extension adapter hose of a can of Transmission Cooler Cleaner (Nissan P/N 999MP-AM006) into the cooler outlet hose.
CAUTION:

- Wear safety glasses and rubber gloves when spraying the Transmission Cooler Cleaner.
- Spray Transmission Cooler Cleaner only with adequate ventilation.
- Avoid contact with eyes and skin.
- Never breath vapors or spray mist.

4. Hold the hose and can as high as possible and spray Transmission Cooler Cleaner in a continuous stream into the cooler outlet hose until ATF flows out of the cooler inlet hose for 5 seconds.
5. Tie a common white, basket-type coffee filter to the end of the cooler inlet hose.

6. Insert the tip of an air gun into the end of the cooler outlet hose.
7. Wrap a shop rag around the air gun tip and end of cooler outlet hose.
8. Blow compressed air regulated to 5 to $9 \mathrm{~kg} / \mathrm{cm}^{2}$ (71 to 128 psi) through the cooler outlet hose to force any remaining ATF into the coffee filter.
9. Remove the coffee filter from the end of the cooler inlet hose.
10. Perform "INSPECTION PROCEDURE".

INSPECTION PROCEDURE

1. Inspect the coffee filter for debris.
a. If small metal debris less than $1 \mathrm{~mm}(0.040 \mathrm{in})$ in size or metal powder is found in the coffee filter, this is normal. If normal debris is found, the A/T fluid cooler/radiator can be re-used and the procedure is ended.

A/T FLUID COOLER

< PERIODIC MAINTENANCE >
b. If one or more pieces of debris are found that are over 1 mm (0.040 in) in size and/or peeled clutch facing material is found in the coffee filter, the A/T fluid cooler is not serviceable. The A/T fluid cooler/radiator must be replaced and the inspection procedure is ended. Refer to CO-14, "Exploded View".

Inspection

After performing all procedures, ensure that all remaining oil is cleaned from all components.

STALL TEST

Inspection and Judgment

INSPECTION

1. Inspect the amount of engine oil. Replenish the engine oil if necessary.
2. Drive for about 10 minutes to warm up the vehicle so that the A / T fluid temperature is 50 to $80^{\circ} \mathrm{C}(122$ to $176{ }^{\circ}$ F). Inspect the amount of ATF. Replenish if necessary.
3. Securely engage the parking brake so that the tires do not turn.
4. Start the engine, apply foot brake, and place selector lever in "D" position.
5. Gradually press down the accelerator pedal while holding down the foot brake.
6. Quickly read off the stall speed, and then quickly release the accelerator pedal. CAUTION:
Never hold down the accelerator pedal for more than 5 seconds during this test.

Stall speed : Refer to TM-188, "Stall Speed".

7. Shift the selector lever to " N " position.
8. Cool down the ATF.

CAUTION:
Run the engine at idle for at least 1 minute.
9. Repeat steps 5 through 8 with selector lever in " R " position.

JUDGMENT OF STALL TEST

O: Stall speed within standard value position
H : Stall speed higher than standard value
L: Stall speed lower than standard value
Stall test standard value position

Does not shift-up "D" or "M" position $1 \rightarrow 2$	Slipping in 2GR, 3GR 4GR or 6GR	2346 brake slippage
Does not shift-up "D" or "M" position $2 \rightarrow 3$	Slipping in 3GR, 4GR or 5GR	Direct clutch slippage
Does not shift-up "D" or "M" position $3 \rightarrow 4$	Slipping in 4GR, 5GR, 6GR or 7GR	High and low reverse clutch slippage
Does not shift-up "D" or "M" position $4 \rightarrow 5$	Slipping in 5GR, 6GR or 7GR	Input clutch slippage
Does not shift-up "D" or "M" position $5 \rightarrow 6$	Slipping in 2GR, 3GR, 4GR or 6GR	2346 brake slippage
Does not shift-up "D" or "M" position $6 \rightarrow 7$	Slipping in 7GR	Front brake slippage

Inspection and Adjustment

INSPECTION

1. Place selector lever in "P" position, and turn ignition switch ON (engine stop).
2. Check that selector lever can be shifted to other than " P " position when brake pedal is depressed. Also check that selector lever can be shifted from "P" position only when brake pedal is depressed.
3. Shift the selector lever and check for excessive effort, sticking, noise or rattle.
4. Confirm that the selector lever stops at each position by feeling the engagement when it is moved through all the positions. Check whether or not the actual position the selector lever matches the position shown by the shift position indicator and the A / T body.
5. The method of operating the lever to individual positions correctly is shown in the figure.
6. When selector button is pressed in "P", " R ", or " N " position without applying forward/backward force to selector lever, check button operation for sticking.
7. Confirm that the back-up lamps illuminate only when lever is placed in the "R" position. Confirm that the back-up lamps do not illuminate when selector lever is pushed against " R " position in the " P " or " N " position.
8. Confirm that the engine can only be started with the selector lever in the "P" and " N " positions. (With selector lever in the " P "
 position, engine can be started even when selector lever is moved forward and backward.)
9. Make sure that A / T is locked completely in " P " position.
10. DS mode must be indicated on the combination meter when the selector lever is shifted to the manual shift gate. When the selector lever is shifted to the " + " or " - " side in the DS mode, manual mode should be indicated on the combination meter.
In addition, a set shift position must be changed when the selector lever is shifted to the " + " or " - " side in the manual mode. (Only while driving.)

ADJUSTMENT

1. Loosen nut ($\boldsymbol{\square}$).
2. Place manual lever and selector lever in "P" position.
3. While pressing lower lever (A) toward rear of vehicle (in "P" position direction), tighten nut to specified torque. Refer to TM-168. "Exploded View". CAUTION:
Be careful not to touch the control rod while pressing lower lever of A / T shift selector assembly. NOTE:
Press lower lever of A/T shift selector assembly with a force of approximately $1 \mathrm{~kg}(9.8 \mathrm{~N})$.

REMOVAL AND INSTALLATION A/T SHIFT SELECTOR

Exploded View

1. Selector lever knob
2. Selector lever position indicator
3. Control rod
4. Dust cover plate
5. Collar
6. Shift lock unit
7. Lock pin
8. Harness connector
9. Dust cover
10. Snap pin
11. Pivot pin
12. A / T shift selector assembly
13. Indicator plate
14. Insert finisher
15. Bracket
16. Washer
17. Insulator
18. Adapter

- Apply multi-purpose grease.

Refer to $\mathrm{Gl}-4$, "Components" for symbols not described on the above.

Removal and Installation

REMOVAL

1. Shift the selector lever to "P" position.
2. Remove control rod from A/T shift selector.
3. Shift the selector lever to "N" position.
4. Remove knob cover (A) below selector lever downward.
5. Pull lock pin (1) out of selector lever knob (2).
6. Remove selector lever knob.
7. Remove center console assembly. Refer to IP-22, "Exploded View".

CAUTION:

When disconnecting selector lever position indicator connector from shift position switch, never twist or apply an excessive load to the connector.
8. Remove rear ventilator duct 1. Refer to VTL-11, "Exploded View".

9. Disconnect A/T shift selector harness connector.
10. Remove harness clips from A / T shift selector assembly.
11. Shift the selector lever to "P" position.
12. Remove A / T shift selector assembly mounting bolts.
13. Slightly lift the A/T shift selector assembly (1) and slide it rightward. Then pull it out in the diagonally right direction.
14. Remove adapter from A / T shift selector assembly.
15. Remove dust cover and dust cover plate from A / T shift selector assembly.
16. Remove dust cover from dust cover plate.
17. Remove shift lock unit from A / T shift selector assembly.
18. Remove brackets from vehicle floor panel.
19. Remove selector lever position indicator from console finisher assembly.

a. Remove indicator assembly from console finisher assembly. Refer to IP-22, "Exploded View".
b. Remove insert finisher from indicator assembly.
c. Remove selector lever position indicator.

INSTALLATION
 CAUTION:

Apply multi-purpose grease on the pin surface (that slides after installing a collar) of the pivot pin. Note the following, and Install in the reverse order of removal.

- Refer to the followings when installing selector lever knob to A/T shift selector assembly.

1. Insert lock pin to selector lever knob.
2. Install selector lever knob over selector lever until a click is felt. CAUTION:

A/T SHIFT SELECTOR

< REMOVAL AND INSTALLATION >

- Install it straight, and never tap or apply any shock to install it.
- Never press selector button.
- When installing control rod to A/T shift selector assembly, refer to "ADJUSTMENT". Refer to TM-167. "Inspection and Adjustment".

Inspection and Adjustment
INSPECTION AFTER INSTALLATION
Check A/T positions after adjusting A/T positions. Refer to TM-167, "Inspection and Adjustment".
ADJUSTMENT AFTER INSTALLATION
Adjust A/T positions. Refer to TM-167, "Inspection and Adjustment".

Exploded View

B

Removal and Installation

REMOVAL

1. Shift the selector lever to "P" position.
2. Disconnect A/T shift selector and control rod. Refer to TM-168, "Exploded View".
3. Remove manual lever from A / T assembly.
4. Remove control rod from manual lever.

INSTALLATION

Note the following, and install in the reverse order of removal.
CAUTION:
Apply multi-purpose grease on the pin surface (that slides after installing collar) of the tip of the control rod.

- When installing control rod to A/T shift selector assembly, refer to "ADJUSTMENT". Refer to TM-167. "Inspection and Adjustment".
Inspection and Adjustment
INSPECTION AFTER INSTALLATION
Check A/T positions after adjusting A/T positions. Refer to TM-349, "Inspection and Adjustment".
ADJUSTMENT AFTER INSTALLATION
Adjust A/T positions. Refer to TM-349, "Inspection and Adjustment".

Exploded View

SEC. 311

JPDIA0853GB

1. A / T
2. Clip
3. Drain plug
4. Oil pan gasket
5. Oil pan mounting bolt
6. Drain plug gasket
7. Oil pan
8. Overflow plug
9. Magnet

Refer to GI-4, "Components" for symbols in the figure.

Removal and Installation

REMOVAL

1. Drain ATF through drain plug.
2. Remove exhaust mounting bracket. Refer to EX-5, "Exploded View".
3. Disconnect heated oxygen sensor 2 harness connectors (A).

$$
\begin{array}{ll}
< & \text { : Vehicle front } \\
< & \text { Bolt }
\end{array}
$$

4. Remove heated oxygen sensor 2 harness (B) from clips (1).
5. Remove bracket (2) from A/T assembly. Refer to TM-181, "2WD : Exploded View" (2WD), TM-184, "AWD: Exploded View" (AWD).

6. Remove clips (1).

7. Remove oil pan (2) and oil pan gasket.
8. Remove magnets from oil pan.

INSTALLATION

Note the following, and install in the reverse order of removal.
CAUTION:

- Clean foreign materials (gear wear particles) that adhere on the inside of the oil pan and on the magnet, and then assembly.
- Completely remove all moisture, oil and old gasket, etc. from oil pan gasket mounting surface of transmission case and oil pan.
- Never reuse oil pan gasket and oil pan mounting bolts.
- Install oil pan gasket in the direction to align hole position.
- Never reuse drain plug and drain plug gasket. In addition, install new drain plug and drain plug gasket after adjustment of A / T fluid filling.
- Tighten the oil pan mounting bolts to the specified torque in the numerical order as shown in the figure after temporarily tightening them.
: Vehicle front

Inspection and Adjustment

INSPECTION AFTER REMOVAL

Check foreign materials in oil pan to help determine causes of malfunction. If the ATF is very dark, smells burned, or contains foreign particles, the frictional material (clutches, band) may need replacement. A tacky film that will not wipe clean indicates varnish build up. Varnish can cause valves, servo, and clutches to stick and can inhibit pump pressure.

- If frictional material is detected, perform A/T fluid cooler cleaning. Refer to TM-163, "Cleaning".

INSPECTION AFTER INSTALLATION Check A/T fluid leakage.

AIR BREATHER HOSE

2WD
2WD : Exploded View

1. Bracket
2. Clip
3. A / T assembly
4. Air breather hose
A. Tightening must be done following the installation procedure. Refer to TM-174, "2WD: Removal and Installation".

2WD : Removal and Installation

REMOVAL

1. Remove clips from brackets.
2. Remove air breather box from bracket.
3. Remove air breather box from air breather hose.
4. Remove air breather hose.
5. Separate propeller shaft assembly. Refer to DLN-118, "Exploded View".
6. Remove control rod from A/T shift selector assembly. Refer to TM-168, "Exploded View".
7. Support A/T assembly with a transmission jack.

CAUTION:
When setting the transmission jack, be careful not to allow it to collide against the drain plug and overflow plug.
8. Remove rear engine mounting member with a power tool. Refer to EM-82, "2WD : Exploded View".
9. Remove bolt fixing A / T assembly to engine with a power tool.
10. Remove bracket.

INSTALLATION

Note the following, and install in the reverse order of removal.
CAUTION:

- When installing air breather hose, be careful not to crushed or blocked by folding or bending the hose.
- When inserting air breather hose to air breather tube, be sure to insert it fully until its end reaches the radius curve end.
- When inserting air breather hose to air breather box, be sure to insert it fully until its end reaches the stop.
- Install air breather hose to air breather box so that the paint mark is facing backward.
- Ensure clips are securely installed to brackets when installing air breather hose to brackets.

AWD

AWD : Exploded View

SEC. 310

1. Air breather vent
2. A/T assembly
3. Clip
4. Air breather tube
A. To water outlet (rear)

Refer to GI-4, "Components" for symbols in the figure.
AWD : Removal and Installation
REMOVAL

1. Remove air breather vent from water outlet (rear).
2. Remove propeller shaft assembly (front). Refer to DLN-109, "VQ35HR : Exploded View".
3. Remove air breather hose.

INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:

- When installing air breather hose, be careful not to be crushed or blocked by folding or bending the hose.
- When inserting air breather hose to the air breather vent (for $A / T)(A)$, be sure to insert it fully until its end reaches the tube bend " R " portion.

B : Air breather vent (for transfer)

- Install air breather hose to air breather vent (for A / T) so that the paint mark is facing upward.
- Ensure clips are securely installed to brackets when installing air breather hose to brackets.

1. A / T assembly
2. A / T fluid cooler tube
3. Hose clamp
A. To radiator
A.

Refer to GI-4, "Components" for symbols in the figure.

REMOVAL

1. Remove air duct (inlet). Refer to EM-29, "Exploded View".
2. Remove engine lower cover with power tool. Refer to EXT-31, "Exploded View".
3. Remove A / T fluid cooler hose A and A / T fluid cooler hose B.
4. Remove A / T fluid cooler tubes from A / T assembly and engine.
5. Plug up opening such as the A / T fluid cooler tube hole.
6. Remove A / T fluid cooler tubes from the vehicle.

CAUTION:
Be careful not to bend A/T fluid cooler tubes.
7. Remove clips and bracket.

INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:
Never reuse copper washer.

- Refer to the following when installing A/T fluid cooler hoses.

FLUID COOLER SYSTEM
< REMOVAL AND INSTALLATION >
[7AT: RE7R01A (VQ35HR)]

Hose name	Hose end	Paint mark	Position of hose clamp* *
A/T fluid cooler hose A	Radiator assembly side	Facing backward	A
	A/T fluid cooler tube side	Facing downward	B
A/T fluid cooler hose B	Radiator assembly side	Facing downward	C
	A/T fluid cooler tube side	Facing downward	B

*: Refer to the illustrations for the specific position each hose clamp tab.

- The illustrations indicate the view from the hose ends.

$$
\begin{array}{ll}
\triangleleft D & : \text { Vehicle front } \\
\triangleleft E & : \text { Vehicle upper }
\end{array}
$$

- When installing hose clamps center line of each hose clamp tab should be positioned as shown in the figure.

- Insert A/T fluid cooler hoses according to dimension "L" described below.

(1)	(2)	Tube type	Dimension "L"
A/T fluid cooler hose A	Radiator assembly side	A	End reaches the radius curve end.
	A/T fluid cooler tube side	B	$30 \mathrm{~mm}(1.18 \mathrm{in})$ [End reaches the 2-stage bulge (D).]
	Radiator assembly side	C	Insert the hose until the hose touches the radiator.
	A/T fluid cooler tube side	B	$30 \mathrm{~mm}(1.18 \mathrm{in})$ [End reaches the 2-stage bulge (D).]

- Set hose clamps (1) at the both ends of A / T fluid cooler hoses (2) with dimension " A " from the hose edge.

Dimension "A" : 5-9 mm (0.20-0.35 in)

- Hose clamp should not interfere with the bulge of fluid cooler tube.

SCIA8123E

2WD : Inspection and Adjustment

AWD : Removal and Installation

REMOVAL

1. Remove air duct (inlet). Refer to EM-29, "Exploded View".
2. Remove engine under cover with a power tool. Refer to EXT-31, "Exploded View".
3. Remove A / T fluid cooler hose A and A / T fluid cooler hose B.
4. Remove control rod from A/T shift selector. Refer to TM-168, "Exploded View".
5. Remove exhaust mounting bracket. Refer to EX-5, "Exploded View".
6. Disconnect heated oxygen sensor 2 connectors (A).

?	: Vehicle front
: Bolt	

7. Remove heated oxygen sensor 2 harness (B) from clips (1).
8. Remove harness bracket (2) from A/T assembly. Refer to EX-5, "Exploded View".
9. Remove propeller shaft assembly (rear). Refer to DLN-126, "Exploded View".
10. Remove propeller shaft assembly (front). Refer to DLN-109, "VQ35HR : Exploded View".
11. Lift up a transmission jack to make the gap between converter housing of A / T assembly and front suspension member.
CAUTION:
Never contact the A/T and transfer assembly with the lower lever of A/T shift selector when lifting up a transmission jack.
12. Remove A / T fluid cooler tubes from A / T assembly and engine.
13. Plug up opening such as the A / T fluid cooler tube hole.
14. Remove clips and brackets.
15. Remove A/T fluid cooler tubes from the vehicle.

CAUTION:
Be careful not to bend \mathbf{A} / \mathbf{T} fluid cooler tubes.
INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:
Never reuse copper washer.

- Refer to the following when installing A / T fluid cooler hoses.

Hose name	Hose end	Paint mark	Position of hose clamp *
A/T fluid cooler hose A	Radiator assembly side	Facing backward	A
	A/T fluid cooler tube side	Facing downward	B
A/T fluid cooler hose B	Radiator assembly side	Facing downward	C
	A/T fluid cooler tube side	Facing downward	B

*: Refer to the illustrations for the specific position each hose clamp tab.

- The illustrations indicate the view from the hose ends.

βD	$:$ Vehicle front
$\triangleleft E$	$:$ Vehicle upper

- When installing hose clamps center line of each hose clamp tab should be positioned as shown in the figure.

- Insert A/T fluid cooler hoses according to dimension "L" described below.

(1)	(2)	Tube type	Dimension "L"
A/T fluid cooler hose A	Radiator assembly side	A	End reaches the radius curve end.
	A/T fluid cooler tube side	B	$30 \mathrm{~mm} \mathrm{(1.18} \mathrm{in)} \mathrm{[End} \mathrm{reaches} \mathrm{the} \mathrm{2-stage} \mathrm{bulge}$ (D).]

FLUID COOLER SYSTEM

< REMOVAL AND INSTALLATION >

(1)	(2)	Tube type	Dimension "L"
A/T fluid cooler hose B	Radiator assembly side	C	Insert the hose until the hose touches the radiator.
	A/T fluid cooler tube side	B	$30 \mathrm{~mm}(1.18 \mathrm{in})$ [End reaches the 2-stage bulge (D).]

- Set hose clamps (1) at the both ends of A/T fluid cooler hoses (2) with dimension " A " from the hose edge.

Dimension "A" : 5-9 mm (0.20-0.35in)

- Hose clamp should not interfere with the bulge of fluid cooler tube.

AWD : Inspection and Adjustment
INSPECTION AFTER INSTALLATION
Check A/T fluid leakage.
ADJUSTMENT AFTER INSTALLATION
Adjust A/T fluid level. Refer to TM-161, "Adjustment".

UNIT REMOVAL AND INSTALLATION TRANSMISSION ASSEMBLY

 2WD2WD : Exploded View

1. A / T assembly
2. Bracket
3. Bracket
4. Bracket
5. Bracket
A. Tightening must be done following the installation procedure. Refer to TM-181, "2WD : Removal and Installation". Refer to Gl-4, "Components" for symbols in the figure.

2WD : Removal and Installation

REMOVAL
CAUTION:

- When removing the A/T assembly from engine, first remove the crankshaft position sensor (POS) from the A/T assembly.
- Be careful not to damage sensor edge.

1. Shift the selector lever to "P" position, and then release the parking brake.
2. Disconnect the battery cable from the negative terminal.
3. Remove control rod from A/T shift selector assembly. Refer to TM-168, "Exploded View".
4. Remove propeller shaft assembly (rear). Refer to DLN-118, "Exploded View".
5. Remove manual lever. Refer to TM-171, "Exploded View".
6. Remove engine lower cover with a power tool. Refer to EXT-31, "Exploded View".
7. Remove front cross bar. Refer to FSU-13, "Exploded View".
8. Remove exhaust mounting bracket. Refer to EX-5, "Exploded View".
9. Remove three way catalyst (right bank). Refer to EX-5, "Exploded View".
10. Remove crankshaft position sensor (POS) from A/T assembly. Refer to EM-117, "Exploded View".

CAUTION:

- Never subject it to impact by dropping or hitting it.
- Never disassemble.
- Never allow metal filings, etc. to get on the sensor's front edge magnetic area.
- Never place in an area affected by magnetism.

11. Remove starter motor. Refer to STR-18, "VQ35HR : Exploded View".
12. Remove rear plate cover. Refer to EM-46, "Exploded View".
13. Turn crankshaft, and remove the four tightening bolts for drive plate and torque converter. CAUTION:
When turning the crankshaft, turn it clockwise as viewed from the front of the engine.
14. Remove A/T fluid cooler tubes from A/T assembly and engine. Refer to TM-176, "2WD : Exploded View".
15. Plug up openings such as the A / T fluid cooler tube hole.
16. Support A / T assembly with a transmission jack.

CAUTION:
When setting the transmission jack, be careful not to allow it to collide against the drain plug and overflow plug.
17. Remove rear engine mounting member and engine mounting insulator (rear) with a power tool. Refer to EM-82, "2WD : Exploded View".
18. Disconnect A / T assembly connector.
19. Remove harness and brackets.
20. Remove bolts fixing A / T assembly to engine with a power tool.
21. Remove air breather hose. Refer to TM-174, "2WD : Exploded View".
22. Remove A/T assembly from vehicle.

CAUTION:

- Secure torque converter to prevent it from dropping.
- Secure A/T assembly to a transmission jack.

23. Remove dynamic damper. Refer to EM-82, "2WD : Exploded View".

INSTALLATION
Note the following, and install in the reverse order of removal. CAUTION:
Check fitting of dowel pin (\&).

- When installing A / T assembly to the engine, be sure to check dimension " A " to ensure it is within the reference value limit.

B : Scale
C : Straightedge
$\begin{aligned} \text { Dimension "A" } & \begin{array}{l}\text { : Refer to TM-188, "Torque Convert- } \\ \text { er". }\end{array}\end{aligned}$

- When installing A / T assembly to the engine, attach the fixing bolts in accordance with the following standard.

Bolt symbol	A	B
Insertion direction	A / T assembly to engine	Engine to A/T assembly
Number of bolts	8	4
Bolt length "L" mm (in)	$65(2.56)$	$35(1.38)$
Tightening torque $\mathrm{N} \cdot \mathrm{m}$ (kg-m, ft-lb)	$75(7.7,55)$	$46.6(4.8,34)$

*: Tightening the bolt with bracket.

- Align the positions of tightening bolts for drive plate with those of the torque converter, and temporarily tighten the bolts. Then, tighten the bolts with the specified torque.
CAUTION:
- When turning crankshaft, turn it clockwise as viewed from the front of the engine.
- When tightening the tightening bolts for the torque converter after fixing the crankshaft pulley bolts, be sure to confirm the tightening torque of the crankshaft pulley mounting bolts. Refer to EM-53, "Exploded View".
- Rotate crankshaft several turns and check to be sure that A/T rotates freely without binding after converter is installed to drive plate.

2WD : Inspection and Adjustment

INSPECTION AFTER INSTALLATION

- Check A/T fluid leakage.
- Check A/T position after adjusting A/T positions. Refer to TM-167, "Inspection and Adjustment".

ADJUSTMENT AFTER INSTALLATION

- Adjust A/T fluid level. Refer to TM-161, "Adjustment".
- Adjust A/T position. Refer to TM-167, "Inspection and Adjustment".

AWD

A. Tightening must be done following the installation procedure. Refer to TM-184, "AWD : Removal and Installation".

Refer to GI-4, "Components" for symbols in the figure.
AWD : Removal and Installation

REMOVAL

CAUTION:

- When removing the A / T assembly from engine, first remove the crankshaft position sensor (POS) from the A/T assembly.
- Be careful not to damage sensor edge.

1. Shift the selector lever to " P " position, and then release the parking brake.
2. Disconnect the battery cable from the negative terminal.
3. Remove control rod from A/T shift selector assembly. Refer to TM-168, "Exploded View".
4. Remove propeller shaft assembly (rear). Refer to DLN-126, "Exploded View".
5. Remove propeller shaft assembly (front). Refer to DLN-109, "VQ35HR : Exploded View".
6. Remove manual lever from A/T assembly. Refer to TM-171, "Exploded View".
7. Support A/T assembly with a transmission jack.

CAUTION:
When setting the transmission jack, be careful not to allow it to collide against the drain plug and overflow plug.
8. Remove crankshaft position sensor (POS) from A/T assembly. Refer to EM-117, "Exploded View". CAUTION:

- Never subject it to impact by dropping or hitting it.
- Never disassemble.
- Never allow metal filings, etc. to get on the sensor's front edge magnetic area.
- Never place in an area affected by magnetism.

9. Remove starter motor. Refer to STR-18, "VQ35HR : Exploded View".
10. Remove rear plate cover. Refer to EM-46, "Exploded View".
11. Turn crankshaft, and remove the four tightening bolts for drive plate and torque converter. CAUTION:
When turning the crankshaft, turn it clockwise as viewed from the front of the engine.
12. Remove A/T fluid cooler tubes. Refer to TM-178, "AWD : Exploded View".
13. Plug up openings such as the A / T fluid cooler tube hole.
14. Disconnect A/T assembly harness connector and AWD solenoid harness connector.
15. Remove harness and brackets.
16. Remove bolts fixing A/T assembly to engine with a power tool.
17. Remove air breather hose. Refer to TM-175, "AWD : Exploded View".
18. Remove A/T assembly with transfer assembly from vehicle. CAUTION:

- Secure torque converter to prevent it from dropping.
- Secure A/T assembly to a transmission jack.

19. Remove transfer assembly from A/T assembly with a power tool. Refer to DLN-65, "VQ35HR : Exploded View".

INSTALLATION
Note the following, and Install in the reverse order of removal.
CAUTION:
Check fitting of dowel pin (\&).

- When installing A / T assembly to the engine, be sure to check dimension " A " to ensure it is within the reference value limit.

B	: Scale
C	: Straightedge

Dimension : Refer to TM-188, "Torque Converter". "A"

TRANSMISSION ASSEMBLY
< UNIT REMOVAL AND INSTALLATION >

- When installing A/T assembly to the engine, attach the fixing bolts in accordance with the following standard.

Bolt symbol	A	B
Insertion direction	A/T assembly to engine	Engine to A/T assembly
Number of bolts	8	4
Bolt length "L" mm (in)	$65(2.56)$	$35(1.38)$
Tightening torque $\mathrm{N} \cdot \mathrm{m}$ (kg-m, ft-lb)	$75(7.7,55)$	$46.6(4.8,34)$

- Align the positions of tightening bolts for drive plate with those of the torque converter, and temporarily tighten the bolts. Then, tighten the bolts with the specified torque.
CAUTION:
- When turning crankshaft, turn it clockwise as viewed from the front of the engine.
- When tightening the tightening bolts for the torque converter after fixing the crankshaft pulley bolts, be sure to confirm the tightening torque of the crankshaft pulley mounting bolts. Refer to EM-53, "Exploded View".
- Rotate crankshaft several turns and check to be sure that A/T rotates freely without binding after converter is installed to drive plate.
AWD : Inspection and Adjustment
INSPECTION AFTER INSTALLATION
- Check A/T fluid leakage.
- Check A/T position after adjusting A/T positions. Refer to TM-167, "Inspection and Adjustment".

ADJUSTMENT AFTER INSTALLATION

- Adjust A/T fluid level. Refer to TM-161, "Adjustment".
- Adjust A/T position. Refer to TM-167, "Inspection and Adjustment".

SERVICE DATA AND SPECIFICATIONS (SDS)

< SERVICE DATA AND SPECIFICATIONS (SDS) [7AT: RE7R01A (VQ35HR)]
SERVICE DATA AND SPECIFICATIONS (SDS)
SERVICE DATA AND SPECIFICATIONS (SDS)
General Specification

Applied model		2WD	AWD
Transmission model code number		3RX1C	3RX1D
Stall torque ratio		1.92 : 1	
Transmission gear ratio	1st	4.924	
	2nd	3.194	
	3rd	2.043	
	4th	1.412	
	5th	1.000	
	6th	0.862	
	7th	0.772	
	Reverse	3.972	
Recommended fluid		Genuine NISSAN Matic S ATF**	
Fluid capacity		9.2 liter (9-3/4 US qt, 8-1/8 Imp qt ${ }^{*}{ }^{*}$	

CAUTION:

- Use only Genuine NISSAN Matic S ATF. Never mix with other ATF.
- Using ATF other than Genuine NISSAN Matic S ATF will cause deterioration driveability and A/T durability, and may damage the A / T, which is not covered by the INFINITI new vehicle limited warranty.
*1: Refer to MA-12, "Fluids and Lubricants".
*2: The fluid capacity is the reference value.

Vehicle Speed at Which Gear Shifting Occurs
 INFOID:0000000005250179

2WD MODELS
Unit: km/h (MPH)

Gear position	Throttle position	
	Full throttle	Half throttle
D1 \rightarrow D2	$58-62(36-38)$	$24-28(15-17)$
D2 \rightarrow D3	$91-99(57-61)$	$50-58(31-36)$
D3 \rightarrow D4	$143-153(89-95)$	$81-91(51-56)$
D4 \rightarrow D5	$209-219(130-136)$	$116-126(73-78)$
D5 \rightarrow D6	$250-260(156-161)$	$174-184(109-114)$
D6 \rightarrow D7	$250-260(156-161)$	$250-260(156-161)$
D7 \rightarrow D6	$240-250(150-155)$	$201-211(125-131)$
D6 \rightarrow D5	$215-225(134-139)$	$127-137(79-85)$
D5 \rightarrow D4	$197-207(123-128)$	$75-85(47-52)$
D4 \rightarrow D3	$121-131(76-81)$	$46-56(29-34)$
D3 \rightarrow D2	$70-78(44-48)$	$22-30(14-18)$
D2 \rightarrow D1	$23-27(15-16)$	$8-12(5-7)$

- At half throttle, the accelerator opening is $4 / 8$ of the full opening.

AWD MODELS
<SERVICE DATA AND SPECIFICATIONS (SDS)

Gear position		Throttle position	
	Full throttle	Half throttle	
D1 \rightarrow D2	$52-56(33-34)$	$22-26(14-16)$	
D2 \rightarrow D3	$82-90(51-55)$	$45-53(28-32)$	
D3 \rightarrow D4	$129-139(81-86)$	$73-83(46-51)$	
D4 \rightarrow D5	$189-199(118-123)$	$105-115(66-71)$	
D5 \rightarrow D6	$250-260(156-161)$	$157-167(98-103)$	
D6 \rightarrow D7	$250-260(156-161)$	$237-247(148-153)$	
D7 \rightarrow D6	$240-250(150-155)$	$181-191(113-118)$	
D6 \rightarrow D5	$195-205(122-127)$	$115-125(72-77)$	
D5 \rightarrow D4	$179-189(112-117)$	$68-78(43-48)$	
D4 \rightarrow D3	$119-129(74-80)$	$42-52(27-32)$	
D3 \rightarrow D2	$63-71(40-44)$	$20-28(13-17)$	
D2 \rightarrow D1	$21-25(14-15)$	$7-11(5-6)$	

- At half throttle, the accelerator opening is $4 / 8$ of the full opening.

Vehicle Speed at Which Lock-up Occurs/Releases

2WD MODELS

Throttle position	Vehicle speed $\mathrm{km} / \mathrm{h}(\mathrm{MPH})$	
	Lock-up ON	Lock-up OFF
Closed throttle	$54-62(34-38)$	$51-59(32-36)$
Half throttle	$64-72(40-44)$	$61-69(38-42)$

- At closed throttle, the accelerator opening is less than $1 / 8$ condition. (Closed throttle position signal OFF)
- At half throttle, the accelerator opening is $4 / 8$ of the full opening.

AWD MODELS

Throttle position	Vehicle speed $\mathrm{km} / \mathrm{h}(\mathrm{MPH})$	
	Lock-up ON	Lock-up OFF
Closed throttle	$49-57(31-35)$	$46-54(29-33)$
Half throttle	$58-66(37-41)$	$55-63(35-39)$

- At closed throttle, the accelerator opening is less than $1 / 8$ condition. (Closed throttle position signal OFF)
- At half throttle, the accelerator opening is $4 / 8$ of the full opening.

Stall Speed
Stall speed $\quad 2,475-2,775 \mathrm{rpm}$.

Torque Converter

Dimension between end of converter housing and torque converter	$25.0 \mathrm{~mm} \mathrm{(0.98} \mathrm{in)}$

DIAGNOSIS AND REPAIR WORK FLOW

< BASIC INSPECTION >
[7AT: RE7R01B (VK50VE)]

1. OBTAIN INFORMATION ABOUT SYMPTOM

1. Refer to TM-190, "Question sheet" and interview the customer to obtain the malfunction information (conditions and environment when the malfunction occurred) as much as possible when the customer brings in the vehicle.
2. Check the following:

- Service history
- Harnesses and connectors malfunction. Refer to GI-36, "Intermittent Incident".

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC
3. Before checking the malfunction, check whether any DTC exists.
4. If DTC exists, perform the following operations.

- Record the DTC and freeze frame data. (Print out the data using CONSULT-III and affix to the Work Order Sheet.)
- Erase DTCs.
- Check the relationship between the cause that is clarified with DTC and the malfunction information described by the customer. TM-334, "Symptom Table" is effective.

3. Check the information of related service bulletins and others also.

Do malfunction information and DTC exist?
Malfunction information and DTC exists. >>GO TO 3.
Malfunction information exists, but no DTC. >>GO TO 4.
No malfunction information, but DTC exists. >>GO TO 5.
3. REPRODUCE MALFUNCTION SYMPTOM

Check any malfunction described by a customer, except those with DTC on the vehicle.
Also investigate whether the symptom is a fail-safe or normal operation. Refer to TM-328, "Fail-Safe".
When a malfunction symptom is reproduced, the question sheet is effective. Refer to TM-190, "Question sheet".
Verify the relationship between the symptom and the conditions in which the malfunction described by the customer occurs.

>> GO TO 5.
 4. REPRODUCE MALFUNCTION SYMPTOM

Check the malfunction described by the customer on the vehicle.
Also investigate whether the symptom is a fail-safe or normal operation. Refer to TM-328, "Fail-Safe".
When a malfunction symptom is reproduced, the question sheet is effective. Refer to TM-190, "Question sheet".
Verify the relationship between the symptom and the conditions in which the malfunction described by the customer occurs.

```
>> GO TO 6.
```


5. PERFORM "DTC CONFIRMATION PROCEDURE"

Perform "DTC CONFIRMATION PROCEDURE" of the appropriate DTC to check if DTC is detected again. Refer to TM-332, "DTC Inspection Priority Chart" when multiple DTCs are detected, and then determine the order for performing the diagnosis.
NOTE:
If no DTC is detected, refer to the freeze frame data.
Is any DTC detected?
YES >> GOTO 7.

DIAGNOSIS AND REPAIR WORK FLOW

< BASIC INSPECTION >
[7AT: RE7R01B (VK50VE)]
NO >> Check according to Gl-36, "Intermittent Incident".
6.IDENTIFY MALFUNCTIONING SYSTEM WITH "DIAGNOSIS CHART BY SYMPTOM"

Use TM-334, "Symptom Table" from the symptom inspection result in step 4. Then identify where to start performing the diagnosis based on possible causes and symptoms.
>> GO TO 8.
7. REPAIR OR REPLACE THE MALFUNCTIONING PARTS

Repair or replace the detected malfunctioning parts.
Reconnect parts or connector after repairing or replacing, and then erase DTC if necessary.

$$
\text { >> GO TO } 8 .
$$

8. FINAL CHECK

Perform "DTC CONFIRMATION PROCEDURE" again to make sure that the repair is correctly performed.
Check that malfunctions are not reproduced when obtaining the malfunction information from the customer, referring to the symptom inspection result in step 3 or 4.
Is DTC or malfunction symptom reproduced?
YES-1 >> DTC is reproduced: GO TO 5.
YES-2 >> Malfunction symptom is reproduced: GO TO 6.
NO >> Before delivering the vehicle to the customer, make sure that DTC is erased.
Question sheet

DESCRIPTION

There are many operating conditions that may cause a malfunction of the transmission parts. By understanding those conditions properly, a quick and exact diagnosis can be achieved.
In general, customers have their own criteria for a problem. Therefore, it is important to understand the symptom and status well enough by asking the customer about the concerns carefully. In order to systemize all the information for the diagnosis, prepare the question sheet referring to the question points.

WORKSHEET SAMPLE

Question Sheet					
Customer name MR/MS	Engine \#		Manuf. Date		
	Incident Date		VIN		
	Model \& Year		In Service Date		
	Trans.		Mileage	$\mathrm{km} /$ Mile	

DIAGNOSIS AND REPAIR WORK FLOW
< BASIC INSPECTION >
[7AT: RE7R01B (VK50VE)]

Question Sheet						
Symptoms		\square Vehicle does not move (\square Any position \square Particular position)
		\square No up-shift $\quad(\square 1 G R \rightarrow 2 G R \quad \square 2 G R \rightarrow 3 G R \quad \square 3 G R \rightarrow 4 G R \quad \square 4 G R \rightarrow 5 G R \quad \square 5 G R \rightarrow$$6 G R \quad \square 6 G R \rightarrow 7 G R)$				
		\square No down-shift $\quad(\square 7 \mathrm{GR} \rightarrow 6 \mathrm{GR} \quad \square 6 \mathrm{GR} \rightarrow 5 \mathrm{GR} \quad \square 5 \mathrm{GR} \rightarrow 4 \mathrm{GR} \quad \square 4 \mathrm{GR} \rightarrow 3 \mathrm{GR} \quad \square 3 \mathrm{GR} \rightarrow$$2 \mathrm{GR} \quad \square 2 \mathrm{GR} \rightarrow 1 \mathrm{GR})$				
		\square Lock-up malfunction				
		\square Shift point too high or too low				
		\square Shift shock or slip				
		\square Noise or vibration				
		\square No kick down				
		\square No pattern select				
		\square Others				
Frequency		\square All the time \square Under certain conditions		\square Sometimes (times a day)		
Weather conditions		\square Not affected				
	Weather	\square Fine \square Clouding	\square Raining	\square Snowing	- Other ()
	Temp.	\square Hot $\quad \square$ Warm	$\square \mathrm{Cool}$	\square Cold	\square Temp. [Approx. ${ }^{\circ} \mathrm{F}$)]	${ }^{\circ} \mathrm{C}($
	Humidity	\square High $\quad \square$ Middle	\square Low			
Transmission conditions		\square Not affected				
		\square Cold $\quad \square$ During warm-up		\square After warm-up		
		\square Engine speed (rpm		rpm)		
Road conditions		\square Not affected				
		\square In town \square In suburbs	\square Freeway	\square Off road	Down)	
Driving conditions		\square Not affected				
			\square While en \square While de	racing ating	$\begin{aligned} & \square \text { At racing ing } \\ & \square \text { While turning (Ris } \end{aligned}$	While cruis- ight / Left)
		\square Vehicle speed [km/h (MPH)]		
Other conditions						

System Diagram

System Description

INPUT/OUTPUT SIGNAL CHART

Switch, Sensor or Signal		TCM function		Actuator
- Transmission range switch - Accelerator pedal position signal - Closed throttle position signal - Wide open throttle position signal - Engine speed signal - A / T fluid temperature sensor - Output speed sensor - Vehicle speed signal - Manual mode switch signal - Stop lamp switch signal - Side G sensor signal - Input speed sensor 1, 2	\Rightarrow	- Line pressure control (TM-195) - Shift change control (TM-199) - Shift pattern control - Shift pattern (TM-204) - Manual mode (TM-208) - Lock-up control (TM-211) - Fail-safe control (TM-328) - Self-diagnosis (TM-243) - CONSULT-III communication line (TM243) - CAN communication line (TM-249)	\Rightarrow	- Input clutch solenoid valve - Direct clutch solenoid valve - Front brake solenoid valve - High and low reverse clutch solenoid valve - Low brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve - 2346 brake solenoid valve - A/T CHECK indicator lamp - Back-up lamp relay - Starter relay

SYSTEM DESCRIPTION

- The A/T senses vehicle operating conditions through various sensors or signals. It always controls the optimum shift position and reduces shifting and lock-up shocks.
- Receive input signals transmitted from various switches and sensors.
- Determine required line pressure, shifting point, lock-up operation, etc.
- Transmit required output signals to the respective solenoids.

1. Selector lever position indicator
2. Control valve with $\mathrm{TCM}^{* 1}$
3. A / T shift selector assembly
4. Accelerator pedal position sensor
5. A / T CHECK indicator lamp
6. Paddle shifter (shift-up) ${ }^{* 2}$
A. Center console
B. A/T assembly
D. Combination meter
E. Steering wheel
7. A/T assembly connector
8. Manual mode indicator
9. Paddle shifter (shift-down) ${ }^{*}$
C. Accelerator pedal

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1, 2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*1: Control valve with TCM is included in A/T assembly.
*2: With paddle shifter
Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Transmission range switch	TM-252, "Description"
Output speed sensor	TM-257, "Description"
Input speed sensor 1	
Input speed sensor 2	,
A/T fluid temperature sensor	TM-253, "Description"
Input clutch solenoid valve	TM-279, "Description"
Front brake solenoid valve	TM-281, "Description"
Direct clutch solenoid valve	TM-299, "Description"
High and low reverse clutch solenoid valve	TM-296, "Description"
Low brake solenoid valve	TM-297, "Description"
Anti-interlock solenoid valve	TM-278, "Description"
2346 brake solenoid valve	TM-298, "Description"
Line pressure solenoid valve	TM-277, "Description"
Torque converter clutch solenoid valve	TM-274, "Description"
Accelerator pedal position sensor	TM-282, "Description"
Manual mode switch	"Descr
Paddle shifter*	
Starter relay	TM-250, "Description"
A/T CHECK indicator lamp	When the ignition switch is pushed to the ON position, the light comes on for 2 seconds.
Stop lamp switch	TM-122, "Description"
ECM	EC-588, "System Description"
BCM	BCS-6, "System Description"
Unified meter and A / C amp.	MWI-6. "METER SYSTEM : System Description"
ABS actuator and electric unit (control unit)	BRC-29, "System Description"
Yaw rate/side G sensor	BRC-77, "Description"

LINE PRESSURE CONTROL

System Diagram
INFOID:0000000005250191

System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Line pressure control	Line pressure solenoid valve Pressure regulator valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal ${ }^{*}$		
	Engine and A / T integrated control signal (Engine torque)*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

- When an engine and A/T integrated control signal (engine torque) equivalent to the engine drive force is transmitted from the ECM to the TCM, the TCM controls the line pressure solenoid valve.
This line pressure solenoid controls the pressure regulator valve as the signal pressure and adjusts the pressure of the operating oil discharged from the oil pump to the line pressure most appropriate to the driving state.
- The TCM has stored in memory a number of patterns for the optimum line pressure characteristic for the driving state.
- In order to obtain the most appropriate line pressure characteristic to meet the current driving state, the TCM controls the line pressure solenoid current value and thus controls the line pressure.
Normal Control

Each clutch is adjusted to the necessary pressure to match the engine drive force.

Back-up Control (Engine Brake)
When the select operation is performed during driving and the A / T is shifted down, the line pressure is set according to the vehicle speed.

During Shift Change
The necessary and adequate line pressure for shift change is set. For this reason, line pressure pattern setting corresponds to engine torque and gearshift selection. Also, line pressure characteristic corresponds to engine speed, during engine brake operation.

At Low Fluid Temperature

When the A/T fluid temperature drops below the prescribed temperature, in order to speed up the action of each friction element, the line pressure is set higher than the normal line pressure characteristic.

Component Parts Location

1. Selector lever position indicator
2. Control valve with TCM ${ }^{* 1}$
3. Shift position indicator
4. A / T shift selector assembly
5. Accelerator pedal position sensor
6. A/T CHECK indicator lamp
7. A/T assembly connector
8. Manual mode indicator
9. Paddle shifter (shift-down) ${ }^{*}$
10. Paddle shifter (shift-up) ${ }^{*}$
A. Center console
B. A/T assembly
D. Combination meter
E. Steering wheel

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*1: Control valve with TCM is included in A/T assembly.
*2: With paddle shifter

Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-257, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-253, "Description"
Line pressure solenoid valve	TM-277, "Description"
Pressure regulator valve	Adjusts the oil discharged from the oil pump to the optimum pressure (line pressure) for the driving state.
ECM	EC-588, "System Description"

SHIFT CHANGE CONTROL

System Diagram

INFOID:0000000005250195

System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Shift change control	- High and low reverse clutch solenoid valve - Direct clutch solenoid valve - Input clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Front brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
	Closed throttle position signal*		
	Engine and A / T integrated control signal (Engine torque)*		
BCM	Stop lamp switch signal*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

The clutch pressure control solenoid is controlled by the signals from the switches and sensors. Thus, the clutch pressure is adjusted to be appropriate to the engine load state and vehicle driving state. It becomes
possible to finely control the clutch hydraulic pressure with high precision and a smoother shift change characteristic is attained.

Shift Change
The clutch is controlled with the optimum timing and oil pressure by the engine speed, engine torque information, etc.

Shift Change System Diagram

*1: Full phase real-time feedback control monitors movement of gear ratio at gear change, and controls oil pressure in real-time to achieve the best gear ratio.

Blipping Control
This system makes transmission clutch engage readily by controlling (synchronizing) engine revolution according to the (calculation of) engine revolution after shifting down.

- "BLIPPING CONTROL" functions.
- When downshifting by accelerator pedal depression.
- When downshifting by the manual mode.

Operation Area			
Downshifting by accelerator pedal depression			Downshifting by the manual mode
Accelerator opening	Semessh akslaralas Medal aッ 	Accelerator opening	(1)
	Vehicle speed		Vehicle speed
			JSDIA0826GB

SHIFT CHANGE CONTROL

- TCM selects "BLIPPING CONTROL" or "NORMAL SHIFT CONTROL" according to the gear position, the selector lever position, the engine torque and the speed when accelerating by pedal depression.
- Engine speed control demand signal is transmitted from TCM to ECM under "BLIPPING CONTROL".
- ECM synchronizes the engine speed according to the engine speed control demand signal.

Downshifting by accelerator pedal depression

Downshifting by the manual mode

3. A/T assembly connector
6. Manual mode indicator
9. Paddle shifter (shift-down) ${ }^{*}{ }^{2}$

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*1: Control valve with TCM is included in A/T assembly.
*2: With paddle shifter
Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-257, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-253, "Description"
Input clutch solenoid valve	TM-279, "Description"
Front brake solenoid valve	TM-281, "Description"
Direct clutch solenoid valve	TM-299, "Description"
High and low reverse clutch solenoid valve	TM-296, "Description"
Low brake solenoid valve	TM-297, "Description"
Anti-interlock solenoid valve	TM-278, "Description"
2346 brake solenoid valve	TM-298, "Description"
Line pressure solenoid valve	TM-277, "Description"
Torque converter clutch solenoid valve	TM-274, "Description"
ECM	EC-588, "System Description"
BCM	BCS-6, "System Description"

SHIFT PATTERN CONTROL
ASC (ADAPTIVE SHIFT CONTROL)
ASC (ADAPTIVE SHIFT CONTROL) : System Diagram
INFOID:0000000005250199

ASC (ADAPTIVE SHIFT CONTROL) : System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Shift pattern control	- High and low reverse clutch solenoid valve - Direct clutch solenoid valve - Input clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Front brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
	Closed throttle position signal*		
	Engine and A/T integrated control signal (engine torque)*		
ABS actuator and electric unit (control unit)	Side G sensor signal*		
BCM	Stop lamp switch signal*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

ASC (Adaptive Shift Control)

It automatically selects the shift pattern (such as road environment and driving style) suitable for the various situations so as to allow the vehicle to be driven efficiently and smoothly.

For example.....

- When driving on an up/down slope

ASC judges up/down slope according to engine torque data transmitted from the ECM and vehicle speed. Fixing at 4GR, 5 GR or 6 GR on an up-slope prevents shift hunting and controls the vehicle to gain optimum driving force. On a down-slope, automatic shift-down to 4GR, 5 GR or 6GR controls to gain optimum engine brake.

- When driving on a curve TCM receives the side G sensor signal from the ABS actuator and electric unit (control unit). It locks to 4GR, $5 G R$ or 6 GR position in moderate cornering or to 3GR position in sharp cornering based on this signal. This prevents any upshift and kickdown during cornering, maintaining smooth vehicle travel.

DS Mode

- Changes to the shift schedule that mainly utilizes the high engine speed zone when ASC is active.
- DS mode can be switched according to the following method.
- When the selector lever is in the "D" position, shifting the selector lever to manual shift gate enables switching to DS mode.
- When in DS mode, shifting the selector lever to the main gate enables to cancel DS mode.
- After switching to manual mode with paddle shifter, switching to DS mode can not be enabled even when the selector lever is shifted to the manual gate. (With paddle shifter)

ASC (ADAPTIVE SHIFT CONTROL) : Component Parts Location

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*1: Control valve with TCM is included in A/T assembly.
*2: With paddle shifter
ASC (ADAPTIVE SHIFT CONTROL) : Component Description
INFOID:0000000005250202

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-72, "Description"
Input clutch solenoid valve	TM-100, "Description"
Front brake solenoid valve	TM-102, "Description"
Direct clutch solenoid valve	TM-117, "Description"
High and low reverse clutch solenoid valve	TM-114, "Description"
Low brake solenoid valve	TM-115, "Description"
Anti-interlock solenoid valve	TM-98, "Description"
2346 brake solenoid valve	TM-116, "Description"
Line pressure solenoid valve	TM-97, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
ECM	EC-30, "System Description"
BCM	BCS-6, "System Description"
ABS actuator and electric unit (control unit)	BRC-29, "System Description"

MANUAL MODE

MANUAL MODE : System Description
INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Output speed sensor	Vehicle speed	Shift pattern control	- High and low reverse clutch solenoid valve - Direct clutch solenoid valve - Input clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Front brake solenoid valve - Torque converter clutch solenoid valve - Line pressure solenoid valve - Anti-interlock solenoid valve
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
Unified meter and A/C amp.	Manual mode signal*		
	Non-manual mode signal*		
	Manual mode shift up signal*		
	Manual mode shift down signal*		
	Paddle shifter shift up signal ${ }^{* 1, ~ * 2 ~}$		
	Paddle shifter shift down signal ${ }^{* 1, ~ * 2 ~}$		

*1: This signal is transmitted via CAN communication line.
*2: With paddle shifter

SYSTEM DESCRIPTION

Manual Mode

- The TCM receives the manual mode signal, non-manual mode signal, manual mode shift up signal, manual mode shift down signal, paddle shifter shift up signal* and paddle shifter shift down signal* from unified meter and A/C amp. via CAN communication line. The TCM shifts shift pattern control to the manual mode based on these signals, and then shifts the A / T by operating each solenoid valve according to the shift operation of the driver.
*: With paddle shifter
- The TCM prohibits the manual mode while being in fail-safe mode due to an A/T malfunction, etc. Refer to TM-328, "Fail-Safe".
- The TCM transmits the manual mode shift refusal signal to the unified meter and A / C amp. if the TCM refuses the transmission from the driving status of vehicle when the selector lever shifts to UP or DOWN side. The unified meter and A/C amp. blinks shift indicator on the combination meter and sounds the buzzer to indicate the driver that the shifting is not performed when receiving this signal. However, the TCM does not transmit the manual mode shift refusal signal in the conditions as per the following.
- When the selector lever shifts to DOWN side while driving in 1GR.
- When the selector lever shifts to UP side while driving in 7GR.

MANUAL MODE : Component Parts Location

A. Center console
B. A/T assembly
D. Combination meter
E. Steering wheel

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*1: Control valve with TCM is included in A/T assembly.
*2: With paddle shifter
MANUAL MODE : Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-76, "Description"
A/T fluid temperature sensor	TM-72, "Description"
Input clutch solenoid valve	TM-100, "Description"
Front brake solenoid valve	TM-102, "Description"
Direct clutch solenoid valve	TM-117, "Description"
High and low reverse clutch solenoid valve	TM-114, "Description"
Low brake solenoid valve	TM-115, "Description"
Anti-interlock solenoid valve	TM-98, "Description"
2346 brake solenoid valve	TM-116, "Description"
Line pressure solenoid valve	TM-97, "Description"
Torque converter clutch solenoid valve	TM-94, "Description"
ECM	EC-30, "System Description"
Unified meter and A/C amp.	MWI-6, "METER SYSTEM : System Description"

LOCK-UP CONTROL

System Diagram
INFOID:0000000005250207

System Description

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to TCM	TCM function	Actuator
Input speed sensor 1, 2	Input speed	Lock-up control	Torque converter clutch solenoid valve \downarrow Torque converter clutch control valve
Output speed sensor	Vehicle speed		
A/T fluid temperature sensor	ATF temperature		
ECM	Engine speed signal*		
	Accelerator pedal position signal*		
	Closed throttle position signal*		
	Engine and A / T integrated control signal (Engine torque)*		

*: This signal is transmitted via CAN communication line.

SYSTEM DESCRIPTION

The torque converter clutch piston in the torque converter is engaged to eliminate torque converter slip to increase power transmission efficiency.
The torque converter clutch control valve operation is controlled by the torque converter clutch solenoid valve, which is controlled by a signal from TCM, and the torque converter clutch control valve engages or releases the torque converter clutch piston.
Lock-up operation condition table

| Selector lever | "D" position | | | | | "M" position | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gear position | 7 | 6 | 5 | 4 | 3 | 2 | 7 | 6 | 5 | 4 | 3 | 2 |
| Lock-up | \times | - | - | - | - | - | \times | \times | \times | \times | \times | \times |
| Slip lock-up | \times |

[^6]Lock-up control system diagram

Lock-up released

- In the lock-up released state, the torque converter clutch control valve is set into the unlocked state by the torque converter clutch solenoid and the lock-up apply pressure is drained.
in this way, the torque converter clutch piston is not coupled.
Lock-up Applied
- In the lock-up applied state, the torque converter clutch control valve is set into the locked state by the torque converter clutch solenoid and lock-up apply pressure is generated.
In this way, the torque converter clutch piston is pressed and coupled.

Smooth Lock-up Control

When shifting from the lock-up released state to the lock-up applied state, the current output to the torque converter clutch solenoid is controlled with the TCM. In this way, when shifting to the lock-up applied state, the torque converter clutch is temporarily set to the half-clutched state to reduce the shock.

Half-clutched State

- The current output from the TCM to the torque converter clutch solenoid is varied to steadily increase the torque converter clutch solenoid pressure.
In this way, the lock-up apply pressure gradually rises and while the torque converter clutch piston is put into half-clutched states, the torque converter clutch piston operating pressure is increased and the coupling is completed smoothly.

Slip Lock-up Control

- In the slip region, the torque converter clutch solenoid current is controlled with the TCM to put it into the half-clutched state. This absorbs the engine torque fluctuation and lock-up operates from low speed.
This raises the fuel efficiency for 2GR, 3GR, 4GR, 5GR, 6GR and 7GR.

1. Selector lever position indicator
2. Control valve with $\mathrm{TCM}^{* 1}$
3. A / T shift selector assembly
4. Accelerator pedal position sensor
5. A / T CHECK indicator lamp
6. Paddle shifter (shift-up) ${ }^{* 2}$
A. Center console
B. A/T assembly
D. Combination meter
E. Steering wheel
7. A/T assembly connector
8. Manual mode indicator
9. Paddle shifter (shift-down) ${ }^{*}$
C. Accelerator pedal

NOTE:

- The following components are included in A / T shift selector assembly.
- Manual mode select switch
- Manual mode position select switch
- Shift position switch
- The following components are included in control valve with TCM.
- TCM
- Input speed sensor 1,2
- Output speed sensor
- A/T fluid temperature sensor
- Transmission range switch
- Direct clutch solenoid valve
- High and low reverse clutch solenoid valve
- Input clutch solenoid valve
- Front brake solenoid valve
- Low brake solenoid valve
- Anti-interlock solenoid valve
- 2346 brake solenoid valve
- Line pressure solenoid valve
- Torque converter clutch solenoid valve
*1: Control valve with TCM is included in A/T assembly.
*2: With paddle shifter
Component Description

Name	Function
TCM	The TCM consists of a microcomputer and connectors for signal input and output and for power supply. The TCM controls the A/T.
Output speed sensor	TM-257, "Description"
Input speed sensor 1	
Input speed sensor 2	
A/T fluid temperature sensor	TM-253, "Description"
Torque converter clutch solenoid valve	TM-274, "Description"
Torque converter clutch control valve	Switches the lock-up to operating or released. Also, by performing the lock-up operation transiently, lock-up smoothly.
ECM	EC-588, "System Description"

1. Low brake
2. High and low reverse clutch
3. Mid carrier
10.*3 Front carrier
4. Front brake
5. Torque converter
19.*3 Under drive internal gear
22.*1 Mid internal gear
6. High and low reverse clutch hub
7. Adapter case
*1: 6 and 22 are one unit.
*2: 9 and 18 are one unit.
*3: 10 and 19 are one unit.
*4: 15 and 20 are one unit.
8. Reverse brake
9. 2nd one-way clutch
10. Input clutch
11. Under drive carrier
12. 2346 brake
13. Oil pump
20.*4 Front internal gear
14. Rear sun gear
15. Control valve with TCM
16. Output shaft
17. Direct clutch
6.*1 Rear carrier
9.*2 Front sun gear
18. 1st one-way clutch
15.** Input shaft
18.*2 Under drive sun gear
19. Mid sun gear
20. Rear internal gear
21. Parking gear

System Description

With the use of 4 sets of planetary gears, A/T enables 7 -speed transmission for forward and 1 -speed transmission for backward, depending on the combination of 3 sets of multiple-disc clutches, 4 sets of multiple-disc brakes and 2 sets of one-way clutches.

CLUTCH AND BAND CHART

Name of the partShiftposition		I/C	D/C		H\&LR/C	F/B	L/B		2346/B	REV/B	$\begin{aligned} & \text { 1st } \\ & \text { owc } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { OWC } \end{aligned}$	Remarks	
		FRONT	REAR	INNER			OUTER							
						\triangle	\triangle							Park position
					\diamond	\diamond				\bigcirc	©	©	Reverse position	
N					\triangle	\triangle							Neutral position	
D, DS	1st				动	梁	\bigcirc	\bigcirc			©	©	$\begin{gathered} \text { Automatic shift } \\ 1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4 \Leftrightarrow 5 \Leftrightarrow 6 \Leftrightarrow 7 \end{gathered}$	
	2nd						\bigcirc	\bigcirc	\bigcirc			©		
	3rd		\bigcirc	\bigcirc			\bigcirc		\bigcirc					
	4th		\bigcirc	\bigcirc	\bigcirc				\bigcirc					
	5th	\bigcirc		\bigcirc	\bigcirc									
	6th	\bigcirc			\bigcirc				\bigcirc					
	7th	\bigcirc			\bigcirc	\bigcirc								
7M	7th	O			\bigcirc	\bigcirc							Locks* (held stationary) in 7GR	
6M	6th	\bigcirc			\bigcirc				\bigcirc				Locks* (held stationary) in 6GR	
5M	5th	\bigcirc		\bigcirc	\bigcirc								Locks* (held stationary) in 5GR	
4M	4th		\bigcirc	\bigcirc	\bigcirc				\bigcirc				Locks* (held stationary) in 4GR	
3M	3rd		\bigcirc	\bigcirc			\bigcirc		\bigcirc				Locks* (held stationary) in 3GR	
2M	2nd				\diamond		\bigcirc	\bigcirc	\bigcirc			©	Locks* (held stationary) in 2GR	
1M	1st				\diamond	\diamond	\bigcirc	\bigcirc			©	©	Locks (held stationary) in 1GR	

*: Down shift automatically according to the vehicle speed.

- - Operates

© - Operates during "progressive" acceleration.
\diamond-Operates and affects power transmission while coasting.
\triangle - Line pressure is applied but does not affect power transmission.
is - Operates at the fixed speed or less.

POWER TRANSMISSION

"N" Position

Since the low brake is released, torque from the input shaft drive is not transmitted to the output shaft. "P" Position

- The same as for the " N " position, since the low brake is released, so torque from the input shaft drive is not transmitted to the output shaft.
- The parking pawl linked with the selector lever meshes with the parking gear and fastens the output shaft mechanically.
"D1" and "DS1" Positions

- The 1 st one-way clutch regulates counterclockwise rotation of the under drive carrier.
- The 2nd one-way clutch regulates counterclockwise rotation of the rear sun gear.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"M1" Position

- The 1st one-way clutch and the front brake regulate counterclockwise rotation of the under drive carrier. NOTE:
The front brake operates only while coasting.
- The 2nd one-way clutch and the high and low reverses clutch regulate counterclockwise rotation of the rear sun gear.
NOTE:
The high and low reverse clutch operates only while coasting.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"D2" and "DS2" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The 2nd one-way clutch regulates counterclockwise rotation of the rear sun gear.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"M2" Position

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The 2nd one-way clutch and the high and low reverse clutch regulate counterclockwise rotation of the rear sun gear.
NOTE:
The high and low reverse clutch operates only while coasting.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"D3", "DS3" and "M3" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The direct clutch gets engaged and connects the rear sun gear with the rear carrier.
- The mid sun gear is fixed by the low brake.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the rear internal gear	Same number of revolution as the rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from mid internal gear	Same number of revolution as the rear carrier

"D4", "DS4" and "M4" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The direct clutch gets engaged and connects the rear sun gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	Fixed	-	Input/Output
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from under drive internal gear	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the rear internal gear	Same number of revolution as the rear internal gear	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the mid internal gear	Same number of revolution as the mid internal gear	Same number of revolution as the rear carrier

"D5", "DS5" and "M5" Positions

- The input clutch gets engaged and connects the mid internal gear with the rear carrier.
- The direct clutch gets engaged and connects the rear sun gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters the state described below.

Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	input/Output	-
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the rear carrier	Same number of revolution as the input shaft	Same number of revolution as the rear carrier
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Same number of revolution as the mid internal gear	Same number of revolution as the mid internal gear	Same number of revolution as the input shaft

"D6", "DS6" and "M6" Positions

- The front sun gear and the under drive sun gear are fixed by the 2346 brake.
- The input clutch gets engaged and connects the mid internal gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters the state described below.

Front planetary gear			
Name	Front sun gear	Front carrier	Front internal gear
Condition	Fixed	Output	Input
Direction of rotation	-	Clockwise revolution	Clockwise revolution
Number of revolutions	-	Deceleration from front internal gear	Same number of revolution as the input shaft
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Input/Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from rear carrier	Same number of revolution as the input shaft	Same number of revolution as the front carrier
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from mid internal gear	Acceleration from mid internal gear	Same number of revolution as the input shaft

"D7", "DS7" and "M7" Positions

- The under drive carrier is fixed by the front brake.
- The input clutch gets engaged and connects the mid internal gear with the rear carrier.
- The high and low reverse clutch gets engaged and connects the rear sun gear with the mid sun gear.
- Each planetary gear enters state described below.

Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	-	Input/Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from rear carrier	Same number of revolution as the input shaft	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	-	Output	Input
Direction of rotation	Clockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Acceleration from mid internal gear	Acceleration from mid internal gear	Same number of revolution as the input shaft

"R" Position

- The 1st one-way clutch and the front brake regulates counterclockwise rotation of the under drive carrier. NOTE:
The front brake operates at the fixed speed or less.
- The rear carrier and the mid internal gear are fixed by the reverse brake.
- The mid sun gear rotates at the same speed as the rear sun gear by operation of the 2nd one-way clutch and the high and low reverse clutch.
NOTE:
The high and low reverse clutch operates at the fixed speed or less.
- Each planetary gear enters the state described below.

Name	Front sun gear	Front carrier	Front internal gear
Condition	-	Output	Input
Direction of rotation	Counterclockwise revolution	Clockwise revolution	Clockwise revolution
Number of revolutions	Deceleration from front internal gear	Deceleration from front internal gear	Same number of revolution as the input shaft
Under drive planetary gear			
Name	Under drive sun gear	Under drive carrier	Under drive internal gear
Condition	-	Fixed	Input/Output
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from under drive internal gear	-	Same number of revolution as the front carrier
Rear planetary gear			
Name	Rear sun gear	Rear carrier	Rear internal gear
Condition	Output	Fixed	Input
Direction of rotation	Counterclockwise revolution	-	Clockwise revolution
Number of revolutions	Acceleration from rear internal gear	-	Same number of revolution as the under drive internal gear
Mid planetary gear			
Name	Mid sun gear	Mid carrier	Mid internal gear
Condition	Input	Output	Fixed
Direction of rotation	Counterclockwise revolution	Counterclockwise revolution	-
Number of revolutions	Same number of revolution as the rear sun gear	Deceleration from mid sun gear	-

Component Parts Location

Refer to TM-215, "Cross-Sectional View".
Component Description

Name of the Part (Abbreviation)	Function
Front brake (FR/B)	Fastens the under drive carrier.
Input clutch (I/C)	Connects the mid internal gear and the rear carrier.
Direct clutch (D/C)	Connects the rear carrier and the rear sun gear.
High and low reverse clutch (HLR/C)	Connects the rear sun gear and the mid sun gear.
Reverse brake (R/B)	Fastens the rear carrier.
Low brake (L/B)	Fastens the mid sun gear.
2346 brake (2346/B)	Fastens the under drive sun gear.
1 st one-way clutch (1st OWC)	Allows the under drive carrier to turn freely in the forward direction but fastens it for reverse rotation.
2nd one-way clutch (2nd OWC)	Allows the rear sun gear to turn freely in the forward direction but fastens it for reverse ro- tation.
Torque converter	Amplifies driving force the engine, and transmits it to transmission input shaft.
Oil pump	Driven by the engine, oil pump supplies oil to torque converter, control valve assembly, and each lubricating system.

SHIFT LOCK SYSTEM

System Description

- Shift lock prevents an unintentional start of the vehicle that may be caused by an incorrect operation while selector lever is in the "P" position.
- Selector lever can be shifted from the "P" position to another position when the following conditions are satisfied.
- Ignition switch ON
- Stop lamp switch is ON (brake pedal is depressed)
- Selector lever knob button is pressed

SHIFT LOCK OPERATION AT "P" POSITION

When Brake Pedal Is Not Depressed (No Shift Operation Allowed)

The shift lock solenoid (A) inside the shift lock unit is not energized if the brake pedal is not depressed while the ignition switch is ON.
The lock plate (B) lowers according to the downward movement of the position pin (C) when the selector button (D) is pressed, and presses only slider $B(E)$ into the shift lock unit. Slider $A(F)$ located below the lock plate prevents the downward movement of the lock plate with the spring force. The selector lever cannot be shifted from the " P " position for this reason.
However, slider A is forcibly pressed into the shift lock unit, allowing the selector lever to shift if the shift lock release button is pressed.

When Brake Pedal Is Depressed (Shift Operation Allowed)
The shift lock solenoid (A) inside the shift lock unit is energized and the relative positions of sliders $A(B)$ and $B(C)$ are maintained when the brake pedal is depressed while the ignition switch is ON.
The lock plate (D) lowers according to the downward movement of the position pin (E), thrusting away sliders A and B, when the selector button (F) is pressed.
The position pin lowers to the position that allows shift operation for this reason. As a result, the selector lever can be shifted out of the P position.

OPERATION AT OTHER THAN "P" POSITION

The shift lock function will not operate at any position other than " P " because the lock plate (A) is only set for the "P" position. Accordingly, the selector lever can be shifted to any position regardless of the brake operation.
The position pin (B) enters the "P" position thrusting away the lock plate when the selector lever is shifted to the " P " position. Then, the shift mechanism is locked when the selector button (C) is released.

"P" POSITION RETAINING MECHANISM (IGNITION SWITCH LOCK)
When ignition switch is not in the ON position, power is not applied to the shift lock solenoid in the shift lock unit. This causes shift lock state, and then "P" position is retained.
When an actuating system in the shift lock unit has a malfunction, selector lever is unable to operate from the "P" position even when pressing the brake pedal with the ignition switch ON. However, when pressing the shift lock release button, slider A is forcibly pressed into the shift lock unit. This allows shift lock to be released and selector lever enables the select operation from the "P" position.
CAUTION:

SHIFT LOCK SYSTEM

Never use the shift lock release button except when the select lever is inoperative even when pressing the brake pedal with the ignition switch ON.

Component Parts Location

1. Position pin
2. Slider A
3. Slider B
4. Shift lock cover *
A. A/T shift selector assembly
5. Shift lock unit
6. A/T shift selector connector
7. Stop lamp switch
B. Brake pedal, upper
8. Shift lock solenoid
9. Lock plate
10. Brake pedal
C. Center console
*: Shift lock release button becomes operative by removing shift lock cover.
Component Description
INFOID:0000000005530871

Component		
Shift lock unit	Shift lock solenoid	Activated by the ignition switch and stop lamp signals, it holds the relative positions of sliders A and B.
	Lock plate	Restricts position pin moving.
	Shift lock release button	Pressing the shift lock release button cancels the shift lock forcibly.
Position pin	Links with selector knob button and restricts selector lever shift operation.	
Stop lamp switch	- When brake pedal is depressed, stop lamp switch turns ON. - When stop lamp switch turns ON, power is supplied to shift lock unit.	

ON BOARD DIAGNOSTIC (OBD) SYSTEM

Diagnosis Description

The A / T system has two self-diagnostic systems.
The first is the emission-related on board diagnostic system (OBD-II) performed by the TCM in combination with the ECM. A malfunction is indicated by the MIL (malfunction indicator lamp) and is stored as a DTC in the ECM memory and in the TCM memory.
The second is the TCM original self-diagnosis indicated by the TCM. A malfunction history is stored in the TCM memory. The detected items are overlapped with OBD-II self-diagnostic items. For details, refer to EC1179, "DTC Index".

OBD FUNCTION

The ECM provides emission-related on board diagnostic (OBD-II) functions for the A/T system.
One function is to receive a signal from the TCM used with OBD-related parts of the A/T system. The signal is sent to the ECM when a malfunction occurs in the corresponding OBD-related part.
The other function is to indicate a diagnostic result by means of the MIL (malfunction indicator lamp) on the instrument panel. Sensors, switches and solenoid valves are used as sensing elements.
The MIL automatically illuminates in "One or Two Trip Detection Logic" when a malfunction is sensed in relation to A/T system parts. For details, refer to EC-705, "Diagnosis Description".

DIAGNOSIS SYSTEM (TCM)

CONSULT-III Function (TRANSMISSION)
INFOID:0000000005250220

CONSULT-III APPLICATION ITEMS

Diagnostic test mode	Function
Self Diagnostic Results	Retrieve DTC from ECU and display diagnostic items.
Data Monitor	Monitor the input/output signal of the control unit in real time.
CAN Diagnosis	This mode displays a network diagnosis result about CAN by a diagram.
CAN Diagnostic Support Monitor	It monitors the starts of CAN communication.
DTC \& SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECU Identification	Display the ECU identification number (part number etc.) of the selected system.
Function Test*	This mode can show results of self-diagnosis of ECU with either "OK" or "NG". For engine, more prac- tical tests regarding sensors/switches and/or actuators are available.
Special Function*	Other results or histories, etc. that are recorded in ECU are displayed.

*: Although "Function Test" and "Special Function" are selectable, do not use its.

SELF-DIAGNOSTIC RESULTS

Display Items List
Refer to TM-332, "DTC Index".
DATA MONITOR
Display Items List

		X: Standard, 一: Not applicable, $\boldsymbol{\nabla}$: Option			
Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
VHCL/S SE-A/T	(km/h or mph)	X	X	∇	Displays the vehicle speed calculated by the TCM from the output shaft revolution.
ESTM VSP SIG	(km/h or mph)	X	-	∇	Displays the vehicle speed signal received via CAN communication.
OUTPUT REV	(rpm)	X	X	∇	Displays the output shaft revolution calculated from the pulse signal of output speed sensor.
INPUT SPEED	(rpm)	X	X	∇	Displays the input shaft revolution calculated from front sun gear revolution and front carrier revolution.
F SUN GR REV	(rpm)	-	-	∇	Displays the front sun gear revolution calculated from the pulse signal of input speed sensor 1 .
F CARR GR REV	(rpm)	-	-	∇	Displays the front carrier gear revolution calculated from the pulse signal of input speed sensor 2.
ENGINE SPEED	(rpm)	X	X	∇	Displays the engine speed received via CAN communication.
TC SLIP SPEED	(rpm)	-	X	∇	Displays the revolution difference between input speed and engine speed.
ACCELE POSI	(0.0/8)	X	-	∇	Displays the accelerator position estimated value received via CAN communication.
THROTTLE POSI	(0.0/8)	X	X	∇	Displays the throttle position received via CAN communication.

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
ENGINE TORQUE	(Nm)	-	-	∇	Displays the engine torque estimated value received via CAN communication.
ENG TORQUE D	(Nm)	-	-	∇	Displays the engine torque estimated value reflected the requested torque of each control unit received via CAN communication.
INPUT TRQ S	(Nm)	-	-	∇	Displays the input torque using for the oil pressure calculation process of shift change control.
INPUT TRQ L/P	(Nm)	-	-	∇	Displays the input torque using for the oil pressure calculation process of line pressure control.
TRGT PRES L/P	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of torque converter clutch solenoid valve calculated by the oil pressure calculation process of lock-up control.
TRGT PRES TCC	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of torque converter clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRES L/B	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of low brake solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRE FR/B	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of front brake solenoid valve calculated by the oil pressure calculation process of shift change control.
TRG PRE HLR/C	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of high and low reverse clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRES I/C	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of input clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRGT PRES D/C	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of direct clutch solenoid valve calculated by the oil pressure calculation process of shift change control.
TRG PRE 2346/B	($\mathrm{kPa}, \mathrm{kg} / \mathrm{cm}^{2}$ or psi$)$	-	-	∇	Displays the target oil pressure value of 2346 brake solenoid valve calculated by the oil pressure calculation process of shift change control.
SHIFT PATTERN		-	-	∇	Displays the gear change data using the shift pattern control.
VEHICLE SPEED	(km/h or mph)	-	-	∇	Displays the vehicle speed for control using the control of TCM.
RANGE SW 4	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 4.
RANGE SW 3	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 3.
RANGE SW 2	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 2.
RANGE SW 1	(ON/OFF)	X	-	∇	Displays the operation status of transmission range switch 1.
SFT DWN ST SW	(ON/OFF)	X	-	∇	Displays the operation status of paddle shifter (down switch).
SFT UP ST SW	(ON/OFF)	X	-	∇	Displays the operation status of paddle shifter (up switch).

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
DOWN SW LEVER	(ON/OFF)	X	-	∇	Displays the operation status of selector lever (down switch).
UP SW LEVER	(ON/OFF)	X	-	∇	Displays the operation status of selector lever (up switch).
NON M-MODE SW	(ON/OFF)	X	-	∇	Displays whether the selector lever is in any position other than manual shift gate position.
MANU MODE SW	(ON/OFF)	X	-	∇	Displays whether the selector lever is in the manual shift gate position.
DS RANGE	(ON/OFF)	-	-	∇	Displays whether it is the DS mode.
1 POSITION SW	(ON/OFF)	X	-	∇	- Displays the reception status of 1 position switch signal received via CAN communication. - Not mounted but displayed.
OD CONT SW	(ON/OFF)	X	-	∇	- Displays the reception status of overdrive control switch signal received via CAN communication. - Not mounted but displayed.
BRAKESW	(ON/OFF)	X	-	∇	Displays the reception status of stop lamp switch signal received via CAN communication.
POWERSHIFT SW	(ON/OFF)	X	-	∇	- Displays the reception status of POWER mode signal received via CAN communication. - Not mounted but displayed.
ASCD-OD CUT	(ON/OFF)	X	-	∇	Displays the reception status of ASCD OD cancel request signal received via CAN communication.
ASCD-CRUISE	(ON/OFF)	X	-	∇	Displays the reception status of ASCD operation signal received via CAN communication.
ABS SIGNAL	(ON/OFF)	X	-	∇	Displays the reception status of ABS operation signal received via CAN communication.
TCS GR/P KEEP	(ON/OFF)	X	-	∇	Displays the reception status of TCS gear keep request signal received via CAN communication.
TCS SIGNAL 2	(ON/OFF)	X	-	∇	Displays whether the reception value of A / T shift schedule change demand signal received via CAN communication is "cold".
TCS SIGNAL 1	(ON/OFF)	X	-	∇	Displays whether the reception value of A / T shift schedule change demand signal received via CAN communication is "warm".
LOW/B PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of low brake.
HC/IC/FRB PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of high and low reversed clutch, input clutch or front brake.
IC/FRB PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of input clutch or front brake.
HLR/C PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of high and low reversed clutch.
W/O THL POS	(ON/OFF)	X	-	∇	Displays the kickdown condition signal status received via CAN communication.

Monitored item (Unit)		Monitor Item Selection			Remarks
		ECU INPUT SIGNALS	MAIN SIGNALS	SELEC- TION FROM ITEM	
CLSD THL POS	(ON/OFF)	X	-	∇	Displays the idling status signal status received via CAN communication.
DRV CST JUDGE	(DRIVE/COAST)	-	-	∇	Displays the judgment results of "driving" or "coasting" judged by TCM.
SHIFT IND SIGNAL		-	-	∇	Displays the transmission value of shift position signal transmitted via CAN communication.
STARTER RELAY	(ON/OFF)	-	-	∇	Displays the command status from TCM to starter relay.
F-SAFE IND/L	(ON/OFF)	-	-	∇	Displays the transmission status of A/T CHECK indicator lamp signal transmitted via CAN communication.
ATF WARN LAMP	(ON/OFF)	-	-	∇	- Displays the transmission status of ATF temperature signal transmitted via CAN communication. - Not mounted but displayed.
MANU MODE IND	(ON/OFF)	-	-	∇	Displays the transmission status of manual mode signal transmitted via CAN communication.
ON OFF SOL MON	(ON/OFF)	-	-	∇	Monitors the command value from TCM to the anti-interlock solenoid, and displays the monitor status.
START RLY MON	(ON/OFF)	-	-	∇	Monitors the command value from TCM to the starter relay, and displays the monitor status.
ON OFF SOL	(ON/OFF)	-	-	∇	Displays the command status from TCM to antiinterlock solenoid.
SLCT LVR POSI		-	X	∇	Displays the shift positions recognized by TCM.
GEAR		-	X	∇	Displays the current transmission gear position recognized by TCM.
NEXT GR POSI		-	-	∇	Displays the target gear position of gear change that is calculated based on the vehicle speed information and throttle information.
SHIFT MODE		-	-	∇	Displays the transmission driving mode recognized by TCM.
D/C PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of direct clutch.
FR/B PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of front brake.
2346/B PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of 2346 brake.
2346B/DC PARTS	(FAIL/NOTFAIL)	-	-	∇	In "Final fail-safe" mode, displays whether the identified malfunction point judged by TCM is the related parts of 2346 brake or direct clutch.

DTC Work Support

Item	Description	Check item
1ST GR FNCTN P0731	Following items for "1GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	- Input clutch solenoid valve - Front brake solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Output speed sensor - Input speed sensor 1, 2 - Each clutch and brake - Hydraulic control circuit - Harness or connectors - Torque converter clutch solenoid valve - Torque converter - Input speed sensor 1, 2 - Hydraulic control circuit
2ND GR FNCTN P0732	Following items for "2GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
3RD GR FNCTN P0733	Following items for "3GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
4TH GR FNCTN P0734	Following items for "4GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
5TH GR FNCTN P0735	Following items for "5GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
6TH GR FNCTN P0729	Following items for "6GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
7TH GR FNCTN P1734	Following items for "7GR incorrect ratio" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	
TCC SOL FNCTN CHECK	Following items for "TCC solenoid function" can be confirmed. - Self-diagnosis status (whether the diagnosis is being performed or not) - Self-diagnostic results (OK or NG)	

DTC/CIRCUIT DIAGNOSIS
 U1000 CAN COMM CIRCUIT

Description

CAN (Controller Area Network) is a serial communication line for real-time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent malfunction detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independently). In CAN communication, control units are connected with 2 communication lines (CAN-H line, CAN-L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
U1000	CAN Communication Line	TCM is not transmitting or re- ceiving CAN communication signal for 2 seconds or more when the ignition switch is ON.	• Harness or connectors (CAN communication line is open or shorted.)
	•TCM		

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Run engine for at least 2 consecutive seconds at idle speed.
3. Perform "Self Diagnostic Results" in "TRANSMISSION".

(cist With GST

Follow the procedure "With CONSULT-III".
Is "U1000" detected?

```
YES >> Go to TM-249, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

P0615 STARTER RELAY

Description

TCM prohibits cranking other than at " P " or " N " position.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0615	Starter Relay Circuit	The starter monitor value is OFF when the ignition switch is ON at the " P" and "N" positions.	• Harness or connectors (Starter relay and TCM circuit is open or shorted.) - Starter relay circuit

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

```
>> GO TO 2.
```

2. CHECK DTC DETECTION

With CONSULT-III

1. Shift the selector lever to "P" and " N " positions.
2. Turn ignition switch ON and wait 2 seconds or more.
3. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P0615" detected?
YES >> Go to TM-250, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

1.check starter relay signal

1. Turn ignition switch ON.
2. Check voltage between IPDM E/R connector terminal and ground.

IPDM E/R connector		Ground	Condition	Voltage (Approx.)
Connector	Terminal			
E5	30		Selector lever in "P" and "N" positions.	Battery voltage
			Selector lever in other positions.	0 V

Is the inspection result normal?
YES >> Check starter relay circuit. Refer to STR-10, "Wiring Diagram - STARTING SYSTEM -".
NO >> GO TO 2.
2. CHECK HARNESS BETWEEN A/T ASSEMBLY AND IPDM E/R (PART 1)

1. Turn ignition switch OFF.
2. Disconnect A / T assembly connector and IPDM E/R connector.
3. Check the continuity between A/T assembly vehicle side harness connector terminal and IPDM E/R vehicle side harness connector terminal.

A/T assembly vehicle side harness connector		IPDM E/R vehicle side harness connector		Continuity
Connector	Terminal	Connector	Terminal	
F51	9	E5	30	Existed

Is the inspection result normal?
YES >> GO TO 3.
NO >> Repair or replace damaged parts.

3. CHECK HARNESS BETWEEN A/T ASSEMBLY AND IPDM E/R (PART 2)

Check the continuity between A/T assembly vehicle side harness connector terminal and ground.

A/T assembly vehicle side harness connector		Ground	Continuity
Connector	Terminal		
F51	9		Not existed

Is the inspection result normal?
YES >> GO TO 4.
NO >> Repair or replace damaged parts.
4. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0705 TRANSMISSION RANGE SWITCH A
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01B (VK50VE)]

P0705 TRANSMISSION RANGE SWITCH A

Description

The transmission range switch detects the selector lever position and transmits a signal to the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0705	Transmission Range Sensor A Circuit (PRNDL Input)	Transmission range switch signals input with impossible pattern.	- Harness or connectors (Transmission range switches $1,2,3,4$ and TCM circuit is open or shorted.) - Transmission range switches 1, 2, 3 and 4

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "ACCELE POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Shift the selector lever throughout the entire shift position from "P" to "D". (Hold the selector lever at each position for 2 seconds or more)
4. Drive vehicle and maintain the following conditions for 2 seconds or more.

ACCELE POSI	: More than $1.0 / 8$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

5. Perform "Self Diagnostic Results" in "TRANSMISSION".
(ssis) With GST
Follow the procedure "With CONSULT-III".
Is "P0705" detected?
```
YES >> Go to TM-252, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0710 TRANSMISSION FLUID TEMPERATURE SENSOR A
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01B (VK50VE)]

P0710 TRANSMISSION FLUID TEMPERATURE SENSOR A

Description

INFOID:0000000005250230
The A/T fluid temperature sensor detects the A/T fluid temperature and transmits a signal to the TCM.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0710	Transmission Fluid Temperature Sensor A Circuit	TCM judges that the A / T fluid temperature is $-40^{\circ} \mathrm{C}(-40$ ${ }^{\circ} \mathrm{F}$) or less continuously for 5 seconds while driving at 10 $\mathrm{km} / \mathrm{h}(7 \mathrm{MPH})$ or more.	- Harness or connectors (Sensor circuit is open.) - A / T fluid temperature sensor
		TCM judges that the A/T fluid temperature is $180^{\circ} \mathrm{C}(356$ ${ }^{\circ} \mathrm{F}$) or more continuously for 5 seconds.	- Harness or connectors (Sensor circuit is short.) - A / T fluid temperature sensor
		TCM judges the following conditions while driving the vehicle at $10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more: - The time required for A / T fluid temperature to rise by $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ exceeds 14 minutes when A / T fluid temperature is $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$ or less. - The time required for A / T fluid temperature to rise by $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ exceeds 7 minutes when A / T fluid temperature is between $-19^{\circ} \mathrm{C}\left(-2^{\circ} \mathrm{F}\right)$ and $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$. - The time required for A / T fluid temperature to rise by $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ exceeds 4 minutes when A / T fluid temperature is between $1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$ and $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.	- Harness or connectors (Sensor circuit is stuck.) - A / T fluid temperature sensor

DTC CONFIRMATION PROCEDURE CAUTION:

Always drive vehicle at a safe speed.
 1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

>> GO TO 2.
 2. CHECK DTC DETECTION

(1) With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 14 minutes or more.

SLCT LVR POSI	$: D$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sisi) With GST
Follow the procedure "With CONSULT-III".
Is "P0710" detected?
```
YES >> Go to TM-253, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

P0710 TRANSMISSION FLUID TEMPERATURE SENSOR A

< DTC/CIRCUIT DIAGNOSIS >

Refer to Gl-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0717 INPUT SPEED SENSOR A

Description

The input speed sensor detects input shaft rpm (revolutions per minute). It is located on the input side of the $\mathrm{A} /$ T. Monitors revolution of sensor 1 and sensor 2 for non-standard conditions.

DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0717	Input/Turbine Speed Sensor A Circuit No Signal	The revolution of input speed sensor 1 and/or 2 is 270 rpm or less.	• Harness or connectors (Sensor circuit is open.) - Input speed sensor 1 and/or 2

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI", "GEAR", "VHCL/S SE-A/T", "CLSD THL POS" and "ENGINE SPEED" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

CAUTION:
Keep the same gear position.
NOTE:
Driving the vehicle uphill (increased engine load) will help maintain the driving conditions required for this test.

SLCT LVR POSI	$:$ D
GEAR	$:$ 2nd, 3rd, 4th, 5 th or 6 th
VHCL/S SE-A/T	: More than $40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$
CLSD THL POS	: OFF
ENGINE SPEED	: More than $1,500 \mathrm{rpm}$

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(35is) With GST
Follow the procedure "With CONSULT-III".
Is "P0717" detected?
```
YES >> Go to TM-255, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".

P0717 INPUT SPEED SENSOR A

< DTC/CIRCUIT DIAGNOSIS > [7AT: RE7R01B (VK50VE)]
NO >> Repair or replace damaged parts.

P0720 OUTPUT SPEED SENSOR

P0720 OUTPUT SPEED SENSOR

Description

INFOID:0000000005250236
The output speed sensor detects the revolution of the parking gear and emits a pulse signal. The pulse signal is transmitted to the TCM which converts it into vehicle speed.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0720	Output Speed Sensor Circuit	- The vehicle speed detected by the output speed sensor is $5 \mathrm{~km} / \mathrm{h}$ (3MPH) or less when the vehicle speed transmitted from the unified meter and $\mathrm{A} /$ C amp. to TCM is $20 \mathrm{~km} / \mathrm{h}$ or more. (Only when starts after the ignition switch is turned ON.) - The vehicle speed transmitted from the unified meter and A / C amp. to TCM does not decrease despite the 36 km / h (23 MPH) or more of deceleration in vehicle speed detected by the output speed sensor. when the vehicle speed detected by the output speed sensor is $36 \mathrm{~km} / \mathrm{h}$ (23 MPH) or more and the vehicle speed transmitted from the unified meter and A / C amp. to TCM is 24 (15 MPH) or more.	- Harness or connectors (Sensor circuit is open.) - Output speed sensor

DTC CONFIRMATION PROCEDURE

 CAUTION:- Always drive vehicle at a safe speed.
- Be careful not to rev engine into the red zone on the tachometer.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "ESTM VSP SIG" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 60 seconds or more.

ESTM VSP SIG : $40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$ or more
4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sist) With GST
Follow the procedure "With CONSULT-III".
Is "P0720" detected?

```
YES >> Go to TM-258, "Diagnosis Procedure".
NO >> INSPECTION END
```


P0720 OUTPUT SPEED SENSOR

< DTC/CIRCUIT DIAGNOSIS >

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0725 ENGINE SPEED

Description

The engine speed signal is transmitted from the ECM to the TCM with CAN communication line.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0725	Engine Speed Input Circuit	- TCM does not receive the CAN communication signal from the ECM. - The engine speed is more less 150 rpm even if the vehicle speed is more than $10 \mathrm{~km} /$ h (7 MPH).	Harness or connectors (ECM to TCM circuit is open or shorted.)

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.
```
SLCT LVR POSI : D
VHCL/S SE-A/T : More than 10km/h (7 MPH)
```

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P0725" detected?

$$
\begin{array}{ll}
\text { YES } & \gg \text { Go to TM-259, "Diagnosis Procedure". } \\
\text { NO } & \gg \text { INSPECTION END }
\end{array}
$$

Diagnosis Procedure

1.CHECK DTC OF ECM

(7) With CONSULT-III

1. Turn ignition switch ON.
2. Perform "Self Diagnostic Results" in "ENGINE".

Is the inspection result normal?

$$
\text { YES >> GO TO } 2 .
$$

NO >> Check DTC detected item. Refer to EC-718, "CONSULT-III Function".
2. CHECK DTC OF TCM

(1) With CONSULT-III

Perform "Self Diagnostic Results" in "TRANSMISSION".
Is any DTC other than "P0725" detected?

```
YES >> GO TO 3.
NO >> Check DTC detected item. Refer to TM-243, "CONSULT-III Function (TRANSMISSION)".
```

3. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0729 6GR INCORRECT RATIO

Description

This malfunction is detected when the A / T does not shift into $6 G R$ position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0729	Gear 6 Incorrect Ratio	The gear ratio is: - 0.916 or more - 0.812 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-262, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

>> GO TO 2.
 2. CHECK ATF TEMPERATURE

(1) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

(1) With CONSULT-III

1. Select "6TH GR FNCTN P0729" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR : 6th
ACCELE POSI : 0.7/8 or more
VEHICLE SPEED : $10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH}$) or more
3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0729" is detected, check the DTC. Refer to TM332, "DTC Index".

(sis) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 6$ th
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0729" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-262, "Diagnosis Procedure".
YES-4 >> "P0729" is detected: Go to TM-262, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure
3. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0730 INCORRECT GEAR RATIO

< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01B (VK50VE)]

P0730 INCORRECT GEAR RATIO

Description

- TCM detects a high-rpm state of the under drive sun gear.
- The number of revolutions of the under drive sun gear is calculated with the input speed sensor 1 and 2.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0730		The revolution of under drive sun gear is 8,000 rpm or more. NOTE:	• 2346 brake solenoid valve Not detected when in "P" or "N" " Front brake solenoid valve position and during a shift to "P" or "N" position.

DTC CONFIRMATION PROCEDURE

CAUTION:

- "TM-263, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

(1) With CONSULT-III

1. Start the engine.
2. Select "Self Diagnostic Results" in "ENGINE".
3. Drive vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.
Hold the accelerator pedal as steady as possible.

ENGINE SPEED	Same value as the Freeze Frame Data.
VEHICLE SPEED	Same value as the Freeze Frame Data.
B/FUEL SCHDL	Same value as the Freeze Frame Data.

(35) With GST

Follow the procedure "With CONSULT-III".
Is "P0730" detected?

```
YES >> Go to TM-263, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0731 1GR INCORRECT RATIO

< DTC/CIRCUIT DIAGNOSIS >

P0731 1GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 1GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0731	Gear 1 Incorrect Ratio	The gear ratio is: - 5.180 or more - 4.594 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-265, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. check atf Temperature
(7) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "1ST GR FNCTN P0731" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 1 \mathrm{st}$
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0731" is detected, check the DTC. Refer to TM332, "DTC Index".

(9sis) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 1 \mathrm{st}$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0731" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-265, "Diagnosis Procedure".
YES-4 >> "P0731" is detected: Go to TM-265, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES } & \text { >> Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO } & \text { >> Repair or replace damaged parts. }
\end{array}
$$

P0732 2GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 2GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0732	Gear 2 Incorrect Ratio	The gear ratio is: - 3.360 or more - 2.980 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-267, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.

2. check atf temperature

(9) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1 " in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "2ND GR FNCTN P0732" ins "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 2 \mathrm{nd}$
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0732" is detected, check the DTC. Refer to TM332, "DTC Index".

(9sis) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 2 n d$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0732" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-267, "Diagnosis Procedure".
YES-4 >> "P0732" is detected: Go to TM-267, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES >> Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO >> Repair or replace damaged parts. }
\end{array}
$$

P0733 3GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 3GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0733	Gear 3 Incorrect Ratio	The gear ratio is: - 2.149 or more - 1.905 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-269, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.

2. check atf temperature

(9) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1 " in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "3RD GR FNCTN P0733" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 3 \mathrm{rd}$
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0733" is detected, check the DTC. Refer to TM332, "DTC Index".

(홍) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 3 r d$
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0733" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-269, "Diagnosis Procedure".
YES-4 >> "P0733" is detected: Go to TM-269, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from $1 G R$ to 7 GR gear and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0734 4GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 4GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0734	Gear 4 Incorrect Ratio	The gear ratio is: - 1.497 or more - 1.327 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-271, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.

2. check atf temperature

(9) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1" with "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?
YES >> GOTO 3.
NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "4TH GR FNCTN P0734" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 4$ th
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detect on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0734" is detected, check the DTC. Refer to TM-332. "DTC Index".

With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 4$ th
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0734" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-271, "Diagnosis Procedure".
YES-4 >> "P0734" is detected: Go to TM-271, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES >> Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO >> Repair or replace damaged parts. }
\end{array}
$$

P0735 5GR INCORRECT RATIO

Description

This malfunction is detected when the A/T does not shift into 5GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0735	Gear 5 Incorrect Ratio	The gear ratio is: - 1.060 or more - 0.940 or less	- Input clutch solenoid valve - Direct clutch solenoid valve - High and low reverse clutch solenoid valve - Front brake solenoid valve - Low brake solenoid valve - 2346 brake solenoid valve - Anti-interlock solenoid valve - Each clutch and brake - Output speed sensor - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

- "TM-273, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.

2. check atf temperature

(9) With CONSULT-III

1. Start the engine.
2. Select "ATF TEMP 1 " in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP $1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$

With GST

1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?

$$
\text { YES >> GO TO } 3 .
$$

NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

With CONSULT-III

1. Select "5TH GR FNCTN P0735" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.

GEAR	$: 5$ th
ACCELE POSI	$: 0.7 / 8$ or more
VEHICLE SPEED	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P0735" is detected, check the DTC. Refer to TM332, "DTC Index".

(9sis) With GST

1. Drive vehicle and maintain the following conditions for 2 seconds or more.

Selector lever	$:$ "M" position
Gear position	$: 5$ th
Accelerator pedal opening	$: 0.7 / 8$ or more
Vehicle speed	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P0735" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-273, "Diagnosis Procedure".
YES-4 >> "P0735" is detected: Go to TM-273, "Diagnosis Procedure".
NO >> GO TO 4.
4. CHECK SYMPTOM (PART 2)

1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

1. check intermittent incident

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES } & \text { >> Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO } & \text { >> Repair or replace damaged parts. }
\end{array}
$$

P0740 TORQUE CONVERTER

Description

- The torque converter clutch solenoid valve is activated, with the gear in D2, D3, D4, D5, D6, D7, M2, M3, M4, M5, M6 and M7 by the TCM in response to signals transmitted from the vehicle speed sensor and accelerator pedal position sensor (throttle position sensor). Torque converter clutch piston operation will then be controlled.
- Lock-up operation, however, is prohibited when A / T fluid temperature is too low.
- When the accelerator pedal is depressed (less than 1.0/8) in lock-up condition, the engine speed should not change abruptly. If there is a big jump in engine speed, there is no lock-up.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0740	Torque Converter Clutch Cir-	The torque converter clutch so- lenoid valve monitor value is 0.4 A or less when the torque con- verter clutch solenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.)
		Torque converter clutch sole- noid valve	

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VEHICLE SPEED" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 30 seconds or more.

NOTE:
Driving the vehicle uphill (increased engine load) will help maintain the driving conditions required for this test.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 2 \mathrm{nd}$
VEHICLE SPEED	$: 40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(s) With GST

Follow the procedure "With CONSULT-III".
Is "P0740" detected?
YES >> Go to TM-274, "Diagnosis Procedure".
NO >> INSPECTION END
Diagnosis Procedure

P0740 TORQUE CONVERTER

< DTC/CIRCUIT DIAGNOSIS >
Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0744 TORQUE CONVERTER

Description

This malfunction is detected when the A/T does not lock-up as instructed by the TCM. This is not only caused by electrical malfunction (circuits open or shorted) but also by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0744	Torque Converter Clutch Circuit Intermittent	The lock-up is not performed in spite of within the lock-up area.	- Harness or connectors - Torque converter clutch solenoid valve - Torque converter - Input speed sensor 1, 2 - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE
CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "MANU MODE SW", "GEAR" and "VEHICLE SPEED" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 10 seconds or more.

NOTE:
Driving the vehicle uphill (increased engine load) will help maintain the driving conditions required for this test.

MANU MODE SW	$:$ ON
GEAR	$: 2 \mathrm{nd}$
VEHICLE SPEED	$: 40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(955) With GST

Follow the procedure "With CONSULT-III".
Is "P0744" detected?
YES >> Go to TM-276, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0745 PRESSURE CONTROL SOLENOID A
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01B (VK50VE)]

P0745 PRESSURE CONTROL SOLENOID A

Description

The line pressure solenoid valve regulates the oil pump discharge pressure to suit the driving condition in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0745	Pressure Control Solenoid A	The line pressure solenoid valve monitor value is 0.4 A or less when the line pressure so- lenoid valve command value is more than 0.75 A.	- Harness or connectors (Solenoid valve circuit is open or shorted.)
• Line pressure solenoid valve			

DTC CONFIRMATION PROCEDURE
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT" and "SLCT LVR POSI" in "Data Monitor" in "TRANSMISSION".
3. Shift the selector lever to " N " position.
4. Maintain the following conditions for 5 seconds or more.
```
BATTERY VOLT :9 V or more
SLCT LVR POSI :N/P
```

5. Perform "Self Diagnostic Results" in "TRANSMISSION".
(sisi) With GST
Follow the procedure "With CONSULT-III".
Is "P0745" detected?
```
YES >> Go to TM-277, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES } & \gg \text { Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO } & \text { >> Repair or replace damaged parts. }
\end{array}
$$

P0750 SHIFT SOLENOID A

Description

- Anti-interlock solenoid valve prevents the simultaneous activation of the input clutch and the low brake.
- The anti-interlock solenoid valve is an ON/OFF type solenoid valve.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0750	Shift Solenoid A	- The anti-interlock solenoid valve monitor value is ON when the anti-interlock solenoid valve command value is OFF. - The anti-interlock solenoid valve monitor value is OFF when the anti-interlock solenoid valve command value is ON.	- Harness or connectors (Solenoid valve circuit is open or shorted.) - Anti-interlock solenoid valve

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 1 \mathrm{st}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(sis) With GST

Follow the procedure "With CONSULT-III".
Is "P0750" detected?
YES >> Go to TM-278, "Diagnosis Procedure".
NO >> INSPECTION END
Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0775 PRESSURE CONTROL SOLENOID B
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01B (VK50VE)]

P0775 PRESSURE CONTROL SOLENOID B

Description

INFOID:0000000005250275

- The Input clutch solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The Input clutch solenoid valve controls the input clutch control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0775	Pressure Control Solenoid B	The input clutch solenoid valve monitor value is 0.4 A or less when the input clutch solenoid valve command value is more than 0.75 A.	- Harness or connectors (Solenoid valve circuit is open or shorted.) Input clutch solenoid valve

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.
1.preconditioning

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 1 \mathrm{st}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(sisi) With GST

Follow the procedure "With CONSULT-III".
Is "P0775" detected?

```
YES >> Go to TM-279, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".

Is the inspection result normal?

$$
\begin{array}{ll}
\text { YES } & \text { >> Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO } & \text { >> Repair or replace damaged parts. }
\end{array}
$$

P0780 SHIFT

Description

The TCM detects the malfunction of low brake solenoid valve. This is not only caused by electrical malfunction (circuits open or shorted) but also by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic

DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0780	Shift Error	- TCM judges that the gear ratio is not switched to that of 4GR (1.412) while shifting from 3GR to 4GR in "D" position. - TCM judges that the engine speed is more than the specified one while shifting from 5GR to 6GR or from 6GR to 7GR in "D" position.	- Anti-interlock solenoid valve - Low brake solenoid valve - Hydraulic control circuit

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

$$
\text { >> GO TO } 2 .
$$

2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI", "ACCELE POSI" and "GEAR" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions.

SLCT LVR POSI	$: \mathrm{D}$
ACCELE POSI	$:$ More than $1.0 / 8$
GEAR	$: 3 r d \rightarrow 4$ th

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(⿶ㅗㄴ) With GST

Follow the procedure "With CONSULT-III".
Is "P0780" detected?
YES >> Go to TM-280, "Diagnosis Procedure".
NO >> INSPECTION END

Diagnosis Procedure

1.CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P0795 PRESSURE CONTROL SOLENOID C
 < DTC/CIRCUIT DIAGNOSIS >
 [7AT: RE7R01B (VK50VE)]

P0795 PRESSURE CONTROL SOLENOID C

Description

- The front brake solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The front brake solenoid valve controls the front brake control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P0795	Pressure Control Solenoid C	The front brake solenoid valve monitor value is 0.4 A or less when the front brake solenoid valve command value is more than 0.75 A.	• Harness or connectors (Solenoid valve circuit is open or shorted.) Front brake solenoid valve

DTC CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

BATTERY VOLT	$: 9 \mathrm{~V}$ or more
MANU MODE SW	$:$ ON
GEAR	$: 7 \mathrm{th}$
VHCL/S SE-A/T	$: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

(sisi) With GST

Follow the procedure "With CONSULT-III".
Is "P0795" detected?

```
YES >> Go to TM-281, "Diagnosis Procedure".
NO >> INSPECTION END
```

Diagnosis Procedure

1. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P1705 TP SENSOR

P1705 TP SENSOR

Description

- The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly.
- The accelerator pedal position sensor detects the accelerator position.
- The accelerator pedal position sensor transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM.
- The TCM receives accelerator pedal position signal from the ECM via CAN communication.

DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1705	Accelerator Pedal Position Sen-	TCM detects the difference be- tween two accelerator pedal po- sition signals received from ECM via CAN communication.	Harness or connectors (Sensor circuit is open or short- ed.)

DTC CONFIRMATION PROCEDURE CAUTION:

Always drive vehicle at a safe speed.

1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "SLCT LVR POSI" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.

SLCT LVR POSI	$: D$
VHCL/S SE-A/T	$: 5 \mathrm{~km} / \mathrm{h}(3 \mathrm{MPH})$ or more

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P1705" detected?

```
YES >> Go to TM-282, "Diagnosis Procedure".
```

NO >> INSPECTION END

Diagnosis Procedure

1.CHECK DTC OF ECM

With CONSULT-III

1. Turn ignition switch ON .
2. Perform "Self Diagnostic Results" in "ENGINE".

Is any DTC detected?

```
YES >> Check DTC detected item. Refer to EC-1179, "DTC Index".
NO >> GO TO 2.
2. CHECK DTC OF TCM
```

(1) With CONSULT-III
Perform "Self Diagnostic Results" in "TRANSMISSION".
Is any DTC other than "P1705" detected?

YES >> Check DTC detected item. Refer to TM-332, "DTC Index".

 NO >> GO TO 3.
3. CHECK INTERMITTENT INCIDENT

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

P1721 VEHICLE SPEED SIGNAL

Description

The vehicle speed signal is transmitted from unified meter and A/C amp. to TCM by CAN communication line. The signal functions as an auxiliary device to the output speed sensor when it is malfunctioning. The TCM will then use the vehicle speed signal.
DTC Logic
DTC DETECTION LOGIC

DTC	Trouble diagnosis name	DTC is detected if...	Possible cause
P1721	Vehicle Speed Signal	- The vehicle speed transmitted from the unified meter and A / C amp. to $T C M$ is $5 \mathrm{~km} /$ $\mathrm{h}(3 \mathrm{MPH})$ or less when the vehicle speed detected by the output speed sensor is 20 km/h or more. (Only when starts after the ignition switch is turned ON.) - The vehicle speed detected by the output speed sensor does not decrease despite the $36 \mathrm{~km} / \mathrm{h}$ (23 MPH) or more of deceleration in vehicle speed received from the unified meter and A / C amp. when the vehicle speed transmitted from the unified meter and A/C amp. to TCM is $36 \mathrm{~km} / \mathrm{h}$ (23 MPH) or more and the vehicle speed detected by the output speed sensor is 24 (15 MPH) or more.	Harness or connectors (Sensor circuit is open or short- ed.)

DTC CONFIRMATION PROCEDURE CAUTION:

- Always drive vehicle at a safe speed.
- Be careful not to rev engine into the red zone on the tachometer.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

With CONSULT-III

1. Start the engine.
2. Select "ESTM VSP SIG" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 60 seconds or more.

$$
\text { ESTM VSP SIG } \quad: 40 \mathrm{~km} / \mathrm{h}(25 \mathrm{MPH}) \text { or more }
$$

4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P1721" detected?

```
YES >> Go to TM-106, "Diagnosis Procedure".
NO >> INSPECTION END
```


Diagnosis Procedure

1. CHECK DTC OF UNIFIED METER AND A/C AMP.

(1) With CONSULT-III

Perform "Self Diagnostic Results" in "METER/M\&A".
Is any DTC detected?
YES >> Check DTC detected item. Refer to MWI-119, "DTC Index".
NO >> GO TO 2.
2. CHECK DTC OF TCM

(1) With CONSULT-III

Perform "Self Diagnostic Results" in "TRANSMISSION".
Is any DTC other than "P1721" detected?

```
YES >> Check DTC detected item. Refer to TM-332, "DTC Index".
``` NO >> GO TO 3.
3. CHECK INTERMITTENT INCIDENT

Refer to Gl-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

\section*{P1730 INTERLOCK}

\section*{Description}

Fail-safe function to detect interlock conditions.
DTC Logic

\section*{DTC DETECTION LOGIC}
\begin{tabular}{|c|c|c|c|}
\hline DTC & Trouble diagnosis name & DTC is detected if... & Possible cause \\
\hline P1730 & Interlock & The output speed sensor detects the deceleration of \(12 \mathrm{~km} /\) h (7 MPH) or more for 1 second. & \begin{tabular}{l}
- Harness or connectors (Solenoid valve circuit is open or shorted.) \\
- Input clutch solenoid valve \\
- Direct clutch solenoid valve \\
- High and low reverse clutch solenoid valve \\
- Front brake solenoid valve \\
- Low brake solenoid valve \\
- 2346 brake solenoid valve \\
- Anti-interlock solenoid valve \\
- Each clutch and brake \\
- Hydraulic control circuit
\end{tabular} \\
\hline
\end{tabular}

NOTE:
When the vehicle is driven fixed in second gear, a input speed sensor malfunction is displayed, but this is not a input speed sensor malfunction.

\section*{DTC CONFIRMATION PROCEDURE}

CAUTION:
- "TM-287. "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
\[
\text { >> GO TO } 2 .
\]
2. CHECK DTC DETECTION

\section*{With CONSULT-III}
1. Start the engine.
2. Select "SLCT LVR POSI" and "GEAR" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle the following condition.
```

SLCT LVR POSI : D
GEAR : 1st through 7th

```
4. Perform "Self Diagnostic Results" in "TRANSMISSION".
(est) With GST
Follow the procedure "With CONSULT-III".
Is "P1730" detected?
```

YES >> Go to TM-287, "Diagnosis Procedure".
NO >> INSPECTION END

```

\section*{Judgment of A/T Interlock}

Refer to TM-328, "Fail-Safe".

\section*{1. CHECK INTERMITTENT INCIDENT}

Refer to GI-36, "Intermittent Incident".
Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

\section*{P1734 7GR INCORRECT RATIO}

\section*{Description}

This malfunction is detected when the A/T does not shift into 7GR position as instructed by TCM. This is not only caused by electrical malfunction (circuits open or shorted) but by mechanical malfunction such as control valve sticking, improper solenoid valve operation, etc.
DTC Logic
DTC DETECTION LOGIC
\begin{tabular}{|c|c|c|c|}
\hline DTC & Trouble diagnosis name & DTC is detected if... & Possible cause \\
\hline P1734 & Gear 7 Incorrect Ratio & \begin{tabular}{l}
The gear ratio is: \\
- 0.822 or more \\
- 0.729 or less
\end{tabular} & \begin{tabular}{l}
- Input clutch solenoid valve \\
- Direct clutch solenoid valve \\
- High and low reverse clutch solenoid valve \\
- Front brake solenoid valve \\
- Low brake solenoid valve \\
- 2346 brake solenoid valve \\
- Anti-interlock solenoid valve \\
- Each clutch and brake \\
- Output speed sensor \\
- Input speed sensor 1, 2 \\
- Hydraulic control circuit
\end{tabular} \\
\hline
\end{tabular}

DTC CONFIRMATION PROCEDURE
CAUTION:
- "TM-289, "Diagnosis Procedure"" must be performed before starting "DTC CONFIRMATION PROCEDURE".
- Never perform "DTC CONFIRMATION PROCEDURE" before completing the repair, which may cause secondary malfunction.
- Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.

\section*{2. check atf temperature}
(9) With CONSULT-III
1. Start the engine.
2. Select "ATF TEMP 1 " in "Data Monitor" in "TRANSMISSION".
3. Check ATF temperature is in the following range.

ATF TEMP \(1: 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)\)

\section*{With GST}
1. Start the engine.
2. Drive vehicle for approximately 5 minutes in urban areas.

Is ATF temperature within specified range?
YES >> GOTO 3.
NO >> Drive vehicle to warm ATF or stop engine to cool ATF.
3. CHECK SYMPTOM (PART 1)

\section*{With CONSULT-III}
1. Select "7TH GR FNCTN P1734" in "DTC \& SRT confirmation" in "TRANSMISSION".
2. Drive vehicle with manual mode and maintain the following conditions.
\begin{tabular}{ll}
GEAR & \(: 7\) th \\
ACCELE POSI & \(: 0.7 / 8\) or more \\
VEHICLE SPEED & \(: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more
\end{tabular}
3. Keep the current driving status for 2 seconds or more if CONSULT-III screen changes from "OUT OF CONDITION" to "TESTING".
CAUTION:
When "TESTING" is not detected on CONSULT-III for a long time, check "Self Diagnostic Results" in "TRANSMISSION". When a DTC other than "P1734" is detected, check the DTC. Refer to TM332, "DTC Index".

\section*{(홍) With GST}
1. Drive vehicle and maintain the following conditions for 2 seconds or more.
\begin{tabular}{ll}
Selector lever & \(:\) "M" position \\
Gear position & \(: 7\) th \\
Accelerator pedal opening & \(: 0.7 / 8\) or more \\
Vehicle speed & \(: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more
\end{tabular}
2. Check DTC.

Is "OUT OF CONDITION", "STOP VEHICLE" or "COMPLETED RESULT NG" displayed? / Is "P1734" detected?
YES-1 >> "OUT OF CONDITION": Perform "Step 3" again.
YES-2 >> "STOP VEHICLE": GO TO 4.
YES-3 >> "COMPLETED RESULT NG": Go to TM-289, "Diagnosis Procedure".
YES-4 >> "P1734" is detected: Go to TM-289, "Diagnosis Procedure".
NO >> GOTO 4.
4. CHECK SYMPTOM (PART 2)
1. Stop vehicle.
2. Drive vehicle in "D" position allowing it to shift from 1GR to 7GR and check shift timing and shift shock.
>> INSPECTION END
Diagnosis Procedure

\section*{1. check intermittent incident}

\section*{Refer to GI-36, "Intermittent Incident".}

Is the inspection result normal?
\[
\begin{array}{ll}
\text { YES } & \text { >> Replace A/T assembly. Refer to TM-362, "Exploded View". } \\
\text { NO } & \text { >> Repair or replace damaged parts. }
\end{array}
\]

\section*{P1815 M-MODE SWITCH}

\section*{Description}
- The manual mode switch [manual mode select switch and manual mode position select switch (shift-up/shiftdown)] is installed in the A/T shift selector assembly. It transmits manual mode switch, shift up and shift down switch signals to unified meter and \(A / C\) amp. Then unified meter and \(A / C\) amp. transmits signals to TCM via CAN communication.
- Manual mode select switch transmits manual mode switch signal or non-manual mode switch signal to unified meter and A/C amp. Then TCM receives signals from unified meter and A/C amp. via CAN communication.
- The manual mode position select switch (shift-up) transmits manual mode shift up signal to the unified meter and \(A / C\) amp. Then TCM receives signal from the unified meter and \(A / C\) amp. via CAN communication.
- The manual mode position select switch (shift-down) transmits manual mode shift down signal to the unified meter and \(A / C\) amp. Then TCM receives signal from the unified meter and \(A / C\) amp. via CAN communication.
- The paddle shifter transmits shift up and shift down switch signals to unified meter and A/C amp. Then TCM receives signals from the unified meter and A/C amp. via CAN communication. (With paddle shifter)
- The TCM transmits manual mode indicator signal to the unified meter and \(A / C\) amp. via CAN communication line.
DTC Logic

\section*{DTC DETECTION LOGIC}
\begin{tabular}{|c|c|c|c|}
\hline DTC & Trouble diagnosis name & DTC is detected if... & Possible cause \\
\hline P1815 & Manual Mode Switch Circuit & \begin{tabular}{l}
- TCM monitors manual mode, non manual mode, up or down switch signal, and detects as irregular when impossible input pattern occurs 2 second or more. \\
- When shift up/down signal of paddle shifter continuously remains ON for 60 seconds*.
\end{tabular} & \begin{tabular}{l}
- Harness or connectors (These switches circuit is open or shorted.) \\
- Manual mode select switch (Into A/T shift selector) \\
- Manual mode position select switch (Into A/T shift selector) \\
- Paddle shifter*
\end{tabular} \\
\hline
\end{tabular}

\section*{*: With paddle shifter}

\section*{DTC CONFIRMATION PROCEDURE}
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

\section*{>> GO TO 2. \\ 2. CHECK DTC DETECTION}

\section*{With CONSULT-III}
1. Turn ignition switch ON.
2. Select "SLCT LVR POSI" and "MANU MODE SW" in "Data Monitor" in "TRANSMISSION".
3. Maintain the following each conditions more than 60 seconds.
```

SLCT LVR POSI : D
MANU MODE SW : ON

```
4. Perform "Self Diagnostic Results" in "TRANSMISSION".

Is "P1815" detected?
```

YES >> Go to TM-291, "Diagnosis Procedure".

```

NO >> INSPECTION END

\section*{1. CHECK MANUAL MODE SWITCH CIRCUIT}
(1) With CONSULT-III
1. Turn ignition switch ON.
2. Select "MANU MODE SW", "NON M MODE SW", "UP SW LEVER", "DOWN SW LEVER", "SFT UP ST SW"* and "SFT DWN ST SW"* in "Data Monitor" in "TRANSMISSION".
3. Check the ON/OFF operations of each monitor item.
\begin{tabular}{|c|c|c|c|}
\hline Item & Monitor Item & Condition & Status \\
\hline \multirow{8}{*}{Manual mode switch} & \multirow{2}{*}{MANU MODE SW} & Manual shift gate side (neutral) & ON \\
\hline & & Other than the above & OFF \\
\hline & \multirow{2}{*}{NON M-MODE SW} & Manual shift gate side & OFF \\
\hline & & Other than the above & ON \\
\hline & \multirow{2}{*}{UP SW LEVER} & Selector lever: UP (+ side) & ON \\
\hline & & Other than the above & OFF \\
\hline & \multirow[b]{2}{*}{DOWN SW LEVER} & Selector lever: DOWN (- side) & ON \\
\hline & & Other than the above & OFF \\
\hline \multirow{4}{*}{Paddle shifter*} & \multirow{2}{*}{SFT UP ST SW} & Paddle shifter: UP (+ side) & ON \\
\hline & & Other than the above & OFF \\
\hline & \multirow{2}{*}{SFT DWN ST SW} & Paddle shifter: DOWN (- side) & ON \\
\hline & & Other than the above & OFF \\
\hline
\end{tabular}

\section*{*: With paddle shifter}

\section*{Without CONSULT-III}

Drive the vehicle in the manual mode, and then check that the indication of the shift position indicator matches with the actual gear position.
1. Shift the selector lever to UP side, and then accelerate from 1GR to 7GR.
2. Shift the selector lever to DOWN side, and then decelerate from 7GR to 1GR.
3. *Shift the paddle shifter to UP side, and then accelerate from 1GR to 7GR.
4. *Shift the paddle shifter to DOWN side, and then decelerate from 7GR to 1GR.
*: With paddle shifter
Which item is abnormal?
Manual mode switch>>GO TO 2.
Paddle shifter>>GO TO 7.
2. CHECK MANUAL MODE SWITCH CIRCUIT
1. Turn ignition switch OFF.
2. Disconnect \(A / T\) shift selector connector.
3. Turn ignition switch ON .
4. Check voltage between \(\mathrm{A} / \mathrm{T}\) shift selector vehicle side harness connector terminals.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{A/T shift selector vehicle side harness connector} & \multirow{3}{*}{Voltage (Approx.)} \\
\hline \multirow{2}{*}{Connector} & \multicolumn{2}{|c|}{Terminal} & \\
\hline & + & - & \\
\hline \multirow{4}{*}{M137} & 1 & \multirow{4}{*}{4} & \multirow{4}{*}{Battery voltage} \\
\hline & 2 & & \\
\hline & 3 & & \\
\hline & 5 & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 3.
NO >> GOTO 4.

\section*{3. CHECK MANUAL MODE SWITCH}
1. Turn ignition switch OFF.
2. Check manual mode switch. Refer to TM-294, "Component Inspection (Manual Mode Switch)".

Is the inspection result normal?
YES >> GO TO 12.
NO >> Repair or replace damaged parts.
4.CHECK GROUND CIRCUIT (MANUAL MODE SWITCH CIRCUIT)
1. Turn ignition switch OFF.
2. Check continuity between A/T shift selector vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline A/T shift selector vehicle side harness connector & \multirow{3}{*}{ Ground } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & & \\
\hline M137 & 4 & & Existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 5.
NO >> Repair or replace damaged parts.
5. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND UNIFIED METER AND A/C AMP. (STEP 1)
1. Disconnect unified meter and \(\mathrm{A} / \mathrm{C}\) amp. connector.
2. Check continuity between \(A / T\) shift selector vehicle side harness connector terminals and unified meter and \(A / C\) amp. vehicle side harness connector terminals.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{A/T shift selector vehicle side harness connector} & \multicolumn{2}{|l|}{Unified meter and A/C amp. vehicle side harness connector} & \multirow[t]{2}{*}{Continuity} \\
\hline Connector & Terminal & Connector & Terminal & \\
\hline \multirow{4}{*}{M137} & 1 & \multirow{4}{*}{M66} & 10 & \multirow{4}{*}{Existed} \\
\hline & 2 & & 25 & \\
\hline & 3 & & 5 & \\
\hline & 5 & & 11 & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 6.
NO >> Repair or replace damaged parts.
6. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND UNIFIED METER AND A/C AMP. (STEP 2)

Check continuity between A/T shift selector vehicle side harness connector terminals and ground.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{A/T shift selector vehicle side harness connector} & \multirow{6}{*}{Ground} & \multirow[b]{2}{*}{Continuity} \\
\hline Connector & Terminal & & \\
\hline \multirow{4}{*}{M137} & 1 & & \multirow{4}{*}{Not existed} \\
\hline & 2 & & \\
\hline & 3 & & \\
\hline & 5 & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 12.
NO >> Repair or replace damaged parts.
7. CHECK PADDLE SHIFTER CIRCUIT
1. Turn ignition switch OFF.
2. Disconnect paddle shifter connectors.
3. Turn ignition switch ON.
4. Check voltage between paddle shifter vehicle side harness connector terminals.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c|}{ Paddle shifter vehicle side harness connector } & \multirow{2}{*}{ Voltage (Approx.) } \\
Connector & \multicolumn{2}{|c|}{ Terminal } & - \\
\hline M38 & + & 1 & \multirow{2}{*}{ Battery voltage } \\
\hline M39 & 3 & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 8.
NO >> GO TO 9.

\section*{8.check paddle shifter}

Check paddle shifter. Refer to TM-294, "Component Inspection [Paddle Shifter (Shift-up)]", TM-295, "Component Inspection [Paddle Shifter (Shift-down)]".
Is the inspection result normal?
\[
\text { YES >> GO TO } 12 .
\]

NO >> Repair or replace damaged parts.
9. CHECK GROUND CIRCUIT (PADDLE SHIFTER CIRCUIT)
1. Turn ignition switch OFF.
2. Check continuity between paddle shifter vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline Paddle shifter vehicle side harness connector & & \multirow{2}{*}{ Ground } & Continuity \\
\cline { 1 - 1 } Connector & Terminal & \multirow{3}{*}{} & \\
\hline M38 & 1 & & Existed \\
\hline M39 & & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 10.
NO >> Repair or replace damaged parts.
10. CHECK HARNESS BETWEEN PADDLE SHIFTER AND UNIFIED METER AND A/C AMP. (PART 1)
1. Disconnect unified meter and \(\mathrm{A} / \mathrm{C}\) amp. connector.
2. Check continuity between paddle shifter vehicle side harness connector terminals and unified meter and A/C amp. vehicle side harness connector terminals.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Paddle shifter vehicle side harness connector } & \multicolumn{2}{c}{\begin{tabular}{c}
Unified meter and A/C amp. vehicle side harness \\
connector
\end{tabular}} & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & Connector & Terminal & \\
\hline M38 & \multirow{2}{*}{3} & \multirow{2}{*}{ M66 } & 6 & \multirow{2}{*}{ Existed } \\
\cline { 1 - 1 } M39 & & & 26 & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 11.
NO >> Repair or replace damaged parts.
11. CHECK HARNESS BETWEEN PADDLE SHIFTER AND UNIFIED METER AND A/C AMP. (PART 2)

Check continuity between paddle shifter vehicle side harness connector terminals and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Paddle shifter vehicle side harness connector } & & \multirow{2}{*}{ Ground } \\
\hline Connector & Terminal & & \\
\hline M38 & 3 & & Not existed \\
\hline M39 & & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 12.
NO >> Repair or replace damaged parts.

\section*{12. CHECK INTERMITTENT INCIDENT}

\section*{Refer to GI-36, "Intermittent Incident".}

Is the inspection result normal?
YES >> GO TO 13.
NO >> Repair or replace damaged parts.
13. CHECK UNIFIED METER AND A/C AMP.
1. Reconnect all the connectors.
2. Turn ignition switch ON.
3. Select "M RANGE SW", "NM RANGE SW", "AT SFT UP SW", "AT SFT DWN SW", "ST SFT UP SW"* and "ST SFT DWN SW"* on "Data Monitor" in "METER/M\&A".
*: With paddle shifter
4. Check the ON/OFF operations of each monitor item. Refer to MWI-96, "Reference Value".

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Replace unified meter and A/C amp. Refer to MWI-148, "Exploded View".
Component Inspection (Manual Mode Switch)

\section*{1. CHECK MANUAL MODE SWITCH}

Check continuity between \(\mathrm{A} / \mathrm{T}\) shift selector connector terminals.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{A/T shift selector connector} & \multirow[b]{2}{*}{Condition} & \multirow[b]{2}{*}{Continuity} \\
\hline Connector & \multicolumn{2}{|c|}{Terminal} & & \\
\hline \multirow{8}{*}{M137} & \multirow[t]{2}{*}{1} & \multirow{8}{*}{4} & Selector lever is shifted to manual shift gate side & Existed \\
\hline & & & Other than the above & Not existed \\
\hline & & & Selector lever is shifted to - side & Existed \\
\hline & & & Other than the above & Not existed \\
\hline & 3 & & Selector lever is shifted to + side & Existed \\
\hline & & & Other than the above & Not existed \\
\hline & 5 & & Selector lever is shifted to manual shift gate side & Not existed \\
\hline & & & Other than the above & Existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> INSPECTION END
NO >> Replace A/T shift selector assembly. Refer to TM-350, "Exploded View".
Component Inspection [Paddle Shifter (Shift-up)]
1. CHECK PADDLE SHIFTER (SHIFT-UP)

Check continuity between paddle shifter (shift-up) connector terminals.
\begin{tabular}{c|c|c|l|c}
\hline \multicolumn{2}{c|}{ Paddle shifter (shift-up) connector } & \multirow{2}{*}{ Condition } & \multirow{2}{*}{ Continuity } \\
\hline Connector & \multicolumn{2}{|c|}{ Terminal } & & \\
\hline \multirow{2}{*}{ M38 } & 1 & \multirow{2}{*}{3} & \begin{tabular}{l}
Paddle shifter (shift-up) is \\
pulled.
\end{tabular} & Existed \\
& & & Other than the above & Not existed \\
\hline
\end{tabular}

Is the inspection result normal?
```

YES >> INSPECTION END
NO >> Replace paddle shifter (shift-up). Refer to TM-354, "Exploded View".

```

\title{
P1815 M-MODE SWITCH
}
< DTC/CIRCUIT DIAGNOSIS >

\section*{Component Inspection [Paddle Shifter (Shift-down)]}
1. CHECK PADDLE SHIFTER (SHIFT-DOWN)

Check continuity between paddle shifter (shift-down) connector terminals.
\begin{tabular}{c|c|l|l|c}
\hline \multicolumn{2}{c|}{ Paddle shifter (shift-down) connector } & \multirow{2}{*}{ Condition } & \multirow{2}{*}{ Continuity } \\
\hline Connector & \multicolumn{2}{|c|}{ Terminal } & & \\
\hline \multirow{2}{*}{ M39 } & 1 & \multirow{2}{*}{3} & \begin{tabular}{l}
Paddle shifter (shift-down) \\
is pulled.
\end{tabular} & \multirow{2}{*}{ Existed } \\
& & & Other than the above & Not existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> INSPECTION END
NO >> Replace paddle shifter (shift-down). Refer to TM-354, "Exploded View".

\title{
P2713 PRESSURE CONTROL SOLENOID D \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]
}

\section*{P2713 PRESSURE CONTROL SOLENOID D}

\section*{Description}
- The high and low reverse clutch solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The high and low reverse clutch solenoid valve controls the high and low reverse clutch control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC
\begin{tabular}{|c|c|c|c|}
\hline DTC & Trouble diagnosis name & DTC is detected if... & Possible cause \\
\hline P2713 & Pressure Control Solenoid D & The high and low reverse clutch solenoid valve monitor value is 0.4 A or less when the high and low reverse clutch solenoid valve command value is more than 0.75 A . & \begin{tabular}{l}
- Harness or connectors (Solenoid valve circuit is open or shorted.) \\
- High and low reverse clutch solenoid valve
\end{tabular} \\
\hline
\end{tabular}

\section*{DTC CONFIRMATION PROCEDURE}

\section*{CAUTION:}

\section*{Always drive vehicle at a safe speed.}
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
\[
\text { >> GO TO } 2 .
\]

\section*{2. CHECK DTC DETECTION}

\section*{With CONSULT-III}
1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive the vehicle and maintain the following conditions for 5 seconds or more.
\begin{tabular}{ll}
BATTERY VOLT & \(: 9 \mathrm{~V}\) or more \\
MANU MODE SW & \(:\) ON \\
GEAR & \(: 3 \mathrm{rd}\) \\
VHCL/S SE-A/T & \(: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more
\end{tabular}
4. Perform "Self Diagnostic Results" in "TRANSMISSION".

\section*{(s) With GST}

Follow the procedure "With CONSULT-III".
Is "P2713" detected?
YES >> Go to TM-296, "Diagnosis Procedure".
NO >> INSPECTION END

\section*{Diagnosis Procedure}

\section*{1. CHECK INTERMITTENT INCIDENT}

\section*{Refer to Gl-36, "Intermittent Incident".}

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

\title{
P2722 PRESSURE CONTROL SOLENOID E \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]
}

\section*{P2722 PRESSURE CONTROL SOLENOID E}

\section*{Description}
- The low brake solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The low brake solenoid valve controls the low brake control valve in response to a signal transmitted from the TCM.
DTC Logic

\section*{DTC DETECTION LOGIC}
\begin{tabular}{c|c|c|c}
\hline DTC & Trouble diagnosis name & \multicolumn{1}{c}{ DTC is detected if... } & \multicolumn{1}{c}{ Possible cause } \\
\hline P2722 & Pressure Control Solenoid E & \begin{tabular}{l}
The low brake solenoid valve \\
monitor value is 0.4 A or less \\
when the low brake solenoid \\
valve command value is more \\
than 0.75 A.
\end{tabular} & \begin{tabular}{l}
• Harness or connectors \\
(Solenoid valve circuit is \\
open or shorted.) \\
- Low brake solenoid valve
\end{tabular} \\
\hline
\end{tabular}

DTC CONFIRMATION PROCEDURE

\section*{CAUTION:}

Always drive vehicle at a safe speed.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

\section*{With CONSULT-III}
1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.
\begin{tabular}{ll}
BATTERY VOLT & \(: 9 \mathrm{~V}\) or more \\
MANU MODE SW & \(:\) ON \\
GEAR & \(: 1 \mathrm{st}\) \\
VHCL/S SE-A/T & \(: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more
\end{tabular}
4. Perform "Self Diagnostic Results" in "TRANSMISSION".

\section*{(sisi) With GST}

Follow the procedure "With CONSULT-III".
Is "P2722" detected?
```

YES >> Go to TM-297, "Diagnosis Procedure".
NO >> INSPECTION END

```

Diagnosis Procedure

\section*{1. CHECK INTERMITTENT INCIDENT}

\section*{Refer to GI-36, "Intermittent Incident".}

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

\title{
P2731 PRESSURE CONTROL SOLENOID F \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]
}

\section*{P2731 PRESSURE CONTROL SOLENOID F}

\section*{Description}
- The 2346 brake solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The 2346 brake solenoid valve controls the 2346 brake control valve in response to a signal transmitted from the TCM.
DTC Logic
DTC DETECTION LOGIC
\begin{tabular}{c|c|c|c}
\hline DTC & Trouble diagnosis name & \multicolumn{1}{c|}{ DTC is detected if... } & Possible cause \\
\hline P2731 & Pressure Control Solenoid F & \begin{tabular}{l}
The 2346 brake solenoid valve \\
monitor value is 0.4 A or less \\
when the 2346 brake solenoid \\
valve command value is more \\
than 0.75 A.
\end{tabular} & \begin{tabular}{l}
• Harness or connectors \\
(Solenoid valve circuit is \\
open or shorted.) \\
2346 brake solenoid valve
\end{tabular} \\
\hline
\end{tabular}

DTC CONFIRMATION PROCEDURE
CAUTION:

\section*{Always drive vehicle at a safe speed.}
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
>> GO TO 2.
2. CHECK DTC DETECTION

\section*{With CONSULT-III}
1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.
\begin{tabular}{ll}
BATTERY VOLT & \(: 9 \mathrm{~V}\) or more \\
MANU MODE SW & \(:\) ON \\
GEAR & \(: 2 \mathrm{nd}\) \\
VHCL/S SE-A/T & \(: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more
\end{tabular}
4. Perform "Self Diagnostic Results" in "TRANSMISSION".

\section*{(esti) With GST}

Follow the procedure "With CONSULT-III".
Is "P2731" detected?
YES >> Go to TM-298, "Diagnosis Procedure".
NO >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
Diagnosis Procedure

\section*{1. check intermittent incident}

\section*{Refer to GI-36, "Intermittent Incident".}

Is the inspection result normal?
YES >> Replace A/T assembly. Refer to TM-362, "Exploded View".
NO >> Repair or replace damaged parts.

\section*{P2807 PRESSURE CONTROL SOLENOID G}
< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01B (VK50VE)]

\section*{P2807 PRESSURE CONTROL SOLENOID G}

\section*{Description}
- The direct clutch solenoid valve is controlled by the TCM in response to signals transmitted from the transmission range switch, output speed sensor and accelerator pedal position sensor. Gears will then be shifted to the optimum position.
- The direct clutch solenoid valve controls the direct clutch control valve in response to a signal transmitted from the TCM.
DTC Logic

\section*{DTC DETECTION LOGIC}
\begin{tabular}{c|c|c|c}
\hline DTC & Trouble diagnosis name & DTC is detected if... & \multicolumn{1}{c}{ Possible cause } \\
\hline P2807 & Pressure Control Solenoid G & \begin{tabular}{l}
The direct clutch solenoid valve \\
monitor value is 0.4 A or less \\
when the direct clutch solenoid \\
valve command value is more \\
than 0.75 A.
\end{tabular} & \begin{tabular}{l}
• Harness or connectors \\
(Solenoid valve circuit is \\
open or shorted.) \\
Direct clutch solenoid valve
\end{tabular} \\
\hline
\end{tabular}

DTC CONFIRMATION PROCEDURE

\section*{CAUTION:}

\section*{Always drive vehicle at a safe speed.}

NOTE:
If "DTC CONFIRMATION PROCEDURE" has been previously performed, always turn ignition switch OFF. Then wait at least 10 seconds before performing the next test.
1.PRECONDITIONING

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

\section*{>> GO TO 2. \\ 2. CHECK DTC DETECTION}
(1) With CONSULT-III
1. Start the engine.
2. Select "BATTERY VOLT", "MANU MODE SW", "GEAR" and "VHCL/S SE-A/T" in "Data Monitor" in "TRANSMISSION".
3. Drive vehicle and maintain the following conditions for 5 seconds or more.
\begin{tabular}{ll}
BATTERY VOLT & \(: 9 \mathrm{~V}\) or more \\
MANU MODE SW & \(:\) ON \\
GEAR & \(: 1 \mathrm{st}\) \\
VHCL/S SE-A/T & \(: 10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more
\end{tabular}
4. Perform "Self Diagnostic Results" in "TRANSMISSION".
((s) With GST
Follow the procedure "With CONSULT-III".
Is "P2807" detected?
```

YES >> Go to TM-299, "Diagnosis Procedure".
NO >> INSPECTION END

```

\section*{Diagnosis Procedure}

NO >> Repair or replace damaged parts.

\title{
MAIN POWER SUPPLY AND GROUND CIRCUIT \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]
} MAIN POWER SUPPLY AND GROUND CIRCUIT

\section*{Description}

Supply power to TCM.
Diagnosis Procedure
1. CHECK TCM POWER SOURCE (PART 1)
1. Turn ignition switch OFF.
2. Disconnect \(\mathrm{A} / \mathrm{T}\) assembly connector.
3. Check voltage between A/T assembly vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{\(\mathrm{A} / \mathrm{T}\) assembly vehicle side harness connector } & \multirow{2}{*}{ Ground } & \multirow{2}{*}{ Condition } & \multirow{2}{*}{ Voltage (Approx.) } \\
\cline { 1 - 2 } Connector & Terminal & & Battery voltage \\
\hline F51 & 2 & & Always & B \\
\hline
\end{tabular}

Is the inspection result normal?
\[
\text { YES >> GO TO } 2 .
\]
\[
\text { NO >> GO TO } 4 .
\]
2. CHECK TCM POWER SOURCE (PART 2)

Check voltage between A/T assembly vehicle side harness connector terminals and ground.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{A/T assembly vehicle side harness connector} & \multirow{6}{*}{Ground} & \multirow[b]{2}{*}{Condition} & \multirow[b]{2}{*}{Voltage (Approx.)} \\
\hline Connector & Terminal & & & \\
\hline \multirow{4}{*}{F51} & \multirow{2}{*}{1} & & Turn ignition switch ON & Battery voltage \\
\hline & & & Turn ignition switch OFF & 0 V \\
\hline & \multirow[b]{2}{*}{6} & & Turn ignition switch ON & Battery voltage \\
\hline & & & Turn ignition switch OFF & 0 V \\
\hline
\end{tabular}

Is the inspection result normal?
\[
\begin{array}{ll}
\text { YES } & \gg \text { GO TO } 3 . \\
\text { NO } & \gg \text { GO TO } 5 .
\end{array}
\]
3. check tcm ground circuit

Check continuity between A/T assembly vehicle side harness connector terminals and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{c|}{ A/T assembly vehicle side harness connector } & \\
\hline \multirow{3}{*}{ Ground } & Continuity \\
\cline { 1 - 2 } Connector & Terminal & & \multirow{2}{*}{ Existed } \\
\hline \multirow{2}{*}{ F51 } & 5 & & \\
\hline
\end{tabular}

\section*{Is the inspection result normal?}

YES >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
4.DETECT MALFUNCTIONING ITEM

\section*{Check the following.}
- Harness for short or open between battery positive terminal and \(A / T\) assembly vehicle side harness connector terminal 2. Refer to PG-6, "Wiring Diagram - BATTERY POWER SUPPLY -".
- Battery
- 10A fuse (No.36, located in the fuse, fusible link and relay box). Refer to PG-157, "Fuse and Fusible Link Arrangement".
Is the inspection result normal?
YES >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.

\title{
MAIN POWER SUPPLY AND GROUND CIRCUIT \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]
}
5. CHECK HARNESS BETWEEN IPDM E/R AND A/T ASSEMBLY (PART 1)
1. Turn ignition switch OFF.
2. Disconnect IPDM E/R connector.
3. Check continuity between IPDM E/R vehicle side harness connector terminal and \(A / T\) assembly vehicle side harness connector terminals.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ IPDM E/R vehicle side harness connector } & \multicolumn{2}{|c|}{ A/T assembly vehicle side harness connector } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & Connector & Terminal & \\
\hline \multirow{2}{*}{ E7 } & \multirow{2}{*}{58} & \multirow{2}{*}{ F51 } & 1 & \multirow{2}{*}{ Existed } \\
& & & 6 & \multirow{2}{*}{} \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 6.
NO >> Repair or replace damaged parts.
6. CHECK HARNESS BETWEEN IPDM E/R AND A/T ASSEMBLY (PART 2)

Check continuity between A/T assembly vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{\(\mathrm{A} /\) T assembly vehicle side harness connector } & & \multirow{2}{*}{ Ground } \\
\hline Connector & Terminal & \multirow{3}{*}{ Continuity } \\
\cline { 1 - 2 } \multirow{2}{*}{ E51 } & 1 & & \multirow{2}{*}{ Not existed } \\
\cline { 2 - 2 } & 6 & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 7.
NO >> Repair or replace damaged parts.
7. DETECT MALFUNCTIONING ITEM

Check the following.
- Harness for short or open between ignition switch and IPDM E/R. Refer to PG-81, "Wiring Diagram - IGNITION POWER SUPPLY -".
- Ignition switch
- 10A fuse (No.43, located in the IPDM E/R). Refer to PG-158, "Fuse, Connector and Terminal Arrangement".
- IPDM E/R

Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.

\section*{SHIFT POSITION INDICATOR CIRCUIT}

\section*{Description}

TCM transmit the switch signals to unified meter and A/C amp. by CAN communication line. Then manual mode switch position is indicated on the shift position indicator.

\section*{Component Function Check}

\section*{1. CHECK A/T INDICATOR}
1. Start the engine.
2. Check the actual selector lever position ("P", "R", "N" and "D") and the indication of the shift position indicator mutually coincide.
3. Drive vehicle in the manual mode, and then check that the actual gear position and the indication of the position indicator mutually coincide when the selector lever is shifted to "UP (+ side)" or "DOWN (- side)" side (\(1 \mathrm{GR} \Leftrightarrow 7 \mathrm{GR}\)).
Is the inspection result normal?
```

YES >> INSPECTION END
NO >> Go to TM-303, "Diagnosis Procedure".

```

\section*{Diagnosis Procedure}

\section*{1. CHECK INPUT SIGNALS}
(1) With CONSULT-III
1. Start the engine.
2. Select "SLCT LVR POSI" in "Data Monitor" in "TRANSMISSION".
3. Check the actual selector lever position ("P", "R", "N" and "D") and the indication of the "SLCT LVR POSI" mutually coincide. Refer to TM-315, "Reference Value".
4. Drive vehicle in the manual mode, and then check that the actual gear position and the indication of the "SLCT LVR POSI" mutually coincide when the selector lever is shifted to the "UP (+ side)" or "DOWN (side)" side (\(1 \mathrm{GR} \Leftrightarrow 7 \mathrm{GR}\)). Refer to TM-315, "Reference Value".
Is the inspection result normal?

\section*{YES >> INSPECTION END}

NO-1 [The actual gear position does not change, or shifting into the manual mode is not possible (no gear shifting in the manual mode possible). Or the shift position indicator is not indicated.]>>•Check manual mode switch. Refer to TM-294, "Component Inspection (Manual Mode Switch)".
- Check A/T main system (Fail-safe function actuated).
- Perform "Self Diagnostic Results" mode for "TRANSMISSION". Refer to TM-332, "DTC Index".

NO-2 (The actual gear position changes, but the shift position indicator is not indicated.)>>•Perform "Self Diagnostic Results" mode for "TRANSMISSION". Refer to TM-332, "DTC Index".
NO-3 (The actual gear position and the indication on the shift position indicator do not coincide.) >>•Perform "Self Diagnostic Results" mode for "TRANSMISSION". Refer to TM-332, "DTC Index".
NO-4 (Only a specific position or positions is/are not indicated on the shift position indicator.)>>•Check the unified meter and A/C amp. Refer to MWI-4, "Work flow".

\section*{Description}

Refer to TM-240, "System Description".

Component Function Check
1.CHECK A/T SHIFT LOCK OPERATION (PART 1)
1. Turn ignition switch ON.
2. Shift the selector lever to "P" position.
3. Attempt to shift the selector lever to any other position with the brake pedal released.

Can the selector lever be shifted to any other position?
```

    YES >> Go to TM-307, "Diagnosis Procedure".
    ```
 NO >> GO TO 2.
2. CHECK A/T SHIFT LOCK OPERATION (PART 2)

Attempt to shift the selector lever to any other position with the brake pedal depressed.
Can the selector lever be shifted to any other position?
```

YES >> INSPECTION END
NO >> Go to TM-307, "Diagnosis Procedure".

```

\section*{Diagnosis Procedure}
1. CHECK POWER SOURCE (PART 1)
1. Turn ignition switch OFF.
2. Disconnect \(A / T\) shift selector connector.
3. Turn ignition switch ON.
4. Check voltage between \(A / T\) shift selector vehicle side harness connector terminal and ground.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{A/T shift selector vehicle side harness connector} & \multirow{4}{*}{Ground} & \multirow[b]{2}{*}{Condition} & \multirow[b]{2}{*}{Voltage (Approx.)} \\
\hline Connector & Terminal & & & \\
\hline \multirow{2}{*}{M137} & \multirow{2}{*}{8} & & Depressed brake pedal. & Battery voltage \\
\hline & & & Released brake pedal. & 0 V \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 2.
NO >> GO TO 5.
2. CHECK GROUND CIRCUIT

Check continuity between A/T shift selector vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline A/T shift selector vehicle side harness connector & \multirow{3}{*}{ Ground } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & & \\
\hline M137 & 4 & & Existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 3.
NO >> Repair or replace damaged parts.
3. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND SHIFT LOCK UNIT

\section*{1. Disconnect shift lock unit connector.}
2. Check continuity between A/T shift selector connector terminals and shift lock unit A/T shift selector side connector terminals.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ A/T shift selector connector } & \multicolumn{2}{c}{ Shift lock unit A/T shift selector side connector } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & Connector & Terminal & \\
\hline \multirow{2}{*}{ M137 } & 8 & \multirow{2}{*}{ M222 } & 3 & \multirow{2}{*}{ Existed } \\
\cline { 2 - 2 } & 4 & & 4 & \multirow{3}{*}{} \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 4.
NO >> Repair or replace damaged parts.
4. CHECK SHIFT LOCK UNIT
1. Remove shift lock unit. Refer to TM-350, "Exploded View".
2. Check shift lock unit. Refer to TM-309, "Component Inspection (Shift Lock Solenoid)".

Is the inspection result normal?
\[
\begin{array}{ll}
\text { YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident". } \\
\text { NO } & \text { >> Replace shift lock unit. Refer to TM-350, "Exploded View". }
\end{array}
\]

\section*{SHIFT LOCK SYSTEM}
< DTC/CIRCUIT DIAGNOSIS >
5. CHECK POWER SOURCE (PART 2)
1. Turn ignition switch OFF.
2. Disconnect stop lamp switch connector.
3. Turn ignition switch ON.
4. Check voltage between stop lamp switch vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{c|}{ Stop lamp switch vehicle side harness connector } & \multirow{3}{*}{ Ground } \\
\hline Connector & Terminal & \multirow{2}{*}{ Voltage (Approx.) } \\
\cline { 1 - 2 } & & & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 6.
NO >> GO TO 9.
6. CHECK STOP LAMP SWITCH (PART 1)

Check stop lamp switch. Refer to TM-309, "Component Inspection (Stop Lamp Switch)".
Is the inspection result normal?
YES >> GO TO 7.
NO >> GO TO 12.
7. CHECK HARNESS BETWEEN STOP LAMP SWITCH AND SHIFT SELECTOR (PART 1)

Check continuity between stop lamp switch vehicle side harness connector terminal and A/T shift selector vehicle side harness connector terminal.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Stop lamp switch vehicle side harness connector } & \multicolumn{2}{|c|}{\(\mathrm{A} / \mathrm{T}\) shift selector vehicle side harness connector } & \multirow{2}{*}{ Continuity } \\
\cline { 1 - 4 } Connector & Terminal & Connector & Terminal & \\
\hline E110 & 4 & M137 & 8 & Existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 8.
NO >> Repair or replace damaged parts.
8. CHECK HARNESS BETWEEN STOP LAMP SWITCH AND SHIFT SELECTOR (PART 2)

Check continuity between stop lamp switch vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Stop lamp switch vehicle side harness connector } & \multirow{3}{*}{ Ground } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & & \\
\hline E110 & 4 & & Not existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
9. CHECK HARNESS BETWEEN FUSE BLOCK (J/B) AND STOP LAMP SWITCH (PART 1)
1. Turn ignition switch OFF.
2. Disconnect fuse block (J/B) connector.
3. Check continuity between fuse block (J/B) vehicle side harness connector terminal and stop lamp switch vehicle side harness connector terminal.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Fuse block (J/B) vehicle side harness connector } & \multicolumn{2}{|c}{ Stop lamp switch vehicle side harness connector } & \multirow{2}{*}{ Continuity } \\
\cline { 1 - 4 } Connector & Terminal & Connector & Terminal & \\
\hline E103 & 4 F & E 110 & 3 & Existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 10.
NO >> Repair or replace damaged parts.
10. CHECK HARNESS BETWEEN FUSE BLOCK (J/B) AND STOP LAMP SWITCH (PART 2)

\section*{SHIFT LOCK SYSTEM}
< DTC/CIRCUIT DIAGNOSIS >
Check continuity between fuse block (J/B) vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline Fuse block (J/B) vehicle side harness connector & & \multirow{2}{c}{ Ground } & Continuity \\
\cline { 1 - 2 } Connector & Terminal & & \\
\hline E103 & 4 F & & Not existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 11.
NO >> Repair or replace damaged parts.
11. detect Malfunctioning item

\section*{Check the following.}
- Harness for short or open between ignition switch and fuse block (J/B). Refer to PG-81, "Wiring Diagram IGNITION POWER SUPPLY -".
- Ignition switch
- 10A fuse [No.3, located in the fuse block (J/B)]. Refer to PG-156, "Fuse, Connector and Terminal Arrangement".
- Fuse block (J/B)

Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
12. CHECK INSTALLATION POSITION OF STOP LAMP SWITCH

Adjust stop lamp switch position. Refer to BR-7. "Inspection and Adjustment".
\[
\text { >> GO TO } 13 .
\]
13. CHECK STOP LAMP SWITCH (PART 2)

Check stop lamp switch. Refer to TM-309, "Component Inspection (Stop Lamp Switch)".
Is the inspection result normal?
```

YES >> INSPECTION END
NO >> Replace stop lamp switch. Refer to BR-18, "Exploded View".

```

Component Inspection (Shift Lock Solenoid)
INFOID:0000000005530876
1.CHECK SHIFT LOCK SOLENOID

Apply voltage to terminals 3 and 4 of shift lock unit connector, and then check that shift lock solenoid is activated.
CAUTION:
Connect the fuse between the terminals when applying the voltage.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Shift lock unit connector} & \multirow{3}{*}{Condition} & \multirow{3}{*}{Status} \\
\hline \multirow[b]{2}{*}{Connector} & \multicolumn{2}{|c|}{Terminal} & & \\
\hline & + (fuse) & - & & \\
\hline M222 & 3 & 4 & Apply 12 V direct current between terminals 3 and 4. & Shift lock solenoid operates \\
\hline
\end{tabular}

Can the lock plate be moved up and down?
YES >> INSPECTION END
NO >> Replace shift lock unit. Refer to TM-350, "Exploded View".
Component Inspection (Stop Lamp Switch)
1. CHECK STOP LAMP SWITCH

Check continuity between stop lamp switch connector terminals.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{|c|}{ Stop lamp switch connector } & \multirow{2}{*}{ Condition } & \multirow{2}{*}{ Continuity } \\
\hline Connector & \multicolumn{2}{|c|}{ Terminal } & & \\
\hline \multirow{2}{*}{ E110 } & 3 & 4 & Depressed brake pedal. & \multirow{2}{*}{ Existed } \\
& & Released brake pedal. & Not existed \\
\hline
\end{tabular}

\footnotetext{
Is the inspection result normal?
YES >> INSPECTION END
NO >> Replace stop lamp switch. Refer to BR-18, "Exploded View".
}

\section*{SELECTOR LEVER POSITION INDICATOR}

\section*{Description}

\section*{Component Function Check}

\section*{1. CHECK SELECTOR LEVER POSITION INDICATOR (PART 1)}
1. Turn ignition switch ON.
2. Check that each position indicator lamp of the selector lever position indicator turns on when shifting the selector lever from " P " to " M " position.
Is the inspection result normal?
```

YES >> GOTO 2.
NO >> Go to TM-311, "Diagnosis Procedure".
2. CHECK SELECTOR LEVER POSITION INDICATOR (PART 2)

```

Check that the night illumination of the selector lever position indicator turns on when setting the lighting switch in 1st position.
Is the inspection result normal?
```

YES >> INSPECTION END
NO >> Go to TM-311, "Diagnosis Procedure".

```

Diagnosis Procedure

\section*{1. CHECK MALFUNCTIONING ITEM}

Which item is abnormal?
Position indicator lamp>> GO TO 2. Illumination lamp>> GO TO 11.
2. CHECK POWER SOURCE
1. Turn ignition switch OFF.
2. Disconnect \(A / T\) shift selector connector.
3. Turn ignition switch ON .
4. Check voltage between \(A / T\) shift selector vehicle side harness connector terminals.
\begin{tabular}{c|c|c|c}
\hline A/T shift selector vehicle side harness connector & \multirow{3}{*}{ Ground } & \multirow{2}{*}{ Voltage (Approx.) } \\
\hline Connector & Terminal & & \\
\cline { 1 - 2 } & & 10 & \\
\hline
\end{tabular}

Is the inspection result normal?
YES \(\gg\) GO TO 3.
NO \(\gg\) GO TO 8.
3. CHECK GROUND CIRCUIT
1. Turn ignition switch OFF.
2. Check continuity between \(A / T\) shift selector vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ A/T shift selector vehicle side harness connector } & \multirow{3}{*}{ Ground } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & 4 & \\
\hline M137 & & & Existed \\
\hline
\end{tabular}

\footnotetext{
Is the inspection result normal?
YES >> GOTO 4.
NO >> Repair or replace damaged parts.
4. CHECK SHIFT POSITION SWITCH
}

\section*{SELECTOR LEVER POSITION INDICATOR \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]}
1. Disconnect shift position switch connector.
2. Check continuity between \(A / T\) shift selector harness connector terminals and shift position switch connector terminals.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{A/T shift selector harness connector} & \multicolumn{2}{|l|}{Shift position switch connector} & \multirow{2}{*}{Condition} & \multirow[b]{2}{*}{Continuity} \\
\hline Connector & Terminal & Connector & Terminal & & \\
\hline \multirow{12}{*}{M137} & \multirow{4}{*}{4} & \multirow{12}{*}{M221} & 7 & \multirow[t]{2}{*}{Selector lever in "D" position.} & Existed \\
\hline & & & \(2,3,4,5,6,9,10,11\) & & No existed \\
\hline & & & 9 & Selector lever in "M" & Existed \\
\hline & & & 2, 3, 4, 5, 6, 7, 10, 11 & position. & No existed \\
\hline & & & 2, 6 & Selector lever in "N" & Existed \\
\hline & & & 3, 4, 5, 7, 9, 10, 11 & and "M" position. & No existed \\
\hline & & & 3, 6 & Selector lever in "D" & Existed \\
\hline & 10 & & 2, 4, 5, 7, 9, 10, 11 & position. & No existed \\
\hline & & & 4, 6 & Selector lever in "R" & Existed \\
\hline & & & \(2,3,5,7,9,10,11\) & position. & No existed \\
\hline & & & 5, 6 & Selector lever in "P" & Existed \\
\hline & & & \(2,3,4,7,9,10,11\) & position. & No existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 5.
NO >> Repair or replace damaged parts. Refer to TM-350, "Exploded View".
5. CHECK HARNESS BETWEEN SHIFT POSITION SWITCH AND SELECTOR LEVER POSITION INDICATOR (PART 1)
1. Disconnect selector lever position indicator connector.
2. Check continuity between shift position switch harness connector terminals and selector lever position indicator connector terminals.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Shift position switch harness connector} & \multicolumn{2}{|l|}{Selector lever position indicator harness connector} & \multirow[b]{2}{*}{Continuity} \\
\hline Connector & Terminal & Connector & Terminal & \\
\hline \multirow{7}{*}{M221} & 2 & \multirow{7}{*}{M223} & 3 & \multirow{7}{*}{Existed} \\
\hline & 3 & & 4 & \\
\hline & 4 & & 5 & \\
\hline & 5 & & 7 & \\
\hline & 6 & & 6 & \\
\hline & 7 & & 8 & \\
\hline & 9 & & 2 & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 6.
NO >> Repair or replace damaged parts. Refer to TM-350, "Exploded View".
6. CHECK HARNESS BETWEEN SHIFT POSITION SWITCH AND SELECTOR LEVER POSITION INDICATOR (PART 2)
Check harness cladding between shift position switch connector and selector lever position indicator connector for damage.
Is the inspection result normal?
```

YES >> GO TO 7.
NO >> Repair or replace damaged parts. Refer to TM-350, "Exploded View".
7. CHECK SELECTOR LVEVE Postrion NOCCATOR

```

Check selector lever position indicator. Refer to TM-314, "Component Inspection (Selector Lever Position Indicator)".

\section*{SELECTOR LEVER POSITION INDICATOR}
< DTC/CIRCUIT DIAGNOSIS >
[7AT: RE7R01B (VK50VE)]
Is the inspection result normal?
YES >> Check intermittent incident. Refer to GI-36, "Intermittent Incident".
NO >> Replace damaged parts.
8. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND BCM (PART 1)
1. Turn ignition switch OFF.
2. Disconnect BCM connector.
3. Check continuity between \(A / T\) shift selector vehicle side harness connector terminal and BCM vehicle side harness connector terminal.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ A/T shift selector vehicle side harness connector } & \multicolumn{2}{|c}{ BCM vehicle side harness connector } & \multirow{2}{*}{ Continuity } \\
\cline { 1 - 4 } Connector & Terminal & Connector & Terminal & \\
\hline M137 & 10 & M122 & 96 & Existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 9.
NO >> Repair or replace damaged parts.
9. CHECK HARNESS BETWEEN A/T SHIFT SELECTOR AND BCM (PART 2)

Check continuity between A/T shift selector vehicle side harness connector terminal and ground.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ A/T shift selector vehicle side harness connector } & \multirow{3}{*}{ Ground } & \multirow{2}{*}{ Continuity } \\
\hline Connector & Terminal & & \\
\hline M137 & 10 & & Not existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 10.
NO >> Repair or replace damaged parts.
10. CHECK BCM INPUT/OUTPUT SIGNAL

Check BCM input/output signal. Refer to BCS-45, "Reference Value".
Is the inspection result normal?
YES >> Check intermittent incident. Refer to Gl-36, "Intermittent Incident".
NO >> Repair or replace damaged parts.
11. CHECK POWER SOURCE
1. Turn ignition switch OFF.
2. Disconnect \(A / T\) shift selector connector.
3. Turn ignition switch ON.
4. Check voltage between \(A / T\) shift selector vehicle side harness connector terminals.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ A/T shift selector vehicle side harness connector } & \multirow{3}{*}{ Condition } & \multirow{2}{*}{ Voltage (Approx.) } \\
\cline { 1 - 3 } Connector & + & Terminal & - & \\
\cline { 2 - 3 } & M137 & 7 & 9 & Lighting switch 1ST \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 12.
NO >> Check illumination circuit. Refer to INL-89, "Wiring Diagram - ILLUMINATION -".
12. CHECK SHIFT POSITION SWITCH
1. Disconnect shift position switch connector.
2. Check continuity between \(A / T\) shift selector harness connector terminals and shift position switch connector terminals.

\title{
SELECTOR LEVER POSITION INDICATOR \\ < DTC/CIRCUIT DIAGNOSIS > \\ [7AT: RE7R01B (VK50VE)]
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{A/T shift selector harness connector} & \multicolumn{2}{|l|}{Shift position switch connector} & \multirow[b]{2}{*}{Continuity} \\
\hline Connector & Terminal & Connector & Terminal & \\
\hline \multirow{4}{*}{M137} & & \multirow{4}{*}{M221} & 10 & Existed \\
\hline & & & \(2,3,4,5,6,7,9,11\) & No existed \\
\hline & \multirow{2}{*}{9} & & 11 & Existed \\
\hline & & & \(2,3,4,5,6,7,9,10\) & No existed \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GO TO 13.
NO >> Repair or replace damaged parts. Refer to TM-350, "Exploded View".
13. CHECK HARNESS BETWEEN SHIFT POSITION SWITCH AND SELECTOR LEVER POSITION INDI-

CATOR (PART 3)
1. Disconnect selector lever position indicator connector.
2. Check continuity between shift position switch harness connector terminals and selector lever position indicator connector terminals.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Shift position switch harness connector } & \multicolumn{2}{c|}{ Selector lever position indicator harness connector } & \multirow{2}{*}{ Continuity } \\
\hline \multirow{2}{*}{ Connector } & Terminal & Connector & Terminal & \\
\hline \multirow{2}{*}{ M221 } & 10 & \multirow{2}{*}{ M223 } & 1 & \multirow{2}{*}{ Existed } \\
\cline { 2 - 2 } & 11 & & 9 & \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> GOTO 6.
NO >> Repair or replace damaged parts. Refer to TM-350, "Exploded View".
Component Inspection (Selector Lever Position Indicator)
1. CHECK SELECTOR LEVER POSITION INDICATOR

Check that selector lever position indicator lamps turn on.
CAUTION:
Connect the fuse between the terminals when applying the voltage.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Selector lever position indicator connector} & \multirow{3}{*}{Condition} & \multirow{3}{*}{Status} \\
\hline \multirow{2}{*}{Connector} & \multicolumn{2}{|c|}{Terminal} & & \\
\hline & + (fuse) & - & & \\
\hline \multirow{6}{*}{M223} & 1 & 9 & Apply 12 V direct current between terminals 1 and 9. & Illumination lamp turns on. \\
\hline & 3 & \multirow{4}{*}{8} & Apply 12 V direct current between terminals 3 and 8. & " N " position indicator lamp turns on. \\
\hline & 4 & & Apply 12 V direct current between terminals 4 and 8. & "D" position indicator lamp turns on. \\
\hline & 5 & & Apply 12 V direct current between terminals 5 and 8. & " \(R\) " position indicator lamp turns on. \\
\hline & 7 & & Apply 12 V direct current between terminals 7 and 8. & "P" position indicator lamp turns on. \\
\hline & 6 & 2 & Apply 12 V direct current between terminals 6 and 2. & " M " mode indicator lamp turns on. \\
\hline
\end{tabular}

Is the inspection result normal?
YES >> INSPECTION END
NO >> Replace the selector lever position indicator. Refer to TM-350, "Exploded View".

\section*{ECU DIAGNOSIS INFORMATION \\ TCM}

\section*{Reference Value}

\section*{VALUES ON DIAGNOSIS TOOL \\ NOTE:}
1. The CONSULT-III electrically displays shift timing and lock-up timing (that is, operation timing of each solenoid).
Check for time difference between actual shift timing and the CONSULT-III display. If the difference is noticeable, mechanical parts (except solenoids, sensors, etc.) may be malfunctioning. Check mechanical parts using applicable diagnostic procedures.
2. Shift schedule (which implies gear position) displayed on CONSULT-III and that indicated in Service Manual may differ slightly. This occurs because of the following reasons:
- Actual shift schedule has more or less tolerance or allowance
- Shift schedule indicated in Service Manual refers to the point where shifts start
- Gear position displayed on CONSULT-III indicates the point where shifts are completed
3. Display of solenoid valves on CONSULT-III changes at the start of shifting, while gear position is displayed upon completion of shifting (which is computed by TCM).
CONSULT-III MONITOR ITEM
\begin{tabular}{|c|c|c|}
\hline Item name & Condition & Value / Status (Approx.) \\
\hline VHCL/S SE-A/T & During driving & Approximately matches the speedometer reading. \\
\hline ESTM VSP SIG & During driving & Approximately matches the speedometer reading. \\
\hline OUTPUT REV & During driving (lock-up ON) & Tachometer/Gear ratio \\
\hline INPUT SPEED & During driving (lock-up ON) & Approximately matches the engine speed. \\
\hline F SUN GR REV & During driving & Revolution of front sun gear is indicated. \\
\hline F CARR GR REV & During driving & Revolution of front carrier is indicated. \\
\hline ENGINE SPEED & Engine running & Closely matches the tachometer reading. \\
\hline TC SLIP SPEED & During driving & Engine speed - Input speed \\
\hline \multirow[t]{2}{*}{ACCELE POSI} & Released accelerator pedal & 0.0/8 \\
\hline & Fully depressed accelerator pedal & 8.0/8 \\
\hline \multirow[b]{2}{*}{THROTTLE POSI} & Released accelerator pedal & 0.0/8 \\
\hline & Fully depressed accelerator pedal & 8.0/8 \\
\hline ATF TEMP 1 & Ignition switch ON & Temperature of ATF in the oil pan is indicated. \\
\hline ATF TEMP 2 & Ignition switch ON & Temperature of ATF at the exit of torque converter. \\
\hline ATF TEMP SE 1 & \(0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)-20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)-80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)\) & \(3.3-2.7-0.9 \mathrm{~V}\) \\
\hline BATTERY VOLT & Ignition switch ON & Battery voltage (\(11 \mathrm{~V}-14 \mathrm{~V}\)) \\
\hline LINE PRES SOL & During driving & \(0.2-0.6 \mathrm{~A}\) \\
\hline \multirow{3}{*}{TCC SOLENOID} & Slip lock-up is active & \(0.2-0.8 \mathrm{~A}\) \\
\hline & Lock-up is active & 0.8 A \\
\hline & Other than the above & 0 A \\
\hline \multirow[t]{2}{*}{L/B SOLENOID} & Low brake engaged & 0.6-0.8 A \\
\hline & Low brake disengaged & 0-0.05 A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item name & Condition & Value / Status (Approx.) \\
\hline \multirow{2}{*}{FR/B SOLENOID} & Front brake engaged & 0.6-0.8 A \\
\hline & Front brake disengaged & 0-0.05 A \\
\hline \multirow[b]{2}{*}{HLR/C SOL} & High and low reverse clutch disengaged & 0.6-0.8 A \\
\hline & High and low reverse clutch engaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow{2}{*}{I/C SOLENOID} & Input clutch disengaged & 0.6-0.8 A \\
\hline & Input clutch engaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[t]{2}{*}{D/C SOLENOID} & Direct clutch disengaged & 0.6-0.8 A \\
\hline & Direct clutch engaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[t]{2}{*}{2346/B SOL} & 2346 brake engaged & 0.6-0.8 A \\
\hline & 2346 brake disengaged & \(0-0.05 \mathrm{~A}\) \\
\hline L/P SOL MON & During driving & 0.2-0.6 A \\
\hline \multirow{3}{*}{TCC SOL MON} & Slip lock-up is active & 0.2-0.8 A \\
\hline & Lock-up is active & 0.8 A \\
\hline & Other than the above & 0 A \\
\hline \multirow[t]{2}{*}{L/B SOL MON} & Low brake engaged & \(0.6-0.8 \mathrm{~A}\) \\
\hline & Low brake disengaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[b]{2}{*}{FR/B SOL MON} & Front brake engaged & \(0.6-0.8 \mathrm{~A}\) \\
\hline & Front brake disengaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[t]{2}{*}{HLR/C SOL MON} & High and low reverse clutch disengaged & \(0.6-0.8 \mathrm{~A}\) \\
\hline & High and low reverse clutch engaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[t]{2}{*}{I/C SOL MON} & Input clutch disengaged & 0.6-0.8 A \\
\hline & Input clutch engaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[b]{2}{*}{D/C SOL MON} & Direct clutch disengaged & 0.6-0.8 A \\
\hline & Direct clutch engaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow[t]{2}{*}{2346/B SOL MON} & 2346 brake engaged & \(0.6-0.8 \mathrm{~A}\) \\
\hline & 2346 brake disengaged & \(0-0.05 \mathrm{~A}\) \\
\hline \multirow{7}{*}{GEAR RATIO} & Driving with 1GR & 4.887 \\
\hline & Driving with 2GR & 3.170 \\
\hline & Driving with 3GR & 2.027 \\
\hline & Driving with 4GR & 1.412 \\
\hline & Driving with 5GR & 1.000 \\
\hline & Driving with 6GR & 0.864 \\
\hline & Driving with 7GR & 0.775 \\
\hline ENGINE TORQUE & During driving & Changes the value according to the acceleration or deceleration. \\
\hline ENG TORQUE D & During driving & Changes the value according to the acceleration or deceleration. \\
\hline INPUT TRQ S & During driving & Changes the value according to the acceleration or deceleration. \\
\hline INPUT TRQ L/P & During driving & Changes the value according to the acceleration or deceleration \\
\hline \multirow[t]{2}{*}{TRGT PRES L/P} & Selector lever in "P" and "N" positions & 490 kPa \\
\hline & Other than the above & \(490-1370 \mathrm{kPa}\) \\
\hline \multirow{3}{*}{TRGT PRES TCC} & Slip lock-up is active & \(0-600 \mathrm{kPa}\) \\
\hline & Lock-up is active & 600 kPa \\
\hline & Other than the above & 0 kPa \\
\hline
\end{tabular}

\section*{TCM}
< ECU DIAGNOSIS INFORMATION >
\begin{tabular}{|c|c|c|}
\hline Item name & Condition & Value / Status (Approx.) \\
\hline \multirow{2}{*}{TRGT PRES L/B} & Low brake engaged & 1370 kPa \\
\hline & Low brake disengaged & 0 kPa \\
\hline \multirow[b]{2}{*}{TRGT PRES FR/B} & Front brake engaged & 1370 kPa \\
\hline & Front brake disengaged & 0 kPa \\
\hline \multirow[b]{2}{*}{TRG PRE HLR/C} & High and low reverse clutch disengaged & 1370 kPa \\
\hline & High and low reverse clutch engaged & 0 kPa \\
\hline \multirow[t]{2}{*}{TRGT PRES I/C} & Input clutch disengaged & 1370 kPa \\
\hline & Input clutch engaged & 0 kPa \\
\hline \multirow[t]{2}{*}{TRGT PRES D/C} & Direct clutch disengaged & 1370 kPa \\
\hline & Direct clutch engaged & 0 kPa \\
\hline \multirow[t]{2}{*}{TRG PRE 2346/B} & 2346 brake engaged & 1370 kPa \\
\hline & 2346 brake disengaged & 0 kPa \\
\hline SHIFT PATTERN & During normal driving (without shift changes) & FF \\
\hline VEHICLE SPEED & During driving & Approximately matches the speedometer reading. \\
\hline \multirow[b]{2}{*}{RANGE SW 4} & Selector lever in "P" and "N" positions & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[b]{2}{*}{RANGE SW 3} & Selector lever in "P", "R" and "N" positions & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{RANGE SW 2} & Selector lever in "P" and "R" positions & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{RANGE SW 1} & Selector lever in "P" position & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[b]{2}{*}{SFT DWN ST SW} & Paddle shifter (shift-down) is pulled & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{SFT UP ST SW} & Paddle shifter (shift-up) is pulled & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[b]{2}{*}{DOWN SW LEVER} & Selector lever is shifted to - side & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[b]{2}{*}{UP SW LEVER} & Selector lever is shifted to + side & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{NON M-MODE SW} & Selector lever is shifted to manual shift gate side & OFF \\
\hline & Other than the above & ON \\
\hline \multirow[t]{2}{*}{MANU MODE SW} & Selector lever is shifted to manual shift gate side & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[b]{2}{*}{DS RANGE} & Driving with DS mode & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{1 POSITION SW*} & Selector lever in "1" position & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{OD CONT SW*} & When overdrive control switch is depressed & ON \\
\hline & When overdrive control switch is released & OFF \\
\hline \multirow[t]{2}{*}{BRAKESW} & Depressed brake pedal & ON \\
\hline & Released brake pedal & OFF \\
\hline \multirow[t]{2}{*}{POWERSHIFT SW*} & Power mode & ON \\
\hline & Other than the above & OFF \\
\hline Revision: 2009 August & TM-317 & 2010 FX35/FX50 \\
\hline
\end{tabular}
\begin{tabular}{l|l|c}
\hline \multicolumn{1}{c}{ Item name } & \multicolumn{1}{c}{ Condition } & Value / Status (Approx.) \\
\hline \multirow{2}{*}{ ASCD-OD CUT } & When TCM receives ASCD OD cancel request signal & ON \\
\cline { 2 - 3 } & Other than the above & OFF \\
\hline \multirow{2}{*}{ ASCD-CRUISE } & ASCD operate & ON \\
\cline { 2 - 3 } & Other than the above & OFF \\
\hline \multirow{2}{*}{ ABS SIGNAL } & ABS operate & ON \\
\cline { 2 - 3 } & Other than the above & OFF \\
\hline \multirow{2}{*}{ TCS GR/P KEEP } & When TCM receives TCS gear keep request signal & ON \\
\cline { 2 - 3 } & Other than the above & OFF \\
\hline \multirow{3}{*}{ TCS SIGNAL 2} & \begin{tabular}{l}
When the reception value of A/T shift schedule change \\
TCS SIGNAL 1
\end{tabular} & Oemand signal is "cold"
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item name & Condition & Value / Status (Approx.) \\
\hline \multirow{20}{*}{SHIFT IND SIGNAL} & When the selector lever is positioned in between each position & OFF \\
\hline & Selector lever in "P" position & P \\
\hline & Selector lever in "R" position & R \\
\hline & Selector lever in "N" position & N \\
\hline & Selector lever in "D" position & \\
\hline & Selector lever in "D" position: 7GR & \\
\hline & Selector lever in "D" position: 6GR & 6 \\
\hline & Selector lever in "D" position: 5GR & 5 \\
\hline & Selector lever in "D" position: 4GR & 4 \\
\hline & Selector lever in "D" position: 3GR & 3 \\
\hline & Selector lever in "D" position: 2GR & 2 \\
\hline & Selector lever in "D" position: 1GR & 1 \\
\hline & Selector lever in "M" position: 1GR & M1 \\
\hline & Selector lever in "M" position: 2GR & M2 \\
\hline & Selector lever in "M" position: 3GR & M3 \\
\hline & Selector lever in "M" position: 4GR & M4 \\
\hline & Selector lever in "M" position: 5GR & M5 \\
\hline & Selector lever in "M" position: 6GR & M6 \\
\hline & Selector lever in "M" position: 7GR & M7 \\
\hline & Driving with DS mode & DS \\
\hline \multirow[b]{2}{*}{STARTER RELAY} & Selector lever in "P" and "N" positions & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{F-SAFE IND/L} & For 2 seconds after the ignition switch is turned ON & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{ATF WARN LAMP*} & When TCM transmits the ATF indicator lamp signal & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{MANU MODE IND} & Driving with manual mode & ON \\
\hline & Other than the above & OFF \\
\hline \multirow{3}{*}{ON OFF SOL MON} & Selector lever in "P" and "N" positions & ON \\
\hline & Driving with 1GR to 3GR & ON \\
\hline & Other than the above & OFF \\
\hline \multirow[t]{2}{*}{START RLY MON} & Selector lever in "P" and "N" positions & ON \\
\hline & Other than the above & OFF \\
\hline \multirow{3}{*}{ON OFF SOL} & Selector lever in "P" and "N" positions & \multirow[t]{2}{*}{ON} \\
\hline & Driving with 1GR to 3GR & \\
\hline & Other than the above & OFF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item name & Condition & Value / Status (Approx.) \\
\hline \multirow{10}{*}{SLCT LVR POSI} & Selector lever in "N" and "P" positions & N/P \\
\hline & Selector lever in "R" position & R \\
\hline & Selector lever in "D" and "DS" positions & \multirow[t]{2}{*}{D} \\
\hline & Selector lever in "M" position: 7GR & \\
\hline & Selector lever in "M" position: 6GR & 6 \\
\hline & Selector lever in "M" position: 5GR & 5 \\
\hline & Selector lever in "M" position: 4GR & 4 \\
\hline & Selector lever in "M" position: 3GR & 3 \\
\hline & Selector lever in "M" position: 2GR & 2 \\
\hline & Selector lever in "M" position: 1GR & 1 \\
\hline GEAR & During driving & 1st, 2nd, 3rd, 4th, 5th, 6th, 7th \\
\hline NEXT GR POSI & During driving & 1st, 2nd, 3rd, 4th, 5th, 6th, 7th \\
\hline \multirow[t]{2}{*}{SHIFT MODE} & Driving with the D position & 0 or 3 \\
\hline & Driving with the manual mode & 4 or 8 \\
\hline \multirow[t]{2}{*}{D/C PARTS} & At 1-2 gear shift control & FAIL \\
\hline & Other than the above & NOTFAIL \\
\hline \multirow[b]{2}{*}{FR/B PARTS} & At control fixed to 1GR & FAIL \\
\hline & Other than the above & NOTFAIL \\
\hline \multirow[b]{2}{*}{2346/B PARTS} & At control fixed to 1GR & FAIL \\
\hline & Other than the above & NOTFAIL \\
\hline \multirow[t]{2}{*}{2346B/DC PARTS} & At 2-3-4 gear shift control & FAIL \\
\hline & Other than the above & NOTFAIL \\
\hline
\end{tabular}
*: Not mounted but always display as OFF.
TERMINAL LAYOUT

SCIA1658E

\section*{PHYSICAL VALUES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Terminal (Wire color)} & \multicolumn{2}{|l|}{Description} & \multirow{2}{*}{Condition} & \multirow{2}{*}{Value (Approx.)} \\
\hline + & - & Signal name & Input/ Output & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 \\
(\mathrm{Y})
\end{gathered}
\]} & \multirow{2}{*}{Ground} & \multirow[b]{2}{*}{Power supply} & \multirow[b]{2}{*}{Input} & Ignition switch ON & Battery voltage \\
\hline & & & & Ignition switch OFF & 0 V \\
\hline \[
\begin{gathered}
2 \\
(R)
\end{gathered}
\] & Ground & Power supply (Memory back-up) & Input & Always & Battery voltage \\
\hline \[
\begin{gathered}
3 \\
(\mathrm{~L})
\end{gathered}
\] & - & CAN-H & Input/ Output & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Terminal (Wire color)} & \multicolumn{2}{|l|}{Description} & \multicolumn{2}{|r|}{\multirow{2}{*}{Condition}} & \multirow{2}{*}{Value (Approx.)} \\
\hline + & - & Signal name & Input/ Output & & & \\
\hline \[
\begin{gathered}
4 \\
(\mathrm{~V})
\end{gathered}
\] & - & K-line & Input/ Output & & - & - \\
\hline \[
\begin{gathered}
5 \\
\text { (B) }
\end{gathered}
\] & Ground & Ground & Output & & Always & 0 V \\
\hline & \multirow[b]{2}{*}{Ground} & \multirow[b]{2}{*}{Power supply} & \multirow[b]{2}{*}{Input} & \multicolumn{2}{|r|}{Ignition switch ON} & Battery voltage \\
\hline (Y) & & & & \multicolumn{2}{|r|}{Ignition switch OFF} & 0 V \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
7 \\
(\mathrm{R})
\end{gathered}
\]} & \multirow{2}{*}{Ground} & \multirow[b]{2}{*}{Back-up lamp relay} & \multirow[b]{2}{*}{Input} & \multirow[b]{2}{*}{Ignition switch ON} & Selector lever in "R" position. & 0 V \\
\hline & & & & & Selector lever in other positions. & Battery voltage \\
\hline \[
\begin{gathered}
8 \\
(P)
\end{gathered}
\] & - & CAN-L & Input/ Output & & - & - \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
9 \\
(\mathrm{LG})
\end{gathered}
\]} & \multirow[t]{2}{*}{Ground} & \multirow[t]{2}{*}{Starter relay} & \multirow[t]{2}{*}{Output} & \multirow[t]{2}{*}{Ignition switch ON} & Selector lever in "N" and "P" positions. & Battery voltage \\
\hline & & & & & Selector lever in other positions. & 0 V \\
\hline \[
\begin{aligned}
& 10 \\
& \text { (B) }
\end{aligned}
\] & Ground & Ground & Output & & Always & 0 V \\
\hline
\end{tabular}

\section*{Fail-Safe}

TCM has the electrical fail-safe mode. The mode is divided into a maximum of 3 phases (1st Fail-Safe, 2nd Fail-Safe and Final Fail-Safe) and functions so that the operation can be continued even if the signal circuit of the main electronically controlled input/output parts is damaged.
Even if the electronic circuit is normal, the fail-safe mode may start under special conditions (such as when the brake pedal is depressed suddenly from a hard wheel spin status to stop the rotation of wheels). In this case, turn the ignition switch OFF and back to ON after 5 seconds to resume the normal shift pattern.

Consequently, the customer's vehicle may already return to the normal condition. Refer to TM-189, "Diagnosis Flow".
\begin{tabular}{l|l}
\hline 1st fail-safe & \begin{tabular}{l}
The mode that the vehicle can stop safely, to prompt the driver to stop if the malfunction occurs and to shift to \\
2nd Fail-Safe early. It shifts to 2nd Fail-Safe or Final Fail-Safe after the vehicle stopped.
\end{tabular} \\
\hline 2nd fail-safe & \begin{tabular}{l}
The mode that the vehicle shifts to Final Fail-Safe without changing the behavior, by identifying the malfunc- \\
tioning parts in the condition that the driving force required for the driving is secured.
\end{tabular} \\
\hline Final fail-safe & \begin{tabular}{l}
- Selects the shifting pattern that the malfunctioning parts identified at 1st and 2nd Fail-Safe are not used, and \\
then secure the driving force that is required for the driving. \\
- The mode that the shifting performance does not decrease by normal shift control.
\end{tabular} \\
\hline
\end{tabular}

\section*{FAIL-SAFE FUNCTION}
\begin{tabular}{|c|c|c|c|c|}
\hline DTC & Vehicle condition & Vehicle behavior for 1st fail-safe & Vehicle behavior for 2nd fail-safe & Vehicle behavior for final fail-safe \\
\hline P0615 & - & Starter is disabled & - & Starter is disabled \\
\hline P0705 & - & \begin{tabular}{l}
- Fixed in the "D" position (The shifting can be performed) \\
- \(30 \mathrm{~km} / \mathrm{h}\) (19MPH) or less \\
- Lock-up is prohibited \\
- The shifting between the gears of 3-4-5-6-7 can be performed \\
- Manual mode is prohibited \\
- Shift position indicator is switched OFF \\
- Starter relay is switched OFF (starter is disabled) \\
- Back-up lamp is OFF \\
- Large shift shock
\end{tabular} & - & \begin{tabular}{l}
- Fixed in the "D" position (The shifting can be performed) \\
- \(30 \mathrm{~km} / \mathrm{h}\) (19MPH) or less \\
- Lock-up is prohibited \\
- The shifting between the gears of 3-4-5-6-7 can be performed \\
- Manual mode is prohibited \\
- Shift position indicator is switched OFF \\
- Starter relay is switched OFF (starter is disabled) \\
- Back-up lamp is OFF \\
- Large shift shock
\end{tabular} \\
\hline \multirow{2}{*}{P0710} & Between the gears of 1-2-3 & \begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} & - & \multirow{2}{*}{\begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular}} \\
\hline & Between the gears of
4-5-6-7 & \begin{tabular}{l}
- Fix the gear while driving \\
- Manual mode is prohibited
\end{tabular} & - & \\
\hline \multirow{2}{*}{P0717} & Between the gears of 1-2-3 & \begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} & - & \multirow{2}{*}{\begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular}} \\
\hline & Between the gears of 4-5-6-7 & \begin{tabular}{l}
- Fix the gear while driving \\
- Manual mode is prohibited
\end{tabular} & - & \\
\hline \multirow[t]{2}{*}{P0720} & Between the gears of 1-2-3 & \begin{tabular}{l}
- Only downshift can be performed \\
- Manual mode is prohibited \\
- A vehicle speed signal from the unified meter and \(A / C\) amp. is regarded as an effective signal
\end{tabular} & - & \multirow[t]{2}{*}{\begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular}} \\
\hline & Between the gears of 4-5-6-7 & \begin{tabular}{l}
- Fix the gear at driving \\
- Manual mode is prohibited \\
- A vehicle speed signal from the unified meter and \(A / C\) amp. is regarded as an effective signal
\end{tabular} & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DTC & Vehicle condition & Vehicle behavior for 1st fail-safe & Vehicle behavior for 2nd fail-safe & Vehicle behavior for final fail-safe \\
\hline & Neutral malfunction between the gears of 1-2-3 and 7 & \begin{tabular}{l}
- Locks in 4GR \\
- Manual mode is prohibited \\
- Neutral
\end{tabular} & - & \begin{tabular}{l}
- Locks in 1GR \\
- The shifting between the gears of 1-2 can be performed \\
- The shifting between the gears of 1-2-3 can be performed \\
- The shifting between the gears of 4-5-6 can be performed \\
- Manual mode is prohibited
\end{tabular} \\
\hline P0732
P0733
P0734
P0735
P1734 & Other than the above & \begin{tabular}{l}
- Driving with the gear ratio between 1GR and 2GR \\
- Driving with the gear ratio between 2GR and 3GR \\
- Locks in 3GR \\
- Locks in 4GR \\
- Fix the gear while driving \\
- Manual mode is prohibited \\
- Neutral
\end{tabular} & \begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} & \begin{tabular}{l}
- Locks in 1GR \\
- The shifting between the gears of 1-2 can be performed \\
- The shifting between the gears of 1-2-3 can be performed \\
- The shifting between the gears of 2-3-4 can be performed \\
- The shifting between the gears of 3-4 can be performed \\
- The shifting between the gears of 4-5-6 can be performed \\
- Manual mode is prohibited
\end{tabular} \\
\hline P0730 & - & \begin{tabular}{l}
- Manual mode is prohibited \\
- Neutral
\end{tabular} & \begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} & \begin{tabular}{l}
- Locks in 1GR \\
- The shifting between the gears of \(1-2\) can be performed \\
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} \\
\hline P0740 & - & \begin{tabular}{l}
- Lock-up is prohibited \\
- Slip lock-up is prohibited
\end{tabular} & - & \begin{tabular}{l}
- Lock-up is prohibited \\
- Slip lock-up is prohibited
\end{tabular} \\
\hline P0744 & - & \begin{tabular}{l}
- Lock-up is prohibited \\
- Slip lock-up is prohibited
\end{tabular} & - & \begin{tabular}{l}
- Lock-up is prohibited \\
- Slip lock-up is prohibited
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { P0750 } \\
& \text { P0775 } \\
& \text { P0795 } \\
& \text { P2713 } \\
& \text { P2722 } \\
& \text { P2731 } \\
& \text { P2807 }
\end{aligned}
\] & - & \begin{tabular}{l}
- Locks in 2GR, 3GR, 4GR, 5GR, 6GR or 7GR \\
- Manual mode is prohibited
\end{tabular} & - & \begin{tabular}{l}
- Locks in 1GR \\
- The shifting between the gears of 1-2-3 can be performed \\
- The shifting between the gears of 3-4-5 can be performed \\
- The shifting between the gears of 4-5-6 can be performed \\
- The shifting between the gears of 1-2-3-4-5-6 can be performed \\
- Manual mode is prohibited
\end{tabular} \\
\hline P0780 & - & \begin{tabular}{l}
- Manual mode is prohibited \\
- Neutral
\end{tabular} & - & \begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} \\
\hline P1705 & - & \begin{tabular}{l}
- Downshift when accelerator pedal is depressed is prohibited \\
- Upshift when accelerator pedal is released is prohibited \\
- Manual mode is prohibited
\end{tabular} & \begin{tabular}{l}
- Downshift when accelerator pedal is depressed is prohibited \\
- Upshift when accelerator pedal is released is prohibited \\
- Manual mode is prohibited
\end{tabular} & \begin{tabular}{l}
- Downshift when accelerator pedal is depressed is prohibited \\
- Upshift when accelerator pedal is released is prohibited \\
- Manual mode is prohibited
\end{tabular} \\
\hline P1730 & - & \begin{tabular}{l}
- Neutral \\
- Driving with the gear ratio between 2GR and 3GR \\
- Locks in 5GR, 6GR or 7GR \\
- Manual mode is prohibited
\end{tabular} & \begin{tabular}{l}
- The shifting between the gears of 1-2-3 can be performed \\
- Manual mode is prohibited
\end{tabular} & \begin{tabular}{l}
- Locks in 1GR \\
- The shifting between the gears of 2-3-4 can be performed \\
- The shifting between the gears of 3-4 can be performed \\
- The shifting between the gears of 4-5-6 can be performed \\
- Manual mode is prohibited
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|l|l|l|l}
\hline \hline DTC & \begin{tabular}{c}
Vehicle \\
condition
\end{tabular} & Vehicle behavior for 1st fail-safe & Vehicle behavior for 2nd fail-safe & Vehicle behavior for final fail-safe \\
\hline \multirow{3}{*}{ P1815 } & \begin{tabular}{l}
Paddle \\
switch mal- \\
function
\end{tabular} & \begin{tabular}{l}
Gate switch \\
malfunction
\end{tabular} & Only the paddle switch is prohibited & - \\
\cline { 2 - 5 } & \begin{tabular}{l}
Malfunction \\
of both \\
switches
\end{tabular} & Manual mode is prohibited & Only the paddle switch is prohibited
\end{tabular}

\section*{Protection Control}

The TCM becomes the protection control status temporarily to protect the safety when the safety of TCM and transmission is lost. It automatically returns to the normal status if the safety is secured.
The TCM has the following protection control.
REVERSE INHIBIT CONTROL
Intercepts the torque transmission and shift to the neutral status if the selector lever is shifted to "R" position while the vehicle moves forward at the vehicle speed \(10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more.
\begin{tabular}{l|l}
\hline Malfunction detection condition & Vehicle speed: \(10 \mathrm{~km} / \mathrm{h}(7 \mathrm{MPH})\) or more \\
\hline Control at malfunction & Neutral \\
\hline Normal return condition & \begin{tabular}{l}
- Vehicle speed: \(8 \mathrm{~km} / \mathrm{h}(5 \mathrm{MPH})\) or less \\
- Engine speed: \(2,200 \mathrm{rpm}\) or less
\end{tabular} \\
\hline Vehicle behavior & \begin{tabular}{l}
- The torque transmission cannot be performed \\
- There is a shock just before a vehicle stop
\end{tabular} \\
\hline
\end{tabular}

\section*{1ST ENGINE BRAKE PROTECTION CONTROL}

Controls the engine brake so as not to make effective by turning the front brake solenoid output to OFF when each solenoid becomes the electricity pattern of 1st engine brake during driving at the vehicle speed \(25 \mathrm{~km} / \mathrm{h}\) or more in any positions other than "R" position or 1GR.
\begin{tabular}{l|l}
\hline Malfunction detection condition & \begin{tabular}{l}
• Select lever and gear: Except for "R" position and 1GR \\
and \\
- Vehicle speed: More than \(25 \mathrm{~km} / \mathrm{h}(16 \mathrm{MPH})\)
\end{tabular} \\
\hline Control at malfunction & Front brake solenoid output signal; OFF \\
\hline Normal return condition & Other than malfunction detection condition \\
\hline Vehicle behavior & Does not exist \\
\hline
\end{tabular}

\section*{TCM HIGH TEMPERATURE PROTECTION CONTROL}

Limit the accelerator opening and forcibly control the vehicle to the low torque driving when the electronic substrate in TCM reaches the high temperature.
\begin{tabular}{l|ll}
\hline Malfunction detection condition & \begin{tabular}{l}
TCM electronic substrate temperature \\
\(-145^{\circ} \mathrm{C}\left(293^{\circ} \mathrm{F}\right)\) and 120 seconds \\
or \\
\(-150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)\)
\end{tabular} & \\
\hline Control at malfunction & Accelerator opening: \(0.5 / 8\) or less & 2010 FX35/FX50
\end{tabular}
\begin{tabular}{l|l}
\hline \hline Normal return condition & \begin{tabular}{l}
- TCM electronic substrate temperature: Less than \(140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)\) \\
and \\
- Vehicle speed: \(5 \mathrm{~km} / \mathrm{h}(3 \mathrm{MPH})\) or less
\end{tabular} \\
\hline Vehicle behavior & Accelerator opening: output torque of approximately \(0.5 / 8\) \\
\hline
\end{tabular}

INFOID:0000000005250335
If some DTCs are displayed at the same time, perform inspections one by one based on the priority as per the following list.
\begin{tabular}{|c|c|c|}
\hline Priority & Detected items (DTC) & Reference \\
\hline 1 & U1000 CAN COMM CIRCUIT & TM-249, "DTC Logic" \\
\hline \multirow{14}{*}{2} & P0615 STARTER RELAY & TM-250, "DTC Logic" \\
\hline & P0705 T/M RANGE SWITCH A & TM-252. "DTC Logic" \\
\hline & P0710 FLUID TEMP SENSOR A & TM-253, "DTC Logic" \\
\hline & P0717 INPUT SPEED SENSOR A & TM-255, "DTC Logic" \\
\hline & P0720 OUTPUT SPEED SENSOR & TM-257, "DTC Logic" \\
\hline & P0740 TORQUE CONVERTER & TM-274, "DTC Logic" \\
\hline & P0745 PC SOLENOID A & TM-277. "DTC Logic" \\
\hline & P0750 SHIFT SOLENOID A & TM-278, "DTC Logic" \\
\hline & P0775 PC SOLENOID B & TM-279, "DTC Logic" \\
\hline & P0795 PC SOLENOID C & TM-281, "DTC Logic" \\
\hline & P2713 PC SOLENOID D & TM-296, "DTC Logic" \\
\hline & P2722 PC SOLENOID E & TM-297, "DTC Logic" \\
\hline & P2731 PC SOLENOID F & TM-298, "DTC Logic" \\
\hline & P2807 PC SOLENOID G & TM-299, "DTC Logic" \\
\hline \multirow{11}{*}{3} & P0729 6GR INCORRECT RATIO & TM-261, "DTC Logic" \\
\hline & P0730 INCORRECT GR RATIO & TM-263, "DTC Logic" \\
\hline & P0731 1GR INCORRECT RATIO & TM-264, "DTC Logic" \\
\hline & P0732 2GR INCORRECT RATIO & TM-266, "DTC Logic" \\
\hline & P0733 3GR INCORRECT RATIO & TM-268, "DTC Logic" \\
\hline & P0734 4GR INCORRECT RATIO & TM-270, "DTC Logic" \\
\hline & P0735 5GR INCORRECT RATIO & TM-272, "DTC Logic" \\
\hline & P0744 TORQUE CONVERTER & TM-276, "DTC Logic" \\
\hline & P0780 SHIFT & TM-280, "DTC Logic" \\
\hline & P1730 INTERLOCK & TM-286, "DTC Logic" \\
\hline & P1734 7GR INCORRECT RATIO & TM-288, "DTC Logic" \\
\hline \multirow{4}{*}{4} & P0725 ENGINE SPEED & TM-259, "DTC Logic" \\
\hline & P1705 TP SENSOR & TM-282. "DTC Logic" \\
\hline & P1721 VEHICLE SPEED SIGNAL & TM-284, "DTC Logic" \\
\hline & P1815 M-MODE SWITCH & TM-290, "DTC Logic" \\
\hline
\end{tabular}

\section*{DTC Index}

\section*{NOTE:}

If some DTCs are displayed at the same time, perform inspections one by one based on the priority as per the following list. Refer to TM-332, "DTC Inspection Priority Chart".
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Items
(CONSULT-III screen terms)} & \multicolumn{2}{|c|}{DTC*2} & \multirow[b]{2}{*}{Reference} \\
\hline & MIL*1, "ENGINE" with CONSULT-III or GST & CONSULT-III only "TRANSMISSION" & \\
\hline STARTER RELAY & - & P0615 & TM-250 \\
\hline T/M RANGE SWITCH A & P0705 & P0705 & TM-252 \\
\hline FLUID TEMP SENSOR A & P0710 & P0710 & TM-253 \\
\hline INPUT SPEED SENSOR A & P0717 & P0717 & TM-255 \\
\hline OUTPUT SPEED SENSOR & P0720 & P0720 & TM-257 \\
\hline ENGINE SPEED & - & P0725 & TM-259 \\
\hline 6GR INCORRECT RATIO & P0729 & P0729 & TM-261 \\
\hline INCORRECT GR RATIO & P0730 & P0730 & TM-263 \\
\hline 1GR INCORRECT RATIO & P0731 & P0731 & TM-264 \\
\hline 2GR INCORRECT RATIO & P0732 & P0732 & TM-266 \\
\hline 3GR INCORRECT RATIO & P0733 & P0733 & TM-268 \\
\hline 4GR INCORRECT RATIO & P0734 & P0734 & TM-270 \\
\hline 5GR INCORRECT RATIO & P0735 & P0735 & TM-272 \\
\hline TORQUE CONVERTER & P0740 & P0740 & TM-274 \\
\hline TORQUE CONVERTER & P0744 & P0744 & TM-276 \\
\hline PC SOLENOID A & P0745 & P0745 & TM-277 \\
\hline SHIFT SOLENOID A & P0750 & P0750 & TM-278 \\
\hline PC SOLENOID B & P0775 & P0775 & TM-279 \\
\hline SHIFT & P0780 & P0780 & TM-280 \\
\hline PC SOLENOID C & P0795 & P0795 & TM-281 \\
\hline TP SENSOR & - & P1705 & TM-282 \\
\hline VEHICLE SPEED SIGNAL & - & P1721 & TM-284 \\
\hline INTERLOCK & P1730 & P1730 & TM-286 \\
\hline 7GR INCORRECT RATIO & P1734 & P1734 & TM-288 \\
\hline M-MODE SWITCH & - & P1815 & TM-290 \\
\hline PC SOLENOID D & P2713 & P2713 & TM-296 \\
\hline PC SOLENOID E & P2722 & P2722 & TM-297 \\
\hline PC SOLENOID F & P2731 & P2731 & TM-298 \\
\hline PC SOLENOID G & P2807 & P2807 & TM-299 \\
\hline CAN COMM CIRCUIT & U1000 & U1000 & TM-249 \\
\hline
\end{tabular}
*1: Refer to TM-242, "Diagnosis Description".
*2: These numbers are prescribed by SAE J2012.

\section*{IGN COUNTER}

IGN counter indicates the number of items that ignition switch is turned ON after DTC is detected.
- CAN malfunction
- The number is 0 when a malfunction is detected now.
- The number increases like \(1 \rightarrow 2 \rightarrow 3\)... \(38 \rightarrow 39\) after returning to the normal condition whenever ignition switch OFF \(\rightarrow\) ON.
- The number is fixed to 39 until self-diagnosis results are erased if it is over 39.
- Except for CAN malfunction
- The number is 0 when a malfunction is detected now.
- The number increases like \(1 \rightarrow 2 \rightarrow 3\)... \(254 \rightarrow 255\) after returning to the normal condition whenever ignition switch OFF \(\rightarrow\) ON.
- The number is fixed to 255 until self-diagnosis results are erased if it is over 255.

\section*{SYMPTOM DIAGNOSIS}

SYSTEM SYMPTOM

\section*{Symptom Table}

The diagnostics item numbers show the sequence for inspection. Inspect in order from item 1.
CAUTION:
If any malfunction occurs in the RE7R01A transmission, replace the A/T assembly.
\begin{tabular}{|c|}
\hline \multicolumn{5}{|c|}{\multirow[b]{2}{*}{Symptom}} & \multicolumn{18}{|c|}{Diagnostic item} \\
\hline & & & & & & & & & & & & & & & & әлןєл p!оиәоs әуелq łuoл」 \(\overline{\text { I8Z-WI }}\) & & & & & & \\
\hline \multirow{18}{*}{Poor performance} & \multirow{14}{*}{Driving performance} & \multicolumn{3}{|l|}{Shift point is high in "D" position.} & & 1 & & 2 & & & 3 & & & & & & & & & & & \\
\hline & & \multicolumn{3}{|l|}{Shift point is low in "D" position.} & & 1 & & 2 & & & & & & & & & & & & & & \\
\hline & & \multirow{11}{*}{Large shock} & \multirow{11}{*}{When shifting gears} & \(\rightarrow\) "D" position & 3 & & & 6 & 5 & & 5 & 4 & 2 & & 1 & & & & & & 2 & 5 \\
\hline & & & & \(\rightarrow\) "R" position & 3 & & & 6 & 5 & & 5 & 4 & 2 & & & & & & 1 & & & 5 \\
\hline & & & & 1GR \(\Leftrightarrow 2 \mathrm{GR}\) & & 3 & & 1 & 5 & 3 & 3 & & & & & & & & & 2 & & 4 \\
\hline & & & & 2GR \(\Leftrightarrow 3 \mathrm{GR}\) & & 3 & & 1 & 5 & 3 & 3 & & & & & & & & 2 & & & 4 \\
\hline & & & & 3GR \(\Leftrightarrow 4 \mathrm{GR}\) & & 3 & & 1 & 5 & 3 & 3 & & & & 2 & & 2 & & & & & 4 \\
\hline & & & & \(4 \mathrm{GR} \Leftrightarrow 5 \mathrm{GR}\) & & 3 & & 1 & 5 & 3 & 3 & & & & & & & 2 & & 2 & & 4 \\
\hline & & & & \(5 \mathrm{GR} \Leftrightarrow 6 \mathrm{GR}\) & & 3 & & 1 & 5 & 3 & 3 & & & & & & & & 2 & 2 & & 4 \\
\hline & & & & \(6 \mathrm{GR} \Leftrightarrow 7 \mathrm{GR}\) & & 3 & & 1 & 5 & 3 & 3 & & & & & 2 & & & & 2 & & 4 \\
\hline & & & & Downshift when accelerator pedal is depressed & & 2 & & 1 & 4 & 2 & 2 & & & & & & & & & & & 3 \\
\hline & & & & Upshift when accelerator pedal is released & & 2 & & 1 & 4 & 2 & 2 & & & & & & & & & & & 3 \\
\hline & & & & Lock-up & & 3 & & 1 & 3 & 3 & 3 & & & 2 & & & & & & & & 4 \\
\hline & & \multicolumn{2}{|l|}{Judder} & Lock-up & & & & 2 & 1 & 1 & 4 & & & 3 & & & & & & & & \\
\hline & \multicolumn{3}{|l|}{\multirow{4}{*}{Strange noise}} & In "R" position & & 2 & & & 1 & & & & & & & & & & & & & \\
\hline & & & & In "N" position & & 2 & & & 1 & & & & & & & & & & & & & \\
\hline & & & & In "D" position & & 2 & & & 1 & & & & & & & & & & & & & \\
\hline & & & & Engine at idle & & 2 & & & 1 & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Symptom}

Function trouble shifting
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Diagnostic item} \\
\hline & & & & & & & & & & & & & & & & \\
\hline & 3 & 3 & 3 & 4 & & & 1 & & & & & & & 1 & & 2 \\
\hline & 3 & 3 & 3 & 4 & & & 1 & & & & & & 1 & & & 2 \\
\hline & 3 & 3 & 3 & 4 & & & 1 & & 1 & & 1 & & & & 1 & 2 \\
\hline & 3 & 3 & 3 & 4 & & & 1 & & & & & 1 & & 1 & & 2 \\
\hline & 3 & 3 & 3 & 4 & & & 1 & & & & & & 1 & 1 & & 2 \\
\hline & 3 & 3 & 3 & 4 & & & 1 & & & 1 & & & & 1 & & 2 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & & & & & & & & 3 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & & 2 & & & & 2 & & 3 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & & & & & 2 & 2 & & 3 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & & & & 2 & & 2 & & 3 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & 2 & & 2 & & & & 2 & 3 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & & & & & 2 & & & 3 \\
\hline & 4 & 4 & 4 & 5 & 3 & 1 & 2 & & & & & & & 2 & & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{Sym}} & \multicolumn{17}{|c|}{Diagnostic item} \\
\hline & & & & & ıosuəs pəəds \(\ddagger n d \not n \mathrm{no} \overline{\text { LGZ-WI }}\) & & ıosuəs pəəds ındu| \(\overline{\text { Ģz-WI }}\) & TM-253 A/T fluid temperature sensor & पग!!Ms əదиe» uo!ss!msue»」 \(\overline{\text { ZGZ-W1 }}\) & цગฺ!Ms әрош ןenuew \(\overline{06 Z-W \perp}\) & & & әлјел p!!оиәоs әуелq моך \(\overline{\angle 6 Z-W \perp}\) & & & & & & & \\
\hline \multirow{12}{*}{Function trouble} & \multirow{12}{*}{Poor power trans-mission} & \multirow{12}{*}{Slip} & With selector lever in "D" position, acceleration is extremely poor. & 5 & 3 & 3 & 3 & 4 & & & 1 & & 1 & & & & & & 1 & 2 \\
\hline & & & With selector lever in "R" position, acceleration is extremely poor. & 5 & 3 & 3 & 3 & 4 & & & 1 & & & & & & 1 & & 1 & 2 \\
\hline & & & While starting off by accelerating in 1GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & 1 & & & & & & 1 & 2 \\
\hline & & & While accelerating in 2GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & 1 & & & & & 1 & 1 & 2 \\
\hline & & & While accelerating in 3GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & 1 & & & & 1 & 1 & & 2 \\
\hline & & & While accelerating in 4GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & & & 1 & & 1 & 1 & & 2 \\
\hline & & & While accelerating in 5GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & & & 1 & 1 & 1 & & 1 & 2 \\
\hline & & & While accelerating in 6GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & & & 1 & 1 & & 1 & 1 & 2 \\
\hline & & & While accelerating in 7GR, engine races. & & 3 & 3 & 3 & 4 & & & 1 & & & 1 & 1 & 1 & & & 1 & 2 \\
\hline & & & Lock-up & & 3 & 3 & 3 & 4 & & & 1 & 1 & & & & & & & & 2 \\
\hline & & & No creep at all. & & & & & & & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline & & & Extremely large creep. & & & 1 & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{mptom}} & \multicolumn{17}{|c|}{Diagnostic item} \\
\hline & & & & & & & & & & & & & & TM-296 High and low reverse clutch solenoid valve & әлןе^ p!ouə & & әлјел p!ouәןоs әyелq 9t६z \(\overline{86 z-W \perp}\) & & \\
\hline \multirow{13}{*}{Function trouble} & \multirow{7}{*}{Power transmission cannot be performed} & Vehicle cannot run in all position. & 3 & & & & & 2 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline & & Driving is not possible in "D" position. & 3 & & & & & 2 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline & & Driving is not possible in "R" position. & 3 & & & & & 2 & & 1 & & & & & & 1 & & 1 & \\
\hline & & Engine stall & & 3 & 4 & 4 & 5 & & 2 & & 1 & & & & & & & & \\
\hline & & Engine stalls when selector lever shifted " N " \(\rightarrow\) " D " or " R ". & & 3 & 4 & 4 & & 2 & & & 1 & & & & & & & & \\
\hline & & Engine does not start in " N " or " P " position. & 3 & & & & 1 & 2 & & & & & & & & & & & 1 \\
\hline & & Engine starts in position other than " N " or "P". & 3 & & & & & 2 & & & & & & & & & & & 1 \\
\hline & \multirow{6}{*}{Poor operation} & Vehicle does not enter parking condition. & 1 & & & & & 2 & & & & & & & & & & & \\
\hline & & Parking condition is not cancelled. & 1 & & & & & 2 & & & & & & & & & & & \\
\hline & & Vehicle runs with \(\mathrm{A} / \mathrm{T}\) in "P" position. & 1 & & & & & 2 & & & & & & & & & & & \\
\hline & & Vehicle moves forward with the " \(R\) " position. & 1 & & & & & 2 & & & & & & & & & & & \\
\hline & & Vehicle runs with \(\mathrm{A} / \mathrm{T}\) in "P" position. & 1 & & & & & 2 & & & & & & & & & & & \\
\hline & & Vehicle moves backward with the "D" position. & 1 & & & & & 2 & & & & & & & & & & & \\
\hline
\end{tabular}

\title{
Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT
} PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the "SRS AIR BAG" and "SEAT BELT" of this Service Manual.
WARNING:
- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the "SRS AIR BAG".
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.
PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS
WARNING:
- When working near the Air Bag Diagnosis Sensor Unit or other Air Bag System sensors with the ignition ON or engine running, DO NOT use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
- When using air or electric power tools or hammers, always switch the ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

\section*{General Precautions}
- Turn ignition switch OFF and disconnect the battery cable from the negative terminal before connecting or disconnecting the A/T assembly harness connector. Because battery voltage is applied to TCM even if ignition switch is turned OFF.

- Perform "DTC (Diagnostic Trouble Code) CONFIRMATION PROCEDURE" after performing each TROUBLE DIAGNOSIS. If the repair is completed DTC should not be displayed in the "DTC CONFIRMATION PROCEDURE".
- Always use the specified brand of ATF. Refer to MA-12, "Fluids and Lubricants".
- Use lint-free paper not cloth rags during work.
- Dispose of the waste oil using the methods prescribed by law, ordinance, etc. after replacing the ATF.
- Before proceeding with disassembly, thoroughly clean the outside of the transmission. It is important to prevent the internal parts from becoming contaminated by dirt or other foreign matter.

- Disassembly should be done in a clean work area.
- Use lint-free paper or towels for wiping parts clean. Common shop rags can leave fibers that could interfere with the operation of the transmission.
- Place disassembled parts in order for easier and proper assembly.
- All parts should be carefully cleaned with a general purpose, non-flammable solvent before inspection or reassembly.
- Gaskets, seals and O-rings should be replaced any time the A/T is disassembled.
- It is very important to perform functional tests whenever they are indicated.
- The valve body contains precision parts and requires extreme care when parts are removed and serviced. Place disassembled valve body parts in order for easier and proper assembly. Care will also prevent springs and small parts from becoming scattered or lost.
- Properly installed valves, sleeves, plugs, etc. will slide along bores in valve body under their own weight.
- Before assembly, apply a coat of recommended ATF to all parts. Apply petroleum jelly to protect O-rings and seals, or hold bearings and washers in place during assembly. Never use grease.
- Extreme care should be taken to avoid damage to O-rings, seals and gaskets when assembling.
- Clean or replace ATF cooler if excessive foreign material is found in oil pan or clogging strainer. Refer to TM340, "Service Notice or Precaution".
- When the A/T drain plug is removed, only some of the ATF is drained. Old ATF will remain in torque converter and ATF cooling system.
Always follow the procedures under "Changing" when changing ATF. Refer to TM-342, "Changing".
- Occasionally, the parking gear may be locked with the torque insufficiently released, when stopping the vehicle by shifting the selector lever from " \(D\) " or " \(R\) " to "P" position with the brake pedal depressed.
In this case, the shock with a thud caused by the abrupt release of torque may occur when shifting the selector lever from "P" position to other positions.
However, this symptom is not a malfunction resulting the damage of parts.

\section*{Service Notice or Precaution}

\section*{ATF COOLER SERVICE}

If ATF contains frictional material (clutches, bands, etc.), or if an \(A / T\) is repaired, overhauled, or replaced, inspect and clean the A/T fluid cooler mounted in the radiator or replace the radiator. Flush cooler lines using cleaning solvent and compressed air after repair. For A/T fluid cooler cleaning procedure, refer to TM-163. "Cleaning". For radiator replacement, refer to CO-39, "Exploded View".
Tool number
Tool name
1. 315268E000*
O-ring
310811EA5A*
Charging pipe

\footnotetext{
*: Always check with the Parts Department for the latest parts information.
}

\section*{PERIODIC MAINTENANCE}

\section*{A/T FLUID}

\section*{Changing}
```

ATF : Refer to TM-365, "General Specification".
Fluid capacity : Refer to TM-365, "General Specification".

```

CAUTION:
- Use only Genuine NISSAN Matic S ATF. Never mix with other ATF.
- Using ATF other than Genuine NISSAN Matic S ATF will cause deterioration in driveability and A/T durability, and may damage the A/T, which is not covered by the INFINITI new vehicle limited warranty.
- When filling ATF, be careful not to scatter heat generating parts such as exhaust.
1. Step 1
a. Install the O-ring (315268E000) (A) to the charging pipe (310811EA5A) (B).

2. Step 2
a. Use CONSULT-III to check that the ATF temperature is \(40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\) or less.
b. Lift up the vehicle.
c. Remove the drain plug from the oil pan, and then drain the ATF.
d. When the ATF starts to drip, temporarily tighten the drain plug to the oil pan.

NOTE:
Never replace drain plug and drain plug gasket with new ones yet.
e. Remove overflow plug from oil pan.
f. Install the charging pipe (A) to the overflow plug hole.

CAUTION:
Tighten the charging pipe by hand.
g. Install the bucket pump hose (B) to the charging pipe.

CAUTION:
Insert the bucket pump hose all the way to the end of the charging pipe.
h. Fill approximately 3 liters (\(3-1 / 8\) US qt, \(2-5 / 8 \mathrm{Imp} q \mathrm{t}\)) of the ATF.
i. Remove the bucket pump hose to remove the charging pipe, and then temporarily tighten the overflow plug to the oil pan. CAUTION:

Quickly perform the procedure to avoid ATF leakage from the oil pan.
j. Lift down the vehicle.
k. Start the engine and wait for approximately 3 minutes.
l. Stop the engine.
3. Step 3
a. Repeat "Step 2".
4. Final Step

\section*{A/T FLUID}
< PERIODIC MAINTENANCE >
[7AT: RE7R01B (VK50VE)]
a. Use CONSULT-III to check that the ATF temperature is \(40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\) or less.
b. Lift up the vehicle.
c. Remove the drain plug from the oil pan, and then drain the ATF.
d. When the ATF starts to drip, tighten the drain plug to the oil pan to the specified torque. Refer to TM-355. "Exploded View".
CAUTION:
Never reuse drain plug and drain plug gasket.
e. Remove overflow plug from oil pan.
f. Install the charging pipe (A) to the overflow plug hole. CAUTION:
Tighten the charging pipe by hand.
g. Install the bucket pump hose (B) to the charging pipe. CAUTION:
Insert the bucket pump hose all the way to the end of the charging pipe.
h. Fill approximately 3 liters (\(3-1 / 8 \mathrm{US}\) qt, \(2-5 / 8 \mathrm{Imp} q \mathrm{t}\)) of the ATF.
i. Remove the bucket pump hose to remove the charging pipe, and then temporarily tighten the overflow plug to the oil pan.

\section*{CAUTION:}

1. Install the O-ring (315268E000) (A) to the charging pipe (310811EA5A) (B).
2. Start the engine.
3. Make the ATF temperature approximately \(40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\).

NOTE:
The ATF level is greatly affected by the temperature. Always check the ATF temperature on "ATF TEMP 1" of "Data Monitor" using CONSULT-III.
4. Park vehicle on level surface and set parking brake.
5. Shift the selector lever through each gear position. Leave selector lever in "P" position.

6. Lift up the vehicle.
7. Check the ATF leakage from transmission.
8. Remove overflow plug from oil pan.
9. Install the charging pipe (A) to the overflow plug hole. CAUTION:
Tighten the charging pipe by hand.
10. Install the bucket pump hose (B) to the charging pipe. CAUTION:
Insert the bucket pump hose all the way to the end of the charging pipe.
11. Fill approximately 0.5 liters (\(1 / 2 \mathrm{US} q \mathrm{q}, 1 / 2 \mathrm{Imp} q \mathrm{t}\)) of the ATF.
12. Check that the ATF leaks when removing the charging pipe and the bucket pump hose. If the ATF does not leak, refill the ATF.

13. When the ATF starts to drip, tighten the overflow plug to the oil pan to the specified torque. Refer to TM-355, "Exploded View". CAUTION: Never reuse overflow plug.

\section*{A/T FLUID COOLER}

\section*{Cleaning}

Whenever an \(A / T\) is replaced, the \(A / T\) fluid cooler mounted in the radiator must be inspected and cleaned. Metal debris and friction material, if present, can become trapped in the \(A / T\) fluid cooler. This debris can contaminate the newly serviced A/T or, in severe cases, can block or restrict the flow of ATF. In either case, malfunction of the newly serviced A/T may result.
Debris, if present, may build up as ATF enters the cooler inlet. It will be necessary to back flush the cooler through the cooler outlet in order to flush out any built up debris.

\section*{CLEANING PROCEDURE}
1. Position an oil pan under the \(\mathrm{A} / \mathrm{T}\) inlet and outlet cooler hoses.
2. Identify the inlet and outlet fluid cooler hoses.
3. Disconnect the A/T fluid cooler inlet and outlet rubber hoses from the steel cooler tubes or by-pass valve.
NOTE:
Replace the cooler hoses if rubber material from the hose remains on the tube fitting.
4. Allow any ATF that remains in the cooler hoses to drain into the oil pan.

5. Insert the extension adapter hose of a can of Transmission Cooler Cleaner (Nissan P/N 999MP-AM006) into the cooler outlet hose.
CAUTION:
- Wear safety glasses and rubber gloves when spraying the Transmission Cooler Cleaner.
- Spray Transmission Cooler Cleaner only with adequate ventilation.
- Avoid contact with eyes and skin.
- Never breath vapors or spray mist.
6. Hold the hose and can as high as possible and spray Transmission Cooler Cleaner in a continuous stream into the cooler outlet hose until ATF flows out of the cooler inlet hose for 5 seconds.
7. Insert the tip of an air gun into the end of the cooler outlet hose.
8. Wrap a shop rag around the air gun tip and of the cooler outlet hose.
9. Blow compressed air regulated to 5 to \(9 \mathrm{~kg} / \mathrm{cm}^{2}\) (71 to 128 psi) through the cooler outlet hose for 10 seconds to force out any remaining ATF.
10. Repeat steps 5 through 9 three additional times.
11. Position an oil pan under the banjo bolts that connect the \(A / T\) fluid cooler steel lines to the A/T.
12. Remove the banjo bolts.

13. Flush each steel line from the cooler side back toward the \(A / T\) by spraying Transmission Cooler Cleaner in a continuous stream for 5 seconds.
14. Blow compressed air regulated to 5 to \(9 \mathrm{~kg} / \mathrm{cm}^{2}\) (71 to 128 psi) through each steel line from the cooler side back toward the A/T for 10 seconds to force out any remaining ATF.
15. Ensure all debris is removed from the steel cooler lines.
16. Ensure all debris is removed from the banjo bolts and fittings.
17. Perform "DIAGNOSIS PROCEDURE".

\section*{A/T FLUID COOLER}
< PERIODIC MAINTENANCE >
[7AT: RE7R01B (VK50VE)]

\section*{DIAGNOSIS PROCEDURE}

\section*{NOTE:}

Insufficient cleaning of the cooler inlet hose exterior may lead to inaccurate debris identification.
1. Position an oil pan under the \(\mathrm{A} / \mathrm{T}\) inlet and outlet cooler hoses.
2. Clean the exterior and tip of the cooler inlet hose.
3. Insert the extension adapter hose of a can of Transmission Cooler Cleaner (Nissan P/N 999MP-AM006) into the cooler outlet hose.
CAUTION:
- Wear safety glasses and rubber gloves when spraying the Transmission Cooler Cleaner.
- Spray Transmission Cooler Cleaner only with adequate ventilation.
- Avoid contact with eyes and skin.
- Never breath vapors or spray mist.
4. Hold the hose and can as high as possible and spray Transmission Cooler Cleaner in a continuous stream into the cooler outlet hose until ATF flows out of the cooler inlet hose for 5 seconds.
5. Tie a common white, basket-type coffee filter to the end of the cooler inlet hose.

6. Insert the tip of an air gun into the end of the cooler outlet hose.
7. Wrap a shop rag around the air gun tip and end of cooler outlet hose.
8. Blow compressed air regulated to 5 to \(9 \mathrm{~kg} / \mathrm{cm}^{2}\) (71 to 128 psi) through the cooler outlet hose to force any remaining ATF into the coffee filter.
9. Remove the coffee filter from the end of the cooler inlet hose.
10. Perform "INSPECTION PROCEDURE".

\section*{INSPECTION PROCEDURE}
1. Inspect the coffee filter for debris.
a. If small metal debris less than \(1 \mathrm{~mm}(0.040 \mathrm{in})\) in size or metal powder is found in the coffee filter, this is normal. If normal debris is found, the A/T fluid cooler/radiator can be re-used and the procedure is ended.

\title{
A/T FLUID COOLER
}
b. If one or more pieces of debris are found that are over 1 mm (0.040 in) in size and/or peeled clutch facing material is found in the coffee filter, the A/T fluid cooler is not serviceable. The A/T fluid cooler/radiator must be replaced and the inspection procedure is ended. Refer to CO-39, "Exploded View".

Inspection

After performing all procedures, ensure that all remaining oil is cleaned from all components.

\section*{STALL TEST}

\section*{Inspection and Judgment}

\section*{INSPECTION}
1. Inspect the amount of engine oil. Replenish the engine oil if necessary.
2. Drive for about 10 minutes to warm up the vehicle so that the \(\mathrm{A} / \mathrm{T}\) fluid temperature is 50 to \(80^{\circ} \mathrm{C}(122\) to \(176{ }^{\circ}\) F). Inspect the amount of ATF. Replenish if necessary.
3. Securely engage the parking brake so that the tires do not turn.
4. Start the engine, apply foot brake, and place selector lever in "D" position.
5. Gradually press down the accelerator pedal while holding down the foot brake.
6. Quickly read off the stall speed, and then quickly release the accelerator pedal. CAUTION:
Never hold down the accelerator pedal for more than 5 seconds during this test.

\section*{Stall speed : Refer to TM-366, "Stall Speed".}
7. Shift the selector lever to "N" position.
8. Cool down the ATF.

CAUTION:
Run the engine at idle for at least 1 minute.
9. Repeat steps 5 through 8 with selector lever in " \(R\) " position.

\section*{JUDGMENT OF STALL TEST}
\begin{tabular}{l|c|c|l}
\hline \multirow{3}{*}{ Stall speed } & \multicolumn{2}{|c|}{ Selector lever position } & \\
\cline { 2 - 3 } & "D" and "M" & "R" & \\
\hline \multirow{3}{*}{H} & O & \begin{tabular}{l}
• Low brake \\
• 1st one-way clutch \\
• 2nd one-way clutch
\end{tabular} \\
\cline { 2 - 4 } & O & H & \begin{tabular}{l}
• Reverse brake \\
- 1st one-way clutch \\
- 2nd one-way clutch
\end{tabular} \\
\cline { 2 - 4 } & L & L & - Engine and torque converter one-way clutch \\
\cline { 2 - 4 } & H & H & - Line pressure low \\
\hline
\end{tabular}

O: Stall speed within standard value position
H : Stall speed higher than standard value
L: Stall speed lower than standard value
Stall test standard value position
\begin{tabular}{c|l|l}
\hline Does not shift-up "D" or "M" position \(1 \rightarrow 2\) & Slipping in 2GR, 3GR 4GR or 6GR & 2346 brake slippage \\
\hline Does not shift-up "D" or "M" position \(2 \rightarrow 3\) & Slipping in 3GR, 4GR or 5GR & Direct clutch slippage \\
\hline Does not shift-up "D" or "M" position \(3 \rightarrow 4\) & Slipping in 4GR, 5GR, 6GR or 7GR & High and low reverse clutch slippage \\
\hline Does not shift-up "D" or "M" position \(4 \rightarrow 5\) & Slipping in 5GR, 6GR or 7GR & Input clutch slippage \\
\hline Does not shift-up "D" or "M" position \(5 \rightarrow 6\) & Slipping in 2GR, 3GR, 4GR or 6GR & 2346 brake slippage \\
\hline Does not shift-up "D" or "M" position \(6 \rightarrow 7\) & Slipping in 7GR & Front brake slippage \\
\hline
\end{tabular}

\section*{Inspection and Adjustment}

\section*{INSPECTION}
1. Place selector lever in "P" position, and turn ignition switch ON (engine stop).
2. Check that selector lever can be shifted to other than " \(P\) " position when brake pedal is depressed. Also check that selector lever can be shifted from "P" position only when brake pedal is depressed.
3. Shift the selector lever and check for excessive effort, sticking, noise or rattle.
4. Confirm that the selector lever stops at each position by feeling the engagement when it is moved through all the positions. Check whether or not the actual position the selector lever matches the position shown by the shift position indicator and the \(\mathrm{A} / \mathrm{T}\) body.
5. The method of operating the lever to individual positions correctly is shown in the figure.
6. When selector button is pressed in "P", " \(R\) ", or " \(N\) " position without applying forward/backward force to selector lever, check button operation for sticking.
7. Confirm that the back-up lamps illuminate only when lever is placed in the "R" position. Confirm that the back-up lamps do not illuminate when selector lever is pushed against " \(R\) " position in the " P " or " N " position.
8. Confirm that the engine can only be started with the selector lever in the "P" and " N " positions. (With selector lever in the " P "
 position, engine can be started even when selector lever is moved forward and backward.)
9. Make sure that \(\mathrm{A} / \mathrm{T}\) is locked completely in " P " position.
10. DS mode must be indicated on the combination meter when the selector lever is shifted to the manual shift gate. When the selector lever is shifted to the " + " or " - " side in the DS mode, manual mode should be indicated on the combination meter.
In addition, a set shift position must be changed when the selector lever is shifted to the " + " or " - " side in the manual mode. (Only while driving.)

\section*{ADJUSTMENT}
1. Loosen nut (\(\boldsymbol{\square}\)).
2. Place manual lever and selector lever in "P" position.
3. While pressing lower lever (A) toward rear of vehicle (in "P" position direction), tighten nut to specified torque. Refer to TM-353. "Exploded View".
CAUTION:
Be careful not to touch the control rod while pressing lower lever of A/T shift selector assembly.
NOTE:
Press lower lever of \(A / T\) shift selector assembly with a force of approximately \(1 \mathrm{~kg}(9.8 \mathrm{~N})\).

\section*{REMOVAL AND INSTALLATION A/T SHIFT SELECTOR}

\section*{Exploded View}

1. Selector lever knob
4. Selector lever position indicator
7. Control rod
10. Dust cover plate
13. Collar
16. Insulator
19. Adapter
2. Lock pin
5. Harness connector
8. Dust cover
11. Snap pin
14. Clip
17. Shift lock unit
- Apply multi-purpose grease.

Refer to Gl-4, "Components" for symbols not described on the above.

\section*{Removal and Installation}
3. Indicator plate
6. Insert finisher
9. Bracket
12. Washer
15. Pivot pin
18. \(\mathrm{A} / \mathrm{T}\) shift selector assembly

REMOVAL
1. Shift the selector lever to "P" position.
2. Remove control rod from \(A / T\) shift selector.
3. Shift the selector lever to " \(N\) " position.
4. Remove knob cover (A) below selector lever downward.
5. Pull lock pin (1) out of selector lever knob (2).
6. Remove selector lever knob.
7. Remove center console assembly. Refer to IP-22, "Exploded View".

\section*{CAUTION:}

When disconnecting selector lever position indicator connector from shift position switch, never twist or apply an excessive load to the connector.
8. Remove the rear ventilator duct 1. Refer to VTL-11, "Exploded View".

9. Disconnect \(A / T\) shift selector connector.
10. Remove harness clips from \(A / T\) shift selector assembly.
11. Shift the selector lever to " \(P\) " position.
12. Remove \(A / T\) shift selector assembly mounting bolts.
13. Slightly lift the A/T shift selector assembly (1) and slide it rightward. Then pull it out in the diagonally right direction.
14. Remove adapter from \(A / T\) shift selector assembly.
15. Remove dust cover and dust cover plate from A/T shift selector assembly.
16. Remove dust cover from dust cover plate.
17. Remove shift lock unit from \(A / T\) shift selector assembly.
18. Remove brackets from vehicle floor panel.
19. Remove selector lever position indicator from console finisher assembly:

a. Remove indicator assembly from console finisher assembly. Refer to IP-22, "Exploded View".
b. Remove insert finisher from indicator assembly.
c. Remove selector lever position indicator.

INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:
Apply multi-purpose grease on the pin surface (that slides after installing a collar) of the pivot pin.
- Refer to the followings when installing selector lever knob to \(A / T\) shift selector assembly.
1. Insert lock pin to selector lever knob.
2. Install selector lever knob over selector lever until a click is felt.

\section*{A/T SHIFT SELECTOR}
< REMOVAL AND INSTALLATION >
CAUTION:
- Install it straight, and never tap or apply any shock to install it.
- Never push selector button.
- When installing control rod to A/T shift selector assembly, refer to "ADJUSTMENT". Refer to TM-349, "Inspection and Adjustment".

Inspection and Adjustment
INSPECTION AFTER INSTALLATION
Check A/T positions after adjusting A/T positions. Refer to TM-349, "Inspection and Adjustment".
ADJUSTMENT AFTER INSTALLATION
Adjust A/T positions. Refer to TM-349, "Inspection and Adjustment".

\section*{Exploded View}

B

Removal and Installation

\section*{REMOVAL}
1. Shift the selector lever to "P" position.
2. Disconnect A/T shift selector and control rod. Refer to TM-350, "Exploded View".
3. Remove manual lever from \(A / T\) assembly.
4. Remove control rod from manual lever.

\section*{INSTALLATION}

Note the following, and install in the reverse order of removal.
CAUTION:
Apply multi-purpose grease on the pin surface (that slides after installing collar) of the tip of the control rod.
- When installing control rod to A/T shift selector assembly, refer to "ADJUSTMENT". Refer to TM-349, "Inspection and Adjustment".
Inspection
INSPECTION AFTER INSTALLATION
Check A/T positions after adjusting A/T positions. Refer to TM-349, "Inspection and Adjustment".
ADJUSTMENT AFTER INSTALLATION
Adjust A/T positions. Refer to TM-349, "Inspection and Adjustment".

\section*{Exploded View}

1. Steering column assembly
2. Paddle shifter (shift-down)
3. Paddle shifter (shift-up)

Refer to GI-4, "Components" for symbols in the figure.

\section*{Removal and Installation}

\section*{REMOVAL}
1. Remove steering column cover. Refer to IP-11, "Exploded View".
2. Disconnect paddle shifter connectors from each paddle shifter.
3. Remove paddle shifter mounting bolts and nuts.
4. Remove each paddle shifter from steering column assembly.

INSTALLATION
Install in the reverse order of removal.

\section*{Exploded View}

1. A/T
2. Oil pan gasket
4. Clip
5. Oil pan mounting bolt
8. Drain plug gasket
7. Drain plug
3. Oil pan
6. Overflow plug
9. Magnet

Refer to Gl-4, "Components" for symbols in the figure.

\section*{Removal and Installation}

\section*{REMOVAL}
1. Drain ATF through drain plug.
2. Disconnect heated oxygen sensor 2 connectors \((A)\).
\(\checkmark\) : Vehicle front
3. Remove heated oxygen sensor 2 harness (B) from clips (1).
4. Remove bracket (2) from \(A / T\) assembly.

5. Remove clips (1).
: Vehicle front
6. Remove oil pan (2) and oil pan gasket.
7. Remove magnets from oil pan.

INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:
- Clean foreign materials (gear wear particles) that adhere on the inside of the oil pan and on the magnet, and then assembly.
- Completely remove all moisture, oil and old gasket, etc. from oil pan gasket mounting surface of transmission case and oil pan.
- Never reuse oil pan gasket and oil pan mounting bolts.
- Install oil pan gasket in the direction to align hole position.
- Never reuse drain plug and drain plug gasket. In addition, install new drain plug and drain plug gasket after adjustment of A/T fluid filling.
- Tighten the oil pan mounting bolts to the specified torque in the numerical order as shown in the figure after temporarily tightening them.

> : Vehicle front

\section*{Inspection and Adjustment}

INFOID:0000000005250358

\section*{INSPECTION AFTER REMOVAL}

Check foreign materials in oil pan to help determine causes of malfunction. If the ATF is very dark, smells burned, or contains foreign particles, the frictional material (clutches, band) may need replacement. A tacky film that will not wipe clean indicates varnish build up. Varnish can cause valves, servo, and clutches to stick and can inhibit pump pressure.
- If frictional material is detected, perform A/T fluid cooler cleaning. Refer to TM-345, "Cleaning".

INSPECTION AFTER INSTALLATION Check A/T fluid leakage.
ADJUSTMENT AFTER INSTALLATION
Adjust A/T fluid level. Refer to TM-343, "Adjustment".

\section*{Exploded View}

\section*{Removal and Installation}

\section*{REMOVAL}
1. Remove front propeller shaft. Refer to DLN-111, "VK50VE : Exploded View".
2. Remove exhaust mounting bracket and three way catalyst (right bank). Refer to EX-10, "Exploded View".
3. Remove air breather hose.
4. Remove rear propeller shaft. Refer to DLN-134, "Exploded View".
5. Remove control rod from A/T shift selector. Refer to TM-350, "Exploded View".
6. Support A/T assembly with a transmission jack.
7. Insert a wooden block (A) between oil pan (upper) (1) of engine and front suspension member (2).
\[
\begin{array}{ll}
\mathrm{W} & : 150 \mathrm{~mm}(5.91 \mathrm{in}) \\
\mathrm{D} & : 30 \mathrm{~mm}(1.18 \mathrm{in}) \\
\mathrm{H} & : 20 \mathrm{~mm}(0.79 \mathrm{in})
\end{array}
\]

\section*{CAUTION:}
- Always insert a wooden block between oil pan (upper) of engine and front suspension member when removing air breather vent. (Because VVEL control shaft position sensor may be damaged by the interference between VVEL control shaft position sensor and dash panel if the operation is performed without the wooden block inserted.)
- After inserting wooden block, check it does not fall out easily.
8. Remove rear engine mounting member with a power tool. Refer to EM-196, "Exploded View".
9. Remove bolt fixing A/T assembly to engine assembly with power tool.
10. Remove air breather vent.

INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:
- When installing air breather hose, be careful not to be crushed or blocked by folding or bending the hose.
- When inserting air breather hose to the air breather vent (for \(A / T\)) (1), be sure to insert it fully until its end reaches the spool (A) portion.

\section*{2 : Air breather vent (for transfer)}
- Install air breather hose to air breather vent (for \(A / T\)) so that the paint mark is facing upward.
- Ensure clips are securely installed to brackets when installing air breather hose to brackets.

\section*{Exploded View}

\section*{Removal and Installation}

\section*{REMOVAL}
1. Shift the selector lever to " \(N\) " position, and release the parking brake.
2. Remove air duct (inlet). Refer to EM-177, "Exploded View".
3. Remove engine under cover with a power tool. Refer to EXT-31, "Exploded View".
4. Remove \(A / T\) fluid cooler hose \(A\) and \(A / T\) fluid cooler hose \(B\).
5. Disconnect heated oxygen sensor 2 connectors (A).
\(\checkmark\) : Vehicle front
6. Remove heated oxygen sensor 2 harness (\(B\)) from clips (1).
7. Remove harness bracket (2) from A/T assembly. Refer to TM362, "Exploded View".
8. Remove front propeller shaft. Refer to DLN-111, "VK50VE : Exploded View".
9. Remove front drive shaft (right side). Refer to FAX-26. "Exploded View".

10. Remove \(A / T\) fluid cooler tubes from \(A / T\) assembly and engine assembly.
11. Plug up opening such as the \(A / T\) fluid cooler tube hole.
12. Remove clips and bracket.
13. Remove A/T fluid cooler tubes from the vehicle.

CAUTION:
Be careful not to bend \(\mathbf{A} / \mathbf{T}\) fluid cooler tubes.
INSTALLATION
Note the following, and install in the reverse order of removal.
CAUTION:
Never reuse copper washer.
- Refer to the following when installing \(A / T\) fluid cooler hoses.
\begin{tabular}{c|l|l|c}
\hline Hose name & \multicolumn{1}{|c|}{ Hose end } & \multicolumn{1}{|c}{ Paint mark } & Position of hose clamp \(^{*}\) \\
\hline \multirow{2}{*}{ A/T fluid cooler hose A } & Radiator assembly side & Facing backward & A \\
\cline { 2 - 4 } & A/T fluid cooler tube side & Facing downward & B \\
\hline \multirow{2}{*}{ A/T fluid cooler hose B } & Radiator assembly side & Facing downward & C \\
\cline { 2 - 4 } & A/T fluid cooler tube side & Facing downward & B \\
\hline
\end{tabular}
*: Refer to the illustrations for the specific position each hose clamp tab.
- The illustrations indicate the view from the hose ends.
\[
\begin{array}{ll}
\longmapsto D & : \text { Vehicle front } \\
\longmapsto E & : \text { Vehicle upper }
\end{array}
\]
- When installing hose clamps center line of each hose clamp tab should be positioned as shown in the figure.

- Insert A/T fluid cooler hoses according to dimension "L" described below.
\begin{tabular}{c|l|c|l}
\hline (1) & \multicolumn{1}{|c|}{ (2) } & Tube type & \multicolumn{1}{|c}{ Dimension "L" } \\
\hline \multirow{3}{*}{ A/T fluid cooler hose A } & Radiator assembly side & A & End reaches the radius curve end. \\
\cline { 2 - 4 } & A/T fluid cooler tube side & B & \begin{tabular}{l}
\(30 \mathrm{~mm} \mathrm{(1.18} \mathrm{in)} \mathrm{[End} \mathrm{reaches} \mathrm{the} \mathrm{2-stage} \mathrm{bulge}\) \\
(D).]
\end{tabular} \\
\hline \multirow{3}{*}{ A/T fluid cooler hose B } & Radiator assembly side & C & Insert the hose until the hose touches the radiator. \\
\cline { 2 - 4 } & A/T fluid cooler tube side & B & \begin{tabular}{l}
\(30 \mathrm{~mm} \mathrm{(1.18} \mathrm{in)} \mathrm{[End} \mathrm{reaches} \mathrm{the} \mathrm{2-stage} \mathrm{bulge}\) \\
(D).]
\end{tabular} \\
\hline
\end{tabular}

\title{
FLUID COOLER SYSTEM
}
< REMOVAL AND INSTALLATION >
- Set hose clamps (1) at the both ends of A/T fluid cooler hoses (2) with dimension " A " from the hose edge.

Dimension "A" : 5-9 mm (0.20-0.35 in)
- Hose clamp should not interfere with the bulge of fluid cooler tube.

Inspection and Adjustment
INSPECTION AFTER INSTALLATION
Check A/T fluid leakage.
ADJUSTMENT AFTER INSTALLATION
Adjust A/T fluid level. Refer to TM-343, "Adjustment".

\title{
UNIT REMOVAL AND INSTALLATION \\ TRANSMISSION ASSEMBLY
}

\section*{Exploded View}

1. Air breather vent
2. \(\mathrm{A} / \mathrm{T}\) assembly
3. Bracket
4. Bracket
5. Bracket
6. Bracket
A. Tightening must be done following the installation procedure. Refer to TM-362, "Removal and Installation".

Refer to GI-4, "Components" for symbols in the figure.
Removal and Installation
REMOVAL
CAUTION:
- When removing the \(A / T\) assembly from engine, first remove the crankshaft position sensor (POS) from the \(A / T\) assembly.
- Be careful not to damage sensor edge.
- Always insert a wooden block between oil pan (upper) of engine and front suspension member when removing A/T assembly from the engine. (Because VVEL control shaft position sensor may be damaged by the interference between VVEL control shaft position sensor and dash panel if the operation is performed without the wooden block inserted.)
1. Shift the selector lever to "P" position, and then release the parking brake.
2. Disconnect the battery cable from the negative terminal.
3. Remove control rod from A/T shift selector. Refer to TM-350, "Exploded View".
4. Remove propeller shaft assembly (rear). Refer to DLN-134, "Exploded View".
5. Remove propeller shaft assembly (front). Refer to DLN-111, "VK50VE : Exploded View".
6. Remove manual lever. Refer to TM-353, "Exploded View".
7. Remove crankshaft position sensor (POS) from A/T assembly. Refer to EM-188, "Exploded View". CAUTION:
- Never subject it to impact by dropping or hitting it.
- Never disassemble.
- Never allow metal filings, etc. to get on the sensor's front edge magnetic area.
- Never place in an area affected by magnetism.
8. Remove rear plate cover. Refer to EM-188, "Exploded View".
9. Turn crankshaft, and remove the four tightening bolts for drive plate and torque converter.

CAUTION:
When turning the crankshaft, turn it clockwise as viewed from the front of the engine.
10. Remove A/T fluid cooler tube from the A/T assembly and engine. Refer to TM-359, "Exploded View".
11. Plug up openings such as the \(A / T\) fluid cooler tube hole.
12. Support A/T assembly with a transmission jack.

CAUTION:
When setting the transmission jack, be careful not to allow it to collide against the drain plug.
13. Insert a wooden block (A) between oil pan (upper) (1) of engine and front suspension member (2).
\[
\begin{array}{ll}
\mathrm{W} & : 150 \mathrm{~mm}(5.91 \mathrm{in}) \\
\mathrm{D} & : 30 \mathrm{~mm}(1.18 \mathrm{in}) \\
\mathrm{H} & : 20 \mathrm{~mm}(0.79 \mathrm{in}) \\
& : \text { Vehicle front }
\end{array}
\]

\section*{CAUTION:}
- Always insert a wooden block between oil pan (upper) of engine and front suspension member when removing A/T assembly from the engine. (Because VVEL control shaft position sensor may be damaged by the interference between VVEL control shaft position sensor and dash panel if the operation is performed without the wooden block inserted.)
- After inserting wooden block, check it does not fall out easily.
14. Remove rear engine mounting member with power tool. Refer to EM-196, "Exploded View".
15. Disconnect A/T assembly connector and AWD solenoid connector.
16. Remove harness and brackets.

17. Remove bolts fixing \(A / T\) assembly to engine with power tool.
18. Remove air breather hose and air breather vent. Refer to TM-357, "Exploded View".
19. Remove \(A / T\) assembly with transfer assembly from vehicle. CAUTION:
- Secure torque converter to prevent it from dropping.
- Secure A/T assembly to a transmission jack.
20. Remove transfer assembly from A/T assembly with power tool. Refer to DLN-67, "VK50VE : Exploded View".

\section*{INSTALLATION}

Note the following, and install in the reverse order of removal.
CAUTION:

- When installing \(A / T\) assembly to the engine, be sure to check dimension " \(A\) " to ensure it is within the reference value limit.
\[
\begin{array}{ll}
\text { B } & \text { : Scale } \\
\text { C } & \text { : Straightedge }
\end{array}
\]

Dimension "A" : Refer to TM-366, "Torque Converter".

- When installing \(\mathrm{A} / \mathrm{T}\) assembly to the engine, attach the fixing bolts in accordance with the following standard.
\begin{tabular}{l|c|c|c}
\hline Bolt symbol & A & \(\mathrm{B}^{*}\) & C \\
\hline Insertion direction & \multicolumn{3}{|c|}{\(\mathrm{A} / \mathrm{T}\) assembly to engine } \\
\hline Number of bolts & 5 & 1 & 4 \\
\hline \begin{tabular}{l}
Bolt length (L) \\
mm (in)
\end{tabular} & \multicolumn{2}{|c|}{\(70(2.76)\)} & \(65(2.56)\) \\
\hline \begin{tabular}{l}
Tightening torque \\
\(\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{ft} \mathrm{ll})\)
\end{tabular} & \multicolumn{2}{|c}{\(113(12,83)\)} & \(74(7.5,55)\) \\
\hline
\end{tabular}

*: Tightening the bolt with air breather vent and spring washer.
- Align the positions of tightening bolts for drive plate with those of the torque converter, and temporarily tighten the bolts. Then, tighten the bolts with the specified torque.
CAUTION:
- When turning crankshaft, turn it clockwise as viewed from the front of the engine.
- When tightening the tightening bolts for the torque converter after fixing the crankshaft pulley bolts, be sure to confirm the tightening torque of the crankshaft pulley mounting bolts. Refer to EM-212, "Exploded View".
- Rotate crankshaft several turns and check to be sure that A/T rotates freely without binding after converter is installed to drive plate.

\section*{Inspection and Adjustment}

\section*{INSPECTION AFTER INSTALLATION}

Check A/T fluid leakage.
Check A/T position after adjusting A/T positions. Refer to TM-349, "Inspection and Adjustment".
ADJUSTMENT AFTER INSTALLATION
Adjust A/T fluid level. Refer to TM-343, "Adjustment".
Adjust A/T position. Refer to TM-349, "Inspection and Adjustment".

\title{
SERVICE DATA AND SPECIFICATIONS (SDS)
}

\section*{< SERVICE DATA AND SPECIFICATIONS (SDS) \\ SERVICE DATA AND SPECIFICATIONS (SDS) \\ SERVICE DATA AND SPECIFICATIONS (SDS)}
[7AT: RE7R01B (VK50VE)]

General Specification
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{l|}{ Transmission model code number } & 1XR4A \\
\hline \multicolumn{4}{l|}{ Stall torque ratio } & 1 st & \(1.93: 1\) \\
\hline \multirow{4}{*}{ Transmission gear ratio } & 2nd & 4.887 \\
\cline { 2 - 3 } & 3rd & 3.170 \\
\cline { 2 - 3 } & 4th & 2.027 \\
\cline { 2 - 3 } & 5th & 1.412 \\
\cline { 2 - 3 } & 6th & 1.000 \\
\cline { 2 - 3 } & 7th & 0.864 \\
\cline { 2 - 3 } & Reverse & 0.775 \\
\hline Recommended fluid & & 4.041 \\
\hline Fluid capacity & Genuine NISSAN Matic S ATF*1 \\
\hline
\end{tabular}

CAUTION:
- Use only Genuine NISSAN Matic S ATF. Never mix with other ATF.
- Using ATF other than Genuine NISSAN Matic S ATF will cause deterioration driveability and A/T durability, and may damage the A/T, which is not covered by the INFINITI new vehicle limited warranty.
*1: Refer to MA-12, "Fluids and Lubricants".
*2: The fluid capacity is the reference value.
Vehicle Speed at Which Gear Shifting Occurs
INFOID:0000000005250368

Unit: km/h (MPH)
\begin{tabular}{c|c|c}
\hline \multirow{2}{*}{ Gear position } & \multicolumn{2}{|c}{ Throttle position } \\
\cline { 2 - 3 } & Full throttle & Half throttle \\
\hline D1 \(\rightarrow\) D2 & \(50-54(32-33)\) & \(19-23(12-14)\) \\
\hline D2 \(\rightarrow\) D3 & \(79-87(50-54)\) & \(41-49(26-30)\) \\
\hline D3 \(\rightarrow\) D4 & \(126-136(79-84)\) & \(68-78(43-48)\) \\
\hline D4 \(\rightarrow\) D5 & \(181-191(113-118)\) & \(99-109(62-67)\) \\
\hline D5 \(\rightarrow\) D6 & \(235-245(147-152)\) & \(155-165(97-102)\) \\
\hline D6 \(\rightarrow\) D7 & \(250-260(156-161)\) & \(206-216(129-134)\) \\
\hline D7 \(\rightarrow\) D6 & \(240-250(150-155)\) & \(162-172(101-106)\) \\
\hline D6 \(\rightarrow\) D5 & \(219-229(137-142)\) & \(105-115(66-71)\) \\
\hline D5 \(\rightarrow\) D4 & \(165-175(103-108)\) & \(53-63(33-39)\) \\
\hline D4 \(\rightarrow\) D3 & \(110-120(69-74)\) & \(31-41(20-25)\) \\
\hline D3 \(\rightarrow\) D2 & \(40-48(25-29)\) & \(16-24(10-14)\) \\
\hline D2 \(\rightarrow\) D1 & \(16-20(10-12)\) & \(7-11(5-6)\) \\
\hline
\end{tabular}

\footnotetext{
- At half throttle, the accelerator opening is \(4 / 8\) of the full opening.
}
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{ Throttle position } & \multicolumn{2}{|c}{ Vehicle speed \(\mathrm{km} / \mathrm{h}(\mathrm{MPH})\)} \\
\cline { 2 - 3 } & Lock-up ON & Lock-up OFF \\
\hline Closed throttle & \(47-55(30-34)\) & \(44-52(28-32)\) \\
\hline Half throttle & \(60-68(38-42)\) & \(57-65(36-40)\) \\
\hline
\end{tabular}
- At closed throttle, the accelerator opening is less than \(1 / 8\) condition. (Closed throttle position signal OFF)
- At half throttle, the accelerator opening is \(4 / 8\) of the full opening.

\section*{Stall Speed}
\begin{tabular}{l|c}
\hline Stall speed & \(2,467-2,767 \mathrm{rpm}\) \\
\hline Torque Converter & \\
\hline InFOID:00000000005250373 \\
\hline Dimension between end of converter housing and torque converter & \(24.0 \mathrm{~mm}(0.94 \mathrm{in})\) \\
\hline
\end{tabular}```

[^0]: Torque Converter Clutch Control Valve Control

[^1]: "D6", "DS6" and "M6" Positions

[^2]: (ssㅇ) With GST
 Follow the procedure "With CONSULT-III".
 Is "P0730" detected?

    ```
    YES >> Go to TM-82, "Diagnosis Procedure".
    ```

 NO >> INSPECTION END

 ## Diagnosis Procedure

 ## 1.CHECK INTERMITTENT INCIDENT

 Refer to GI-36, "Intermittent Incident".
 Is the inspection result normal?
 YES >> Replace A/T assembly. Refer to TM-181, "2WD: Exploded View" (2WD), TM-184, "AWD :
 Exploded View" (AWD).

[^3]: Is the inspection result normal?
 YES >> INSPECTION END
 NO >> Replace stop lamp switch. Refer to BR-18, "Exploded View".

[^4]: Is the inspection result normal?
 YES >> GOTO 4.
 NO >> Repair or replace damaged parts.
 4. CHECK SHIFT POSITION SWITCH

[^5]: *: Always check with the Parts Department for the latest parts information.

[^6]: Torque Converter Clutch Control Valve Control

