VENTILATION, HEATER \& AIR CONDITIONER

SECTION
 HA HEATER \& AIR CONDITIONING SYSTEM

CONTENTS

PRECAUTION 3
PRECAUTIONS 3
Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TEN- SIONER" 3
Precautions for Removing Battery Terminal 3
Precaution for Procedure without Cowl Top Cover.4
Precautions For Refrigerant System Service 4
Service Equipment 7
PREPARATION 9
PREPARATION 9
Special Service Tool 9
Commercial Service Tool 12
Sealant or/and Lubricant 12
SYSTEM DESCRIPTION 13
COMPONENT PARTS 13
Component Parts Location 13
Component Description 13
SYSTEM 14
System Diagram 14
System Description 14
BASIC INSPECTION 15
DIAGNOSIS AND REPAIR WORKFLOW 15
Work Flow 15
REFRIGERANT 17
Description 17
Leak Test 17
Recycle Refrigerant 19
Charge Refrigerant 19
LUBRICANT 21
Description 21
Inspection 21
Perform Lubricant Return Operation 21
Lubricant Adjusting Procedure for Components Replacement Except Compressor 21
Lubricant Adjusting Procedure for Compressor Replacement 22
PERFORMANCE TEST 24
Inspection 24
SYMPTOM DIAGNOSIS 25
REFRIGERATION SYSTEM SYMPTOMS 25
Trouble Diagnosis For Unusual Pressure 25
Symptom Table 25
NOISE 27
Symptom Table 27
REMOVAL AND INSTALLATION 28
COMPRESSOR 28
Exploded View 28
COMPRESSOR 29
COMPRESSOR : Removal and Installation 29
MAGNET CLUTCH 30
MAGNET CLUTCH : Removal and Installation of Compressor Clutch 30
Inspection 31
COOLER PIPE AND HOSE 32
Exploded View 32
HIGH-PRESSURE FLEXIBLE HOSE 32
HIGH-PRESSURE FLEXIBLE HOSE : Removal and Installation 32
LOW-PRESSURE FLEXIBLE HOSE 33
LOW-PRESSURE FLEXIBLE HOSE : Removal and Installation 33
HIGH-PRESSURE PIPE 34
HIGH-PRESSURE PIPE : Removal and Installa- tion 35
CONDENSER 36
Exploded View 36
CONDENSER 36
CONDENSER : Removal and Installation 36
LIQUID TANK 37
LIQUID TANK : Removal and Installation 37
REFRIGERANT PRESSURE SENSOR 38
REFRIGERANT PRESSURE SENSOR : Remov-38
A/C UNIT ASSEMBLY 39
Exploded View (Automatic Air Conditioning) 39
Exploded View (Manual Air Conditioning) 41
A/C UNIT ASSEMBLY 43
A/C UNIT ASSEMBLY : Removal and Installation. 43
EVAPORATOR 45
EVAPORATOR : Removal and Installation 46
HEATER CORE 46
HEATER CORE : Removal and Installation 46
EXPANSION VALVE 46
EXPANSION VALVE : Removal and Installation 46
SERVICE DATA AND SPECIFICATIONS (SDS) 48
SERVICE DATA AND SPECIFICATIONS (SDS) 48
Compressor 48
Lubricant 48
Refrigerant 48
Engine Idling Speed 48
Belt Tension 48

PRECAUTION
 PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT

 PRE-TENSIONER"The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the "SRS AIR BAG" and "SEAT BELT" of this Service Manual.

WARNING:

Always observe the following items for preventing accidental activation.

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision that would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see "SRS AIR BAG".
- Never use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

Always observe the following items for preventing accidental activation.

- When working near the Air Bag Diagnosis Sensor Unit or other Air Bag System sensors with the ignition ON or engine running, never use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
- When using air or electric power tools or hammers, always switch the ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

Precautions for Removing Battery Terminal

- When removing the 12 V battery terminal, turn OFF the ignition switch and wait at least 30 seconds.
NOTE:
ECU may be active for several tens of seconds after the ignition switch is turned OFF. If the battery terminal is removed before ECU stops, then a DTC detection error or ECU data corruption may occur.
- For vehicles with the 2-batteries, be sure to connect the main battery and the sub battery before turning ON the ignition switch.
NOTE:
If the ignition switch is turned ON with any one of the terminals of main battery and sub battery disconnected, then DTC may be

SEF289H detected.

- After installing the 12 V battery, always check "Self Diagnosis Result" of all ECUs and erase DTC. NOTE:
The removal of 12 V battery may cause a DTC detection error.

PRECAUTIONS

< PRECAUTION >
Precaution for Procedure without Cowl Top Cover
When performing the procedure after removing cowl top cover, cover the lower end of windshield with urethane, etc to prevent damage to windshield.

Precautions For Refrigerant System Service
INFOID:0000000011461181

GENERAL REFRIGERANT PRECAUTION

WARNING:

- Never breathe A/C refrigerant and lubricant vapor or mist. Exposure may irritate eyes, nose and throat. Remove HFC-134a (R-134a) from the A/C system, using certified service equipment meeting requirements of SAE J-2210 [HFC-134a (R-134a) recycling equipment], or J-2209 [HFC-134a (R-134a) recovery equipment]. Ventilate work area before resuming service if accidental system discharge occurs. Additional health and safety information may be obtained from refrigerant and lubricant manufacturers.
- Never release refrigerant into the air. Use approved recovery/recycling recharging equipment to capture the refrigerant each time an air conditioning system is discharged.
- Wear always eye and hand protection (goggles and gloves) when working with any refrigerant or air conditioning system.
- Never store or heat refrigerant containers above $52^{\circ} \mathrm{C}\left(126^{\circ} \mathrm{F}\right)$.
- Never heat a refrigerant container with an open flame; Place the bottom of the container in a warm pail of water if container warming is required.
- Never intentionally drop, puncture, or incinerate refrigerant containers.
- Keep refrigerant away from open flames: poisonous gas is produced if refrigerant burns.
- Refrigerant displaces oxygen, therefore be certain to work in well ventilated areas to prevent suffocation.
- Never pressure test or leakage test HFC-134a (R-134a) service equipment and/or vehicle air conditioning systems with compressed air during repair. Some mixtures of air and HFC-134a (R-134a) have been shown to be combustible at elevated pressures. These mixtures, if ignited, may cause injury or property damage. Additional health and safety information may be obtained from refrigerant manufacturers.

WORKING WITH HFC-134a (R-134a)
CAUTION:

- CFC-12 (R-12) refrigerant and HFC-134a (R-134a) refrigerant are not compatible. Compressor malfunction is likely to occur if the refrigerants are mixed, refer to "CONTAMINATED REFRIGERANT" below. To determine the purity of HFC-134a (R-134a) in the vehicle and recovery tank, use Refrigerant recovery/recycling recharging equipment and Refrigerant Identifier.
- Use only specified lubricant for the HFC-134a (R-134a) A/C system and HFC-134a (R-134a) components. Compressor malfunction is likely to occur if lubricant other than that specified is used.
- The specified HFC-134a (R-134a) lubricant rapidly absorbs moisture from the atmosphere. The following handling precautions must be observed:
- Cap (seal) immediately the component to minimize the entry of moisture from the atmosphere when removing refrigerant components from a vehicle.
- Never remove the caps (unseal) until just before connecting the components when installing refrigerant components to a vehicle. Connect all refrigerant loop components as quickly as possible to minimize the entry of moisture into system.
- Use only the specified lubricant from a sealed container. Reseal immediately containers of lubricant. Lubricant becomes moisture saturated and should not be used without proper sealing.
- Never allow lubricant to come in contact with styrene foam parts. Damage may result.

PRECAUTIONS

< PRECAUTION >
Take appropriate steps shown below if a refrigerant other than pure HFC-134a (R -134a) is identified in a vehicle:

- Explain to the customer that environmental regulations prohibit the release of contaminated refrigerant into the atmosphere.
- Explain that recovery of the contaminated refrigerant could damage service equipment and refrigerant supply.
- Suggest the customer return the vehicle to the location of previous service where the contamination may have occurred.
- In case of repairing, recover the refrigerant using only dedicated equipment and containers. Never recover contaminated refrigerant into the existing service equipment. Contact a local refrigerant product retailer for available service if the facility does not have dedicated recovery equipment. This refrigerant must be disposed of in accordance with all federal and local regulations. In addition, replacement of all refrigerant system components on the vehicle is recommended.
- The air conditioner warranty is void if the vehicle is within the warranty period. Please contact Nissan Customer Affairs for further assistance.
REFRIGERANT CONNECTION
A new type refrigerant connection has been introduced to all refrigerant lines except the following location.
- Expansion valve to evaporator
- Refrigerant pressure sensor to liquid tank

WARNING:
Check that all refrigerant is discharged into the recycling equipment and the pressure in the system is less than atmospheric pressure. Then gradually loosen the discharge side hose fitting and remove it. CAUTION:
Observe the following when replacing or cleaning refrigerant cycle components.

- Store it in the same way at it is when mounted on the car when the compressor is removed. Failure to do so will cause lubricant to enter the low-pressure chamber.
- Use always a torque wrench and a back-up wrench when connecting tubes.
- Plug immediately all openings to prevent entry of dust and moisture after disconnecting tubes.
- Connect the pipes at the final stage of the operation when installing an air conditioner in the vehicle. Never remove the seal caps of pipes and other components until just before required for connection.
- Allow components stored in cool areas to warm to working area temperature before removing seal caps. This prevents condensation from forming inside A/C components.
- Remove thoroughly moisture from the refrigeration system before charging the refrigerant.
- Replace always used O-rings.
- Apply lubricant to circle of the O-rings shown in illustration when connecting tube. Be careful not to apply lubricant to threaded portion.
- O-ring must be closely attached to the groove portion of tube.
- Be careful not to damage 0 -ring and tube when replacing the 0 -ring.
- Connect tube until a click can be heard. Then tighten the nut or bolt by hand. Check that the O-ring is installed to tube correctly.
< PRECAUTION >
- Perform leakage test and make sure that there is no leakage from connections after connecting line. Disconnect that line and replace the O-ring when the refrigerant leaking point is found. Then tighten connections of seal seat to the specified torque.

COMPRESSOR

CAUTION:

- Plug all openings to prevent moisture and foreign matter from entering.
- Store it in the same way at it is when mounted on the car when the compressor is removed.
- Follow "Maintenance of Lubricant Quantity in Compressor" exactly when replacing or repairing compressor. Refer to HA-21, "Description".
- Keep friction surfaces between clutch and pulley clean. Wipe it off by using a clean waste cloth moistened with thinner if the surface is contaminated with lubricant.
- Turn the compressor shaft by hand more than five turns in both directions after compressor service operation. This distributes equally lubricant inside the compressor. Let the engine idle and operate the compressor for one hour after the compressor is installed.
- Apply voltage to the new one and check for normal operation after replacing the compressor magnet clutch.

LEAK DETECTION DYE

CAUTION:

- The A/C system contains a fluorescent leak detection dye used for locating refrigerant leakages. An ultraviolet (UV) lamp is required to illuminate the dye when inspecting for leakages.
- Wear always fluorescence enhancing UV safety goggles to protect eyes and enhance the visibility of the fluorescent dye.
- The fluorescent dye leak detector is not a replacement for an electrical leak detector (SST: J-41995). The fluorescent dye leak detector should be used in conjunction with an electrical leak detector (SST: J-41995) to pin-point refrigerant leakages.
- Read and follow all manufacture's operating instructions and precautions prior to performing the work for the purpose of safety and customer's satisfaction.
- A compressor shaft seal should not necessarily be repaired because of dye seepage. The compressor shaft seal should only be repaired after confirming the leakage with an electrical leak detector (SST: J-41995).
- Remove always any remaining dye from the leakage area after repairs are completed to avoid a misdiagnosis during a future service.
- Never allow dye to come into contact with painted body panels or interior components. Clean immediately with the approved dye cleaner if dye is spilled. Fluorescent dye left on a surface for an extended period of time cannot be removed.
- Never spray the fluorescent dye cleaning agent on hot surfaces (engine exhaust manifold, etc.).
- Never use more than one refrigerant dye bottle [$1 / 4$ ounce (7.4 cc)] per A/C system.
- Leak detection dyes for HFC-134a (R-134a) and CFC-12 (R-12) A/C systems are different. Never use HFC-134a (R-134a) leak detection dye in CFC-12 (R-12) A/C system, or CFC-12 (R-12) leak detection dye in HFC-134a ($\mathrm{R}-134 \mathrm{a}$) A/C system, or A/C system damage may result.
- The fluorescent properties of the dye remains for three or more years unless a compressor malfunction occurs.

PRECAUTIONS

< PRECAUTION >

NOTE:

Identification

- Vehicles with factory installed fluorescent dye have a green label.
- Vehicles without factory installed fluorescent dye have a blue label.

Service Equipment

RECOVERY/RECYCLING RECHARGING EQUIPMENT

Be certain to follow the manufacturer's instructions for machine operation and machine maintenance. Never introduce any refrigerant other than that specified into the machine.

ELECTRICAL LEAK DETECTOR

Be certain to follow the manufacturer's instructions for tester operation and tester maintenance.

VACUUM PUMP

The lubricant contained inside the vacuum pump is not compatible with the specified lubricant for HFC-134a (R-134a) A/C systems. The vent side of the vacuum pump is exposed to atmospheric pressure. So the vacuum pump lubricant may migrate out of the pump into the service hose. This is possible when the pump is switched OFF after evacuation (vacuuming) and hose is connected to it.
To prevent this migration, use a manual valve placed near the hose-to-pump connection, as per the following.

- Vacuum pumps usually have a manual isolator valve as part of the pump. Close this valve to isolate the service hose from the pump.
- Use a hose equipped with a manual shut-off valve near the pump end for pumps without an isolator. Close the valve to isolate the hose from the pump.
- Disconnect the hose from the pump if the hose has an automatic shut-off valve. As long as the hose is connected, the valve is open and lubricating oil may migrate.
Some one-way valves open when vacuum is applied and close under no vacuum condition. Such valves may restrict the pump's ability to pull a deep vacuum and are not recommended.

Without isolator valve

PRECAUTIONS

< PRECAUTION >
Be certain that the service hoses display the markings described (colored hose with black stripe). All hoses must equip positive shutoff devices (either manual or automatic) near the end of the hoses opposite to the manifold gauge.

SERVICE COUPLERS

Never attempt to connect HFC-134a (R-134a) service couplers to the CFC-12 (R-12) A/C system. The HFC-134a (R-134a) couplers do not properly connect to the CFC-12 (R-12) system. However, if an improper connection is attempted, discharging and contamination may occur.

Shut-off valve rotation	A/C service valve
Clockwise	Open
Counterclockwise	Close

REFRIGERANT WEIGHT SCALE

Verify that no refrigerant other than HFC-134a (R-134a) and specified lubricants have been used with the scale. The hose fitting must be $1 / 2^{\prime \prime}-16$ ACME if the scale controls refrigerant flow electronically.

CHARGING CYLINDER

Using a charging cylinder is not recommended. Refrigerant may be vented into air from cylinder's top valve when filling the cylinder with refrigerant. Also, the accuracy of the cylinder is generally less than that of an electronic scale or of quality recycle/recharge equipment.

PREPARATION

< PREPARATION >

PREPARATION

PREPARATION

Special Service Tool

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.
HFC-134a (R-134a) Service Tool and Equipment

- Never mix HFC-134a (R-134a) refrigerant and/or its specified lubricant with CFC-12 (R-12) refrigerant and/ or its lubricant.
- Separate and non-interchangeable service equipment must be used for handling each type of refrigerant/ lubricant.
- Refrigerant container fittings, service hose fittings and service equipment fittings (equipment that handles refrigerant and/or lubricant) are different between CFC-12 (R-12) and HFC-134a (R-134a). This is to avoid mixed use of the refrigerants/lubricant.
- Never use adapters that convert one size fitting to another. Refrigerant/lubricant contamination occurs and compressor malfunction may result.

	Tool number (Kent-Moore No.) Tool name	Description
$\begin{aligned} & \text { KV99106200 } \\ & (\mathrm{J}-41260) \\ & \text { Pulley installer } \end{aligned}$		Installing pulley
(ACR2005-NI) ACR5 A/C Service Center		Function: Refrigerant recovery, recycling and recharging
$(\mathrm{J}-41995)$ Electrical leak detector		Power supply: DC 12 V (Battery terminal)

PREPARATION

	Tool number (Kent-Moore No.) Tool name	Description
(J-43926) Refrigerant dye leak detection kit Kit includes: (J-42220) UV lamp and UV safety goggles (J-41459) HFC-134a (R-134a) dye injector Use with J-41447, 1/4 ounce bottle (J-41447) HFC-134a (R-134a) fluorescent leak detection dye (Box of 24, 1/4 ounce bottles) (J-43872) Refrigerant dye cleaner		Power supply: DC 12 V (Battery terminal)
(J-42220) UV lamp and UV safety goggles		Power supply: DC 12 V (Battery terminal) For checking refrigerant leakage when fluorescent dye is equipped in A/C system Includes: UV lamp and UV safety goggles
(J-41447) HFC-134a (R-134a) fluorescent leak detection dye (Box of 24, 1/4 ounce bottles)		Application: For HFC-134a (R-134a) PAG oil Container: $1 / 4$ ounce (7.4 cc) bottle (Includes self-adhesive dye identification labels for affixing to vehicle after charging system with dye.)
(J-41459) HFC-134a (R-134a) dye injector Use with J-41447, 1/4 ounce bottle		For injecting $1 / 4$ ounce of fluorescent leak detection dye into A / C system
(J-43872) Refrigerant dye cleaner	SHA441F	For cleaning dye spills

PREPARATION

Tool number (Kent-Moore No.) Tool name		Description
(J-39183) Manifold gauge set (with hoses and couplers)		Identification: - The gauge face indicates HFC-134a (R134a). Fitting size: Thread size - $1 / 2^{\prime \prime}$-16 ACME
Service hoses - High-pressure side hose (J-39501-72) - Low-pressure side hose (J-39502-72) - Utility hose (J-39476-72)		Hose color: - Low-pressure side hose: Blue with black stripe - High-pressure side hose: Red with black stripe - Utility hose: Yellow with black stripe or green with black stripe Hose fitting to gauge: - $1 / 2^{\prime \prime}$-16 ACME
Service couplers - High-pressure side coupler (J-39500-20) - Low-pressure side coupler (J-39500-24)		Hose fitting to service hose: M14 $\times 1.5$ fitting is optional or permanently attached.
(J-39650) Refrigerant weight scale		For measuring of refrigerant Fitting size: Thread size 1/2"-16 ACME
(J-39649) Vacuum pump (Including the isolator valve)		Capacity: - Air displacement: 4 CFM - Micron rating: 20 microns - Oil capacity: 482 g (17 oz) Fitting size: Thread size - $1 / 2^{\prime \prime}-16$ ACME

PREPARATION

< PREPARATION >
Commercial Service Tool
Refrigerant identifier equipment Description

Sealant or/and Lubricant

HFC-134a (R-134a) Service Tool and Equipment

- Never mix HFC-134a (R-134a) refrigerant and/or its specified lubricant with CFC-12 (R-12) refrigerant and/ or its lubricant.
- Separate and non-interchangeable service equipment must be used for handling each type of refrigerant/ lubricant.
- Refrigerant container fittings, service hose fittings and service equipment fittings (equipment which handles refrigerant and/or lubricant) are different between CFC-12 (R-12) and HFC-134a (R-134a). This is to avoid mixed use of the refrigerants/lubricant.
- Never use adapters that convert one size fitting to another: refrigerant/lubricant contamination occurs and compressor malfunction may result.

Tool name		Description
HFC-134a (R-134a) refrigerant		Container color: Light blue Container marking: HFC-134a (R134a) Fitting size: Thread size - Large container $1 / 2^{\prime \prime}-16$ ACME
A/C system Oil Type R (DH-PR)	JMIIA1759ZZ	Type: Polyalkylene glycol oil (PAG), type R (DH-PR) Application: HFC-134a (R-134a) swash plate compressors Capacity: 40 m ℓ (1.4 US fl oz, 1.4 Imp floz)

<SYSTEM DESCRIPTION >
 SYSTEM DESCRIPTION
 COMPONENT PARTS

Component Parts Location

1. Expansion valve
2. Condenser
3. Compressor
4. Liquid tank
5. Refrigerant pressure sensor
6. Evaporator
A. Built-in A/C unit assembly

Component Description

Component	Description
Evaporator	The mist form liquid refrigerant transforms to gas by evaporation by the air conveyed from blower motor. The air is cooled by the heat by evaporation.
Condenser	Cools refrigerant discharged from compressor, and transforms it to liquid refrigerant.
Compressor	Intakes, compresses, and discharges refrigerant, to circulate refrigerant inside the refrigerant cycle.
Refrigerant pressure sensor	Refer to $\underline{\text { HAC-9, "Refrigerant Pressure Sensor" (Automatic air conditioning) or HAC-104, "Refriger- }}$ ant Pressure Sensor" (Manual air conditioning).
Liquid tank	Eliminates foreign matter in refrigerant, and stores temporarily liquid refrigerant.
Expansion valve	Transforms high-pressure liquid refrigerant to mist form low-pressure liquid refrigerant by drawing function.

SYSTEM

< SYSTEM DESCRIPTION >

SYSTEM

System Diagram

NFOID:0000000001146188

System Description

REFRIGERANT CYCLE

Refrigerant Flow
The refrigerant from the compressor, flows the condenser with liquid tank, the evaporator, and returns to the compressor. The refrigerant evaporation in the evaporator is controlled by an expansion valve.

Freeze Protection
When evaporator fin temperature is low, compressor stops so that freeze of evaporator can be prevented.

- Refer to HAC-14, "Compressor Control". (Automatic air conditioning)
- Refer to HAC-105, "Compressor Control". (Manual air conditioning)

REFRIGERANT SYSTEM PROTECTION
Refrigerant Pressure Sensor

- The refrigerant system is protected against excessively high- or low-pressures by the refrigerant pressure sensor, installed at the upper liquid tank. The refrigerant pressure sensor detects the pressure inside the refrigerant line and sends the voltage signal to the ECM if the system pressure rises above, or falls below the specifications.
- ECM turns the A/C relay to OFF and stops the compressor when the high-pressure side detected by refrigerant pressure sensor is following conditions;
- Approximately $3,120 \mathrm{kPa}\left(31.8 \mathrm{~kg} / \mathrm{cm}^{2}, 452 \mathrm{psi}\right)$ or more (Engine speed is less than $1,500 \mathrm{rpm}$.)
- Approximately $2,740 \mathrm{kPa}\left(27.9 \mathrm{~kg} / \mathrm{cm}^{2}, 397 \mathrm{psi}\right)$ or more (Engine speed is $1,500 \mathrm{rpm}$ or more.)
- Approximately $140 \mathrm{kPa}\left(1.4 \mathrm{~kg} / \mathrm{cm}^{2}, 17 \mathrm{psi}\right)$ or less

Pressure Relief Valve

The refrigerant system is also protected by a pressure relief valve, located in the rear head of the compressor. The release port on the pressure relief valve automatically opens and releases refrigerant into the atmosphere when the pressure of refrigerant in the system increases to an unusual level [more than $3,800 \mathrm{kPa}$ ($38.8 \mathrm{~kg} /$ $\left.\left.\mathrm{cm}^{2}, 551 \mathrm{psi}\right)\right]$.

DIAGNOSIS AND REPAIR WORKFLOW

< BASIC INSPECTION >
 BASIC INSPECTION
 DIAGNOSIS AND REPAIR WORKFLOW

Work Flow

OVERALL SEQUENCE

DETAILED FLOW

1. INTERVIEW FOR MALFUNCTION

Interview the symptom to the customer.

DIAGNOSIS AND REPAIR WORKFLOW

< BASIC INSPECTION >

>> GO TO 2.

2. SYMPTOM CHECK
$\overline{\text { Check the symptom from the customer's information. Check that any symptom occurs other than the inter- }}$ viewed symptom.

Insufficient cooling/heating>>GO TO 3.
Refrigerant leakage>>GO TO 6.
Noise >> GO TO 7.
3. control system diagnosis

Perform the system diagnosis for the A/C control system.

- Refer to HAC-43, "Work Flow". (Automatic air conditioning)
- Refer to HAC-120, "Work Flow". (Manual air conditioning)

Is A / C control system normal?
YES >> GO TO 4.
NO >> GO TO 8.
4. PERFORMANCE TEST

Perform the performance test. Check the operation of each part. Refer to HA-24, "Inspection".
>> GO TO 5.
5. TROUBLE DIAGNOSIS FOR UNUSUAL PRESSURE

Diagnose using a manifold gauge whenever system's high and/or low side pressure(s) is/are unusual. Specify the malfunctioning part. Refer to HA-25, "Symptom Table".

Low refrigerant charge>>GO TO 6.
Except above>>GO TO 8.
6. CHECK REFRIGERANT FOR LEAKAGES

Check refrigerant for leakages. Specify the malfunctioning part. Refer to HA-17, "Leak Test".
>> GO TO 8.
7. TROUBLE DIAGNOSIS FOR NOISE

Perform trouble diagnosis for noise. Specify the malfunctioning part. Refer to HA-27, "Symptom Table".
>> GO TO 8.
8. MALFUNCTION PART REPAIR

Repair or replace the malfunctioning part.
>> GO TO 9.
9. REPAIR CHECK (OPERATION CHECK)

Check the operation of each part.
Does it operate normally?
YES >> INSPECTION END
NO $\quad>\mathrm{GO}$ TO 2.

REFRIGERANT

Description

CONNECTION OF SERVICE TOOLS AND EQUIPMENT

1. Shut-off valve
2. Refrigerant container (HFC-134a)
3. Manifold gauge set (J-39183)
A. Preferred (best) method
4. A / C service valve
5. Weight scale (J-39650)
B. Alternative method
6. Recovery/recycling/recharging equipment
7. Vacuum pump (J-39649)
C. For charging

Leak Test

CHECK REFRIGERANT LEAKAGE USING FLUORESCENT LEAK DETECTION DYE

1. Install a fender cover (1).
2. Wear UV safety goggles (2) provided with refrigerant dye leak detection kit.
3. Connect power cable (4) of UV lamp (6) to positive and negative terminals of the battery (3).
4. Press UV lamp switch (5) and check A/C system for refrigerant leakage. (Where refrigerant leakage occurs, fluorescent leak detection dye appears in green color.)
WARNING:

REFRIGERANT

< BASIC INSPECTION >

Never look directly into UV lamp light source.

NOTE:

- For continuous operating time of UV lamp, follow the manufacturer operating instructions.
- Illuminate piping joints from different angles using UV lamp and check that there is no leakage.
- Use a mirror in area that is difficult to see to check refrigerant leakage.
- Refrigerant leakage from evaporator can be detected by soaking cotton swab or a similar material with drain hose water and illuminating it using UV lamp.
- Dust, dirt, and packing materials adhesive used for condenser, evaporator, and other locations may fluoresce. Be careful not to misidentify leakage.

5. Repair or replace parts where refrigerant leakage occurs and wipe off fluorescent leak detection dye.

NOTE:
Completely wipe off fluorescent leak detection dye from gaps between parts, screw threads, and others using a cotton swab or similar materials.
6. Use a UV lamp to check that no fluorescent leak detection dye remains after finishing work.

WARNING:
Never look directly into UV lamp light source.
NOTE:

- For continuous operating time of UV lamp, follow the manufacturer operating instructions.
- Dust, dirt, and packing materials adhesive used for condenser, evaporator, and other locations may fluoresce. Be careful not to misidentify leakage.

CHECK REFRIGERANT LEAKAGE USING ELECTRICAL LEAK DETECTOR

WARNING:
Never check refrigerant leakage while the engine is running.
CAUTION:
Be careful of the following items so that inaccurate checks or misidentifications are avoided.

- Never allow refrigerant vapor, shop chemical vapors, cigarette smoke, or others around the vehicle.
- Always check refrigerant leakage in a low air flow environment so that refrigerant may not disperse when leakage occurs.

1. Stop the engine.
2. Connect recovery/recycling/recharging equipment or manifold gauge set to A / C service valve.
3. Check that A / C refrigerant pressure is $345 \mathrm{kPa}\left(3.52 \mathrm{~kg} / \mathrm{cm}^{2}, 50 \mathrm{psi}\right)$ or more when temperature is $16^{\circ} \mathrm{C}$ $\left(61^{\circ} \mathrm{F}\right)$ or more. When pressure is lower than the specified value, recycle refrigerant completely and fill refrigerant to the specified level.
NOTE:
Leakages may not be detected if A / C refrigerant pressure is $345 \mathrm{kPa}\left(3.52 \mathrm{~kg} / \mathrm{cm}^{2}, 50 \mathrm{psi}\right)$ or less when temperature is less than $16^{\circ} \mathrm{C}\left(61^{\circ} \mathrm{F}\right)$.
4. Clean area where refrigerant leakage check is performed, and check refrigerant leakage along all surfaces of pipe connections and A/C system components using electrical leak detector probe.
CAUTION:

- Continue checking when a leakage is found. Always continue and complete checking along all pipe connections and A/C system components for additional leakage.
- When a leakage is detected, clean leakage area using compressed air and check again.
- When checking leakage of cooling unit inside, always clean inside of drain hose so that the probe surface may not be exposed to water or dirt.

NOTE:

- Always check leakage starting from high-pressure side and continue to low-pressure side.
- When checking leakage of cooling unit inside, operate blower fan motor for 15 minutes or more at the maximum fan speed while the engine is stopped, and then insert electrical leak detector probe into drain hose and hold for 10 minutes or more.
- When disconnecting shut-off valve that is connected to A / C service valve, always evacuate remaining refrigerant so that misidentification can be avoided.

5. Repair or replace parts where refrigerant leakage is detected. (Leakage is detected but leakage area is unknown. GO TO 6.)
6. Start the engine and set A / C control in the following conditions.

- A/C switch ON
- Air flow: VENT (ventilation)
- Intake door position: Recirculation

REFRIGERANT

< BASIC INSPECTION >

- Temperature setting: Full cold
- Fan (blower) speed: Maximum speed set

7. Run the engine at approximately $1,500 \mathrm{rpm}$ for 2 minutes or more.
8. Stop the engine. Check again for refrigerant leakage. GO TO 4.

WARNING:
Be careful not to get burned when the engine is hot.
NOTE:

- Start refrigerant leakage check immediately after the engine is stopped.
- When refrigerant circulation is stopped, pressure on the lowpressure side rises gradually, and after this, pressure on the high-pressure side falls gradually.
- The higher the pressure is, the easier it is to find the refrigerant leakage.

Recycle Refrigerant
INFOID:0000000011461193
WARNING:

- Always use HFC-134a for A/C refrigerant. If CFC-12 is accidentally charged, compressor is damaged due to insufficient lubrication.
- Always observe and follow precautions described on refrigerant container. Incorrect handling may result in an explosion of refrigerant container, frostbite, or the loss of eyesight.
- Never breathe A/C refrigerant and lubricant vapor or mist. Exposure may irritate eyes, nose, or throat.
- Never allow HFC-134a to be exposed to an open flame or others because it generates poisonous gas when in contact with high temperature objects. Keep workshop well ventilated.

1. Perform lubricant return operation. Refer to HA-21, "Perform Lubricant Return Operation". (If refrigerant or lubricant leakage is detected in a large amount, omit this step, and then GO TO 2.)
CAUTION:
Never perform lubricant return operation if a large amount of refrigerant or lubricant leakage is detected.
2. Check gauge pressure readings of recovery/recycling/recharging equipment. When remaining pressure exists, recycle refrigerant from high-pressure hose and low-pressure hose.

NOTE:

Follow manufacturer instructions for the handling or maintenance of the equipment. Never fill the equipment with non-specified refrigerant.
3. Remove A/C service valve cap from the vehicle.
4. Connect recovery/recycling/recharging equipment to A / C service valve.
5. Operate recovery/recycling/recharging equipment, and recycle refrigerant from the vehicle.
6. Evacuate air for 10 minutes or more to remove any remaining refrigerant integrated to compressor lubricant, etc.
7. Refrigerant recycle operation is complete.

Charge Refrigerant

WARNING:

- Always use HFC-134a for A/C refrigerant. If CFC-12 is accidentally charged, compressor is damaged due to insufficient lubrication.
- Always observe and follow precautions described on refrigerant container. Incorrect handling may result in an explosion of refrigerant container, frostbite, or the loss of eyesight.
- Never breathe A/C refrigerant and lubricant vapor or mist. Exposure my irritate eyes, nose, or throat.
- Never allow HFC-134a to be exposed to an open flame or others because it generates poisonous gas when in contact with high temperature objects. Keep workshop well ventilated.

1. Connect recovery/recycling/recharging equipment to the A / C service valve.

REFRIGERANT

< BASIC INSPECTION >
2. Operate recovery/recycling/recharging equipment, and evacuate air from A/C system for 25 minutes or more.
CAUTION:
Evacuate air for 15 minutes or more if the parts are replaced.
3. Check the airtightness of A / C system for 25 minutes or more. If pressure rises more than the specified level, charge A / C system with approximately $200 \mathrm{~g}(0.4 \mathrm{lb})$ refrigerant and check that there is no refrigerant leakage. Refer to HA-17, "Leak Test".
CAUTION:
Check the airtightness for 15 minutes or more if the parts are replaced.
4. If parts other than compressor are replaced, fill compressor lubricant according to parts that are replaced.
5. Charge the specified amount of refrigerant to A / C system.
6. Check that A / C system operates normally.
7. Disconnect recovery/recycling/recharging equipment. (Collect the refrigerant from the high-pressure hose and low-pressure hose of recovery/recycling/recharging equipment.)
8. Install A / C service valve cap.
9. Refrigerant charge is complete.

LUBRICANT

< BASIC INSPECTION >

LUBRICANT

Description

MAINTENANCE OF LUBRICANT LEVEL

The compressor lubricant is circulating in the system together with the refrigerant. It is necessary to fill compressor with lubricant when replacing A/C system parts or when a large amount of refrigerant leakage is detected. It is important to always maintain lubricant level within the specified level. Otherwise, the following conditions may occur.

- Insufficient lubricant amount: Stuck compressor
- Excessive lubricant amount: Insufficient cooling (caused by insufficient heat exchange)

Name : A/C system Oil Type R
Inspection
If a compressor is malfunctioning (internal noise, insufficient cooling), check the compressor oil.

1. COMPRESSOR OIL JUDGMENT
2. Remove the compressor. Refer to HA-29, "COMPRESSOR : Removal and Installation".
3. Sample a compressor oil and judge on the figure.

Judgement result 1>>Replace compressor only.
Judgement result 2>>Replace compressor and liquid tank.
Perform Lubricant Return Operation

CAUTION:

If a large amount of refrigerant or lubricant leakage is detected, never perform lubricant return operation.

1. Start the engine and set to the following conditions.

- Engine speed: Idling to $1,200 \mathrm{rpm}$
- A/C switch: ON
- Fan (blower) speed: Maximum speed set
- Intake door position: Recirculation
- Temperature setting: Full cold

2. Perform lubricant return operation for approximately 10 minutes.
3. Stop the engine.
4. Lubricant return operation is complete.

Lubricant Adjusting Procedure for Components Replacement Except Compressor

Fill with lubricant for the amount that is calculated according to the following conditions.
Example: Lubricant amount to be added when replacing evaporator and liquid tank [$\mathrm{m} \ell$ (US fl oz, Imp fl oz)] = $35(1.2,1.2)+5(0.2,0.2)+\alpha$

LUBRICANT

< BASIC INSPECTION >

| Conditions | |
| :--- | :---: | \(\left.\begin{array}{c}Lubricant amount to be added to A/C system

\mathrm{m} \ell(US fl oz, Imp fl oz)\end{array}\right)\)

Lubricant Adjusting Procedure for Compressor Replacement

1. Drain lubricant from removed compressor and measure lubricant amount.
2. Drain lubricant from high-pressure port (A) and low-pressure port (B) while rotating magnet clutch.
3. Measure total amount of lubricant that is drained from removed compressor.

4. Drain lubricant from a new compressor that is calculated according to the following conditions.

Amount to be drained (A) [m ℓ (US floz, Imp fl oz)] = $\mathbf{F}-(\mathbf{D}+\mathbf{S}+\mathbf{R}+\alpha)$
F : Lubricant amount that a new compressor contains [120 (4.1, 4.2)]
D : Lubricant amount that is drained from removed compressor
S : Lubricant amount that remains inside of re-
 moved compressor [20 (0.7, 0.7)]
R : Lubricant amount to be added according to components that are removed except compressor
α : Lubricant amount that is recycled together with refrigerant during recycle operation

CAUTION:

If lubricant amount that is drained from removed compressor is less than $60 \mathbf{m} \ell(2.0 \mathrm{US} \mathbf{f l ~ o z , ~} 2.1$ Imp fl oz), perform calculation by setting " D " as $40 \mathrm{~m} \ell$ (1.4 US fl oz, 1.4 Imp fl oz).

Conditions	Lubricant amount to be added to A/C system $\mathrm{m} \ell($ US fl oz, Imp fl oz)
Replace evaporator	$35(1.2,1.2)$
Replace condenser	$15(0.5,0.5)$
Replace liquid tank	$5(0.2,0.2)$

Example: Lubricant amount to be drained from a new compressor when replacing compressor and liquid tank [m $\ell(\mathrm{US} \mathrm{floz}, \operatorname{Imp} \mathrm{fl} \mathrm{oz})][\mathrm{D}=60(2.0,2.1), \alpha=5(0.2,0.2)]$
$120(4.1,4.2)-[60(2.0,2.1)+20(0.7,0.7)+5(0.2,0.2)+5(0.2,0.2)]=30(1.0,1.0)$

LUBRICANT

< BASIC INSPECTION >
3. Install compressor and check the operation.

PERFORMANCE TEST

< BASIC INSPECTION >
 PERFORMANCE TEST

Inspection

INSPECTION PROCEDURE

1. Connect recovery/recycling/recharging equipment (for HFC-134a) or manifold gauge.
2. Start the engine, and set to the following condition.

Test condition

Surrounding condition		Indoors or in the shade (in a well-ventilated place)
Vehicle condition	Door	Closed
	Door glass	Full open
	Hood	Open
	Engine speed	Idle speed
A/C condition	Temperature control switch or dial	Full cold
	A/C switch	ON
	Air outlet	VENT (ventilation)
	Intake door position	Recirculation
	Fan (blower) speed	Maximum speed set

3. Maintain test condition until A/C system becomes stable. (Approximately 10 minutes)
4. Check that test results of "recirculating-to-discharge air temperature" and "ambient air temperature-tooperating pressure" are within the specified value.
5. When test results are within the specified value, inspection is complete.

If any of test result is out of the specified value, perform diagnosis by gauge pressure. Refer to HA-25. "Symptom Table".
RECIRCULATING-TO-DISCHARGE AIR TEMPERATURE TABLE

Inside air (Recirculating air) at blower assembly inlet		Discharge air temperature from center ventilator${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Relative humidity \%	Air temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
50-60	25 (77)	8.8-11.3 (48-52)
	30 (86)	$13.2-16.2(56-61)$
	35 (95)	18.5-22.0 (65-72)
60-70	25 (77)	$11.3-13.8$ (52-57)
	30 (86)	16.2-19.3 (61-67)
	35 (95)	22.0-25.5 (72-78)

AMBIENT AIR TEMPERATURE-TO-OPERATING PRESSURE TABLE

Fresh air		High-pressure (Discharge side) $\mathrm{kPa}\left(\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	Low-pressure (Suction side) $\mathrm{kPa}\left(\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$
Relative humidity \%	Air temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$		
50-70	25 (77)	$\begin{gathered} 1,090-1,330 \\ (11.1-13.6,158.1-192.9) \end{gathered}$	$\begin{gathered} 200-240 \\ (2.0-2.4,29.0-34.8) \end{gathered}$
	30 (86)	$\begin{gathered} 1,320-1,610 \\ (13.5-16.4,191.4-233.5) \end{gathered}$	$\begin{gathered} 260-320 \\ (2.7-3.3,37.7-46.4) \end{gathered}$
	35 (95)	$\begin{gathered} 1,510-1,850 \\ (15.4-18.8,219.0-268.3) \end{gathered}$	$\begin{gathered} 320-390 \\ (3.3-4.0,46.4-56.6) \end{gathered}$
	40 (104)	$\begin{gathered} 1,820-2,230 \\ (18.6-22.7,263.9-323.4) \end{gathered}$	$\begin{gathered} 420-520 \\ (4.3-5.3,60.9-75.4) \end{gathered}$

REFRIGERATION SYSTEM SYMPTOMS

< SYMPTOM DIAGNOSIS >

SYMPTOM DIAGNOSIS
 REFRIGERATION SYSTEM SYMPTOMS

Trouble Diagnosis For Unusual Pressure

Diagnose using a manifold gauge whenever system's high and/or low side pressure(s) is/are unusual. The marker above the gauge scale in the following tables indicates the standard (usual) pressure range. Refer to above table (Ambient air temperature-to-operating pressure table) since the standard (usual) pressure, however, differs from vehicle to vehicle.
Symptom Table
INFOID:0000000011461202

	Refrigerant cycle	Probable cause	Corrective action

REFRIGERATION SYSTEM SYMPTOMS

< SYMPTOM DIAGNOSIS >

Gauge indication	Refrigerant cycle	Probable cause	Corrective action

Symptom Table

Symptom	Noise source	Probable cause	Corrective action
Unusual noise from compressor when A / C is $O N$.	Inside of compressor	Wear, breakage, or clogging of foreign material in inner parts.	Check compressor oil. Refer to HA-21, "Inspection".
	Magnet clutch	Contact of clutch disc with pulley.	Check clearance between clutch disc and pulley. Refer to HA-31, "Inspection".
	Compressor body	Loosened compressor mounting bolts.	Check bolts for tightness. Refer to HA-28, "Exploded View".
Unusual noise from cooler piping.	Cooler piping (pipe and flexible hose)	Improper installation of clip and bracket.	Check the installation condition of the cooler piping. Refer to HA-32, "Exploded View".
Unusual noise from expansion valve when A / C is $O N$.	Expansion valve	Shortage of refrigerant.	- Check for leakage. - Collect all refrigerant, evacuate refrigerant cycle again, and then refill it with the specified amount of refrigerant.
		Wear, breakage, or clogging of foreign material in inner parts.	Eliminate foreign material from expansion valve, or replace it.
Unusual noise from belt.	-	Loosened belt	Check belt tension. Refer to EM-21, "Inspection" (MR for NISMO RS models) or EM185, "Inspection" (MR except for NISMO RS models).
		Internal compressor parts get locked	Replace compressor.

COMPRESSOR

< REMOVAL AND INSTALLATION >

REMOVAL AND INSTALLATION COMPRESSOR

Exploded View

REMOVAL

1. Compressor

- \mathbf{N} : m (kg-m, ft-lb)

DISASSEMBLY
Type of bolt with flange

1. Compressor unit
2. Pulley assembly
3. Clutch disc
D. N.m (kg-m, ft-lb)

COMPRESSOR

Type of bolt without flange

SEC. 274

1. Compressor unit
2. Field coil
3. Snap ring
4. Pulley assembly
5. Snap ring
6. Shim
7. Clutch disc

- 1 : $\mathrm{N} \cdot \mathrm{m}$ (kg-m, ft-lb)

COMPRESSOR
COMPRESSOR : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21. "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove drive belt. Refer to EM-20, "Removal and Installation" (MR for NISMO RS models) or EM-184. "Removal and Installation" (MR except for NISMO RS models).
3. Remove mounting bolts (A), and then disconnect low-pressure flexible hose (1) and high-pressure flexible hose (2). CAUTION:
Cap or wrap the joint of the A/C piping and compressor with suitable material such as vinyl tape to avoid the entry of air.

[^0]

COMPRESSOR

< REMOVAL AND INSTALLATION >
4. Disconnect magnet clutch harness connector.

- Vehicle front

5. Remove mounting bolts. Pull out compressor in the direction indicated by an arrow as shown in the figure to remove.
CAUTION:
Be careful not to contact with and damage surrounding parts when removing compressor from the vehicle.

INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Perform lubricant adjusting procedure before installing new compressor. Refer to HA-22, "Lubricant Adjusting Procedure for Compressor Replacement".
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".
- Check tension of the drive belt after installing compressor. Refer to EM-21, "Inspection".

MAGNET CLUTCH
MAGNET CLUTCH : Removal and Installation of Compressor Clutch

REMOVAL

Overhaul

1. Fix clutch disc.
2. Remove center bolt, and then remove clutch disc.
3. Remove snap ring using external snap ring pliers.
4. Position center pulley puller on the end of the drive shaft, and remove pulley assembly using any commercially available pulley puller.
To prevent pulley groove from being deformed, puller claws should be positioned into the edge of the pulley assembly.
5. Disconnect harness connector from compressor unit.
6. Remove snap ring using external snap ring pliers, and then remove field coil.

INSTALLATION

COMPRESSOR

1. Install field coil (1).

Be sure to align the coil's pin (2) with the hole in the compressor's front head.

2. Install field coil harness clip.
3. Install pulley assembly (1) using pulley installer (SST: J-41260) (A) and a hand press, and then install snap ring (2) using snap ring pliers.

4. Install clutch disc on drive shaft together with original shim(s). Press clutch disc down by hand.
5. Tighten center bolt to the specified torque while fixing clutch disc not to rotate.

After tightening the bolt, check that the pulley rotates smoothly.
Break-in Operation
When replacing compressor clutch assembly, always perform the break-in operation by engaging and disengaging the clutch approximately 30 -times. Break-in operation increases the level of transmitted torque.
Inspection

CHECK DISC TO PULLEY CLEARANCE

Check the clearance (B) between pulley assembly (1) and clutch disc (2) along the entire periphery with a feeler gauge (A).

Clearance : Refer to HA-48, "Compressor".
 CAUTION:
 Replace compressor if the specified clearance is not obtained, replace adjusting spacer and readjust.

COOLER PIPE AND HOSE

Exploded View

1. A/C unit assembly
2. O-ring
3. O-ring

- Always
: Always replace after every disassembly.
DJ : N.m (kg-m, ft-lb)
0
: N•m (kg-m, in-lb)
- Δ : Indicates that the part is connected at points with same symbol in actual vehicle.

HIGH-PRESSURE FLEXIBLE HOSE

HIGH-PRESSURE FLEXIBLE HOSE : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21. "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove bumper fascia. Refer to EXT-17, "Removal and Installation".

COOLER PIPE AND HOSE

< REMOVAL AND INSTALLATION >
3. Remove mounting bolt (A), and then disconnect high-pressure flexible hose.
CAUTION:
Cap or wrap the joint of the A/C piping and condenser with suitable material such as vinyl tape to avoid the entry of air.

〉 : Vehicle front

4. Remove mounting bolt (A), and then disconnect high-pressure flexible hose.
CAUTION:
Cap or wrap the joint of the A/C piping and compressor with suitable material such as vinyl tape to avoid the entry of air.

```
\ : Vehicle front
```


5. Remove high-pressure flexible hose from the vehicle.

INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

LOW-PRESSURE FLEXIBLE HOSE
LOW-PRESSURE FLEXIBLE HOSE : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21, "Perform Lubricant Return Operation".
REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove bumper fascia. Refer to EXT-17, "Removal and Installation".
3. Remove cowl top and cowl top extension. Refer to EXT-30, "Removal and Installation".
4. Remove mounting nut, and then move lower dash insulator to secure work space.
```
< :Nut
> : Vehicle front
```


COOLER PIPE AND HOSE

< REMOVAL AND INSTALLATION >
5. Remove mounting bolt (A), and then disconnect low-pressure flexible hose (1) and high-pressure pipe (2) from expansion valve. Refer to HA-46, "EXPANSION VALVE : Removal and Installation".
CAUTION:
Cap or wrap the joint of the A/C piping and expansion valve with suitable material such as vinyl tape to avoid the entry of air.

```
> : Vehicle front
```


6. Remove mounting bolt (A) of low-pressure flexible hose front side (1) and mounting nut (B) of low-pressure flexible hose rear side (2).

$>$: Vehicle front
7. Remove ground wire mounting bolt (A), and then move ground wire (1) to secure work space.
: Vehicle front

8. Remove mounting bolt (A), and then disconnect low-pressure flexible hose.
CAUTION:
Cap or wrap the joint of the A/C piping and compressor with suitable material such as vinyl tape to avoid the entry of air.

```
\(\checkmark\) : Vehicle front
```


9. Remove low-pressure flexible hose from the vehicle.

INSTALLATION

Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

HIGH-PRESSURE PIPE

COOLER PIPE AND HOSE

< REMOVAL AND INSTALLATION >
HIGH-PRESSURE PIPE : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21, "Perform Lubricant Return Operation".
REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove low-pressure flexible hose. Refer to HA-33, "LOW-PRESSURE FLEXIBLE HOSE : Removal and Installation".
3. Remove mounting bolt (A), and then disconnect high-pressure pipe (1).
CAUTION:
Cap or wrap the joint of the A/C piping and condenser with suitable material such as vinyl tape to avoid the entry of air.
\checkmark : Vehicle front

4. Remove high-pressure pipe (1) fixing clips (B), and then remove high-pressure pipe from the vehicle.
> Vehicle front

INSTALLATION

Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

CONDENSER

Exploded View

SEC. 276

1. Condenser
2. O-ring
3. Bracket
4. Condenser lower bracket RH
5. Liquid tank bracket
6. O-ring
7. Condenser lower bracket LH
8. Liquid tank
9. Refrigerant pressure sensor
(Always replace after every disassembly.
D. $\mathrm{N} \cdot \mathrm{m}$ (kg-m, ft-lb)
(${ }^{(2)}$: $\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{in}-\mathrm{lb})$

- Indicates that the part is connected at points with same symbol in actual vehicle.

CONDENSER
CONDENSER : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21. "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove bumper fascia. Refer to EXT-17, "Removal and Installation".
3. Remove air guide LH. Refer to DLK-131, "MR16DDT : Exploded View".
4. Disconnect refrigerant pressure sensor harness connector.

CONDENSER

< REMOVAL AND INSTALLATION >
5. Remove mounting bolt (A), and then disconnect high-pressure pipe (1).
CAUTION:
Cap or wrap the joint of the A/C piping and condenser with suitable material such as vinyl tape to avoid the entry of air.
$\triangleleft:$ Vehicle front

6. Remove mounting bolt (A), and then disconnect high-pressure flexible hose.
CAUTION:
Cap or wrap the joint of the A/C piping and condenser with suitable material such as vinyl tape to avoid the entry of air.
> Vehicle front

7. Remove mounting bolts, and then remove condenser from the vehicle.

CAUTION:
Be careful not to damage core surface of condenser.
INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Perform lubricant adjusting procedure before installing new condenser. Refer to HA-22, "Lubricant Adjusting Procedure for Compressor Replacement".
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

LIQUID TANK
LIQUID TANK : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21, "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove bumper fascia. Refer to EXT-17, "Removal and Installation".
3. Remove air guide LH. Refer to DLK-131, "MR16DDT : Exploded View".
4. Clean liquid tank and its surrounding area, and then remove dust and rust from liquid tank.

CAUTION:
Be sure to clean carefully.
5. Disconnect refrigerant pressure sensor harness connector.
6. Remove mounting bolts, and then remove liquid tank from condenser.

CAUTION:

- Be careful not to damage core surface of condenser and liquid tank.
- Cap or wrap the joint of the A/C piping and liquid tank with suitable material such as vinyl tape to avoid the entry of air.
INSTALLATION

CONDENSER

< REMOVAL AND INSTALLATION >
Note the following items, and then install in the reverse order of removal. CAUTION:

- Replace O-rings of the A/C piping with new ones. Then apply compressor oil to them when installing.
- Perform lubricant adjusting procedure before installing new liquid tank. Refer to HA-22, "Lubricant Adjusting Procedure for Compressor Replacement".
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

REFRIGERANT PRESSURE SENSOR
REFRIGERANT PRESSURE SENSOR : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21, "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove front bumper fascia. Refer to EXT-17, "Removal and Installation".
3. Clean refrigerant pressure sensor and its surrounding area, and then remove dust and rust from refrigerant pressure sensor.
CAUTION:
Be sure to clean carefully.
4. Remove liquid tank. Refer to HA-37, "LIQUID TANK : Removal and Installation".

CAUTION:

- Be careful not to damage liquid tank.
- Cap or wrap the joint of the condenser and liquid tank with suitable material such as vinyl tape to avoid the entry of air.

5. Fix the liquid tank (1) using a vice (A).
6. Remove refrigerant pressure sensor (2) using a wrench (B). CAUTION:
Be careful not to damage liquid tank.

INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-ring with new one. Then apply compressor oil to them when installing.
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

A/C UNIT ASSEMBLY

<REMOVAL AND INSTALLATION >

A/C UNIT ASSEMBLY

Exploded View (Automatic Air Conditioning)

REMOVAL

1. A / C unit assembly
2. Drain hose
3. Steering member
4. Instrument stay
©-): Clip
I. $\mathrm{N} \cdot \mathrm{m}$ (kg-m, ft-lb)
(ω : $\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{in}-\mathrm{lb})$
DISASSEMBLY

A/C UNIT ASSEMBLY

1. Ventilator seal
2. Sub defroster door
3. Lower attachment case
4. Power transistor
5. Lower intake case
6. Blower motor
7. In-cabin microfilter
8. Intake sensor
9. Expansion valve grommet
10. Evaporator cover
11. Heater pipe grommet
12. A/C unit case LH
13. Foot door
14. Air mix door guide
A. To water outlet
15. Defroster seal
16. Center ventilator and defroster door
17. Side ventilator seal RH
18. Upper intake case
19. Blower case LH
20. Intake seal
21. Filter cover
22. Evaporator
23. O-ring
24. Heater hose
25. Heater pipe support
26. Aspirator duct
27. Foot door rod
28. Upper air mix door
29. Upper attachment case
30. Side ventilator seal LH
31. Sub harness
32. Intake door
33. Blower case RH
34. A/C unit case RH
35. Case packing
36. Plate
37. Expansion valve
38. Clamp
39. Heater core
40. Aspirator
41. Side ventilator door
42. Lower air mix door

A/C UNIT ASSEMBLY

< REMOVAL AND INSTALLATION >
< : Always replace after every disassembly.
($\boldsymbol{\infty}$:m (kg-m, in-lb)

Exploded View (Manual Air Conditioning)

REMOVAL

1. A/C unit assembly
2. Instrument stay
(-): Clip
Id : N.m (kg-m, ft-lb)
(e) : N.m (kg-m, in-lb)

DISASSEMBLY
2. Drain hose

Drain hose
3. Steering member

A/C UNIT ASSEMBLY

SEC. $270 \cdot 271 \cdot 272 \cdot 278$

1. Ventilator sea
2. Center ventilator door
3. Lower attachment case
4. Blower fan resistor
5. Sub intake door
6. Blower case RH
7. A/C unit case RH
8. Case packing
9. Plate
10. Expansion valve
11. Clamp
12. Heater core
13. Foot door rod
14. Upper air mix door
A. To water outlet
15. Defroster seal
16. Defroster door
17. Side ventilator seal RH
18. Upper Intake case
19. Lower intake case
20. Blower motor
21. In-cabin microfilter
22. Thermo control amp
23. Expansion valve grommet
24. Evaporator cover
25. Heater pipe grommet
26. A/C unit case LH
27. Side ventilator door
28. Lower air mix door
29. Upper attachment case
30. Side ventilator seal LH
31. Sub harness
32. Intake door
33. Blower case LH
34. Intake seal
35. Filter cover
36. Evaporator
37. O-ring
38. Heater hose
39. Heater pipe support
40. Foot door
41. Air mix door guide

A/C UNIT ASSEMBLY

< REMOVAL AND INSTALLATION >
: Always replace after every disassembly.
: N•m (kg-m, in-lb)

A/C UNIT ASSEMBLY

A/C UNIT ASSEMBLY : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21. "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Drain engine coolant from cooling system. Refer to $\mathrm{CO}-9$, "Draining" (MR for NISMO RS models) or CO39, "Draining and Filling" (MR except for NISMO RS models).
3. Remove cowl top and cowl top extension. Refer to EXT-30, "Removal and Installation".
4. Remove mounting nut, and then move lower dash insulator aside.

5. Remove mounting bolt (A), and then disconnect low-pressure flexible hose (1) and high-pressure pipe (2) from expansion valve. Refer to HA-46, "EXPANSION VALVE: Removal and Installation".
CAUTION:
Cap or wrap the joint of the A/C piping and expansion valve with suitable material such as vinyl tape to avoid the entry of air.
$\ulcorner: V e h i c l e ~ f r o n t$

6. Remove fixing clamps (1), and then disconnect heater hoses (2)
\checkmark : Vehicle front

7. Remove instrument panel assembly. Refer to IP-13, "Removal and Installation".
8. Remove side ventilator duct LH and RH. Refer to VTL-11, "SIDE VENTILATOR DUCT: Removal and Installation".

A/C UNIT ASSEMBLY

< REMOVAL AND INSTALLATION >

9. Remove mounting bolts (A) of ground wire LH side and mounting bolt (B) of ground wire RH side.

10. Remove rear heater duct 1 LH and RH. Refer to VTL-11, "REAR HEATER DUCT 1 : Removal and Installation" (for Canada models only).
11. Disconnect drain hose from A / C unit assembly.
> : Vehicle front

12. Remove mounting nuts (A), and then remove instrument stay.
: Vehicle front

13. Remove fixing screws (A), and then remove junction box (J/B).

A/C UNIT ASSEMBLY

< REMOVAL AND INSTALLATION >
14. Remove fixing screws (A), and then remove BCM.

15. Remove all of harness connectors and mounting nuts necessary to allow steering column assembly to be moved. Refer to ST-11, "Removal and Installation".
16. Move steering column assembly to secure work space.
17. Remove all of harness connectors and clips necessary to allow steering member to be removed. Move main harness aside and secure work space so that steering member can be easily removed.
18. Remove mounting bolts (A) and (B), and then remove steering member (1) from the vehicle.

CAUTION:

When removing steering member, 2 workers are required to prevent it from dropping.

19. Remove A / C unit assembly from vehicle.

CAUTION:
When removing A/C unit assembly, 2 workers are required to prevent it from dropping.
INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

NOTE:
Refer to CO-10, "Refilling" (MR for NISMO RS models) or CO-39, "Draining and Filling" (MR except for NISMO RS models) when filling radiator with engine coolant.
EVAPORATOR

A/C UNIT ASSEMBLY

< REMOVAL AND INSTALLATION >
EVAPORATOR : Removal and Installation

REMOVAL

1. Remove A/C unit assembly. Refer to HA-43, "A/C UNIT ASSEMBLY: Removal and Installation".
2. Disassemble A/C unit assembly, and then remove evaporator.
3. Remove intake sensor from evaporator. (Automatic air conditioning)
4. Remove thermo control amp. from evaporator. (Manual air conditioning)
5. Remove mounting bolts, and then remove expansion valve.

INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- When install the intake sensor (Automatic air conditioning) or the thermo control amp. (Manual air conditioning), set the same position before replacement.
- Never rotate the bracket insertion part when removing and installing the intake sensor (automatic air conditioning) or the thermo control amp. (manual air conditioning).
- Perform lubricant adjusting procedure after installing new evaporator. Refer to HA-21, "Lubricant Adjusting Procedure for Components Replacement Except Compressor".
HEATER CORE
HEATER CORE : Removal and Installation

REMOVAL

1. Remove A/C unit assembly. Refer to HA-43, "A/C UNIT ASSEMBLY: Removal and Installation".
2. Remove heater pipe grommet and heater pipe support from A / C unit assembly.
3. Remove foot duct LH. Refer to VTL-13, "FOOT DUCT : Removal and Installation".
4. Slide heater core to leftward, and then remove heater core from A / C unit assembly.

INSTALLATION

Note the following item, and then install in the reverse order of removal.
NOTE:
Refer to CO-10, "Refilling" when filling radiator with engine coolant.

EXPANSION VALVE

EXPANSION VALVE : Removal and Installation

CAUTION:

Perform lubricant return operation before each refrigeration system disassembly. However, if a large amount of refrigerant or lubricant is detected, never perform lubricant return operation. Refer to HA21, "Perform Lubricant Return Operation".

REMOVAL

1. Use a refrigerant collecting equipment (for HFC-134a) to discharge the refrigerant. Refer to HA-19, "Recycle Refrigerant".
2. Remove cowl top and cowl top extension. Refer to EXT-30, "Removal and Installation".
3. Remove mounting nut, and then move lower dash insulator aside.

A/C UNIT ASSEMBLY

< REMOVAL AND INSTALLATION >
4. Remove mounting bolt (A), and then disconnect low-pressure flexible hose (1) and high-pressure pipe (2) from expansion valve.
CAUTION:
Cap or wrap the joint of the A/C piping and expansion valve with suitable material such as vinyl tape to avoid the entry of air.
$\checkmark:$ Vehicle front

5. Remove mounting bolts (A), and then remove expansion valve.

INSTALLATION
Note the following items, and then install in the reverse order of removal.
CAUTION:

- Replace O-rings with new ones. Then apply compressor oil to them when installing.
- Check for leakages when recharging refrigerant. Refer to HA-17, "Leak Test".

Model		CALSONIC KANSEI make CR-08b
Type		Vane rotary
Displacement cm^{3} (cu in)/rev	Maximum	83 (5.1)
Direction of rotation		Clockwise (viewed from clutch)
Drive belt		Poly V
Disc to pulley clearance mm (in)	Standard	0.3-0.6 (0.012-0.024)

Lubricant
INFOID:0000000011461223

Name	A/C System Oil Type R (DH-PR)	
Capacity $\mathrm{m} \ell($ US fl oz, Imp fl oz)	Total in system	120 (4.1, 4.2)
	Compressor (service part) charging amount	$120(4.1,4.2)$

Refrigerant
INFOID:0000000011461224

Type	HFC-134a (R-134a)
Capacity kg (lb)	$0.40(0.9)$

Engine Idling Speed
INFOID:0000000011461225
Refer to EC-579, "Idle Speed" (MR for NISMO RS models) or EC-1257, "Idle Speed" (MR except for NISMO RS models).

Belt Tension

Refer to EM-21, "Inspection" (MR for NISMO RS models) or EM-185, "Inspection" (MR except for NISMO RS models).

[^0]: 〉 : Vehicle front

