ENGINE CONTROL SYSTEM

SECTION EC

MA

EM

LC

EC

FE

GL

CONTENTS

IROUBLE DIAGNOSIS - INDEX9
Alphabetical Index9
DTC No. Index13
PRECAUTIONS18
Supplemental Restraint System (SRS) "AIR
BAG" and "SEAT BELT PRE-TENSIONER"18
Precautions for On Board Diagnostic (OBD)
System of Engine and A/T18
Engine Fuel & Emission Control System19
Precautions20
Wiring Diagrams and Trouble Diagnosis21
PREPARATION22
Special Service Tools22
Commercial Service Tools23
ENGINE AND EMISSION CONTROL OVERALL
SYSTEM 25
Engine Control Component Parts Location25
Circuit Diagram30
System Diagram31
Vacuum Hose Drawing32
System Chart33
ENGINE AND EMISSION BASIC CONTROL
SYSTEM DESCRIPTION34
Multiport Fuel Injection (MFI) System34
Electronic Ignition (EI) System36
Air Conditioning Cut Control37
Fuel Cut Control (at no load & high engine
speed)38
Evaporative Emission System38
On Board Refueling Vapor Recovery (ORVR)44
Positive Crankcase Ventilation53
CAN Communication54
Automatic Speed Control Device (ASCD) System54
BASIC SERVICE PROCEDURE56
Fuel Pressure Release56
Fuel Pressure Check56
Fuel Pressure Regulator Check57
Injector58
How to Check Idle Speed and Ignition Timing 59

Adjustment61	MT
Accelerator Pedal Released Position Learning73	
Throttle Valve Closed Position Learning73	AT
Idle Air Volume Learning73	<i>1</i> −7.∏
ON BOARD DIAGNOSTIC SYSTEM	
DESCRIPTION77	TF
Introduction77	
Two Trip Detection Logic77	
Emission-related Diagnostic Information78	PD
Malfunction Indicator Lamp (MIL)94	
OBD System Operation Chart98	AX
CONSULT-II Function (ENGINE)103	
Generic Scan Tool (GST)117	
TROUBLE DIAGNOSIS - INTRODUCTION119	SU
Introduction119	
Work Flow121	
TROUBLE DIAGNOSIS - BASIC INSPECTION123	BR
Basic Inspection123	
TROUBLE DIAGNOSIS - GENERAL	ST
DESCRIPTION129	
DTC Inspection Priority Chart129	
Fail-safe Chart130	RS
Symptom Matrix Chart131	
CONSULT-II Reference Value in Data Monitor	BT
Mode135	D I
Major Sensor Reference Graph in Data Monitor	
Mode139	HA
ECM Terminals and Reference Value141	0 00 0
TROUBLE DIAGNOSIS - SPECIFICATION VALUE151	
Description151	SC
Testing Condition151	
Inspection Procedure151	EL
Diagnostic Procedure152	
TROUBLE DIAGNOSIS FOR INTERMITTENT	
INCIDENT	
Description	
Diagnostic Procedure	
POWER SUPPLY AND GROUND CIRCUIT156	

ECM Terminals and Reference Value	156	ECM Terminals and Reference Value	
Wiring Diagram	157	On Board Diagnosis Logic	195
Diagnostic Procedure	159	DTC Confirmation Procedure	195
Ground Inspection	165	Wiring Diagram	196
DTC U1000, U1001 CAN COMMUNICATION LINI	E166	Diagnostic Procedure	197
Description	166	DTC P0112, P0113 IAT SENSOR	200
On Board Diagnosis Logic	166	Component Description	200
DTC Confirmation Procedure	166	On Board Diagnosis Logic	200
Wiring Diagram	167	DTC Confirmation Procedure	200
Diagnostic Procedure	168	Wiring Diagram	201
DTC P0011, P0021 IVT CONTROL	169	Diagnostic Procedure	202
Description	169	Component Inspection	203
CONSULT-II Reference Value in Data Monitor		DTC P0117, P0118 ECT SENSOR	204
Mode	170	Component Description	204
On Board Diagnosis Logic	170	On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
Component Inspection		Diagnostic Procedure	
DTC P0031, P0032, P0051, P0052 HO2S1		DTC P0122, P0123 TP SENSOR	
HEATER	173	Component Description	
Description		CONSULT-II Reference Value in Data Monitor	
CONSULT-II Reference Value in Data Monitor		Mode	210
Mode	173	ECM Terminals and Reference Value	
ECM Terminals and Reference Value		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
DTC P0037, P0038, P0057, P0058 HO2S2		DTC P0125 ECT SENSOR	
HEATER	181	Description	
Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	
Mode	181	Diagnostic Procedure	
ECM Terminals and Reference Value		DTC P0127 IAT SENSOR	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
DTC P0101 MAF SENSOR		DTC P0128 THERMOSTAT FUNCTION	
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	
Mode	187	Diagnostic Procedure	
ECM Terminals and Reference Value	-	DTC P0132, P0152 HO2S1	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor	
Overall Function Check		Mode	224
Wiring Diagram		ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P0102, P0103 MAF SENSOR		DTC Confirmation Procedure	
Component Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	
Mode	194	DTC P0133, P0153 HO2S1	

G[

CONSULT-II Reference Value in Data Monitor Mode 233 Diagnosite Procedure 234 DTC Portia Procedure 234 DTC Portia Procedure 235 Diagnosite Logic 235 DTC Portia Procedure 236 DTC Portia Procedure 237 DTC Portia Procedure 238 DTC Portia Procedure 239 DTC Portia Procedure 236 DTC Portia Procedure 236 DTC Portia Procedure 236 DTC Portia Procedure 237 DTC Portia Procedure 238 DTC Portia Procedure 239 DTC Portia Procedure 230 DTC Portia Procedur	Component Description	233	On Board Diagnosis Logic	290	
Mode	·				MA
ECM Terminals and Reference Value	Mode	233	Diagnostic Procedure	291	
On Board Diagnosis Logic. 234 Component Description. 293 DTC Confirmation Procedure 234 On Board Diagnosis Logic. 293 Wiring Diagram. 236 DTC Confirmation Procedure 293 Diagnostic Procedure 298 Diagnostic Procedure 298 COMPONENT Description. 246 CONSULT-II Reference Value in Data Monitor Component Description. 298 More Board Diagnosis Logic. 247 Component Description. 298 ECM Terminals and Reference Value in Data Monitor Mode. 298 Wiring Diagram. 249 Wiring Diagram. 301 DTC P0138, P0158 HO2S2. 255 Component Description. 299 Wiring Diagram Stepic. 255 CONSULT-II Reference Value in Data Monitor Mode. 302 Mode. 255 CONSULT-II Reference Value in Data Monitor Mode. 305 Mode. 255 DTC Confirmation Procedure 256 Wiring Diagram. 255 DTC Confirmation Procedure 306 DTC P0139, P0159 H02S2. 265 DTC Confirmation Procedure <td>ECM Terminals and Reference Value</td> <td>233</td> <td></td> <td></td> <td></td>	ECM Terminals and Reference Value	233			
DTC Confirmation Procedure 234 On Board Diagnosis Logic. 293 Overal Function Check 235 DTC Confirmation Procedure 293 Wiring Diagram	On Board Diagnosis Logic	234			EM
Overall Function Cheek			·		
Wiring Diagram			o o		1 🙈
Diagnostic Procedure 238 Diagnostic Procedure 296					LG
DTC P0134, P0154 HO251 246 Component Description 248 Component Description 248 Component Description 249 Component Description 249 Component Description 246 Component Description 247 Confirmation Procedure 247 Confirmation Procedure 249 DTC Confirmation Procedure 249 DTC Confirmation Procedure 251 DTC P0138, P0158 HO252 255 DTC P0138, P0158 HO252 263 Component Description 256 Component Description 256 Component Description 257 Diagnostic Procedure 258 DTC P0138, P0158 HO252 263 CONSULT-II Reference Value 258 DTC P0138, P0158 HO252 263 Component Description 256 Component Description 257 Diagnostic Procedure 258 DTC P0138, P0158 HO252 263 CONSULT-II Reference Value 258 DTC P0138, P0158 HO252 263 Component Description 258 DTC P0138, P0158 HO252 263 DTC P0158, P0158 HO252 263 DTC P0158 HO25					
Component Description					FC
CONSULT-II Reference Value in Data Monitor Mode					LU
Mode 246 Mode 298 FE ECM Terminals and Reference Value 246 ECM Terminals and Reference Value 298 On Board Diagnosis Logic. 297 On Board Diagnosis Logic. 299 Overall Function Check 248 Wiring Diagram 301 Wiring Diagram 249 Diagnostic Procedure 302 DTC PO138, P0158 H02S2 255 Component Description 255 Component Description 255 DTC Confirmation Procedure 306 Mode 255 DTC Confirmation Procedure 305 Mode 255 DTC Confirmation Procedure 306 ECM Terminals and Reference Value 255 DTC Confirmation Procedure 306 DTC Confirmation Procedure 256 DTC P0139, P0159 H02S2 263 DTC P0139, P0159 H02S2 263 DTC Confirmation Procedure 314 Wiring Diagram 263 DTC Confirmation Procedure 314 Mode 263 DTC Confirmation Procedure 316 CONSULT-II Reference Value in Data Monitor Mode					
ECM Terminals and Reference Value		246		298	FE
On Board Diagnosis Logic. 247 On Board Diagnosis Logic. 299 Cl Overal Function Check 248 Wiring Diagram 301 301 301 Miring Diagram 302 MT Diagnostic Procedure 251 Diagnostic Procedure 302 MT DTC P0138, P0158 H02S2. 255 DTC P0300 - P0306 MULTIPLE CYLINDER MT DTC P0300 - P0306 MULTIPLE CYLINDER DTC CONSULT-IR Reference Value in Data Monitor MS DTC Confirmation Procedure 305 DTC Confirmation Procedure 314 AT DTC P0320 - P0320 MULTIPLE CYLINDER DTC P0330 CM Series Consulter Procedure 314 AT DTC P0330 CM Series C					
DTC Confirmation Procedure 247 DTC Confirmation Procedure 299 Overall Function Check 248 Wiring Diagram 301 Wiring Diagram 249 Diagnostic Procedure 302 DTC P0138, P0158 HO2S2 255 DTC P00309 - P0306 MULTIPLE CYLINDER Component Description 255 DTC P00309 - P0306 MULTIPLE CYLINDER Component Description 255 DTC P017 Mode 255 DTC Confirmation Procedure 305 ECM Terminals and Reference Value in Data Monitor 255 DTC Confirmation Procedure 306 Miring Diagram 257 ECM Terminals and Reference Value 314 DTC P0139, P0159 H02S2 263 CORSULT-II Reference Value in Data Monitor DTC Confirmation Procedure 314 Mode 263 DTC Confirmation Procedure 316 On Board Diagnosis Logic 263 DTC Confirmation Procedure 316 Mode 263 DTC Confirmation Procedure 316 On Board Diagnosis Logic 319 CONSULT-II Reference Value in Data Monitor Mode 310 Mod					0.0
Overall Function Check 248 Wiring Diagram 301 Wiring Diagram 249 Diagnostic Procedure 302 DTC P0138, P0158 HO2S2 255 Component Description 305 CONSULT-II Reference Value in Data Monitor Mode 255 DTC P0309 - P0306 MULTIPLE CYLINDER 305 Mish Risk, No. 1 - 6 CYLINDER MISHRE 305 AT On Board Diagnosis Logic 255 DTC Confirmation Procedure 306 DTC Confirmation Procedure 255 DTC Confirmation Procedure 306 Diagnostic Procedure 255 DTC Confirmation Procedure 306 Diagnostic Procedure 255 DTC Confirmation Procedure 307 DTC P0139, P0159 HO2S2 263 DTC Confirmation Reference Value 314 CONSULT-II Reference Value in Data Monitor Mode 263 DTC Confirmation Procedure 315 CONSULT-II Reference Value in Data Monitor Mode 263 DTC Confirmation Procedure 316 Wiring Diagram 264 DTC Confirmation Procedure 319 Wiring Diagram 266 Diagnostic Procedure 326 <	<u> </u>				GL
Wiring Diagram					
Diagnostic Procedure					D/157
DTC P0138, P0158 HO2S2 255 DTC P0300 - P0306 MULTIPLE CYLINDER Component Description 255 CONSULT-II Reference Value in Data Monitor Mode 255 DTC Confirmation Procedure 305 AT On Board Diagnosis Logic. 255 DTC Confirmation Procedure 306 DTC Confirmation Procedure 307 DTC Confirmation Procedure 255 DTC P0327, P0328 KS 314 Component Description 314 DTC P0139, P0159 H02S2 263 Component Description 314 DTC Confirmation Procedure 316 DTC Confirmation Procedure 316 DTC Confirmation Procedure 316 DTC Confirmation Procedure 319 DTC Confirmation Procedure 320 DTC Confirmation Procedure 320 DTC Confirmation Procedure 320			•		ע עעע
Component Description	•		·	00 1	
CONSULT-II Reference Value in Data Monitor Mode 255 DTC Confirmation Procedure 305 ECM Terminals and Reference Value 255 DTC Confirmation Procedure 306 On Board Diagnosis Logic. 255 DTC Confirmation Procedure 307 DTC Confirmation Procedure 256 Component Description 314 DTC P0139, P0159 HO252 263 DTC Confirmation Procedure 314 CONSULT-II Reference Value in Data Monitor Mode 263 DTC Confirmation Procedure 314 Miring Diagram 263 DTC P0139, P0159 HO252 263 CONSULT-II Reference Value in Data Monitor Mode 263 DTC Confirmation Procedure 314 Mode 263 DTC P0139, P0159 HO252 319 CONSULT-II Reference Value in Data Monitor Mode 263 DTC P0139, P0159 HO252 314 CONSULT-II Reference Value in Data Monitor Mode 263 DTC P0335 CKP SENSOR (POS) 319 DTC Confirmation Procedure 264 On Board Diagnosis Logic 319 DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION DTC Confirmation Procedure 273 DTC Confirmation Procedure				305	AT
Mode	·				2 45
Diagnostic Procedure 307 The part of the procedure 307 The part of t		255			
On Board Diagnosis Logic 255 DTC P0327, P0328 KS 314 DTC Confirmation Procedure 256 Component Description 314 Wiring Diagram 257 ECM Terminals and Reference Value 314 DTC P0139, P0159 H02S2 263 DTC Confirmation Procedure 314 CONSULT-II Reference Value in Data Monitor Mode 263 Wiring Diagram 315 On Board Diagnosis Logic 263 Component Description 319 On Board Diagnosis Logic 263 Component Description 319 On Board Diagnosis Logic 263 Component Description 319 On Board Diagnosis Logic 263 CONSULT-II Reference Value in Data Monitor 319 Overall Function Check 264 Mode 319 Overall Function Check 264 On Board Diagnosis Logic 319 DTC P0171, P0174 FUEL INJECTION SYSTEM DTC Confirmation Procedure 320 FUNCTION 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P0172, P0175 FUEL INJECTION SYSTEM DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P017					TF
DTC Confirmation Procedure 256 Component Description 314 Wiring Diagram 257 ECM Terminals and Reference Value 314 DTC P0139, P0159 HO2S2 263 DTC Confirmation Procedure 314 Component Description 263 DTC Confirmation Procedure 314 Mode 263 Wiring Diagram 315 DTC P0138, P0159 H02S2 263 DTC Confirmation Procedure 314 Mode 263 DTC P0335 CKP SENSOR (POS) 319 ECM Terminals and Reference Value in Data Monitor DTC P0335 CKP SENSOR (POS) 319 DTC Confirmation Procedure 263 CONSULT-II Reference Value in Data Monitor Mode 319 DTC Confirmation Procedure 264 On Board Diagnosis Logic 319 On Board Diagnosis Logic 319 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 320 Wiring Diagram 321 DTC Confirmation Procedure 273 DTC P0440, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 Component Description 326 DTC Confirmation Proce			<u> </u>		
Wiring Diagram					66
Diagnostic Procedure 259 On Board Diagnosis Logic 314 DTC P0139, P0159 HO252 263 DTC Confirmation Procedure 314 Component Description 263 Wiring Diagram 315 CONSULT-II Reference Value in Data Monitor Diagnostic Procedure 316 Mode 263 Component Description 319 ECM Terminals and Reference Value 263 Component Description 319 On Board Diagnosis Logic 263 Component Description 319 Overall Function Check 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 Wiring Diagram 268 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P0172, P0175 FUEL INJECTION SYSTEM PTC P0172, P0175 FUEL INJECTION SYSTEM On Board Diagnosis Logic 326 FUNCTION 282 DTC Confirmation Procedure 326 On Board Diagnosis Logic 282 DTC Confirmation Procedure 326					PU
DTC P0139, P0159 HO2S2 263 DTC Confirmation Procedure 314 AX Component Description 263 Wiring Diagram 315 CONSULT-II Reference Value in Data Monitor Mode 263 Diagnostic Procedure 316 ECM Terminals and Reference Value 263 Component Description 319 On Board Diagnosis Logic 263 CONSULT-II Reference Value in Data Monitor 319 DTC Confirmation Procedure 264 CONSULT-II Reference Value in Data Monitor 319 DTC Confirmation Procedure 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 Wiring Diagram 320 DTC Confirmation Procedure 320 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P0172, P0175 FUEL INJECTION SYSTEM DTC Confirmation Procedure 326 DTC Confirmation Procedure 326 DTC Confirmation Procedure 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328					
Component Description 263 Wiring Diagram 315 CONSULT-II Reference Value in Data Monitor Mode 263 DTC P0335 CKP SENSOR (POS) 319 ECM Terminals and Reference Value 263 Component Description 319 On Board Diagnosis Logic 263 Component Description 319 DTC Confirmation Procedure 264 Mode 319 Overall Function Check 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 Diagnostic Procedure 268 Wiring Diagram 321 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Description 326 DTC Confirmation Procedure 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 326 FUNCTION 282 DTC Confirmation Procedure 330 On Board Diagnosis Logic 282 Component Inspe					
Diagnostic Procedure 316					D 00/0
Mode 263 DTC P0335 CKP SENSOR (POS) 319 ECM Terminals and Reference Value 263 Component Description 319 On Board Diagnosis Logic 263 CONSULT-II Reference Value in Data Monitor DTC Confirmation Procedure 264 Mode 319 Overall Function Check 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 Diagnostic Procedure 268 Wiring Diagram 321 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 DTC Confirmation Procedure 273 Component Description 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Diagnostic Procedure 330 DTC Confirmation Procedure 282 Diagnostic Procedure 333					
ECM Terminals and Reference Value .263 Component Description .319 On Board Diagnosis Logic .263 CONSULT-II Reference Value in Data Monitor DTC Confirmation Procedure .264 Mode .319 Overall Function Check .264 On Board Diagnosis Logic .319 Wiring Diagram .266 DTC Confirmation Procedure .320 Diagnostic Procedure .268 Wiring Diagram .321 FUNCTION .273 Component Inspection .325 On Board Diagnosis Logic .273 DTC P0340, P0345 CMP SENSOR (PHASE) .326 DTC Confirmation Procedure .273 Component Description .326 Wiring Diagram .275 On Board Diagnosis Logic .326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram .282 FUNCTION .282 Diagnostic Procedure .330 On Board Diagnosis Logic .282 Diagnostic Procedure .330 On Board Diagnosis Logic .282 Diagnostic Procedure .333 DTC Confirmation Procedure .282 DTC P		263	<u> </u>		SU
On Board Diagnosis Logic 263 CONSULT-II Reference Value in Data Monitor DTC Confirmation Procedure 264 Mode 319 Overall Function Check 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 Diagnostic Procedure 268 Wiring Diagram 321 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 DTC Confirmation Procedure 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC P0172, P0175 FUEL INJECTION SYSTEM DTC Confirmation Procedure 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 326 DTC Confirmation Procedure 282 Diagnostic Procedure 330 DTC Confirmation Procedure 282 Component Inspection 333 DTC Confirmation Procedure 282 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284			• •		
DTC Confirmation Procedure 264 Mode 319 Overall Function Check 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 DTC Confirmation Procedure 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 On Board Diagnosis Logic 326 Wiring Diagram 275 DTC Confirmation Procedure 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 326 FUNCTION 282 Diagnostic Procedure 326 On Board Diagnosis Logic 282 Diagnostic Procedure 326 DTC Confirmation Procedure 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 On Board Diagnosis Logic <td></td> <td></td> <td></td> <td></td> <td>66</td>					66
Overall Function Check 264 On Board Diagnosis Logic 319 Wiring Diagram 266 DTC Confirmation Procedure 320 Diagnostic Procedure 268 Wiring Diagram 321 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 On Board Diagnosis Logic 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 Component Description 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 Diagnostic Procedure 330 Wiring Diagram 284 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 On Board Diagnosis Logic 334 Diagnostic Procedure 286 On Board Diagnosis Logic				319	BK
Wiring Diagram 266 DTC Confirmation Procedure 320 ST Diagnostic Procedure 268 Wiring Diagram 321 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 On Board Diagnosis Logic 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM DTC Confirmation Procedure 326 DTC Confirmation Procedure 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 Diagnostic Procedure 330 DTC Confirmation Procedure 282 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 DTC P0181 FTT SENSOR 290 On Board Diagnosis Logic 334 DTC Confirmation Procedure 290 Overall Function Check 335					
Diagnostic Procedure 268 Wiring Diagram 321 DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 On Board Diagnosis Logic 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 Component Description 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 Diagnostic Procedure 333 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 Diagnostic Procedure 334 Diagnostic Procedure 286 DTC Confirmation Procedure 334 Diagnostic Procedure 286 DTC Confirmation Procedure 334 Diagnostic Procedure 286 DTC Confirmation Procedure 334 Diagnosti					T2
DTC P0171, P0174 FUEL INJECTION SYSTEM Diagnostic Procedure 322 FUNCTION 273 Component Inspection 325 On Board Diagnosis Logic 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 Component Description 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 Component Inspection 333 DTC Confirmation Procedure 282 Diagnostic Procedure 333 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 DTC Confirmation Procedure 334 DTC P0181 FTT SENSOR 290 DTC Confirmation Procedure 334 Component Description 290 Overall Function Check 335					0 I
FUNCTION 273 Component Inspection 325 On Board Diagnosis Logic 273 DTC P0340, P0345 CMP SENSOR (PHASE) 326 DTC Confirmation Procedure 273 Component Description 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Diagnostic Procedure 330 DTC Confirmation Procedure 282 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 On Board Diagnosis Logic 334 DTC P0181 FTT SENSOR 290 DTC Confirmation Procedure 334 Component Description 290 Overall Function Check 335					
On Board Diagnosis Logic		273			RS
DTC Confirmation Procedure 273 Component Description 326 Wiring Diagram 275 On Board Diagnosis Logic 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 DIAGNOSTIC Procedure 334 Diagnostic Procedure 286 On Board Diagnosis Logic 334 DTC P0181 FTT SENSOR 290 DTC Confirmation Procedure 334 Component Description 290 Overall Function Check 335					
Wiring Diagram 275 Diagnostic Procedure 277 DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION 282 On Board Diagnosis Logic 282 On Board Diagnosis Logic 282 DTC Confirmation Procedure 3330 DTC Confirmation Procedure 282 Wiring Diagram 284 Diagnostic Procedure 284 Diagnostic Procedure 286 DTC P0181 FTT SENSOR 290 Component Description 290 On Board Diagnosis Logic 334 DTC Confirmation Procedure 334 DTC Confirmation Procedure 334 DTC P0181 FTT SENSOR 290 Overall Function Check 335	•				
Diagnostic Procedure 277 DTC Confirmation Procedure 326 DTC P0172, P0175 FUEL INJECTION SYSTEM Wiring Diagram 328 FUNCTION 282 Diagnostic Procedure 330 On Board Diagnosis Logic 282 Component Inspection 333 DTC Confirmation Procedure 282 DTC P0420, P0430 THREE WAY CATALYST SC Wiring Diagram 284 FUNCTION 334 Diagnostic Procedure 286 On Board Diagnosis Logic 334 DTC P0181 FTT SENSOR 290 DTC Confirmation Procedure 334 Component Description 290 Overall Function Check 335	Wiring Diagram	275			BT
DTC P0172, P0175 FUEL INJECTION SYSTEMWiring Diagram328FUNCTION282Diagnostic Procedure330On Board Diagnosis Logic282Component Inspection333DTC Confirmation Procedure282DTC P0420, P0430 THREE WAY CATALYSTWiring Diagram284FUNCTION334Diagnostic Procedure286On Board Diagnosis Logic334DTC P0181 FTT SENSOR290DTC Confirmation Procedure334Component Description290Overall Function Check335					
FUNCTION282Diagnostic Procedure330On Board Diagnosis Logic282Component Inspection333DTC Confirmation Procedure282DTC P0420, P0430 THREE WAY CATALYSTWiring Diagram284FUNCTION334Diagnostic Procedure286On Board Diagnosis Logic334DTC P0181 FTT SENSOR290DTC Confirmation Procedure334Component Description290Overall Function Check335			Wiring Diagram	328	
On Board Diagnosis Logic		282			11 11/~7
DTC Confirmation Procedure 282 Wiring Diagram 284 Diagnostic Procedure 286 DTC P0181 FTT SENSOR 290 Component Description 290 DTC P0420, P0430 THREE WAY CATALYST FUNCTION 334 On Board Diagnosis Logic 334 DTC Confirmation Procedure 334 Overall Function Check 335					
Wiring Diagram284FUNCTION334Diagnostic Procedure286On Board Diagnosis Logic334DTC P0181 FTT SENSOR290DTC Confirmation Procedure334Component Description290Overall Function Check335					SC
Diagnostic Procedure				334	
DTC P0181 FTT SENSOR290DTC Confirmation Procedure334Component Description290Overall Function Check335					
Component Description290 Overall Function Check			<u> </u>		EL

Diagnostic Procedure	335	Diagnostic Procedure	396
DTC P0441 EVAP CONTROL SYSTEM	339	DTC P0456 EVAP CONTROL SYSTEM	407
System Description	339	On Board Diagnosis Logic	407
On Board Diagnosis Logic	339	DTC Confirmation Procedure	408
DTC Confirmation Procedure	340	Overall Function Check	409
Overall Function Check	340	Diagnostic Procedure	410
Diagnostic Procedure	342	DTC P0460 FUEL LEVEL SENSOR	423
DTC P0442 EVAP CONTROL SYSTEM	349	Component Description	423
On Board Diagnosis Logic	349	On Board Diagnostic Logic	423
DTC Confirmation Procedure	350	DTC Confirmation Procedure	423
Diagnostic Procedure	351	Diagnostic Procedure	424
DTC P0444, P0445 EVAP CANISTER PURGE		DTC P0461 FUEL LEVEL SENSOR	425
VOLUME CONTROL SOLENOID VALVE	364	Component Description	425
Description	364	On Board Diagnostic Logic	425
CONSULT-II Reference Value in Data Monitor		Overall Function Check	425
Mode	364	Diagnostic Procedure	426
ECM Terminals and Reference Value	365	DTC P0462, P0463 FUEL LEVEL SENSOR	428
On Board Diagnosis Logic	365	Component Description	428
DTC Confirmation Procedure	366	On Board Diagnostic Logic	428
Wiring Diagram	367	DTC Confirmation Procedure	428
Diagnostic Procedure	368	Diagnostic Procedure	429
DTC P0447 EVAP CANISTER VENT CONTROL		DTC P0500 VSS	430
VALVE	371	Description	430
Component Description	371	On Board Diagnosis Logic	430
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	430
Mode	371	Overall Function Check	431
ECM Terminals and Reference Value	371	Diagnostic Procedure	431
On Board Diagnosis Logic	371	DTC P0506 ISC SYSTEM	432
DTC Confirmation Procedure	372	Description	432
Wiring Diagram	373	On Board Diagnosis Logic	432
Diagnostic Procedure	374	DTC Confirmation Procedure	432
DTC P0452 EVAP SYSTEM PRESSURE SENSOR	R378	Diagnostic Procedure	433
Component Description	378	DTC P0507 ISC SYSTEM	434
CONSULT-II Reference Value in Data Monitor		Description	434
Mode	378	On Board Diagnosis Logic	
ECM Terminals and Reference Value		DTC Confirmation Procedure	
On Board Diagnosis Logic		Diagnostic Procedure	435
DTC Confirmation Procedure	379	DTC P0550 PSP SENSOR	436
Wiring Diagram	380	Component Description	436
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	
DTC P0453 EVAP SYSTEM PRESSURE SENSOR	R384	Mode	436
Component Description	384	On Board Diagnosis Logic	436
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	436
Mode		Wiring Diagram	437
ECM Terminals and Reference Value	384	Diagnostic Procedure	438
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure	385	DTC P0605 ECM	
Wiring Diagram		Component Description	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P0455 EVAP CONTROL SYSTEM		DTC Confirmation Procedure	
On Board Diagnosis Logic	394	Diagnostic Procedure	
DTC Confirmation Procedure	395	DTC P1065 ECM POWER SUPPLY (BACK UP)	443

G[

Component Description	443	On Board Diagnosis Logic	472	
ECM Terminals and Reference Value		DTC Confirmation Procedure		MA
On Board Diagnosis Logic	443	Wiring Diagram	474	
DTC Confirmation Procedure		Diagnostic Procedure		
Wiring Diagram		Component Inspection		EM
Diagnostic Procedure		DTC P1130 SWIRL CONTROL VALVE CONTROL		
DTC P1110, P1135 IVT CONTROL		SOLENOID VALVE	477	Г
Description		Description		LC
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor		
Mode	448	Mode	478	EC
On Board Diagnosis Logic		ECM Terminals and Reference Value		LU
DTC Confirmation Procedure		On Board Diagnosis Logic		
Diagnostic Procedure		DTC Confirmation Procedure		FE
DTC P1111, P1136 IVT CONTROL SOLENOID		Wiring Diagram		
VALVE	451	Diagnostic Procedure		0.0
Component Description		DTC P1131 SWIRL CONTROL VALVE CONTROL		CL
CONSULT-II Reference Value in Data Monitor		SOLENOID VALVE	498	
Mode	451	Component Description		MT
ECM Terminals and Reference Value	451	CONSULT-II Reference Value in Data Monitor		ט טעט
On Board Diagnosis Logic	_	Mode	498	
DTC Confirmation Procedure		ECM Terminals and Reference Value		AT
Wiring Diagram		On Board Diagnosis Logic		
Diagnostic Procedure		DTC Confirmation Procedure		
DTC P1121 ELECTRIC THROTTLE CONTROL		Wiring Diagram		TF
ACTUATOR	457	Diagnostic Procedure		
Component Description		DTC P1143, P1163 HO2S1		PD
On Board Diagnosis Logic		Component Description		
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor		
Diagnostic Procedure		Mode	504	
DTC P1122 ELECTRIC THROTTLE CONTROL		ECM Terminals and Reference Value	504	
FUNCTION	459	On Board Diagnosis Logic	505	0.00
Description	459	DTC Confirmation Procedure	505	SU
ECM Terminals and Reference Value	459	Overall Function Check	506	
On Board Diagnosis Logic	460	Diagnostic Procedure	507	BR
DTC Confirmation Procedure	460	DTC P1144, P1164 HO2S1	512	
Wiring Diagram	461	Component Description	512	
Diagnostic Procedure	462	CONSULT-II Reference Value in Data Monitor		ST
Component Inspection	466	Mode	512	-
DTC P1124, P1126 THROTTLE CONTROL		ECM Terminals and Reference Value	512	
MOTOR RELAY	467	On Board Diagnosis Logic	513	RS
Component Description	467	DTC Confirmation Procedure	513	
CONSULT-II Reference Value in Data Monitor		Overall Function Check	514	BT
Mode	467	Diagnostic Procedure	515	
ECM Terminals and Reference Value	467	DTC P1146, P1166 HO2S2	521	
On Board Diagnosis Logic	467	Component Description	521	HA
DTC Confirmation Procedure	468	CONSULT-II Reference Value in Data Monitor		0 00 0
Wiring Diagram	469	Mode	521	
Diagnostic Procedure		ECM Terminals and Reference Value		SC
Component Inspection		On Board Diagnosis Logic		
DTC P1128 THROTTLE CONTROL MOTOR		DTC Confirmation Procedure		
Component Description		Overall Function Check		EL
ECM Terminals and Reference Value	472	Wiring Diagram	524	

Diagnostic Procedure	526	ECM Terminals and Reference Value	562
DTC P1147, P1167 HO2S2	531	On Board Diagnosis Logic	
Component Description	531	DTC Confirmation Procedure	562
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	564
Mode	531	Diagnostic Procedure	565
ECM Terminals and Reference Value	531	DTC P1442 EVAP CONTROL SYSTEM	567
On Board Diagnosis Logic	531	On Board Diagnosis Logic	567
DTC Confirmation Procedure	532	DTC Confirmation Procedure	568
Overall Function Check	532	Diagnostic Procedure	569
Wiring Diagram	534	DTC P1444 EVAP CANISTER PURGE VOLUME	
Diagnostic Procedure	536	CONTROL SOLENOID VALVE	582
DTC P1148, P1168 CLOSED LOOP CONTROL	541	Description	582
On Board Diagnosis Logic	541	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	582
Overall Function Check	542	ECM Terminals and Reference Value	583
Diagnostic Procedure	542	On Board Diagnosis Logic	583
DTC P1165 SWIRL CONTROL VALVE CONTROL		DTC Confirmation Procedure	
VACUUM CHECK SWITCH	543	Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		DTC P1446 EVAP CANISTER VENT CONTROL	
Mode	543	VALVE	594
ECM Terminals and Reference Value		Component Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	594
Wiring Diagram		ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P1211 ABS/TCS CONTROL UNIT		DTC Confirmation Procedure	
Description		Wiring Diagram	
On Board Diagnosis Logic		Diagnostic Procedure	
DTC Confirmation Procedure		DTC P1448 EVAP CANISTER VENT CONTROL	
Diagnostic Procedure		VALVE	602
DTC P1212 ABS/TCS COMMUNICATION LINE		Component Description	
Description		CONSULT-II Reference Value in Data Monitor	002
On Board Diagnosis Logic		Mode	602
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P1217 ENGINE OVER TEMPERATURE	553	DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	
Overall Function Check		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Main 12 Causes of Overheating		DTC P1456 EVAP CONTROL SYSTEM	
DTC P1225 TP SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	
DTC Confirmation Procedure		Diagnostic Procedure	
Diagnostic Procedure		DTC P1490 VACUUM CUT VALVE BYPASS	01-
DTC P1226 TP SENSOR		VALVE	627
Component Description		Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor	021
DTC Confirmation Procedure		Mode	627
Diagnostic Procedure		ECM Terminals and Reference Value	
DTC P1229 SENSOR POWER SUPPLY		On Board Diagnosis Logic	
		J:: DOG: G DIGG! 10010 LUGIU	026

G[

DTC Confirmation Procedure	628	Diagnostic Procedure	672	
Wiring Diagram	629	Component Inspection	674	MA
Diagnostic Procedure	630	DTC P2122, P2123 APP SENSOR	675	
DTC P1491 VACUUM CUT VALVE BYPASS		Component Description	675	
VALVE	633	CONSULT-II Reference Value in Data Monitor		EM
Description	633	Mode	675	
CONSULT-II Reference Value in Data Monitor		ECM Terminals and Reference Value	675	LC
Mode	633	On Board Diagnosis Logic	676	
ECM Terminals and Reference Value	633	DTC Confirmation Procedure		
On Board Diagnosis Logic	634	Wiring Diagram	678	EC
DTC Confirmation Procedure	634	Diagnostic Procedure	679	
Overall Function Check	635	Component Inspection	681	
Wiring Diagram		DTC P2127, P2128 APP SENSOR		FE
Diagnostic Procedure		Component Description		
DTC P1564 ASCD STEERING SWITCH		CONSULT-II Reference Value in Data Monitor		@I
Component Description		Mode	682	GL
CONSULT-II Reference Value in Data Monitor		ECM Terminals and Reference Value		
Mode	645	On Board Diagnosis Logic	683	MT
ECM Terminals and Reference Value		DTC Confirmation Procedure		
On Board Diagnosis Procedure		Wiring Diagram		
DTC Confirmation Procedure		Diagnostic Procedure		AT
Wiring Diagram		Component Inspection		2 40
Diagnostic Procedure		DTC P2135 TP SENSOR		
Component Inspection		Component Description		TF
DTC P1572 ASCD BRAKE SWITCH		CONSULT-II Reference Value in Data Monitor	000	
Component Description		Mode	690	
CONSULT-II Reference Value in Data Monitor	002	ECM Terminals and Reference Value		PD
Mode	652	On Board Diagnosis Logic		
ECM Terminals and Reference Value		DTC Confirmation Procedure		AX
On Board Diagnosis Procedure		Wiring Diagram		
DTC Confirmation Procedure		Diagnostic Procedure		
Wiring Diagram		Component Inspection		SU
Diagnostic Procedure		DTC P2138 APP SENSOR		
Component Inspection				
DTC P1706 PNP SWITCH		Component Description	091	$\mathbb{B}\mathbb{R}$
			607	
CONSULT II Reference Value in Data Manitor		Wood	097	65
CONSULT-II Reference Value in Data Monitor		ECM Terminals and Reference Value		ST
Mode		On Board Diagnosis Logic		
ECM Terminals and Reference Value		DTC Confirmation Procedure		RS
On Board Diagnosis Logic DTC Confirmation Procedure		Wiring Diagram		1110
Overall Function Check		Diagnostic Procedure		
		Component Inspection	704	BT
Wiring Diagram		VARIABLE INDUCTION AIR CONTROL SYSTEM	705	
Diagnostic Procedure DTC P1805 BRAKE SWITCH		(VIAS)		
		Description		HA
Description	669	ECM Terminals and Reference Value		
CONSULT-II Reference Value in Data Monitor	000	Wiring Diagram		@@
Mode		Diagnostic Procedure		SC
ECM Terminals and Reference Value		IGNITION SIGNAL		
On Board Diagnosis Logic		Component Description		EL
DTC Confirmation Procedure		ECM Terminals and Reference Value		حد
Wiring Diagram	6/1	Wiring Diagram	/15	

Diagnostic Procedure	718
INJECTOR	
Component Description	724
CONSULT-II Reference Value in Data Monitor	
Mode	724
ECM Terminals and Reference Value	724
Wiring Diagram	725
Diagnostic Procedure	
FUEL PUMP	
System Description	
Component Description	729
CONSULT-II Reference Value in Data Monitor	
Mode	729
ECM Terminals and Reference Value	
Wiring Diagram	731
Diagnostic Procedure	
REFRIGERANT PRESSURE SENSOR	
Description	736
ECM Terminals and Reference Value	
Wiring Diagram	737
Diagnostic Procedure	
ASCD BRAKE SWITCH	
Component Description	
CONSULT-II Reference Value in Data Monitor	
Mode	741
ECM Terminals and Reference Value	741
Wiring Diagram	742

Diagnostic Procedure	743
ASCD INDICATOR LAMP	749
Component Description	749
CONSULT-II Reference Value in Data Monitor	
Mode	749
Wiring Diagram	750
Diagnostic Procedure	751
ELECTRICAL LOAD SIGNAL	752
ECM Terminals and Reference Value	752
Wiring Diagram	753
Diagnostic Procedure	754
MIL & DATA LINK CONNECTORS	757
Wiring Diagram	757
SERVICE DATA AND SPECIFICATIONS (SDS)	758
Fuel Pressure Regulator	758
Idle Speed and Ignition Timing	758
Mass Air Flow Sensor	758
Engine Coolant Temperature Sensor	758
Heated Oxygen Sensor 1 Heater	758
Heated Oxygen Sensor 2 Heater	758
Fuel Pump	758
Injector	758
Calculated Load Value	758
Intake Air Temperature Sensor	
Fuel Tank Temperature Sensor	759
Crankshaft Position Sensor (POS)	
Camshaft Position Sensor (PHASE)	759

Alphabetical Index

NAEC0001

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-166, "DTC U1000, U1001 CAN COMMUNICATION LINE".

MA

X: Applicable —: Not applicable

Itama	DTO	C*1		MII liabtica		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Trip	MIL lighting up	Reference page	_
A/T 1ST GR FNCTN	P0731	0731	2	Х	AT-123	_
A/T 2ND GR FNCTN	P0732	0732	2	Х	AT-129	
A/T 3RD GR FNCTN	P0733	0733	2	Х	AT-135	
A/T 4TH GR FNCTN	P0734	0734	2	Х	AT-141	_
A/T TCC S/V FNCTN	P0744	0744	2	Х	AT-154	_
APP SEN 1/CIRC	P2122	2122	1	Х	EC-675	_
APP SEN 1/CIRC	P2123	2123	1	Х	EC-675	_
APP SEN 2/CIRC	P2127	2127	1	Х	EC-682	_
APP SEN 2/CIRC	P2128	2128	1	Х	EC-682	_
APP SENSOR	P2138	2138	1	Х	EC-697	_
ASCD BRAKE SW	P1572	1572	1	_	EC-652	_
ASCD SW	P1564	1564	1	_	EC-645	_
ATF TEMP SEN/CIRC	P0710	0710	2	Х	AT-108	_
BRAKE SW/CIRCUIT	P1805	1805	2	_	EC-669	_
CAN COMM CIRCUIT	U1000	1000*5	1	Х	EC-166	_
CAN COMM CIRCUIT	U1001	1001*5	2	_	EC-166	_
CKP SEN/CIRCUIT	P0335	0335	2	Х	EC-319	_
CLOSED LOOP-B1	P1148	1148	1	Х	EC-541	-
CLOSED LOOP-B2	P1168	1168	1	Х	EC-541	_
CMP SEN/CIRC-B1	P0340	0340	2	Х	EC-326	_
CMP SEN/CIRC-B2	P0345	0345	2	Х	EC-326	_
CTP LEARNING	P1225	1225	2	_	EC-558	_
CTP LEARNING	P1226	1226	2	_	EC-560	_
CYL 1 MISFIRE	P0301	0301	2	Х	EC-305	_
CYL 2 MISFIRE	P0302	0302	2	Х	EC-305	
CYL 3 MISFIRE	P0303	0303	2	Х	EC-305	_
CYL 4 MISFIRE	P0304	0304	2	Х	EC-305	
CYL 5 MISFIRE	P0305	0305	2	Х	EC-305	
CYL 6 MISFIRE	P0306	0306	2	Х	EC-305	_
ECM	P0605	0605	1 or 2	X or —	EC-441	_
ECM BACK UP/CIRCUIT	P1065	1065	2	Х	EC-443	_
ECT SEN/CIRC	P0117	0117	1	Х	EC-204	_
ECT SEN/CIRC	P0118	0118	1	Х	EC-204	_

Homo	DTO	C*1		NAUL P. L.C.	
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Trip	MIL lighting up	Reference page
ECT SENSOR	P0125	0125	1	Х	EC-217
ENG OVER TEMP	P1217	1217	1	Х	EC-553
ENGINE SPEED SIG	P0725	0725	2	Х	AT-119
ETC ACTR	P1121	1121	1	Х	EC-457
ETC FUNCTION/CIRC	P1122	1122	1	Х	EC-459
ETC MOT	P1128	1128	1	Х	EC-472
ETC MOT PWR	P1124	1124	1	Х	EC-467
ETC MOT PWR	P1126	1126	1	Х	EC-467
EVAP GROSS LEAK	P0455	0455	2	Х	EC-394
EVAP PURG FLOW/MON	P0441	0441	2	Х	EC-339
EVAP SMALL LEAK	P0442	0442	2	Х	EC-349
EVAP SMALL LEAK	P1442	1442	2	Х	EC-567
EVAP SYS PRES SEN	P0452	0452	2	Х	EC-378
EVAP SYS PRES SEN	P0453	0453	2	Х	EC-384
EVAP VERY SML LEAK	P0456	0456	2	Х	EC-407
EVAP VERY SML LEAK	P1456	1456	2	Х	EC-611
FTT SEN/CIRCUIT	P0182	0182	2	Х	EC-293
FTT SEN/CIRCUIT	P0183	0183	2	Х	EC-293
FTT SENSOR	P0181	0181	2	Х	EC-290
FUEL LEV SEN SLOSH	P0460	0460	2	Х	EC-423
FUEL LEVEL SENSOR	P0461	0461	2	Х	EC-425
FUEL LEVL SEN/CIRC	P0462	0462	2	Х	EC-428
FUEL LEVL SEN/CIRC	P0463	0463	2	Х	EC-428
FUEL SYS-LEAN-B1	P0171	0171	2	Х	EC-273
FUEL SYS-LEAN-B2	P0174	0174	2	Х	EC-273
FUEL SYS-RICH-B1	P0172	0172	2	Х	EC-282
FUEL SYS-RICH-B2	P0175	0175	2	Х	EC-282
HO2S1 (B1)	P0132	0132	2	Х	EC-224
HO2S1 (B1)	P0133	0133	2	Х	EC-233
HO2S1 (B1)	P0134	0134	2	Х	EC-246
HO2S1 (B1)	P1143	1143	2	Х	EC-504
HO2S1 (B1)	P1144	1144	2	Х	EC-512
HO2S1 (B2)	P0152	0152	2	Х	EC-224
HO2S1 (B2)	P0153	0153	2	Х	EC-233
HO2S1 (B2)	P0154	0154	2	Х	EC-246
HO2S1 (B2)	P1163	1163	2	Х	EC-504

Itoma	DT	C*1		MIL lighting	
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Trip	MIL lighting up	Reference page
HO2S1 (B2)	P1164	1164	2	Х	EC-512
HO2S1 HTR (B1)	P0031	0031	2	Х	EC-173
HO2S1 HTR (B1)	P0032	0032	2	Х	EC-173
HO2S1 HTR (B2)	P0051	0051	2	Х	EC-173
HO2S1 HTR (B2)	P0052	0052	2	Х	EC-173
HO2S2 (B1)	P0138	0138	2	Х	EC-255
HO2S2 (B1)	P0139	0139	2	Х	EC-263
HO2S2 (B1)	P1146	1146	2	Х	EC-521
HO2S2 (B1)	P1147	1147	2	Х	EC-531
HO2S2 (B2)	P0158	0158	2	Х	EC-255
HO2S2 (B2)	P0159	0159	2	Х	EC-263
HO2S2 (B2)	P1166	1166	2	Х	EC-521
HO2S2 (B2)	P1167	1167	2	Х	EC-531
HO2S2 HTR (B1)	P0037	0037	2	Х	EC-181
HO2S2 HTR (B1)	P0038	0038	2	Х	EC-181
HO2S2 HTR (B2)	P0057	0057	2	Х	EC-181
HO2S2 HTR (B2)	P0058	0058	2	Х	EC-181
IAT SEN/CIRCUIT	P0112	0112	2	Х	EC-200
IAT SEN/CIRCUIT	P0113	0113	2	Х	EC-200
IAT SENSOR	P0127	0127	2	Х	EC-220
INT/V TIM CONT-B1	P0011	0011	2	Х	EC-169
INT/V TIM CONT-B1	P1110	1110	2	Х	EC-448
INT/V TIM CONT-B2	P0021	0021	2	Х	EC-169
INT/V TIM CONT-B2	P1135	1135	2	Х	EC-448
INT/V TIM V/CIR-B1	P1111	1111	2	Х	EC-451
INT/V TIM V/CIR-B2	P1136	1136	2	Х	EC-451
ISC SYSTEM	P0506	0506	2	Х	EC-432
ISC SYSTEM	P0507	0507	2	Х	EC-434
KNOCK SEN/CIRC-B1	P0327	0327	2	_	EC-314
KNOCK SEN/CIRC-B1	P0328	0328	2	_	EC-314
L/PRESS SOL/CIRC	P0745	0745	2	Х	AT-165
MAF SEN/CIRCUIT	P0101	0101	1	Х	EC-187
MAF SEN/CIRCUIT	P0102	0102	1	Х	EC-194
MAF SEN/CIRCUIT	P0103	0103	1	Х	EC-194
MULTI CYL MISFIRE	P0300	0300	2	Х	EC-305
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	2	_	EL-389

Hama	DT	C*1		MII limbion		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Trip	MIL lighting up	Reference page	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing*4	_	Flashing*4	EC-95	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	
O/R CLTCH SOL/CIRC	P1760	1760	2	Х	AT-185	
P-N POS SW/CIRCUIT	P1706	1706	2	Х	EC-663	
PNP SW/CIRC	P0705	0705	2	Х	AT-102	
PURG VOLUME CONT/V	P0444	0444	2	Х	EC-364	
PURG VOLUME CONT/V	P0445	0445	2	Х	EC-364	
PURG VOLUME CONT/V	P1444	1444	2	Х	EC-582	
PW ST P SEN/CIRC	P0550	0550	2	_	EC-436	
SENSOR POWER/CIRC	P1229	1229	1	Х	EC-562	
SFT SOL A/CIRC	P0750	0750	1	Х	AT-171	
SFT SOL B/CIRC	P0755	0755	1	Х	AT-175	
SWIRL CONT SOL/V	P1130	1130	2	Х	EC-477	
SWIRL CONT SOL/V	P1131	1131	2	Х	EC-498	
SWL CON VC SW/CIRC	P1165	1165	2	Х	EC-543	
TCC SOLENOID/CIRC	P0740	0740	2	Х	AT-151	
TCS C/U FUNCTN	P1211	1211	2	_	EC-549	
TCS/CIRC	P1212	1212	2	_	EC-551	
THERMSTAT FNCTN	P0128	0128	2	Х	EC-222	
TP SEN 1/CIRC	P0222	0222	1	Х	EC-298	
TP SEN 1/CIRC	P0223	0223	1	Х	EC-298	
TP SEN 2/CIRC	P0122	0122	1	Х	EC-210	
TP SEN 2/CIRC	P0123	0123	1	Х	EC-210	
TP SEN/CIRC A/T	P1705	1705	1	Х	AT-179	
TP SENSOR	P2135	2135	1	Х	EC-690	
TW CATALYST SYS-B1	P0420	0420	2	Х	EC-334	
TW CATALYST SYS-B2	P0430	0430	2	Х	EC-334	
VC CUT/V BYPASS/V	P1491	1491	2	Х	EC-633	
VC/V BYPASS/V	P1490	1490	2	Х	EC-627	
VEH SPD SEN/CIR AT*6	P0720	0720	2	Х	AT-114	
VEH SPEED SEN/CIRC*6	P0500	0500	2	Х	EC-430	
VENT CONTROL VALVE	P0447	0447	2	Х	EC-371	
VENT CONTROL VALVE	P1446	1446	2	Х	EC-594	
VENT CONTROL VALVE	P1448	1448	2	Х	EC-602	

TROUBLE DIAGNOSIS — INDEX

Alphabetical Index (Cont'd)

- *1: 1st trip DTC No. is the same as DTC No.
- *2: This number is prescribed by SAE J2012.
- *3: In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.
- *4: When engine is running.
- *5: The troubleshooting for this DTC needs CONSULT-II.
- *6: When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

DTC No. Index

NAEC1181

G[

MA

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-166, "DTC U1000, U1001 CAN COMMUNICATION LINE".

X: Applicable —: Not applicable

DT	C*1					EC
CONSULT-II GST*2	ECM*3	ltems (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page	
No DTC	Flashing*4	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	Flashing*4	EC-95	GL
U1000	1000*5	CAN COMM CIRCUIT	1	X	EC-166	_
U1001	1001*5	CAN COMM CIRCUIT	2	_	EC-166	MT
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	_	_	AT
P0011	0011	INT/V TIM CONT-B1	2	X	EC-169	- - TF
P0021	0021	INT/V TIM CONT-B2	2	X	EC-169	- 00
P0031	0031	HO2S1 HTR (B1)	2	X	EC-173	- PD
P0032	0032	HO2S1 HTR (B1)	2	X	EC-173	
P0037	0037	HO2S2 HTR (B1)	2	X	EC-181	
P0038	0038	HO2S2 HTR (B1)	2	X	EC-181	_
P0051	0051	HO2S1 HTR (B2)	2	X	EC-173	SU
P0052	0052	HO2S1 HTR (B2)	2	X	EC-173	
P0057	0057	HO2S2 HTR (B2)	2	X	EC-181	BR
P0058	0058	HO2S2 HTR (B2)	2	X	EC-181	_
P0101	0101	MAF SEN/CIRCUIT	1	X	EC-187	ST
P0102	0102	MAF SEN/CIRCUIT	1	X	EC-194	_
P0103	0103	MAF SEN/CIRCUIT	1	X	EC-194	RS
P0112	0112	IAT SEN/CIRCUIT	2	X	EC-200	_
P0113	0113	IAT SEN/CIRCUIT	2	X	EC-200	BT
P0117	0117	ECT SEN/CIRC	1	X	EC-204	
P0118	0118	ECT SEN/CIRC	1	X	EC-204	- HA
P0122	0122	TP SEN 2/CIRC	1	X	EC-210	- @@
P0123	0123	TP SEN 2/CIRC	1	X	EC-210	- SC
P0125	0125	ECT SENSOR	1	X	EC-217	- - El
P0127	0127	IAT SENSOR	2	×	EC-220	- 22
P0128	0128	THERMSTAT FNCTN	2	X	EC-222	- . IDX

DTC	C*1	lta ma			
CONSULT-II GST*2	ECM*3	(CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P0132	0132	HO2S1 (B1)	2	Х	EC-224
P0133	0133	HO2S1 (B1)	2	Х	EC-233
P0134	0134	HO2S1 (B1)	2	Х	EC-246
P0138	0138	HO2S2 (B1)	2	Х	EC-255
P0139	0139	HO2S2 (B1)	2	Х	EC-263
P0152	0152	HO2S1 (B2)	2	Х	EC-224
P0153	0153	HO2S1 (B2)	2	Х	EC-233
P0154	0154	HO2S1 (B2)	2	Х	EC-246
P0158	0158	HO2S2 (B2)	2	Х	EC-255
P0159	0159	HO2S2 (B2)	2	Х	EC-263
P0171	0171	FUEL SYS-LEAN-B1	2	Х	EC-273
P0172	0172	FUEL SYS-RICH-B1	2	Х	EC-282
P0174	0174	FUEL SYS-LEAN-B2	2	Х	EC-273
P0175	0175	FUEL SYS-RICH-B2	2	Х	EC-282
P0181	0181	FTT SENSOR	2	Х	EC-290
P0182	0182	FTT SEN/CIRCUIT	2	Х	EC-293
P0183	0183	FTT SEN/CIRCUIT	2	Х	EC-293
P0222	0222	TP SEN 1/CIRC	1	Х	EC-298
P0223	0223	TP SEN 1/CIRC	1	Х	EC-298
P0300	0300	MULTI CYL MISFIRE	2	Х	EC-305
P0301	0301	CYL 1 MISFIRE	2	Х	EC-305
P0302	0302	CYL 2 MISFIRE	2	Х	EC-305
P0303	0303	CYL 3 MISFIRE	2	X	EC-305
P0304	0304	CYL 4 MISFIRE	2	Х	EC-305
P0305	0305	CYL 5 MISFIRE	2	X	EC-305
P0306	0306	CYL 6 MISFIRE	2	X	EC-305
P0327	0327	KNOCK SEN/CIRC-B1	2	_	EC-314
P0328	0328	KNOCK SEN/CIRC-B1	2	_	EC-314
P0335	0335	CKP SEN/CIRCUIT	2	X	EC-319
P0340	0340	CMP SEN/CIRC-B1	2	X	EC-326
P0345	0345	CMP SEN/CIRC-B2	2	X	EC-326
P0420	0420	TW CATALYST SYS-B1	2	Х	EC-334
P0430	0430	TW CATALYST SYS-B2	2	Х	EC-334
P0441	0441	EVAP PURG FLOW/MON	2	Х	EC-339
P0442	0442	EVAP SMALL LEAK	2	Х	EC-349
P0444	0444	PURG VOLUME CONT/V	2	X	EC-364

DTC	C*1	Itama			
CONSULT-II GST*2	ECM*3	(CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P0445	0445	PURG VOLUME CONT/V	2	Х	EC-364
P0447	0447	VENT CONTROL VALVE	2	Х	EC-371
P0452	0452	EVAP SYS PRES SEN	2	Х	EC-378
P0453	0453	EVAP SYS PRES SEN	2	X	EC-384
P0455	0455	EVAP GROSS LEAK	2	Х	EC-394
P0456	0456	EVAP VERY SML LEAK	2	X	EC-407
P0460	0460	FUEL LEV SEN SLOSH	2	X	EC-423
P0461	0461	FUEL LEVEL SENSOR	2	Х	EC-425
P0462	0462	FUEL LEVL SEN/CIRC	2	Х	EC-428
P0463	0463	FUEL LEVL SEN/CIRC	2	X	EC-428
P0500	0500	VEH SPEED SEN/CIRC*6	2	X	EC-430
P0506	0506	ISC SYSTEM	2	X	EC-432
P0507	0507	ISC SYSTEM	2	X	EC-434
P0550	0550	PW ST P SEN/CIRC	2	_	EC-436
P0605	0605	ECM	1 or 2	X or —	EC-441
P0705	0705	PNP SW/CIRC	2	X	AT-102
P0710	0710	ATF TEMP SEN/CIRC	2	X	AT-108
P0720	0720	VEH SPD SEN/CIR AT*6	2	X	AT-114
P0725	0725	ENGINE SPEED SIG	2	X	AT-119
P0731	0731	A/T 1ST GR FNCTN	2	X	AT-123
P0732	0732	A/T 2ND GR FNCTN	2	X	AT-129
P0733	0733	A/T 3RD GR FNCTN	2	X	AT-135
P0734	0734	A/T 4TH GR FNCTN	2	X	AT-141
P0740	0740	TCC SOLENOID/CIRC	2	X	AT-151
P0744	0744	A/T TCC S/V FNCTN	2	X	AT-156
P0745	0745	L/PRESS SOL/CIRC	2	X	AT-165
P0750	0750	SFT SOL A/CIRC	1	X	AT-171
P0755	0755	SFT SOL B/CIRC	1	X	AT-175
P1065	1065	ECM BACK UP/CIRCUIT	2	X	EC-443
P1110	1110	INT/V TIM CONT-B1	2	Х	EC-448
P1111	1111	INT/V TIM V/CIR-B1	2	Х	EC-451
P1121	1121	ETC ACTR	1	Х	EC-457
P1122	1122	ETC FUNCTION/CIRC	1	Х	EC-459
P1124	1124	ETC MOT PWR	1	Х	EC-467
P1126	1126	ETC MOT PWR	1	Х	EC-467
P1128	1128	ETC MOT	1	X	EC-472

DTO	C*1	No			
CONSULT-II GST*2	ECM*3	Items (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P1130	1130	SWIRL CONT SOL/V	2	X	EC-477
P1131	1131	SWIRL CONT SOL/V	2	Х	EC-498
P1135	1135	INT/V TIM CONT-B2	2	Х	EC-448
P1136	1136	INT/V TIM V/CIR-B2	2	X	EC-451
P1143	1143	HO2S1 (B1)	2	X	EC-504
P1144	1144	HO2S1 (B1)	2	Х	EC-512
P1146	1146	HO2S2 (B1)	2	Х	EC-521
P1147	1147	HO2S2 (B1)	2	Х	EC-531
P1148	1148	CLOSED LOOP-B1	1	X	EC-541
P1163	1163	HO2S1 (B2)	2	X	EC-504
P1164	1164	HO2S1 (B2)	2	X	EC-512
P1165	1165	SWL CON VC SW/CIRC	2	X	EC-543
P1166	1166	HO2S2 (B2)	2	Х	EC-521
P1167	1167	HO2S2 (B2)	2	X	EC-531
P1168	1168	CLOSED LOOP-B2	1	X	EC-541
P1211	1211	TCS C/U FUNCTN	2	_	EC-549
P1212	1212	TCS/CIRC	2	_	EC-551
P1217	1217	ENG OVER TEMP	1	Х	EC-553
P1225	1225	CTP LEARNING	2	_	EC-558
P1226	1226	CTP LEARNING	2	_	EC-560
P1229	1229	SENSOR POWER/CIRC	1	X	EC-562
P1442	1442	EVAP SMALL LEAK	2	X	EC-567
P1444	1444	PURG VOLUME CONT/V	2	X	EC-582
P1446	1446	VENT CONTROL VALVE	2	X	EC-594
P1448	1448	VENT CONTROL VALVE	2	X	EC-602
P1456	1456	EVAP VERY SML LEAK	2	X	EC-611
P1490	1490	VC/V BYPASS/V	2	X	EC-627
P1491	1491	VC CUT/V BYPASS/V	2	Х	EC-633
P1564	1564	ASCD SW	1	_	EC-645
P1572	1572	ASCD BRAKE SW	1	_	EC-652
P1610 - P1615	1610 - 1615	NATS MALFUNCTION	2		EL-389
P1705	1705	TP SEN/CIRC A/T	1	X	AT-179
P1706	1706	P-N POS SW/CIRCUIT	2	X	EC-663
P1760	1760	O/R CLTCH SOL/CIRC	2	X	AT-185
P1805	1805	BRAKE SW/CIRCUIT	2	_	EC-669
P2122	2122	APP SEN 1/CIRC	1	X	EC-675

TROUBLE DIAGNOSIS — INDEX

DTC No. Index (Cont'd)

DT	C*1	Itama			
CONSULT-II GST*2	ECM*3	Ttems (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P2123	2123	APP SEN 1/CIRC	1	Х	EC-675
P2127	2127	APP SEN 2/CIRC	1	X	EC-682
P2128	2128	APP SEN 2/CIRC	1	Х	EC-682
P2135	2135	TP SENSOR	1	Х	EC-690
P2138	2138	APP SENSOR	1	Х	EC-697

^{*1: 1}st trip DTC No. is the same as DTC No.

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} The troubleshooting for this DTC needs CONSULT-II.

^{*6:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS composition which is available to NISSAN MODEL R50 is as follows:

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.
- For a side collision
 - The Supplemental Restraint System consists of side air bag module (located in the outer side of front seat), side curtain air bag module (located in the headliner side of front and rear seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, refer to RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harness connector (and by yellow harness protector or yellow insulation tape before the harness connectors).

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

NAEC0003

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL-8, "HARNESS CONNECTOR (SLIDE-LOCKING TYPE)".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

NAEC0004

GI

MA

EM

LC

EC

ECM

- Do not disassemble ECM.
- If a battery terminal is disconnected, the memory will return to the ECM

The ECM will not start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.

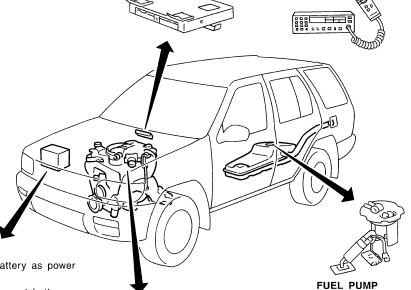
WIRELESS EQUIPMENT

- When installing CB ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far away as possible from the electronic control units.
- 2) Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls. Do not let them run parallel for a long distance.
- 3) Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- 4) Be sure to ground the radio to vehicle body.

BT

HA

SC


EL

• Do not operate fuel pump when there is no fuel in lines. Tighten fuel hose clamps to the

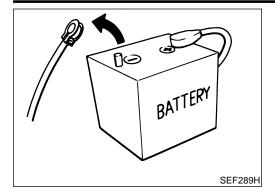
specified torque. (Refer to MA section.)

ENGINE CONTROL SYSTEM HARNESS HANDLING

- · Securely connect ECM harness connectors. A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- · Keep engine control system harness at least 10 cm (3.9 in.) away from adjacent harnesses to prevent an engine control system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep engine control system parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable. SFF952RG

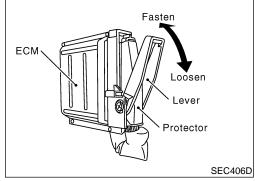
BATTERY

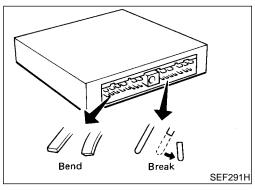
- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.


WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

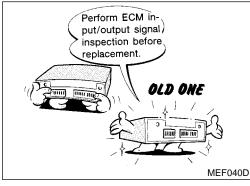
ENGINE CONTROL SYSTEM PARTS HANDLING


- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Do not shock or jar the camshaft position sensor (PHASE) or crankshaft position sensor (POS).

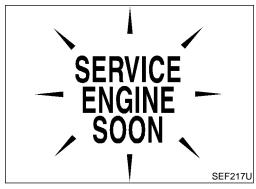


Precautions

Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

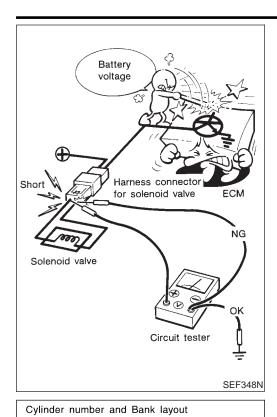


When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown at left.



When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.


Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions properly. Refer to EC-141.

After performing each TROUBLE DIAGNOSIS, perform **DTC Confirmation Procedure or Overall Function Check.** The DTC should not be displayed in the DTC Confirmation Procedure if the repair is completed. The Overall Function Check should be a good result if the repair is completed.

PRECAUTIONS

Precautions (Cont'd)

Bank 1

Front

When measuring ECM signals with a circuit tester, never allow the two tester probes to contact. Accidental contact of probes will cause a short circuit and

damage the ECM power transistor.

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

MA

EM

LC

EC

GL

MIT

AT

B1 indicates the bank 1 and B2 indicates the bank 2 as shown in the figure.

Bank 1 includes No. 1 cylinder.

TF

PD

AX

SU

Wiring Diagrams and Trouble Diagnosis

When you read Wiring diagrams, refer to the following:

Bank 2

- GI-11, "HOW TO READ WIRING DIAGRAMS"
- EL-11, "POWER SUPPLY ROUTING" for power distribution circuit

SEF099WB

When you perform trouble diagnosis, refer to the following:

Crankshaft pulley

- GI-35, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-24, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT"

NAEC0006

ST

BT

HA

SC

EL

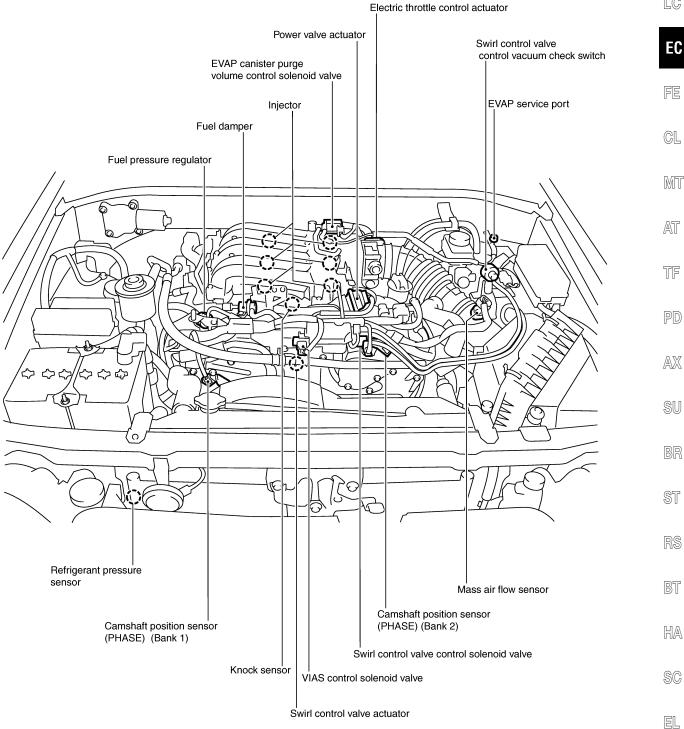
Special Service Tools

The actual shapes of Kent	-Moore tools may differ from those of special service	e tools illustrated here.
Tool number (Kent-Moore No.) Tool name	Description	
EG17650301 (J-33984-A) Radiator cap tester adapter		Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. a: 41.3 (1.626) dia. Unit: mm (in)
	NT564	
KV10117100 (J-36471-A) Heated oxygen sensor wrench	NICOZO.	Loosening or tightening heated oxygen sensors with 22 mm (0.87 in) hexagon nut
(J-44321) Fuel pressure gauge kit	NT379	Checking fuel pressure with pressure gauge
KV109E0010 (J-46209) Break-out box	Break Out Box 00000000000000000000000000000000000	Measuring the ECM signals with a circuit tester
KV109E0080 (J-45819) Y-cable adapter	NT826	Measuring the ECM signals with a circuit tester

EL

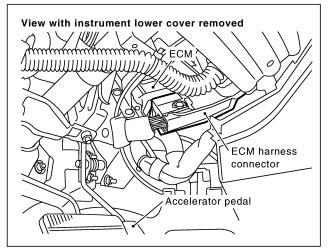
	Commercial S	DETVICE TOOIS	8
Tool name (Kent-Moore No.)	Description		_
Fuel filler cap adapter (i.e.: MLR-8382)		Checking fuel tank vacuum relief valve opening pressure	•
	NT815		
Leak detector (i.e., J-41416)		Locating the EVAP leak	- •
	NT703		
EVAP service port adapter		Applying positive pressure through EVAP service port	-
i.e., J-41413-OBD)			
	NT704		
Socket wrench		Removing and installing engine coolant tempera- ture sensor	-
	19 mm (0.75 in) More than		
	(0.75 in) Nore that mm 32 mm (1.26 in)		
Oxygen sensor thread	NT705 a b	Reconditioning the exhaust system threads before	-
cleaner i.e.: (J-43897-18) (J-43897-12)	Mating surface shave	installing a new oxygen sensor. Use with anti- seize lubricant shown below. a: J-43897-18 18 mm diameter with pitch 1.5	
	cylinder	mm, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter with pitch 1.25 mm, for Titania Oxygen Sensor	
	Flutes ——		
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•

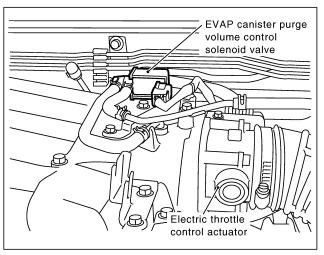
Tool name (Kent-Moore No.)	Description	
Anti-seize lubricant i.e.: (Permatex [™] 133AR or equivalent meeting MIL specification MIL-A- 907)	NT779	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

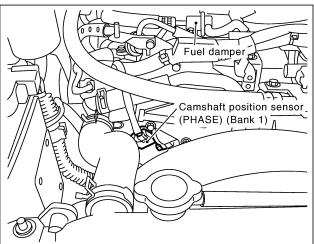

Engine Control Component Parts Location

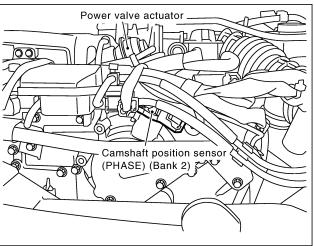
Engine Control Component Parts Location

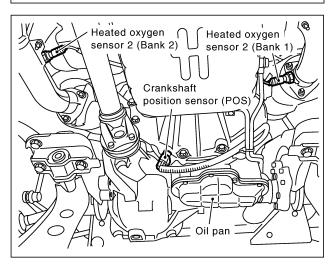
G[

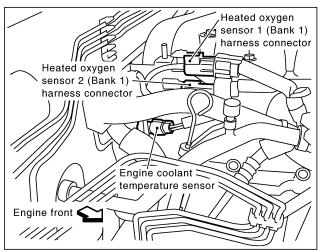

MA


LC




SEC407D


Engine Control Component Parts Location (Cont'd)



SEC408D

Engine Control Component Parts Location (Cont'd)

G[

MA

LC

EC

FE

GL

MT

AT

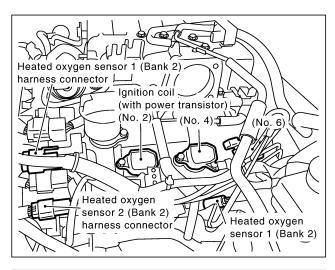
TF

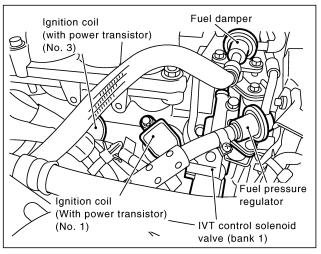
PD

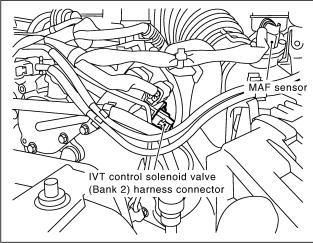
AX

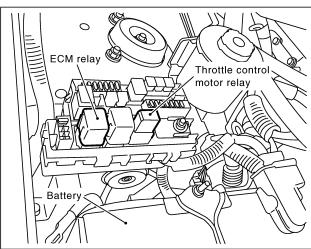
SU

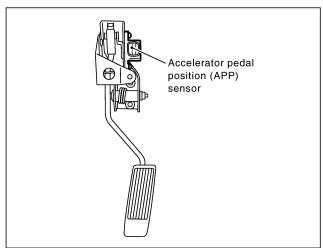
ST

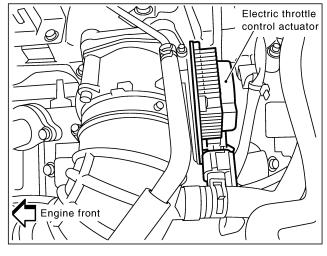

RS

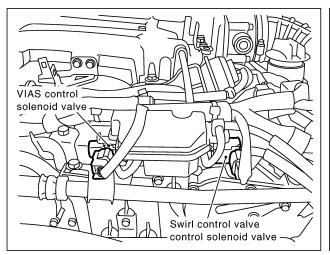

BT

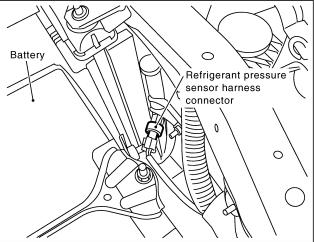

HA

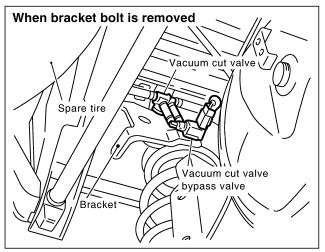

SC

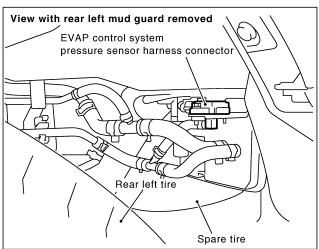

EL










SEC409D

Engine Control Component Parts Location (Cont'd)

SEC410D

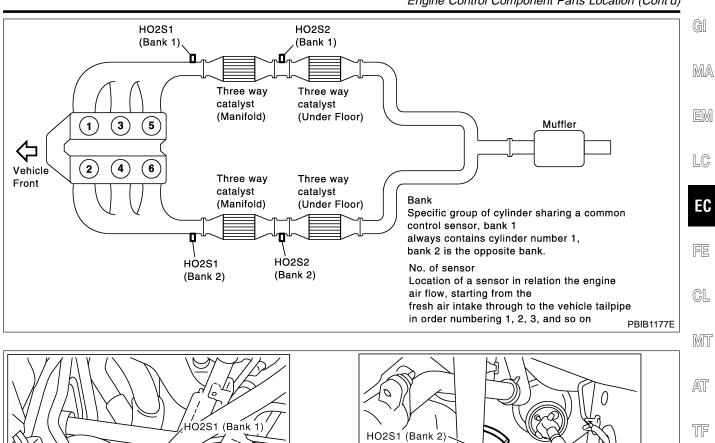
Engine Control Component Parts Location (Cont'd)

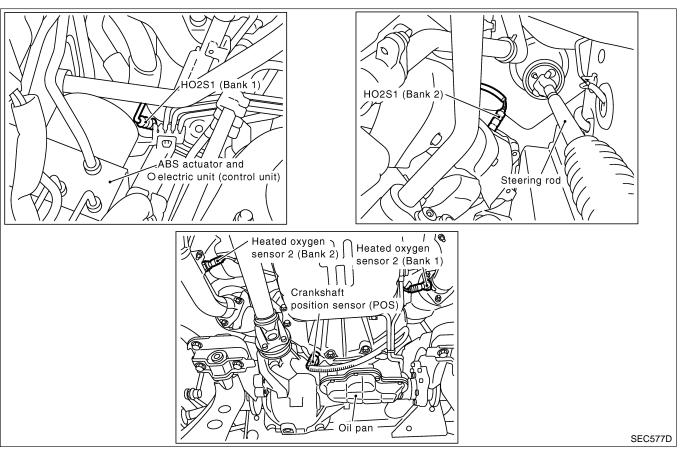
PD

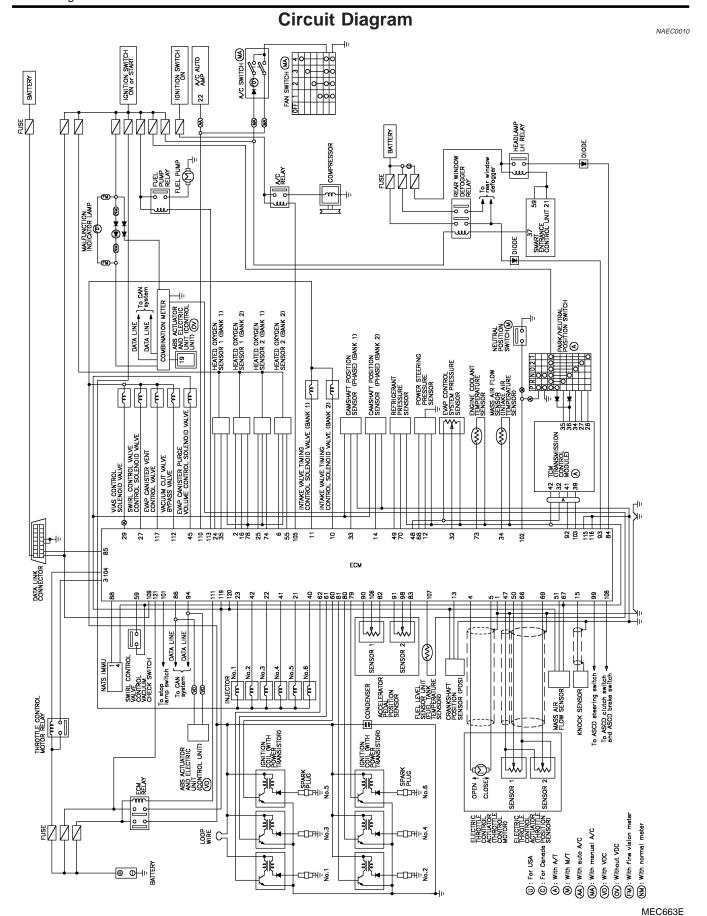
 $\mathbb{A}\mathbb{X}$

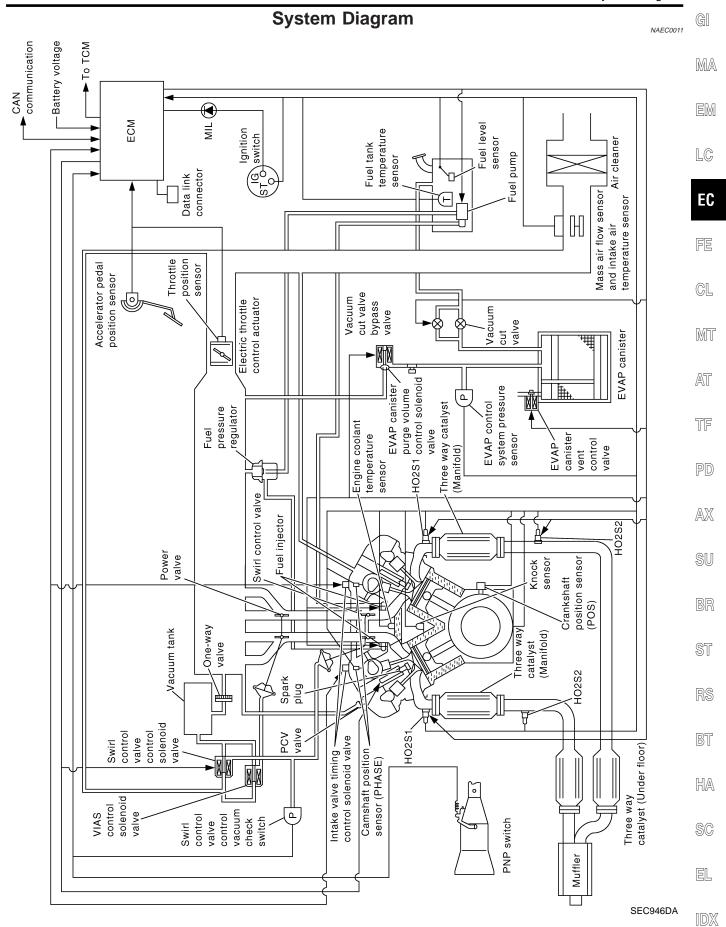
SU

ST

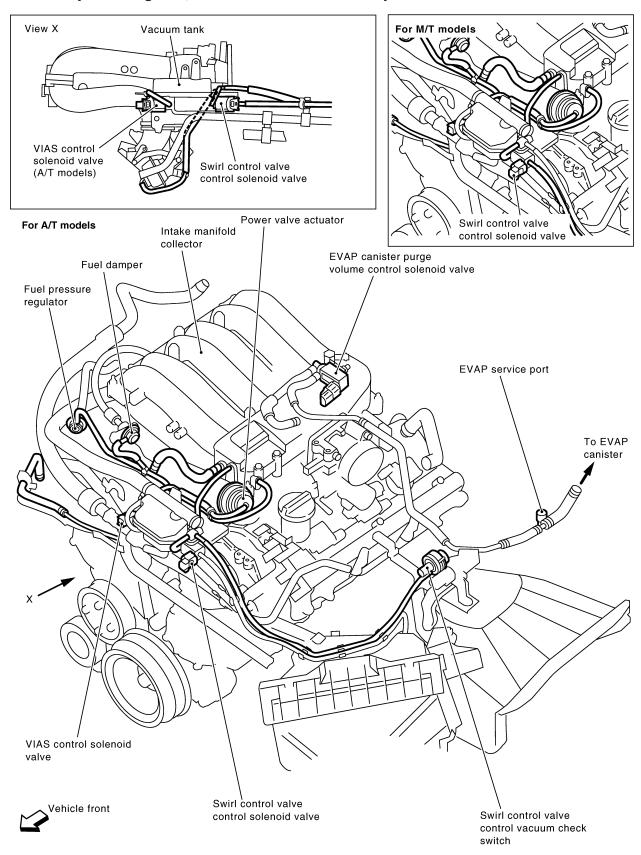

RS


BT


HA


SC

EL



Vacuum Hose Drawing

Refer to "System Diagram", EC-31 for Vacuum Control System.

NAEC0012

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

System Chart

	System Chart	NAEC0013	G[
Input (Sensor)	ECM Function	Output (Actuator)	0.0.0
 Crankshaft position sensor (POS) Camshaft position sensor (PHASE) 	Fuel injection & mixture ratio control	Injector	MA
Mass air flow sensor Engine coolant temperature sensor	Electronic ignition system	Power transistor	EM
Heated oxygen sensor 1Ignition switchThrottle position sensor	Idle air control system ASCD vehicle speed control	Electric throttle control actuator	LG
Accelerator pedal position sensorPark/neutral position (PNP) switch	Fuel pump control	Fuel pump relay	
Air conditioner switchKnock sensor	On board diagnostic system	MIL (On the instrument panel)*4	EC
Intake air temperature sensorEVAP control system pressure sensorBattery voltage	Swirl control valve control	Swirl control valve control solenoid valve	FE
Power steering pressure sensorVehicle speed signal*3	Power valve control	VIAS control solenoid valve	CL
Fuel tank temperature sensor *1Heated oxygen sensor 2*2	Heated oxygen sensor 1 heater control	Heated oxygen sensor 1 heater	⊌ L
 TCM (Transmission control module)*3 ABS actuator and electric unit (Control 	Heated oxygen sensor 2 heater control	Heated oxygen sensor 2 heater	MT
unit)*3 • Refrigerant pressure sensor • Electrical load	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve	AT
Fuel level sensor*1, *3ASCD steering switch	Air conditioning cut control	Air conditioner relay	
 ASCD brake switch ASCD clutch switch (M/T models) Stop lamp switch 	ON BOARD DIAGNOSIS for EVAP system	EVAP canister vent control valve Vacuum cut valve bypass valve	TF

^{*1:} This sensor is not used to control the engine system. This is used only for the on board diagnosis.

PD

 \mathbb{A}

SU

BR

ST

RS

BT

HA

SC

EL

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} This input signal is sent to the ECM through CAN communication line.

^{*4:} This output signal is sent from the ECM through CAN communication line.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION **Input/Output Signal Chart**

NAFC0014

NAFC0014S01

			NAEC0014S01
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed*3		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Heated oxygen sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel injec-	
Park/neutral position (PNP) switch	Gear position	tion & mix- ture ratio	Injector
Vehicle speed signal*2	Vehicle speed	control	
Air conditioner switch	Air conditioner operation		
Knock sensor	Engine knocking condition		
Battery	Battery voltage*3		
EVAP control system pressure sensor	Ambient air barometric pressure		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas		

^{*1:} This sensor is not used to control the engine system under normal conditions.

Basic Multiport Fuel Injection System

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

Various Fuel Injection Increase/Decrease Compensation

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- **During acceleration**
- Hot-engine operation
- When selector lever is changed from N to D
- High-load, high-speed operation

<Fuel decrease>

- **During deceleration**
- During high engine speed operation

^{*2:} This signal is sent to the ECM through CAN communication line.

^{*3:} ECM determines the start signal status by the signals of engine speed and battery voltage.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

NAFC0014S04 CLOSED LOOP CONTROL Injectotion pulse ECM Injectors Feedback Fuel signal injection Heated oxygen Combustion **Engine** sensor 1 SEF336WC

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1, refer to EC-246. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of the heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 or its circuit
- Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D (A/T models)
- When starting the engine

Mixture Ratio Self-learning Control

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

GL

GI

MA

EM

LC

EC

MIT

AT

TF

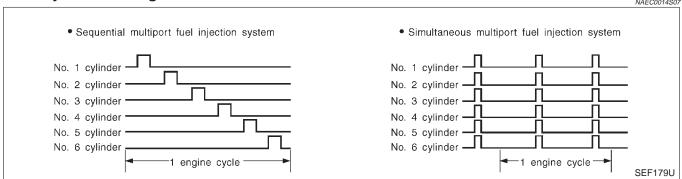
PD

AX SU

BR

HA

SC


EL

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd)

Fuel Injection Timing

NAFC0014S07

Two types of systems are used.

Sequential Multiport Fuel Injection System

NAFC0014S0701

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

IAEC0014S0702

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

NAFC0014S08

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

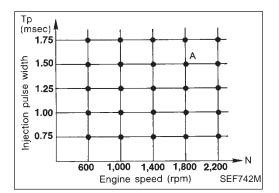
Electronic Ignition (EI) System

DESCRIPTION Input/Output Signal Chart

NAEC0015

NAEC0015S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS)	Engine speed*2 Piston position	Ignition timing control	Power transistor
Camshaft position sensor (PHASE)			
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Vehicle speed signal*1	Vehicle speed		
Knock sensor	Engine knocking		
Park/neutral position (PNP) switch	Gear position		
Battery	Battery voltage*2		


^{*1:} This signal is sent to the ECM through CAN communication line.

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

Electronic Ignition (EI) System (Cont'd)

System Description

NAEC0015S02

MA

LC

EC

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

GL

N: 1,800 rpm, Tp: 1.50 msec A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

MIT

- At starting
- During warm-up

AT

- At idle
- At low battery voltage
- **During** acceleration

TF

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

AX

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NAFC0016 NAEC0016S01

Sensor	Input Signal to ECM	ECM function	Actuator	BR
Air conditioner switch*1	Air conditioner ON signal			- UN
Throttle position sensor	Throttle position			ST
Accelerator pedal position sensor	Accelerator pedal position			© I
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2	Air conditioner cut		RS
Engine coolant temperature sensor	Engine coolant temperature	control	Air conditioner relay	65
Vehicle speed signal*1	Vehicle speed			BT
Refrigerant pressure sensor	Refrigerant pressure			HA
Power steering pressure sensor	Power steering operation			ITIA
Battery	Battery voltage*2			. SC

^{*1:} This signal is sent to the ECM through CAN communication line.

System Description

NAEC0016S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

EIL

When the accelerator pedal is fully depressed.

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

Air Conditioning Cut Control (Cont'd)

- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

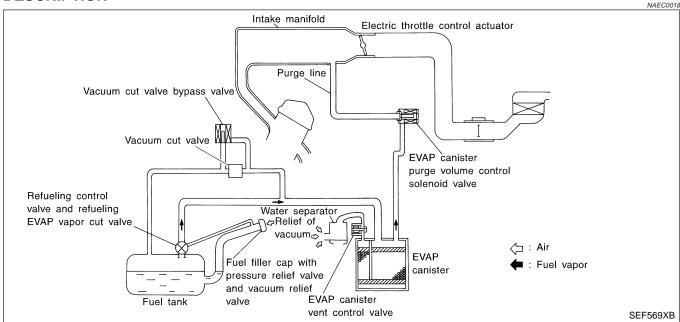
NAEC0017

NAEC0017S01

			NAEC0017301
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Vehicle speed signal*1	Vehicle speed		
Park/neutral position (PNP) switch	Neutral position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel cut Injector	Injector
Engine coolant temperature sensor	Engine coolant temperature	control	•
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		

^{*1:} This signal is sent to the ECM through CAN communication line.

If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine speed is over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.


Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.

NOTE:

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-34.

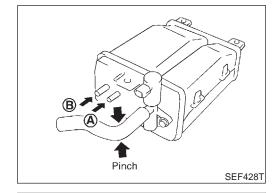
Evaporative Emission System

DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister. The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

Evaporative Emission System (Cont'd)

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.


EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

MA

EM

LC

EC

9 5.3 - 11.7

O-ring 🎧

(0.54 - 1.2, 47 - 104)

(0.85 - 1.10, 74.4 - 95.5)

INSPECTION **EVAP Canister**

NAEC0019

Check EVAP canister as follows:

Pinch the fresh air hose.

GL

Blow air into port **A** and check that it flows freely out of port **B**.

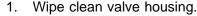
MIT

AT

Tightening Torque

NAEC0019S02

Tighten EVAP canister as shown in the figure.

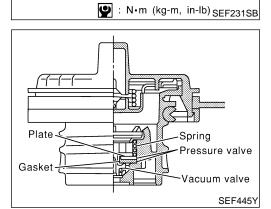

ister and EVAP canister vent control valve.

Make sure new O-ring is installed properly between EVAP can-

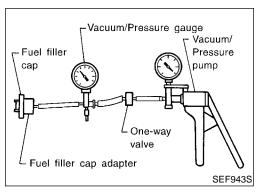
AX

SU

Check valve opening pressure and vacuum. 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)


-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to

-0.48 psi) If out of specification, replace fuel filler cap as an assembly.


HA

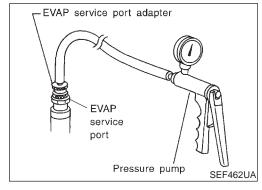
SC

EL

9 8.4 - 10.8

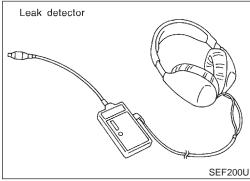
Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

Evaporative Emission System (Cont'd)


Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-633.

EVAP Canister Purge Volume Control Solenoid Valve Refer to EC-364.

Fuel Tank Temperature Sensor


Refer to EC-290.

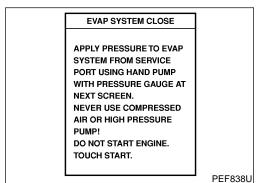
NAFC0019S06

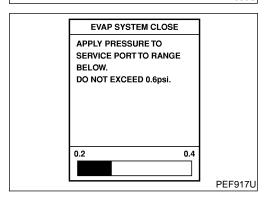
Evap Service Port

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

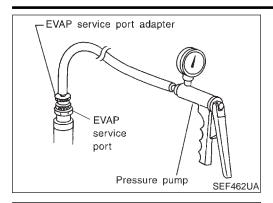
How to Detect Fuel Vapor Leakage

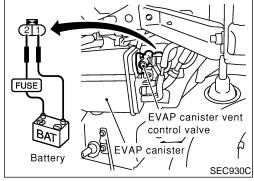
NAFC0019S08


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.


NOTE:

- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.


(P) With CONSULT-II


- Attach the EVAP service port adapter securely to the EVAP service port.
- Also attach the pressure pump and hose to the EVAP service port adapter.
- Turn ignition switch ON.
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5) Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- Remove EVAP service port adapter and hose with pressure gump.
- Locate the leak using a leak detector. Refer to "EVAPORATIVE" EMISSION LINE DRAWING", EC-42.

Evaporative Emission System (Cont'd)

Nithout CONSULT-II

Attach the EVAP service port adapter securely to the EVAP

service port. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.

To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).

Remove EVAP service port adapter and hose with pressure pump.

Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

G[

MA

EC

FE

GL

MT

AT

TF

PD

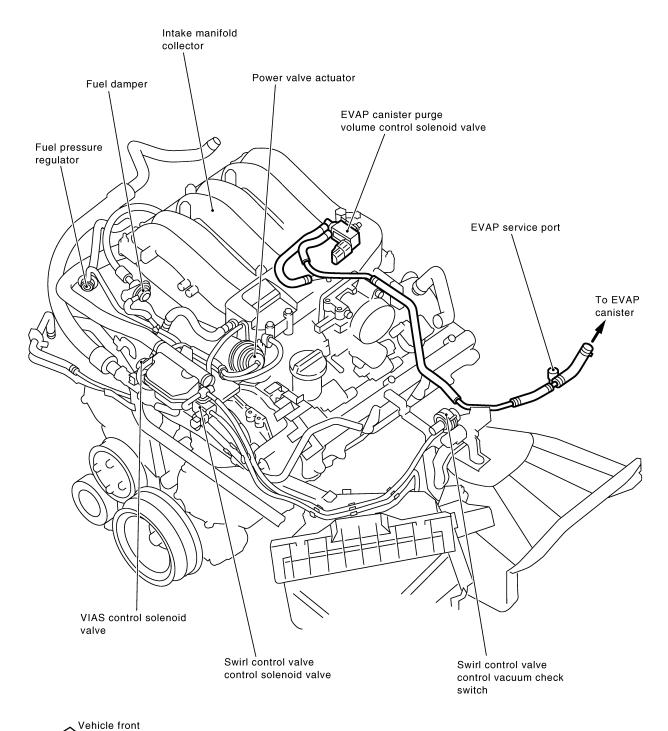
 $\mathbb{A}\mathbb{X}$

SU

BR

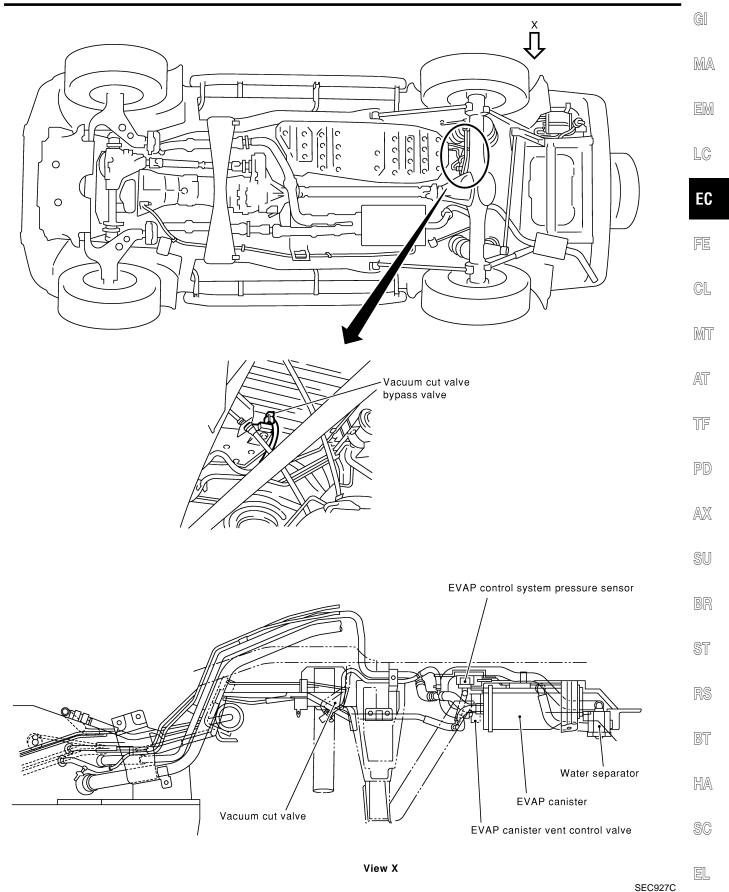
ST

BT

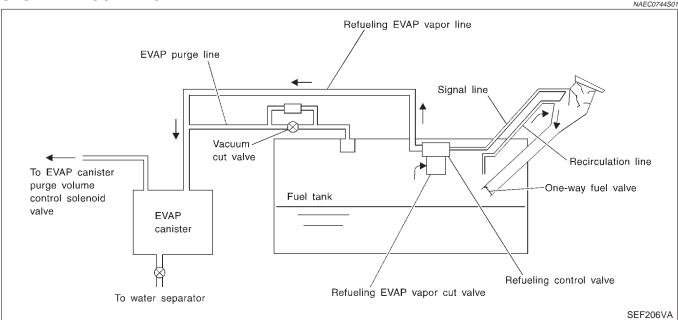

HA

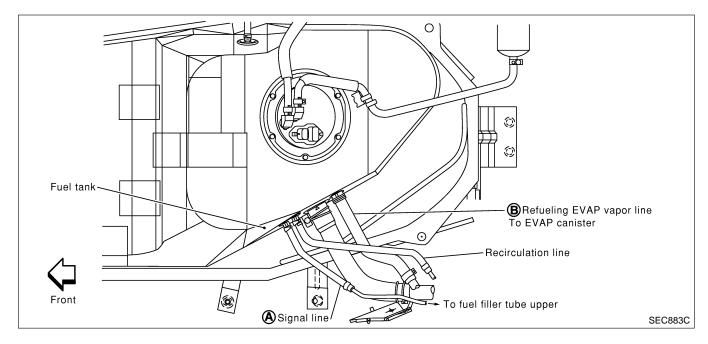
SC

EL


EVAPORATIVE EMISSION LINE DRAWING

NAEC0020




Evaporative Emission System (Cont'd)

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

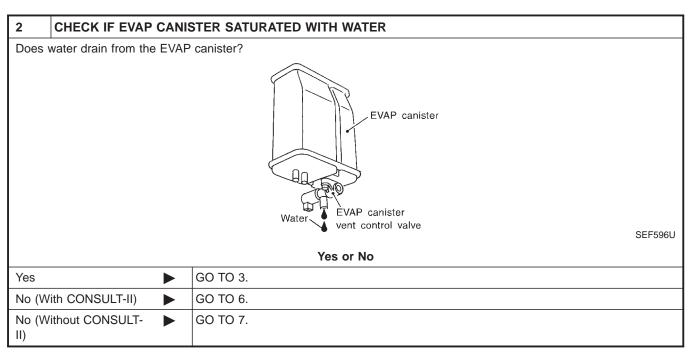
The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a) Put drained fuel in an explosion-proof container and put lid on securely.
- b) Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-56.
- c) Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

DIAGNOSTIC PROCEDURE

Symptom: Fuel Odor from EVAP Canister Is Strong.

1 **CHECK EVAP CANISTER** 1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). OK or NG OK GO TO 2. NG GO TO 3.

3	REPLACE EVAP CANISTER		
Replac	Replace EVAP canister with a new one.		
▶ GO TO 4.			

MA

LC

EC

NAEC0744S02

GL

MI

AT

AX

HA

SC

EL

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

GO TO 5.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(C): Inlet port (To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

OK

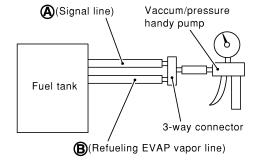
• Do not disassemble water separator.

OK	or	NG
----	----	----

NG	>	Replace water separator.
5	DETECT MALFUNCTIONING PART	

5	DETECT MALFUNCTIONING PART	
Check	Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.	
	Repair or replace EVAP hose.	

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


6 CHECK REFUELING EVAP VAPOR CUT VALVE (A) With CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM.
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

OK ▶	GO TO 8.
NG ►	Replace refueling EVAP vapor cut valve with fuel tank.

OK or NG

GI

MA

EM

LC

EC

313

GL

MT

AT

TF

. _

AX

SU

BR

ST

RS

BT

HA

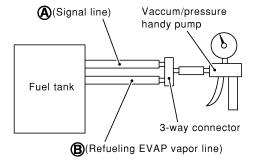
SC

EL

 \mathbb{M}

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


⋈ Without CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

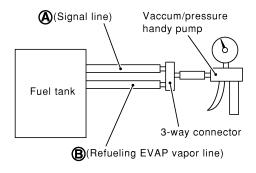
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

OK or NG


OK ►	GO TO 8.
NG ►	Replace refueling EVAP vapor cut valve with fuel tank.

8 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- 2. Check air continuity between hose ends A and B.

Blow air into the hose end B. Air should flow freely into the fuel tank.

- 3. Blow air into hose end A and check there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

SEF968X

ΩK	or	NG

OK •	INSPECTION END
NG ►	Replace refueling control valve with fuel tank.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

G[

MA

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

BT

HA

SC

EL

Symptom: Cannot Refuel/Fuel Odor From The Fuel Filler Opening Is Strong While Refueling. 1 CHECK EVAP CANISTER 1. Remove EVAP canister with EVAP canister vent control valve attached.

1. Remove EVAP canister with EVAP canister vent control valve attached.
2. Weigh the EVAP canister with EVAP canister vent control valve attached.
The weight should be less than 1.8 kg (4.0 lb).

OK or NG

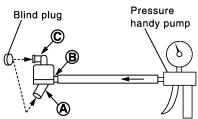
OK

GO TO 2.

NG

GO TO 3.

2	CHECK IF EVAP CANISTER SATI	URATED WITH WATER	
Does	water drain from the EVAP canister?	EVAP canister Water vent control valve	SEF596U
		Yes or No	
Yes	▶ GO TO 3.		
No	▶ GO TO 6.		


3	REPLACE EVAP CANISTER	
Replac	Replace EVAP canister with a new one.	
•		GO TO 4.

EC-49

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(C): Inlet port (To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

• Do not disassemble water separator.

OK or NG

ОК	>	GO TO 5.
NG	•	Replace water separator.

5	5 DETECT MALFUNCTIONING PART	
Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.		
	Repair or replace EVAP hose.	

6	6 CHECK VENT HOSES AND VENT TUBES		
Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection. OK or NG			
	OK OF NO		
OK	>	GO TO 7.	
		Repair or replace hoses and tubes.	

7	7 CHECK FILLER NECK TUBE	
Check signal line and recirculation line for clogging, dents and cracks.		
OK or NG		
ОК	•	GO TO 8.
NG	•	Replace filler neck tube.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING CONTROL VALVE 1. Remove fuel filler cap. 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank. 3. Blow air into hose end A and check there is no leakage. 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage. (Signal line) Vaccum/pressure handy pump Fuel tank 3-way connector (Refueling EVAP vapor line) SEF968X OK or NG OK (With CONSULT-II) GO TO 9. OK (Without CONSULT-GO TO 10.

CHECK REFUELING EVAP VAPOR CUT VALVE

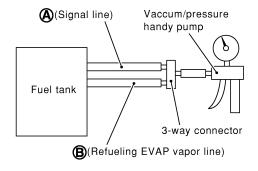
With CONSULT-II

II) NG

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.

Replace refueling control valve with fuel tank.

- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.


 Blow air into the refueling EVAP vapor cut valve (from bose end R), and check that the a

Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.

- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

OK or NG		
OK		GO TO 11.
NG		Replace refueling EVAP vapor cut valve with fuel tank.

EC-51

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

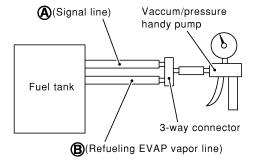
HA

SC

EL

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE

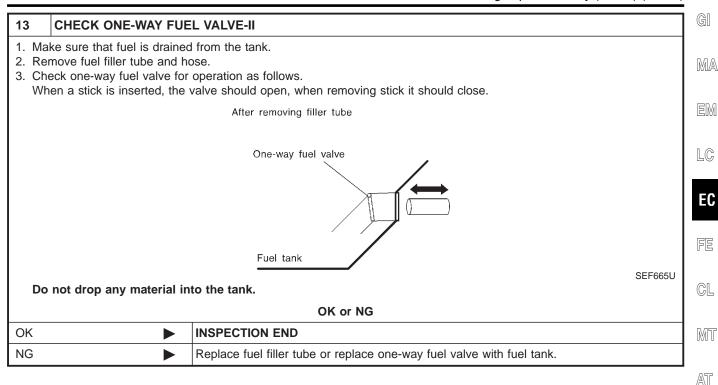

Without CONSULT-II

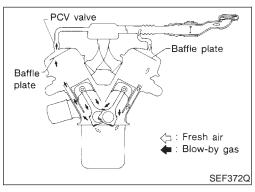
- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

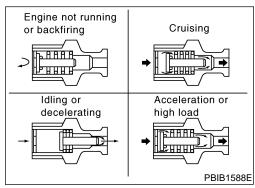
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

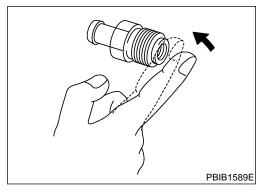
Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.


SEF968X


OK •	GO TO 11.
NG ▶	Replace refueling EVAP vapor cut valve with fuel tank.


11	1 CHECK FUEL FILLER TUBE		
Check	Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.		
	OK or NG		
ОК	>	GO TO 12.	
NG	•	Replace fuel filler tube.	


12	12 CHECK ONE-WAY FUEL VALVE-I	
Check one-way valve for clogging.		
OK or NG		
ОК	>	GO TO 13.
NG	•	Repair or replace one-way fuel valve with fuel tank.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

Positive Crankcase Ventilation DESCRIPTION

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.

INSPECTION

PCV (Positive Crankcase Ventilation) Valve

With engine running at idle, remove PCV valve ventilation hose from PCV valve; if the valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.

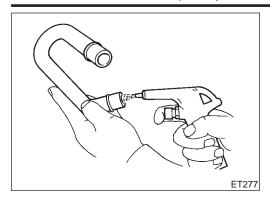
NAFC0022

EL

BT

HA

EC


TF

AX

SU

EC-53

Positive Crankcase Ventilation (Cont'd)

PCV Valve Ventilation Hose

NAEC0022S02

- 1. Check hoses and hose connections for leaks.
- Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

CAN Communication

SYSTEM DESCRIPTION

NAEC1368

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only. Refer to EL-409, "CAN Communication Unit" for details of CAN communication.

Automatic Speed Control Device (ASCD) System

DESCRIPTION Input/Output Signal Chart

NAFC1370

NAFC1370S0

			TVALC1370301
Sensor	Input signal to ECM	ECM function	Actuator
ASCD brake switch	Brake pedal operation		
Stop lamp switch	Brake pedal operation		
ASCD clutch switch (M/T models)	Clutch pedal operation	ASCD vehicle speed	Electric throttle control
ASCD steering switch	ASCD steering switch operation	control	actuator
Combination meter*	Vehicle speed		
TCM*	Power train revolution		

^{*:} This signal is sent to the ECM through CAN communication line.

Basic ASCD System

NAEC1370S02

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter.

If any malfunction occurs in ASCD system, it automatically deactivates control.

Set Operation

NAEC1370S03

Press MAIN switch. (Then CRUISE indicator in combination meter illuminates.)

When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET/COAST switch. (Then SET indicator in combination meter illuminates.)

Accel Operation

NAEC1370S04

If the RESUME/ACCEL switch is pressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

Cancel Operation

NAEC1370S05

When any of following conditions exist, cruise operation will be canceled.

Automatic Speed Control Device (ASCD) System (Cont'd)

- CANCEL switch is pressed.
- More than 2 switches at ASCD steering switch are pressed at the same time (Set speed will be cleared.).
- Brake pedal is depressed.
- Clutch pedal is depressed (M/T models).
- A/T selector lever is shifted to P, N or R position (A/T models).
- Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed
- TCS system is operated

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform the driver by blinking indicator lamp.

 Engine coolant temperature is slightly higher than the normal operating temperature: CRUISE lamp may blink slowly.

When the engine coolant temperature decreases to the normal operating temperature, CRUISE lamp will stop blinking and the cruise operation will be able to work by pressing SET/COAST switch or RESUME/ACCEL switch.

Malfunction for self-diagnosis regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF while ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

Coast Operation

When the SET/COAST switch is pressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

Resume Operation

When the RESUME/ACCEL switch is pressed after cancel operation other than pressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released.
- Clutch pedal is released (M/T models).
- A/T selector lever is in other than P, N and R positions (A/T models).
- Vehicle speed is greater than 40 km/h (25 MPH) and 144 km/h (89 MPH).

MA

GI

LC

EC

GL

AT

TF

- -

PD

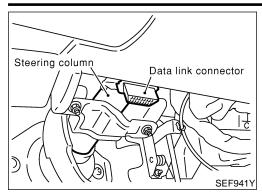
AX

@11

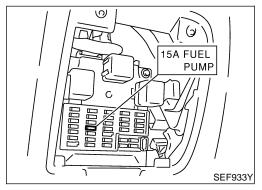
BR

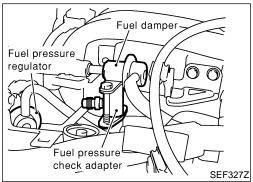
ST

RS


BT

HA


SC


EL

 \mathbb{M}

FUEL PUMP WILL STOP BY TOUCHING START IN IDLING. CRANK A FEW TIMES AFTER ENGINE STALL. SEF214Y

Fuel Pressure Release

(P) WITH CONSULT-II

NAEC0023

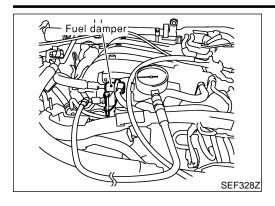
NAEC0023S01

- 1. Turn ignition switch ON.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.

® WITHOUT CONSULT-II

NAFC0023S02

- Remove fuel pump fuse located in fuse box.
- Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- 5. Reinstall fuel pump fuse after servicing fuel system.


Fuel Pressure Check

NAECOO.

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- Do not perform fuel pressure check with electrical system operating (i.e. lights, rear window defogger, A/C etc.). Fuel pressure gauge may indicate false readings due to varying engine loads and changes in manifold vacuum.
- Release fuel pressure to zero.
- 2. Disconnect fuel tube joint between fuel damper and injector tube and set fuel pressure check adapter (J-44321).

Fuel Pressure Check (Cont'd)

Install pressure gauge to the fuel pressure check adapter as shown in the figure.

Start engine and check for fuel leakage.

Read the indication of fuel pressure gauge.

At idling:

With vacuum hose connected Approximately 235 kPa (2.4 kg/cm², 34 psi)

With vacuum hose disconnected

Approximately 294 kPa (3.0 kg/cm², 43 psi)

If results are unsatisfactory, perform Fuel Pressure Regulator Check.

LC

MA

Fuel Pressure Regulator Check

TF

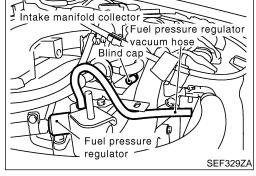
Stop engine and disconnect fuel pressure regulator vacuum hose from vacuum gallery.

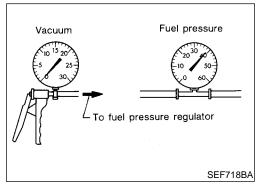
PD

2. Plug vacuum gallery with a blind cap.

Connect variable vacuum source to fuel pressure regulator.

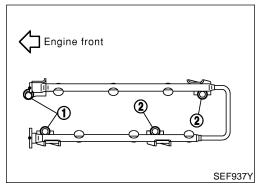
SU

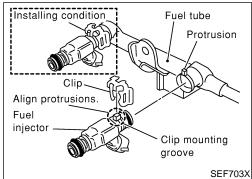

ST


BT

HA

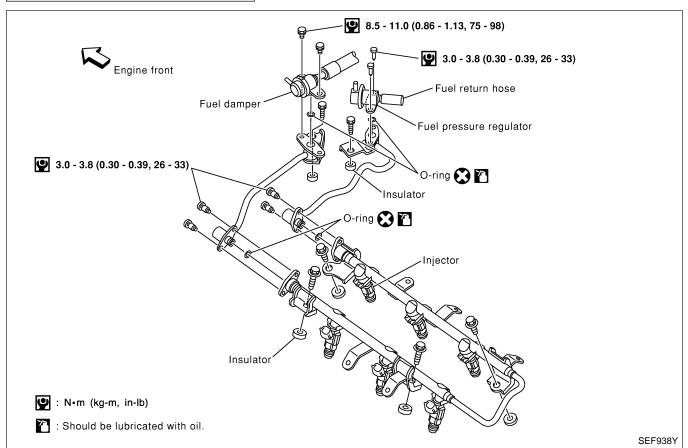
SC


EL



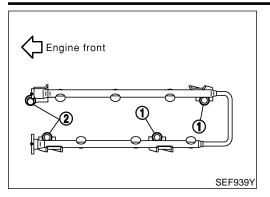
Start engine and read indication of fuel pressure gauge as vacuum is changed.

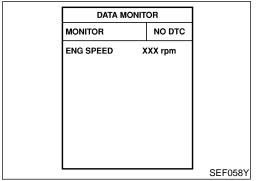
Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

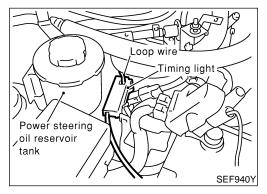


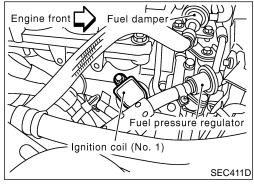
Injector

REMOVAL AND INSTALLATION


NAEC0026


- 1. Release fuel pressure to zero.
- Remove intake manifold collector. Refer to EM-24, "TIMING CHAIN".
- 3. Remove fuel tube assemblies in numerical sequence as shown in the figure at left.
- 4. Expand and remove clips securing fuel injectors.
- 5. Extract fuel injectors straight from fuel tubes.
- Be careful not to damage injector nozzles during removal.
- Do not bump or drop fuel injectors.
- Carefully install O-rings, including the one used with the pressure regulator.
- Lubricate O-rings with a smear of engine oil.
- Be careful not to damage O-rings with service tools, finger nails or clips. Do not expand or twist O-rings.
- Discard old clips; replace with new ones.
- 7. Position clips in grooves on fuel injectors.
- Make sure that protrusions of fuel injectors are aligned with cutouts of clips after installation.




- 8. Align protrusions of fuel tubes with those of fuel injectors. Insert fuel injectors straight into fuel tubes.
- 9. After properly inserting fuel injectors, check to make sure that fuel tube protrusions are engaged with those of fuel injectors, and that flanges of fuel tubes are engaged with clips.

Injector (Cont'd)

10. Tighten fuel tube assembly mounting nuts in numerical sequence (indicated in the figure at left) and in two stages.

Tightening torque N-m (kg-m, ft-lb)

1st stage:
9.3 - 10.8 (1.0 - 1.1, 6.9 - 7.9)
2nd stage:

20.6 - 26.5 (2.1 - 2.7, 16 - 19)

11. Install all parts removed in reverse order of removal.

CAUTION:

After properly connecting fuel tube assembly to injector and fuel hose, check connection for fuel leakage.

How to Check Idle Speed and Ignition Timing

(P) WITH CONSULT-II

Check idle speed in "DATA MONITOR" mode with CONSULT-II.

® WITH GST

Check idle speed with GST.

IGNITION TIMING

Any of following two methods may be used.

Method A

a) Attach timing light to loop wire as shown.

b) Check ignition timing.

Method B

a) Remove No. 1 ignition coil.

NAEC0607S01

. .

LC

EC

GL

MT

AT

NAEC0607S02

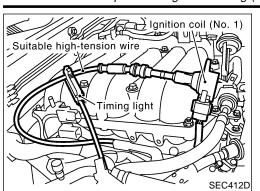
TF PD

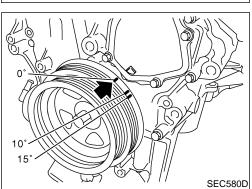
SU

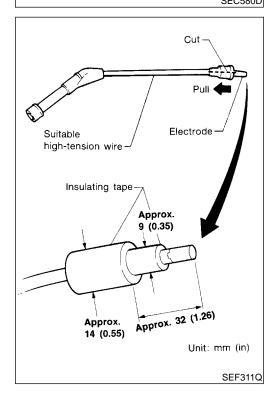
BR

ST

RS


BT


HA


SC

EL

How to Check Idle Speed and Ignition Timing (Cont'd)

- Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.
- c) Check ignition timing.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

=NAEC0028

NAEC0028S01

PREPARATION

) Make sure that the following parts are in good order.

- Battery
- Ignition system
- Engine oil and coolant levels
- Fuses
- ECM harness connector
- Vacuum hoses
- Air intake system (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- Throttle valve
- Evaporative emission system
- 2) On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
- 3) On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in N position.
- 4) When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5) Turn off headlamps, heater blower, rear defogger.
- 6) Keep front wheels pointed straight ahead.

EM

GI

MA

LC

EC

SE

GL

MT

IMI II

۸52

AT

TF

PD

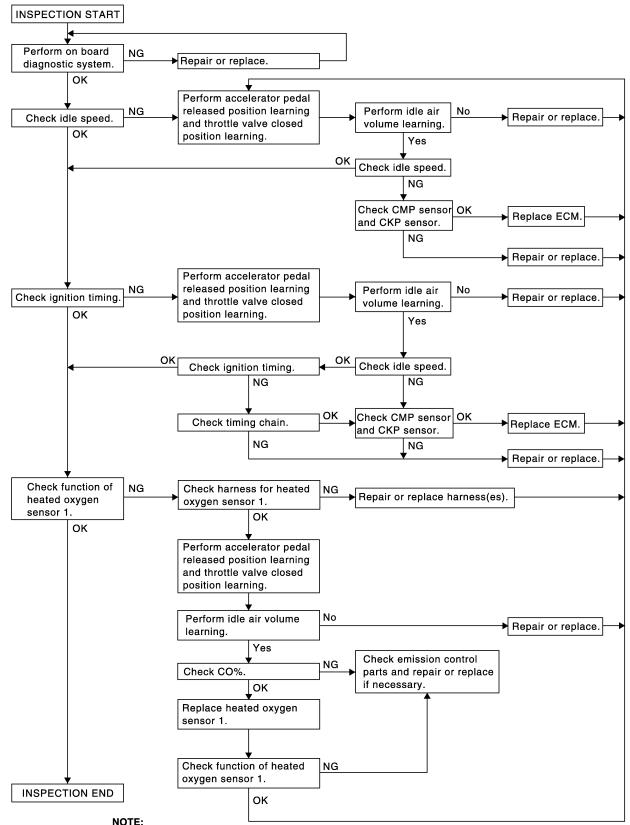
SU

BR

ST

RS

3T


HA

SC

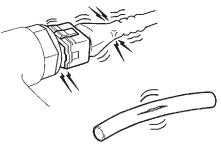
EL

Overall Inspection Sequence

NAFC0028S0101

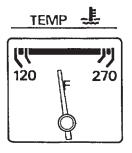
If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

PBIB1054E


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

INSPECTION PROCEDURE

=NAEC0028S02


1 **INSPECTION START**

- 1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket

SEF983U

- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- 4. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

5. Run engine at about 2,000 rpm for about 2 minutes under no-load.

SEF977U

SEF976U

6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK	or	NG
----	----	----

OK ►	GO TO 3.
NG ►	GO TO 2.

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

GO TO 3.

EC-63

MA

EC

GL

MI

AT

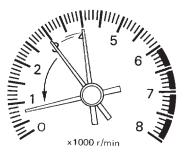
TF

AX

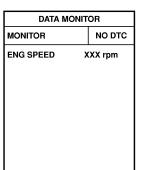
SU

HA

SC


EL

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


CHECK TARGET IDLE SPEED

(I) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

SEF058Y

SEF978U

M/T: 750±50 rpm

A/T: 750±50 rpm (in P or N position)

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 750±50 rpm

A/T: 750±50 rpm (in P or N position)

OK	or	NC
----	----	----

OK		GO TO 10.
NG	•	GO TO 4.

4 PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING 1. Stop engine. 2. Perform "Accelerator Pedal Released Position Learning", EC-73. GO TO 5.

5	PERFORM THROTTLE	VALVE CLOSED POSITION LEARNING	
Perfor	Perform "Throttle Valve Closed Position Learning", EC-73.		
	•	GO TO 6.	

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

6 PERFO	RM IDLE AIR V	DLUME LEARNING	
	r Volume Learnin me Learning car	g", EC-73. ried out successfully?	
		Yes or No	
Yes	•	GO TO 7.	
No	>	 Follow the instruction of Idle Air Volume Learning. GO TO 4. 	

7 CHECK	TARGET IDLE	SPEED AGAIN
(P) With CONS	SULT-II	
	and warm it up to	o normal operating temperature.
2. Read idle s	peed in "DATA MO	NITOR" mode with CONSULT-II.
M/T: 750	±50 rpm	
A/T: 750	\pm 50 rpm (in P or I	N position)
2. Check idle : M/T: 750	e and warm it up to speed.	o normal operating temperature.
	. `	OK or NG
ОК	•	GO TO 10.
NG	•	GO TO 8.

	<u></u>		TF
8	DETECT MALFUNCTIO	NING PART]
• Che		or (PHASE) and circuit. Refer to "DTC P0340, P0345 CMP SENSOR (PHASE)", EC-326. sor (POS) and circuit. Refer to "DTC P0335 CKP SENSOR (POS)", EC-319.	PD
	OK or NG		
OK	>	GO TO 9.	1
NG	•	 Repair or replace. GO TO 4. 	SU

9	CHECK ECM FUNCTIO	N	
I	ibstitute another known-goo se.)	d ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare	
	2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM — NATS)", EC-93.		
	>	GO TO 4.	

GI

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

CL

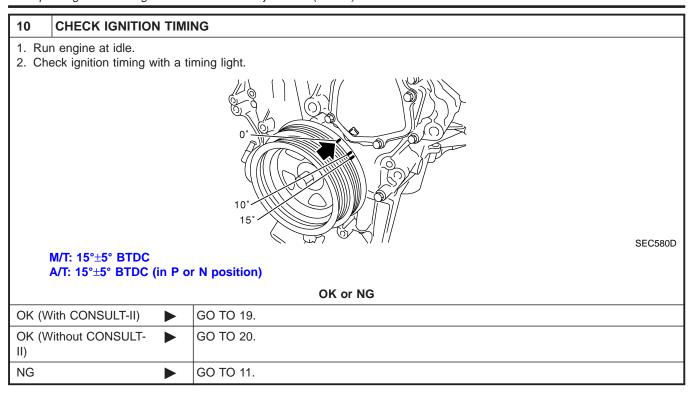
MT

AT

BR

ST

RS

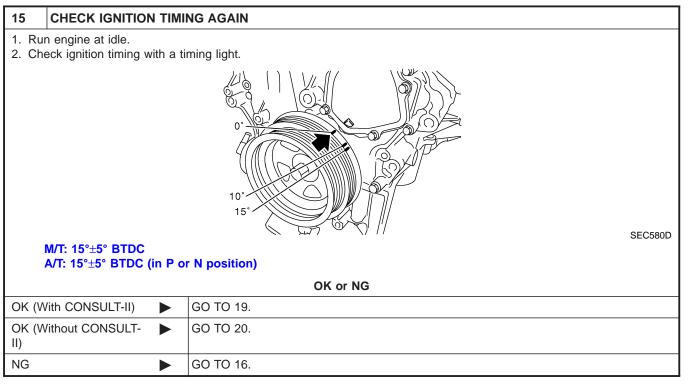

BT

HA

SC

EL

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


11	PERFORM ACCELERA	TOR PEDAL RELEASED POSITION LEARNING
	op engine. rform "Accelerator Pedal Ro	eleased Position Learning", EC-73.
	>	GO TO 12.

12	PERFORM THROTTLE	VALVE CLOSED POSITION LEARNING	
Perfor	Perform "Throttle Valve Closed Position Learning", EC-73.		
	•	GO TO 13.	

13	PERFORM IDLE AIR V	OLUME LEARNING		
Perform "Idle Air Volume Learning", EC-73. Is Idle Air Volume Learning carried out successfully?				
	Yes or No			
Yes	•	GO TO 14.		
No	>	 Follow the instruction of Idle Air Volume Learning. GO TO 4. 		

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

16	CHECK TIMING CHAIN	INSTALLATION	l
Check	timing chain installation. F	Refer to EM-24, "TIMING CHAIN".	RS
		OK or NG	
OK	•	GO TO 17.	Bi
NG		 Repair the timing chain installation. GO TO 4. 	

SC

EL

MA

LC

EC

GL

MT

AT

TF

PD

AX

SU

ST

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

17	7 DETECT MALFUNCTIONING PART		
Check the following. • Check camshaft position sensor (PHASE) and circuit. Refer to "DTC P0340, P0345 CMP SENSOR (PHASE)", EC-326. • Check crankshaft position sensor (POS) and circuit. Refer to "DTC P0335 CKP SENSOR (POS)", EC-319.			
OK or NG			
OK	•	GO TO 18.	
NG	>	1. Repair or replace. 2. GO TO 4.	

18 CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM NATS)", EC-93.

▶ GO TO 4.

19 CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

DATA MONIT	OR
MONITOR	NO DTC
	CXX rpm
HO2S1 MNTR (B1)	LEAN
HO2S1 MNTR (B2)	RICH

PBIB0120E

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

ОК	>	GO TO 21.
NG (Monitor does not fluctuate.)	>	GO TO 23.
NG (Monitor fluctuates less than 5 times.)	>	GO TO 31.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

GI **CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL** Without CONSULT-II 1. Stop engine and set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to "HOW TO SWITCH MA DIAGNOSTIC TEST MODE", EC-95. 2. Start engine and run it at about 2,000 rpm for about 2 minutes under no-load. 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that EM the MIL comes on more than 5 times during 10 seconds. OK or NG LC GO TO 22. OK NG (MIL does not come GO TO 23. EC on) NG (MIL comes on less GO TO 31. than 5 times) 21 CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL (P) With CONSULT-II 1. See "HO2S1 MNTR (B2)" in "DATA MONITOR" mode. 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that MI the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds. DATA MONITOR AT NO DTC MONITOR ENG SPEED XXX rpm HO2S1 MNTR (B1) LEAN TF HO2S1 MNTR (B2) AX PBIB0120E 1 time: RICH \rightarrow LEAN \rightarrow RICH 2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH SU OK or NG OK **INSPECTION END** NG (Monitor does not GO TO 24. fluctuate.) NG (Monitor fluctuates GO TO 31. less than 5 times.) 22 CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL Without CONSULT-II BT 1. Switch the monitored sensor from bank 1 to bank 2. Refer to "How to Switch Monitored Sensor from Bank 1 to Bank 2. or Vice Versa", EC-95. 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that HA the MIL comes on more than 5 times during 10 seconds. OK or NG SC OK **INSPECTION END** NG (MIL does not come GO TO 24. EL

EC-69

GO TO 31.

NG (MIL comes on less

than 5 times)

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

23 CHECK HEATED OXYGEN SENSOR 1 (BANK 1) HARNESS

- 1. Turn ignition switch OFF and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (bank 1) harness connector.
- 4. Check harness continuity between ECM terminal 35 and heated oxygen sensor 1 (bank 1) terminal 1. Refer to "Wiring Diagram", EC-226.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 25.
NG	 Repair or replace harness between ECM and heated oxygen sensor 1 (bank 1). GO TO 4.

24 CHECK HEATED OXYGEN SENSOR 1 (BANK 2) HARNESS

- 1. Turn ignition switch OFF and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (bank 2) harness connector.
- 4. Check harness continuity between ECM terminal 16 and heated oxygen sensor 1 (bank 2) terminal 1. Refer to "Wiring Diagram", EC-227.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	>	GO TO 25.
NG		 Repair or replace harness between ECM and heated oxygen sensor 1 (bank 2). GO TO 4.

25 PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING 1. Reconnect ECM harness connector. 2. Perform "Accelerator pedal released position learning", EC-73. GO TO 26.

26	PERFORM THROTTLE VALVE CLOSED POSITION LEARNING		
Perfor	Perform "Throttle Valve Closed Position Learning", EC-73.		
▶ GO TO 27.			

27	PERFORM IDLE AIR VOLUME LEARNING		
	Perform "Idle Air Volume Learning", EC-73. Is Idle Air Volume Learning carried out successfully?		
	Yes or No		
Yes (V	With CONSULT-II)	•	GO TO 28.
Yes (V	Without CONSULT-	•	GO TO 29.
No		•	 Follow the instruction of Idle Air Volume Learning. GO TO 4.

BASIC SERVICE PROCEDURE Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd) G[28 **CHECK CO %** With CONSULT-II 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. MA 2. Turn ignition switch OFF, wait at least 10 seconds and then turn ON. 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode. 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd". EM 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed. 6. Check CO %. LC ACTIVE TEST ENG COOLANT TEMP XXX °C MONITOR EC **ENG SPEED** XXX rpm INJ PULSE-B1 XXX msec XXX BTDC **IGN TIMING** FE GL SEF172Y Idle CO: 0.7 - 9.9% and engine runs smoothly. MT OK or NG OK GO TO 31. AT NG GO TO 30. TF $\mathbb{A}\mathbb{X}$

29	CHECK CO %			
₩ Without CONSULT-II				
Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.				
	rn ignition switch OFF.			
	_	nperature sensor harness connector.		
		etween terminals of engine coolant temperature sensor harness connector. to 3,000 rpm) two or three times under no-load, then run engine at idle speed.		
	eck CO %.	to 5,000 fpm) two of times under no-load, then full engine at idle speed.		
	Idle CO: 0.7 - 9.9% and e	ngine runs smoothly.		
		ition switch OFF, disconnect the resistor from the terminals of engine coolant temperature		
sei	nsor harness connector, an	d then connect engine coolant temperature sensor harness connector to engine coolant		
ter	nperature sensor.			
		Engine coolant		
	temperature sensor			
		harness connector DISCONNECT DISCONNECT		
		4.4k Ω resistor SEF982UA		
		OK or NG		
OK	•	GO TO 31.		
NG	•	GO TO 30.		
30	RECONNECT HEATED	OXYGEN SENSOR 1 HARNESS CONNECTOR		

SU

BR

BT

HA

SC

EL

1. Turn ignition switch OFF.

2. Reconnect heated oxygen sensor 1 harness connector.

GO TO 34.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

31	REPLACE HEATED OXYGEN SENSOR 1		
	Stop engine. Replace heated oxygen sensor 1 on the malfunctioning bank.		
With C	ONSULT-II		GO TO 32.
Withou	it CONSULT-II		GO TO 33.

32 CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2) SIGNAL

(P) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. See "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

OK •	GO TO 4.
NG ►	GO TO 34.

33 CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2) SIGNAL

(R) Without CONSULT-II

- 1. Set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to "How to Switch Diagnostic Test Mode",
- 2. Switch the monitored sensor to the malfunctioning bank. Refer to "How to Switch Monitored Sensor from Bank 1 to Bank 2 or Vice Versa", EC-95.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK •	GO TO 4.
NG ►	GO TO 34.

34 DETECT MALFUNCTIONING PART

Check the following.

- Check mass air flow sensor and its circuit, and repair or replace if necessary. Refer to EC-187, EC-194.
- Check injector and its circuit, and repair or replace if necessary. Refer to EC-724.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary. Refer to EC-204.
- Check fuel pressure and repair or replace if necessary. Refer to EC-56.

OK or NG

OK •	GO TO 36.
NG ►	 Repair or replace. GO TO 35.

35 ERASE UNNECESSARY DTC

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM. Refer to "How to Erase Emission-related Diagnostic Information", EC-91 and AT-60.

▶ GO TO 4.

BASIC SERVICE PROCEDURE

BASIC	SERVICE PROCEDURE			
	Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)	@I		
36 CHECK ECM FUNCTION		Gl		
case.)	ECM function. (ECM may be the cause of an incident, but this is a rare	MA		
2. Perform initialization of NVIS (NATS) system a SAN VEHICLE IMMOBILIZER SYSTEM — NA	and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NIS-ATS", EC-93.			
▶ GO TO 4.		EM		
DESCRIPTION	Accelerator Pedal Released Position Learning	LG		
DESCRIPTION Accelerator Podal Polaceed Position Learning	ng is an operation to learn the fully released position of the accel-			
	edal position sensor output signal. It must be performed each time	EC		
OPERATION PROCEDURE	NAEC1183S02	FE		
1. Make sure that accelerator pedal is fully	released.	rs		
2. Turn ignition switch ON and wait at leas		@I		
3. Turn ignition switch OFF wait at least 104. Turn ignition switch ON and wait at least		GL		
5. Turn ignition switch OFF wait at least 1				
		MT		
DESCRIPTION	Throttle Valve Closed Position Learning			
Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitorizing the throttle position sensor output signal. It must be performed each time harness connector				
of electric throttle control actuator or ECM is disconnected.				
OPERATION PROCEDURE 1. Make cure that appellerator podal is fully	V rologged NAEC1184S02			
 Make sure that accelerator pedal is fully Turn ignition switch ON. 	released.	PD		
3. Turn ignition switch OFF wait at least 10	0 seconds. ing above 10 seconds by confirming the operating sound.	AX		
		SU		
ı	dle Air Volume Learning			
	DESCRIPTION NAEC1182	BR		
	dle Air Volume Learning is an operation to learn the idle air volume			
	hat keeps each engine within the specific range. It must be per- ormed under any of the following conditions:	ST		
· ·	Each time electric throttle control actuator or ECM is replaced.	⊕ I		
	Idle speed or ignition timing is out of specification.	RS		
F	PREPARATION	U)		
E	Before performing Idle Air Volume Learning, make sure that all of	P2		
	he following conditions are satisfied.	BT		
	earning will be cancelled if any of the following conditions are nissed for even a moment.			
	Battery voltage: More than 12.9V (At idle)	HA		
•	Engine coolant temperature: 70 - 100°C (158 - 212°F)			
•	PNP switch: ON	SC		
•	Electric load switch: OFF (Air conditioner, headlamp, rear window defogger)			
	On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started, the	EL		
	headlamp will not be illuminated.	IDX		
	Steering wheel: Neutral (Straight-ahead position)	1 L/V		

Steering wheel: Neutral (Straight-ahead position)

- Vehicle speed: Stopped
- Transmission: Warmed-up

For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.

For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.

OPERATION PROCEDURE

(P) With CONSULT-II

NAEC1182S03 NAEC1182S0301

NOTE:

Before perform Idle Air Volume Learning, make sure that Accelerator Pedal Released Position Learning and Throttle Valve Closed Position Learning are completed.

If not, perform "Accelerator Pedal Released Position Learning", EC-73 and "Throttle Valve Closed Position Learning", EC-73.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that all items listed under the topic "PREPARATION" (previously mentioned) are in good order.

SELECT WORK ITEM	
TP SW/TP SEN IDLE POSI ADJ	
FUEL PRESSURE RELEASE	
IDLE AIR VOL LEARN	
SELF-LEARNING CONT	
EVAP SYSTEM CLOSE	
TARGET ING TIM ADJ	
	SEF452Y

3. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

WORK SUPPORT

IDLE AIR VOL LEARN

MONITOR

ENG SPEED XXX rpm

START

SEF454Y

4. Touch "START" and wait 20 seconds.

WORK SUPPORT

IDLE AIR VOL LEARN CMPLT

MONITOR

ENG SPEED XXX rpm

START

MBIB0238E

- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.
- 6. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION		
Idle speed	M/T: 750±50 rpm A/T: 750±50 rpm (in P or N position)		

	M/T: 15±5° BTDC
ignition timing	A/T: 15±5° BTDC (in P or N position)

Without CONSULT-II

NOTE: It is better to count the time accurately with a clock.

It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunc-

LC

GI

MA

NOTE:

Before perform Idle Air Volume Learning, make sure that Accelerator Pedal Released Position Learning and Throttle Valve Closed Position Learning are completed.

EC

If not, perform "Accelerator Pedal Released Position Learning", EC-73 and "Throttle Valve Closed Position Learning", EC-73.

- Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic "PREPARATION" (previously mentioned) are in good order.

GL

- Turn ignition switch OFF and wait at least 10 seconds.
- Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.

MIT

Repeat the following procedure quickly five times within 5 seconds.

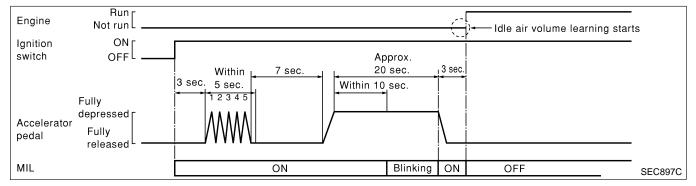
AT

- 1) Fully depress the accelerator pedal.
- Fully release the accelerator pedal.

TF

Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turns ON.

PD


Fully release the accelerator pedal within 3 seconds after the MIL turned ON.

AX

SU

BR

- 8. Start engine and let it idle.
- Wait 20 seconds. 9.

10. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 750±50 rpm A/T: 750±50 rpm (in P or N position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in P or N position)

11. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.

HA

SC

EL

DIAGNOSTIC PROCEDURE

NAEC1182S04

If idle air volume learning cannot be performed successfully, proceed as follows:

- 1. Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident. It is useful to perform EC-151, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle Air Volume Learning all over again:
- Engine stalls.
- Erroneous idle.

Introduction

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

MA

Emission-related diagnostic information	SAE Mode	
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979	
Freeze Frame data	Mode 2 of SAE J1979	
System Readiness Test (SRT) code	Mode 1 of SAE J1979	
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979	
1st Trip Freeze Frame data		
Test values and Test limits	Mode 6 of SAE J1979	
Calibration ID	Mode 9 of SAE 1979	

EC

The above information can be checked using procedures listed in the table below.

X: Applicable —: Not applicable

MIT

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
CONSULT-II	X	Х	X	X	X	_
GST	Х	Х	X	_	Х	X
ECM	Х	X*	_	_	_	_

AT

TF

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-130.)

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there is a malfunction on engine control system. Therefore, when electrically controlled throttle and part of ECM related diagnosis is continuously detected

AX

as NG for 5 trips, ECM warns the driver that engine control system has a malfunction and MIL circuit is open by means of operating fail-safe function. The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands

Engine operating condition in fail-safe mode

the driver to repair the malfunction.

Engine speed will not rise more than 2,500 rpm due to the fuel cut

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

HA

EL

^{*:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

Two Trip Detection Logic (Cont'd)

X: Applicable —: Not Exit								
		MIL				ТС	1st trip DTC	
Items	1st trip		2nd trip		1 ot trip			
	Blinking	Lighting up	Blinking	Lighting up		2nd trip displaying	1st trip displaying	2nd trip displaying
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	х	_	_	_	_	_	х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	Х	_	_	х	_	_
One trip detection diagnoses (Refer to EC-9.)	_	Х	_	_	х	_	_	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except ECM

Emission-related Diagnostic Information

NAECO031

DTC AND 1ST TRIP DTC

NAFC0031S01

NAEC0031S0101

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-87. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-121. Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-II

CONSULT-II or GST (Generic Scan Tool) Examples: P0117, P0340, P1065, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

No TOOLS

The number of times the MIL blinks in Diagnostic Test Mode II (Self-diagnostic Results) indicates the DTC. (Example: 0117, 0340, 1065, etc.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST does not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

Emission-related Diagnostic Information (Cont'd)

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0]. If a 1st trip DTC is stored in the ECM, the time data will be [1t].

MA

EM

	SELF DIAG RESULTS		SELF DIAG	RESULTS	
	DTC RESULTS	TIME	DTC RESULTS	S TIME	
DTC	CKP SEN/CIRCUIT [P0335]	0	CKP SEN/CIRC [P0335]	CUIT 1t	
display			у		
					-

EC

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure at the moment a malfunction is detected.

GL

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-107.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items			
1	Freeze frame data	Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175	_	
2		Except the above items (Includes A/T related items)	_	
3	1st trip freeze frame d	ata	_	

AX

SU

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

BR

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91.

SYSTEM READINESS TEST (SRT) CODE

NAEC0031S03

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

HA

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains

Emission-related Diagnostic Information (Cont'd)

"CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

NAEC0031S0310

SRT item (CONSULT-II indica- tion)	Perfor- mance Pri- ority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
EVAP SYSTEM	1	EVAP control system (small leak) (negative pressure)	P0442, P1442
	2	EVAP control system (very small leak) (negative pressure)/ (positive pressure)	P0456, P1456
	2	EVAP control system purge flow monitoring	P0441
HO2S	2	Heated oxygen sensor 1 (lean shift monitoring)	P1143, P1163
		Heated oxygen sensor 1 (rich shift monitoring)	P1144, P1164
		Heated oxygen sensor 1 (response monitoring)	P0133, P0153
		Heated oxygen sensor 2 (min. voltage monitoring)	P1146, P1166
		Heated oxygen sensor 2 (max. voltage monitoring)	P1147, P1167
		Heated oxygen sensor 2 (response monitoring)	P0139, P0159
HO2S HTR 2		Heated oxygen sensor 1 heater	P0031, P0032, P0051, P0052
		Heated oxygen sensor 2 heater	P0037, P0038, P0057, P0058

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

				Example		
Self-diagnosis result		Diagnosis	← ON → O	$\begin{array}{ccc} & & & & \\ & & & \\ FF & \leftarrow ON \rightarrow & & & \end{array}$	ition cycle OFF ← ON →	$OFF \leftarrow ON \rightarrow$
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)
		P0402	OK (1)	— (1)	— (1)	OK (2)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)
		P0402	— (0)	— (0)	OK (1)	— (1)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"
NG exists	Case 3	P0400	OK	OK	_	_
		P0402	_	_	_	_
		P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"

NG: Self-diagnosis is carried out and the result is NG.

—: Self-diagnosis is not carried out.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indi-

cate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) for the following reasons:

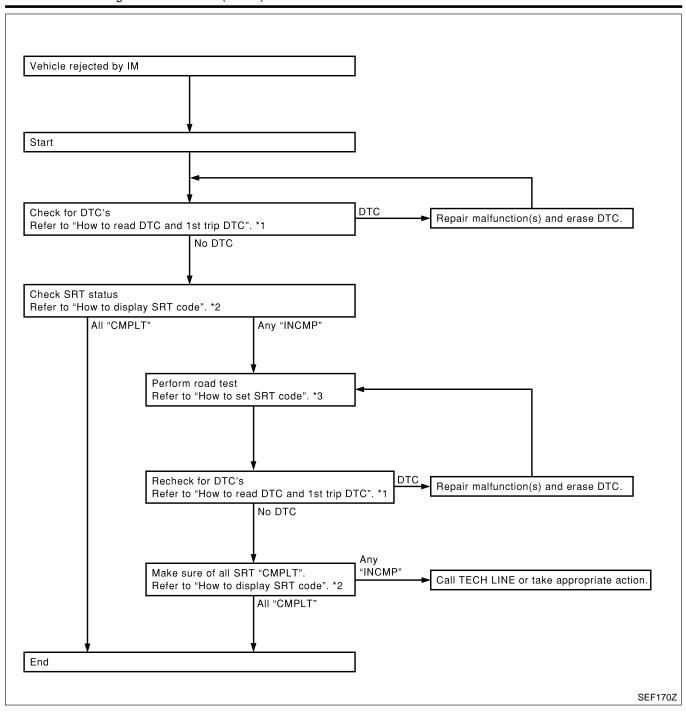
- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP" the flowchart diagnostic sequence on the next page.

EC-81


MA

AX

HA

SC

Emission-related Diagnostic Information (Cont'd)

How to Display SRT Code

NAEC0031S0301

*3 EC-83

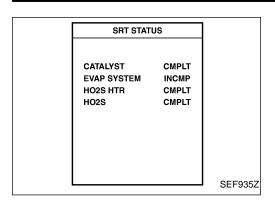
(A) With CONSULT-II

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

*2 EC-82

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

With GST


*1 EC-78

Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

Emission-related Diagnostic Information (Cont'd)

G[

MA

EM

LC

EC

How to Set SRT Code

NAEC0<u>03</u>1S0302

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) With CONSULT-II

GL

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-80.

MT

Without CONSULT-II

000 0

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

AT TF

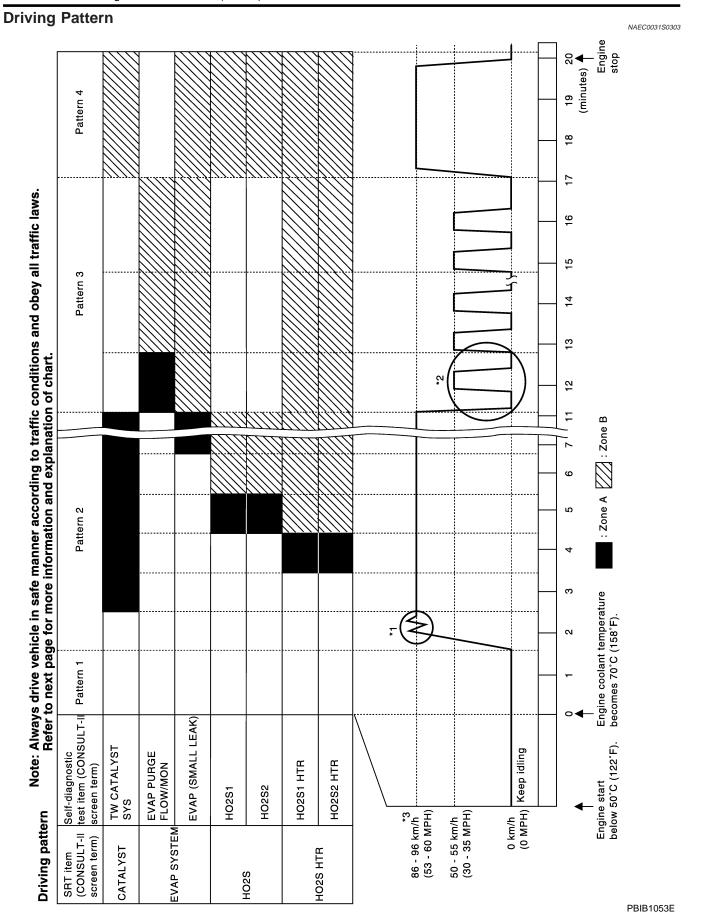
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

Emission-related Diagnostic Information (Cont'd)

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

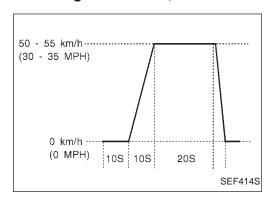
Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the

Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions. Under different conditions [For example: ambient air temperature other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2) Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.

*3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the D position with the overdrive switch turned ON.

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

EC

LC

MA

MT

TF

AT

SU

HA

SC

EL

Emission-related Diagnostic Information (Cont'd)

	For normal acceleration [less than 1,21	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	21 (13)	21 (13)	24 (15)
2nd to 3rd	37 (23)	26 (16)	40 (25)
3rd to 4th	53 (33)	44 (27)	64 (40)
4th to 5th	63 (39)	58 (36)	72 (45)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	50 (30)
2nd	89 (55)
3rd	128 (80)
4th	_
5th	_

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

NAEC0031S04

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

SRT item	Self-diagnostic test item	DTC	Test value (GST display)		Test limit	Conversion	
			TID	CID			
	Three way actalyst function (Pank 1)	P0420	01H	01H	Max.	1/128	
CATALVET	Three way catalyst function (Bank 1)	P0420	02H	81H	Min.	1	
CATALYST	Three way actalyst function (Pank 2)	P0430	03H	02H	Max.	1/128	
	Three way catalyst function (Bank 2)	P0430	04H	82H	Min.	1	
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²	
EVAP SYSTEM	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV	
	EVAD control ovetem (Veny email look)	P0456	07H	03H	Max.	1/128 mm ²	
	EVAP control system (Very small leak)	P1456	07H	03H	Max.	1/128 mm ²	

Emission-related Diagnostic Information (Cont'd)

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

HA

SC

EL

						,
SRT item	Self-diagnostic test item	DTC		value display)	Test limit	Conversion
			TID	CID		
		P0133	09H	04H	Max.	16 ms
		P1143	0AH	84H	Min.	10 mV
	Heated oxygen sensor 1 (Bank 1)	P1144	0BH	04H	Max.	10 mV
		P0132	0CH	04H	Max.	10 mV
		P0134	0DH	04H	Max.	1 s
		P0153	11H	05H	Max.	16 ms
		P1163	12H	85H	Min.	10 mV
	Heated oxygen sensor 1 (Bank 2)	P1164	13H	05H	Max.	10 mV
		P0152	14H	05H	Max.	10 mV
HO2S		P0154	15H	05H	Max.	1 s
		P0139	19H	86H	Min.	10 mV/500 ms
	Heated swiger concer 2 (Borli 4)	P1147	1AH	86H	Min.	10 mV
	Heated oxygen sensor 2 (Bank 1)	P1146	1BH	06H	Max.	10 mV
		P0138	1CH	06H	Max.	10 mV
		P0159	21H	87H	Min.	10 mV/500 ms
	Heated courses access 0 (Bards 0)	P1167	22H	87H	Min.	10 mV
	Heated oxygen sensor 2 (Bank 2)	P1166	23H	07H	Max.	10 mV
		P0158	24H	07H	Max.	10 mV
	Heated courses across 4 heater (Peuls 4)	P0032	29H	08H	Max.	20 mV
	Heated oxygen sensor 1 heater (Bank 1)	P0031	2AH	88H	Min.	20 mV
	Heated swimm concer 4 heater (Built C)	P0052	2BH	09H	Max.	20 mV
HO2S HTR	Heated oxygen sensor 1 heater (Bank 2)	P0051	2CH	89H	Min.	20 mV
HUZS HIK	Hosted owner concer 2 hoster (Barti 4)	P0038	2DH	0AH	Max.	20 mV
	Heated oxygen sensor 2 heater (Bank 1)	P0037	2EH	8AH	Min.	20 mV
	Heated course and a Charles (Bull C)	P0058	2FH	0BH	Max.	20 mV
	Heated oxygen sensor 2 heater (Bank 2)	P0057	30H	8BH	Min.	20 mV

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

lane	DTC*1			Test value/Test		Deference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test value/Test limit	1st trip DTC*1	Reference page
CAN COMM CIRCUIT	U1000	1000*5	_	_	_	EC-166
CAN COMM CIRCUIT	U1001	1001*5	_	_	Х	EC-166
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	_
INT/V TIM CONT-B1	P0011	0011	_	_	Х	EC-169

Itomo	DTO	C*1		T /T		Deference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test value/Test limit	1st trip DTC*1	Reference page
INT/V TIM CONT-B2	P0021	0021	_	_	Х	EC-169
HO2S1 HTR (B1)	P0031	0031	Х	Х	Х	EC-173
HO2S1 HTR (B1)	P0032	0032	Х	Х	Х	EC-173
HO2S2 HTR (B1)	P0037	0037	Х	Х	Х	EC-181
HO2S2 HTR (B1)	P0038	0038	Х	Х	Х	EC-181
HO2S1 HTR (B2)	P0051	0051	Х	Х	Х	EC-173
HO2S1 HTR (B2)	P0052	0052	Х	Х	Х	EC-173
HO2S2 HTR (B2)	P0057	0057	Х	Х	Х	EC-181
HO2S2 HTR (B2)	P0058	0058	Х	Х	Х	EC-181
MAF SEN/CIRCUIT	P0101	0101	_	_	_	EC-187
MAF SEN/CIRCUIT	P0102	0102	_	_	_	EC-194
MAF SEN/CIRCUIT	P0103	0103	_	_	_	EC-194
IAT SEN/CIRCUIT	P0112	0112	_	_	Х	EC-200
IAT SEN/CIRCUIT	P0113	0113	_	_	Х	EC-200
ECT SEN/CIRC	P0117	0117	_	_	_	EC-204
ECT SEN/CIRC	P0118	0118	_	_	_	EC-204
TP SEN 2/CIRC	P0122	0122	_	_	_	EC-210
TP SEN 2/CIRC	P0123	0123	_	_	_	EC-210
ECT SENSOR	P0125	0125	_	_	_	EC-217
IAT SENSOR	P0127	0127	_	_	Х	EC-220
THERMSTAT FNCTN	P0128	0128	_	_	Х	EC-222
HO2S1 (B1)	P0132	0132	_	Х	Х	EC-224
HO2S1 (B1)	P0133	0133	Х	Х	Х	EC-233
HO2S1 (B1)	P0134	0134	_	Х	Х	EC-246
HO2S2 (B1)	P0138	0138	_	Х	Х	EC-255
HO2S2 (B1)	P0139	0139	X	X	Х	EC-263
HO2S1 (B2)	P0152	0152	_	X	Х	EC-224
HO2S1 (B2)	P0153	0153	X	X	X	EC-233
HO2S1 (B2)	P0154	0154	_	Х	Х	EC-246
HO2S2 (B2)	P0158	0158	_	Х	Х	EC-255
HO2S2 (B2)	P0159	0159	Х	Х	X	EC-263
FUEL SYS-LEAN-B1	P0171	0171	_	_	Х	EC-273
FUEL SYS-RICH-B1	P0172	0172	_	_	Х	EC-282
FUEL SYS-LEAN-B2	P0174	0174	_	_	Х	EC-273
FUEL SYS-RICH-B2	P0175	0175	_	_	Х	EC-282
FTT SENSOR	P0181	0181	_	_	Х	EC-290

Emission-related Diagnostic Information (Cont'd)

lta	DTC*1			Took value /Trus		Deference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test value/Test limit	1st trip DTC*1	Reference page
FTT SEN/CIRCUIT	P0182	0182	_	_	Х	EC-293
FTT SEN/CIRCUIT	P0183	0183	_	_	Х	EC-293
TP SEN 1/CIRC	P0222	0222	_	_	_	EC-298
TP SEN 1/CIRC	P0223	0223	_	_	_	EC-298
MULTI CYL MISFIRE	P0300	0300	_	_	Х	EC-305
CYL 1 MISFIRE	P0301	0301	_	_	Х	EC-305
CYL 2 MISFIRE	P0302	0302	_	_	Х	EC-305
CYL 3 MISFIRE	P0303	0303	_	_	Х	EC-305
CYL 4 MISFIRE	P0304	0304	_	_	Х	EC-305
CYL 5 MISFIRE	P0305	0305	_		Х	EC-305
CYL 6 MISFIRE	P0306	0306	_	_	Х	EC-305
KNOCK SEN/CIRC-B1	P0327	0327	_	_	Х	EC-314
KNOCK SEN/CIRC-B1	P0328	0328	_	_	Х	EC-314
CKP SEN/CIRCUIT	P0335	0335	_	_	Х	EC-319
CMP SEN/CIRC-B1	P0340	0340	_	_	Х	EC-326
CMP SEN/CIRC-B2	P0345	0345	_	_	Х	EC-326
TW CATALYST SYS-B1	P0420	0420	X	X	X	EC-334
TW CATALYST SYS-B2	P0430	0430	Х	Х	Х	EC-334
EVAP PURG FLOW/MON	P0441	0441	X	Х	Х	EC-339
EVAP SMALL LEAK	P0442	0442	Х	Х	Х	EC-349
PURG VOLUME CONT/V	P0444	0444	_	_	Х	EC-364
PURG VOLUME CONT/V	P0445	0445	_	_	Х	EC-364
VENT CONTROL VALVE	P0447	0447	_	_	Х	EC-371
EVAP SYS PRES SEN	P0452	0452	_	_	Х	EC-378
EVAP SYS PRES SEN	P0453	0453	_	_	Х	EC-384
EVAP GROSS LEAK	P0455	0455	Х	Х	Х	EC-394
EVAP VERY SML LEAK	P0456	0456	X*4	Х	X	EC-407
FUEL LEV SEN SLOSH	P0460	0460	_	_	X	EC-423
FUEL LEVEL SENSOR	P0461	0461	_	_	X	EC-425
FUEL LEVL SEN/CIRC	P0462	0462	_	_	Х	EC-428
FUEL LEVL SEN/CIRC	P0463	0463	_	_	X	EC-428
VEH SPEED SEN/CIRC*6	P0500	0500	_	_	X	EC-430
ISC SYSTEM	P0506	0506	_	_	Х	EC-432
ISC SYSTEM	P0507	0507	_	_	Х	EC-434
PW ST P SEN/CIRC	P0550	0550	_	_	Х	EC-436
ECM	P0605	0605	_		Х	EC-441

Itama	DTO	C*1		To at wall of To at		Reference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test value/Test limit	1st trip DTC*1	page
PNP SW/CIRC	P0705	0705	_	_	Х	AT-102
ATF TEMP SEN/CIRC	P0710	0710	_	_	Х	AT-108
VEH SPD SEN/CIR AT*6	P0720	0720	_	_	Х	AT-114
ENGINE SPEED SIG	P0725	0725	_	_	Х	AT-119
A/T 1ST GR FNCTN	P0731	0731	_	_	Х	AT-123
A/T 2ND GR FNCTN	P0732	0732	_	_	Х	AT-129
A/T 3RD GR FNCTN	P0733	0733	_	_	Х	AT-135
A/T 4TH GR FNCTN	P0734	0734	_	_	Х	AT-141
TCC SOLENOID/CIRC	P0740	0740	_	_	Х	AT-151
A/T TCC S/V FNCTN	P0744	0744	_	_	Х	AT-156
L/PRESS SOL/CIRC	P0745	0745	_	_	Х	AT-165
SFT SOL A/CIRC	P0750	0750	_	_	_	AT-171
SFT SOL B/CIRC	P0755	0755	_	_	_	AT-175
ECM BACK UP/CIRCUIT	P1065	1065	_	_	Х	EC-443
INT/V TIM CONT-B1	P1110	1110	_	_	Х	EC-448
INT/V TIM V/CIR-B1	P1111	1111	_	_	Х	EC-451
ETC ACTR	P1121	1121	_	_	_	EC-457
ETC FUNCTION/CIRC	P1122	1122	_	_	_	EC-459
ETC MOT PWR	P1124	1124	_	_	_	EC-467
ETC MOT PWR	P1126	1126	_	_	_	EC-467
ETC MOT	P1128	1128	_	_	_	EC-472
SWIRL CONT SOL/V	P1130	1130	_	_	Х	EC-477
SWIRL CONT SOL/V	P1131	1131	_	_	Х	EC-498
INT/V TIM CONT-B2	P1135	1135	_	_	Х	EC-448
INT/V TIM V/CIR-B2	P1136	1136	_	_	Х	EC-451
HO2S1 (B1)	P1143	1143	X	X	Х	EC-504
HO2S1 (B1)	P1144	1144	Х	Х	Х	EC-512
HO2S2 (B1)	P1146	1146	X	X	Х	EC-521
HO2S2 (B1)	P1147	1147	Х	Х	Х	EC-531
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-541
HO2S1 (B2)	P1163	1163	Х	Х	X	EC-504
HO2S1 (B2)	P1164	1164	Х	Х	Х	EC-512
SWL CON VC SW/CIRC	P1165	1165	_	_	Х	EC-543
HO2S2 (B2)	P1166	1166	Х	Х	Х	EC-521
HO2S2 (B2)	P1167	1167	Х	Х	Х	EC-531
CLOSED LOOP-B2	P1168	1168	_	_	_	EC-541

Emission-related Diagnostic Information (Cont'd)

GI

MA

LC

EC

GL

MT

AT

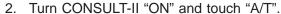
TF

PD

 $\mathbb{A}\mathbb{X}$

SU

ST


Itoma	DTC*1			Tost value/Tast		Reference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	e Test value/Test limit	1st trip DTC*1	page
TCS C/U FUNCTN	P1211	1211	_	_	Х	EC-549
TCS/CIRC	P1212	1212	_	_	Х	EC-551
ENG OVER TEMP	P1217	1217	_	_	_	EC-553
CTP LEARNING	P1225	1225	_	_	Х	EC-558
CTP LEARNING	P1226	1226	_	_	Х	EC-560
SENSOR POWER/CIRC	P1229	1229	_	_	_	EC-562
EVAP SMALL LEAK	P1442	1442	Х	Х	Х	EC-567
PURG VOLUME CONT/V	P1444	1444	_	_	Х	EC-582
VENT CONTROL VALVE	P1446	1446	_	_	Х	EC-594
VENT CONTROL VALVE	P1448	1448	_	_	Х	EC-602
EVAP VERY SML LEAK	P1456	1456	X*4	Х	Х	EC-611
VC/V BYPASS/V	P1490	1490	_	_	Х	EC-627
VC CUT/V BYPASS/V	P1491	1491	_	_	Х	EC-633
ASCD SW	P1564	1564	_	_	_	EC-645
ASCD BRAKE SW	P1572	1572	_	_	_	EC-652
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	_	_	Х	EL-389
TP SEN/CIRC A/T	P1705	1705	_	_	_	AT-179
P-N POS SW/CIRCUIT	P1706	1706	_	_	Х	EC-663
O/R CLTCH SOL/CIRC	P1760	1760	_	_	Х	AT-185
BRAKE SW/CIRCUIT	P1805	1805	_	_	Х	EC-669
APP SEN 1/CIRC	P2122	2122	_	_	_	EC-675
APP SEN 1/CIRC	P2123	2123	_	_	_	EC-675
APP SEN 2/CIRC	P2127	2127	_	_	_	EC-682
APP SEN 2/CIRC	P2128	2128	_	_	_	EC-682
TP SENSOR	P2135	2135	_	_	_	EC-690
APP SENSOR	P2138	2138	_	_	_	EC-697

^{*1: 1}st trip DTC No. is the same as DTC No.

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC (With CONSULT-II)

NOTE: If the DTC is not for A/T related items (see EC-9), skip steps 2 through 4.

1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.

3. Touch "SELF-DIAG RESULTS".

EL

HA

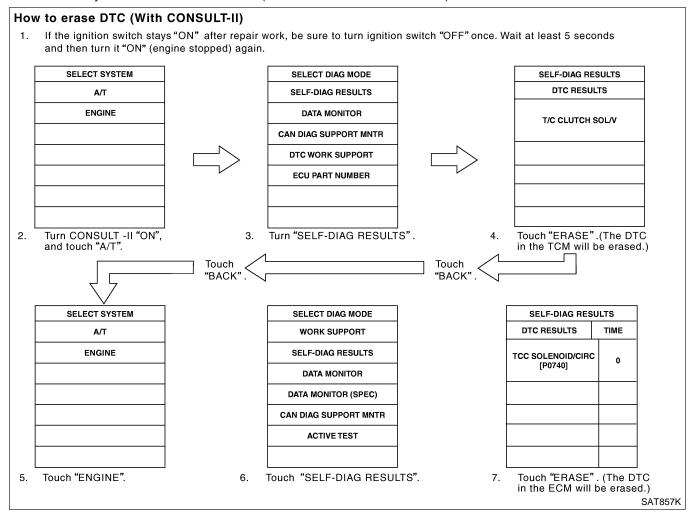
SC

NAEC0031S06

NAEC0031S0601

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.


^{*4:} SRT code will not be set if the self-diagnostic result is NG.

^{*5:} The troubleshooting for this DTC needs CONSULT-II.

^{*6:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

Emission-related Diagnostic Information (Cont'd)

- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased
 individually from the ECM and TCM (Transmission control module).

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

How to Erase DTC (With GST)

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

NOTE:

If the DTC is not for A/T related items (see EC-9), skip step 2.

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Perform "HOW TO ERASE DTC (WITH GST)". Refer to AT-36. (The DTC in TCM will be erased.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

How to Erase DTC (No Tools)

NAEC0031S0605

NOTE:

If the DTC is not for A/T related items (see EC-9), skip step 2.

1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10

Emission-related Diagnostic Information (Cont'd)

seconds and then turn it ON (engine stopped) again.

- 2. Perform "How to Erase DTC (No Tools)", AT-36. (The DTC in TCM will be erased.)
- 3. Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to EC-95, "HOW TO SWITCH DIAGNOSTIC MODE".
 - estic information will be lost within 24
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM — NATS)

NAFC0031S08

SELF DIAG RESU		
DTC RESULTS	TIME	
NATS MALFUNCTION [P1610]	0	
		SEF515Y

- If the security indicator lights up with the ignition switch in the ON position or "NATS MALFUNC-TION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to EL-389, "NVIS (Nissan Vehicle Immobilizer System—NATS)".
- Confirm no self-diagnostic results of NVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.
 Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NVIS (NATS) initialization and NVIS (NATS) ignition key ID registration, refer to CONSULT-II operation manual, IVIS/NVIS.

LC

EC

EM

GI

GL

MT

AT

TF

PD

0.0.0

BR

T

RS

BT

HA


SC

EL

Malfunction Indicator Lamp (MIL)

DESCRIPTION

NAFC0032

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to EL-145, "WARNING LAMPS" or see EC-757.
- 2. When the engine is started, the MIL should go off.

 If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

On Board Diagnostic System Function

The on board diagnostic system has the following four functions.

NAEC0032S01

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I Ignition switch in ON position Engine stopped		BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. One trip detection diagnoses "Misfire (Possible three way catalyst damage)"
Mode II	Ignition switch in ON position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.
	Engine running	HEATED OXYGEN SENSOR 1 MONITOR	This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1, to be read.

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there
is a malfunction on engine control system.

Therefore, when electrically controlled throttle and part of ECM related diagnosis is continuously detected as NG for 5 trips, ECM warns the driver that engine control system has a malfunction and MIL circuit is open by means of operating fail-safe function.

Malfunction Indicator Lamp (MIL) (Cont'd)

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,500 rpm due to the fuel cut

MA

MIL Flashing without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. How to Switch Diagnostic Test Mode.

How to switch the diagnostic test (function) modes, and details of the above functions are described later. How to Switch Diagnostic Test Mode.

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- Test values
- 7. Others

EC

LC

(G/L

MI

TF

PD

AX

SU

Bī

SC

剧

How to Switch Diagnostic Test Mode

NOTE:

It is better to count the time accurately with a clock.

It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.

AT

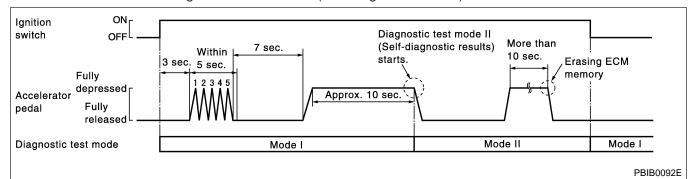
NAEC0032S0701

NAEC0032S07

Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.


2. Repeat the following procedure quickly five times within 5 seconds.

Fully depress the accelerator pedal.

2) Fully release the accelerator pedal.

3. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.

Fully release the accelerator pedal. ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

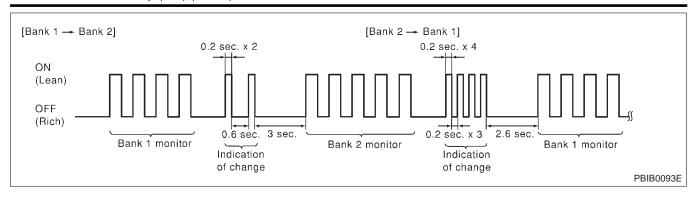
How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)

Set the ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to How to Set Diagnostic Test Mode II (Self-diagnostic Results).

Start Engine.

ECM has entered to Diagnostic Test Mode II (Heated oxygen sensor 1 monitor).

ECM will start heated oxygen sensor 1 monitoring from the bank 1 sensor.


How to Set Diagnostic Switch Monitored Sensor from Bank 1 to Bank 2 or Vice versa

Fully depress the accelerator pedal quickly and then release it immediately.

Make sure that monitoring sensor has changed by MIL blinking as follows.

NAEC0032S0703

Malfunction Indicator Lamp (MIL) (Cont'd)

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

JAEC003250704

- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to How to Set Diagnostic Test Mode II (Self-diagnostic Results).
- 2. Fully depress the accelerator pedal and keep it for more than 10 seconds. The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

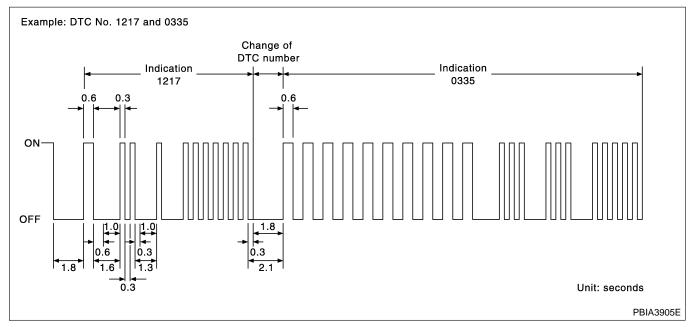
Diagnostic Test Mode I — Bulb Check

NAEC0032S0

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to EL-145, "WARNING LAMPS" or see EC-757.

Diagnostic Test Mode I — Malfunction Warning

AFC0032S04


MIL	Condition				
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.				
OFF	No malfunction.				

• These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS).

Diagnostic Test Mode II — Self-Diagnostic Results

NAECOOSSEO

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

Malfunction Indicator Lamp (MIL) (Cont'd)

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle. A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later

numeral appears on the display 1.3 seconds after the former numeral has disappeared. A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC 0000 refers to no malfunction. (See "TROUBLE DIAGNOSIS — INDEX", EC-9.)

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to How to Switch Diagnostic Test Mode.

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

Diagnostic Test Mode II — Heated Oxygen Sensor 1 Monitor

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1.

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	-
ON	Lean	Classed loop system	-
OFF	Rich	Closed loop system	
*Remains ON or OFF	Any condition	Open loop system	_

^{*:} Maintains conditions just before switching to open loop.

To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

LC

MA

EC

GL

MIT

AT

AX

HA

SC

EL

OBD System Operation Chart

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

=NAEC0033

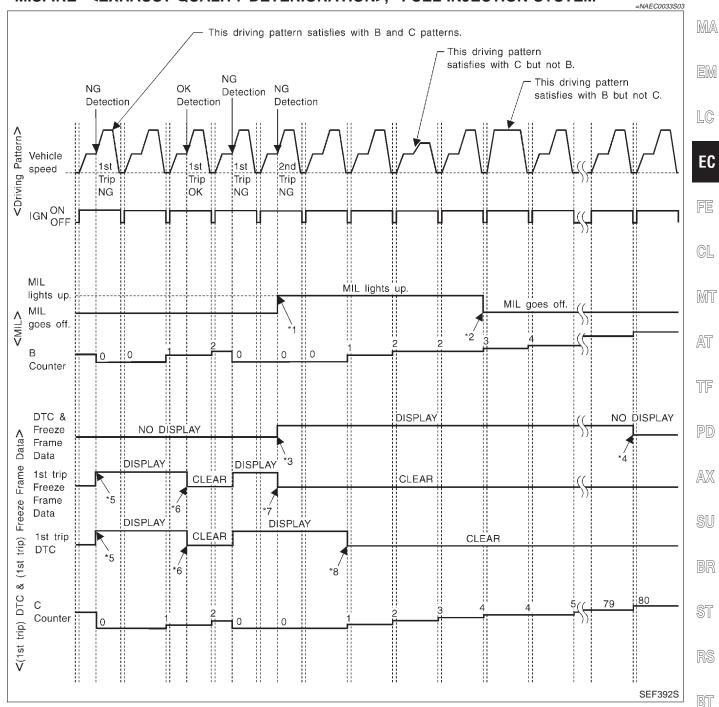
- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-77.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.

SUMMARY CHART

NAEC0033S02

			747120000002
Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns B and C under "Fuel Injection System" and "Misfire", see EC-100.


For details about patterns A and B under "Other", see EC-102.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- The DTC and the freeze frame
- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

freeze frame data will be cleared at the moment OK is detected.

- When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

SC

EL

HA

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

NAEC0033S04

NAEC0033S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in OBD SYSTEM OPERATION CHART)

<Driving Pattern C>

NAEC0033S0402

Driving pattern C means the vehicle operation as follows:

- The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%] Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

OBD System Operation Chart (Cont'd)

GI

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS EXCEPT FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

MA This driving pattern satisfies with A and B patterns. This driving pattern satisfies with A but not B. EM NG This driving pattern NG OK NG Detection satisfies with B but not A. Detection Detection Detection LC Vehicle EC speed -CDriving Trip Trip Trip Trip NG Юĸ NG NG FE ON IGN OFF GL MII MIL lights up lights up. MT goes off. MIL goes off. !! 3 AT В 0 Counter TF DTC & DISPLAY NO DISPLAY PD Freeze NO DISPLAY Frame Data DISPLAY DİSPLAY AX CLEAR 1st trip **CLEAR** Freeze Frame Data SU DİSPLAY DISPLAY **CLEAR** CLEAR 1st trip trip) DTC (1st BR જ

When the same malfunction is detected in two consecutive trips, MIL will light up.

DTC

trip) **<**(1st Counter

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame

data still remain in ECM.)

- *5: When a malfunction is detected for the first time, the 1st trip DTC
- 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

and the 1st trip freeze frame data will be stored in ECM.

HA

SEF393SD

ST

SC


EL

OBD System Operation Chart (Cont'd)

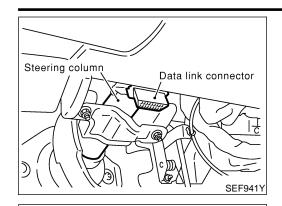
EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

NAEC0033S06

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>


NAEC0033S0602

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD System Operation Chart", EC-98).

CONSULT-II Function (ENGINE)

CONSULT-II Function (ENGINE) INSPECTION PROCEDURE

=NAEC0034

NAEC0034S01

Turn ignition switch OFF.

034S01

Connect CONSULT-II and CONSULT-II CONVERTER to data link connector, which is located under LH dash panel near the fuse box cover.

EM

MA

GI

LC

CONSULT-II

ENGINE

START (NISSAN BASED VHCL)

START (X-BADGE VHCL)

SUB MODE

LIGHT COPY

NOTE: EXAMPLE SHOWN. ACTUAL DISPLAY MAY DIFFER.

BCIA0029E

B. Turn ignition switch ON.

--

EC

4. Touch "START (NISSAN BASED VHCL)".

CL

MT

AT

Touch "ENGINE".

If "ENGINE" is not indicated, go to GI-42, "CONSULT-II Data Link Connector (DLC) Circuit".

TF

PD

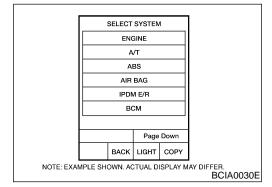
 $\mathbb{A}\mathbb{X}$

0...

3U

n BR

ST



BT

HA

SC

EL

SELECT DIAG MODE

WORK SUPPORT

SELF-DIAG RESULTS

CAN DIAG SUPPORT MNTR

DATA MONITOR

ACTIVE TEST

ECU PART NUMBER

Page Down

BACK LIGHT COPY

NOTE: EXAMPLE SHOWN. ACTUAL DISPLAY MAY DIFFER.

BCIA0031E

Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

			DIAGNOST				C TEST MODE			
Item		SELF-DIAGNOSTIC RESULTS			DATA		DTC & SRT CONFIRMATION			
		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	
		Crankshaft position sensor (POS)		х	Х	Х	х			
		Crankshaft position sensor (PHASE)		Х						
		Mass air flow sensor		Х		Х	Х			
		Engine coolant temperature sensor		х	Х	Х	х	Х		
		Heated oxygen sensor 1		Х		Х	Х		Х	Х
		Heated oxygen sensor 2		Х		Х	Х		Х	Х
		Vehicle speed sensor		Х	Х	Х	Х			
		Accelerator pedal position sensor		Х		Х	Х			
		Throttle position sensor		Х		Х	Х			
		Fuel tank temperature sensor		Х		Х	Х	Х		
ARTS		EVAP control system pressure sensor		Х		Х	х			
A P		Intake air temperature sensor		Х	Х	Х	Х			
NE C		Knock sensor		Х						
)MP(⊢	Refrigerant pressure sensor				Х	Х			
CC	INPUT	Ignition switch (start signal)				X	Х			
CONTRO		Closed throttle position switch (Accelerator pedal position sensor signal)				Х	х			
ENGINE		Air conditioner switch				X	Х			
EN		Park/neutral position (PNP) switch		Х		Х	Х			
		Power steering pressure sensor		Х		X	Х			
		Battery voltage				Х	Х			
		Load signal				Х	Х			
		Swirl control valve control vacuum check switch		Х		Х	Х			
		Fuel level sensor		Х		Х	Х			
		Intake valve timing control position sensor		Х		Х	х			
		ASCD steering switch		Х		Х	Х			
		ASCD brake switch		Х		Х	Х			

CONSULT-II Function (ENGINE) (Cont'd)

				DIAGNOSTIC TEST MODE						
	ltem			SELF-DIAGNOSTIC RESULTS		DATA	DATA		DTC & SRT CONFIRMATION	
			WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
		Injectors				Х	Х	Х		
		Power transistor (Ignition timing)				X	Х	Х		
		Throttle control motor		Х						
တ	Throttle control motor relay			Х		X	Х			
ENGINE CONTROL COMPONENT PARTS		EVAP canister purge volume control solenoid valve		Х		Х	Х	Х		Х
ĒN	Air conditioner relay					Х	Х			
PO	Fuel pump relay		Х			X	Х	Х		
CO	Heated oxygen sensor 1 heater Heated oxygen sensor 2 heater			Х		X	Х		Х	
Š	0	Heated oxygen sensor 2 heater		Х		Х	Х		Х	
N N		EVAP canister vent control valve	Х	Х		Х	Х	Х		
Б		Vacuum cut valve bypass valve	X	Х		X	X	Х		X
ENGIN		Swirl control valve control sole- noid valve		Х		Х	Х	Х		
	VIAS control solenoid valve					Х	Х	Х		
	Intake valve timing control sole- noid valve			Х		Х	х	х		
		Calculated load value			Х	Х	Х			

X: Applicable

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-79.

CONSULT-II Function (ENGINE) (Cont'd)

	FUNCTION =NAEC0034S03
Diagnostic test mode	Function
WORK SUPPORT	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
SELF-DIAG RESULTS	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
DATA MONITOR	Input/Output data in the ECM can be read.
DATA MONITOR (SPEC)	Input/Output specification of the basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN DIAGNOSTIC SUP- PORT MONITOR	The results of transmit/receive diagnosis of CAN communication can be read.
ACTIVE TEST	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
FUNCTION TEST	Conducted by CONSULT-II instead of a technician to determine whether each system is OK or NG.
DTC & SRT CONFIRMA- TION	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.

*1 The following emission-related diagnostic information is cleared when the ECM memory is erased.

ECM part number can be read.

- 1) Diagnostic trouble codes
- 1st trip diagnostic trouble codes 2)
- 3) Freeze frame data

ECM PART NUMBER

- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

WORK SUPPORT MODE

		NAEC0034S04
WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIX- TURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When clearing the coefficient of self-learning control value
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW ON ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM TANK FUEL TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system

CONSULT-II Function (ENGINE) (Cont'd)

WORK ITEM	CONDITION	USAGE	(
TARGET IGN TIM ADJ*	• IDLE CONDITION	 When adjusting target ignition timing If once the "TARGET IDLE RPM ADJ" has been done, the Idle Air Volume Learning procedure will not be completed. 	[
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed	

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAGNOSTIC MODE DTC and 1st Trip DTC

NAEC0034S05

Regarding items of DTC and 1st trip DTC, refer to "TROUBLE DIAGNOSIS — INDEX" (See EC-9.)

Freeze Frame Data and 1st Trip Freeze Frame Data

GL 34S0502

EC

FE

	NAEC0034S050			
Freeze frame data item*1	Description			
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as PXXXX. (Refer to "TROUBLE DIAGNOSIS — INDEX", EC-9.)			
FUEL SYS-B1	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "Mode2": Open loop due to detected system malfunction 			
FUEL SYS-B2	"Mode3": Open loop due to driving conditions (power enrichment, deceleration enleanment) "Mode4": Closed loop - using oxygen sensor(s) as feedback for fuel control "Mode5": Open loop - has not yet satisfied condition to go to closed loop			
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.			
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.			
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.			
S-FUEL TRM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.			
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.			
L-FUEL TRM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.			
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.			
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.			
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.			
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.			

^{*1:} The items are the same as those of 1st trip freeze frame data.

EL

SC

DATA MONITOR MODE

X: Applicable

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks		
ENG SPEED [rpm]	Х	Х	Indicates the engine speed computed from the signal of the crankshaft posi- tion sensor (POS) and camshaft posi- tion sensor (PHASE)	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated. 		
MAS A/F SE-B1 [V]	Х	Х	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.		
COOLAN TEMP/S [°C] or [°F]	х	Х	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine cool- ant temperature determined by the ECM is displayed.		
HO2S1 (B1) [V]	Х	X	The signal voltage of the front heated			
HO2S1 (B2) [V]	Х		oxygen sensor is displayed.			
HO2S2 (B1) [V]	Х		The signal voltage of the rear heated			
HO2S2 (B2) [V]	Х		oxygen sensor is displayed.			
HO2S1 MNTR (B1) [RICH/LEAN]	Х	Х	Display of heated oxygen sensor 1 signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected.	After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins.		
HO2S1 MNTR (B2) [RICH/LEAN]	X		toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.		
HO2S2 MNTR (B1) [RICH/LEAN]	Х		Display of heated oxygen sensor 2 signal: RICH means the amount of oxygen after three way catalyst is relatively	When the engine is stopped, a certain		
HO2S2 MNTR (B2) [RICH/LEAN]	Х		small. LEAN means the amount of oxygen after three way catalyst is relatively large.	value is indicated.		
VHCL SPEED SE [km/h] or [mph]	×	X	The vehicle speed computed from the vehicle speed sensor signal is displayed.			
BATTERY VOLT [V]	×	X	The power supply voltage of ECM is displayed.			
ACCEL SEN 1 [V]	Х	Х	The accelerator pedal position sensor	ACCEL SEN 2 signal is converted by FOM integrally. There is different from		
ACCEL SEN 2 [V]	Х		signal voltage is displayed.	ECM internally. Thus, it differs from ECM terminal voltage signal.		
THRTL SEN 1 [V]	Х	Х	The throttle position sensor signal volt-	THRTL SEN 2 signal is converted by		
THRTL SEN 2 [V]	Х		age is displayed.	ECM internally. Thus, it differs from ECM terminal voltage signal.		
FUEL T/TMP SE [°C] or [°F]	Х		The fuel temperature judged from the tank fuel temperature sensor signal voltage is displayed.			
INT/A TEMP SE [°C] or [°F]	Х	Х	The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.			

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
EVAP SYS PRES [V]	Х		The signal voltage of EVAP control system pressure sensor is displayed.	
FUEL LEVEL SE [V]	Х		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	X	X	 Indicates start signal status [ON/OFF] computed by the ECM according to the signals of engine speed and battery voltage. 	• After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	х	Х	Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal.	
AIR COND SIG [ON/OFF]	Х	Х	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal.	
P/N POSI SW [ON/OFF]	×	X	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL [ON/OFF]	x	x	[ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure signal is indicated.	
LOAD SIGNAL [ON/OFF]	x	×	Indicates [ON/OFF] condition from the electrical load signal and/or lighting switch. ON rear defogger is operating and/or lighting switch is on. OFF rear defogger is not operating and lighting switch is not on.	
IGNITION SW [ON/OFF]	Х		Indicates [ON/OFF] condition from ignition switch.	
BRAKE SW [ON/OFF]			Indicates [ON/OFF] condition from the stop lamp switch signal.	
SWRL CONT S/V [ON/OFF]			 The control condition of the swirl control valve control solenoid valve (determined by ECM according to the input signals) is indicated. ON Swirl control valve is closed. OFF Swirl control valve is opened. 	
INJ PULSE-B1 [msec]		Х	Indicates the actual fuel injection pulse width compensated by ECM according	When the engine is stopped, a certain
INJ PULSE-B2 [msec]			to the input signals.	computed value is indicated.
B/FUEL SCHDL [msec]		X	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
IGN TIMING [BTDC]		х	Indicates the ignition timing computed by ECM according to the input signals.	• When the engine is stopped, a certain value is indicated.

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
A/F ALPHA-B1 [%]		Х	The mean value of the air-fuel ratio	When the engine is stopped, a certain value is indicated.
A/F ALPHA-B2 [%]		Х	feedback correction factor per cycle is indicated.	This data also includes the data for the air-fuel ratio learning control.
AIR COND RLY [ON/OFF]		Х	The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.	
FUEL PUMP RLY [ON/OFF]		Х	 Indicates the fuel pump relay control condition determined by ECM accord- ing to the input signals. 	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
THRTL RELAY [ON/OFF]			Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.	
HO2S1 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of front heated oxygen sensor heater deter-	
HO2S1 HTR (B2) [ON/OFF]			mined by ECM according to the input signals.	
HO2S2 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of rear heated oxygen sensor heater deter-	
HO2S2 HTR (B2) [ON/OFF]			mined by ECM according to the input signals.	
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
MASS AIRFLOW [g-m/s]			 Indicates the mass airflow computed by ECM according to the signal voltage of the mass airflow sensor. 	
INT/V TIM (B1) [°CA]			Indicate [°CA] of intake camshaft	
INT/V TIM (B2) [°CA]			advanced angle.	

				CONSULT-II Function (ENGINE) (Cont'd)
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
INT/V SOL (B1) [%]			The control value of the intake valve timing control solenoid valve (deter- mined by ECM according to the input	
INT/V SOL (B2) [%]			signals) is indicated. • The advance angle becomes larger as the value increases.	
TRVL AFTER MIL [km] or [Mile]			Distance traveled while MIL is activated	
VIAS S/V [ON/OFF]			 The control condition of the VIAS control solenoid valve (determined by ECM according to the input signal) is indicated. OFF VIAS control solenoid valve is not operating. ON VIAS control solenoid valve is operating. 	
SWL CON VC SW	x		Indicates [ON/OFF] condition from the swirl control valve control vacuum check switch. ON Swirl control valve is not operational. OFF Swirl control valve is operational.	
IDL A/V LEARN			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully.	
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.	
SET VHCL SPD [km/h] or [mph]			The preset vehicle speed is displayed.	
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from MAIN switch signal.	
CANCEL SW [ON/OFF]			Indicates [ON/OFF] condition from CANCEL switch signal.	
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from RESUME/ACCEL switch signal.	
SET SW [ON/OFF]			Indicates [ON/OFF] condition from SET/ COAST switch signal.	
BRAKE SW1 [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal, and ASCD clutch switch signal (M/T models).	
BRAKE SW2 [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.	
VHCL SPD CUT [NON/CUT]			Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed increased to excessively high compared with the ASCD set speed, and ASCD operation is cut off.	

CONSULT-II Function (ENGINE) (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
LO SPEED CUT [NON/CUT]			Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUTVehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.	
AT OD MONITOR [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM.	
AT OD CANCEL [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.	
CRUISE LAMP [ON/OFF]			Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.	
SET LAMP [ON/OFF]			Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals.	
Voltage [V]				
Frequenty [msec], [Hz] or [%]				Only "#" is displayed if item is unable to be measured.
DUTY-HI			Voltage, frequency, duty cycle or pulse width measured by the probe. Figures with "#"s They are the sall piece of data who will be a piece of data who will be a piece.	• Figures with "#"s are temporary ones.
DUTY-LOW				They are the same figures as an actual piece of data which was just previously
PLS WIDTH-HI				measured.
PLS WIDTH-LOW				

NOTE:

• Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

DATA MONITOR (SPEC) MODE

X: Applicable

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
MAS A/F SE-B1 [V]	Х	Х	The signal voltage of the mass air flow sensor specification is displayed.	When the engine is running, specification range is indicated.
B/FUEL SCHDL [msec]			"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When the engine is running, specification range is indicated.
A/F ALPHA-B1 [%]		Х	Indicates the mean value of the air-fuel ratio	When the engine is running, specification range is indicated.
A/F ALPHA-B2 [%]		Х	feedback correction factor per cycle.	This data also includes the data for the air-fuel ratio learning control.

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

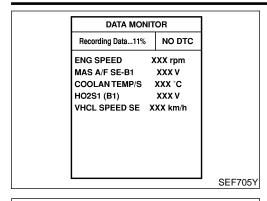
	AC1	TIVE TEST MODE	NAEC0034S07
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorFuel injectorsHeated oxygen sensor
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Adjust initial ignition timing
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch OFF Shift lever N Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant tem- perature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay ON and OFF using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve ON and OFF with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
SWIRL CONT SOL VALVE	 Ignition switch: ON Turn solenoid valve ON and OFF with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CON-SULT-II. 	Engine speed changes according to the opening percent.	Harness and connector Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve ON and OFF with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve ON and OFF with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
V/T ASSIGN ANGLE	 Engine: After warming up, hold engine speed at 2,500 rpm. Change the intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connector Intake valve timing control solenoid valve

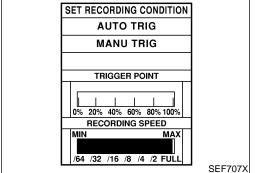
CONSULT-II Function (ENGINE) (Cont'd)

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

NAEC0034S08

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-79.


SRT Work Support Mode


This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode

	2101101110111		NAEC0034S0802
Test mode	Test item	Condition	Reference page
	EVP SML LEAK P0442/P1442		EC-349, 567
	EVP V/S LEAK P0456/P1456		EC-407, 611
EVAPORATIVE SYSTEM	PURG VOL CN/V P1444		EC-582
	PURGE FLOW P0441		EC-339
	VC CUT/V BP/V P1491		EC-633
	HO2S1 (B1) P0134		EC-246
	HO2S1 (B1) P1143	Refer to corresponding trouble diagnosis for DTC.	EC-504
	HO2S1 (B1) P1144		EC-512
110004	HO2S1 (B1) P0133		EC-233
HO2S1	HO2S1 (B2) P0154		EC-246
	HO2S1 (B2) P1163		EC-504
	HO2S1 (B2) P1164		EC-512
	HO2S1 (B2) P0153		EC-233
	HO2S2 (B1) P1146		EC-521
	HO2S2 (B1) P1147		EC-531
HO2S2	HO2S2 (B1) P0139]	EC-263
NU232	HO2S2 (B2) P1166		EC-521
	HO2S2 (B2) P1167		EC-531
	HO2S2 (B2) P0159		EC-263

CONSULT-II Function (ENGINE) (Cont'd)

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.

MA

GI

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

EC

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

GL

"MANU TRIG" (Manual trigger):

MIT

DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.

AT

DATA MONITOR can be performed continuously even though a malfunction is detected.

TF

Use these triggers as follows:

"AUTO TRIG"

While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.

AX

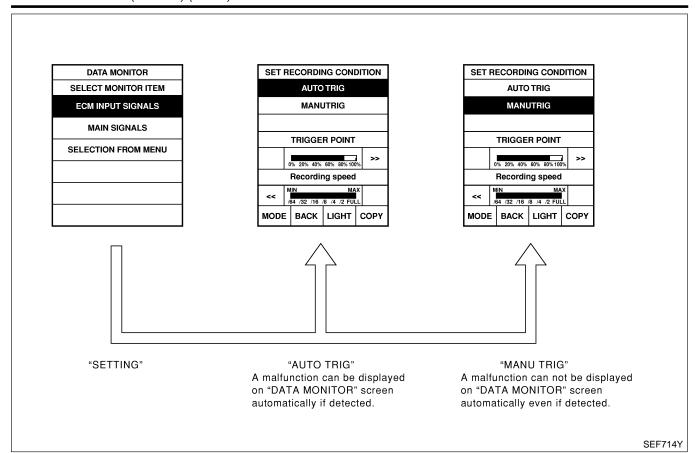
While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.

When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI-25, "Incident Simulation Tests".)

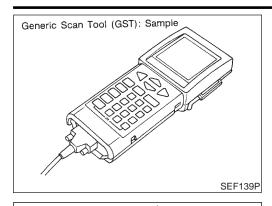
BR

ST

"MANU TRIG"


If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

BT


HA

SC

EL

Generic Scan Tool (GST)

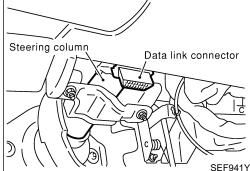
Generic Scan Tool (GST) DESCRIPTION

=NAEC0035

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained on the next page.

MA

GI


ISO9141 is used as the protocol.

EM

The name "GST" or "Generic Scan Tool" is used in this service manual.

LC

EC

VTX GENERIC OBD II

PROGRAM CARD

INSPECTION PROCEDURE

Turn ignition switch OFF.

NAFC0035S02

2. Connect GST to data link connector, which is located under LH dash panel near the fuse box cover.

GL

MIT

Turn ignition switch ON.

AT

Enter the program according to instruction on the screen or in the operation manual.

TF

(*: Regarding GST screens in this section, sample screens are shown.)

PD

AX

SU

OBD II FUNCTIONS

Press [ENTER]

Sample screen*

F0: DATA LIST

F1: FREEZE DATA F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO

F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT

F9: UNIT CONVERSION Sample screen*

SEF416S

SEF398S

5. Perform each diagnostic mode according to each service procedure.

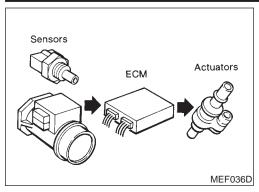
For further information, see the GST Operation Manual of the tool maker.

ST

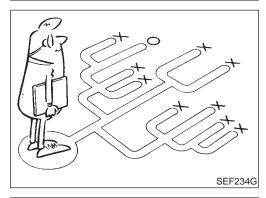
BT

HA

SC


EL

Generic Scan Tool (GST) (Cont'd)


		FUNCTION
D	iagnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-107).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch ON position (Engine stopped). When this mode is performed, the following parts can be opened or closed. EVAP canister vent control valve open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch OFF Low fuel temperature Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

TROUBLE DIAGNOSIS — INTRODUCTION

Introduction

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE Road conditions Operating conditions,

Weather conditions,

Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no incidents such as vacuum leaks, fouled spark plugs, or other incidents with the engine.

It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the incidents. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-121.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on next page should be used.

Start your diagnosis by looking for "conventional" malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about an incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

EC

MIT

AT

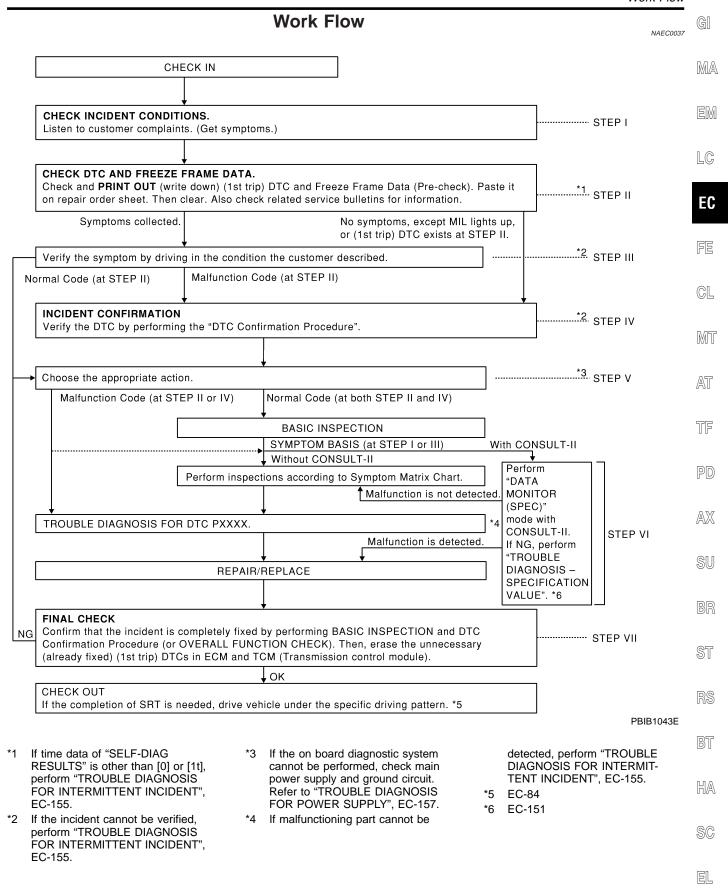
TF

AX

HA

EL

TROUBLE DIAGNOSIS — INTRODUCTION


Introduction (Cont'd)

Worksheet Sample

NAEC0036S0101

Customer name MR/MS		Model & Year	VIN	
Engine #		Trans.	Mileage	
Incident Date		Manuf. Date	In Service Date	
Fuel and fuel filler cap		☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.	
☐ Startability		☐ Impossible to start ☐ No combust ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position I by throttle position	
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ High idle ☐ Low idle ☐ Others []		
☐ Driveability		☐ Stumble ☐ Surge ☐ Knock ☐ Lack of power ☐ Intake backfire ☐ Exhaust backfire ☐ Others []		
	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerating ☐ Just after stopping ☐ While loading		lerating	
Incident occur	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime		
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes		
Weather cond	litions	☐ Not affected		
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐] Cold ☐ Humid °F	
		☐ Cold ☐ During warm-up ☐ /	After warm-up	
Engine conditions		Engine speed	4,000 6,000 8,000 rpm	
Road conditio	ns	☐ In town ☐ In suburbs ☐ Hig	hway 🔲 Off road (up/down)	
Driving conditions		□ Not affected □ At starting □ While idling □ While accelerating □ While cruis □ While decelerating □ While turning	S	
		Vehicle speed	30 40 50 60 MPH	
Malfunction in	dicator lamp	☐ Turned on ☐ Not turned on		

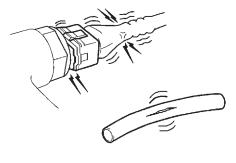
MTBL0017

	DESCRIPTION FOR WORK FLOW
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-120.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-91.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-131.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON-SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the DTC Confirmation Procedure. Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. In case the DTC Confirmation Procedure is not available, perform the Overall Function Check instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The NG result of the Overall Function Check is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-123.) If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS — SPECIFICATION VALUE", EC-151. (If malfunction is detected, proceed to "REPAIR REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-131.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) Harness Layouts. Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-135, 141. The Diagnostic Procedure in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to GI-27, "Circuit Inspection". Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the DTC Confirmation Procedure and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-91 and AT-35.)

Basic Inspection

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;


al MA

NAEC0038

- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.

1 INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks and improper connections
- Wiring for improper connections, pinches and cuts
- Air cleaner clogging
- Hoses and ducts for leaks

SEF983U

► GO TO 2.

2	REPAIR OR REPLACE		
Repair	or replace components as	s necessary according to corresponding "Diagnostic Procedure".	
	•	GO TO 3.	

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

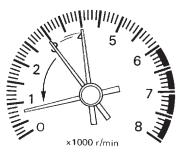
51

RS

BT

HA

SC


EL

Basic Inspection (Cont'd)

3 CHECK TARGET IDLE SPEED

With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

SEF978U

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 750±50 rpm

A/T: 750±50 rpm (in P or N position)

DATA M	DATA MONITOR		
MONITOR	NO DTC		
ENG SPEED	XXX rpm		

SEF058Y

⋈ Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 750±50 rpm

A/T: 750±50 rpm (in P or N position)

OK	or	NG
----	----	----

OK •	GO TO 10.
NG •	GO TO 4.

4	PERFORM ACCELERA	TOR PEDAL RELEASED POSITION LEARNING
	op engine. rform "Accelerator Pedal R	eleased Position Learning", EC-73.
	•	GO TO 5.

5	PERFORM THROTTLE	VALVE CLOSED POSITION LEARNING
Perfor	m "Throttle Valve Closed P	osition Learning", EC-73.
	•	GO TO 6.

Basic Inspection (Cont'd)

EC

FE

CL

MT

AT

TF

ST

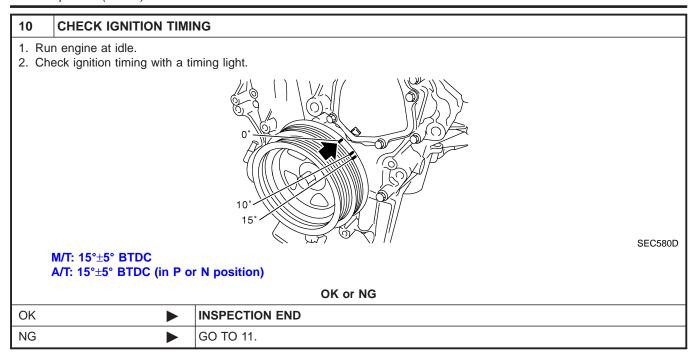
RS

BT

HA

SC

EL

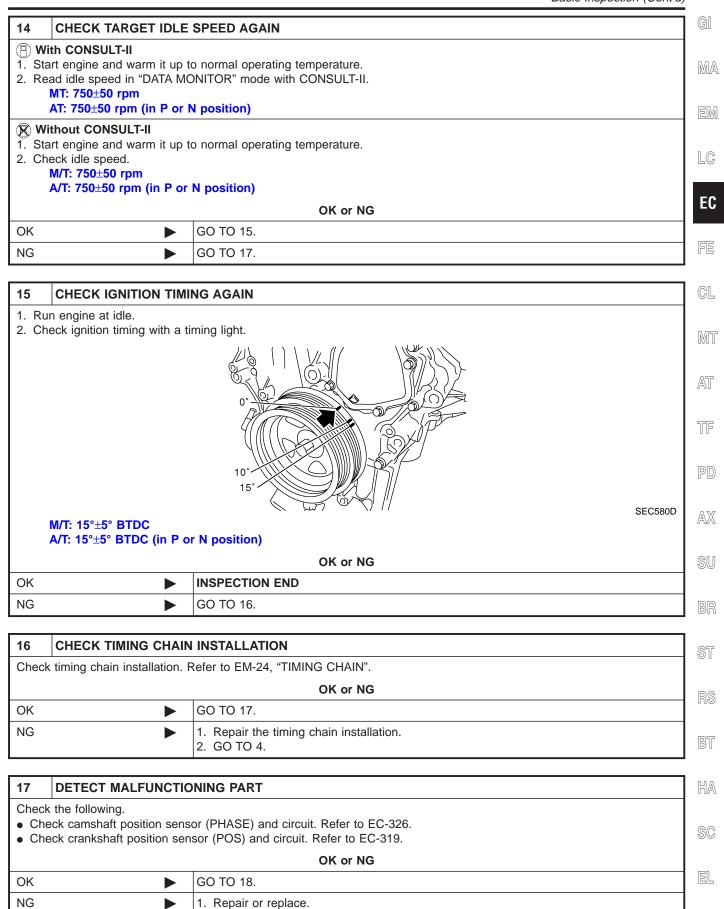

Refer to "Idle Air Volume Learning", EC-73. Is Idle Air Volume Learning carried out successfully? Yes or No Yes GO TO 7.	MÆ
155.51.11	I
Vos	l
GO 10 7.	EN
No 1. Follow the instruction of Idle Air Volume Learning. 2. GO TO 4.	

7 C	HECK TARGET IDLE	SPEED AGAIN
(With	CONSULT-II	
1. Start	engine and warm it up to	normal operating temperature.
2. Read	idle speed in "DATA MC	NITOR" mode with CONSULT-II.
M/	T: 750±50 rpm	
Α/	T: 750±50 rpm (in P or	N position)
1. Start 2. Checl M/	out CONSULT-II engine and warm it up to k idle speed. T: 750±50 rpm T: 750±50 rpm (in P or	o normal operating temperature. N position)
		OK or NG
OK	>	GO TO 10.
NG	•	GO TO 8.

8	DETECT MALFUNCTION	ONING PART	
• Ch		sor (PHASE) and circuit. Refer to EC-326. nsor (POS) and circuit. Refer to EC-319.	P
		OK or NG	A
OK	•	GO TO 9.	
NG	>	 Repair or replace. GO TO 4. 	S
		•	B

 Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but the rarely the case.) Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to 'SAN VEHICLE IMMOBILIZER SYSTEM — NATS)", EC-93. 	
	is is the
	NVIS (NIS-
▶ GO TO 4.	

Basic Inspection (Cont'd)



11	PERFORM ACCELERA	TOR PEDAL RELEASED POSITION LEARNING
	op engine. rform "Accelerator Pedal R	eleased Position Learning", EC-73.
	>	GO TO 12.

12	PERFORM THROTTLE	VALVE CLOSED POSITION LEARNING
Perfor	m "Throttle Valve Closed P	Position Learning", EC-73.
	•	GO TO 13.

13	PERFORM IDLE AIR VO	DLUME LEARNING
	to "Idle Air Volume Learnin Air Volume Learning car	
		Yes or No
Yes	•	GO TO 14.
No	•	 Follow the instruction of Idle Air Volume Learning. GO TO 4.

Basic Inspection (Cont'd)

2. GO TO 4.

Basic Inspection (Cont'd)

18 CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM NATS)", EC-93.

► GO TO 4.

DTC Inspection Priority Chart

DTC Inspection Priority Chart

G[

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)	
1	 U1000, U1001 CAN communication line P0101, P0102, P0103 MAF sensor 	
	 P0112, P0113, P0127 IAT sensor P0117, P0118, P0125 ECT sensor P0122, P0123, P0222, P0223, P1225, P1226, P2135 Throttle position sensor P0128 Thermostat function 	
	 P0181, P0182, P0183 FTT sensor P0327, P0328 KS P0335 CKP sensor (POS) 	
	 P0340, P0345 CMP sensor (PHASE) P0460, P0461, P0462, P0463 Fuel level sensor P0500 VSS P0605 ECM 	
	 P1003 ECM P1229 Sensor power supply P1706 PNP switch P2122, P2123, P2127, P2128, P2138 Accelerator pedal position sensor 	
2	 P0031, P0032, P0051, P0052 HO2S1 heater 	
2	 P0037, P0038, P0057, P0058 HO2S2 heater P0132-P0134, P1143, P1144 and P0152-P0154, P1163, P1164 HO2S1 P0138, P0139, P1146, P1147 and P0158, P0159, P1166, P1167 HO2S2 P0441 EVAP control system purge flow monitoring 	
	 P0444, P0445, P1444 EVAP canister purge volume control solenoid valve P0447, P1446, P1448 EVAP canister vent control valve P0452, P0453 EVAP control system pressure sensor 	
	 P0550 Power steering pressure sensor P0705-P0755, P1705, P1760 A/T related sensors, solenoid valves and switches P1065 ECM power supply P1111 Intake valve timing control solenoid valve 	
	 P1122 Electric throttle control function P1165 Swirl control valve control vacuum check switch P1217 Engine over temperature (OVERHEAT) 	
	P1490, P1491 Vacuum cut valve bypass valveP1805 Brake switch	
3	 P0011, P0021, P1110, P1135 Intake valve timing control P0171, P0172 and P0174, P0175 Fuel injection system function P0300-P0306 Misfire P0420, P0430 Three way catalyst function 	
	 P0442, P0455, P0456, P1442, P1456 EVAP control system P0506, P0507 ISC system P0731-P0734, P0744 A/T function 	
	 P1121 Electric throttle control actuator P1124, P1126, P1128 Electric throttle control actuator P1130, P1131 Swirl control valve control solenoid valve 	
	 P1148, P1168 Closed loop control P1211 ABS/TCS control unit P1212 ABS/TCS communication line P1564 ASCD stooring switch 	
	 P1564 ASCD steering switch P1572 ASCD brake switch 	

SC

EL

Fail-safe Chart

When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.

=NAEC0040

			-					
DTC No.	Detected items	Engine operati	ing condition in fail-safe mode					
P0102 P0103	Mass air flow sensor circuit	Engine speed will not rise more th	nan 2,400 rpm due to the fuel cut.					
P0117 P0118	Engine coolant temperature sensor circuit	turning ignition switch ON or STAF	e determined by ECM based on the time after RT. coolant temperature decided by ECM.					
		Condition	Engine coolant temperature decided (CONSULT-II display)					
		Just as ignition switch is turned ON or Start	40°C (104°F)					
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)					
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)					
		When the fail-safe system for engine coolant temperature sensor is active cooling fan operates while engine is running.						
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor.						
P1121	Electric throttle control actuator	(When electric throttle control actuator does not function properly due to the retu spring malfunction:) ECM controls the electric throttle actuator by regulating the throttle opening arou the idle position. The engine speed will not rise more than 2,000 rpm.						
			e in fail-safe mode is not in specified range:) control actuator by regulating the throttle opening					
		stops, the engine stalls.	alve is stuck open:) ys down gradually by fuel cut. After the vehicle position, and engine speed will not exceed 1,000					
P1122	Electric throttle control function	ECM stops the electric throttle cor at a fixed opening (approx. 5 degr	ntrol actuator control, throttle valve is maintained rees) by the return spring.					
P1124 P1126	Throttle control relay	ECM stops the electric throttle cor at a fixed opening (approx. 5 degr	ntrol actuator control, throttle valve is maintained ees) by the return spring.					
P1128	Throttle control motor	ECM stops the electric throttle cor at a fixed opening (approx. 5 degr	ntrol actuator control, throttle valve is maintained ees) by the return spring.					
P1229	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.						
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor.						

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there
is a malfunction on engine control system.

Therefore, when electrically controlled throttle and part of ECM related diagnosis is continuously detected as NG for 5 trips, ECM warns the driver that engine control system has a malfunction and MIL circuit is open by means of operating fail-safe function.

Fail-safe Chart (Cont'd)

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,500 rpm due to the fuel cut

MA

LC

EC

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

NAEC0041

							21	YMPT	OM.						NAEC0041S01	FE
			<u> </u>		Ι			I IVIF I	Olvi		Ι_	1			_	
		(¥				ERATION					E HIGH					CL
		(EXCP. HA)		r spot	Z	ACCELERA					ERATURI	IPTION	NOIL	CHARGE)		Mī
		ESTART		ING/FLAT	FONATIO	OOR AC	Щ	SNI		TO IDLE	R TEMPI	CONSUN	OIL CONSUMPTION		Reference page	AT
		START/R	STALL	N/SURG	OCK/DE	POWER/POOR	/LOW IDI	LE/HUNT	RATION	RETURN	LS/WATE	E FUEL (DEAD (UI		TF
		HARD/NO START/RESTART	ENGINE S	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	LACK OF F	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	DLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION		BATTERY DEAD (UNDER		PD
				<u> </u>			\vdash				<u> </u>			\vdash	_	AX
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-729	SU
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-57	
	Injector circuit	1	1	2	3	2		2	2			2			EC-724	BR
	Evaporative emission system														EC-38	
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-53	ST
	Incorrect idle speed adjustment						1	1	1	1		1			EC-123	D @
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-457, 459, 467, 472	RS
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-123	BT
	Ignition circuit	1	1	2	2	2		2	2			2	1		EC-714	
Main power supply and ground circuit							1				2				EC-157	HA
Air conditioner circuit		2	2	3	3	3	3	3	3	3		3		2	HA section	
- 6: Tho r	numbers refer to the order of inspection		-	-		-	-			-				-		SC

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

EL

[DX

							S	/MP1	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	ymptom code	AA	AB	AC	AD	ΑE	AF	AG	АН	AJ	AK	AL	AM	НА	
Engine control	Crankshaft position sensor (POS) circuit	2	2												EC-319
	Camshaft position sensor (PHASE) circuit	3	2												EC-326
	Mass air flow sensor circuit	1			2										EC-187, EC-194
	Heated oxygen sensor 1 circuit														EC-246
	Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-204, 217
	Throttle position sensor circuit						2			2					EC-210, 298, 558, 560, 562, 690
	Accelerator pedal position sensor circuit			3	2	1	2			2					EC-675, 682, 697
	Vehicle speed sensor circuit		2	3		3									EC-430
	Knock sensor circuit			2								3			EC-314
	ECM	2	2	3	3	3	3	3	3	3	3				EC-441
	Park/Neutral position switch circuit			3		3						3			EC-663
	Power steering pressure sensor circuit		2					3	3						EC-436
	Electrical load signal circuit														EC-753
	Intake valve timing control solenoid valve circuit		3	2		1	3	2	2	3		3			EC-451
	Refrigerant pressure sensor circuit		2				3			3		4			EC-736
	ABS actuator and electric unit (control unit)			4											EC-549, 551
	Swirl control valve control solenoid valve circuit					1									EC-477
	VIAS control solenoid valve circuit					1									EC-705

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

SYSTEM — ENGINE MECHANICAL & OTHER NAEC0041S02										GI						
							S'	YMP1	ГОМ							
		P. HA)		T(ACCELERATION					URE HIGH	z		(E)		MA EM
		HARD/NO START/RESTART (EXCP.		3/FLAT SPOT	NATION	OR ACCELE		0		O IDLE	OVERHEATS/WATER TEMPERATURE	FUEL CONSUMPTION	CONSUMPTION	DER CHARGE)	Reference	LG
		'ART/RES		SURGIN	CK/DETO	POWER/POOR	OW IDLE	NITNOH/	ATION	RETURN TO IDLE	WATER	FUEL CO	OIL CON	AD (UND	section	EC
		RD/NO ST	ENGINE STALL	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	OF	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RE	ERHEATS	EXCESSIVE	EXCESSIVE	BATTERY DEAD (UNDER		FE
		HAF	EN	뽀	SPA	LACK	위	20 R		SLC	8	EXC	X	BAT		GL
Warranty s	symptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	АМ	НА	-	
Fuel	Fuel tank	_													FE section	MT
	Fuel piping	5		5	5	5		5	5			5]			V25
	Vapor lock		5													AT
	Valve deposit															TF
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5				
Air	Air duct														_	PD
	Air cleaner															Ω V /7
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator		5	5	5	5	5	5	5	5		5				AX SU
	Air leakage from intake manifold/ Collector/Gasket	5														
Cranking	Battery	1	1	1		1		1	1			1		1		BR
	Alternator circuit	<u> </u>		Ľ		Ľ								Ľ	EL section	@F7
	Starter circuit	3														ST
	Flywheel/Drive plate	6													EM section	RS
	PNP switch	4													AT section	IJIØ)

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

BT

HA

SC

							S'	YMPT	ГОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section
Warranty syr	mptom code	АА	AB	AC	AD	ΑE	AF	AG	АН	AJ	AK	AL	AM	НА	
Engine	Cylinder head	- 5	5	5	5	5		5	5			5			
	Cylinder head gasket				J				J		4	J	3		
	Cylinder block														
	Piston								6				4		
	Piston ring	6	6	6	6	6		6				6			
	Connecting rod														
	Bearing														EM section
	Crankshaft														
Valve mechanism	Timing chain														
mechanism	Camshaft														
	Intake valve timing control	5	5	5	5	5		5	5			5			
	Intake valve												3		
	Exhaust valve														
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5	5	5		5					FE section
	Three way catalyst														
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5			MA, EM, LC section
	Oil level (Low)/Filthy oil														
Cooling	Radiator/Hose/Radiator filler cap														
	Thermostat									5					LC section
	Water pump	5	5	5	5	5		5	5		4	5			
	Water gallery														
	Coolant level (low)/Contaminated coolant														MA section

^{1 - 6:} The numbers refer to the order of inspection.

Symptom Matrix Chart (Cont'd)

	SYMPTOM												Gl		
	HA)				ATION					E HIGH					MA
	(EXCP.		T SPOT	z	CCELERA				NOIL	CHARGE)		EM			
	ESTART		ING/FLA	TONATIC	⋖	쁘	DNIL		1 TO IDLE			CONSUMPTION	(UNDER C	Reference section	LC
	START/RE	STALL	N/SURG	OCK/DE	POWER/POOR	/LOW ID	IDLE/HUNTING	VIBRATION	RETURN TO	TS/WATE		1 1	OIL	DEAD (U	
	HARD/NO	ENGINE S	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	LACK OF F	HIGH IDLE/LOW IDLE	ROUGH ID	IDLING VIE	SLOW/NO	OVERHEATS/WATER	EXCESSIVE	EXCESSIVE	BATTERY		FE
Warranty symptom code	AA	_	AC	AD	AE	AF	AG	AH	AJ	AK		AM			CL
NVIS (NISSAN Vehicle Immobilizer System — NATS)	1	1												EC-93 or EL section	MT

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

NAEC0042

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

AT

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM	CON	DITION	SPECIFICATION	
ENG SPEED	Run engine and compare CONSL cation.	JLT-II value with the tachometer indi-	Almost the same speed as the tachometer indication.	
MAS A/F SE-B1	See "TROUBLE DIAGNOSIS — S	SPECIFICATION VALUE", EC-151.		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)	
HO2S1 (B1) HO2S1 (B2)		Maintaining anging around at 2 000	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up After keeping engine speed After keeping engine speed	Revving engine from idle up to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	rpm quickly	LEAN ←→ RICH	
BATTERY VOLT	Ignition switch: ON (Engine stopp)	ed)	11 - 14V	
ACCEL SEN 1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	0.5 - 1.0V	
AUGEL SEN I	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Fully depressed	4.0 - 4.7V	

HA

SC

EL

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CON	NDITION	SPECIFICATION		
ACCEL SEN 2*	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	0.3 - 1.2V		
	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Fully depressed	3.9 - 4.8V		
THRTL SEN 1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V		
THRTL SEN 2*	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Fully depressed	Less than 4.75V		
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow$	nition switch: $ON \rightarrow START \rightarrow ON$			
CLSD THL POS	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	ON		
	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Slightly depressed	OFF		
	 Engine: After warming up, idle 	Air conditioner switch: OFF	OFF		
AIR COND SIG	the engine	Air conditioner switch: ON (Compressor operates.)	ON		
P/N POSI SW	- Ignition quitch: ON	Shift lever: P or N	ON		
P/N POSI SW	Ignition switch: ON	Except above	OFF		
PW/ST SIGNAL	Engine: After warming up, idle	Steering wheel in neutral position (forward direction)	OFF		
	the engine	The steering wheel is turned	ON		
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow O$	N	$ON \to OFF \to ON$		
INJ PULSE-B1	Engine: After warming up Air conditioner switch: OFF	Idle	2.4 - 3.2 msec		
INJ PULSE-B2	Shift lever: NNo-load	2,000 rpm	1.9 - 2.8 msec		
B/FUEL SCHDL	See "TROUBLE DIAGNOSIS —	SPECIFICATION VALUE", EC-151.			
IGN TIMING	Engine: After warming upAir conditioner switch: OFF	Idle	15°±5° BTDC		
	Shift lever: NNo-load	2,000 rpm	More than 25° BTDC		
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON		
LOAD SIGNAL	• Igrillori Switch. ON	Rear window defogger switch is OFF and lighting switch is OFF.	OFF		
PURG VOL C/V	Engine: After warming up Air conditioner switch: OFF	Idle	0 %		
. 51.0 101 0/1	Shift lever: NNo-load	2,000 rpm	_		
A/F ALPHA-B1 A/F ALPHA-B2	See "TROUBLE DIAGNOSIS —	SPECIFICATION VALUE", EC-151.			
EVAP SYS PRES	Ignition switch: ON	1.8 - 4.8V			
AIR COND RLY	Air conditioner switch: OFF → O	N	OFF → ON		
FUEL PUMP RLY	Ignition switch is turned to ON (C Engine running and cranking	Operates for 1 second)	ON		
	Except as shown above		OFF		
	Ignition switch: ON	OFF			

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CON	NDITION	SPECIFICATION			
HO2S1 HTR (B1)	Engine: After warming up Engine speed: Below 3,600 rpm		ON	_		
HO2S1 HTR (B2)	• Engine speed: Above 3,600 rpm		OFF			
	Ignition switch: ON (Engine stop)Engine speed: Above 3,200 rpm		OFF			
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,200 rpm After warming up After keeping the engine speed I minute and at idle for 1 minute up 		ON			
VC/V BYPASS/V	Ignition switch: ON	on switch: ON				
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF	Idle	14.0 - 33.0%			
	Shift lever: NNo-load	2,500 rpm	12.0 - 25.0%			
DDAKE SW	- Ignition quitable ON	Brake pedal: Fully released	OFF	_		
BRAKE SW	Ignition switch: ON	Brake pedal: Slightly depressed	ON			
MASS AIDELOW	Engine: After warming upAir conditioner switch: OFF	Idle	2.0 - 6.0 g·m/s	_		
MASS AIRFLOW	Shift lever: NNo-load	2,500 rpm	7.0 - 20.0 g·m/s			
SWRL CONT S/V	Engine speed: Idle	Engine coolant temperature is between 15°C (59°F) and 50°C (122°F).	ON			
SWRL CONT S/V		Engine coolant temperature is above 55°C (131°F).	OFF			
SWL CON VC SW	Engine speed: Idle Engine coolant temperature is be	etween 15°C (59°F) and 50°C (122°F).	OFF			
SWE CON VC SW	Engine speed: IdleEngine coolant temperature is at	pove 55°C (131°F).	ON			
VIAS S/V	Engine: After warming up	1,800 - 3,600 rpm	ON			
V 1/1.C - G/ V	Engine. Alter waiting up	Except above conditions	OFF	_		
AC PRESS SEN	Engine: IdleBoth A/C switch and blower fan s	switch: ON (Compressor operates)	1.0 - 4.0V	_		
INT/V TIM (B1)	 Engine: After warming up Shift lever N Quickly depressed accelerator 	Idle	0° CA			
INT/V TIM (B2)	Quickly depressed accelerator pedal No-load	2,000 rpm	Approximately 12 - 18° CA			
INT/V SOL (B1)	 Engine: After warming up Shift lever N Quickly depressed accelerator 	Idle	0%			
INT/V SOL (B2)	Quickly depressed accelerator pedal No-load	2,000 rpm	Approximately 40%			
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)			
VEH SPEED SE	Turn drive wheels and compare eter indication.	Turn drive wheels and compare CONSULT-II value with the speedometer indication.				
SET VHCL SPD	Engine: Running	Engine: Running ASCD: Operating				

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CON	DITION	SPECIFICATION
MAIN SW	- Ignition quitable ON	MAIN switch: Pressed	ON
IVIAIN SVV	Ignition switch: ON	MAIN switch: Released	OFF
CANCEL SW	a lanition switch: ON	CANCEL switch: Pressed	ON
CANCEL SVV	Ignition switch: ON	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCEL switch: Pressed	ON
RESUME/ACC SW	• Igrillion switch. ON	RESUME/ACCEL switch: Released	OFF
SET SW	- Ignition quitable ON	SET/COAST switch: Pressed	ON
SET SW	Ignition switch: ON	SET/COAST switch: Released	OFF
		Brake pedal: Fully released Clutch pedal: Fully released (M/T)	ON
BRAKE SW1	Ignition switch: ON	Brake pedal: Slightly depressed Clutch pedal: Slightly depressed (M/T)	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
BRANE SWZ	• Igrillori switch. ON	Brake pedal: Slightly depressed	ON
CRUISE LAMP	- Ignition quitable ON	CRUISE lamp: Illuminated	ON
CRUISE LAIVIP	Ignition switch: ON	CRUISE lamp: Not illuminated	OFF
SET LAMP	MAIN switch: ON When vehicle speed is between	ASCD is operating.	ON
OLI LAWIF	40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD is not operating.	OFF

^{*:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

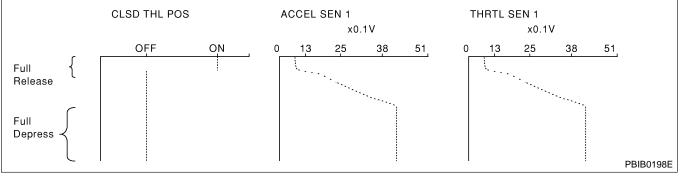
Major Sensor Reference Graph in Data Monitor Mode

Major Sensor Reference Graph in Data Monitor Mode

The following are the major sensor reference graphs in "DATA MONITOR" mode.

MA

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1


NAFC0043S01

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch ON and with selector lever in D position (A/T models) or with shift lever in 1st position (M/T models).

The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from ON to OFF.

EC

FE

GL

MT

ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1

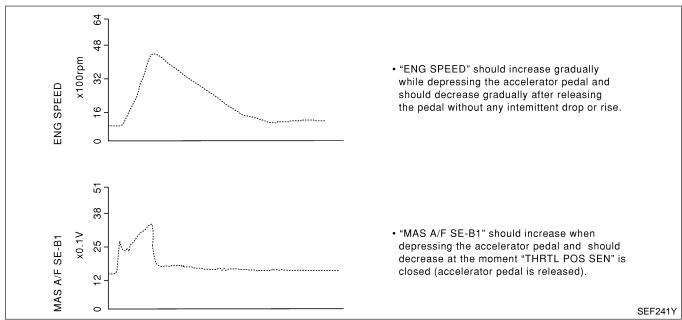
Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

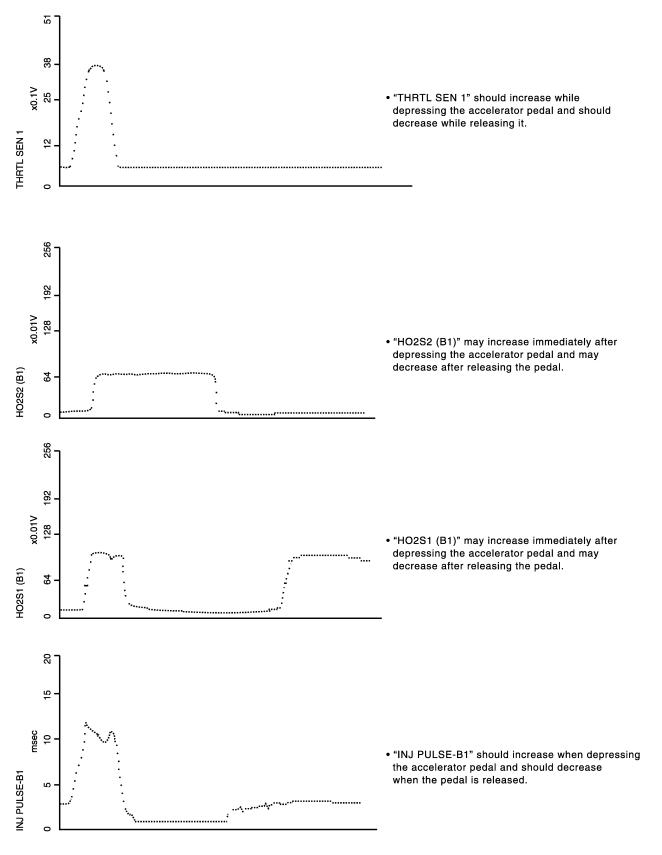
TF

Each value is for reference, the exact value may vary.

AX

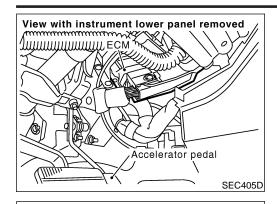
SU


BR


HA

BT

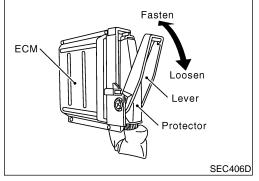
SC


EL

PBIB0668E

ECM Terminals and Reference Value

ECM Terminals and Reference Value PREPARATION


NAEC0044

NAEC0044S01 ECM is located behind the driver side instrument lower panel. For this inspection, remove driver side instrument lower panel.

MA

Remove ECM harness connector.

LC

When disconnecting ECM harness connector, loosen it with levers as far as they will go as shown in the figure.

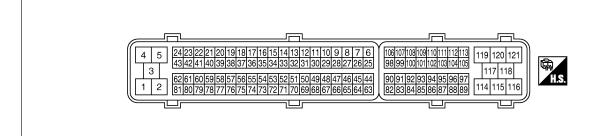
EC

- Connect a break-out box (SST) and Y-cable adapter (SST) between the ECM and ECM harness connector.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

GL

MIT

AT


TF

PD

AX

SU

ECM HARNESS CONNECTOR TERMINAL LAYOUT

PBIB1192E

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-П.

CAUTION:

Do not use ECM ground terminals when measuring the input/ output voltage. Doing so may result in damage to the ECM's transistor. Use ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.		ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] ● Idle speed	Body ground

HA

SC

EL

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R/G	Heated oxygen sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Engine speed is below 3,600 rpm.	Approximately 7V★ Signature Signatur
			[Engine is running] • Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)
3	OR	Throttle control motor relay power supply	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
4	L/W	Throttle control motor (Close)	[Ignition switch ON] • Engine stopped • Shift lever: D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal is released	0 - 14V★
5	L/B	Throttle control motor (Open)	[Ignition switch ON] • Engine stopped • Shift lever: D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal is fully depressed	0 - 14V★ >> 5V/Div 1 ms/Div T PBIB1105E
6	R/W	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Warm-up condition Engine speed is below 3,200 rpm. After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load [Ignition switch ON] 	Approximately 5V★
			 Engine stopped [Engine is running] Engine speed is above 3,200 rpm. 	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
10	P/L	Intake valve timing control solenoid valve (bank 2)	[Engine is running] • Warm-up condition • When revving engine up to 2,000 rpm quickly.	7 - 8V★

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	OR/B	Intake valve timing control solenoid valve (bank 1)	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
			 [Engine is running] Warm-up condition When revving engine up to 2,000 rpm quickly. 	7 - 8V★
12	R/B	Power steering pressure sensor	[Engine is running]Steering wheel is being turned.	0.5 - 4.0V
			[Engine is running]Steering wheel is not being turned.	0.4 - 0.8V
13	Y	Crankshaft position sensor (POS)	[Engine is running]	Approximately 1.6V★
			Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	
			iule.	>> 5.0 V/Div 1 ms/Div T PBIB1041E
			[Engine is running] • Engine speed is 2,000 rpm.	Approximately 1.5V★
				≥ 5.0 V/Div 1 ms/Div T PBIB1042E
14	OR	Camshaft position sensor (PHASE) (bank 2)		1.0 - 4.0V★
			 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at 	
			idle.	>> 5.0 V/Div 20 ms/Div T PBIB1039E
			[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0∨★
				>> 5.0 V/Div 20 ms/Div
			[Engine is running]	PBIB1040E
15	W	Knock sensor	Idle speed	Approximately 2.5V

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	G/B	Heated oxygen sensor 1 (bank 2)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
21 22 23	L/W R/Y R/B	Injector No. 5 Injector No. 3 Injector No. 1	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	BATTERY VOLTAGE (11 - 14V)★ Indicate
			[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ Indicate
24	L/OR	Heated oxygen sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Engine speed is below 3,600 rpm.	Approximately 7V★
			[Engine is running] • Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Warm-up condition Engine speed is below 3,200 rpm. After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Approximately 5V★
			[Ignition switch ON] • Engine stopped [Engine is running] • Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)
27	G	Swirl control valve control solenoid valve	 [Engine is running] Idle speed Engine coolant temperature is between 15 - 50°C (59 - 122°F). 	0 - 1.0V
			 [Engine is running] Idle speed Engine coolant temperature is above 55°C (131°F). 	BATTERY VOLTAGE (11 - 14V)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI	
00 2/6	\/\(\text{\tinit}\\ \text{\tin}\\ \ti}\\\ \tittt{\text{\tin}\tittt{\text{\ti}\tittt{\text{\text{\text{\ti}\tittt{\text{\text{\texi}\tittt{\text{\text{\text{\texi}\tittt{\text{\titt{\titt{\titt{\tiin}\tittt{\tititt{\titil\ti}\titt{\titt{\titil\titt{\titt{\titt{\titil\titt{\titt{\ti	VIAS control solenoid	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)	MA	
29	Y/G	valve	[Engine is running] • Engine speed is above 5,000 rpm.	0 - 1.0V	EM	
32	L/G	EVAP control system pressure sensor	[Ignition switch ON]	1.8 - 4.8V	LC	
		Camshaft position	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	1.0 - 4.0V★ 1.0 - 4.0V★	EC FE	
33		Y/G	sensor (PHASE) (bank 1)	[Engine is running] • Engine speed is 2,000 rpm.	1.0 - 4.0 V★ >> 5.0 V/Div 20 ms/Div PBIB1040E	MT AT
34	B/P	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	PD	
35	G	Heated oxygen sensor 1 (bank 1)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	AX	
40	PU/R	Injector No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	BATTERY VOLTAGE (11 - 14V)★ Indicates the state of th	SU BR	
41 42	R/L R/W	R/L Injector No. 4	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ Indicate	RS BT HA	

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	LY	EVAP canister purge volume control sole-noid valve	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)★
45			 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	BATTERY VOLTAGE (11 - 14V)★ Indicate
47	L	Sensor power supply (Throttle position sensor)	[Ignition switch ON]	Approximately 5V
48	P/B	Sensor power supply	[Ignition switch ON]	Approximately 5V
49	P/B	Sensor power supply (Refrigerant pressure sensor)	[Ignition switch ON]	Approximately 5V
50	BR Throttle position sensor 1 Throttle position sensor 1 Ignition Engine Accele [Ignition Engine Gear p Shift le	Throttle position sen-	[Ignition switch ON] • Engine stopped • Gear position: D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully released	More than 0.36V
50		[Ignition switch ON] • Engine stopped • Gear position: D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	Less than 4.75V	
51	OR	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.3V
	OK	iviass air flow sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.7 - 2.1V
55	OR/L	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after the following conditions are met. After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
59	W/B	Swirl control valve	00 0 (00 122 1).	Approximately 5V
		control vacuum check switch	[Engine is running] ■ Idle speed ■ Engine coolant temperature is above 55°C (131°F).	0 - 1.0V
60 PU/W	PU/W	PU/W Ignition signal No. 5	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	0 - 0.2V★
62	61 L/R Ignition signal No. 3 62 Y/R Ignition signal No. 1	[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm.	0.1 - 0.3V★	
66	BR/Y	Sensor ground (Throttle position sensor)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
67	B/P	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	L	Sensor power supply (Power steering pressure sensor)	[Ignition switch ON]	Approximately 5V
60	DD ///	Throttle position sen-	 [Ignition switch ON] Engine stopped Gear position: D (A/T models) Shift lever position is 1st. (M/T models) Accelerator pedal fully released 	Less than 4.75V
69	BR/W	sor 2 [Ignition switch ON] • Engine stopped • Gear position: D (A/T models) • Shift lever position is 1st. (M/T models) • Accelerator pedal fully depressed	More than 0.36V	
70	W/PU	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are ON. (Compressor operates.) 	1.0 - 4.0V
73	LG/R	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	OR	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after the following conditions are met. After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
79	GY/R	Ignition signal No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	0 - 0.2V★
80 81		Ignition signal No. 4 Ignition signal No. 2	[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm.	0.1 - 0.3V★
82	B/R	Sensor ground (APP sensor 1)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
83	L	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
84	OR	Lighting switch	[Ignition switch ON] • Lighting switch is in 2nd. [Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
85	LG/R	Data link connector	Lighting switch is OFF. [Ignition switch ON]	0V Approximately 5V
86	R	CAN communication line	CONSULT-II or GST is disconnected. [Ignition switch ON]	Approximately 1.7 - 2.3V Output voltage varies with the communication status.
90	L	Sensor power supply (APP sensor 1)	[Ignition switch ON]	Approximately 5V
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V
93	B/L	Rear window defogger	[Ignition switch ON] • Rear window defogger switch is ON.	BATTERY VOLTAGE (11 - 14V)
93	J/L	switch	[Ignition switch ON] • Rear window defogger switch is OFF.	ov

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	' Œ	
94	L	CAN communication line	[Ignition switch ON]	Approximately 2.6 - 3.2V Output voltage varies with the communication status.		
98	R	Accelerator pedal	 [Ignition switch ON] Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	0.15 - 0.6V		
90	K	position sensor 2	 [Ignition switch ON] Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully depressed 	1.95 - 2.4V		
			[Ignition switch ON] • ASCD steering switch: OFF	Approximately 4V	C	
			[Ignition switch ON] • MAIN switch: Pressed	Approximately 0V	. []	
99	L/Y	ASCD steering switch	[Ignition switch ON] • CANCEL switch: Pressed	Approximately 1V		
				[Ignition switch ON] • SET/COAST switch: Pressed	Approximately 2V	· A
				[Ignition switch ON] ■ RESUME/ACCEL switch: Pressed	Approximately 3V	T
101	G/Y	Stop lamp switch	[Ignition switch ON] ■ Brake pedal is fully released	Approximately 0V	P	
101	G/ 1		[Ignition switch ON] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)	A	
102		L	PNP switch	[Ignition switch ON] • Gear position is P or N.	Approximately 0V	. §
102	_	FINE SWILCH	[Ignition switch "ON"] ■ Except the above gear position	BATTERY VOLTAGE (11 - 14V)		
104	L	Throttle control motor relay	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)		
		Telay	[Ignition switch ON]	0 - 1.0V	8	
106		Accelerator pedal	 [Ignition switch ON] Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	0.5 - 1.0V		
100	_	position sensor 1	 [Ignition switch ON] Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully depressed 	3.9 - 4.7V		
107	G/B	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.	· \$	

			•	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	1.0/	ASCD brake switch	[Ignition switch ON] • Brake pedal is depressed • Clutch pedal is depressed (M/T models)	Approximately 0V
108	L/Y		[Ignition switch ON] • Brake pedal is fully released • Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch OFF]	0V
109	R	Ignition switch	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
111	L/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
112	G/W	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
113	R/L	/L Fuel pump relay	[Ignition switch ON] ● For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
			[Ignition switch ON] ■ More than 1 second after turning ignition switch ON.	BATTERY VOLTAGE (11 - 14V)
115 116	B B	ECM ground	[Engine is running] • Idle speed	Body ground
117	G/R	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
119 120	B/W B/W	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
121	W/R	Power supply for ECM (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

TROUBLE DIAGNOSIS — SPECIFICATION VALUE

Description

Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC) mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONI-TOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

MA

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the

The SP value will be displayed for the following three items:

B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)

A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)

EC

MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

Vehicle driven distance: More than 5,000 km (3,107 miles)

Barometric pressure: 98.3 - 104.3 kPa (1.003 - 1.064 kg/cm², 14.25 - 15.12 psi)

GL

Atmospheric temperature: 20 - 30°C (68 - 86°F)

Engine coolant temperature: 75 - 95°C (167 - 203°F)

MIT

Transmission: Warmed-up*1 Electrical load: Not applied*2

Engine speed: Idle

*1: For A/T models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates less than 0.9V. For M/T models, drive vehicle for 10 minutes after the engine is warmed up to normal operating temperature.

*2: Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight ahead.

AX

SU

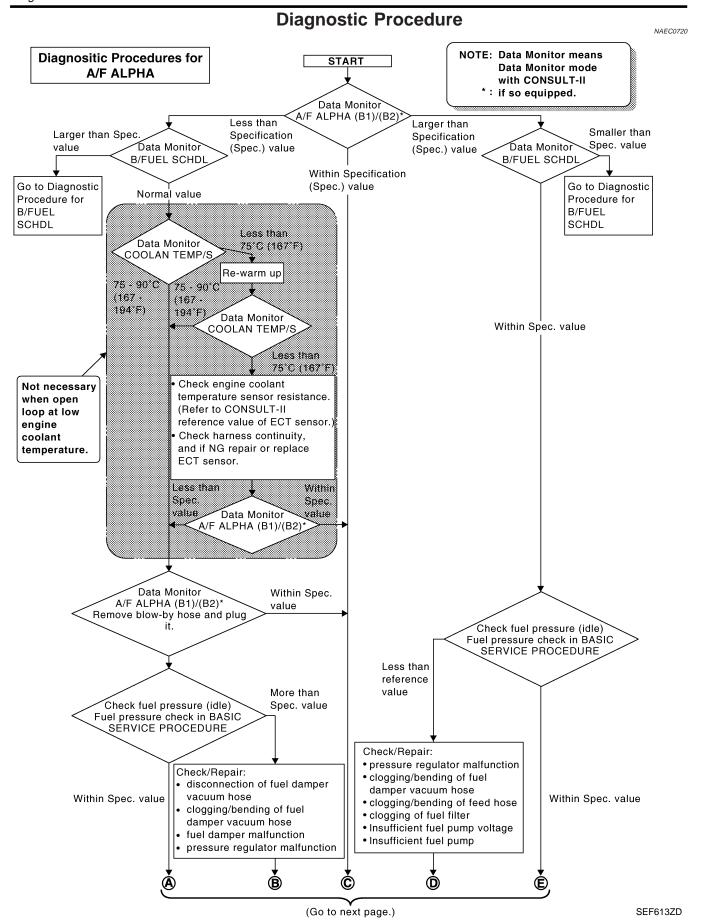
DATA MONITOR (SPEC) MONITOR NO DTC ENG SPEED 813 rpm 3200 4800 640 B/FUEL SCHDL 2.9 msec 5.0 A/F ALPHA-B1 105 % 75 125 150 SEF601Z

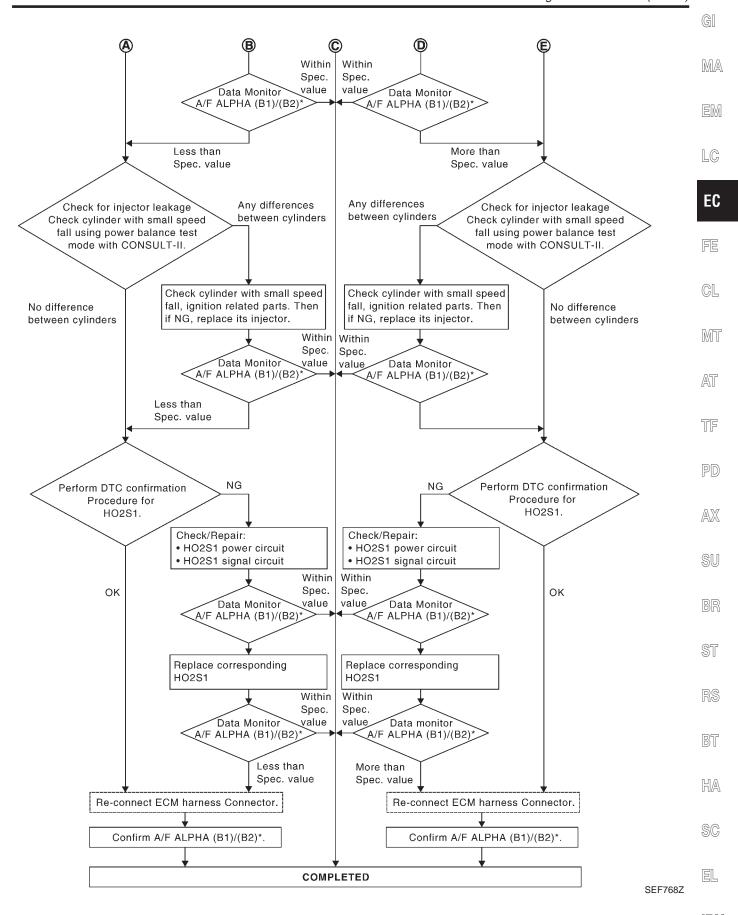
Inspection Procedure

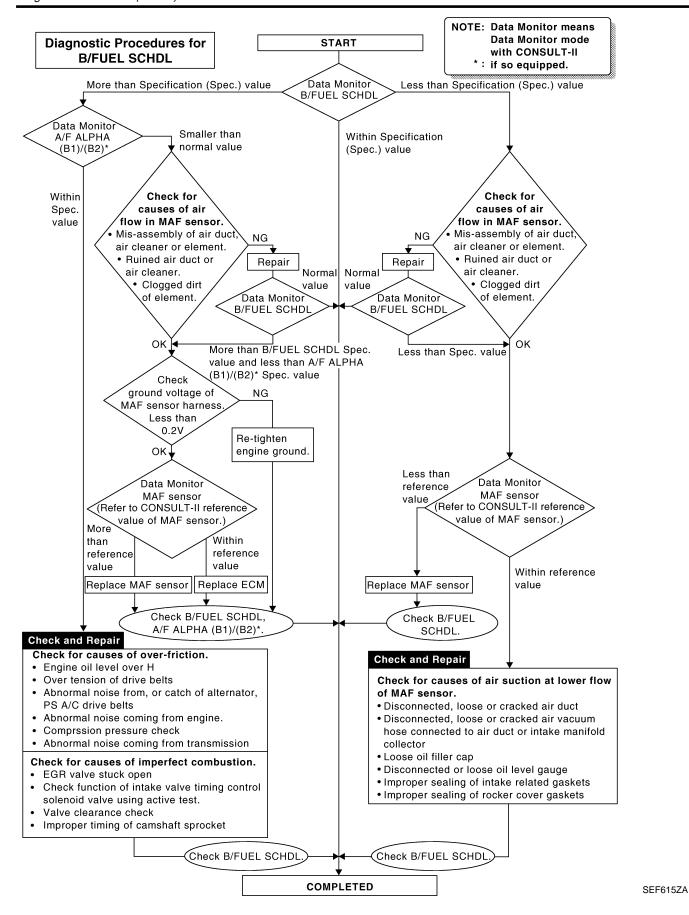
NOTE:

NAEC0719

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.


- 1. Perform "Basic Inspection", EC-123.
- Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.


- Make sure that monitor items are within the SP value.
 - If NG, go to "Diagnostic Procedure", EC-152.


HA

SC

EL

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

Description

Description

Intermittent incidents (I/I) may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

(1st trip) DTC does not appear during the DTC Confirmation Procedure.

The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.

COMMON I/I REPORT SITUATIONS

STEP in Work Flow

Ш

Ш

IV

VΙ

NAEC0045S01

Situation
The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than [0] or [1t].
The symptom described by the customer does not recur.
(Act trip) DTC does not appear during the DTC Confirmation Procedure

EC

GL

MIT

Diagnostic Procedure

NAFC0046

1	INSPECTION START		
Erase	Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION — RELATED INFORMATION", EC-91.		
	▶ GO TO 2.		

AT

2	CHECK GROUND TER	MINALS	
	ground terminals for corro		
		OK or NG	
OK	•	GO TO 3.	
NG	•	Repair or replace.	

AX

3 SEARCH FOR ELECTRICAL INCIDENT					
Perfor	Perform GI-25, "Incident Simulation Tests".				
	OK or NG				
OK	>	GO TO 4.	1		
NG	>	Repair or replace.			

U UU U

1	DW.
	U)/\\

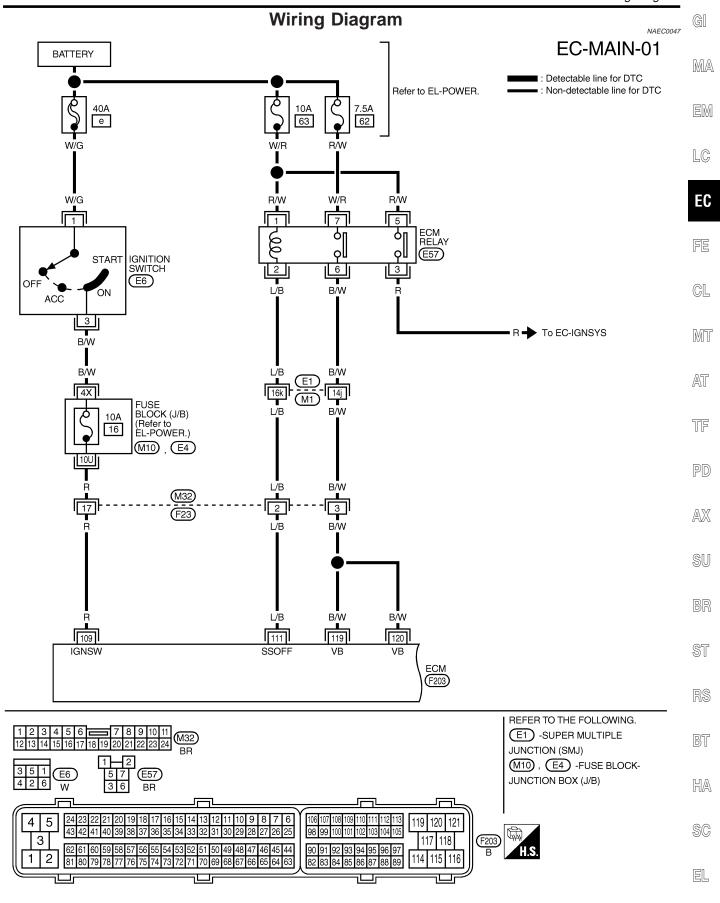
CHECK CONNECTOR TERMINALS Refer to GI-22, "How to Check Enlarged Contact Spring of Terminal". OK or NG INSPECTION END OK NG Repair or replace connector.

ECM Terminals and Reference Value

ECM Terminals and Reference Value

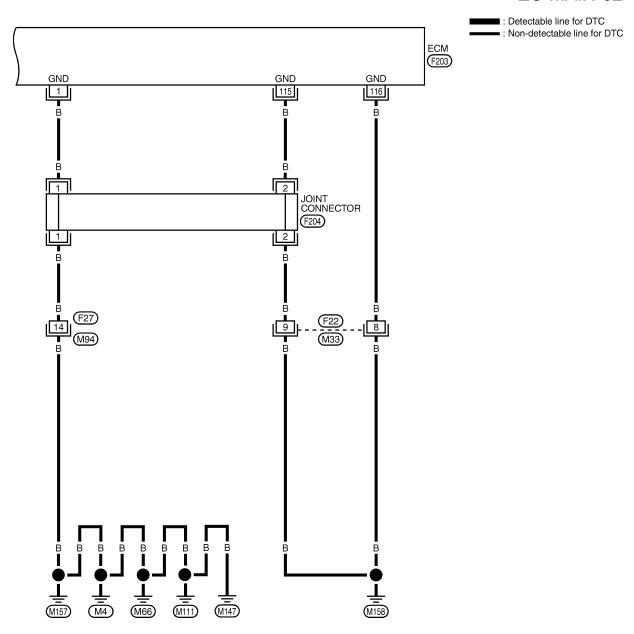
Specification data are reference values and are measured between each terminal and ground.

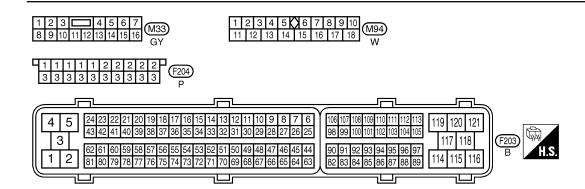
NAEC0648


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] • Idle speed	Body ground
			[Ignition switch OFF]	0V
109	109 R Ignition switch		[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
111	L/B	ECM relay	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shutt-off)	[Ignition switch OFF] ■ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
115	В	ECM ground	[Engine is running] • Idle speed	Body ground
116	В	ECM ground	[Engine is running] ■ Idle speed	Body ground
119 120	B/W B/W	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

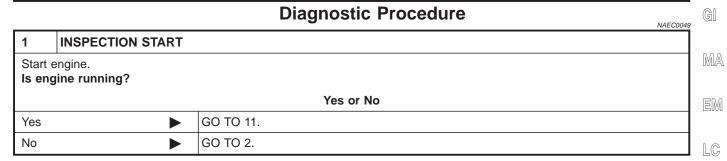

MEC076E

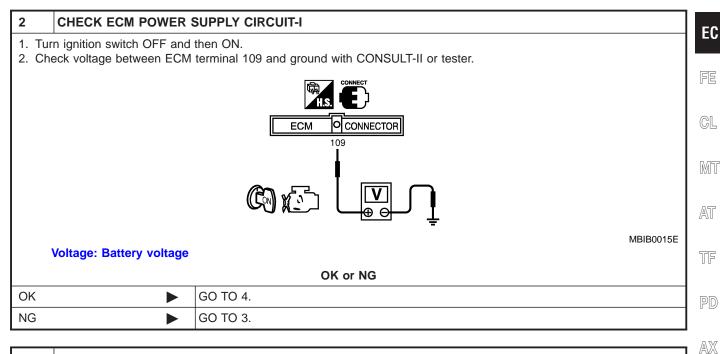

[DX

EC-157

EC-MAIN-02

MEC077E


SU


ST

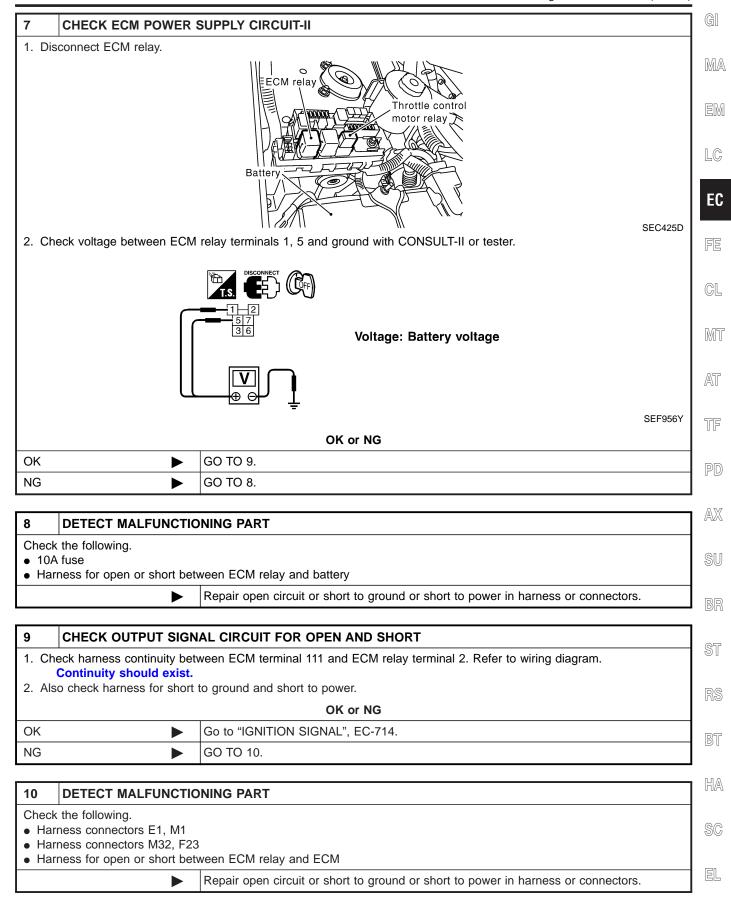
HA

SC

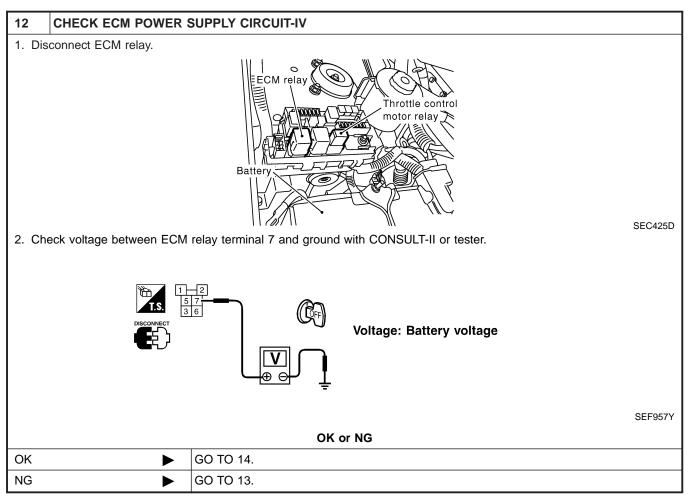
EL

Check the following. 10A fuse Harness connectors M32, F23 Fuse block (J/B) connectors E4, M10 Harness for open or short between ECM and ignition switch Repair harness or connectors.

EC-159


Diagnostic Procedure (Cont'd)

5	CHECK ECM GRO	UND	CIRCUIT FOR OPEN AND SHORT-I		
2. Dis 3. Ch Re	 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to WIRING DIAGRAM. Continuity should exist. Also check harness for short to power. 				
	OK or NG				
OK	OK ▶ GO TO 7.				
NG	NG GO TO 6.				


6	DETECT MALFUNCTIONING PART			
Check the following.				
Joir	Joint connector			
Har	Harness connectors F27, M94			
Har	Harness connectors F22, M33			
Har	Harness for open between ECM and ground			
	Repair open circuit or short to power in harness or connectors.			

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

CHECK ECM POWER SUPPLY CIRCUIT-III 1. Stop engine. 2. Turn ignition switch ON and then OFF. 3. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester. CONNECTOR 119, 120 PBIB1630E Voltage: After turning ignition switch OFF, battery voltage will exist for a few seconds, then drop approximately OV. OK or NG OK GO TO 17. NG (Battery voltage GO TO 12. does not exist.) NG (Battery voltage GO TO 14. exists for more than a few seconds.)

Diagnostic Procedure (Cont'd)

G[

MA

EM

LC

EC

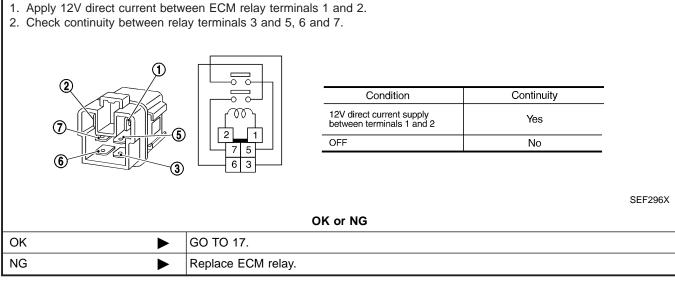
FE

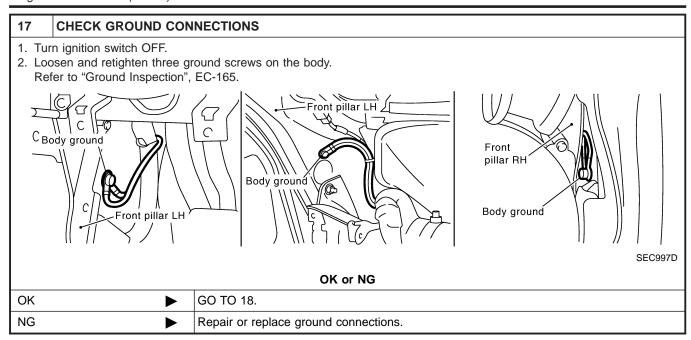
GL

MT

AT

TF


13 DETECT MALFUNCTIONING PART Check the following. • 7.5A fuse • Harness for open or short between ECM relay and fuse Repair open circuit or short to ground or short to power in harness or connectors.


15	DETECT MALFUNCTIONING PART				
HarHar	Check the following. • Harness connectors E1, M1 • Harness connectors M32, F23 • Harness for open or short between ECM and ECM relay				
	Repair open circuit or short to ground or short to power in harness or connectors.				
	<u> </u>				

16

CHECK ECM RELAY

Diagnostic Procedure (Cont'd)

18	CHECK ECM GROUN	CIRCUIT FOR OPEN AND SHORT-II			
2. Dis 3. Ch	 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to WIRING DIAGRAM. Continuity should exist. Also check harness for short to power. 				
	OK or NG				
OK	•	GO TO 20.			
NG	NG GO TO 19.				

19	DETECT MALFUNCTIONING PART			
Check the following.				
Join	Joint connector			
Har	Harness connectors F27, M94			
Har	Harness connectors F22, M33			
Har	Harness for open between ECM relay and ground			
	Repair open circuit or short to power in harness or connectors.			

20	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	INSPECTION END			

Ground Inspection

=NAEC1415

Ground connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works.

MA

GI

Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even when the ground connection looks clean, there can be a thin film of rust on the surface.

When inspecting a ground connection follow these rules:

LC

1) Remove the ground bolt or screw.

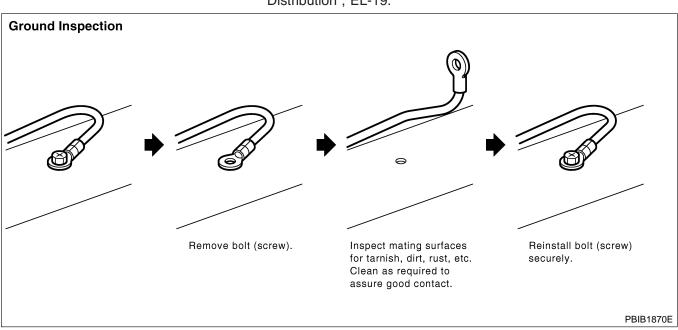
2) Inspect all mating surfaces for tarnish, dirt, rust, etc.

FE

EC

3) Clean as required to assure good contact.4) Reinstall bolt or screw securely.

GL


5) Inspect for "add-on" accessories which may be interfering with the ground circuit.

MT

6) If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one eyelet make sure no ground wires have excess wire insulation.

AT

For detailed ground distribution information, refer to "Ground Distribution", EL-19.

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

HA

SC

EL

 \mathbb{D}

Description

NAEC118

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electonic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

NAEC1186

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
U1000*1 1000*1	CAN a server in a time.	ECM cannot communicate to other control units.	 Harness or connectors 	
U1001*2 1001*2	CAN communication line	 ECM cannot communicate for more than the specified time. 	(CAN communication line is open or shorted.)	

^{*1:} This self-diagnosis has the one trip detection logic.

DTC Confirmation Procedure

NAEC1187

- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to "Diagnostic Procedure" EC-168.

^{*2:} The MIL will not light up for this diagnosis.

Wiring Diagram

ΙΔΕC1188

EC-CAN-01

: DATA LINE

EM

G[

MA

LC

EC

FE

CL

MT

AT

TF

PD

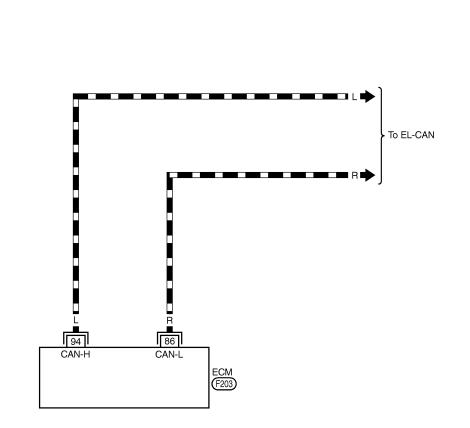
SU

BR

ST

RS

BT


1 11 12

HA

SC

EL

MEC124E

4 5 43 42 43 42 41 40 39 38	8 17 16 15 14 13 12 11 10 9 8 7 6 7 36 35 34 33 32 31 30 29 28 27 26 25	100 107 108 109 110 111 112 113
1 2 62 61 60 59 58 57 5 81 80 79 78 77 76 78	6 55 54 53 52 51 50 49 48 47 46 45 44 5 74 73 72 71 70 69 68 67 66 65 64 63	90 91 92 93 94 95 96 97 82 83 84 85 86 87 88 89 114 115 116

DTC U1000, U1001 CAN COMMUNICATION LINE

Diagnostic Procedure

Diagnostic Procedure

Go to EL-409, "CAN Communication Unit".

NAEC1189

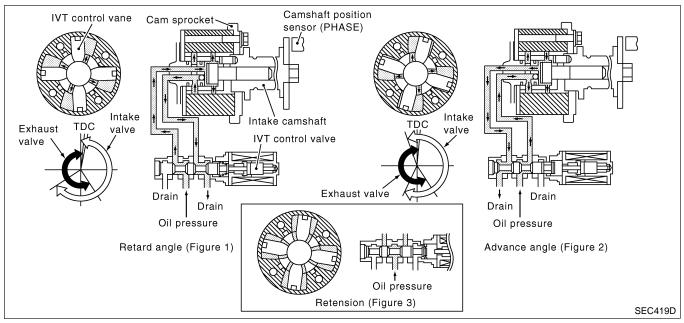
Description

SYSTEM DESCRIPTION

NAEC0821

NAEC0821S01

Sensor	Input signal to ECM function	ECM	Actuator
Crankshaft position sensor (POS)	- Engine speed and piston position		
Camshaft position sensor (PHASE)	- Engine speed and piston position	Intake valve tim-	Intake valve timing control sole-
Engine coolant temperature sensor	Engine coolant temperature	ing control	noid valve
Vehicle speed signal*1	Vehicle speed]	


EM

LC

MA

GI

^{*1:} This signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

EC

FE

GL

MT

AT

TF

PD

வா

AX

90

BR

ST

RS

BT

HA

SC

EL

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

=NAEC0822

MONITOR ITEM	CONDITION		SPECIFICATION
INT/V TIM (B1)	 Engine: After warming up Shift lever: N (A/T), Neutral (M/T) 	Idle	0° CA
INT/V TIM (B2)	Quickly depressed accelerator pedal No-load	2,000 rpm	Approximately 12 - 18° CA
INT/V SOL (B1)	 Engine: After warming up Shift lever: N (A/T), Neutral (M/T) Quickly depressed accelerator pedal No-load 	Idle	0%
INT/V SOL (B2)		2,000 rpm	Approximately 40%

On Board Diagnosis Logic

NAEC0824

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0011 0011 (Bank 1) P0021 0021 (Bank 2)	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft

FAIL-SAFE MODE

NAEC0824S01

When malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function.

DTC Confirmation Procedure

CAUTION:

NAEC0825

Always drive at a safe speed.

NOTE:

- If DTC P0011 or P0021 is displayed with DTC P1111 or P1136, first perform trouble diagnosis for DTC P1111 or P1136, EC-451.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DATA MONITOR MONITOR NO DTC **ENG SPEED** XXX rpm B/FUEL SCHDL XXX msec COOLANTENP/S XXX °C VHCL SPEED SE XXX km/h INT/V TIM (B1) XXX °CA INT/V TIM (B2) XXX °CA INT/V SOL (B1) XXX % INT/V SOL (B2) XXX % SEF353Z

(A) WITH CONSULT-II

NAEC0825S03

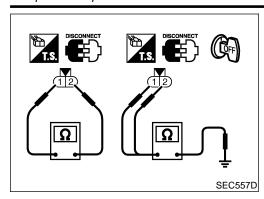
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Maintain the following conditions for at least 20 conecutive seconds.

ENG SPEED	1,200 - 2,000 rpm (A constant rotation is maintained.)	
COOLAN TEMPS	More than 60°C (140°F)	
Selector lever	1st position	

DTC P0011, P0021 IVT CONTROL

				ťd)
		Driving location	Driving vehicle uphill (Increased engine load will help mai tain the driving conditions required for	
		4) If 1st trip DTC is d	this test.) etected, go to "Diagnostic Procedur	Procedure",
		EC-171.	, g	- ,
		Follow the procedure "Wi	th CONSULT-II" above.	'5S04
		Diagnostic Proced	ure	
1 CHECK	NTAKE VALVE TIMING (CONTROL SOLENOID VALVE	NAEC	1191
Refer to "Compo	nent Inspection", EC-172.			\dashv
		OK or NG		4
OK	▶ GO TO 2.			\dashv
NG	Replace in	ntake valve timing control solenoid	valve.	_
2 CHECK	NTERMITTENT INCIDEN	IT		П
		ERMITTENT INCIDENT", EC-155. P sensor (POS) and EC-328 for C	:MP sensor (PHASE).	
		OK or NG		- 1
		OK 61 110		╝
	▶ INSPECTI			\exists
	► INSPECTI			

BT


HA

SC

EL

DTC P0011, P0021 IVT CONTROL

Component Inspection

Component Inspection

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance	
1 and 2	7.0 - 7.5Ω at 20°C (68°F)	
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)	

Description

Description

SYSTEM DESCRIPTION

NAEC0826

NAEC0826S01

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Heated oxygen sensor 1 heater	Heated oxygen sensor 1 heater
Engine coolant temperature sensor	Engine coolant temperature	control	

MA

GI

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater corresponding to the engine speed and engine coolant temperature. The duty percent varies with engine coolant temperature when engine is started.

EC

OPERATION

NAEC0826S02

Engine speed rpm	Heated oxygen sensor 1 heater	
Above 3,600	OFF	
Below 3,600 after warming up	ON	

FE GL

CONSULT-II Reference Value in Data Monitor Mode

MT

Specification data are reference values.

NAEC0827

MONITOR ITEM	CONDITION	SPECIFICATION	
HO2S1 HTR (B1) HO2S1 HTR (B2)	Engine: After warming upEngine speed: Below 3,600 rpm	ON	ı
HO251 HTK (B2)	Engine speed: Above 3,600 rpm	OFF	

TF

AT

ECM Terminals and Reference Value

NAFC0828

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

 $\mathbb{A}\mathbb{X}$

PD

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

SU

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	BR
2	R/G	Heated oxygen sensor 1 heater (bank 2)	 [Engine is running] Warm-up condition Engine speed is below 3,600 rpm. 	Approximately 7V★	ST RS BT
			[Engine is running] ● Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	HA

SC

EL

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	L/OR	Heated oxygen sensor 1 heater (bank 1)	 [Engine is running] Warm-up condition Engine speed is below 3,600 rpm. 	Approximately 7V★
			[Engine is running]Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

On Board Diagnosis Logic

NAEC0829

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0031 0031 (Bank 1)	Heated oxygen sensor 1 heater control circuit low	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM	Harness or connectors (The heated oxygen sensor 1 heater circuit is open or shorted.)	
P0051 0051 (Bank 2)		through the heated oxygen sensor 1 heater.)	Heated oxygen sensor 1 heater	
P0032 0032 (Bank 1)	Heated oxygen sensor 1 heater control circuit high	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM	Harness or connectors (The heated oxygen sensor 1 heater circuit is shorted.)	
P0052 0052 (Bank 2)		through the heated oxygen sensor 1 heater.)	Heated oxygen sensor 1 heater	

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

DTC Confirmation Procedure

NAEC0830

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11V and 16V at idle.

(P) WITH CONSULT-II

NAEC0830S01

1) Start engine and warm it up to normal operating temperature.

DTC Confirmation Procedure (Cont'd)

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 6 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-178.

WITH GST

Follow the procedure "With CONSULST-II" above.

MA

G[

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

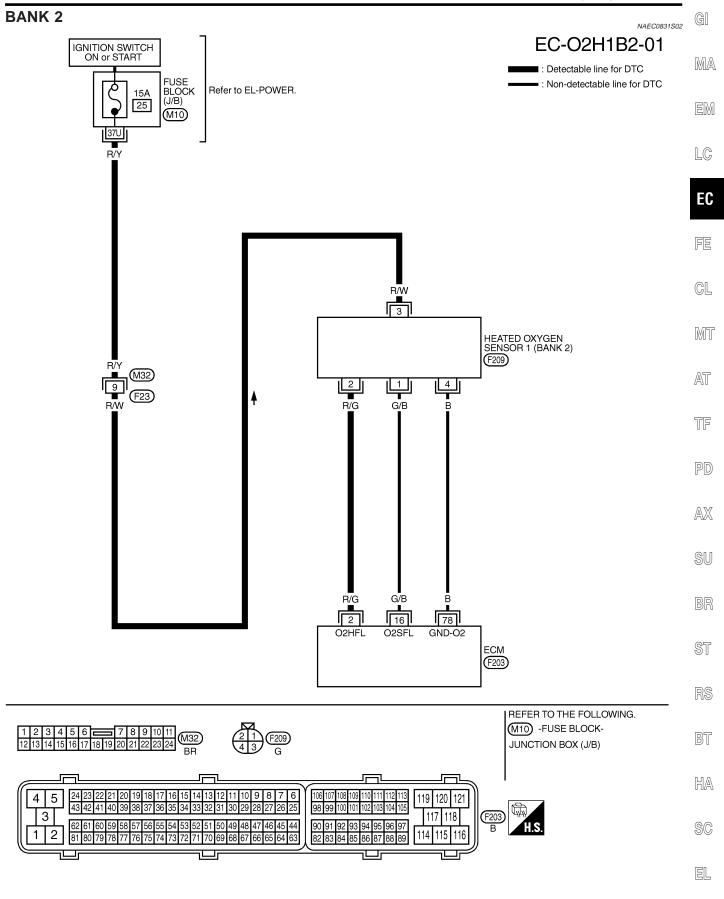
SU

BR

ST

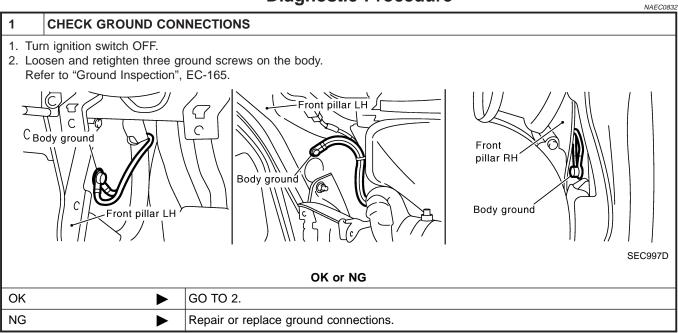
RS

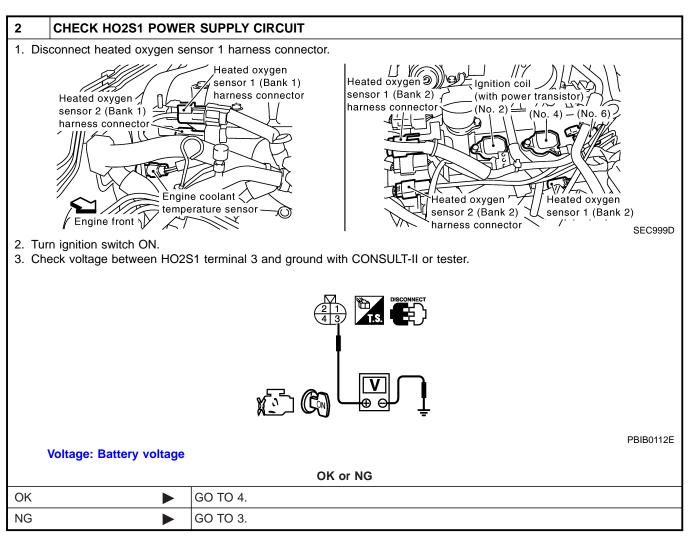
BT


HA

SC

EL


Wiring Diagram NAEC0831 **BANK 1** NAEC0831S01 EC-O2H1B1-01 IGNITION SWITCH ON or START ■ : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 15A 25 $\overline{\text{M10}}$ 3 HEATED OXYGEN SENSOR 1 (BANK 1) (F207) 2 4 L/OR L/OR 35 78 O2HFR O2SFR GND-O2 ECM (F203) REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B) 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 119 120 121 F203 B 3 117 118 82 83 84 85 86 87 88 89


MEC079E

EC-177

Diagnostic Procedure

Diagnostic Procedure (Cont'd)

3	DETECT MALFUNCTIO	NING PART	
HaFu15	ck the following. arness connectors M32, F23 use block (J/B) connector M35 A fuse arness for open or short beto		
	>	Repair harness or connectors.	
4	CHECK HO2S1 OUTPU	IT SIGNAL CIRCUIT FOR OPEN AND SHORT	
1 T	urn ignition switch OFF		

DTC	Term	Bank		
DIC	ECM	Sensor	Бапк	
P0031, P0032	24	2	Bank 1	
P0051, P0052	2	2	Bank 2	

Continuity should exist.

2. Disconnect ECM harness connector.

Refer to Wiring Diagram.

 $4. \ \,$ Also check harness for short to ground and short to power.

3. Check harness continuity between ECM terminal and HO2S1 terminal as follows.

OK		GO TO 5.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

OK or NG

EC-179

G[

MA

EM

LC

EC

FE

MTBL1349

AT

TF

PD

AX

SU

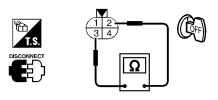
BR

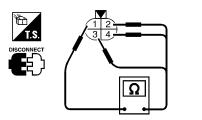
ST

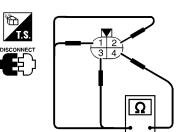
RS

BT

HA


SC


EL


Diagnostic Procedure (Cont'd)

5 CHECK HEATED OXYGEN SENSOR 1 HEATER

Check resistance between HO2S1 terminals as follows.

SEF249Y

Terminals	Resistance
2 and 3	3.3 - 4.0Ω at 25 °C (77 °F)
1 and 2, 3, 4 4 and 1, 2, 3	${\scriptstyle \infty}\Omega$ (Continuity should not exist.)

MTBL1782

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 6.
NG •	Replace malfunctioning heated oxygen sensor 1.

6	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	>	INSPECTION END	

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

Description	

SYSTEM DESCRIPTION

Description NAEC0833 NAFC0833S01

			747120000007	
Sensor	Input Signal to ECM	ECM function	Actuator	MA
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Heated oxygen		EM
Engine coolant temperature sensor	Engine coolant temperature	sensor heater 2 control	Heated oxygen sensor 2 heater	
Mass air flow sensor	Amount of intake air			LC

NAEC0833S02

GI

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

EC

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater	FE
Above 3,200	OFF	@I
Below 3,200 (After the following conditions are met.) • After warming up		GL
 After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	ON	MT

CONSULT-II Reference Value in Data Monitor

Mode Specification data are reference values.

NAEC0834

AT

TF

 $\mathbb{A}\mathbb{X}$

_	'				
Ī	MONITOR ITEM			CON	DITION

SPECIFICATION	_
OFF	PD
	•

	Ignition switch: ON (Engine stopped)Engine is running above 3,200 rpm.	OFF
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,200 rpm after the following conditions are met. After warming up After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	ON

ECM Terminals and Reference Value

NAEC0835

Specification data are reference values and are measured between each terminal and ground.

ST

BT

HA

SC

EL

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/W	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Warm-up condition Engine speed is below 3,200 rpm. After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Approximately 5V★
			[Ignition switch ON] ■ Engine stopped [Engine is running] ■ Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Warm-up condition Engine speed is below 3,200 rpm. After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Approximately 5V★
			[Ignition switch ON] • Engine stopped [Engine is running] • Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

On Board Diagnosis Logic

NAEC0836

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0037 0037 (Bank 1)	Heated oxygen sensor 2 heater control circuit low	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM	Harness or connectors (The heated oxygen sensor 2 heater circuit is open or shorted.)
P0057 0057 (Bank 2)		through the heated oxygen sensor 2 heater.)	Heated oxygen sensor 2 heater
P0038 0038 (Bank 1)	Heated oxygen sen- sor 2 heater control circuit high	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM	Harness or connectors (The heated oxygen sensor 2 heater circuit is shorted.)
P0058 0058 (Bank 2)		through the heated oxygen sensor 2 heater.)	Heated oxygen sensor 2 heater

4	DATA M	DATA MONITOR		
	MONITOR		NO DTC	
	ENG SPEED	Х	XX rpm	
				SEF058

DTC Confirmation Procedure

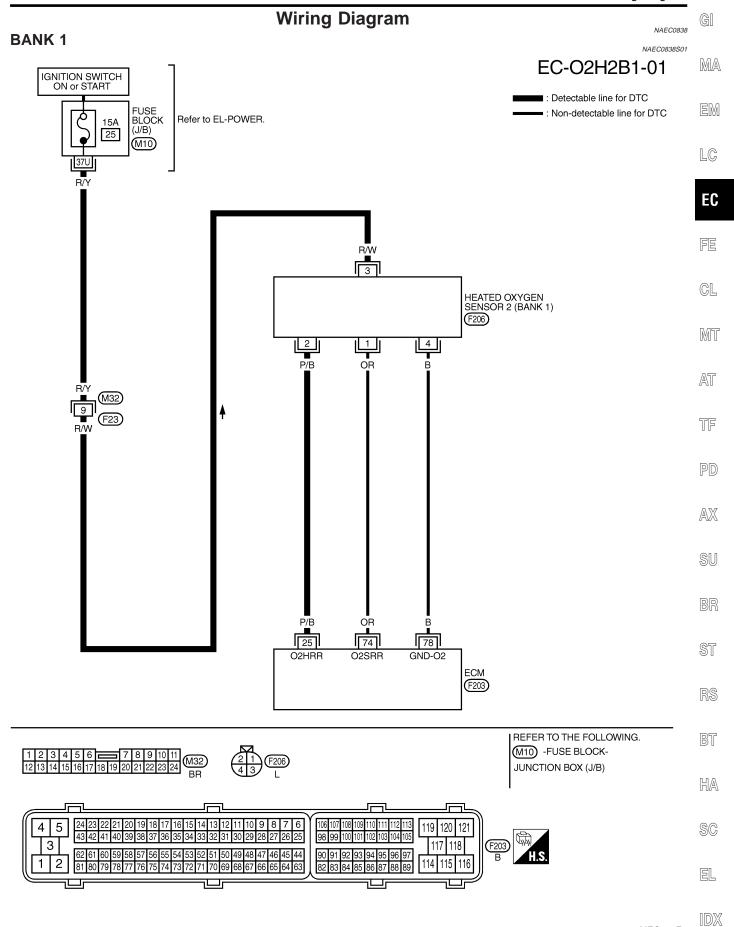
NAEC0837

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

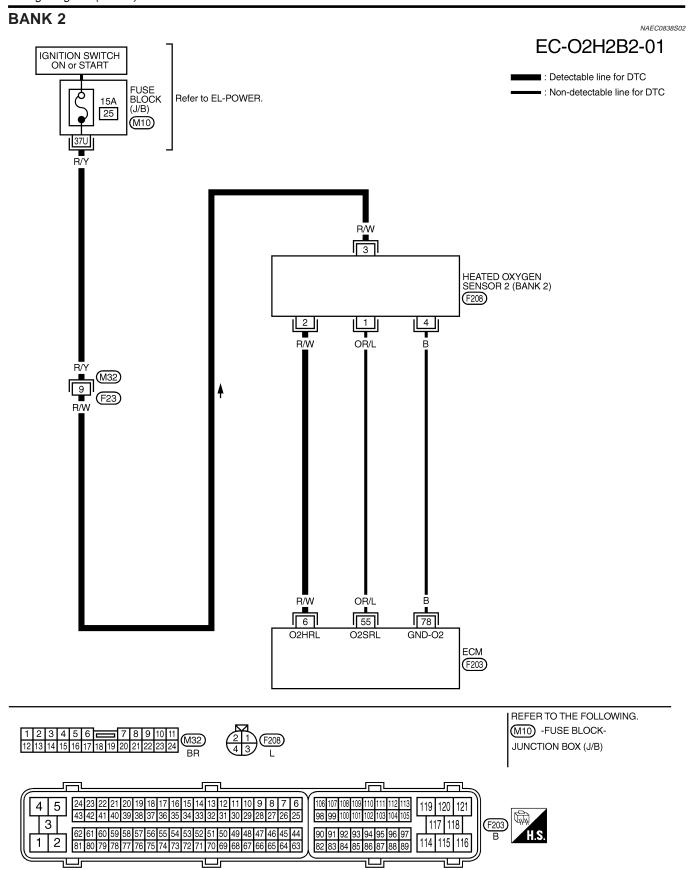
NOTE:

Before performing the following procedure, confirm that battery voltage is between 11V and 16V at idle.


(A) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating tempera-2) ture.
- 3) Turn ignition switch OFF and wait at least 10 seconds.
- 4) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5) Let engine idle for 1 minute.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-185.

WITH GST


NAEC0837S02

Follow the procedure "With CONSULST-II" above.

EC-183

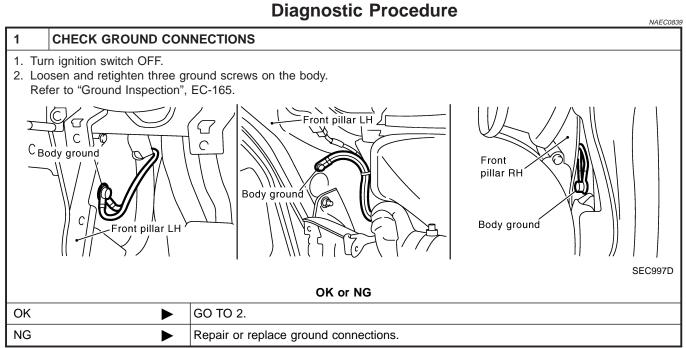
MEC080E

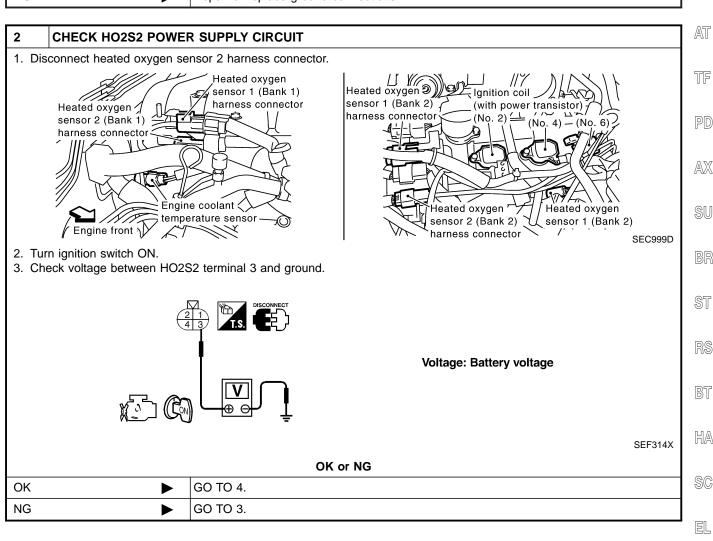
MEC081E

G[

MA

EM


LC


EC

FE

CL

MT

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M32, F23
- Fuse block (J/B) connector M10
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse
 - Repair harness or connectors.

4 CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

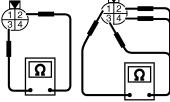
- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

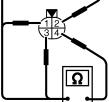
DTC	Term	Bank	
DIC	ECM	Sensor	Бапк
P0037, P0038	25	2	Bank 1
P0057, P0058	6	2	Bank 2

MTBL1351

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK or NG


OK •	GO TO 5.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 2 HEATER

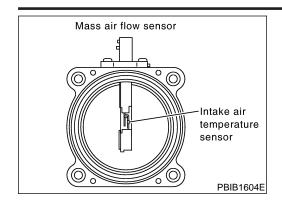
Check the resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	Approximately 11Ω at 23°C (73°F)
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist.)

SEF315XF

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 6.
NG ►	Replace malfunctioning heated oxygen sensor 2.

6 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.

▶ INSPECTION END

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

MA

LC

EC

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

ditto

Engine: After warming up

Shift lever: NNo-load

• Air conditioner switch: OFF

NAEC1386

SPECIFICATION

 CL
MT
 AT

TF

NAEC1387

2,500 rpm	12.0 - 25.0%
Idle	2.0 - 6.0 g·m/s
2,500 rpm	7.0 - 20.0 g·m/s

14.0 - 33.0%

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

MONITOR ITEM

MAS A/F SE-B1

CAL/LD VALUE

MASS AIRFLOW

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

CONDITION

Idle

• See "TROUBLE DIAGNOSIS — SPECIFICATION VALUE", EC-151.

P)	D)	

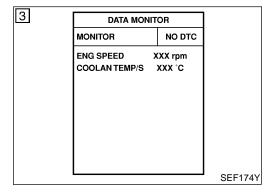
age to the	ge to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.				
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	. AX SU
51 OR Mass air flow sensor		[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.3V	BR	
	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.7 - 2.1V	ST		
67	B/P	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	RS
111	L/B	ECM relay	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V	BT HA
		(Self shutt-off)	[Ignition switch OFF] ● A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	SC
119 120	B/W B/W	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	EL

 $\mathbb{D}\mathbb{X}$

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

NAEC1388


DTC No.	Trouble diagnosis name		DTC Detecting Condition	Possible Cause
P0101 0101	Mass air flow sensor circuit range/ performance problem	A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor
		B)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor

DTC Confirmation Procedure

Perform PROCEDURE FOR MALFUNCTION A first. If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNC-TION B.

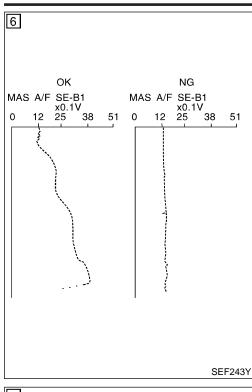
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

(II) With CONSULT-II


NAEC1389S0101

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 4) Run engine for at least 10 seconds at idle speed.
- If DTC is detected, go to "Diagnostic Procedure", EC-191.

With GST

NAEC1389S0102

Follow the procedure "With CONSULT-II" above.

7	DATA MOI	VITO	R	
	MONITOR		NO DTC	
	ENG SPEED VHCL SPEED SE THRTL SEN 1 THRTL SEN 2	XX X	(X rpm X km/h (XX V (XX V	
				PBIB0199E

CALC LOAD	20%	
COOLANT TEMP	20 <i>%</i> 95°C	
SHORT FT #1	2%	
LONG FT #1	0%	
SHORT FT #2	4%	
LONG FT #2	0%	
ENGINE SPD	2637RPM	
VEHICLE SPD	0MPH	
IGN ADVANCE	41.0°	
INTAKE AIR	41°C	
MAF THROTTLE POS	14.1gm/sec 3%	
I I I I I I I I I I I I I I I I I I I	3/6	
•		
		SEF534

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

(P) With CONSULT-II

Turn ignition switch ON. 1)

Start engine and warm it up to normal operating temperature. If engine cannot be started, go to "Diagnostic Procedure", EC-191.

Select "DATA MONITOR" mode with CONSULT-II.

- Check the voltage of MAS AIR/FL SE with "DATA MONITOR".
- Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to "Diagnostic Procedure", EC-191. If OK, go to following step.

Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1 THRTL SEN 2	More than 3V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

8) If DTC is detected, go to "Diagnostic Procedure", EC-191.

Overall Function Check PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a DTC might not be confirmed.

With GST

- Start engine and warm it up to normal operating temperature.
- Select "MODE 1" with GST.
- Check the mass air flow sensor signal with "MODE 1".
- Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- If NG, go to "Diagnostic Procedure", EC-191.

MA

NAEC1389S02

NAEC1389S0201

LC

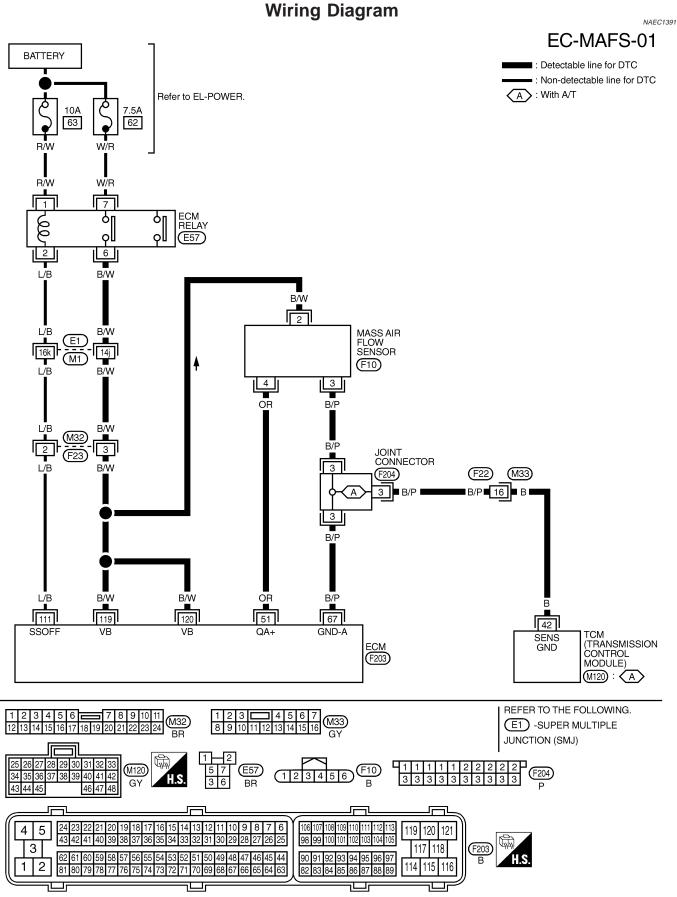
EC

GL

MT

AT

TF


SU

AX

HA

SC

EL

MEC665E

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

AX

SU

BR

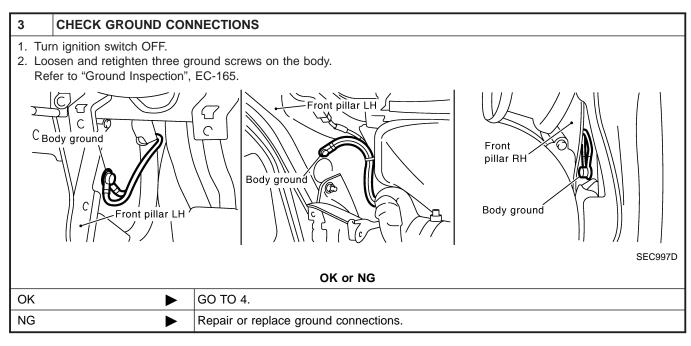
ST

RS

BT

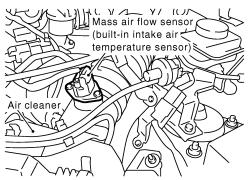
HA

SC


EL

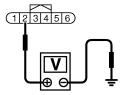
			Diagnostic Procedure	NAEC1392
1	INSPECTION START			NAECISSZ
Which	malfunction (A or B) is dup	plicated?		
			A or B	
Α	>	GO TO 3.		

GO TO 2.


В

2	CHECK INTAKE SYSTE	EM	
AirVa	the following for connection duct in the connection of the connect	on. ir duct and intake manifold collector	
		OK or NG	
OK	•	GO TO 3.	
NG		Reconnect the parts.	

4 CHECK MAF SENSOR POWER SUPPLY CIRCUIT


1. Disconnect mass air flow (MAF) sensor harness connector.

SEF960YA

- 2. Turn ignition switch ON.
- 3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-II or tester.

PBIB1168E

Voltage: Battery voltage

OK or NG

OK	GO TO 6.
NG	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E1, M1
- Harness connector M32, F23
- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM

Repair harness or connectors.

6 CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG ►	GO TO 7.

DTC P0101 MAF SENSOR Diagnostic Procedure (Cont'd) GI **DETECT MALFUNCTIONING PART** Check the following. Harness connectors F22, M33 MA Joint connector • Harness for open or short between mass air flow sensor and ECM Harness for open or short between mass air flow sensor and TCM EM Repair open circuit or short to gorund or short to power in harness or connectors. 8 CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. EC Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. FE OK or NG GO TO 9. OK GL NG Repair open circuit or short to ground or short to power in harness or connectors. MT 9 **CHECK MASS AIR FLOW SENSOR** 1. Reconnect harness connectors disconnected. Start engine and warm it up to normal operating temperature 3. TF

Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.
H.S. CONNECT
ECM O CONNECTOR 51

SEF100V

AX

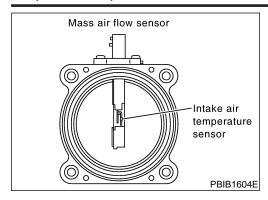
Bī

HA

SC

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.1
Idle to about 4,000 rpm*	1.0 - 1.3 to Approx. 3.7

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.


MTBL1806

4. If the voltage is out of specification, disconnect MAF sensor harness connector and connect it again. Then repeat above check.

OK	or	NG
----	----	----

OK ►	GO TO 10.
NG ►	Replace mass air flow sensor.

10	10 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
► INSPECTION END		INSPECTION END	

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1396

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	• See "TROUBLE DIAGNOSIS — S		
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: OFF Shift lever: N No-load 	Idle	14.0 - 33.0%
CAL/LD VALUE		2,500 rpm	12.0 - 25.0%
MASS AIRFLOW	ditto	Idle	2.0 - 6.0 g·m/s
IVIAGG AIRFLOW		2,500 rpm	7.0 - 20.0 g·m/s

ECM Terminals and Reference Value

NAEC1397

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	OR	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.3V
51	OK		[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.7 - 2.1V
67	B/P	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
111	111 L/B	ECM relay (Self shutt-off)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch OFF] ■ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	B/W B/W	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

=NAEC1398

GI

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	MA
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM when engine is running.	Harness or connectors (The sensor circuit is open or shorted.)	EM
			Intake air leaks Mass air flow sensor	LC
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor 	EC

FE

NAEC1398S01

NAFC1399

FAIL-SAFE MODE

2

3

MONITOR

MONITOR

ENG SPEED

ENG SPEED

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.	

MT

AT

GL

DTC Confirmation Procedure

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PD

AX

SU

ST

BT

SC

PROCEDURE FOR DTC P0103 DATA MONITOR (P) With CONSULT-II

SEF058Y

SEF058Y

NO DTC

NO DTC

XXX rpm

XXX rpm

NAFC1399S0101

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Wait at least 6 seconds.

If DTC is detected, go to "Diagnostic Procedure", EC-197.

With GST

Follow the procedure "With CONSULT-II" above.

NAEC1399S0102

PROCEDURE FOR DTC P0102

(P) With CONSULT-II

NAEC1399S02 NAEC1399S0201

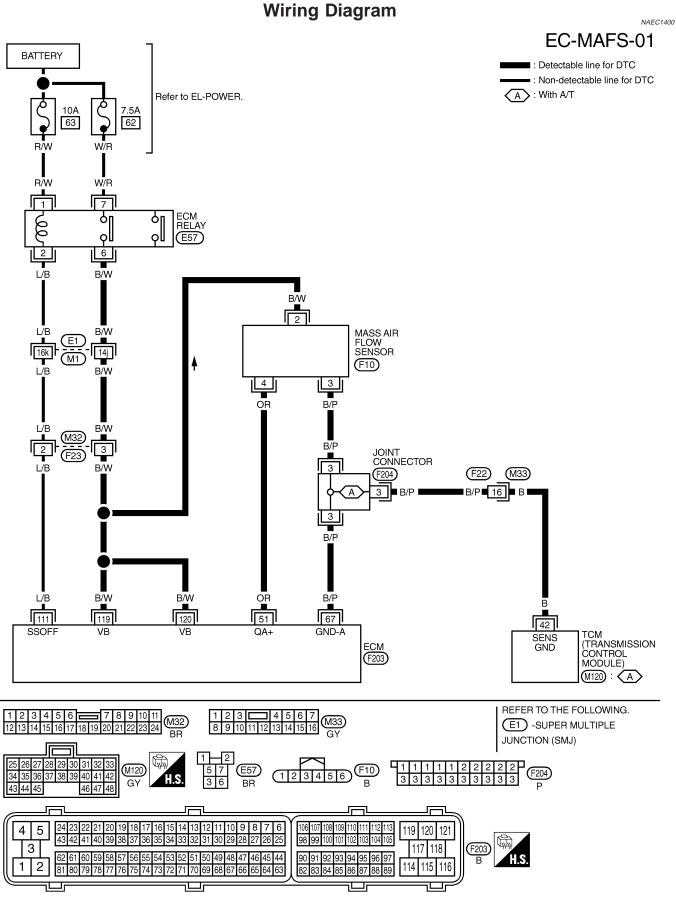
1) Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and wait at least 5 seconds.

If DTC is detected, go to "Diagnostic Procedure", EC-197.

With GST


Follow the procedure "With CONSULT-II" above.

NAEC1399S0202

DATA MONITOR

EL

G[

MA

EM

LC

EC

FE

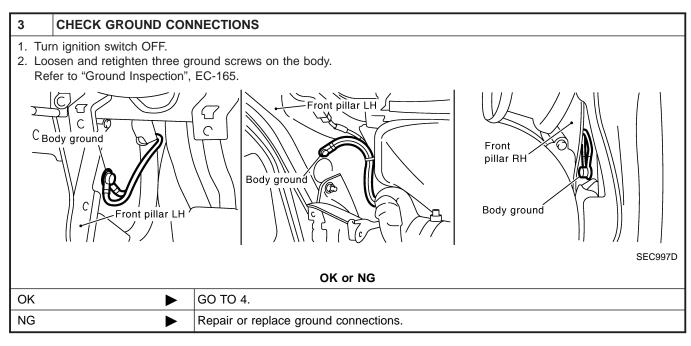
CL

MT

AT

TF

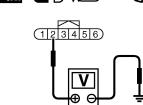
PD


AX

SU

Diagnostic Procedure

			NAEC1401	
1	INSPECTION START			
Which	Which malfunction (P0102 or P0103) is duplicated?			
		P0102 or P0103		
P0103				
P0102	<u> </u>	GO TO 2.		


2	CHECK INTAKE SYSTI	EM	
Check the following for connection. • Air duct • Vacuum hoses • Intake air passage between air duct and intake manifold collector			
	OK or NG		
OK	•	GO TO 3.	
NG	•	Reconnect the parts.	

BR ST RS BT HA

EL

Diagnostic Procedure (Cont'd) CHECK MAF SENSOR POWER SUPPLY CIRCUIT 1. Disconnect mass air flow (MAF) sensor harness connector. Mass air flow sensor (built-in intake air: temperature sensor) SEF960YA 2. Turn ignition switch ON. 3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-II or tester. TS CONNECT KET CON

PBIB1168E

Voltage: Battery voltage

OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E1, M1
- Harness connector M32, F23
- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM

Repair harness or connectors.

CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector
- 4. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

01	, -			
	ิเก	r I	V(

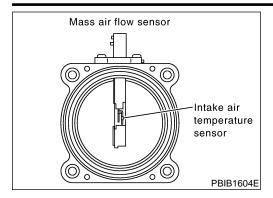
OK ►	GO TO 8.
NG ►	GO TO 7.

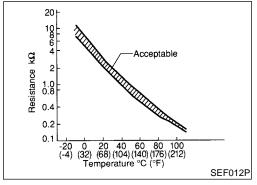
DTC P0102, P0103 MAF SENSOR

Diagnostic Procedure (Cont'd)

EL

GI **DETECT MALFUNCTIONING PART** Check the following. Harness connector F22, M33 MA Joint connector Harness for open or short between mass air flow sensor and ECM Harness for open or short between mass air flow sensor and TCM EM Repair open circuit or short to ground or short to power in harness or connectors. 8 CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. FE OK or NG GO TO 9. OK NG Repair open circuit or short to ground or short to power in harness or connectors. Mi 9 CHECK MASS AIR FLOW SENSOR 1. Reconnect harness connectors disconnected. 2. Start engine and warm it up to normal operating temperature. 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground. TF CONNECTOR **ECM** AX SEF100V Condition Voltage V Ignition switch "ON" (Engine Approx. 0.4 stopped.) Idle (Engine is warmed-up to 1.0 - 1.3 normal operating temperature.) 2,500 rpm (Engine is warmed-up to normal operating temperature.) 1.7 - 2.1 Idle to about 4,000 rpm* 1.0 - 1.3 to Approx. 3.7 *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm. Bī MTBL1806 4. If the voltage is out of specification, disconnect MAF sensor harness connector and connect it again. Then repeat above check. HA OK or NG


10	CHECK INTERMITTENT	T INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		


GO TO 10.

Replace mass air flow sensor.

OK

NG

Component Description

NAEC1404

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1

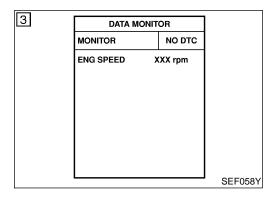
^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NAEC1405


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0112 0112	Intake air temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)
P0113 0113	Intake air temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

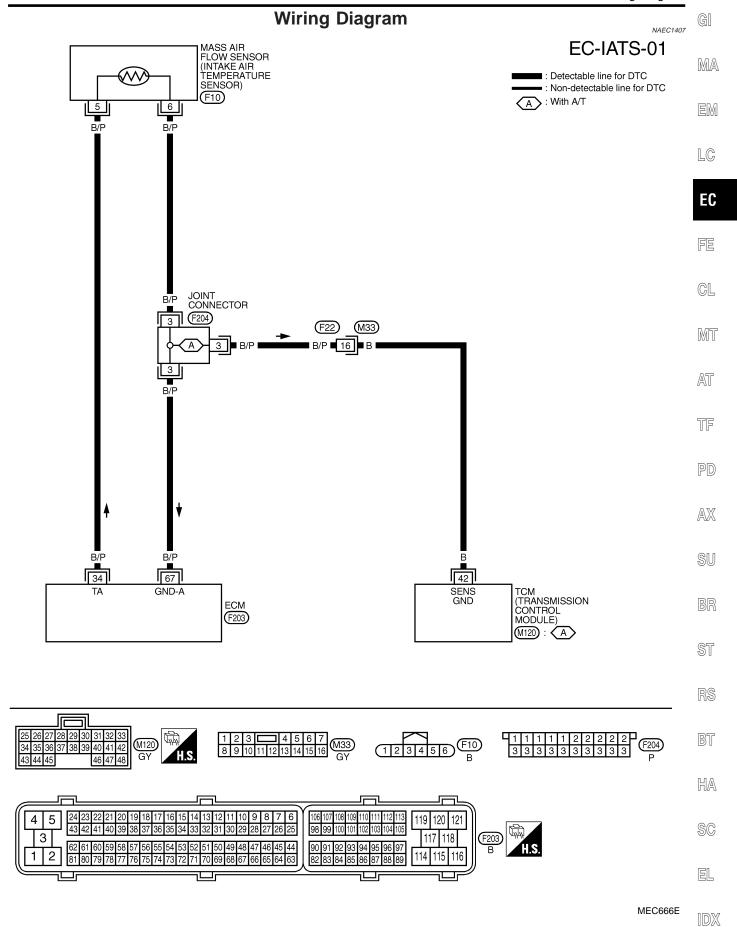
DTC Confirmation Procedure

NOTE:

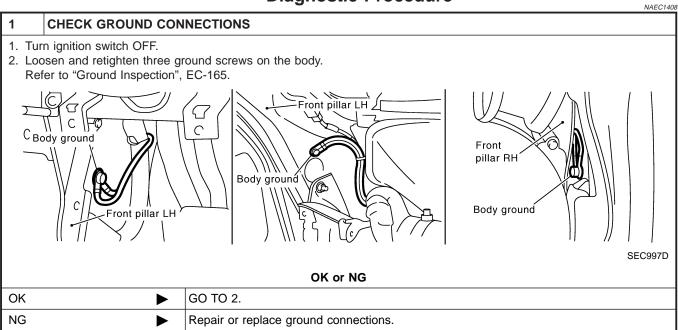
NAEC1406

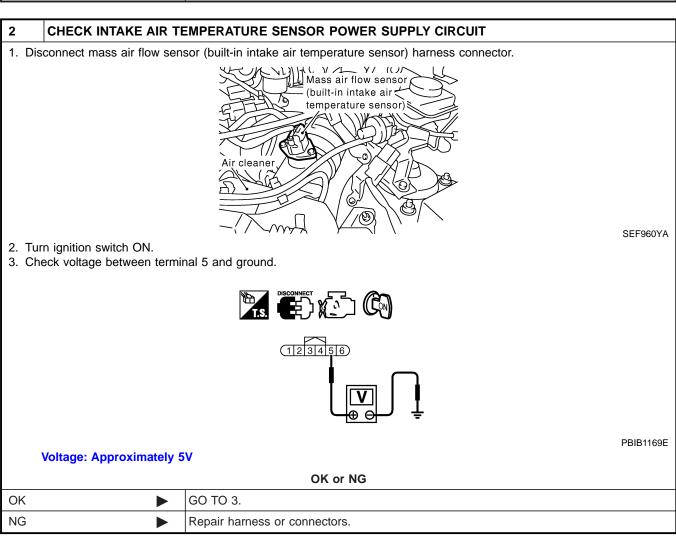
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II


NAEC1406S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-202.


WITH GST


Follow the procedure "With CONSULT-II" above.

NAEC1406S02

Diagnostic Procedure

GI

MA

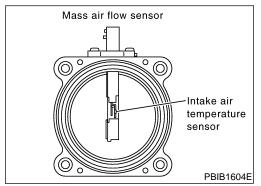
EM

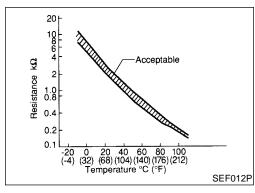
LC

EC

FE

GL


MT



4	DETECT MALFUNCTIO	NING PART
HarrJoinHarr	Check the following. • Harness connectors F22, M33 • Joint connector • Harness for open or short between mass air flow sensor and ECM • Harness for open or short between mass air flow sensor and TCM	
	Repair open circuit or short to ground or short to power in harness or connectors.	

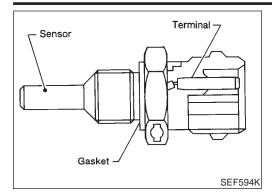
5	CHECK INTAKE AIR TE	EMPERATURE SENSOR	AT
Refer to EC-203, "Component Inspection".			
		OK or NG	TF
OK	•	GO TO 6.	
NG	>	Replace mass air flow sensor (with intake air temperature sensor).	PD

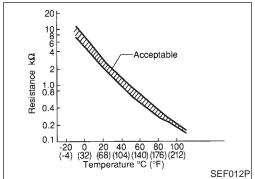
6	CHECK INTERMITTENT	INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	•	INSPECTION END	

Component Inspection INTAKE AIR TEMPERATURE SENSOR

Check resistance between intake air temperature sensor terminals 1 and 3 under the following conditions.

Intake air temperature °C (°F)	Resistance k Ω
25 (77)	1.9 - 2.1


If NG, replace mass air flow sensor (with intake air temperature sensor).


AX
SU

NAEC1409
BR
ISOT terST

RS
EmperaBT

HA
SC
EL

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant tem- perature sensor cir- cuit low input	An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)
P0118 0118	Engine coolant tem- perature sensor cir- cuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

NAEC0858S01


NAEC0858

When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC P0117, P0118 ECT SENSOR

On Board Diagnosis Logic (Cont'd)

Detected items	Engine operating cond	dition in fail-safe mode	G
	Engine coolant temperature will be determined by E ON or START. CONSULT-II displays the engine coolant temperature	r ECM based on the time after turning ignition switch ture decided by ECM.	
	Condition	Engine coolant temperature decided (CONSULT-II display)	- E1
Engine coolant tem-	Just as ignition switch is turned ON or Start	40°C (104°F)	_
perature sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	E
	When the fail-safe system for engine coolant temper engine is running.	rature is activated, the cooling fan operates while	F

DTC Confirmation Procedure

NAEC0859

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

ST

RS

BT

HA

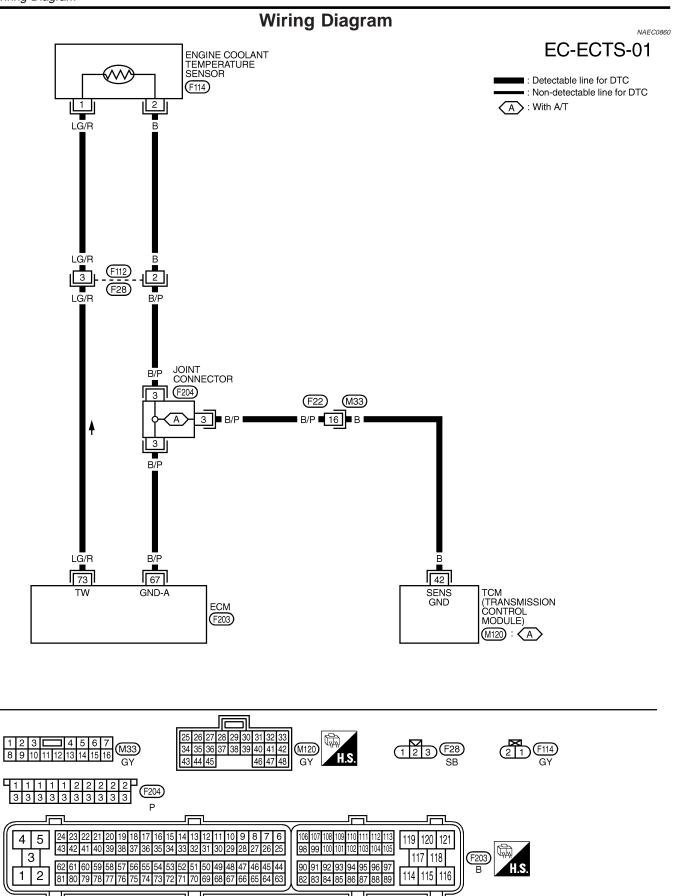
SC

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

NAEC0859S01

(I) WITH CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-207.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NAEC0859S02

EL

MEC084E

G[

MA

EM

LC

EC

FE

CL

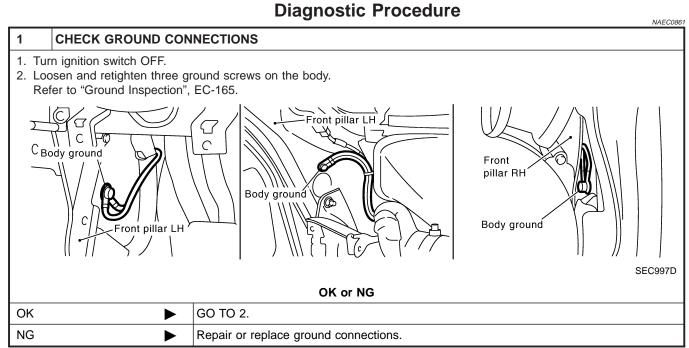
MT

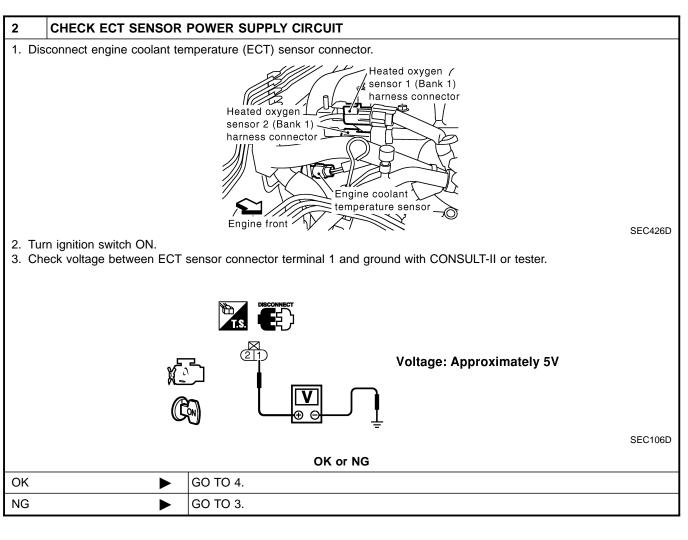
AT

TF

AX

SU


ST


BT

HA

SC

EL

DTC P0117, P0118 ECT SENSOR

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F112, F28
- Harness for open or short between ECM and engine coolant temperature sensor
 - Repair harness or connectors.

4 CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between ECT sensor terminal 2 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

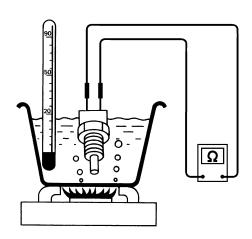
Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

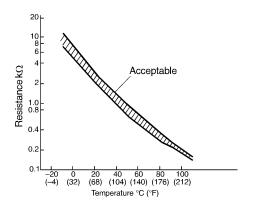
OK •	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F112, F28
- Joint connector F204
- Harness for open between ECM and engine coolant temperature sensor
- Harness for open between TCM and engine coolant temperature sensor

Repair open circuit or short to ground or short to power in harness or connectors.


6 CHECK ENGINE COOLANT TEMPERATURE SENSOR

Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

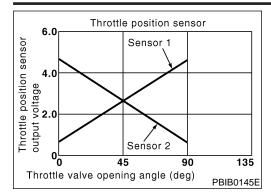
<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

SEF304X

OK or NG

OK	>	GO TO 7.
NG	>	Replace engine coolant temperature sensor.


		DTC P0117, P0118 ECT SENSOR	Diagnostic Procedure (Cont'd)	
7	CHECK INTERMITTEN	IT INCIDENT		GI
Refe	er to "TROUBLE DIAGNOSI	S FOR INTERMITTENT INCIDENT", EC-155.		
	>	INSPECTION END		MA
				EM
				LG
				EC
				FE
				CL
				Mī
				AT
				TF
				PD
				AX
				SU
				BR
				ST
				RS
				BT

EC-209

HA

SC

EL

Component Description

=NAEC1194

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1195

MONITOR ITEM	CONE	DITION	SPECIFICATION
THRTL SEN2*	Ignition switch: ON (Engine stopped) Shift lever:	Accelerator pedal: Fully released	More than 0.36V
THRIL SENZ	D (A/T model) 1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

ECM Terminals and Reference Value

NAEC1201

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	L	Sensor power supply	[Ignition switch ON]	Approximately 5V
50		Throttle position sensor	 [Ignition switch ON] Engine stopped Shift lever position is D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	More than 0.36V
50	BR		[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	Less than 4.75V

DTC P0122, P0123 TP SENSOR

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
66	BR/Y	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	MA EM
	DDAW	Throttle position sensor	[Ignition switch ON] ■ Engine stopped ■ Shift lever position is D (A/T models) ■ Shift lever position is 1st (M/T models) ■ Accelerator pedal fully released	Less than 4.75V	L©
69	BR/W	2	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	More than 0.36V	EC
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V	GL

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	A1
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (The TP sensor 2 circuit is open or shorted.)	TF
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	 (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 2) Accelerator pedal position sensor 	PC AX

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

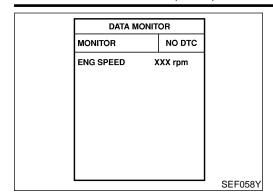
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

MT

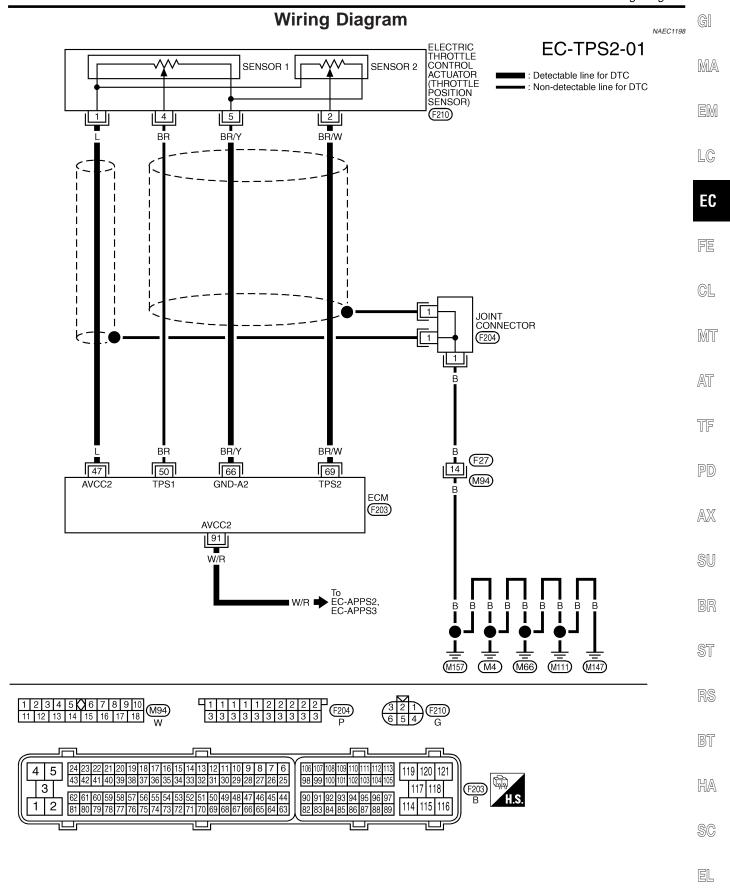

NAEC1196S01

EL

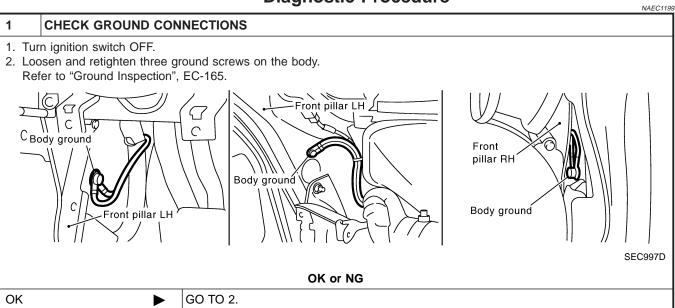
SC

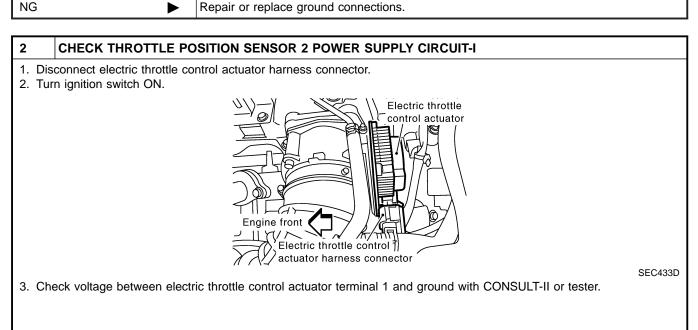
DTC P0122, P0123 TP SENSOR

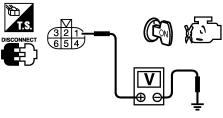
DTC Confirmation Procedure (Cont'd)


(II) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 1 second.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-214.


With GST


Follow the procedure "With CONSULT-II" above.


MEC744E

Diagnostic Procedure

PBIB0082E

Voltage: Approximately 5V

OK or NG

OK •	GO TO 7.
NG •	GO TO 3.

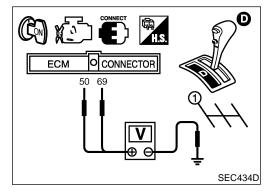
DTC P0122, P0123 TP SENSOR

Diagnostic Procedure (Cont'd)

SC

EL

3 CHECK	THROTTLE PO	OSITION SENSOR 2 POWER SUPPLY CIRCUIT-II	
3. Check harne Refer to Wir	ECM harness cor	nnector. ween electric throttle control actuator terminal 1 and ECM terminal 47.	
		OK or NG	
OK	>	GO TO 4.	
NG		Repair or replace open circuit.	
4 CHECK	THROTTLE PO	DSITION SENSOR 2 POWER SUPPLY CIRCUIT-III	
• ECM termina	I 47 and electric	er and short to ground, between the following terminals. throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. nsor terminal 10. Refer to "Wiring Diagram", EC-685.	
		OK or NG	
OK	•	GO TO 5.	
NG		Repair short to ground or short to power in harness or connectors.	
			"
5 CHECK	APP SENSOR		
Refer to "Comp	onent Inspection'	', EC-689.	<u>μ</u>
		OK or NG	
OK	•	GO TO 11.	
NG	<u> </u>	GO TO 6.	
O DEDIA	OF 400FLED 4:	TOR REDAL ACCEMPLY	
		TOR PEDAL ASSEMBLY	-
	elerator pedal as celerator Pedal R	sembly. deleased Position Learning", EC-73.	
3. Perform "Th	rottle Valve Close	ed Position Learning", EC-73.	
4. Perform "Idle	e Air Volume Lea		(
	<u> </u>	INSPECTION END	
7 CHECK	THROTTI E DO	DSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT	
1. Turn ignition		STITUR SENSON 2 GROUND GIRCOIT FOR OPEN AND SHORT	-
•	ECM harness cor	nnector.	,
Refer to Wir	ing Diagram.	ween electric throttle control actuator terminal 5 and ECM terminal 66.	
	ty should exist. harness for short	to ground and short to power.	
		OK or NG	
OK	.	GO TO 8.	
NG		Repair open circuit or short to ground or short to power in harness or connectors.	
ING			


EC-215

8 CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK THROTTLE POSITION SENSOR					
Refer to "Component Inspection", EC-216.						
OK or NG						
OK	>	GO TO 11.				
NG	>	GO TO 10.				

10	REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR				
Replace the electric throttle control actuator. Perform "Throttle Valve Closed Position Learning", EC-73.					
3. Perform "Idle Air Volume Learning", EC-73.					
	•	INSPECTION END			

11	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.				
	•	INSPECTION END			

Component Inspection THROTTLE POSITION SENSOR

NAEC1200

- 1. Reconnect all harness connectors disconnected.
- 2. Perform "Throttle Valve Closed Position Learning", EC-73.
- Turn ignition switch ON.
- Set selector lever to D position (A/T models) or 1st position (M/T models).
- 5. Check voltage between ECM terminals 50 (TP sensor 1), 69 (TP sensor 2) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform "Throttle Valve Closed Position Learning", EC-73.
- 8. Perform "Idle Air Volume Learning", EC-73.

NAEC0869

Description

NOTE:

Terminal -

Acceptable

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

Trouble diagnosis

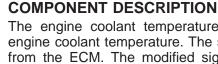
SEF594K

SEF012P

Sensor

1.0 0.8

0.2


ĝ

Gasket

If DTC P0125 is displayed with P0117, P0118, first perform the trouble diagnosis for DTC P0117, P0118. Refer to EC-204.

MA

LC

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

GL

MIT

AT

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

PD

TF

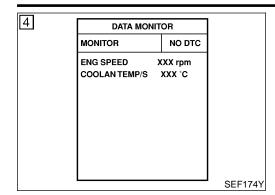
*: This data is reference value and is measured between ECM terminal 73 (Engine

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

coolant temperature sensor) and ground.

NAEC0870


HA

SC

	DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
•	P0125 0125	Insufficient engine coolant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

closed loop fuel control.

EL

DTC Confirmation Procedure

CAUTION:

Be careful not to overheat engine.

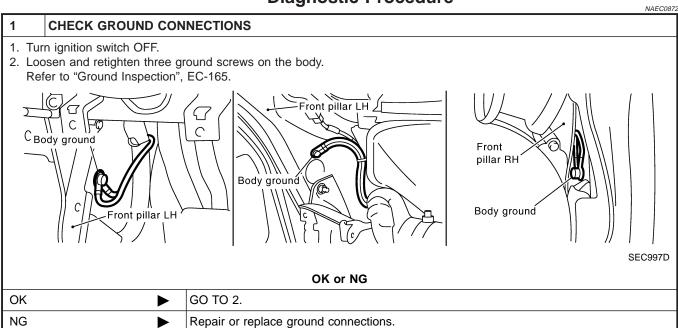
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

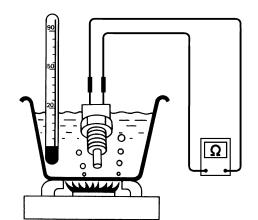
NAEC0871S01

NAEC0871

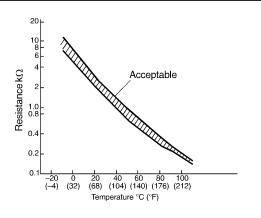

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- 4) Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-218.

WITH GST

Follow the procedure "WITH CONSULT-II" above.


NAEC0871S02

Diagnostic Procedure



Check resistance between engine coolant temperature sensor connector terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

OK or NG

OK •	GO TO 3.
NG	Replace engine coolant temperature sensor.

3 CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK	or	NG
----	----	----

OK •	GO TO 4.
NG ►	Repair or replace thermostat. Refer to LC-19, "Thermostat".

4 CHECK INTERMITTENT INCIDENT

- Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.
- Refer to wiring diagram, EC-206.

INSPECTION END

G[

MA

LC

EC

FE

CL

MT

AT

SEF304X

TF

PD

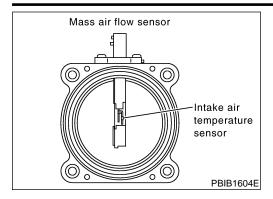
 $\mathbb{A}\mathbb{X}$

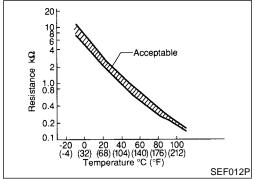
SU

RR

ST

RS


BT


HA

SC

EL

[DX

Component Description

NAEC076

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NAEC0768

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted.) Intake air temperature sensor

DTC Confirmation Procedure

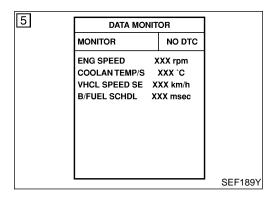
NOTE:

NAEC0770

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CALITION:

Always drive vehicle at a safe speed.


TESTING CONDITION:

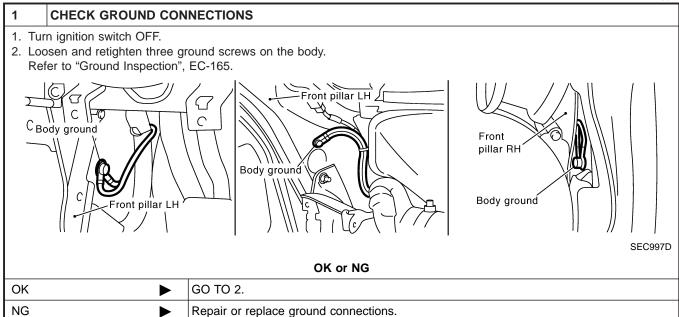
This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(A) WITH CONSULT-II

NAEC0770S

- Wait until engine coolant temperature is less than 90°C (194°F).
- a) Turn ignition switch ON.
- b) Select "DATA MONITOR" mode with CONSULT-II.
- c) Check the engine coolant temperature.
- If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2) Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine.
- Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-221.


WITH GST

Follow the procedure "With CONSULT-II" above.

NAEC0770S04

Diagnostic Procedure

NAEC0772

2	2 CHECK INTAKE AIR TEMPERATURE SENSOR	
Refer to "Component Inspection", EC-203.		
OK or NG		
OK	•	GO TO 3.
NG	>	Replace mass air flow sensor (with intake air temperature sensor).

CHECK INTERMITTENT INCIDENT			
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
Refer to wiring diagram, EC-201.			
► INSPECTION END			
	er to "TROUBLE DIAGNOS er to wiring diagram, EC-20		

EC

LC

G[

MA

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

[DX

On Board Diagnosis Logic

IAEC120

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough. This is due to a leak in the seal or the thermostat open stuck.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	

DTC Confirmation Procedure

NAEC1203

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 65°C (149°F).

(P) WITH CONSULT-II

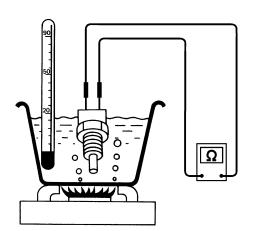
VAEC1203S0

- Replace thermostat with new one. Refer to LC-19, "Thermostat". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2) Turn ignition switch ON.
- 3) Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 65°C (149°F), go to following step. If it is above 65°C (149°F), cool down the engine to less than 65°C (149°F), then retry from step 1.
- Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)
---------------	-----------------------------

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-223.

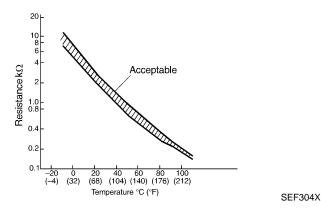
WITH GST


NAEC1203S02

1) Follow the prodedure "WITH CONSULT-II" above.

Diagnostic Procedure

NAEC1204


- 1. Turn ignition switch OFF.
- 2. Remove engine coolant temperature sensor.
- 3. Check resistance between engine coolant temperature sensor terminals under the following conditions.

CHECK ENGINE COOLANT TEMPERATURE SENSOR

<Reference data>

Temperature °C (°F)		Resistance k Ω
	20 (68)	2.1 - 2.9
	50 (122)	0.68 - 1.00
	90 (194)	0.236 - 0.260

OK or NG

OK •	INSPECTION END
NG ►	Replace engine coolant temperature sensor.

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

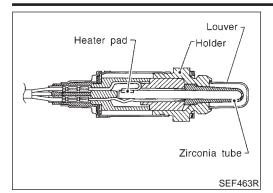
PD

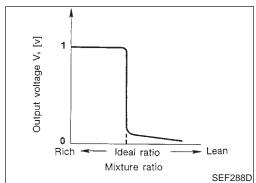
 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS


BT

HA

SC

EL

Component Description

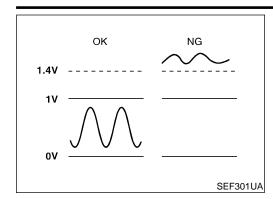
The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value


NAEC0875

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	G/B	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
35	G	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 output is not inordinately high.

d

GI

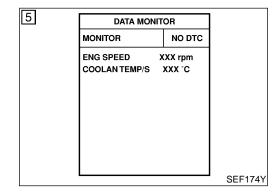
MA

EM

LC

AT

TF


PD

 $\mathbb{A}\mathbb{X}$

SU

BR

					EU
	DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
	P0132 0132	Heated oxygen sensor 1 circuit high volt-	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or	FE
-	(Bank 1)	age		shorted.) • Heated oxygen sensor 1	GL
	0152 (Bank 2)				MT

DTC Confirmation Procedure

NOTF:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

NAEC0077801

NAEC0877

WITH CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Restart engine and let it idle for 2 minutes.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-228.

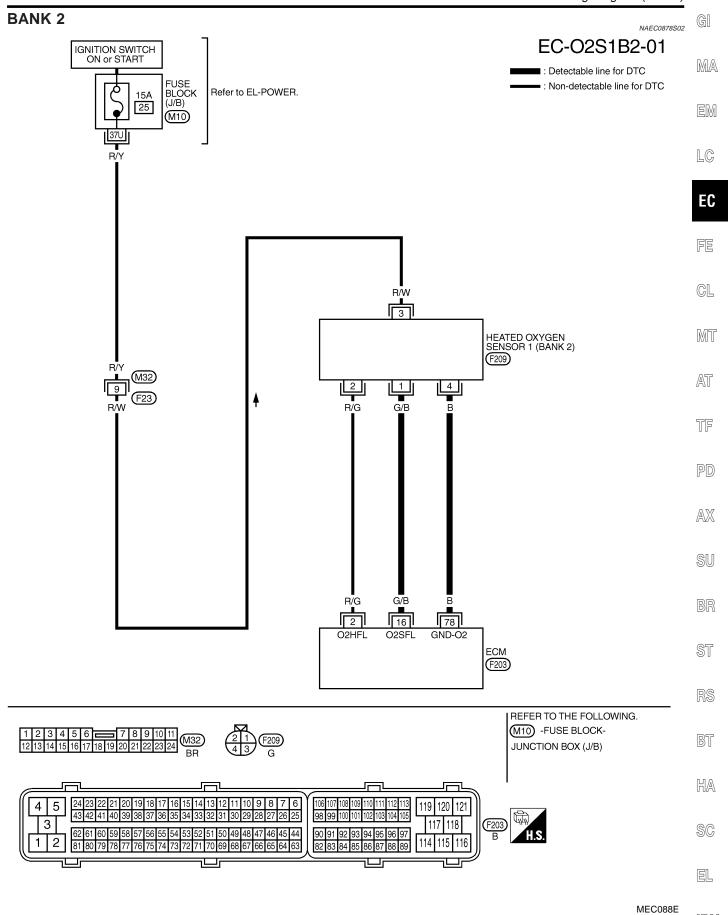
WITH GST

Follow the procedure "With CONSULST-II" above.

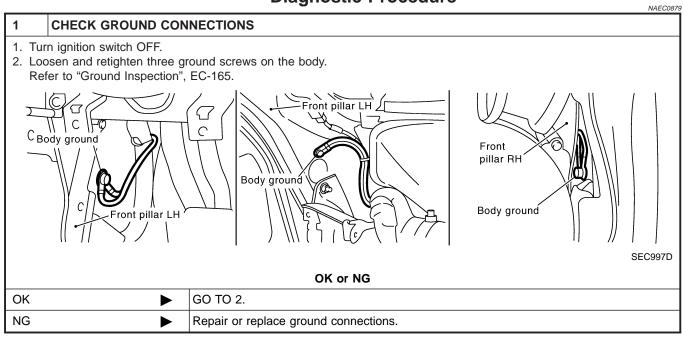
NAEC0877S02

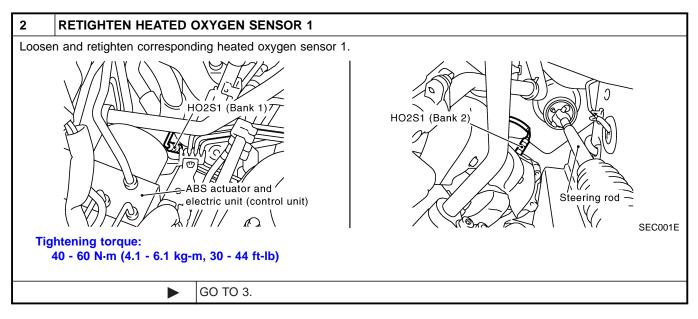
29

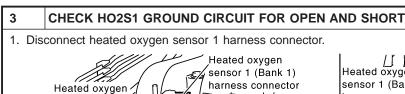
BT

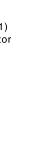

HA

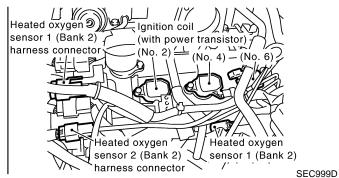
SC


EL


3 2


Wiring Diagram NAEC0878 **BANK 1** NAEC0878S01 EC-02S1B1-01 IGNITION SWITCH ON or START : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 15A 25 M10R/W HEATED OXYGEN SENSOR 1 (BANK 1) (F207) (M32) 2 4 1 (F23) L/OR В L/OR 24 78 35 O2HFR GND-O2 ECM (F203) REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B) 5 119 120




Diagnostic Procedure

2. Disconnect ECM harness connector.

3. Check harness continuity between HO2S1 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Engine coolant <

temperature sensor

Continuity should exist.

Engine front

sensor 2 (Bank 1) harness connector

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0132	35	1	Bank 1
P0152	16	1	Bank 2

Continuity should exist.

2. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dalik
P0132	35	1	Bank 1
P0152	16	1	Bank 2

Continuity should not exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK ▶	GO TO 5.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

LC

EC

35

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

MTBL1354

MTBL1354

SU

BR

ST

IUIG

BT

HA

SC

EL

IWM.

DTC P0132, P0152 HO2S1

Diagnostic Procedure (Cont'd)

5	CHECK HO2S1 CONNECTOR FOR WATER		
2. Ch	Disconnect heated oxygen sensor 1 harness connector. Check connectors for water. Water should not exist.		
	OK or NG		
OK (W	/ith CONSULT-II)	GO TO 6.	
OK (W	OK (Without CONSULT- GO TO 7.		
NG	>	Repair or replace harness or connectors.	

CHECK HEATED OXYGEN SENSOR 1

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED	XXX rpm		
COOLAN TEMP/S	XXX °C		
HO2S1 (B1)	XXX V		
HO2S2 (B2)	XXX V		

SEF967Y

MA

LC

EC

GL

MI

AT

TF

AX

6. Check the following.

• "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown left:

Bank '

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

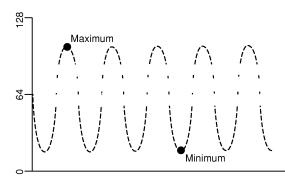
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

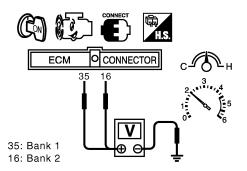
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

$\alpha \nu$		NIC
Un	or	NG

OK ►	GO TO 8.
NG ►	Replace malfunctioning heated oxygen sensor 1.

EL


HA

EC-231

CHECK HEATED OXYGEN SENSOR 1

(X) Without CONSULT-II

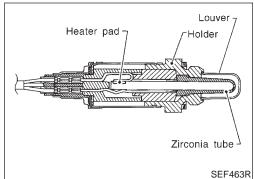
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

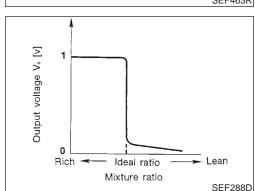
SEC430D

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - $0.3V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V


CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	•	GO TO 8.
NG •	•	Replace malfunctioning heated oxygen sensor 1.

8	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	•	INSPECTION END

Component Description

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

GL

MIT

AT

TF

CONSULT-II Reference Value in Data Monitor

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	PD
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH	
HO2S1 MNTR (B2)			Changes more than 5 times during 10 seconds.	

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

Mode

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	RS
16	G/B	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	BT
35	G	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	HA SC

EL

On Board Diagnosis Logic

To judge the malfunction of heated oxygen sensor 1, this diagnosis measures response time of heated oxygen sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 temperature index. Judgment is based on whether the compensated time [heated oxygen sensor 1 cycling time index] is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0133 0133 (Bank 1)	Heated oxygen sensor 1 circuit slow response	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 Fuel pressure
P0153 0153 (Bank 2)			 Injector Intake air leaks Exhaust gas leaks PCV valve Mass air flow sensor

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

a sare speed.

NAEC0884

GI

MA

LC

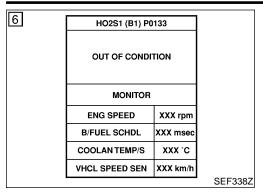
EC

GL

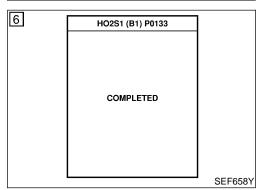
MT

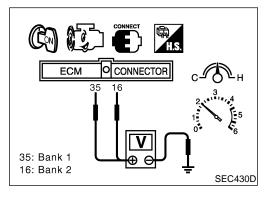
TF

PD


AX

SU


ST


BT

HA

[6]	HO2S1 (B1) P0	133	
	TESTING		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	XXX °C	
	VHCL SPEED SEN	XXX km/h	
			SEF339Z

(A) WITH CONSULT-II

1) Start engine and warm it up to normal operating temperature.

2) Stop engine and wait at least 10 seconds.

 Turn ignition switch ON and select "HO2S1 (B1)/(B2) P0133/ P0153" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

4) Touch "START".

5) Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.)

ENG SPEED	1,600 - 3,100 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	5 - 12 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from a step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-238.

Overall Function Check

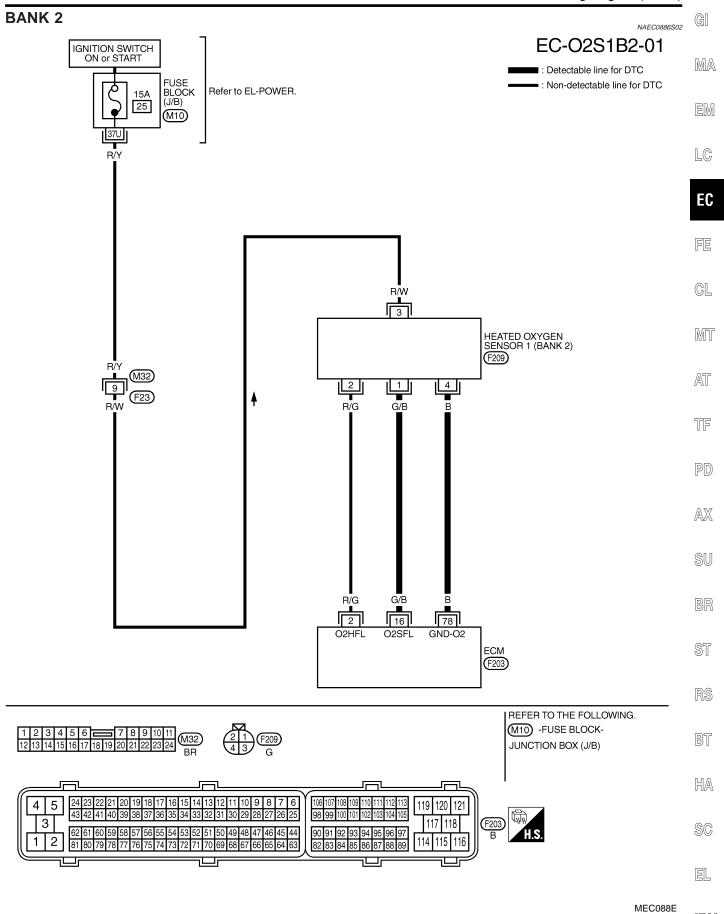
Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

Start engine and warm it up to normal operating temperature.

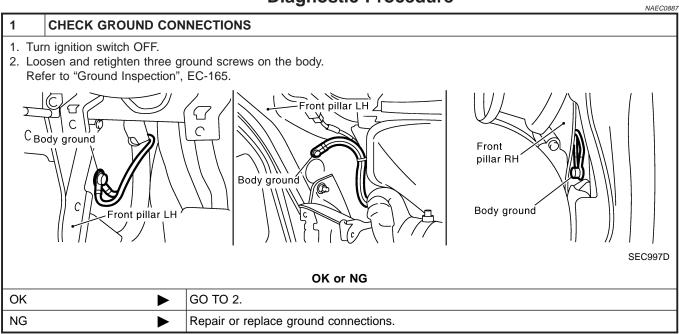
2) Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.

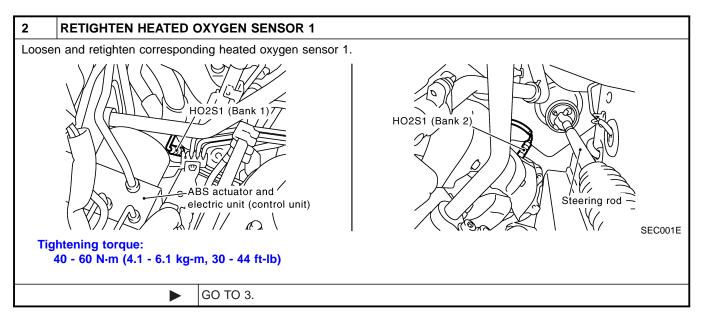
Check the following with engine speed held at 2,000 rpm constant under no load.

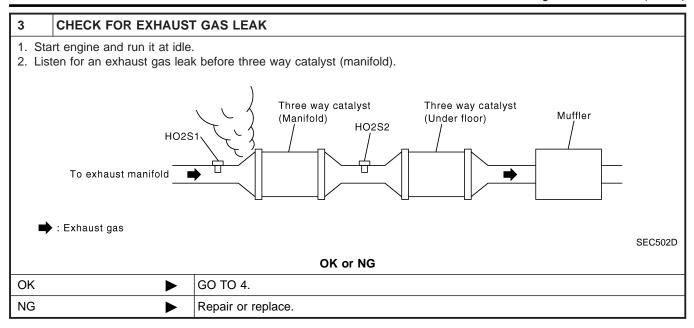

 The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

4) If NG, go to "Diagnostic Procedure", EC-238.


SC EL


Wiring Diagram **Wiring Diagram** NAEC0886 **BANK 1** NAEC0886S01 EC-02S1B1-01 IGNITION SWITCH ON or START : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 15A 25 M10R/W HEATED OXYGEN SENSOR 1 (BANK 1) (F207) (M32) 2 4 1 (F23) L/OR В L/OR 24 78 35 O2HFR GND-O2 ECM (F203) REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B)



EC-237

Diagnostic Procedure

4	4 CHECK FOR INTAKE AIR LEAK		
Listen for an intake air leak after the mass air flow sensor.			
	OK or NG		
OK	•	GO TO 5.	
NG	•	Repair or replace.	

EC-239

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

SU

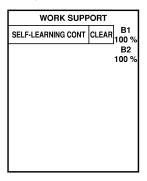
BR

ST

RS

BT

HA

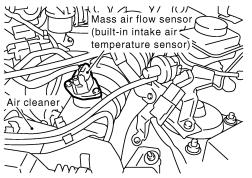

SC

EL

CLEAR THE SELF-LEARNING DATA

With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

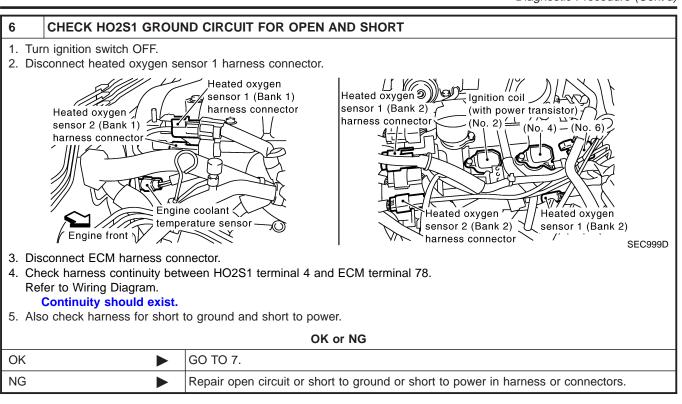


SEF968Y

4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.


SEF960YA

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-273, 282.
No •	GO TO 6.

7 CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Danle
	ECM	Sensor	Bank
P0133	35	1	Bank 1
P0153	16	1	Bank 2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Terminals		Bank
	ECM	Sensor	Бапк
P0133	35	1	Bank 1
P0153	16	1	Bank 2

Continuity should not exist.

3. Also check harness for short to power.

OK		GO TO 8.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

LC

EC

FE

GL

MT

AT

7-71

TF

AX

911

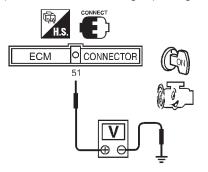
MTBL1356

MTBL1356

RS

B1

HA


SC

EL

1D)X(

8 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

SEF100V

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.1
Idle to about 4,000 rpm*	1.0 - 1.3 to Approx. 3.7

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

MTBL1844

4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.

OK or NG

OK •	GO TO 9.
NG ►	Replace mass air flow sensor.

9 CHECK PCV VALVE		
 Install all removed parts. Start engine and let it idle. Remove PCV valve ventilation hose from PCV valve. Make sure that a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately 		
when a finger is placed o	valve illet.	
	PBIB1589E OK or NG	
OK (With CONSULT-II)	GO TO 10.	
OK (Without CONSULT- II)	GO TO 11.	
NG	Replace PCV valve.	

MA

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

10 CHECK HEATED OXYGEN SENSOR 1

- (II) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

IITOR
NO DTC
XXX rpm XXX °C XXX V XXX V

SEF967Y

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

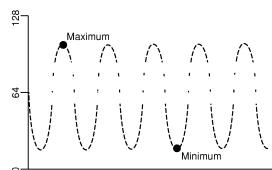
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

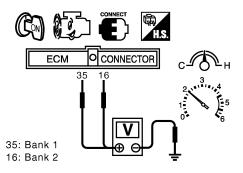
Trigger	ENG SPEED	HO2S1 (B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 12.
NG ►	Replace malfunctioning heated oxygen sensor 1.

CHECK HEATED OXYGEN SENSOR 1

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEC430D

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - $0.3V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 12.
NG •	Replace malfunctioning heated oxygen sensor 1.

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.

► INSPECTION END

GI

MA

LC

EC

FE

GL

MT

AT

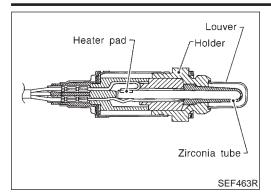
TF

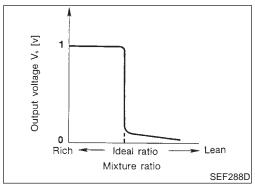
AX

<u>a</u>a

@T

RS


BT


HA

SC

EL

 \mathbb{M}

Component Description

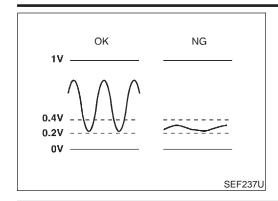
The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value


NAEC0890

Specification data are reference values and are measured between each terminal and ground.

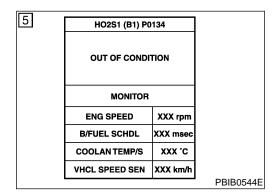
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	G/B	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
35	G	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

On Board Diagnosis Logic

Under the condition in which the heated oxygen sensor 1 signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.


MA

_	_	
	и.	
_	v	

	DTO No	Trouble diagnosis	DTO Data sting Condition	Descible Cover	
_	DTC No.	name	DTC Detecting Condition	Possible Cause	
	P0134 0134	Heated oxygen sensor 1 circuit no activ-	The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors (The sensor circuit is open or	FE
	(Bank 1)	ity detected		shorted.) • Heated oxygen sensor 1	GL
	P0154 0154			, , ,	
	(Bank 2)				MT

AT

TF

HO2S1 (B1) P0134

TESTING

MONITOR

XXX rpm

XXX msed

XXX °C

XXX km/h

PBIB0545E

ENG SPEED

B/FUEL SCHDL

COOLAN TEMP/S

VHCL SPEED SEN

5

DTC Confirmation Procedure

NAFC0892

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

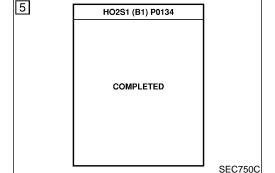
(P) WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "HO2S1 (B1)/(B2) P0134/P0154" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

- Touch "START".
- 4) Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 4.

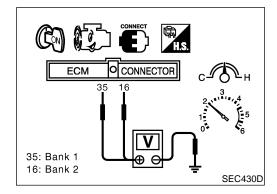

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

HA

SC

EL

ENG SPEED	1,500 - 2,800 rpm
Vehicle speed	More than 64 km/h (40 MPH)
B/FUEL SCHDL	3.0 - 14 msec
Selector lever	Suitable position



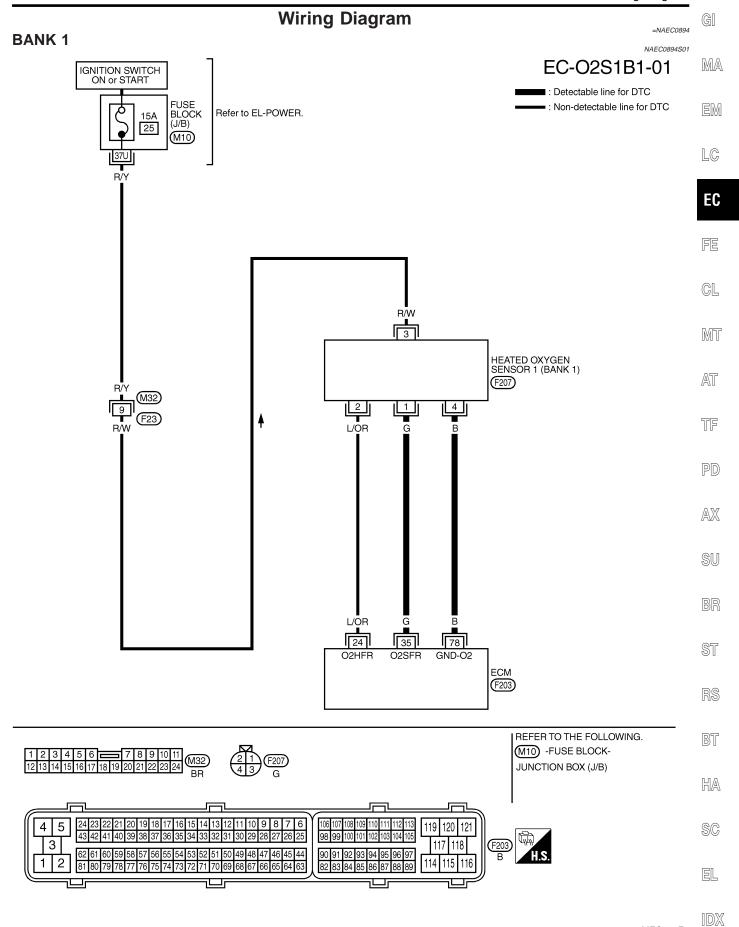
If "TESTING" is not displayed after 5 minutes, retry from

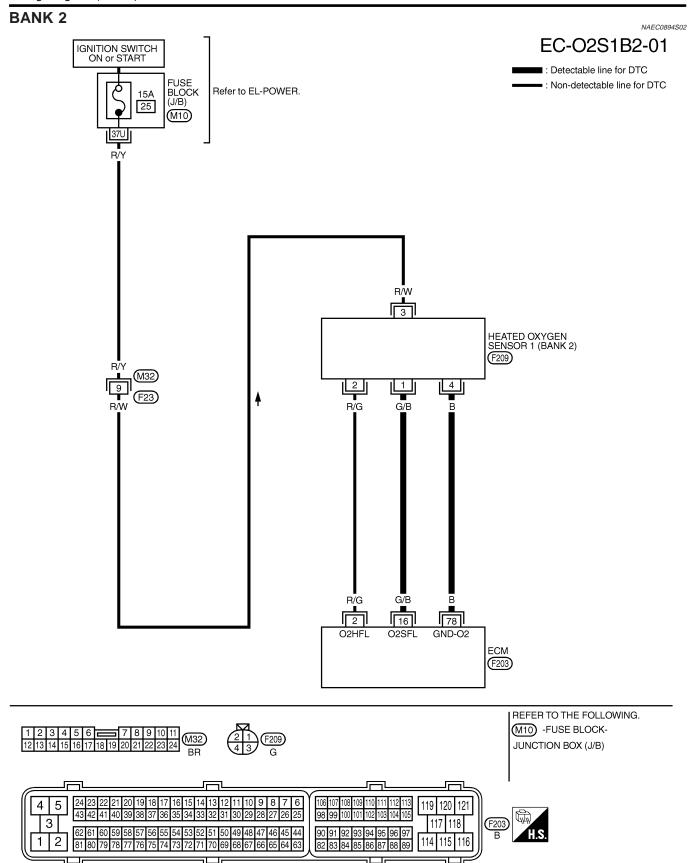
Make sure that "OK" is displayed after touching "SELF-DIAG

RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-251.

During this test, P1148 and P1168 may be stored in ECM.

Overall Function Check


NAFC089


Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

IAFC0803S01

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 to 0.4V.
- 4) If NG, go to "Diagnostic Procedure", EC-251.

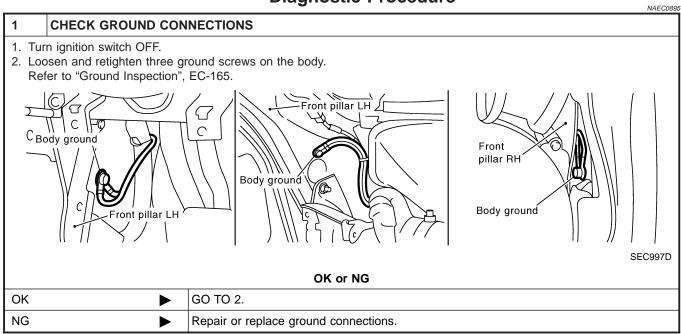
MEC088E

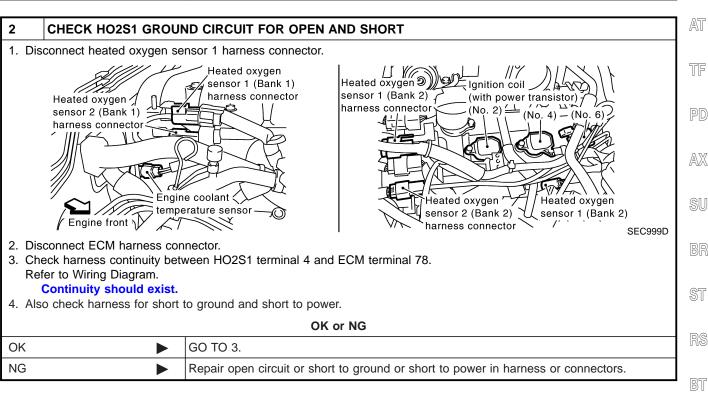
MA

LC

EC

GL


MT


HA

SC

EL

EC-251

3 CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Бапк
P0134	35	1	Bank 1
P0154	16	1	Bank 2

MTBL1358

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Бапк
P0134	35	1	Bank 1
P0154	16	1	Bank 2

MTBL1358

Continuity should not exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)	•	GO TO 4.
OK (Without CONSULT-II)	•	GO TO 5.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 1

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	IITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLAN TEMP/S	XXX °C
HO2S1 (B1)	xxx v
HO2S2 (B2)	xxx v

SEF967Y

MA

LC

EC

GL

MI

AT

TF

AX

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

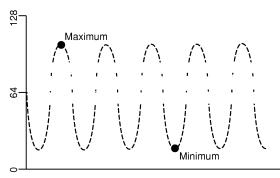
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	٧
XXX	XXX	XXX

 Maximum voltage should be over 0.6V at least one time.

 Minimum voltage should be below 0.30V at least one time.

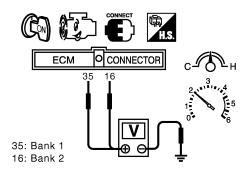
SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool
 J-43897-18 or J-43897-12 and approved anti-seize lubricant.

$\alpha \nu$		NIC
Un	or	NG

	OK		GO TO 6.
I	NG	>	Replace malfunctioning heated oxygen sensor 1.


EL

HA

5 CHECK HEATED OXYGEN SENSOR 1

Without CONSULT-II

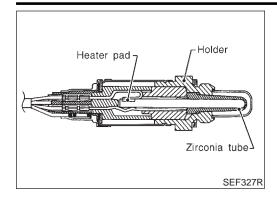
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEC430D

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - $0.3V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 6.
NG ►	Replace malfunctioning heated oxygen sensor 1.

6	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	•	INSPECTION END

Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

LC EC

FE

NAEC0897

GI

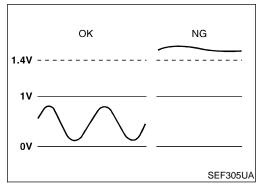
MA

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	DITION	SPECIFICATION	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up After keeping angine append		0 - 0.3V ←→ Approx. 0.6 - 1.0V	CL
HO2S2 MNTR (B1) HO2S2 MNTR	After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm	LEAN ←→ RICH	MT
(B2)	minute under no load			AT

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

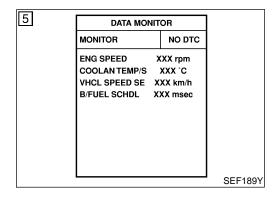
NAEC0898

CALITION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	AX
			 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after 		SU
OR/L Heated oxygen sensor 2 (bank 2)	the following conditions are met. • After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	0 - Approximately 1.0V	BR		
			[Engine is running]		ST
74	OR	Heated oxygen sensor 2 (bank 1)	 Warm-up condition Revving engine from idle up to 3,000 rpm after the following conditions are met. After keeping the engine speed between 3,500 	0 - Approximately 1.0V	RS
			and 4,000 rpm for 1 minute and at idle for 1 minute under no load		BT

On Board Diagnosis Logic


The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

0899 LJ

SC

EL

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0138 0138 (Bank 1)	Heated oxygen sensor 2 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0158 0158 (Bank 2)			Heated oxygen sensor 2

DTC Confirmation Procedure

NAEC0900

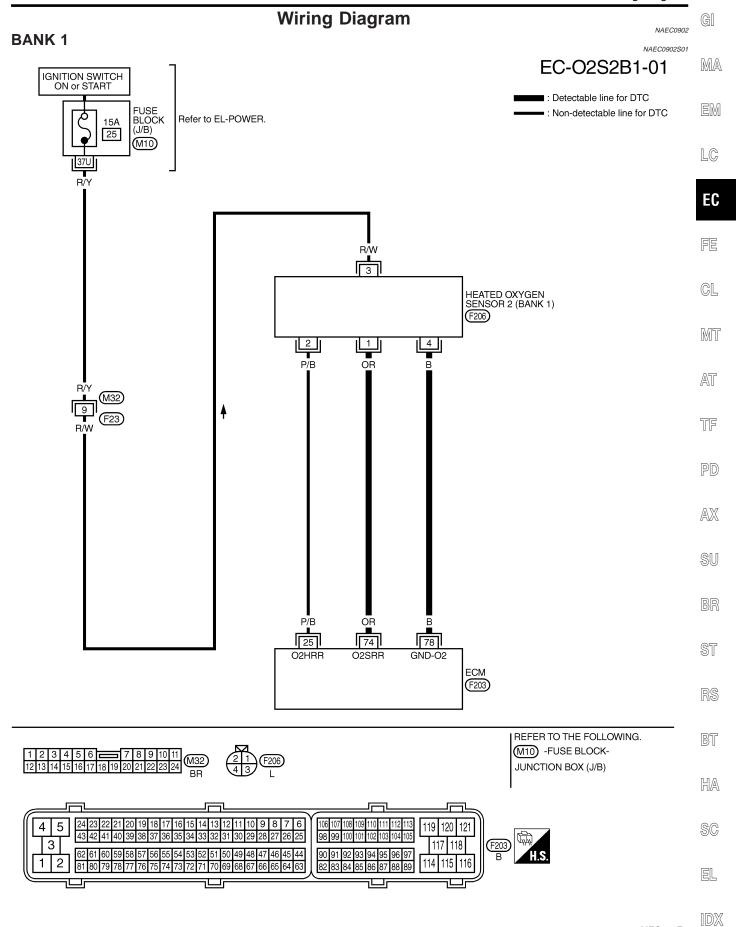
CAUTION:

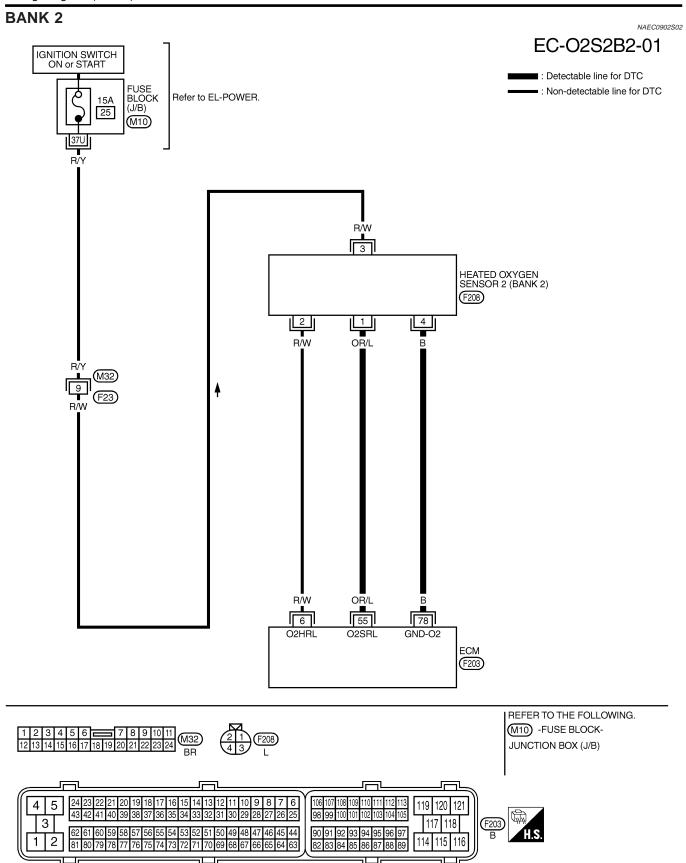
Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and warm it up to the normal operating temperature.
- 3) Turn ignition switch OFF and wait at least 10 seconds.
- 4) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5) Let engine idle for 2 minutes.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-259.


WITH GST

NAEC0900S02

Follow the procedure "With CONSULST-II" above.

MEC089E

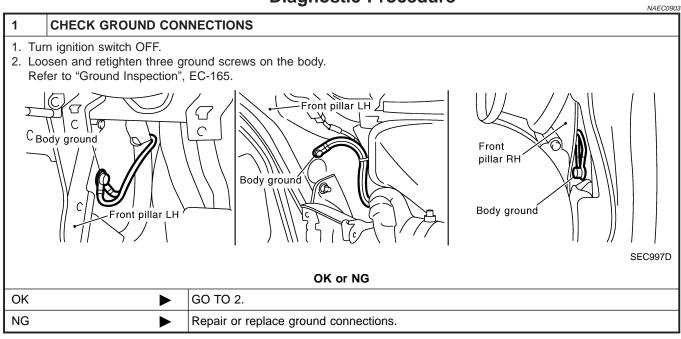
MEC090E

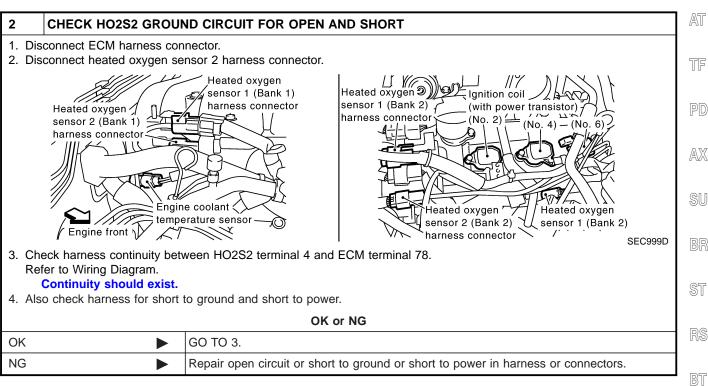
MA

LC

EC

GL


MT


HA

SC

EL

EC-259

3 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Бапк
P0138	74	1	Bank 1
P0158	55	1	Bank 2

MTBL1360

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Terminals		Bank
DIC	ECM	Sensor	Dank
P0138	74	1	Bank 1
P0158	55	1	Bank 2

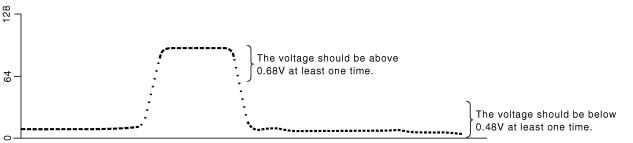
MTBL1360

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

ОК	•	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.


4	CHECK HO2S2 C	ONNE	ECTORS FOR WATER		
	Check heated oxygen sensor 2 connector and harness connector for water. Water should not exist.				
	OK or NG				
OK (V	Vith CONSULT-II)		GO TO 5.		
OK (V II)	Vithout CONSULT-	•	GO TO 6.		
NG			Repair or replace harness or connectors.		

CHECK HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

(Reference data)

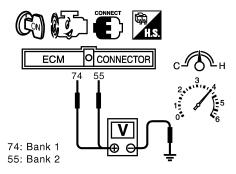
SEF972YA

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 8.
NG •	Replace malfunctioning heated oxygen sensor 2.

6 CHECK HEATED OXYGEN SENSOR 2-I

₩ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S2 bank 2 signal) and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

SEC432D

The voltage should be above 0.68V at least once during this procedure.

OK	or	NO
----	----	----

OK ▶	GO TO 8.	
NG ▶	GO TO 7.	

GI

MA

LC

EC

FE

GL

MT

Λ=

AT

TF

PD)

SII

KS

BT

HA

@@

EL

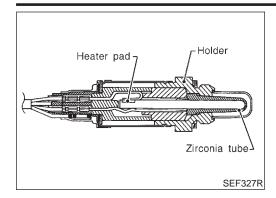
DTC P0138, P0158 HO2S2

Diagnostic Procedure (Cont'd)

7 CHECK HEATED OXYGEN SENSOR 2-II

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 6; or check voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "OD" OFF (A/T).

The voltage should go below 0.48V at least once during this procedure.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

0	K	or	N	C

OK •	GO TO 8.
NG ►	Replace malfunctioning heated oxygen sensor 2.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
► INSPECTION END			

Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

EC

GL

MIT

LC

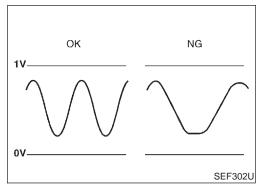
MA

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up After kenning angine append		0 - 0.3V ←→ Approx. 0.6 - 1.0V	(
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm	LEAN ←→ RICH	[]

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

NAEC0906

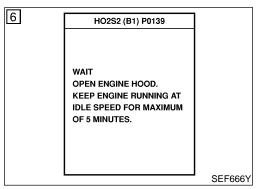
CALITION:

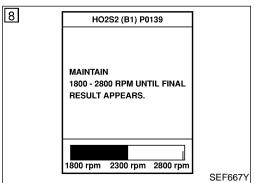
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

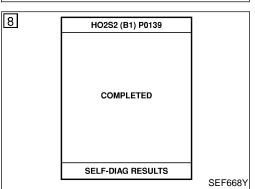
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	AX
			 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after 		SU
55	OR/L	Heated oxygen sensor 2 (bank 2)	the following conditions are met. • After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	0 - Approximately 1.0V	BR
			[Engine is running]		ST
74	OR	Heated oxygen sensor 2 (bank 1)	 Warm-up condition Revving engine from idle up to 3,000 rpm after the following conditions are met. After keeping the engine speed between 3,500 	0 - Approximately 1.0V	RS
			and 4,000 rpm for 1 minute and at idle for 1 minute under no load		BT

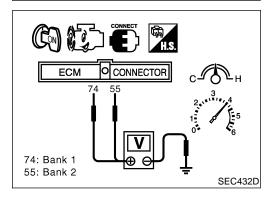
On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.


0907 H


SC


EL


 \mathbb{Z}

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0139 0139 (Bank 1) P0159 0159 (Bank 2)	Heated oxygen sensor 2 circuit slow response	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injector Intake air leaks

DTC Confirmation Procedure

NAEC0908

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-II

NAEC0908S01

- 1) Start engine and warm it up to the normal operating tempera-
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4) Let engine idle for 1 minute.
- Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Follow the instruction of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to EC-268, "Diagnostic Procedure". If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a) Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b) Turn ignition switch ON and select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up while monitoring "COOLAN TEMP/S" indication on CONSULT-II.
- d) When "COOLAN TEMP/S" indication reaches to 70°C (158°F), go to step 3.

Overall Function Check

VAEC0:

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

NAEC0909S01

- Start engine and warm it up to the normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.

- 4) Let engine idle for 1 minute.
- 5) Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S2 bank 2 signal) and ground.
- 6) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) A change of voltage should be more than 0.06V for 1 second during this procedure.

If the voltage can be confirmed in step 6, step 7 is not necessary.

- 7) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). A change of voltage should be more than 0.06V for 1 second during this procedure.
- 8) If NG, go to "Diagnostic Procedure", EC-268.

GI

MA

LG

EC

FE

GL

MT

AT

TF

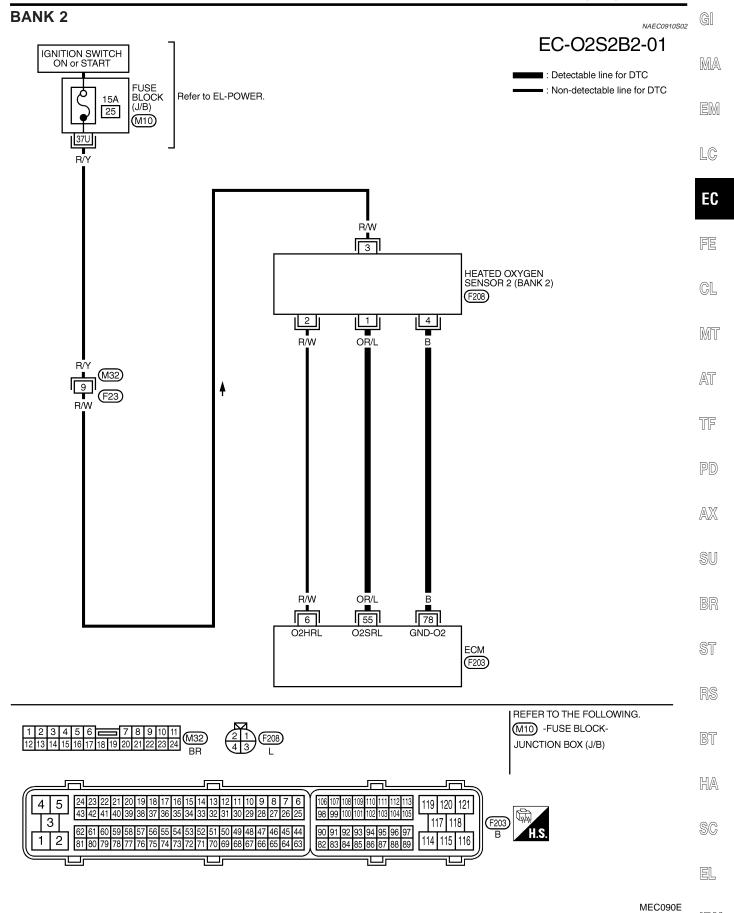
PD

AX

SU

RR

ST


D@

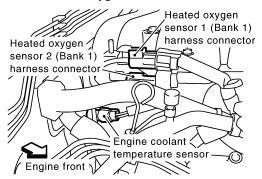
HA

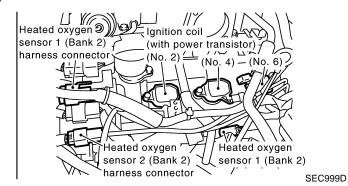
SC

EL

Wiring Diagram =NAEC0910 **BANK 1** NAEC0910S01 EC-02S2B1-01 IGNITION SWITCH ON or START ■ : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 15A 25 (M10) R/W HEATED OXYGEN SENSOR 2 (BANK 1) 4 2 P/B OR В P/B OR 25 74 78 O2HRR O2SRR GND-O2 ECM F203 REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B) 5 119 3 2

Diagnostic Procedure NAEC0911 **CHECK GROUND CONNECTIONS** 1. Turn ignition switch OFF. 2. Loosen and retighten three ground screws on the body. Refer to "Ground Inspection", EC-165. Front pillar LH Front pillar RH Body ground Body ground SEC997D OK or NG OK GO TO 2. NG Repair or replace ground connections.


SC


EL

GI **CLEAR THE SELF-LEARNING DATA** (II) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. MA 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". EM WORK SUPPORT SELF-LEARNING CONT CLEAR 100 % B2 LC 100 % EC SEF968Y 4. Run engine for at least 10 minutes at idle speed. GL Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine? Without CONSULT-II MI 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed. AT Mass air flow sensor (built-in intake air s TF temperature sensor) Air cleaner AX SU SEF960YA 4. Stop engine and reconnect mass air flow sensor harness connector. 5. Make sure DTC No. P0102 is displayed. 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91. 7. Make sure DTC No. P0000 is displayed. 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? ST Is it difficult to start engine? Yes or No Yes Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-273, 282. GO TO 3. No HA

CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

3. Disconnect ECM harness connector.

4. Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

_				_
റ	v	or	NI	G

OK ►	GO TO 4.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors

4 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
ыс	ECM	Sensor	Dank	
P0139	74	1	Bank 1	
P0159	55	1	Bank 2	

MTBL1362

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

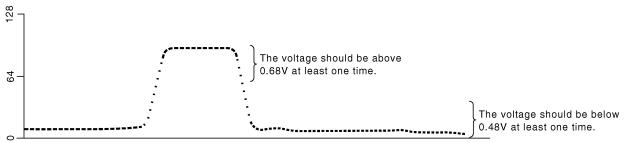
DTC	Term	Bank		
DIC	ECM	Sensor	Бапк	
P0139	74	1	Bank 1	
P0159	55	1	Bank 2	

MTBL1362

Continuity should not exist.

3. Also check harness for short to ground and short to power.

OK or NG


OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	•	GO TO 6.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

(Reference data)

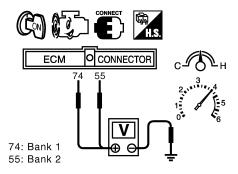
SEF972YA

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 8.
NG ▶	Replace malfunctioning heated oxygen sensor 2.

6 CHECK HEATED OXYGEN SENSOR 2-I

Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S2 bank 2 signal) and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

SEC432D

The voltage should be above 0.68V at least once during this procedure.

OK	or	NO
----	----	----

OK •	GO TO 8.
NG •	GO TO 7.

GI

MA

LC

EC

212

GL

MI

AT

TF

PD

AX

ா

91

KS

BT

HA

@A

DTC P0139, P0159 HO2S2

Diagnostic Procedure (Cont'd)

7 CHECK HEATED OXYGEN SENSOR 2-II

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 6; or check voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "OD" OFF (A/T).

The voltage should go below 0.48V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

0	K	or	N	C

OK •	GO TO 8.
NG ►	Replace malfunctioning heated oxygen sensor 2.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

On Board Diagnosis Logic

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Injector

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	_
P0171 0171 (Bank 1)	Fuel injection system too lean	Fuel injection system does not operate Properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)	Intake air leaksHeated oxygen sensor 1InjectorExhaust gas leaks	
P0174 0174 (Bank 2)			 Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection 	

WORK SUPPORT SELF-LEARNING CONT CLEAR 100 % B2 100 % SEF968Y

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-277.
- If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-277. If engine does not start, check exhaust and intake air leak visually.

GI

MA

<u>EIMI</u>

LC

EC

FE

CL

MT

AT

TF

PD)

AX

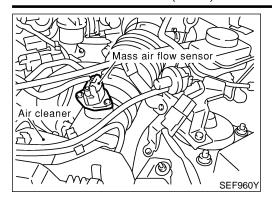
SU

NAEC0913

ST

1110

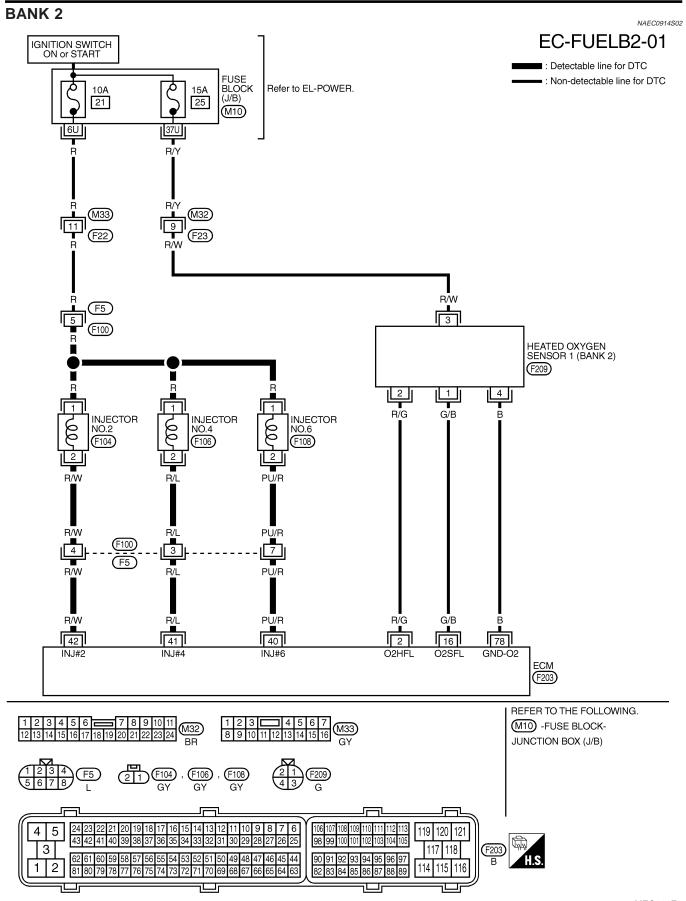
BT


HA

SC

EL

DTC Confirmation Procedure (Cont'd)


WITH GST

NAEC0913S02

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select MODE 3 with GST. Make sure DTC P0102 is detected.
- 6) Select MODE 4 with GST and erase the DTC P0102.
- 7) Start engine again and let it idle for at least 10 minutes.
- Select MODE 7 with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-277.
- 9) If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-277. If engine does not start, check exhaust and intake air leak visually.

Wiring Diagram **Wiring Diagram** G[NAEC0914 **BANK 1** NAEC0914S01 MA IGNITION SWITCH ON or START EC-FUELB1-01 ■ : Detectable line for DTC FUSE BLOCK : Non-detectable line for DTC Refer to EL-POWER. 10A (J/B) 21 25 M10LC EC (M33) (M32) FE 11 9 (F22) (F23) GL R/W MT 3 (F100) HEATED OXYGEN SENSOR 1 (BANK 1) AT (F207) 4 TF L/OR INJECTOR NO.1 INJECTOR NO.5 F107 INJECTOR NO.3 (F105) (F103) PD $\mathbb{A}\mathbb{X}$ SU R/B 6 2 R/B LW R/Y L/OR R/Y R/B L/W ST 24 23 22 21 35 78 INJ#1 INJ#3 INJ#5 O2HFR O2SFR GND-O2 RS (F203) REFER TO THE FOLLOWING. BT (M10) -FUSE BLOCK-JUNCTION BOX (J/B) HA 21) F103) , (F105) (F107) SC 119 120 3 117 118 (F203) EL 2 114

MEC091E

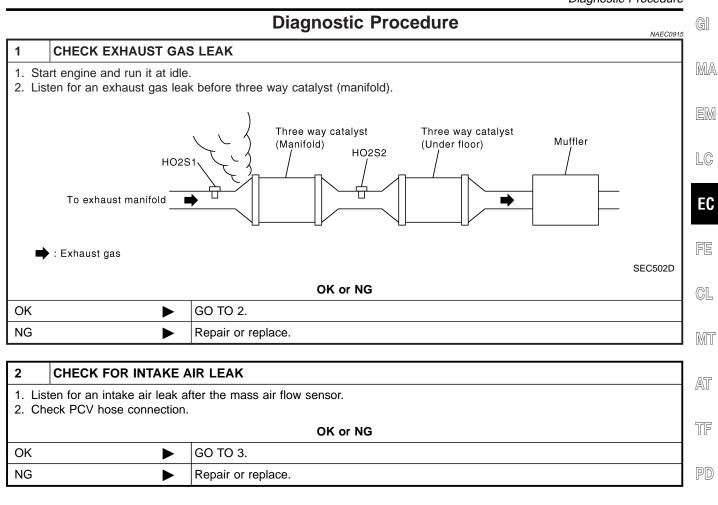
Diagnostic Procedure

 $\mathbb{A}\mathbb{X}$

SU

BR

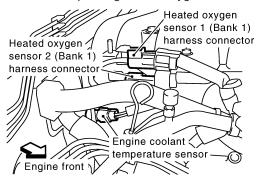
ST

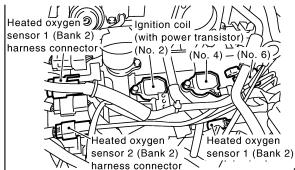

RS

BT

HA

SC


EL



Diagnostic Procedure (Cont'd)

3 CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding heated oxygen sensor 1 harness connector.

SEC999D

- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
DIC	ECM	Sensor	Бапк	
P0171	35	1	Bank 1	
P0174	16	1	Bank 2	

MTBL1364

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Donk	
DIC	ECM	Sensor	Bank
P0171	35	1	Bank 1
P0174	16	1	Bank 2

MTBL1364

Continuity should not exist.

6. Check harness continuity between HO2S1 terminal 4 and ECM terminal 78.

Continuity should exist.

7. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-56.
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-56.

At idling:

When fuel pressure regulator valve vacuum hose is connected.

235 kPa (2.4 kg/cm², 34 psi)

When fuel pressure regulator valve vacuum hose is disconnected.

294 kPa (3.0 kg/cm², 43 psi)

OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

5	DETECT MALFUNCTIONING PART		
FuFu	ck the following. Let pump and circuit (Refer to the pump and circuit (Refer to the pump and circuit (Refer to the pump and the pump an	r to EC-57.)	
	>	Repair or replace.	
6	CHECK MASS AIR FLO	DW SENSOR	7
1. In 2. C 2.	Vith CONSULT-II Install all removed parts. Itheck "MASS AIR FLOW" in Install all removed parts. Itheck "MASS AIR FLOW" in Install all removed parts. Install	"DATA MONITOR" mode with CONSULT-II.	
1. In 2. C 2. 7.	nstall all removed parts. Theck "MASS AIR FLOW" in .0 - 6.0 g·m/sec: at idling	rpm signal in MODE 1 with GST.	
1. In 2. C 2. 7.	nstall all removed parts. Theck "MASS AIR FLOW" in 1.0 - 6.0 g-m/sec: at idling 1.0 - 20.0 g-m/sec: at 2,500 With GST Install all removed parts. Theck mass air flow sensor section of the company of th	rpm signal in MODE 1 with GST.	
1. In 2. C 2. 7.	nstall all removed parts. Theck "MASS AIR FLOW" in 1.0 - 6.0 g-m/sec: at idling 1.0 - 20.0 g-m/sec: at 2,500 With GST Install all removed parts. Theck mass air flow sensor section of the company of th	rpm signal in MODE 1 with GST.	

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

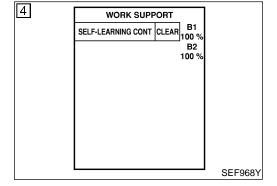
EL

Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS With CONSULT-II 1. Start engine. 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II. **ACTIVE TEST** POWER BALANCE MONITOR **ENG SPEED** XXX rpm MAS AIF SE-B1 xxx v IACV-AAC/V XXX step SEF070Y 3. Make sure that each circuit produces a momentary engine speed drop. Without CONSULT-II 1. Start engine. 2. Listen to each injector operating sound. Suitable tool PBIB1725E Clicking noise should be heard. OK or NG GO TO 8 OK

OK		00 10 0.
NG	•	Perform trouble diagnosis for "INJECTORS", EC-724.

EL


	Diagnostic Procedure (Cont'd)
3 CHECK	NJECTOR
	he engine is cooled down and there are no fire hazards near the vehicle.
2. Turn ignition :	switch OFF. ector harness connectors.
4. Remove injec	tor gallery assembly. Refer to EC-58.
	e and all injectors connected to injector gallery. 71, reconnect injector harness connectors on bank 1.
For DTC P01	74, reconnect injector harness connectors on bank 2.
	ignition coil harness connectors. or saucers under each injector.
Crank engine	for about 3 seconds.
	71, make sure that fuel sprays out from injectors on bank 1. 74, make sure that fuel sprays out from injectors on bank 2.
FOI DIC FOI	4, make sure that fuel sprays out from injectors on bank 2.
Fuel shou	PBIB1726E ld be sprayed evenly for each injector.
	OK or NG
ЭK	▶ GO TO 9.
NG	Replace injectors from which fuel does not spray out. Always replace O-ring with new
	ones.
CHECK	NTERMITTENT INCIDENT
	BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.
Velei to TIVOOL	INSPECTION END
	INCI ECTION END

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

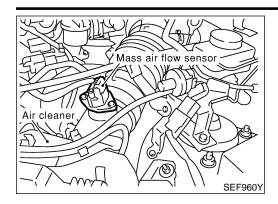
Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Injector

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0172 0172 (Bank 1)	Fuel injection system too rich	Fuel injection system does not operate properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)	Heated oxygen sensor 1InjectorExhaust gas leaks
P0175 0175 (Bank 2)			Incorrect fuel pressureMass air flow sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(A) WITH CONSULT-II

NAEC0917S01

NAFC0917

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172, P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-286.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- Crank engine while depressing accelerator pedal.
 If engine starts, go to "Diagnostic Procedure", EC-286. If engine does not start, remove ignition plugs and check for fouling, etc.

DTC Confirmation Procedure (Cont'd)

WITH GST

NAEC0917S02

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select MODE 3 with GST. Make sure DTC P0102 is detected.
- 6) Select MODE 4 with GST and erase the DTC P0102.
- 7) Start engine again and let it idle for at least 10 minutes.
- 8) Select MODE 7 with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-286.
- 9) If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-286. If engine does not start, remove ignition plugs and check for fouling, etc.

MA

EM

LC

٦:

EC

315

FE

CL

MT

/ ш

AT

TF

PD AX

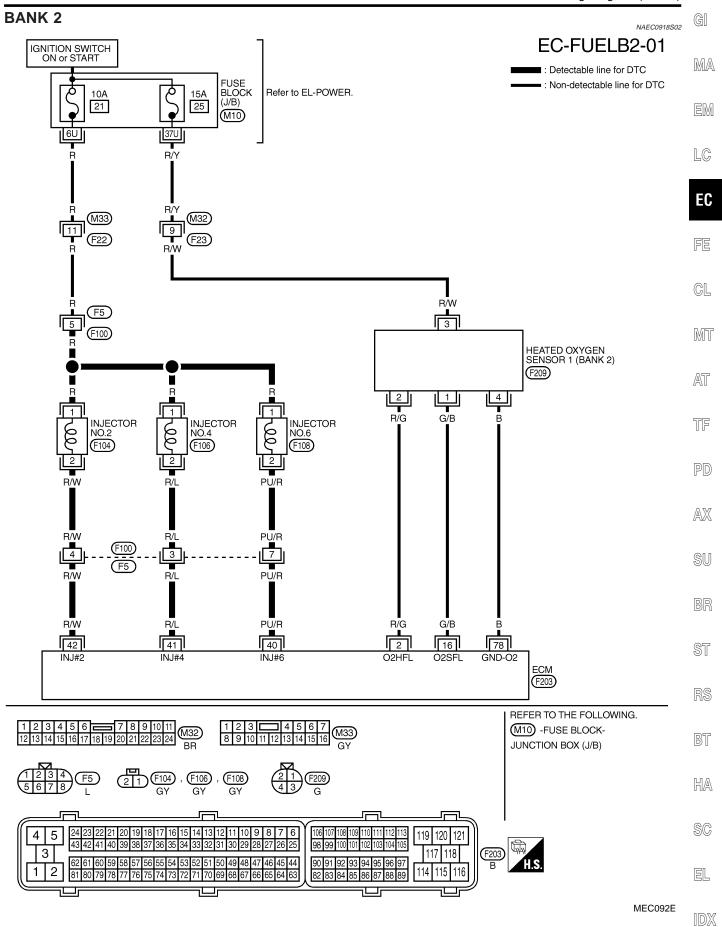
SU

BR

ST

n@

BT


HA

SC

EL

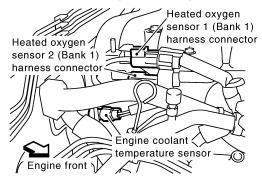
Wiring Diagram NAEC0918 **BANK 1** NAEC0918S01 EC-FUELB1-01 IGNITION SWITCH ON or START ■ : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 10A 21 25 M10(M33) 9 (F22) (F23) R/W 3 (F100) HEATED OXYGEN SENSOR 1 (BANK 1) 4 L/OR INJECTOR NO.1 INJECTOR NO.5 F107 INJECTOR NO.3 (F105) (F103) 6 2 R/B LW R/Y L/OR R/Y R/B L/W 23 22 21 35 78 INJ#1 INJ#3 INJ#5 O2HFR O2SFR GND-O2 (F203) REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B) 21)F103 , (F105) (F107 119 120 3 117 118 (F203) 2 114

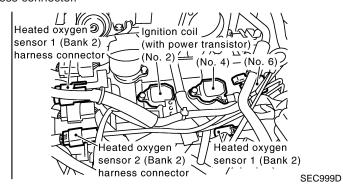
Wiring Diagram (Cont'd)

Diagnostic Procedure

NG

Diagnostic Procedure NAEC0919 **CHECK EXHAUST GAS LEAK** 1. Start engine and run it at idle. 2. Listen for an exhaust gas leak before three way catalyst (manifold). Three way catalyst Three way catalyst Muffler (Manifold) (Under floor) HO2S2 HO2S1 To exhaust manifold : Exhaust gas SEC502D OK or NG OK GO TO 2.


2	CHECK FOR INTAKE AIR LEAK			
Listen for an intake air leak after the mass air flow sensor.				
	OK or NG			
OK	OK ▶ GO TO 3.			
NG	>	Repair or replace.		


Repair or replace.

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF.

2. Disconnect corresponding heated oxygen sensor 1 harness connector.

3. Disconnect ECM harness connector.

4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Бапк
P0172	35	1	Bank 1
P0175	16	1	Bank 2

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Damle	
DIC	ECM	Sensor	Bank
P0172	35	1	Bank 1
P0175	16	1	Bank 2

Continuity should not exist.

6. Check harness continuity between HO2S1 terminal 4 and ECM terminal 78.

Continuity should exist.

7. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK ►	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK FUEL PRESSURE

1. Release fuel pressure to zero. Refer to EC-56.

2. Install fuel pressure gauge and check fuel pressure. Refer to EC-56.

At idling:

When fuel pressure regulator valve vacuum hose is connected.

235 kPa (2.4 kg/cm², 34 psi)

When fuel pressure regulator valve vacuum hose is disconnected.

294 kPa (3.0 kg/cm², 43 psi)

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

GI

MA

LC

EC

GL

MT

AT

MTBL1366

MTBL1366

TF

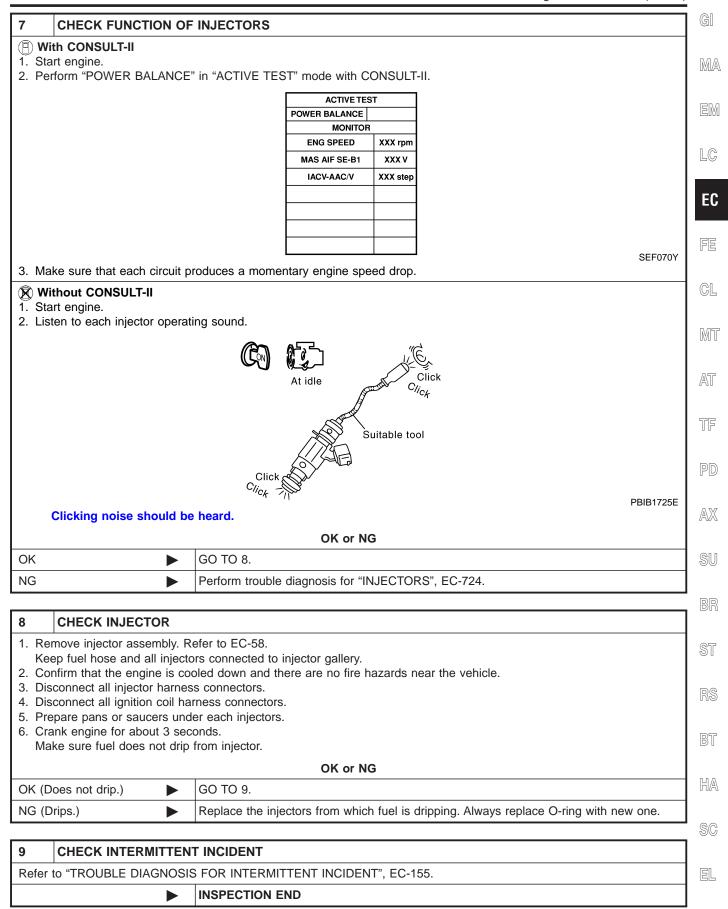
AX

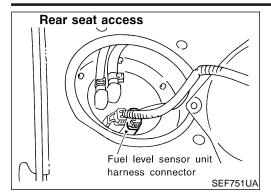
SU

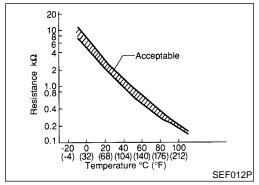
HA

SC

EL


Diagnostic Procedure (Cont'd)


5	DETECT MALFUNCTIONING PART		
Fue	Check the following. • Fuel pump and circuit (Refer to EC-729.) • Fuel pressure regulator (Refer to EC-57.)		
	•	Repair or replace.	


6	CHECK MASS AIR FLO	DW SENSOR	
1. In 2. C 2.	vith CONSULT-II stall all removed parts. heck "MASS AIR FLOW" in 0 - 6.0 g-m/sec: at idling 0 - 20.0 g-m/sec: at 2,500	"DATA MONITOR" mode with CONSULT-II.	
With GST 1. Install all removed parts. 2. Check mass air flow sensor signal in MODE 1 with GST. 2.0 - 6.0 g-m/sec: at idling 7.0 - 20.0 g-m/sec: at 2,500 rpm			
OK or NG			
OK	•	GO TO 7.	
NG	>	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-194.	

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

Diagnostic Procedure (Cont'd)

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fuel temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

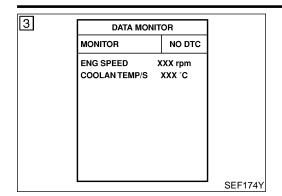
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NAEC07

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0181 0181		Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	 Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor

DTC Confirmation Procedure


NAEC077

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DTC P0181 FTT SENSOR

DTC Confirmation Procedure (Cont'd)

(P) WITH CONSULT-II

1) Turn ignition switch ON.

1 34 OONOUTT

Select "DATA MONITOR" mode with CONSULT-II.
 Wait at least 10 seconds.

If the result is NG, go to "Diagnostic Procedure", EC-291.

If the result is OK, go to following step.

If the result is OK, go to following step.

Check "COOLAN TEMP/S" value.

If "COOLAN TEMP/S" is less than 60°C (140°F), the result will

If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.

5) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).

6) Wait at least 10 seconds.

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-291.

EC

GI

MA

LC

NAEC0776S01

FE

GL

MT

AT

WITH GST

be OK.

Follow the procedure "With CONSULT-II" above.

NAEC0776S02

TF

AX

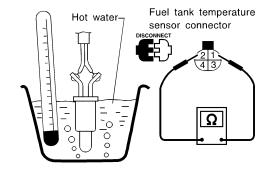
SU

BT

HA

SC

EL


NAEC0778

Diagnostic Procedure

1 CHECK FUEL TANK TEMPERATURE SENSOR

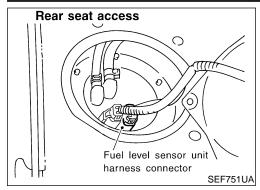
1. Remove fuel level sensor unit.

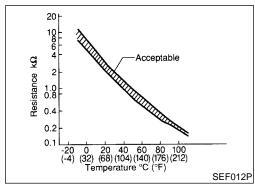
2. Check resistance between fuel level sensor unit terminals 1 and 2 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

SEF974Y

OK or NG


DTC P0181 FTT SENSOR


Diagnostic Procedure (Cont'd)

2 CHECK INTERMITTENT INCIDENT

- Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.
- Refer to wiring diagram, EC-295.

► INSPECTION END

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

LC

<Reference data>

Fuel temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

*: This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

EC

GL

MT

TF

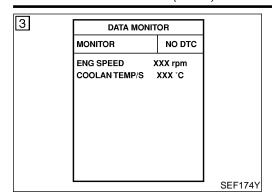
AX

On Board Diagnosis Logic

				NAECU921	_
	DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	B
	P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	S
-	P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor	R

DTC Confirmation Procedure

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

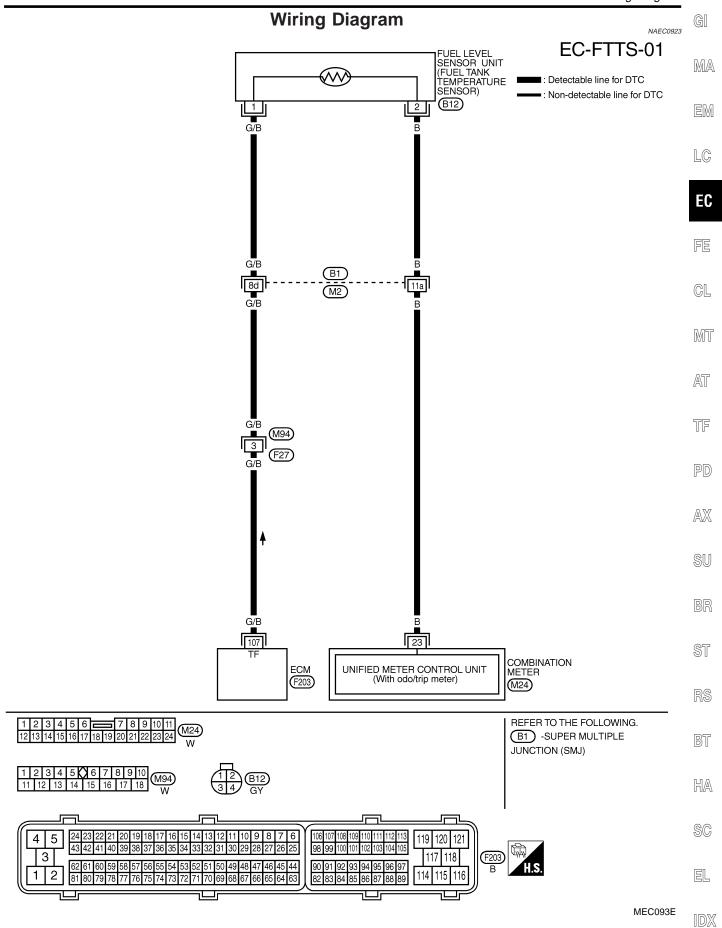
SC

EL

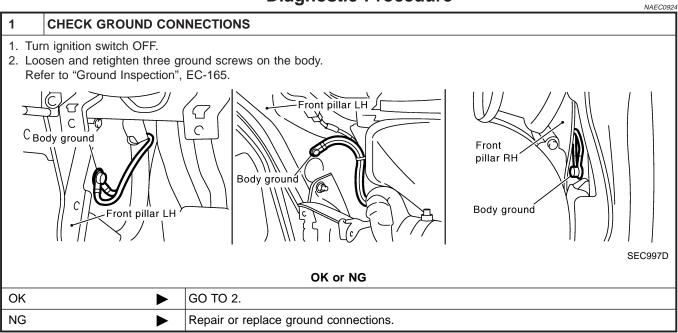
DTC P0182, P0183 FTT SENSOR

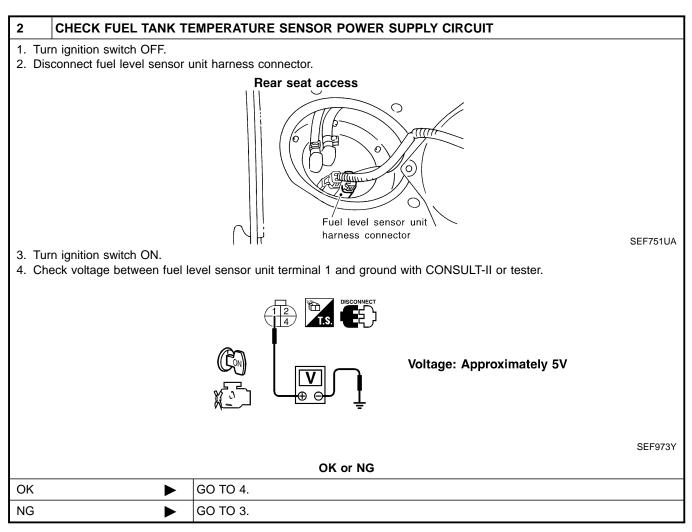
DTC Confirmation Procedure (Cont'd)

(E) WITH CONSULT-II


NAEC0922S01

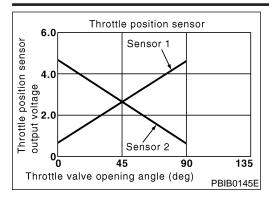
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to "Diagnostic Procedure", EC-296.
 If the result is OK, go to following step.
- 4) Check "COOLAN TEMP/S" value. If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- 6) Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-296.


WITH GST


NAEC0922S02

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure


DTC P0182, P0183 FTT SENSOR

Diagnostic Procedure (Cont'd)

SC

GI **DETECT MALFUNCTIONING PART** Check the following. • Harness connectors B1, M2 MA Harness connectors M94, F27 • Harness for open or short between ECM and fuel level sensor unit EM Repair harness or connector. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect combination meter harness connector. EC 3. Check harness continuity between fuel level sensor unit terminal 2 and combination meter terminal 23. Refer to Wiring Diagram. Continuity should exist. FE 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 6. GL NG GO TO 5. MT **DETECT MALFUNCTIONING PART** Check the following. AT Harness connectors B1, M2 Harness for open or short between combination meter and fuel level sensor unit TF Repair open circuit or short to ground or short to power in harness or connectors. CHECK FUEL TANK TEMPERATURE SENSOR 6 1. Remove fuel level sensor unit. 2. Check resistance between fuel level sensor unit terminals 1 and 2 by heating with hot water or heat gun as shown in AX the figure. Fuel tank temperature Hot watersensor connector SU Temperature °C (°F) Resistance $k\Omega$ BR 20 (68) 2.3 - 2.7 50 (122) 0.79 - 0.90 SEF974Y OK or NG GO TO 7. OK BT HA

7 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. INSPECTION END	NG	<u> </u>	Replace fuel level sensor unit.		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.					
, in the second of the second	7	CHECK INTERMITTENT	T INCIDENT		
INSPECTION END	Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
		>	INSPECTION END		
		•	INSPECTION END		

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1206

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON (Engine stopped) Shift lover:	Accelerator pedal: Fully released	More than 0.36V
	Shift lever: D (A/T model) 1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

ECM Terminals and Reference Value

NAEC1212

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	L	Sensor power supply	[Ignition switch ON]	Approximately 5V
50	50 BR Throttle position sensor 1	 [Ignition switch ON] Engine stopped Shift lever position is D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	More than 0.36V	
50		11	 [Ignition switch ON] Engine stopped Shift lever position is D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully depressed 	Less than 4.75V
66	BR/Y	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

DTC P0222, P0223 TP SENSOR

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI Ma
	BR/W	Throttle position sensor 2	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully released	Less than 4.75V	- MA EM
69	BR/W		[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	More than 0.36V	LC EC
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V	FE

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic

Trouble diagnosis

name

Throttle position sen-

sor 1 circuit low input

•	ic one trip actection logic.		
	DTC Detecting Condition	Possible Cause	MT
	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or shorted.)	AT
	An excessively high voltage from the TP sensor 1	(APP sensor 2 circuit is shorted.)	

Throttle position sen-• Electric throttle control actuator (TP sor 1 circuit high is sent to ECM. sensor 1) input Accelerator pedal position sensor

FAIL-SAFE MODE

DTC No.

P0222

P0223

0223

0222

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

NAEC1207S01

NAFC1207

SU

AX

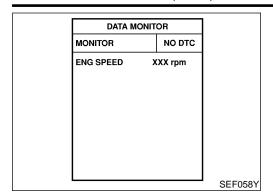
TF

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

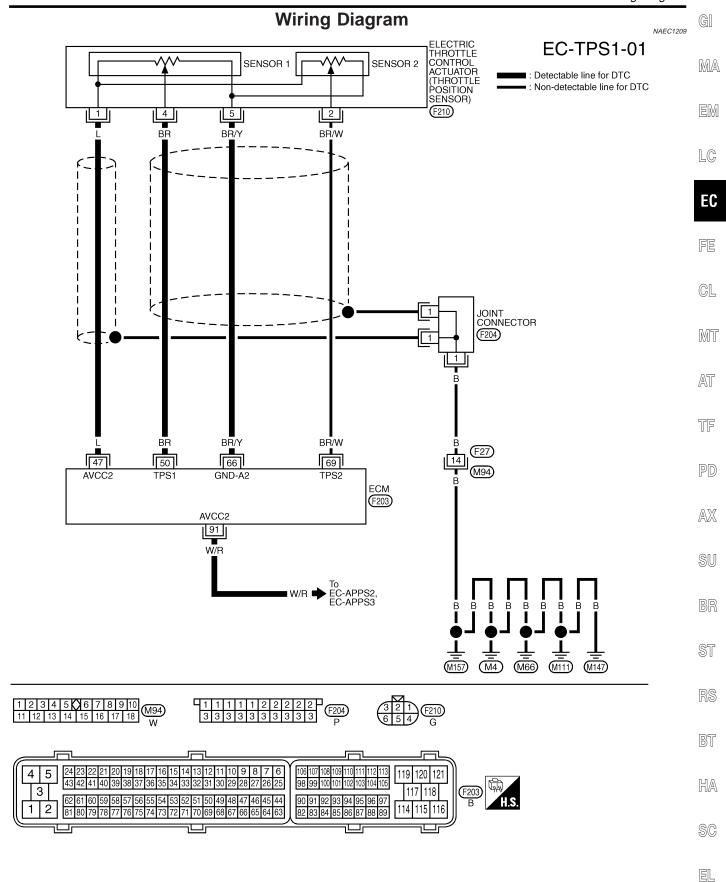

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

SC

EL

DTC P0222, P0223 TP SENSOR

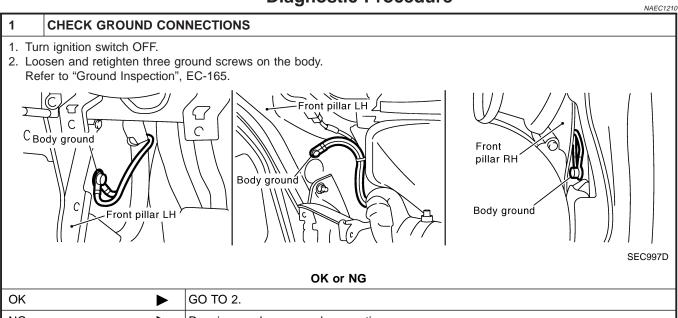
DTC Confirmation Procedure (Cont'd)

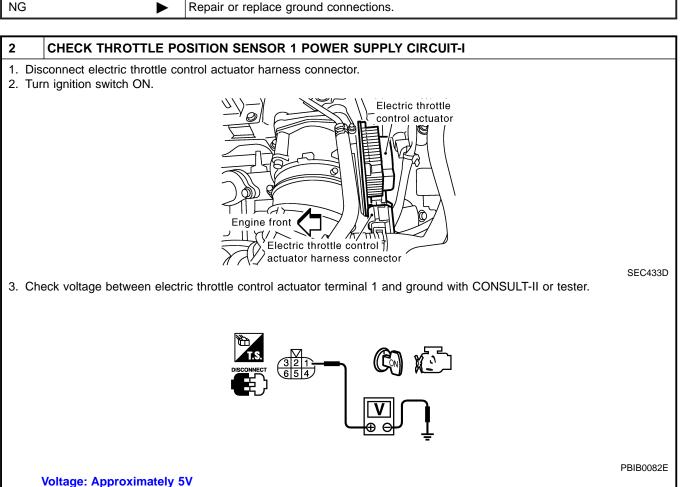


(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-302.

With GST


Follow the procedure "WITH CONSULT-II" above.



OK

NG

Diagnostic Procedure

OK or NG

GO TO 7.

GO TO 3.

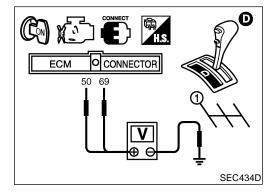
DTC P0222, P0223 TP SENSOR

Diagnostic Procedure (Cont'd)

SC

EL

3 CHECK	THROTTLE P	OSITION SENSOR 2 POWER SUPPLY CIRCUIT-II	
Check harne Refer to Wir	ECM harness co	nnector. tween electric throttle control actuator terminal 1 and ECM terminal 47.	
		OK or NG	
OK	>	GO TO 4.	
NG	•	Repair or replace open circuit.	
4 CHECK	THROTTI E P	OSITION SENSOR 2 POWER SUPPLY CIRCUIT-III	— I
Check harness ECM termina	for short to power	er and short to ground, between the following terminals. throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. ensor terminal 10. Refer to "Wiring Diagram", EC-685.	
		OK or NG	
OK	•	GO TO 5.	
NG	•	Repair short to ground or short to power in harness or connectors.	
5 CHECK	APP SENSOR		
Refer to "Comp	onent Inspection	", EC-689.	
		OK or NG	
OK	•	GO TO 11.	
NG	•	GO TO 6.	
-			
		ATOR PEDAL ASSEMBLY	
	celerator pedal as	ssembly. Released Position Learning", EC-73.	1
3. Perform "Th	rottle Valve Close	ed Position Learning", EC-73.	
4. Perform "Idl	e Air Volume Lea		,
	<u> </u>	INSPECTION END	
_			
		OSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT	
 Turn ignition Disconnect 	i switch OFF. ECM harness co	nnector	(
3. Check harne	ess continuity be	tween electric throttle control actuator terminal 5 and ECM terminal 66.	
	ing Diagram. ty should exist.		[
		to ground and short to power.	
		•	- 1
		OK or NG	
	•	OK or NG GO TO 8.	
OK NG	>	OK or NG GO TO 8. Repair open circuit or short to ground or short to power in harness or connectors.	


EC-303

8 CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK THROTTLE POSITION SENSOR			
Refer	Refer to "Component Inspection", EC-304.			
	OK or NG			
ОК	>	GO TO 11.		
NG	•	GO TO 10.		

10	REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR		
2. Pei	Replace the electric throttle control actuator. Perform "Throttle Valve Closed Position Learning", EC-73.		
3. Pei	3. Perform "Idle Air Volume Learning", EC-73.		
	► INSPECTION END		

11	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

Component Inspection THROTTLE POSITION SENSOR

NAEC1211

- 1. Reconnect all harness connectors disconnected.
- 2. Perform "Throttle Valve Closed Position Learning", EC-73.
- Turn ignition switch ON.
- Set selector lever to D position (A/T models) or "1st" position (M/T models).
- 5. Check voltage between ECM terminals 50 (TP sensor 1), 69 (TP sensor 2) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform "Throttle Valve Closed Position Learning", EC-73.
- 8. Perform "Idle Air Volume Learning", EC-73.

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the CKP sensor signal to vary, ECM can determine that a misfire is occurring.

MA

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

LC

1. One Trip Detection Logic (Three Way Catalyst Damage) On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

EC

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change. When the misfire condition decreases to a level that will not

damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.

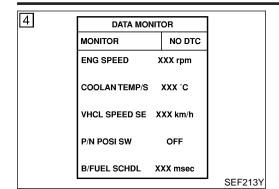
When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on.

GL

If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

AT

2. Two Trip Detection Logic (Exhaust quality deterioration) For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolu-


A misfire malfunction can be detected on any one cylinder or on multiple cylinders

		on multiple cylinders.		$\mathbb{A}\mathbb{X}$
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0300 0300	Multiple cylinder mis- fire detected	Multiple cylinders misfire, No. 1 cylinder misfires, No. 2 cylinder misfires, No. 3 cylinder misfires, No.	Improper spark plug Insufficient compression	SU
P0301 0301	No. 1 cylinder misfire detected	4 cylinder misfires, No. 5 cylinder misfires and No. 6 cylinder misfires.	 Incorrect fuel pressure The injector circuit is open or shorted Injector 	
P0302 0302	No. 2 cylinder misfire detected		Intake air leak The ignition secondary circuit is open or shorted	ST
P0303 0303	No. 3 cylinder misfire detected		Lack of fuelDrive plate or flywheel	RS
P0304 0304	No. 4 cylinder misfire detected		Heated oxygen sensor 1Incorrect PCV hose connection	BT
P0305 0305	No. 5 cylinder misfire detected			
P0306 0306	No. 6 cylinder misfire detected			HA

SC

EL

DTC Confirmation Procedure

DTC Confirmation Procedure

CAUTION:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

- 1) Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Restart engine and let it idle for about 15 minutes.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-307.

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

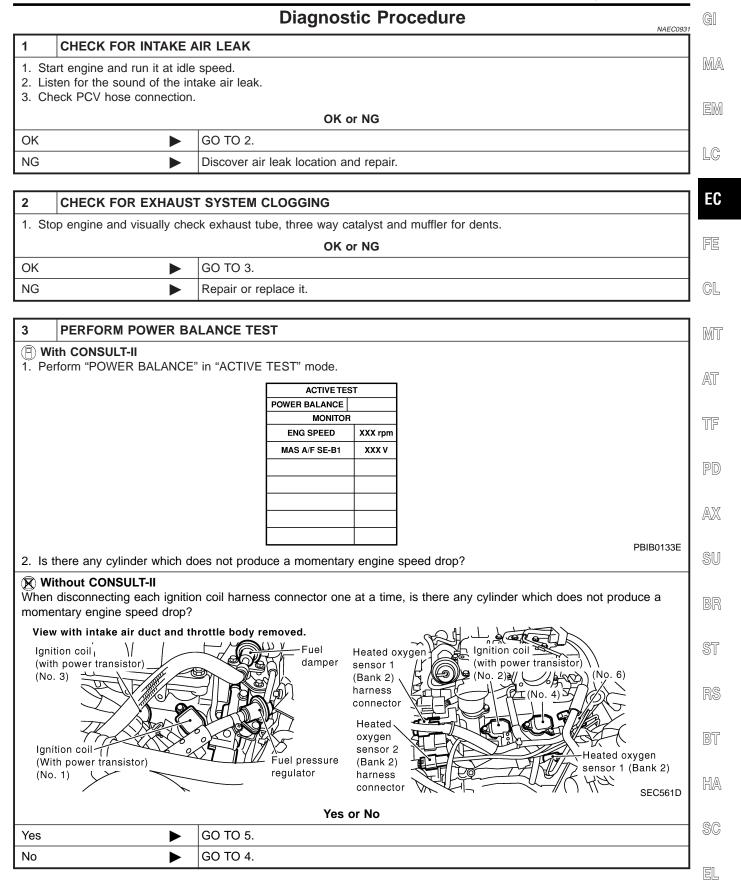
- 1) Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

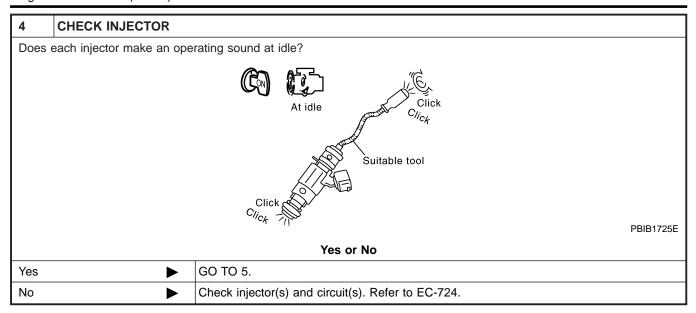
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

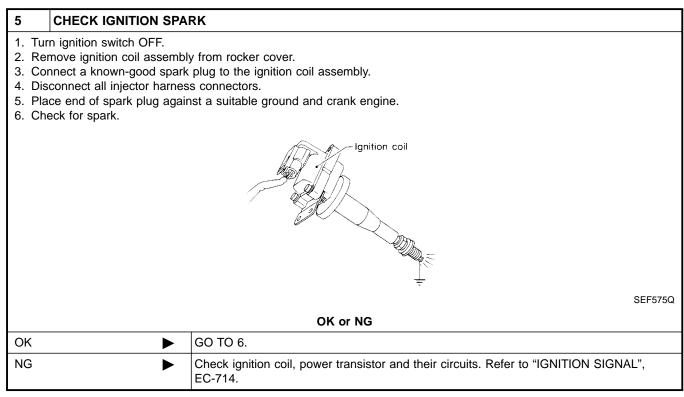
Engine speed	Engine speed in the freeze frame data ±400 rpm	
Vehicle speed	Vehicle speed in the freeze frame data ±10 km/h (6 MPH)	
	When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).	
Engine coolant temperature (T) condition	When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or equal to 70°C (158°F).	

The time to driving varies according to the engine speed in the freeze frame data.

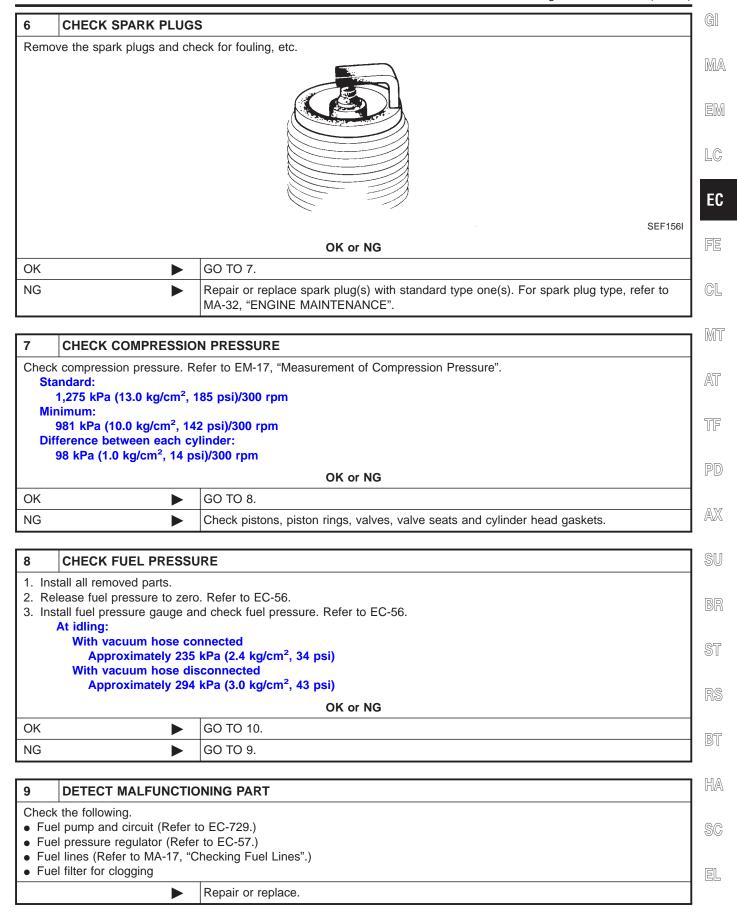

Engine speed	Time
Around 1,000 rpm	Approximately 10 minutes
Around 2,000 rpm	Approximately 5 minutes
More than 3,000 rpm	Approximately 3.5 minutes

WITH GST


NAEC0930S02


Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure



Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

EC-309

Diagnostic Procedure (Cont'd)

10	CHECK IGNITION TIMING					
Check	Check the following items. Refer to "Basic Inspection", EC-123.					
			Items	Specifications		
			Ignition timing	15° ± 5° BTDC		
			Target idle speed	M/T: 750 ± 50 rpm A/T: 750 ± 50 rpm (in "P" or "N" position)		
	MTBL1					
				OK or NG		
OK (V	Vith CONSULT-II)		GO TO 11.			
OK (V II)	Vithout CONSULT-	>	GO TO 12.			
NG			Follow the "Basic I	nspection".		

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1

(I) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
HO2S2 (B2)	xxx v	

SEF967Y

MA

LC

EC

GL

MI

AT

TF

AX

- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown left:

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

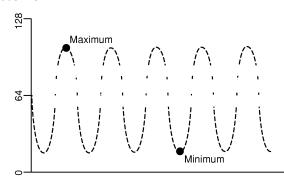
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

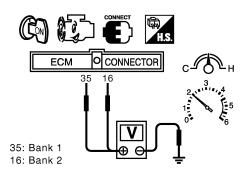
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

-	-			_
OI	ĸ	or	·N	G

OK ►	GO TO 13.
NG ►	Replace malfunctioning heated oxygen sensor 1.

EL

HA


EC-311

Diagnostic Procedure (Cont'd)

2 CHECK HEATED OXYGEN SENSOR 1

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEC430D

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - $0.3V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 13.
NG •	Replace malfunctioning heated oxygen sensor 1.

13 CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.

2.0 - 6.0 g-m/sec: at idling

7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

Check mass air flow sensor signal in MODE 1 with GST.

2.0 - 6.0 g-m/sec: at idling

7.0 - 20.0 g-m/sec: at 2,500 rpm

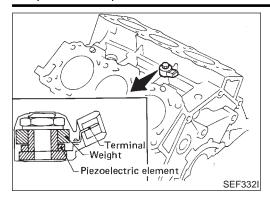
OK or NG

OK ▶ GO TO 14.		GO TO 14.	
	NG		Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-194.

14	CHECK SYMPTOM MA	TRIX CHART	
Check items on the rough idle symptom in "Symptom Matrix Chart", EC-131.			
	OK or NG		
OK	OK GO TO 15.		
NG	•	Repair or replace.	

Diagnostic Procedure (Cont'd)

15	ERASE THE 1ST TRIP DTC			
	Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-91. Some tests may cause a 1st trip DTC to be set.			
	>	GO TO 16.	M/	
			- - EN	
16	CHECK INTERMITTENT INCIDENT			
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-155.	l _{LC}	
	•	INSPECTION END		
			F.0	


RS

BT

HA

SC

EL

Component Description

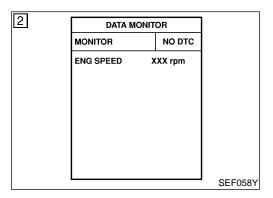
The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

ECM Terminals and Reference Value

NAEC0933

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NAEC0934

The MIL will not light up for these self-diagnoses.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Knock sensor
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	

DTC Confirmation Procedure

NOTE:

NAEC0935

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(A) WITH CONSULT-II

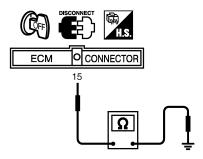
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II
- Start engine and run it for at least 5 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-316.

WITH GST

NAEC0935S03

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure


NAEC0937

1 CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 15 and ground.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

SEC438D

Resistance:

Approximately 500 - 620 k Ω [at 25°C (77°F)]

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG •	GO TO 2.

2 CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect knock sensor harness connector.
- Check harness continuity between ECM terminal 15 and knock sensor terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F19, F116
- Harness for open or short between ECM and knock sensor

Repair open circuit or short to ground or short to power in harness or connectors.

MA

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

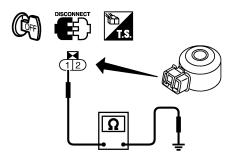
ST

BT

HA

SC

EL


SEC439D

CHECK KNOCK SENSOR

Check resistance between knock sensor terminal 1 and ground.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 $\mbox{M}\Omega.$

Resistance: 500 - 620 k Ω [at 25°C (77°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

OK or NG

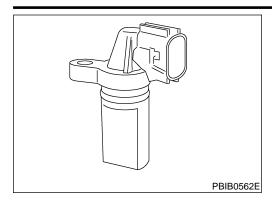
OK •	GO TO 8.
NG ►	Replace knock sensor.

5 **CHECK GROUND CONNECTIONS** 1. Turn ignition switch OFF. 2. Loosen and retighten three ground screws on the body. Refer to "Ground Inspection", EC-165. Front pillar LH c /Fø CC Body ground Front pillar RH Body ground Body ground Front pillar LH SEC997D OK or NG OK GO TO 6. NG Repair or replace ground connections.

6	CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT		
 Check harness continuity between knock sensor terminal 2 and ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power. 			
	OK or NG		
OK	•	GO TO 8.	
NG	>	GO TO 7.	

DTC P0327, P0328 KS

Diagnostic Procedure (Cont'd)


7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F19, F116
- Harness connectors F22, M33
- Harness for open between harness connector knock sensor and ground

▶ Repair open circuit or short to power in harness or connectors.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	INSPECTION END		

Component Description

The crankshaft position sensor (POS) is located on the oil pan facing the gear teeth (cogs) of the signal plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

GI

MA

EC

FE

GL

MT

TF

AT

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	 Tachometer: Connect Run engine and compare CONSULT-II value with the tachometer indication. 	Almost the same speed as the tachometer indication.

PD

NAEC1215

AX

On Board Diagnosis Logic

DTC No.	rouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to 	 Harness or connectors [The crankshaft position sensor (POS) circuit is open or shorted.] Crankshaft position sensor (POS) Signal plate 	BF ST

ECM while the engine is running. The crankshaft position sensor signal (POS) is not in the normal pattern during

engine running.

BT


HA

SC

EL

DTC P0335 CKP SENSOR (POS)

DTC Confirmation Procedure

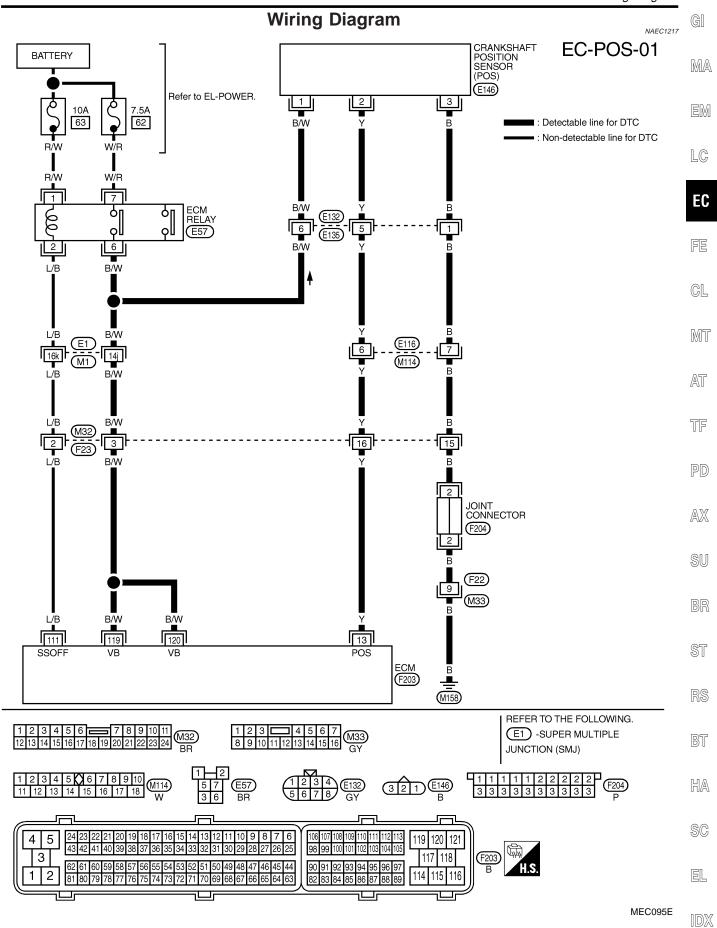
DTC Confirmation Procedure

=NAEC1216

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

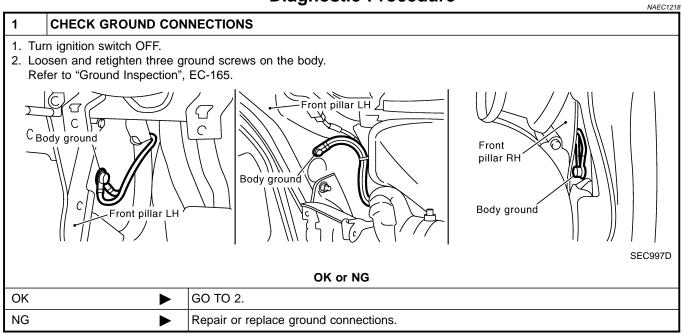
(P) With CONSULT-II

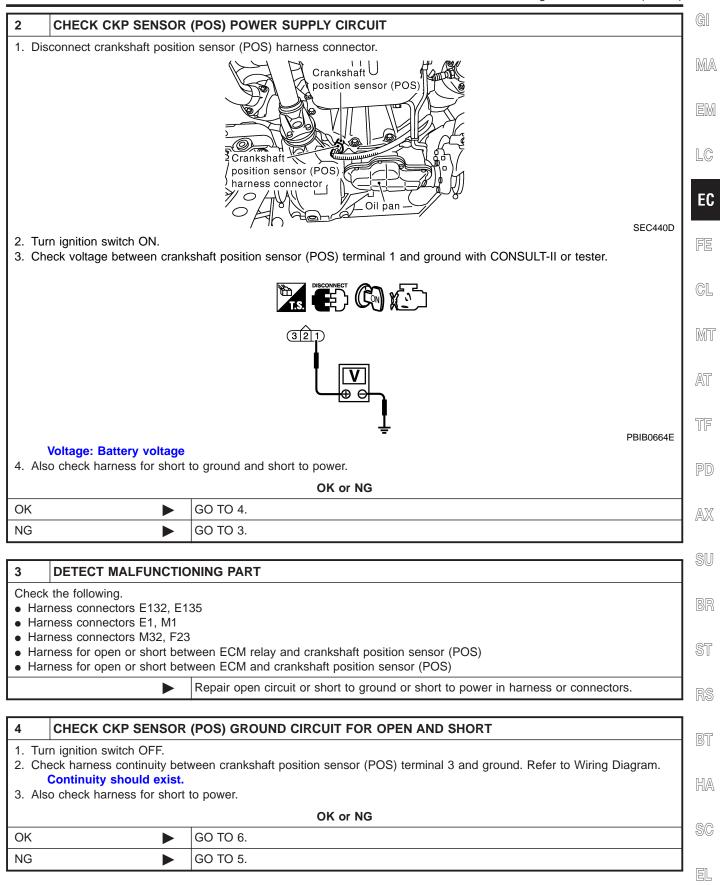
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-322.
 - If 1st trip DTC is not detected, go to next step.
- 4) Maintaining engine speed at more than 1,000 rpm for at least 5 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-322

With GST

Follow the procedure "With CONSULT-II" above.

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Crankshaft position sensor (POS)	[Engine is running] • Idle speed	Approximately 1.6V★ Solving 1 ms/Div 1 ms/Div PBIB1041E
13	Y		[Engine is running] ● Engine speed is 2,000 rpm.	Approximately 1.5V★
			Eligine speed is 2,000 ipini.	≥ 5.0 V/Div 1 ms/Div T PBIB1042E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

DTC P0335 CKP SENSOR (POS)

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E132, E135
- Harness connectors E116, M114
- Harness connectors M32, F23
- Joint connector F204
- Harness connectors F22, M33
- Harness for open between crankshaft position sensor (POS) and ground

Repair open circuit or short to power in harness or connectors.

6 CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 13 and crankshaft position sensor (POS) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

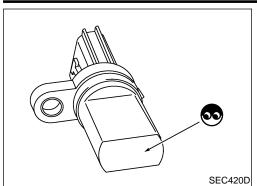
OK •	GO TO 8.
NG •	GO TO 7.

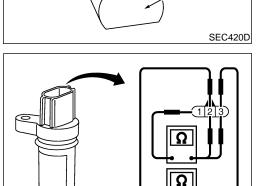
7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E132, E135
- Harness connectors E116, M114
- Harness connectors M32, F23
- Harness for open or short between ECM and crankshaft position sensor (POS)

Repair open circuit or short to ground or short to power in harness or connectors.


8	8 CHECK CRANKSHAFT POSITION SENSOR (POS)		
Refer	Refer to "Component Inspection", EC-325.		
	OK or NG		
OK	>	GO TO 9.	
NG		Replace crankshaft position sensor (POS)	


9	9 CHECK GEAR TOOTH		
Visuall	Visually check for chipping signal plate gear tooth.		
	OK or NG		
OK	•	GO TO 10.	
NG	•	Replace the signal plate.	

10	10 CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		FOR INTERMITTENT INCIDENT", EC-155.
	•	INSPECTION END

DTC P0335 CKP SENSOR (POS)

Component Inspection

SEC421D

Component Inspection CRANKSHAFT POSITION SENSOR (POS)

NAEC1219

NAEC1219S01

- 1. Loosen the fixing bolt of the sensor.
- Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

LC

 $\mathbb{M}\mathbb{A}$

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

EC

FE

GL

MT

AT

TF

PD

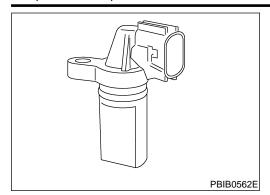
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

Component Description

The camshaft position sensor (PHASE) senses the retraction of intake valve camshaft to identify a particular cylinder. The crankshaft position sensor (POS) senses the piston position. When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals. The sensor consists of a permanent magnet and Hall IC. When engine is running, the high and low parts of the teeth cause the gap with the sensor to change. The changing gap causes the magnetic field near the sensor to change. Due to the changing magnetic field, the voltage from the sensor changes.

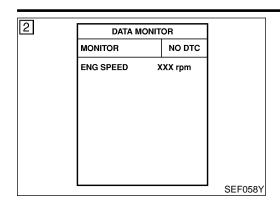
On Board Diagnosis Logic

NAFC1221

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0340 0340 (Bank 1) P0345 0345 (Bank 2)	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors [The camshaft position sensor (PHASE) circuit is open or shorted.] Camshaft position sensor (PHASE) Camshaft (Intake) Starter motor (Refer to SC section.) Starting system circuit (Refer to SC section.) Dead (Weak) battery

DTC Confirmation Procedure

NAEC1222


NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

DTC Confirmation Procedure (Cont'd)

(P) WITH CONSULT-II

1) Turn ignition switch ON.

NAEC1222S01

,,,,, G[

- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-330. If 1st trip DTC is not detected, go to next step.

Maintaining engine speed at more than 1,000 rpm for at least 5 seconds.

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", FC-330

LC,

MA

EC-330.

WITH GST

Follow the procedure "With CONSULT-II" above.

NAEC1222S02

EC

/2

GL

FE

MT

AT

TF

PD

AX

SU

BR

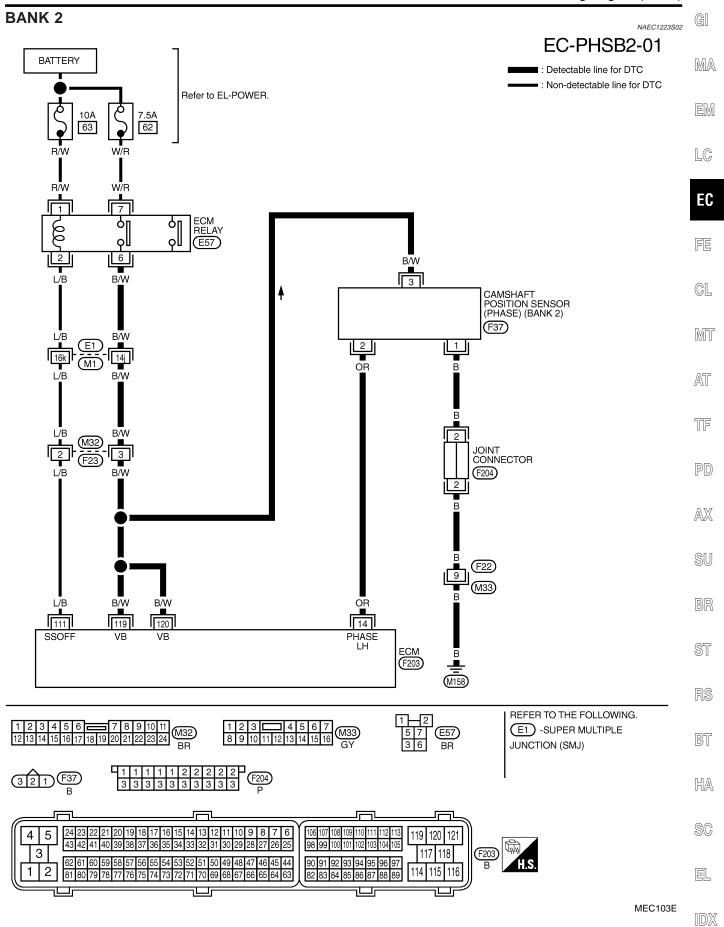
ST

RS

BT

HA

SC


EL

3

Wiring Diagram NAEC1223 **BANK 1** NAEC1223S01 EC-PHSB1-01 BATTERY ■ : Detectable line for DTC : Non-detectable line for DTC Refer to EL-POWER. 10A 63 62 W/R R/W R/W W/R ECM RELAY E57 ÓΠ 6 B/W 3 L/B B/W CAMSHAFT POSITION SENSOR (PHASE) (BANK 1) 2 Y/G 16k JOINT CONNECTOR (F204) B/W L/B 111 119 120 33 SSOFF PHASE ECM F203 REFER TO THE FOLLOWING. E1 -SUPER MULTIPLE E57 BR JUNCTION (SMJ) 321 F38 B 5 119 120

F203 B

117 118 114 115 116

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
33	Y/G	Camshaft position	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★
33	179	sensor (PHASE) (Bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	1.0 - 4.0V★ 23 5.0 V/Div 20 ms/Div PBIB1040E
	Camshaft position	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★	
14	OR	sensor (PHASE) (Bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	1.0 - 4.0V★ 20 5.0 V/Div 20 ms/Div PBIB1040E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

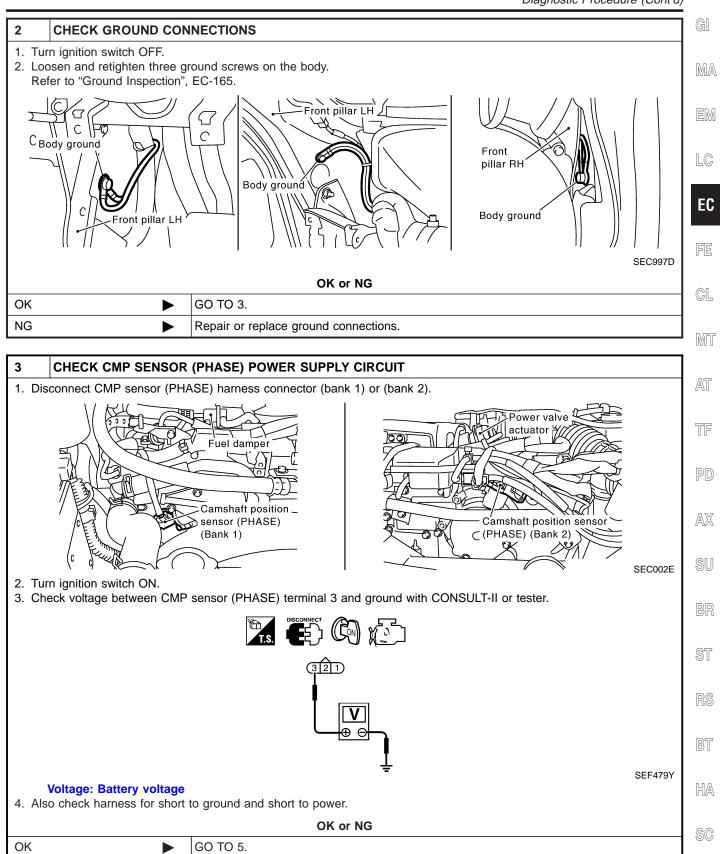
Diagnostic Procedure

1 CHECK STARTING SYSTEM

Turn ignition switch to "START" position.

Does the engine turn over?

Does the starter motor operate?


Yes or No

Yes

GO TO 2.

No
Check starting system. (Refer to SC-10, "STARTING SYSTEM".)

Diagnostic Procedure (Cont'd)

EL

GO TO 4.

NG

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E1, M1
- Harness connectors M32, F23
- Harness for open or short between ECM and camshaft position sensor (PHASE)
- Harness for open or short between ECM relay and camshaft position sensor (PHASE)

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Check CMP sensor (PHASE) terminal 1 and ground. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG GO TO 7. OK GO TO 6.

6 **DETECT MALFUNCTIONING PART**

Check the following.

NG

- Joint connector F204
- Harness connectors F22, M33
- Harness for open between camshaft position sensor (PHASE) and ground
 - Repair open circuit or short to ground or short to power in harness or connectors.

CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 33 and CMP sensor (PHASE) (Bank 1) terminal 2.
- 3. Check harness continuity between ECM terminal 14 and CMP sensor (PHASE) (Bank 2) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 8.
NG	Repair harness or connectors.

8	8 CHECK CAMSHAFT POSITION SENSOR (PHASE)		
Refer to "Component Inspection", EC-333.			
	OK or NG		
OK	OK ▶ GO TO 9.		
NG	NG Replace camshaft position sensor (PHASE).		

Diagnostic Procedure (Cont'd)

G[

MA

EM

LC

EC

FE

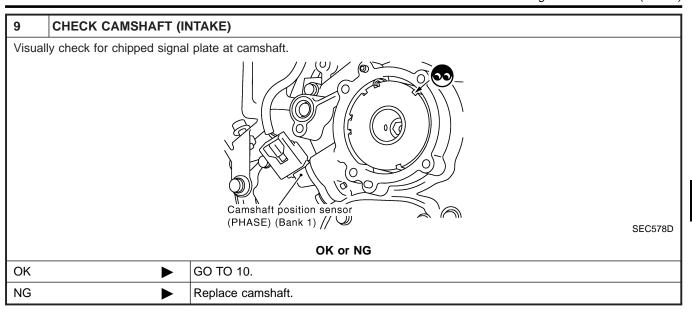
GL

MT

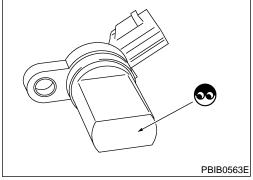
AT

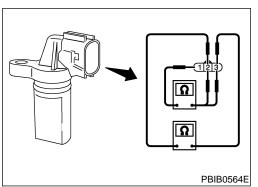
TF

PD


 $\mathbb{A}\mathbb{X}$

SU


ST


RS

BT

10 CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	>	INSPECTION END	

Component Inspection CAMSHAFT POSITION SENSOR (PHASE)

NAEC1225 NAEC1225S01

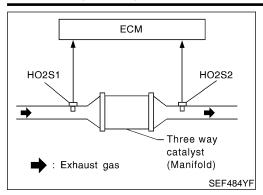
1. Loosen the fixing bolt of the sensor.

Disconnect camshaft position sensor (PHASE) harness connector.

3. Remove the sensor.

4. Visually check the sensor for chipping.

5. Check resistance as shown inthe figure.


Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (–)	Except 0 or ∞
2 (+) - 3 (-)	

- HA - SC

 $\mathbb{D}\mathbb{X}$

EL

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of heated oxygen sensors 1 and 2.

A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 and 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0420 0420 (Bank 1)	Catalyst system effi- ciency below thresh- old	 Three way catalyst (manifold) does not operate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity. 	 Three way catalyst (manifold) Exhaust tube Intake air leaks Injector
P0430 0430 (Bank 2)		chough oxygen storage capacity.	 Injector Injector leaks Spark plug Improper ignition timing

SRT WORK SUPPORT		
CATALYST	INCMP	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO	OR .	
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
		SEC138I

SRT WORK SU	IPPORT]
CATALYST	CMPLT	1
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO	R	
ENG SPEED B/FUEL SCHDL	XXX rpm XXX msec	

SELF DIAG RES		
DTC RESULTS	TIME	
NO DTC IS DETECTED FURTHER TESTING		
MAY BE REQUIRED.		
		CEEEOV
		SEF560X

DTC Confirmation Procedure

NAEC0952

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

NAEC0952S01

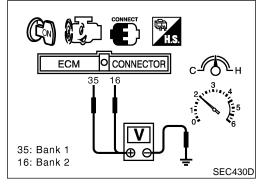
TESTING CONDITION:

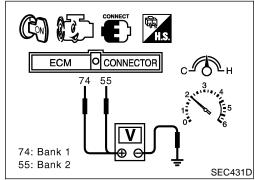
- Open engine hood before conducting the following procedure.
- Do not hold engine speed for more than the specified minutes below.
- Start engine and warm it up to the normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4) Let engine idle for 1 minute.
- 5) Open engine hood.
- 6) Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- 7) Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "COMPLT", go to step 10.
- Wait 5 seconds at idle.
- 9) Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes). If not "CMPLT", perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b) Turn ignition switch ON and select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- c) Start engine and warm it up while monitoring "COOLAN

DTC Confirmation Procedure (Cont'd)

TEMP/S" indication on CONSULT-II.

- When "COOLAN TEMP/S" indication reaches to 70°C (158°F), go to step 3.
- 10) Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- 11) Confirm that the 1st trip DTC is not detected. If the 1st trip DTC is detected, go to "Diagnostic Procedure", EC-335.


EM


MA

GI

LC

EC

Overall Function Check

Use this procedure to check the overall function of the warm-up three way catalyst. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

2)

Always drive vehicle at a safe speed.

GL

WITH GST

- Start engine and warm it up to the normal operating tempera-1)
 - Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Set voltmeters probes between ECM terminals 35 [heated oxygen sensor 1 bank 1 signal], 16 [heated oxygen sensor 1 bank 2 signal] and ground, and ECM terminals 74 [heated oxygen] sensor 2 bank 1 signal], 55 [heated oxygen sensor 2 bank 2 signal] and ground.

AX

TF

- Keep engine speed at 2,000 rpm constant under no load.
- Make sure that the voltage switching frequency (high & low) between ECM terminals 74 and ground, or 55 and ground is very less than that of ECM terminals 35 and ground, or 16 and ground.

Switching frequency ratio = A/B

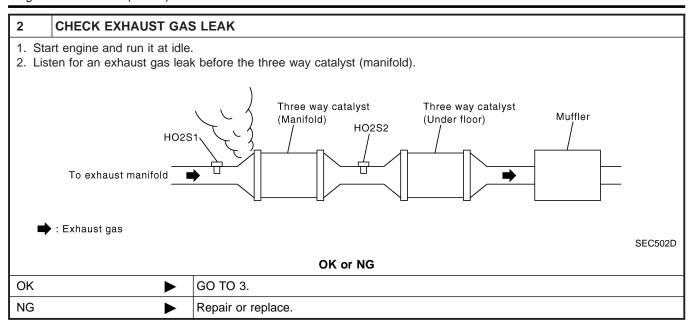
A: Heated oxygen sensor 2 voltage switching frequency B: Heated oxygen sensor 1 voltage switching frequency This ratio should be less than 0.75.

If the ratio is greater than above, it means warm-up three way catalyst does not operate properly. Go to "Diagnostic Procedure", EC-335.

NOTE:

If the voltage at terminal 16 or 35 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for "DTC P0133, P0153" first. (See EC-233.)

HA


SC

EL

Diagnostic Procedure

1	CHECK EXHAUST SY	STEM		
Visually check exhaust tubes and muffler for dent.				
OK or NG				
OK	•	GO TO 2.		
NG	>	Repair or replace.		

Diagnostic Procedure (Cont'd)

3	3 CHECK INTAKE AIR LEAK		
Listen	Listen for an intake air leak after the mass air flow sensor.		
	OK or NG		
ОК	>	GO TO 4.	
NG	>	Repair or replace.	

4	4 CHECK IGNITION TIMING				
Che	ck the following items. Refer	to "Basic Inspectio	n", EC-123.		
		Items	Specifications		
		Ignition timing	15° ± 5° BTDC		
		Target idle speed	M/T: 750 ± 50 rpm A/T: 750 ± 50 rpm (in "P" or "N" position)		
				MTBL1368	
			OK or NG		
ОК	>	GO TO 5.			
NG	>	Follow the "Basic	Inspection".		

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

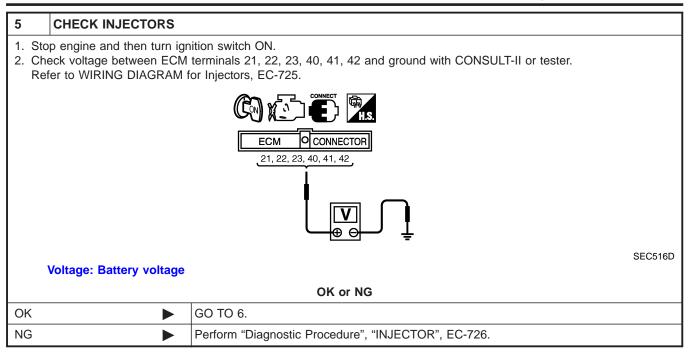
EC

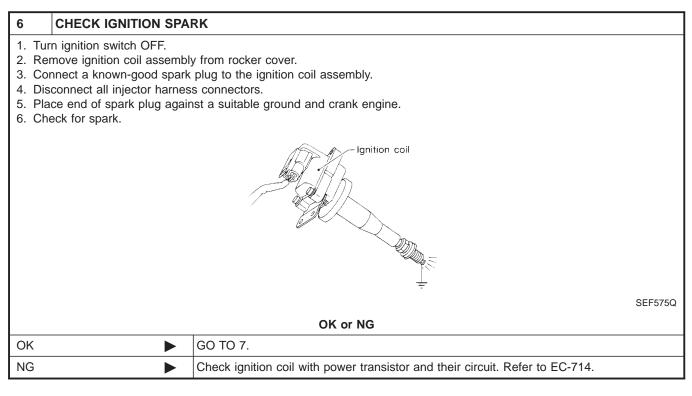
GL

MT

AT

TF


AX


SU

HA

SC

EL

EC-337

Diagnostic Procedure (Cont'd)

7		CHECK INJECTOR				
1.	Tur	n ignition switch OFF.				
2.	Rer	move injector assembly.				
	Ref	er to EC-58.				
	Kee	ep fuel hose and all inject	ors connected to injector gallery.			
3.	3. Disconnect all ignition coil harness connectors.					
4.	4. Reconnect injector harness connectors.					
5.	5. Turn ignition switch ON.					
	Make sure fuel does not drip from injector.					
	OK or NG					
Ok	OK (Does not drip.) GO TO 8.					
NG	NG (Drips.) Replace the injector(s) from which fuel is dripping.					

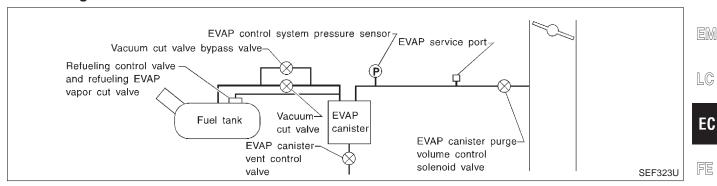
8	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
Trouble is fixed. INSPECTION END				
Troubl	e is not fixed.	•	Replace three way catalyst (manifold).	

System Description

NAEC0955

MA

EC


GL

MT

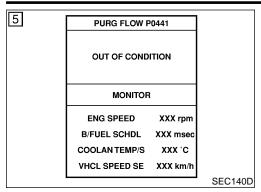
AT

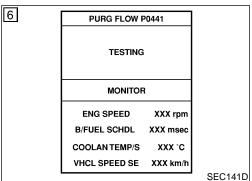
NOTE:

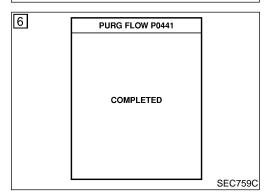
If DTC P0441 is displayed with other DTC such as P2122, P2123, P2127, P2128 or P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic


Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0441 0441	EVAP control system incorrect purge flow	EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	 EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube Blocked rubber tube Cracked EVAP canister EVAP canister purge volume control solenoid valve circuit Accelerator pedal position sensor Blocked purge port EVAP canister vent control valve


HA

SC

EL

DTC Confirmation Procedure

CAUTION:

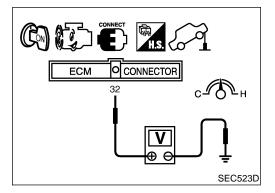
Always drive vehicle at a safe speed.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(A) WITH CONSULT-II


NAEC0957

- Start engine and warm it up to normal operating temperature. 1)
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- Touch "START". If "COMPLETED" is displayed, go to step 7.
- When the following conditions are met. "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

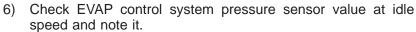
Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.0 - 10 msec
Engine coolant temperature	More than 20°C (68°F)

If "TESTING" is not changed for a long time, retry from

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-342.

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.


WITH GST

NAEC0958S01

- 1) Lift up drive wheels.
- Start engine (VDC switch OFF) and warm it up to normal operating temperature.
- Turn ignition switch OFF, wait at least 10 seconds.
- Start engine and wait at least 70 seconds.

Overall Function Check (Cont'd)

5)	Set voltmeter probes to ECM terminals 32 (EVAP control sys-
	tem pressure sensor signal) and ground.

Establish and maintain the following conditions for at least 1

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.

9) If NG, go to "Diagnostic Procedure", EC-342.

G[

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

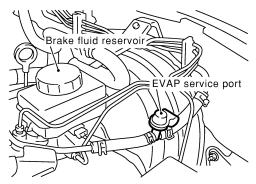
RS

BT

HA

SC

EL


Diagnostic Procedure

		=NAECOS			
1	CHECK EVAP CANIST	ER .			
	Turn ignition switch OFF. Check EVAP canister for cracks.				
	OK or NG				
OK (W	ith CONSULT-II)	GO TO 2.			
OK (W II)	ithout CONSULT-	GO TO 3.			
NG	•	Replace EVAP canister.			

2 CHECK PURGE FLOW

(P) With CONSULT-II

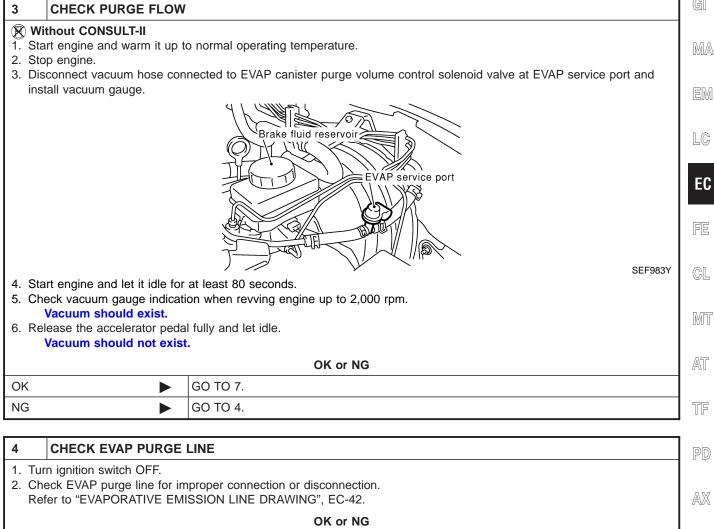
1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

SEF983Y

- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

ACTIVE TEST				
XXX %				
XXX rpm				
XX %				
XX %				

PBIB1678E


PURG VOL CONT/V	VACUUM
100%	Should exist
0%	Should not exist

MTBL1805

OK or NG

OK •	GO TO 7.
NG >	GO TO 4.

Diagnostic Procedure (Cont'd)

4 CHECK EVAP PURGE LINE			
	ourge line for im	proper connection or disconnection. SSION LINE DRAWING", EC-42.	
		OK or NG	
OK	>	GO TO 5.	
NG	•	Repair it.	

MA

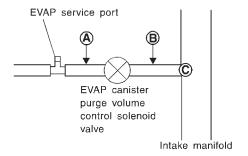
LC

SU

BR

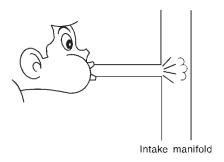
ST

BT


HA

SC

EL


5 CHECK EVAP PURGE HOSE AND PURGE PORT

1. Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.

SEF367U

- 2. Blow air into each hose and EVAP purge port C.
- 3. Check that air flows freely.

SEF368U

OK or NG

OK (With CONSULT-II)	GO TO 6.
OK (Without CONSULT-	GO TO 7.
II)	
NG	Repair or clean hoses and/or purge port.

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

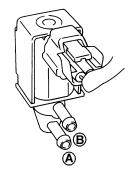
(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOF	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	

PBIB1678E

OK or NG

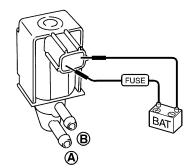

OK •	•	GO TO 8.
NG ▶	•	GO TO 7.

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



Condition PURG VOL CONT/V value	Air passage continuity between A and B
100%	Yes
0%	No

SEF334XA

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Air passage continuity between A and B
Yes
No

SEF335X

OK or NG

OK	>	GO TO 8.

NG Replace EVAP canister purge volume control solenoid valve.

8	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
4. Time impition quiteb OFF			

1. Turn ignition switch OFF.

2. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.

OK ►	GO TO 9.
NG ►	Repair it.

G[

MA

LC

EC

FE

GL

MT

AT

TF

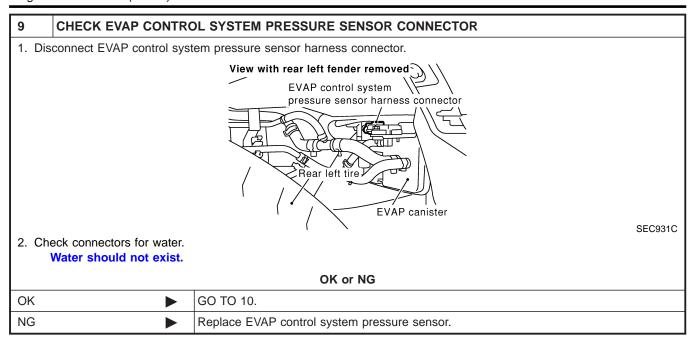
AX

SU

BR

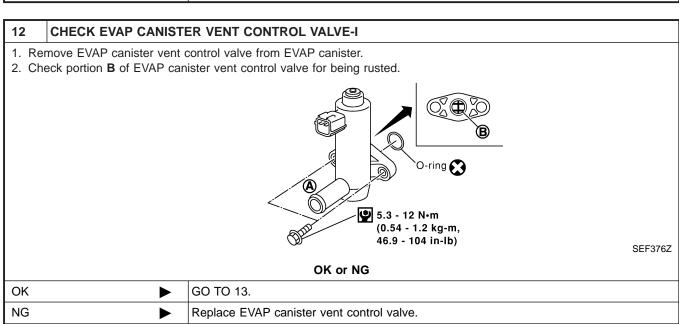
ST

RS


BT

HA

SC

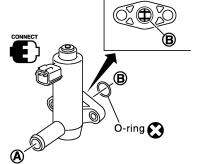

EL

[DX

10	0 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION		
Refer to "DTC Confirmation Procedure" for DTC P0452, EC-378 and P0453, EC-384.			
	OK or NG		
OK	>	GO TO 11.	
NG	>	Replace EVAP control system pressure sensor.	

11	11 CHECK RUBBER TUBE FOR CLOGGING		
	 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 		
	OK or NG		
OK	OK ▶ GO TO 12.		
NG	•	Clean the rubber tube using an air blower.	

Diagnostic Procedure (Cont'd)


CHECK EVAP CANISTER VENT CONTROL VALVE-II

With CONSULT-II

13

- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	

Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	

Operation takes less than 1 second.

SEC158D

GI

MA

EM

LC

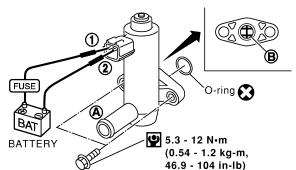
EC

FE

GL

MT

AT


TF

AX

BR

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

SEF378Z

Make sure new O-ring is installed properly.

OK	or	NG

OK •	GO TO 15.
NG ►	GO TO 14.

14 CHECK EVAP CANISTER VENT CONTROL VALVE-III

- 1. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 2. Perform Test No. 13 again.

OK or NG

OK •	GO TO 15.
NG •	Replace EVAP canister vent control valve.

15 CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks.

Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

OK or NG

OK		GO TO 16.
NG	•	Replace it.

HA

SC

EL

Diagnostic Procedure (Cont'd)

16	16 CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	▶ GO TO 17.		

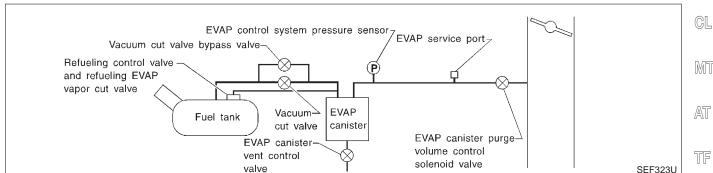
17	17 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

On Board Diagnosis Logic

NOTE:

If DTC P0442 is displayed with P1448, first perform trouble diagnosis for DTC P1448. (See EC-602.)

MA

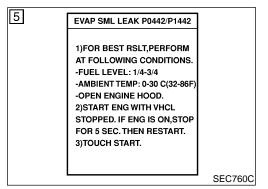

NAEC0960

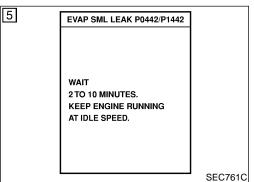
This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

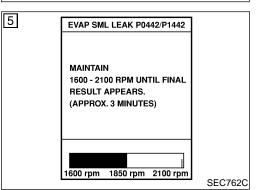
If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

EC


TF


MT


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0442 0442	EVAP control system small leak detected (negative pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close.
			 Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume
			control solenoid valve. • Foreign matter caught in EVAP canister vent control valve
			EVAP canister or fuel tank leaksEVAP purge line (pipe and rubber
			 tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor
			Loose or disconnected rubber tube EVAP canister vent control valve and the circuit
			 EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor
			 O-ring of EVAP canister vent control valve is missing or damaged. Water separator
			 EVAP canister is saturated with water. EVAP control system pressure sensor Fuel level sensor and the circuit
			Refueling control valveORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NAEC0961

NOTE:

- If DTC P0442 is displayed with P1448, first perform trouble diagnosis for DTC P1448 (See EC-602).
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.

(P) WITH CONSULT-II

NAEC0961S01

- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

 Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-123.

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-351.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

NAEC0961S02

NOTE

Be sure to read the explanation of "Driving Pattern" on EC-84 before driving vehicle.

- 1) Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-84.
- 3) Stop vehicle.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 5) Select "MODE 7" with GST.

DTC Confirmation Procedure (Cont'd)

- If P0442 is displayed on the screen, go to "Diagnostic Procedure", EC-351.
- If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-342.

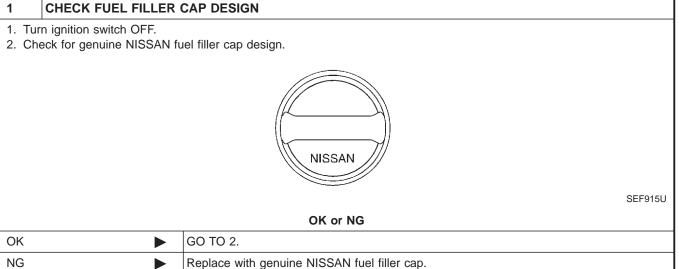
MA

EM

LC

EC

FE


GL

MT

AT

Diagnostic Procedure

NAEC0962

PD

2	CHECK FUEL FILLER CAP INSTALLATION			
Check that the cap is tightened properly by rotating the cap clockwise.				
	OK or NG			
OK	OK ▶ GO TO 3.			
 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 				

BR	

ST

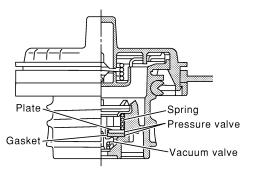
RS

BT

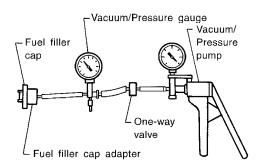
AX

SU

3	CHECK FUEL FILLER CAP FUNCTION				
Check for air releasing sound while opening the fuel filler cap.					
OK or NG					
OK	OK • GO TO 5.				
NG	>	GO TO 4.			


HA

SC


EL

CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF445Y

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

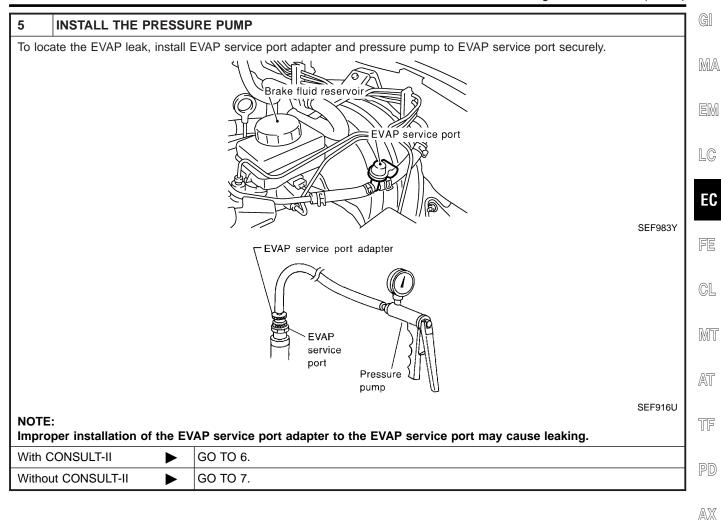
OK •	GO TO 5.	
NG •	Replace fuel filler cap with a genuine one.	

Diagnostic Procedure (Cont'd)

SU

BR

ST

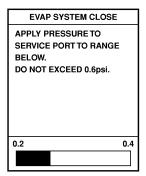

RS

BT

HA

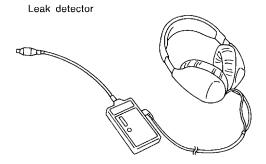
SC

EL


EC-353

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

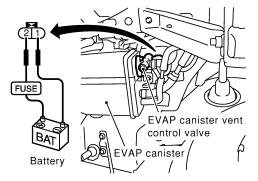

- With CONSULT-II
- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

 NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

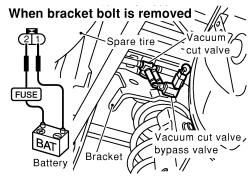
4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

SEF200U


OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

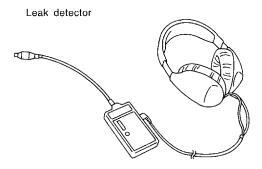
CHECK FOR EVAP LEAK


Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

SEC930C

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEC932C

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

SEF200U

OK	or	NG
----	----	----

OK •	GO TO 8.
NG •	Repair or replace.

G[

MA

LC

EC

FE

GL

MT

AT

TF

PD

SU

BR

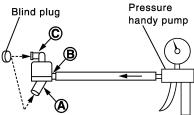
ST

RS

BT

. . . .

HA


SC

EL

Diagnostic Procedure (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A) : Bottom hole (To atmosphere)

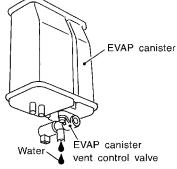
(B): Emergency tube (From EVAP canister)

(To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:


• Do not disassemble water separator.

oĸ	or	N	G
----	----	---	---

OK		GO TO 9.
NG	•	Replace water separator.

9	9 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT			
Refer to "DTC Confirmation Procedure", EC-372.				
	OK or NG			
OK	OK • GO TO 10.			
NG	>	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.		

10 CHECK IF EVAP CANISTER SATURATED WITH WATER 1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Does water drain from the EVAP canister?

SEF596U

Yes		GO TO 11.
No (With CONSULT-II)	•	GO TO 13.
No (Without CONSULT-II)	>	GO TO 14.

		Diagnostic Pro	cedure (Cont'd)
11	CHECK EVAP CANIS	TER	(
0	h the EVAP canister with weight should be less t	the EVAP canister vent control valve attached.	
		OK or NG	
OK (With CONSULT-II)		GO TO 13.	
OK (\ II)	Without CONSULT-	GO TO 14.	
NG	•	GO TO 12.	
• EV	DETECT MALFUNCT k the following. AP canister for damage AP hose between EVAP	CIONING PART canister and water separator for clogging or poor connection	
	>	Repair hose or replace EVAP canister.	
			(
13	CHECK EVAP CANIS	TER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION	
1. Di	lith CONSULT-II sconnect vacuum hose tart engine.	EVAP canister purge volume control solenoid valve at EVAP service port.	

- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TES	_
PURG VOL CONT/V	XXX %
MONITOR	
ENG SPEED	XXX rpm
A/F ALPHA-B1	XX %
A/F ALPHA-B2	XX %

Vacuum should exist.

OK or NG

OK •	GO TO 16.
NG ►	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ►	GO TO 15.

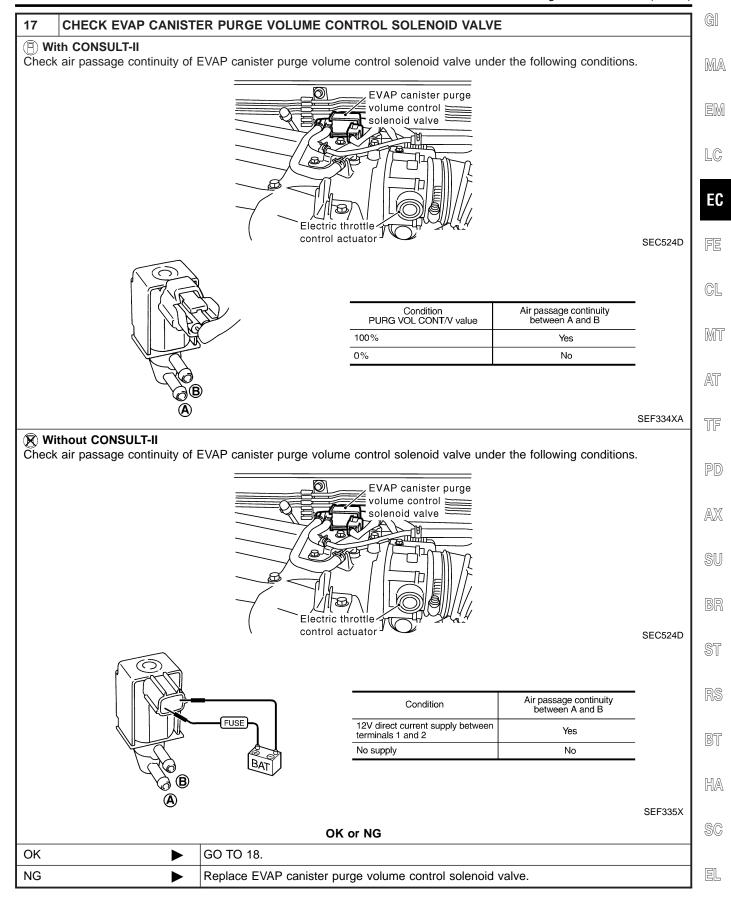
HA

SC

AT

TF

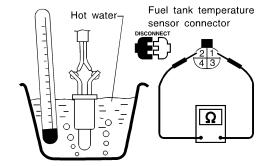
AX


SU

PBIB1678E

Diagnostic Procedure (Cont'd)

15	CHECK VACUUM HOSE				
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-32.				
	OK or NG				
OK (V	/ith CONSULT-II)		GO TO 16.		
OK (W II)	/ithout CONSULT-	•	GO TO 17.		
NG			Repair or reconnect the hose.		

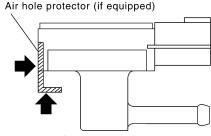

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XX % A/F ALPHA-B2 XX % PBIB1678E OK or NG GO TO 18. OK NG GO TO 17.

Diagnostic Procedure (Cont'd)

CHECK FUEL TANK TEMPERATURE SENSOR

- 1. Remove fuel level sensor unit.
- 2. Check resistance between fuel level sensor unit terminals 1 and 2 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90


SEF974Y

OK or NG

OK •	GO TO 19.
NG ▶	Replace fuel level sensor unit.

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

GI

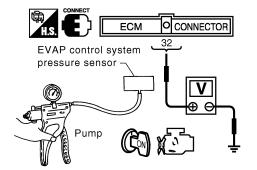
MA

LC

EC

GL

MT


AT

TF

AX

SU

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	>	GO TO 20.
NG	•	Replace EVAP control system pressure sensor.

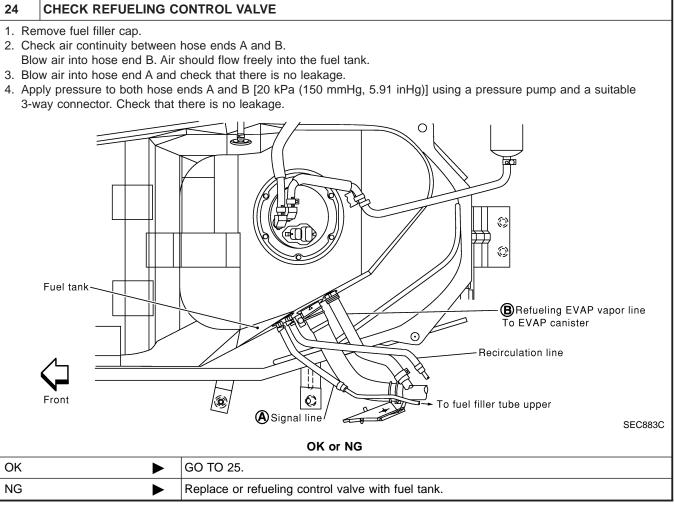
20	CHECK EVAP PURGE LINE	
		f

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-38.

OK or NG

OK	•	GO TO 21.
NG	>	Repair or reconnect the hose.

21	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	>	GO TO 22.	


HA

SC

EL

22	22 CHECK REFUELING EVAP VAPOR LINE		
Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.			
OK or NG			
OK ▶ GO TO 23.			
NG	•	Repair or replace hoses and tubes.	

23	23 CHECK SIGNAL LINE AND RECIRCULATION LINE		
 Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection. OK or NG 			
OK	•	GO TO 24.	
NG		Repair or replace hoses, tubes or filler neck tube.	

25	25 CHECK FUEL LEVEL SENSOR			
Refer	Refer to EL-125, "Fuel Level Sensor Unit Check".			
OK or NG				
OK	OK ▶ GO TO 26.			
NG	>	Replace fuel level sensor unit.		

DTC P0442 EVAP CONTROL SYSTEM

Diagnostic Procedure (Cont'd)

26	CHECK INTERMITTEN	T INCIDENT	(
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	>	INSPECTION END	

G[

 $\mathbb{M}\mathbb{A}$

 $\mathbb{E}\mathbb{M}$

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

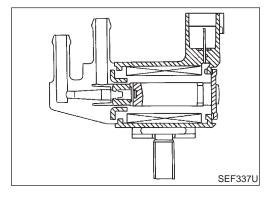
BT

HA

SC

EL

Description


Description SYSTEM DESCRIPTION

NAEC0963 NAEC0963S01

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2 and piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage*2	EVAP can-	
Throttle position sensor	Throttle position	ister purge	EVAP canister purge volume control solenoid valve
Accelerator pedal position sensor	Accelerator pedal position	flow control	
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Vehicle speed signal*1	Vehicle speed		

^{*1:} This signal is sent to the ECM through CAN communication line.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

NAEC0963S0.

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC0964

MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	 Air conditioner switch OFF Shift lever: N 	Idle (Vehicle stopped)	0%
PORG VOL C/V		2,000 rpm	_

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

ECM Terminals and Reference Value

ECM Terminals and Reference Value

G[NAEC0965

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

MA

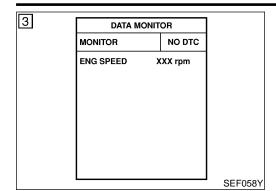
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

age to the	ne ECM's	transistor. Use a g	ground other than ECM terminals, such a	s the ground.	EM
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	LG
		[Engine is running] ● Idle speed EVAP canister purge		BATTERY VOLTAGE (11 - 14V)★	EC
					FE
				≥10.0 V/Div 50 ms/Div SEC990C	GL
45	L/Y	volume control sole- noid valve		BATTERY VOLTAGE (11 - 14V)★	MT
	[Engine is running] ■ Engine speed is about 2,000 rpm (More than 100		AT		
			seconds after starting engine).	→ 10.0 V/Div 50 ms/Div r	TF
				SEC991C	PD

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

 $\mathbb{A}\mathbb{X}$

SU


On Board Diagnosis Logic

		On Board Blagnosis E	NAEC0966	
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	BR
P0444 0444	EVAP canister purge volume control sole-noid valve circuit	An excessively low voltage signal is sent to ECM through the valve.	Harness or connectors (The sensor circuit is open or shorted.)	ST
	open		EVAP canister purge volume control solenoid valve	RS
P0445 0445	EVAP canister purge volume control sole- noid valve circuit	An excessively high voltage signal is sent to ECM through the valve.	Harness or connectors (The sensor circuit is shorted.) EVAP canister purge volume control	BT
	shorted		solenoid valve	HA

SC

EL

DTC Confirmation Procedure

DTC Confirmation Procedure

NAEC0967

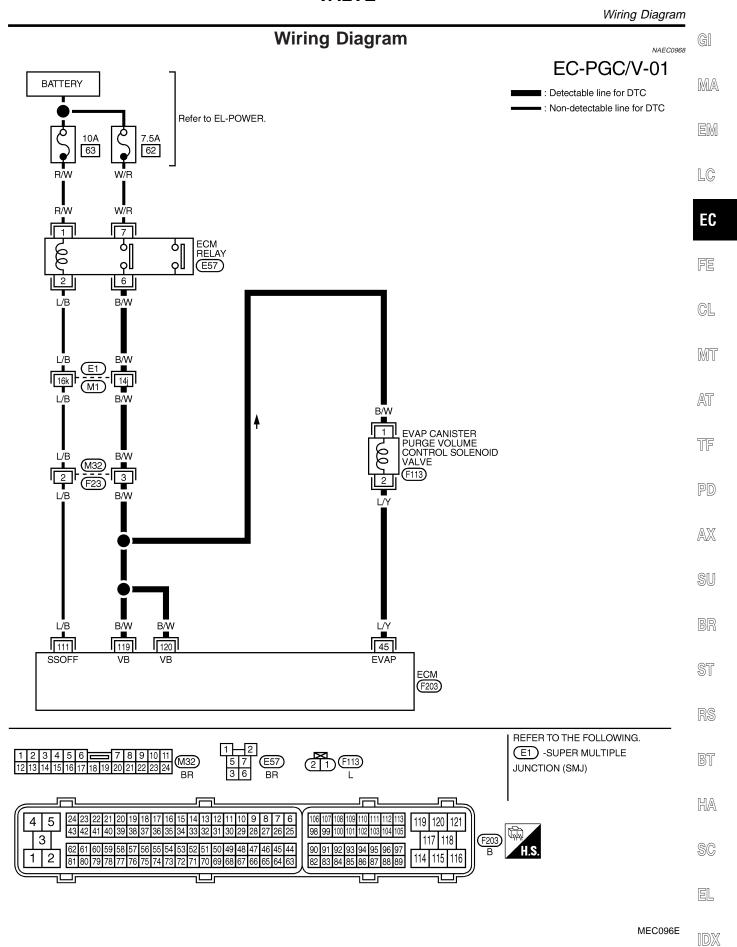
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(E) WITH CONSULT-II

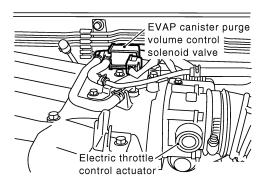

NAEC0967S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 13 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-368.

WITH GST

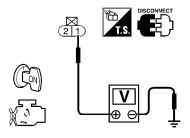
NAEC0967S02

Follow the proocedure "WITH CONSULT-II" above.


Diagnostic Procedure

Diagnostic Procedure

NAEC096


1 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

SEC524D

- 3. Turn ignition switch ON.
- 4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF988Y

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

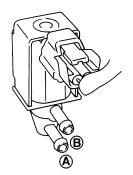
- Harness connectors E1, M1
- Harness connectors M32, F23
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
 - Repair open circuit or short to ground and short to power in harness or connectors.

HA

SC

EL

	Diagnostic Procedure (Cont a	<u> </u>
3 CHECK EVAP CAN FOR OPEN AND SH	STER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT	GI
Turn ignition switch OFF. Disconnect ECM harness Check harness continuity.	connector. between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2.	
Refer to Wiring Diagram. Continuity should exited the state of the st		
	OK or NG	L
OK (With CONSULT-II)		<u> </u>
OK (Without CONSULT- II)	► GO TO 5.	E
NG	Repair open circuit or short to ground and short to power in harness or connetors.	
4 CHECK EVAP CAN	STER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION	1
(P) With CONSULT-II		G
1. Start engine.	NT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according	M
	ACTIVE TEST PURG VOL CONT/V XXX % MONITOR	A1
	ENG SPEED XXX rpm A/F ALPHA-B1 XX %	T
	A/F ALPHA-B2 XX %	P[
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	PBIB1678E	
OV	OK or NG	l Sl
OK NG	GO TO 6.	-
NG P	► GO TO 5.	J B[
		\$1
		R
		П 7/6
		B

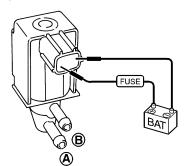

EC-369

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



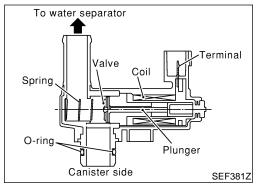
Condition PURG VOL CONT/V value	Air passage continuity between A and B
100%	Yes
0%	No

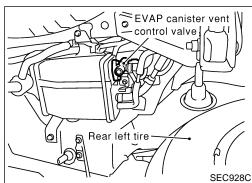
SEF334XA

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No


SEF335X


OK or NG

OK ►	GO TO 6.
NG	Replace EVAP canister purge volume control solenoid valve.

6	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
>		INSPECTION END	

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

MA

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

LC

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

GL

MIT

AT

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

TF

MONITOR ITEM	CONDITION	SPECIFICATION	
VENT CONT/V • Ignition switch: ON		OFF	ru

NAEC0972

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
117	G/R	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

(11 - 14V)

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0447 0447	l .	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

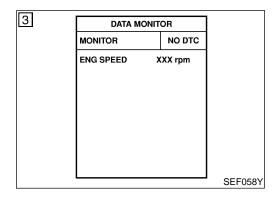
SC

HA

EL

DTC Confirmation Procedure

DTC Confirmation Procedure


NOTE:

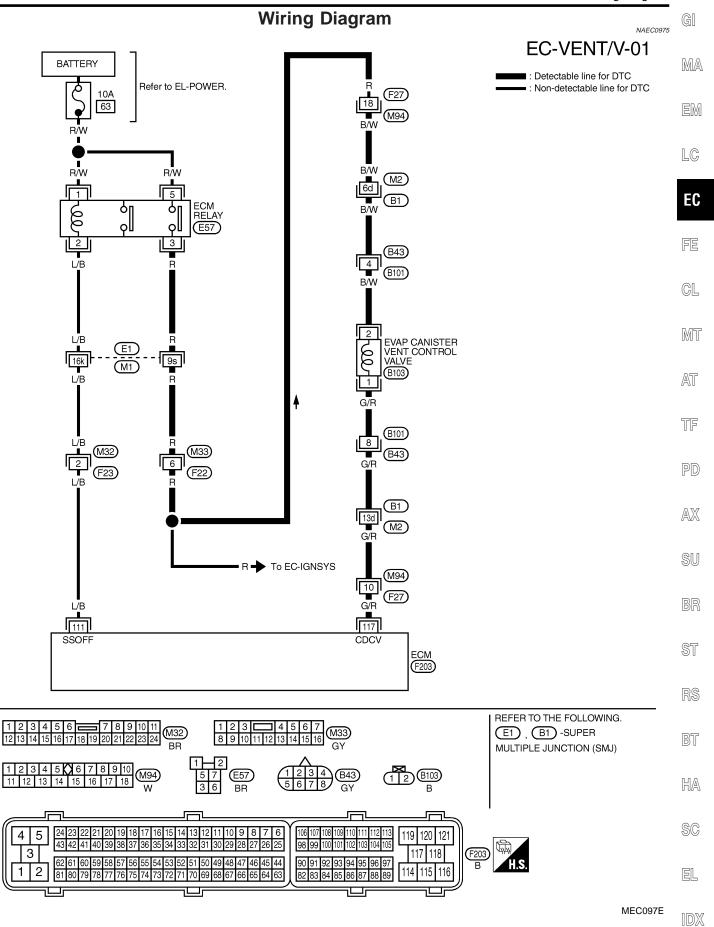
NAEC0974

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

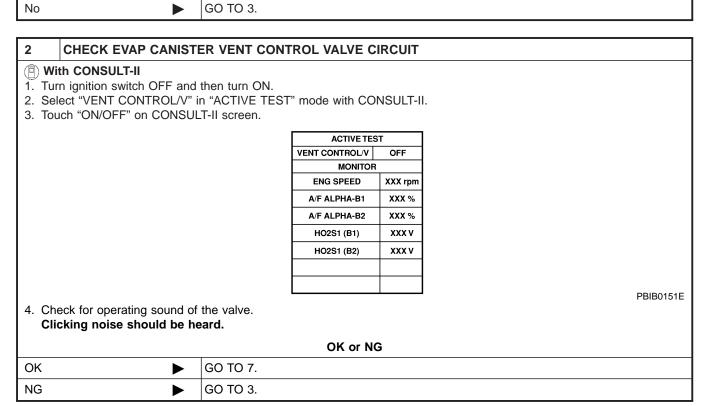
TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

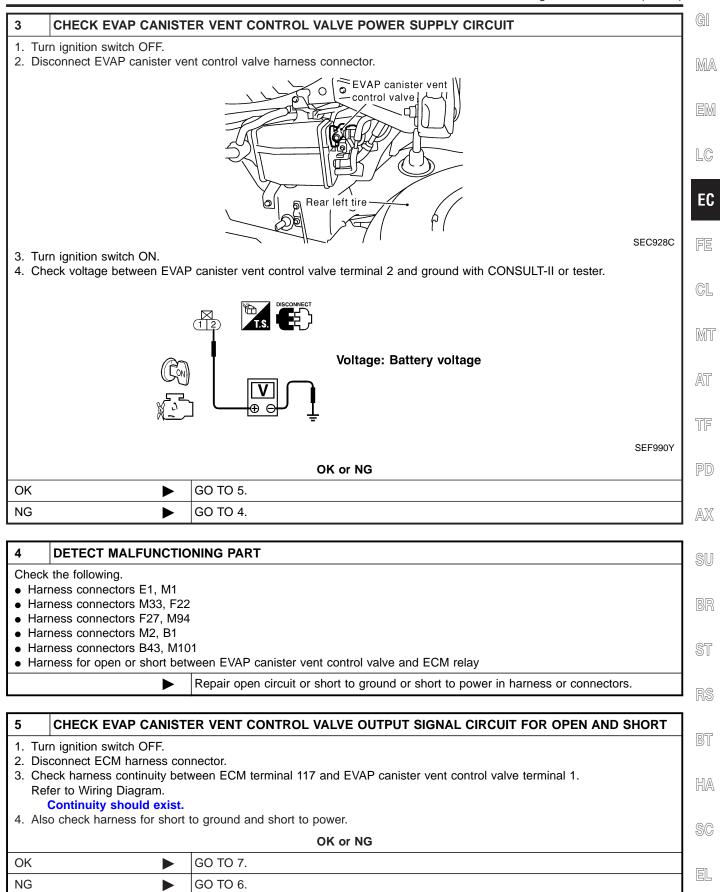
(II) WITH CONSULT-II


NAEC0974S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 8 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-374.

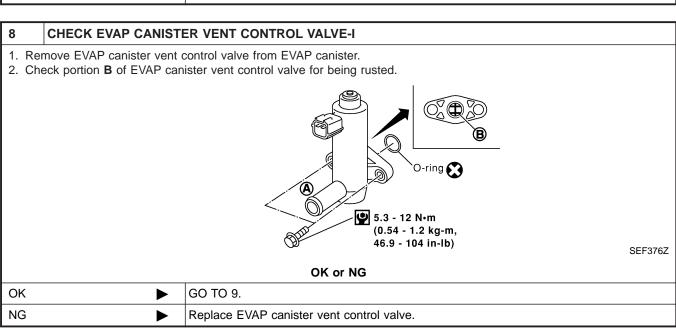

WITH GST

NAEC0974S02


Follow the procedure "WITH CONSULT-II" above.

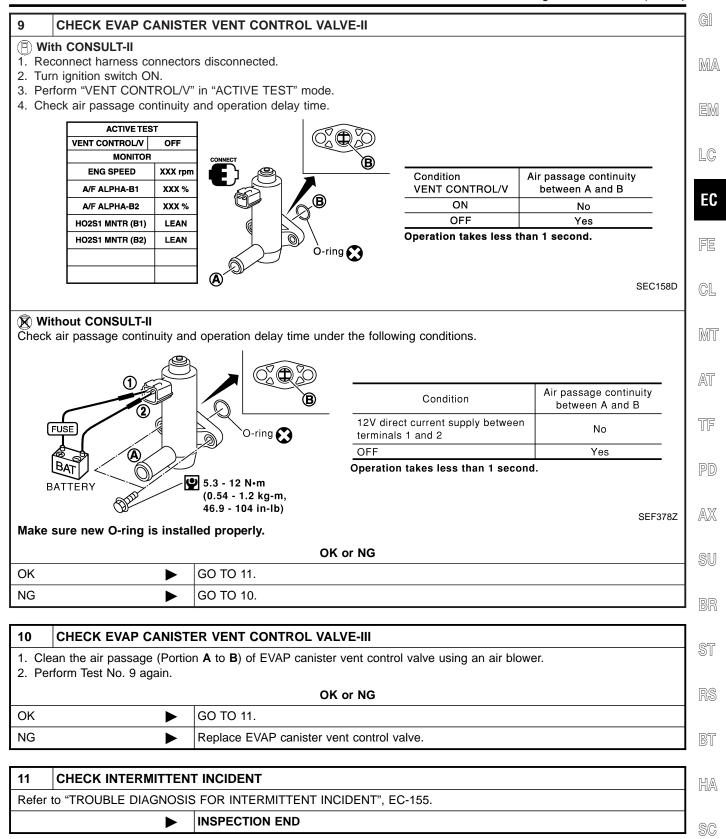
Diagnostic Procedure

Diagnostic Procedure (Cont'd)

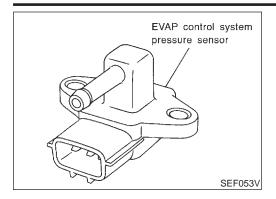

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

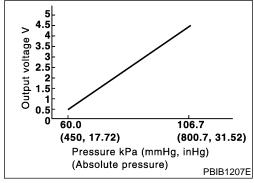

- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness for open or short between EVAP canister vent control valve and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

7	CHECK RUBBER TUBE FOR CLOGGING			
	Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging.			
	OK or NG			
ОК	>	GO TO 8.		
NG	•	Clean the rubber tube using an air blower.		



Diagnostic Procedure (Cont'd)

EL



Component Description

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC0780

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	1.8 - 4.8V

ECM Terminals and Reference Value

NAEC0781

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	L/G	EVAP control system pressure sensor	[Ignition switch ON]	1.8 - 4.8V
48	P/B	Sensors' power supply	[Ignition switch ON]	Approximately 5V
67	B/P	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

On Board Diagnosis Logic

NAEC0782

NOTE:

If DTC P0452 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to EC-562.

On Board Diagnosis Logic (Cont'd)

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	GI
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	MA
			EVAP control system pressure sensor	EN

LC

EC

DTC Confirmation Procedure

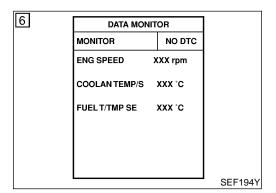
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

NOTE:

Always perform test at a temperature of 5°C (41°F) or more.

GL


MIT

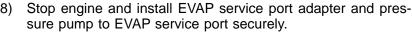
AT

TF

PD

AX

CONNECTOR


SEC525D

ECM

(A) WITH CONSULT-II

NAFC0784S01

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-381.
 - If 1st trip DTC is not detected, go to next step.

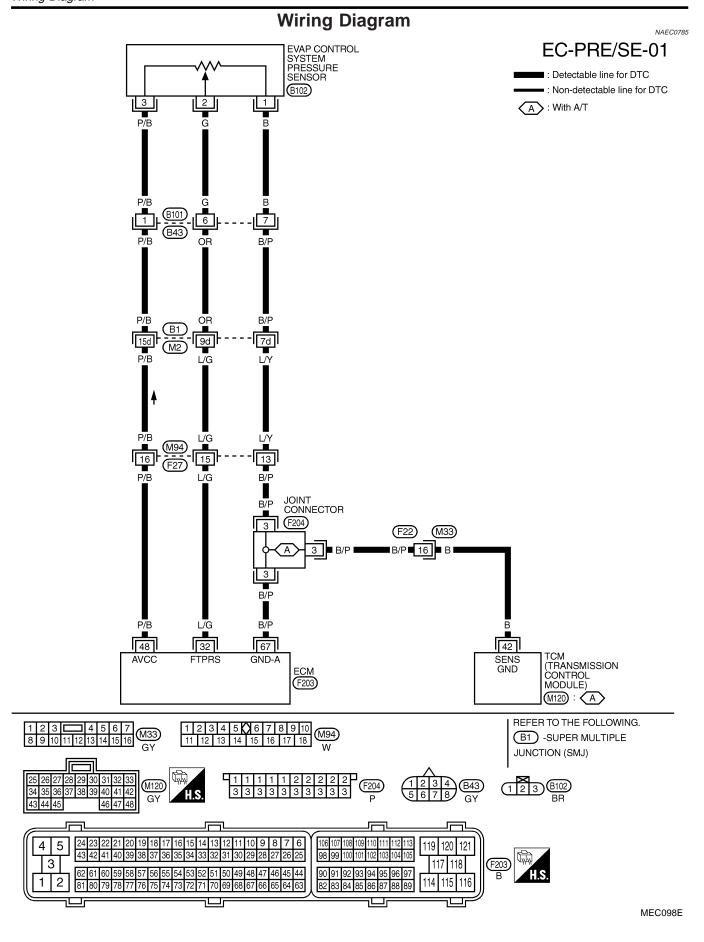
BR

ST

- Pressurize the EVAP line using pressure pump.
- 10) Confirm the pressure does not go up.
- 11) If pressure go up, go to "Diagnostic Procedure", EC-381.

WITH GST

- Start engine and warm it up to normal operating temperature.
- Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4) Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-381.


BT

HA

SC

EL

G[

MA

LC

EC

FE

GL

MT

AT

TF

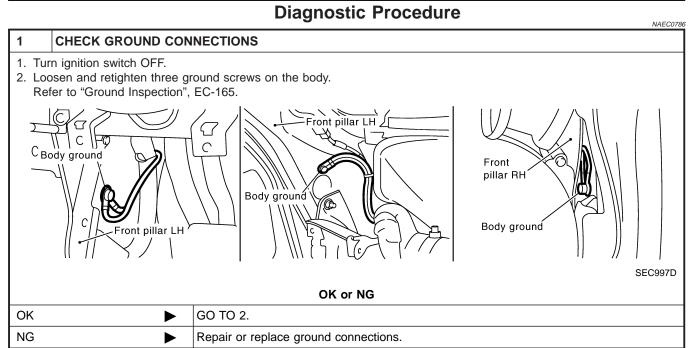
PD

 $\mathbb{A}\mathbb{X}$

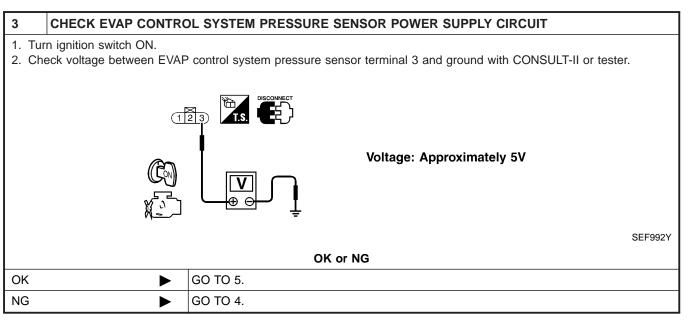
SU

ST

RS


BT

HA


SC

EL

[DX

2	CHECK CONNECTOR			
Disconnect EVAP control system pressure sensor harness connector. Check sensor harness connector for water. Water should not exist.				
OK or NG				
OK ▶ GO TO 3.				
	NG Repair or replace harness connector.			

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, B43
- Harness connectors B1. M2
- Harness connectors M94, F27
- Harness for open or short between EVAP control system pressure sensor and ECM

Repair harness or connectors.

5 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG ►	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness connectors F22, M23
- Joint connector F204
- Harness for open between EVAP control system pressure sensor and ECM
- Harness for open between EVAP control system pressure sensor and TCM
 - Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

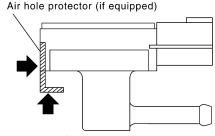
2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 9.
NG •	GO TO 8.

8 DETECT MALFUNCTIONING PART

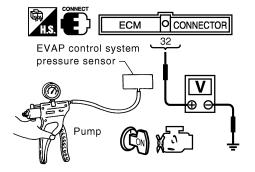
Check the following.


- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness for open or short between ECM and EVAP control system pressure sensor

Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK •	GO TO 10.
NG •	Replace EVAP control system pressure sensor.

10	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

GI

MA

LC

EC

FE

GL

MT

AT

TF

AX

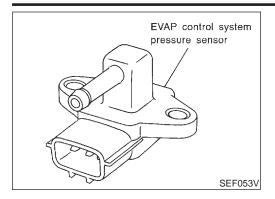
SU

BR

ST

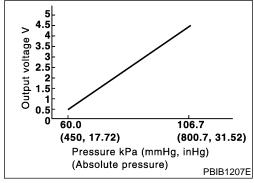
D@

BT


HA

SC

EL


 \mathbb{M}

Component Description

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC0978

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	1.8 - 4.8V

ECM Terminals and Reference Value

NAEC0979

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	L/G	EVAP control system pressure sensor	[Ignition switch ON]	1.8 - 4.8V
48	P/B	Sensor power supply	[Ignition switch ON]	Approximately 5V
67	B/P	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

On Board Diagnosis Logic

On Board Diagnosis Logic

NOTE:

If DTC P0453 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to EC-562.

	GI
1ECOOOO	-

MA

EM

LC

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Water separator Rubber hose from EVAP canister vent control valve to water separator

EC

GL

MIT

AT

TF

NAFC0981

DTC Confirmation Procedure

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PD

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

SU

BR

ST

AX

6 DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm XXX °C COOLAN TEMP/S FUELT/TMP SE XXX °C SEF194Y (P) WITH CONSULT-II

Start engine and warm it up to normal operating temperature.

Turn ignition switch OFF and wait at least 10 seconds.

3) Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).

Start engine and wait at least 20 seconds.

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-387.

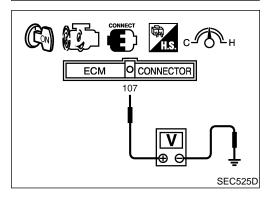
BT

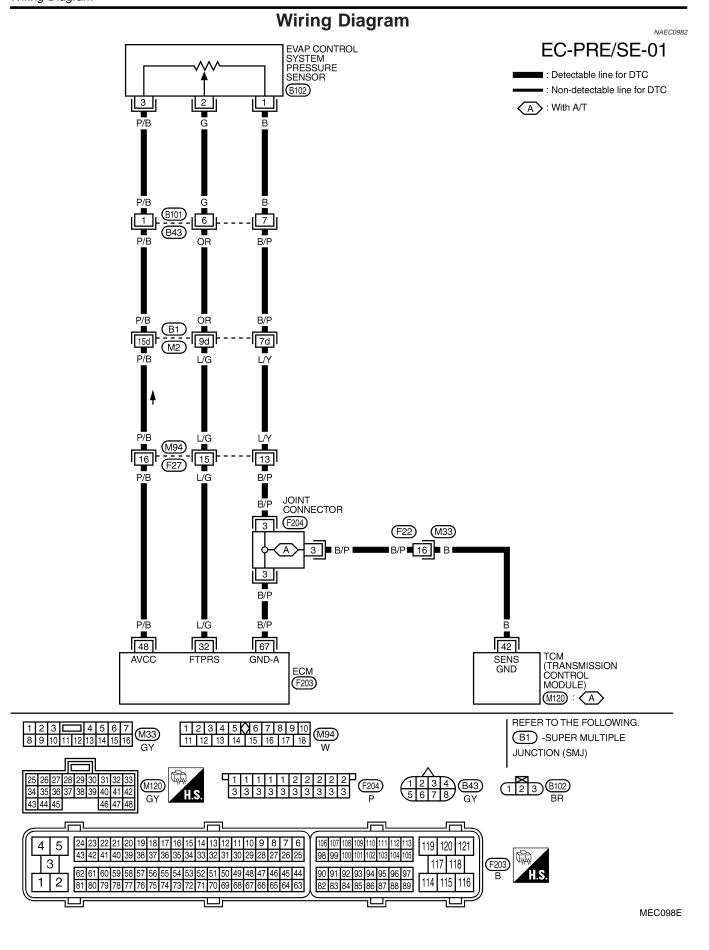
WITH GST

Start engine and warm it up to normal operating temperature.

Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.

Turn ignition switch OFF and wait at least 10 seconds.


Start engine and wait at least 20 seconds.


Select "MODE 7" with GST.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-387.

SC

EL

G[

MA

LC

EC

FE

GL

MT

AT

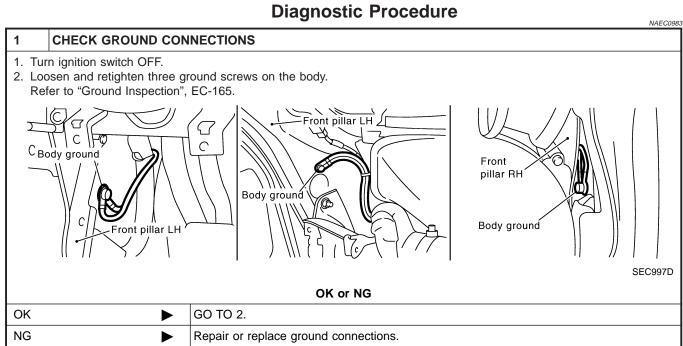
TF

PD

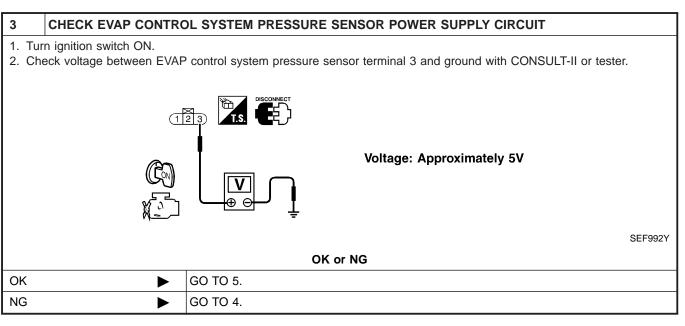
 $\mathbb{A}\mathbb{X}$

SU

ST


RS

BT


HA

SC

EL

2	2 CHECK CONNECTOR				
Disconnect EVAP control system pressure sensor harness connector. Check sensor harness connector for water. Water should not exist.					
OK or NG					
	OK GO TO 3.				
OK		GO 10 3.			

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness for open or short between EVAP control system pressure sensor and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG ►	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness connectors F22, M33
- Joint connector F204
- Harness for open between EVAP control system pressure sensor and ECM
- Harness for open between EVAP control system pressure sensor and TCM
 - Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 9.
NG ►	GO TO 8.

8 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness for open or short between ECM and EVAP control system pressure sensor

▶ Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

G[

MA

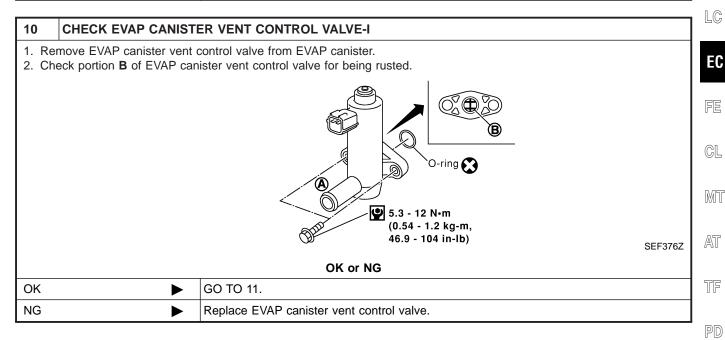
EM

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

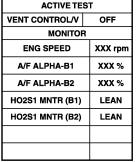

RS

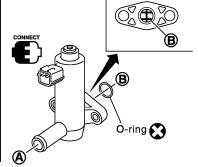
BT

HA

SC

9	9 CHECK RUBBER TUBE FOR CLOGGING				
	 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 				
	OK or NG				
OK	>	GO TO 10.			
NG	>	Clean the rubber tube using an air blower.			

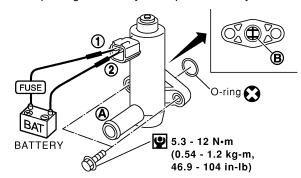

EL


Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity
VENT CONTROL/V	between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

SEC158D

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

Operation takes less than 1 second.

SEF378Z

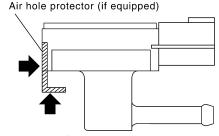
Make sure new O-ring is installed properly.

OK	or	NG
----	----	----

OK	>	GO TO 13.
NG	•	GO TO 12.

12 CHECK EVAP CANISTER VENT CONTROL VALVE-III

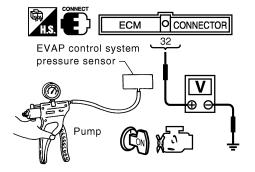
- 1. Clean the air passage (portion A to B) of EVAP canister vent control valve using an air blower.
- 2. Perform Test No. 14 again.


OK or NG

ОК		GO TO 13.
NG		Replace EVAP canister vent control valve.

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK •	GO TO 14.	
NG •	Replace EVAP control system pressure sensor.	

14	14 CHECK RUBBER TUBE		
Check obstructed rubber tube connected to EVAP canister vent control valve.			
OK or NG			
OK	OK		
NG Clean rubber tube using an air blower, repair or replace rubber tube.			

GI

MA

LC

EC

CL

MT

AT

TF

PD

AX

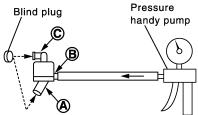
SU

ST

D@

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

15 CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

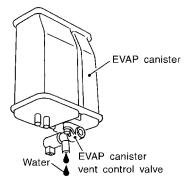
(To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

• Do not disassemble water separator.


OK or NG

OK		GO 10 16.
NG		Replace water separator.

16 CHECK IF EVAP CANISTER SATURATED WITH WATER

1. Remove EVAP canister with EVAP canister vent control valve attached.

2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes	GO TO 17.
No >	GO TO 19.

17 CHECK EVAP CANISTER

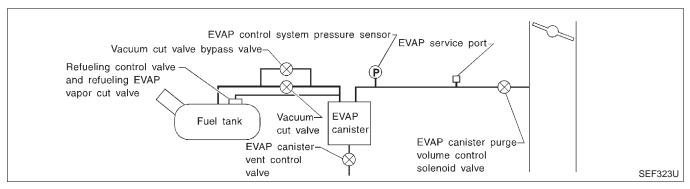
Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK	•	GO TO 19.
NG	•	GO TO 18.

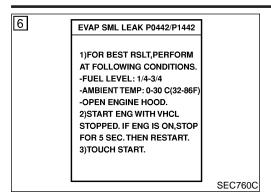
		Diagnostic Procedure (Cont'd)
18 DETECT MALFUNCTIONING	PART	(
Check the following. EVAP canister for damage EVAP hose between EVAP canister	and water separator for clogging or poor connection	
▶ Repa	ir hose or replace EVAP canister.	
19 CHECK INTERMITTENT INC	IDENT	
	INTERMITTENT INCIDENT", EC-155.	
► INSP	ECTION END	
		F
		(
		Ī
		F
		E
		F
		E
		F
		[

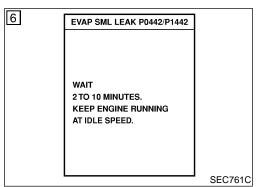

On Board Diagnosis Logic

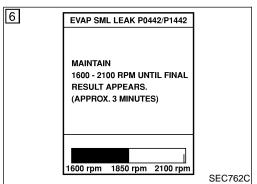
NOTE:

If DTC P0455 is displayed with P1448, first perform trouble diagnosis for DTC P1448. (See EC-602.)

NAEC0984


This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.




DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling control valve ORVR system leaks


CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NAEC0985

Never remove fuel filler cap during the DTC Confirmation Procedure.

NOTE:

CAUTION:

- If DTC P0455 is displayed with P1448, first perform trouble diagnosis for DTC P1448. (See EC-602.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level
- Open engine hood before conducting the following procedures.

WITH CONSULT-II

- Tighten fuel filler cap securely until ratcheting sound is heard. 1)
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met. 5) COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)
- Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-123.

Make sure that "OK" is displayed. If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to "Diagnostic Procedure", EC-396. If P0442 is displayed, perform "Diagnostic Procedure" for DTC P0442.

WITH GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-84 before driving vehicle.

- Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-84.
- Stop vehicle.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Select "MODE 7" with GST.
- If P0455 is displayed on the screen, go to "Diagnostic Procedure", EC-396.
- If P0442 is displayed on the screen, go to "Diagnostic" Procedure", for DTC P0442, EC-349.

EC

LC

MA

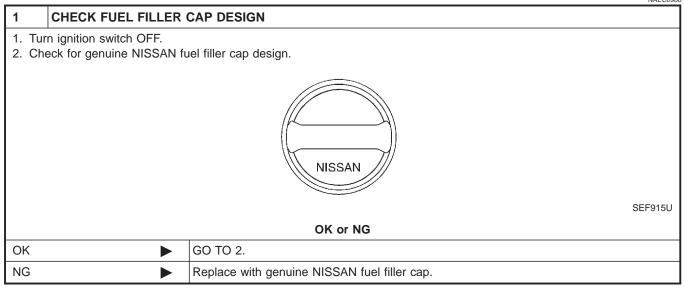
GL

MT

AT

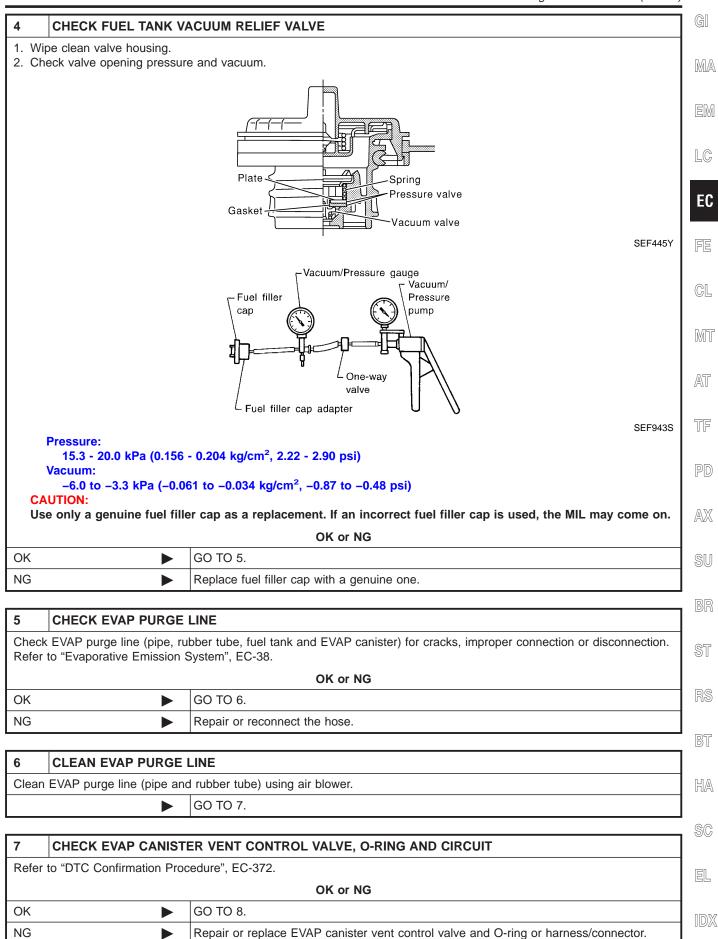
TF

AX

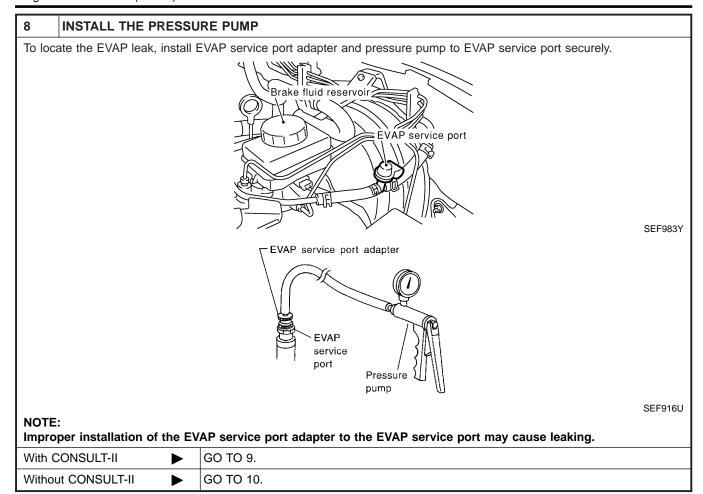

NAEC0985S02

HA

If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-339.


Diagnostic Procedure

NAECOOS

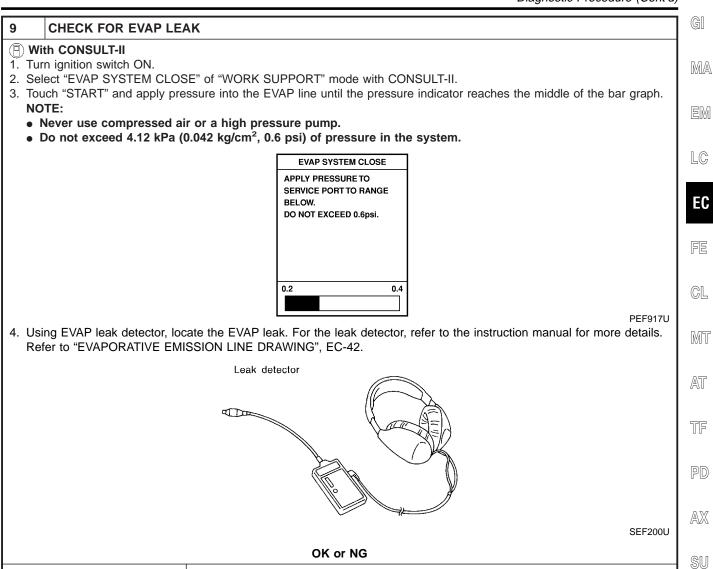


2	CHECK FUEL FILLER CAP INSTALLATION		
Check	Check that the cap is tightened properly by rotating the cap clockwise.		
	OK or NG		
OK	•	GO TO 3.	
NG Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.			

3	3 CHECK FUEL FILLER CAP FUNCTION		
Check for air releasing sound while opening the fuel filler cap.			
	OK or NG		
OK	OK ▶ GO TO 5.		
NG	>	GO TO 4.	

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)


ST

BT

HA

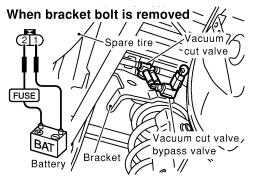
SC

EL

OK	>	GO TO 11.
NG	>	Repair or replace.

EC-399

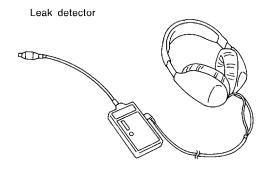
10 CHECK FOR EVAP LEAK


⊗ Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

SEC930C

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEC932C

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

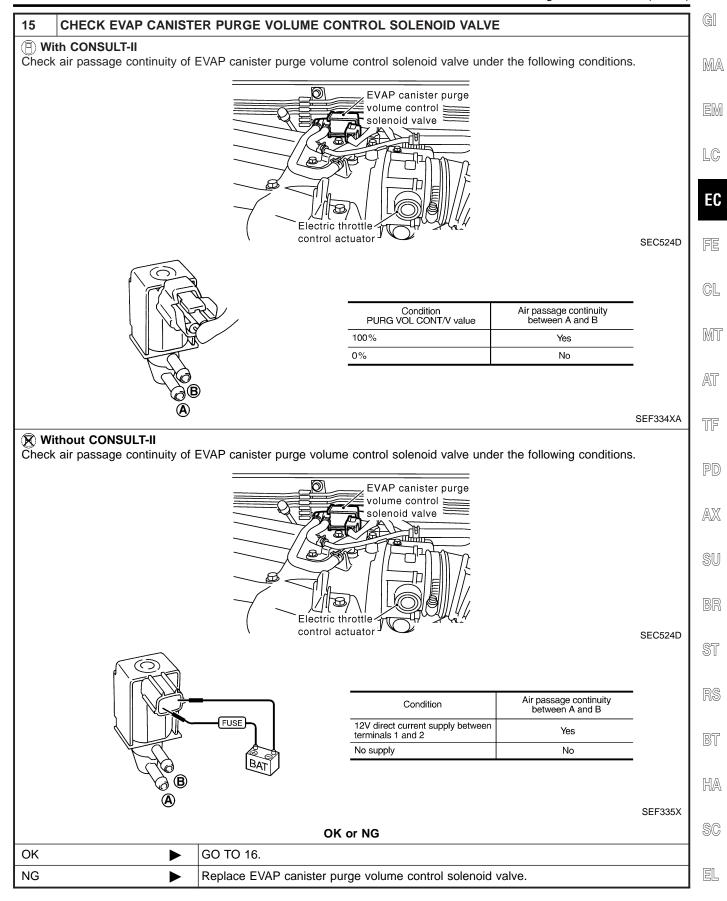
SEF200U

OK or NG

OK •	GO TO 12.
NG ▶	Repair or replace.

Diagnostic Procedure (Cont'd)

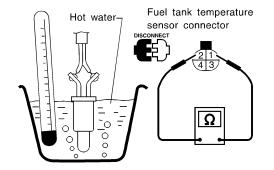
SC


EL

GI CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION (I) With CONSULT-II 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. MA 2. Start engine. 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode. 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. ACTIVE TEST LC PURG VOL CONT/V XXX % MONITOR XXX rpm **ENG SPEED** EC A/F ALPHA-B1 XX % A/F ALPHA-B2 XX % GL PBIB1678E Vacuum should exist. OK or NG MI OK GO TO 14. NG GO TO 13. AT 12 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 4. Start engine and let it idle for at least 80 seconds. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. AX Vacuum should exist. OK or NG OK GO TO 15. NG GO TO 13. 13 **CHECK VACUUM HOSE** Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-32. OK or NG OK (With CONSULT-II) GO TO 14. OK (Without CONSULT-GO TO 15. II) NG Repair or reconnect the hose. HA

EC-401

Diagnostic Procedure (Cont'd)

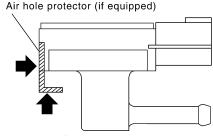

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. **ACTIVE TEST** PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XX % A/F ALPHA-B2 XX % PBIB1678E OK or NG OK GO TO 16. NG GO TO 15.

Diagnostic Procedure (Cont'd)

CHECK FUEL TANK TEMPERATURE SENSOR Remove fuel level sensor unit. Check resistance between fuel level sensor unit terminal

2. Check resistance between fuel level sensor unit terminals 1 and 2 by heating with hot water or heat gun as shown in the figure.

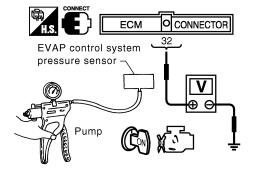
Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90


SEF974Y

OK or NG

OK •	GO TO 17.
NG ►	Replace fuel level sensor unit.

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

G

OK	>	GO TO 18.
NG		Replace EVAP control system pressure sensor.

18 CHECK REFUELING EVAP VAPOR LINE

• Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

OK or NG

OK •	GO TO 19.
NG ▶	Repair or replace hoses and tubes.

19 CHECK SIGNAL LINE AND RECIRCULATION LINE

• Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK	GO TO 20.
NG •	Repair or replace hoses, tubes or filler neck tube.

GI

MA

EM

LC

EC

SS

GL

MT

AT

TF

PD

AX

00

BR

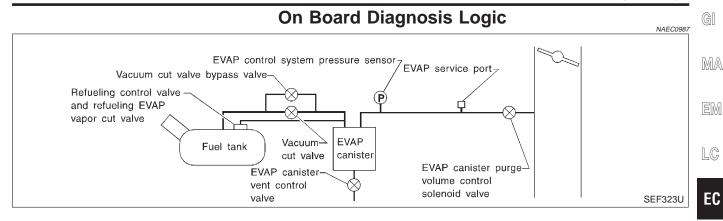
ST

RS

HA

SC

EL

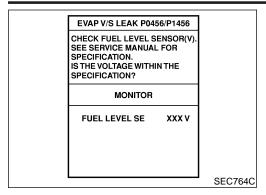

Diagnostic Procedure (Cont'd)

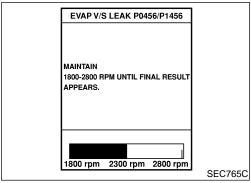
CHECK REFUELING CONTROL VALVE 1. Remove fuel filler cap. 2. Check air continuity between hose ends A and B. Blow air into hose end B. Air should flow freely into the fuel tank. 3. Blow air into hose end A and check that there is no leakage. 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage. 0 Fuel tank~ **B**Refueling EVAP vapor line To EVAP canister Recirculation line **(**) To fuel filler tube upper A Signal line SEC883C OK or NG GO TO 21. OK NG Replace or refueling control valve with fuel tank.

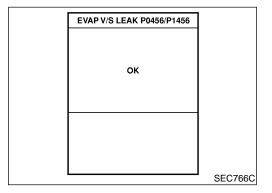
21	CHECK INTERMITTENT	INCIDENT
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-155.
	•	INSPECTION END

FE

GL


This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold same as a conventional EVAP small leak diagnosis. If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected. If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected. If ECM judges there are no leaks, the diagnosis will be OK.


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0456 Evaporative emission control system very small leak (negative pressure check)	 EVAP system has a very small leak. EVAP system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. 	•	
	 Foreign matter caught in fuel for Leak is in line between intake fold and EVAP canister purge control solenoid valve. Foreign matter caught in EVAI ter vent control valve EVAP canister or fuel tank leateval evaluation of the EVAP purge line (Pipe and rubtube) leaks EVAP purge line rubber tube to control system pressure sensor Loose or disconnected rubber 	 Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. 		
		 Foreign matter caught in EVAP canister vent control valve 		
		,		
		Blocked or be control system	 EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor 	
		EVAP canister vent control valve and		
			 EVAP canister purge volume control solenoid valve and the circuit 	
			 Fuel tank temperature sensor O-ring of EVAP canister vent control 	
		valve is missing or damaged.Water separatorEVAP canister saturated with water		
		 EVAP control system pressure sensor Refueling control valve ORVR system leaks 		
		Foreign matter caught in EV.	 Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid 	
AUTION:	1	<u> </u>		•


CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

EL

DTC Confirmation Procedure

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NAEC0988

NOTE:

- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- After repair, make sure that the hoses and clips are installed properly.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following condition is met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour
- a) Fuel filler cap is removed.
- b) Refilled or drained the fuel.
- c) EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.

FUEL LEVEL SE: 1.08 - 0.2V

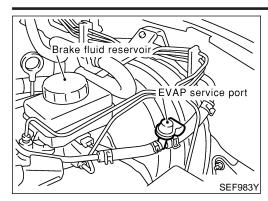
COOLAN TEMP/S: 0 - 32°C (32 - 90°F)

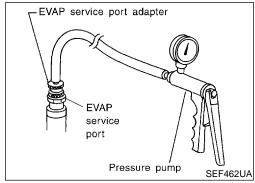
FUEL T/TMP SE: 0 - 35°C (32 - 95°F)

INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Turn ignition switch ON.
- Select "EVP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.


Follow the instruction displayed.


6) Make sure that "OK" is displayed. If "NG" is displayed, refer to "Diagnostic Procedure", EC-410.

NOTE

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to "Basic inspection", EC-123.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

Overall Function Check

WITH GST

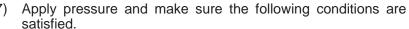
Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

MA

CAUTION:

Never use compressed air, doing so may damage the **EVAP** system.

- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP 1) service port.


LC

EC

- Set the pressure pump and a hose.
- Also set a vacuum gauge via 3-way connector and a hose.

- Turn ignition switch ON.
- 5) Connect GST and select mode 8.
 - GL Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg)

AT

If NG, go to diagnostic procedure, EC-410. If OK, go to next step.

TF

PD

 $\mathbb{A}\mathbb{X}$

- 8) Disconnect GST.
- 9) Start engine and warm it up to normal operating temperature.
- 10) Turn ignition switch OFF and wait at least 10 seconds.

- 11) Restart engine and let it idle for 90 seconds.
- 12) Keep engine speed at 2,000 rpm for 30 seconds.
- 13) Turn ignition switch OFF.

SU

For more information, refer to GST instruction manual.

BT

HA

SC

EL

NG

Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

1. Turn ignition switch OFF.
2. Check for genuine NISSAN fuel filler cap design.

NISSAN

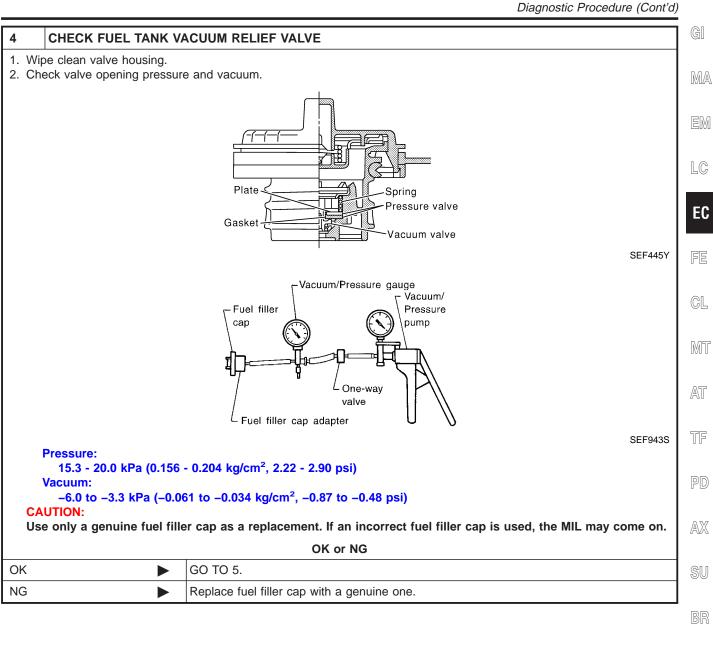
OK
OK GO TO 2.

2	CHECK FUEL FILLER CAP INSTALLATION	
Check	Check that the cap is tightened properly by rotating the cap clockwise.	
	OK or NG	
OK	OK ▶ GO TO 3.	
NG	•	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.

Replace with genuine NISSAN fuel filler cap.

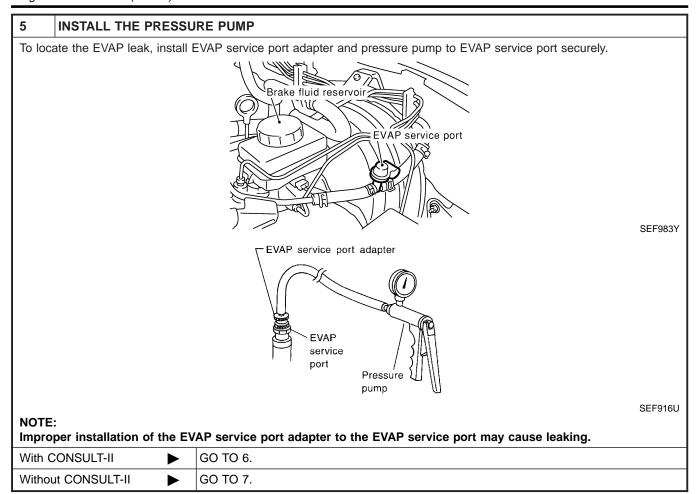
3	3 CHECK FUEL FILLER CAP FUNCTION		
Check	Check for air releasing sound while opening the fuel filler cap.		
	OK or NG		
OK	OK		
NG	>	GO TO 4.	

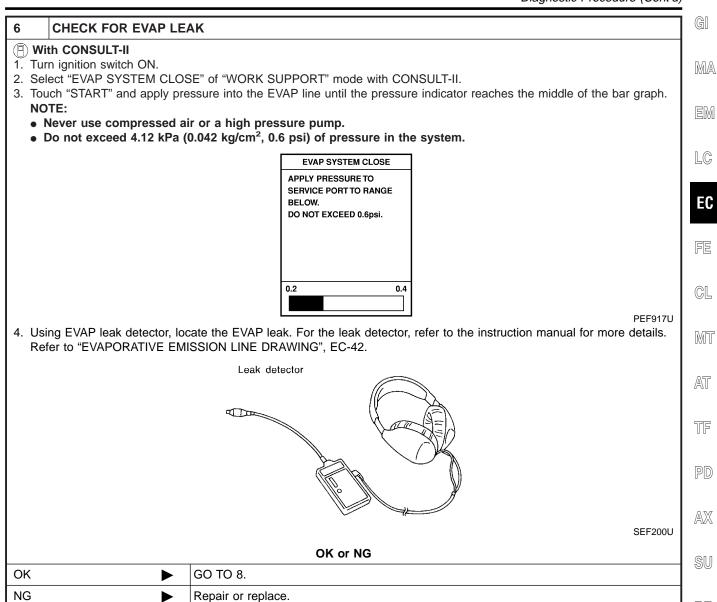
ST


BT

HA

SC


EL


[DX

EC-411

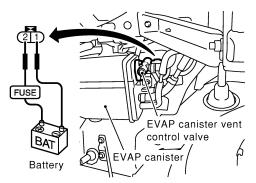
Diagnostic Procedure (Cont'd)

BR

ST

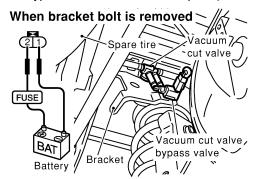
BT

HA


SC

EL

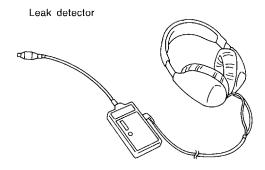
CHECK FOR EVAP LEAK


Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

SEC930C

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

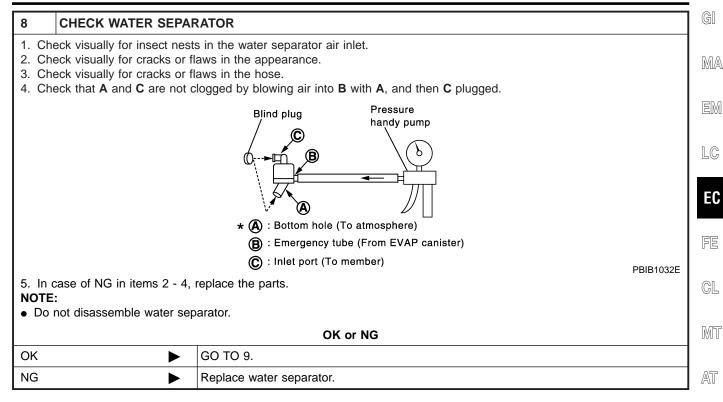


SEC932C

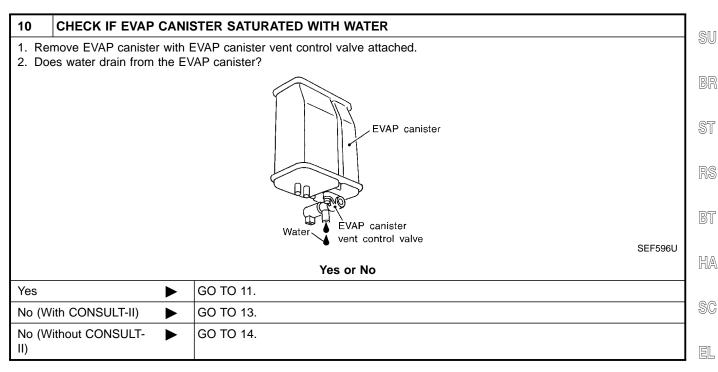
4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.



SEF200U


OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

Diagnostic Procedure (Cont'd)

9	9 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT	
Refer	Refer to "DTC Confirmation Procedure", EC-372.	
	OK or NG	
OK ▶ GO TO 10.		GO TO 10.
NG Repair or replace EVAP canister vent control valve and O-ring or harness/connector.		

TF

AX

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER			
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).				
	OK or NG			
OK (\	With CONSULT-II)	•	GO TO 13.	
OK (Without CONSULT- GO TO 14.				
NG			GO TO 12.	

12 DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	

PBIB1678E

Vacuum should exist.

OK or NG

OK	GO TO 16.
NG	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK ►	GO TO 17.
NG ►	GO TO 15.

Diagnostic Procedure (Cont'd)

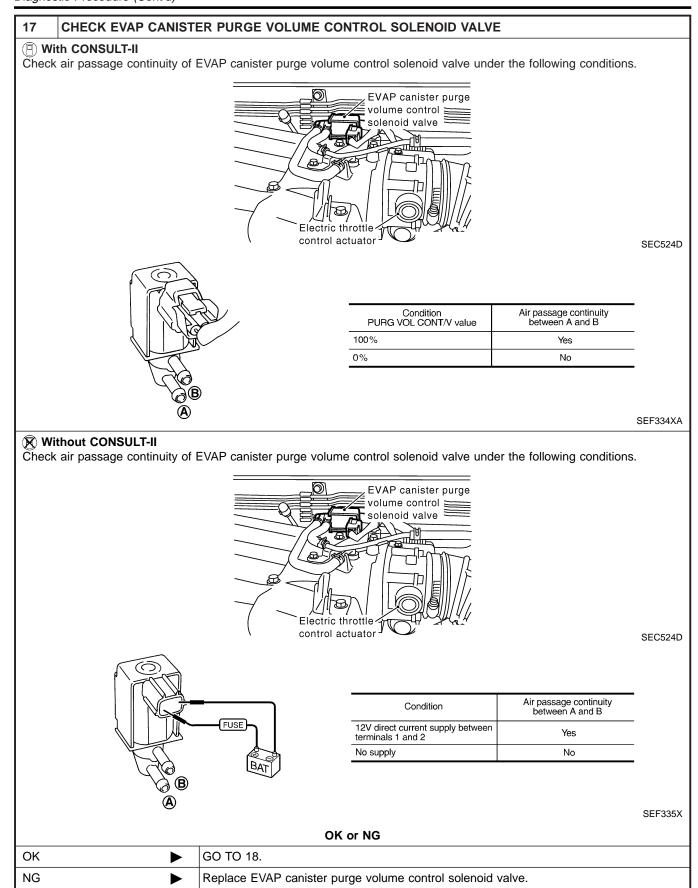
15 CHECK VACUUM HOSE			
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-32.		
	OK or NG		
OK (W	Vith CONSULT-II)	GO TO 16.	
OK (W	Vithout CONSULT-	GO TO 17.	
NG		Repair or reconnect the hose.	

16 CHECK E	VAP CANISTER PURGE	VOLUME CONTROL SOLENOID VALVE	
With CONSU	LT-II		
1. Start engine.		TEOTIL I W CONCULT II OL I I I I I I I I I I I I I I I I I	
Perform "PUR to the valve or		TEST" mode with CONSULT-II. Check that engine speed varies accordi	ng FE
·	J.	ACTIVE TEST	
		PURG VOL CONT/V XXX %	GL
		MONITOR	
		ENG SPEED XXX rpm A/F ALPHA-B1 XX %	
		A/F ALPHA-B2 XX %	000
		AT ALTIN-02 AA /0	Λ5 <u>-</u>
			AT
		DRIB	1678E
			O/OL
		OK or NG	—— PD
OK	► GO TO 18.		
NG	► GO TO 17.		

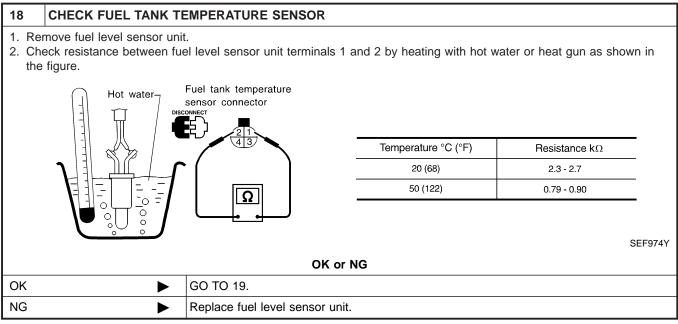
SU

BR

ST


RS

BT


HA

SC

EL

Diagnostic Procedure (Cont'd)

 \mathbb{G}

MA

EM

LC

EC

. _

GL

MT

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

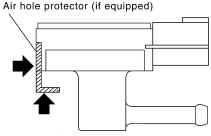
SU

BR

ST

RS

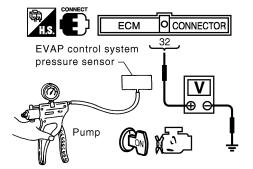
BT


HA

SC

EL

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

_		
	Applied vacuum kPa (mmHg, inHg)	Voltage V
	Not applied	1.8 - 4.8
	-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ► GO TO 20.		GO TO 20.
NG		Replace EVAP control system pressure sensor.

20	20 CHECK EVAP PURGE LINE		
	Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-38.		
	OK or NG		
OK	>	GO TO 21.	
NG	>	Repair or reconnect the hose.	

21	CLEAN EVAP PURGE LINE	
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.	
	▶ GO TO 22.	

Diagnostic Procedure (Cont'd)

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

RS

BT

HA

SC

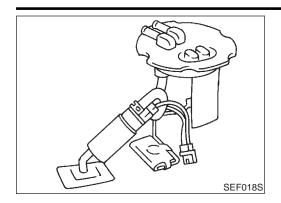
EL

[DX

22 CHECK REFUELING EVAP VAPOR LINE		Gl	
		ne between EVAP canister and fuel tank for clogging, kink, looseness and improper con- EVAPORATIVE EMISSION LINE DRAWING", EC-42.	
		OK or NG	
ОК	•	GO TO 23.	l em
NG	•	Repair or replace hoses and tubes.	

23	23 CHECK SIGNAL LINE AND RECIRCULATION LINE		
	 Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection. 		
		OK or NG	
OK	•	GO TO 24.	
NG	•	Repair or replace hoses, tubes or filler neck tube.	

24


CHECK REFUELING CONTROL VALVE

25	CHECK FUEL LEVEL S	ENSOR	
Refer	Refer to EL-140, "Fuel Level Sensor Unit Check".		
		OK or NG	
OK	>	GO TO 26.	
NG	>	Replace fuel level sensor unit.	İ

Diagnostic Procedure (Cont'd)

26	6 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	INSPECTION END		

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line. It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

GI

MA

LC

EC

On Board Diagnostic Logic

If DTC P0460 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to "DTC U1000, U1001 CAN COMMUNICATION LINE", EC-166.

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

MT

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0460 0460	Fuel level sensor cir- cuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.) Fuel level sensor

AT

TF

AX

SU

ST

3 DATA MONITOR MONITOR NO DTC FUEL T/TMP SE XXX °C FUEL LEVEL SE XXX V SEF195Y

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

NAEC0993

(P) WITH CONSULT-II

NAEC0993S01

1) Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
 - Start engine and wait maximum of 2 consecutive minutes.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-424.

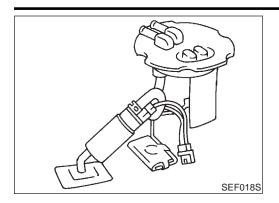
WITH GST

Follow the procedure "WITH CONSULT-II" above.

NAEC0993S02

SC

HA


EL

Diagnostic Procedure

		=NAEC0995	
1	CHECK FUEL GAUGE OPERATION		
Refer	Refer to EL-133, "Meter/Gauge Operation and Odo/Trip Meter Segment Check in Diagnosis Mode".		
		OK or NG	
OK	DK		
NG		Follow the instruction of "Meter/Gauge Operation and Odo/Trip Meter Segment Check in Diagnosis Mode", Refer to EL-133.	

2	CHECK FUEL LEVEL SENSOR AND CIRCUIT			
Refer	Refer to EL-139, "INSPECTION/FUEL LEVEL SENSOR".			
	OK or NG			
OK	OK ▶ GO TO 3.			
NG	>	Repair or replace malfunctioning parts.		

3	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	► INSPECTION END	

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line. It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

GI

MA

LC

EC

On Board Diagnostic Logic

If DTC P0461 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to "DTC U1000, U1001 CAN COMMUNICATION LINE", EC-166.

Driving long distances naturally affect fuel gauge level. This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

MIT

GL

AT

TF

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	Į
P0461 0461	Fuel level sensor circuit range/ performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	 Harness or connectors (The CAN communication line is open or shorted.) Harness or connectors (The level sensor circuit is open or shorted.) Fuel level sensor 	į.

AX

SU

PD

Overall Function Check

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

NOTE:

When performing following procedure, be sure to observe the handling of the fuel. Refer to FE-5, "Fuel Tank".

TESTING CONDITION:

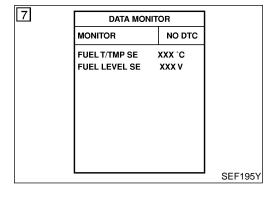
Before starting overall function check, preparation of draining fuel and refilling fuel is required.

BT

(A) WITH CONSULT-II

NAEC0998S01

Start from step 11, if it is possible to confirm that the fuel


cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in SC

Prepare a fuel container and a spare hose.

Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-56.

EL

- Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.

- Turn ignition switch OFF and wait at least 10 seconds then turn ON.
- 6) Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- 7) Check "FUEL LEVEL SE" output voltage and note it.
- Select "FUEL PUMP" in "ACTIVE TEST" mode with CON-SULT-II.
- 9) Touch "ON" and drain fuel approximately 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10) Check "FUEL LEVEL SE" output voltage and note it.
- 11) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 12) Check "FUEL LEVEL SE" output voltage and note it.
- 13) Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12.

If NG, go to "Diagnostic Procedure", EC-426.

WITH GST

NOTE:

NAEC0998S02

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance

- 1) Prepare a fuel container and a spare hose.
- 2) Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-56.
- 3) Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.
- 5) Turn ignition switch ON.
- 6) Drain fuel by 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 7) Confirm that the fuel gauge indication varies.
- 8) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 9) Confirm that the fuel gauge indication varies.
- 10) If NG, go to "Diagnostic Procedure", EC-426.

Diagnostic Procedure

NAEC1226

1	1 CHECK FUEL GAUGE OPERATION		
Refer	Refer to EL-133, "Meter/Gauge Operation and Odo/Trip Meter Segment Check in Diagnosis Mode".		
	OK or NG		
ОК	OK ▶ GO TO 2.		
NG	>	Follow the instruction of "Meter/Gauge Operation and Odo/Trip Meter Segment Check in Diagnosis Mode". Refer to EL-133.	

DTC P0461 FUEL LEVEL SENSOR

Diagnostic Procedure (Cont'd)

2 CHECK FUEL LEVEL SENSOR AND CIRCUIT			GI	
Refer to	o EL-139, "INSPECTION/	FUEL LEVEL SENSOR".		1
		OK or NG		M/
OK	•	GO TO 3.		1
NG	•	Repair or replace malfunctioning parts.		EN

3	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

EC

FE

CL

MT

AT

TF

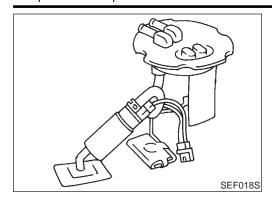
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line. It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

NAEC1000

NOTE:

If DTC P0462, P0463 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to "DTC U1000, U1001 CAN COMMUNICATION LINE", EC-166.

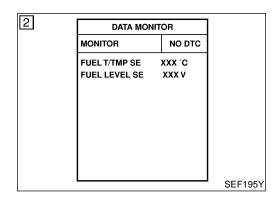
ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0462 0462	Fuel level sensor cir- cuit low input	An excessively low voltage from the sensor is sent to ECM.	(The CAN communication line is open or shorted.)
P0463 0463	Fuel level sensor cir- cuit high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Fuel level sensor

DTC Confirmation Procedure


NOTE:

NAEC1001

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

(A) WITH CONSULT-II

NAEC1001S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-429.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NAEC1001S02

Diagnostic Procedure			G[
1	CHECK FUEL GAUGE	OPERATION	
Refer	to EL-133, "Meter/Gauge (Operation and Odo/Trip Meter Segment Check in Diagnosis Mode".	MA
		OK or NG	
OK	•	GO TO 2.	EM
NG	•	Follow the instruction of "Meter/Gauge Operation and Odo/Trip Meter Segment Check in Diagnosis Mode". Refer to EL-133.	LG

2	2 CHECK FUEL LEVEL SENSOR AND CIRCUIT			
Refer	Refer to EL-139, "INSPECTION/FUEL LEVEL SENSOR".			
	OK or NG			
OK	>	GO TO 3.		
NG	>	Repair or replace malfunctioning parts.		

3	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Description

NOTE:

If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-166.

The vehicle speed sensor is installed in the transmission. It contains a pulse generator which provides a vehicle speed signal to the combination meter. The combination meter then sends a signal to the ECM through CAN communication line.

On Board Diagnosis Logic

NAEC1006

=NAEC1004

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The vehicle speed sensor circuit is open or shorted) Vehicle speed sensor Combination meter

DTC Confirmation Procedure

NAFC1007

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

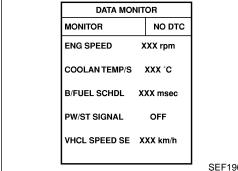
TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-II

NAEC1007S01

- 1) Start engine.
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.


If NG, go to "Diagnostic Procedure", EC-431.

- If OK, go to following step.
- Warm engine up to normal operating temperature.

Select "DATA MONITOR" mode with CONSULT-II.

Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	More than 1,800 rpm (A/T models) More than 2,000 rpm (M/T models)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	More than 5.5 msec
Selector lever	Except P or N position
PW/ST SIGNAL	OFF

SEF196Y

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-431.

MA

LC

Overall Function Check

EC

Use this procedure to check the overall function of the vehicle speed sensor signal circuit. During this check, a 1st trip DTC might not be confirmed.

NAEC1008S01 GL

1) Lift up drive wheels.

2) Start engine.

3) Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor signal on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

MT

AT

4) If NG, go to "Diagnostic Procedure", EC-431.

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

Diagnostic Procedure

NAEC1010

CHECK VEHICLE SPEED SENSOR CIRCUIT Refer to EL-134, "Trouble Diagnosis". OK or NG GO TO 2. OK NG Repair or replace.

CHECK COMBINATION METER Check combination meter function. Refer to EL-126, "COMBINATION METERS". **INSPECTION END**

BT

HA

SC

EL

Description

NAEC1227

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

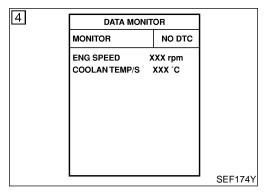
The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadly. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner and power steering operation, etc.).

On Board Diagnosis Logic

NAEC1228

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is not in the specified range.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure


NAEC1229

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning before conducting DTC Confirmation Procedure. For the target idle speed, refer to the "Service Data and Specifications (SDS)", EC-758.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C (14°F).

(A) WITH CONSULT-II

NAEC1229S01

- Open engine hood.
- 2) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-433.

WITH GST

Follow the procedure "With CONSULT-II" above.

NAEC1229S02

MA

EM

LC

Diagnostic Procedure

NAEC1230

1	CHECK INTAKE AIR LEAK		
	 Start engine and let it idle. Listen for an intake air leak after the mass air flow sensor. 		
	OK or NG		
OK	•	GO TO 2.	
NG	•	Discover air leak location and repair.	

2	REPLACE ECM
_	KEPLACE ECIVI

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM NATS)", EC-93.
- 4. Perform "Accelerator Pedal Released Position Learning", EC-73.
- 5. Perform "Throttle Valve Closed Position Learning", EC-73.
- 6. Perform "Idle Air Volume Learning", EC-73.

► INSPECTION END

FE

GL

EC

AT

TF

MT

PD

AX

SU

BR

ST

RS

BT

HA

SC

EL

[DX

Description

NAEC1231

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

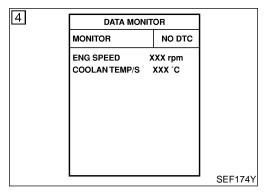
The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadly. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner and power steering operation, etc.).

On Board Diagnosis Logic

NAEC1232

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is not in the specified range.	 Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure


NOTE:

NAEC1233

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning before conducting DTC Confirmation Procedure. For the target idle speed, refer to the "Service Data and Specifications (SDS)", EC-758.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C (14°F).

(A) WITH CONSULT-II

NAEC1233S01

- Open engine hood.
- 2) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-435.

WITH GST

Follow the procedure "With CONSULT-II" above.

NAEC1233S02

MA

EM

LC

EC

FE

GL

Diagnostic Procedure

NAEC123

1	CHECK PCV HOSE CONNECTION			
Confirm that PCV hose is connected correctly.				
	OK or NG			
OK	OK ▶ GO TO 2.			
NG	•	Repair or replace.		

M	T

AT

TF

2	CHECK INTAKE AIR LEAK			
 Start engine and let it idle. Listen for an intake air leak after the mass air flow sensor. 				
	OK or NG			
OK	OK ▶ GO TO 3.			
NG	•	Discover air leak location and repair.		

PD

3 REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM NATS)", EC-93.
- 4. Perform "Accelerator Pedal Released Position Learning", EC-73.
- 5. Perform "Throttle Valve Closed Position Learning", EC-73.
- 6. Perform "Idle Air Volume Learning", EC-73.

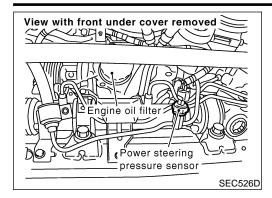
INSPECTION EN	D
---------------	---

SU

BR

ST

RS


BT

HA

SC

EL

[DX

Component Description

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine

CONSULT-II Reference Value in Data Monitor Mode

speed and adjusts the idle speed for the increased load.

Specification data are reference values.

NAEC1360

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	• Engine: After warming up, idle the	Steering wheel is in neutral position. (Forward direction)	OFF
	engine	Steering wheel is turned.	ON

On Board Diagnosis Logic

NAEC1361

The MIL will not light up for this self-diagnosis.

NOTE:

If DTC P0550 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to EC-562.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Power steering pressure sensor

DTC Confirmation Procedure

NOTE:

NAEC1362

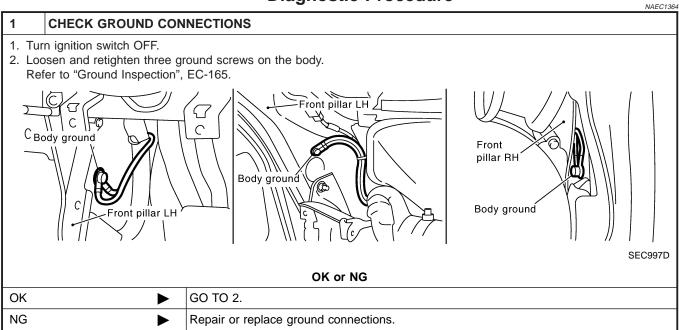
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

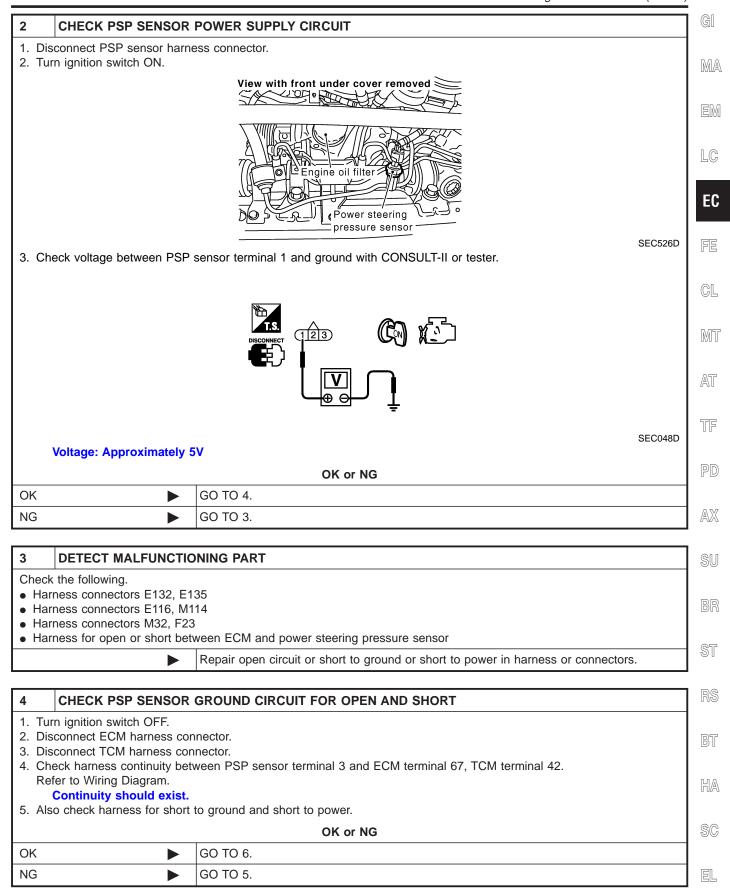
(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- If 1st trip DTC is detected, go to EC-438, "Diagnostic Procedure".

With GST

Follow the procedure "WITH CONSULT-II" above.


Specification data are reference values and are measured between each terminal and body ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	R/B	Power steering pres-	[Engine is running]Steering wheel is being turned.	0.5 - 4.0V
12	R/B	sure sensor	[Engine is running] • Steering wheel is not being turned.	0.4 - 0.8V
67	B/P	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	L	Sensor power supply	[Ignition switch ON]	Approximately 5V

Diagnostic Procedure

DETECT MALFUNCTIONING PART

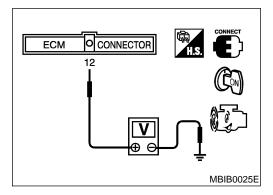
Check the following.

- Harness connectors E102, E48
- Harness connectors E1, M1
- Harness connectors M32, F23
- Harness connectors F22, M33
- Joint connector F204
- Harness for open or short between ECM and PSP sensor
- Harness for open or short between TCM and PSP sensor.
 - Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between ECM terminal 12 and PSP sensor terminal 2. Refer to wiring diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK GO TO 8. GO TO 7.

DETECT MALFUNCTIONING PART 7

Check the following.

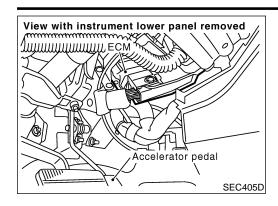

NG

- Harness connectors E102, E48
- Harness connectors E1, M1
- Harness connectors M32, F23
- Harness for open or short between ECM and power steering pressure sensor

Repair open circuit or short to ground or short to power in harness or connectors.

8	CHECK PSP SENSOR			
Refer to "Component Inspection", EC-440.				
OK or NG				
OK	OK ▶ GO TO 9.			
NG	•	Replace PSP sensor.		

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		



Component Inspection POWER STEERING PRESSURE SENSOR

NAEC1365

- 1. Reconnect all harness connectors disconnected.
- Start engine and let it idle.
- Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel is turned fully.	Approximately 0.5 - 4.0V
Steering wheel is not turned.	Approximately 0.4 - 0.8V

Component Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The unit controls the engine.

ie. MA

GI

LC

EC

GL

MT

AT

TF

AX

SU

On Board Diagnosis Logic

NAEC1236

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition		Possible Cause
		A)	ECM calculation function is malfunctioning.	
P0605 0605	Engine control module	B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode	
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 	

DTC Confirmation Procedure

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

RS

BT

HA

SC

EL

PROCEDURE FOR MALFUNCTION A

- (P) With CONSULT-II
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-442, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

IDX

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- 1) Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- If 1st trip DTC is detected, go to EC-442, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

- 1) Turn ignition switch ON and wait at least 1 second.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 4) Repeat "step 3" 32 times.
- If 1st trip DTC is detected, go to EC-442, "Diagnostic Procedure".

With GST

SEF058Y

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

NAEC1238

1 INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-441.

5. Is the 1st trip DTC P0605 displayed again?

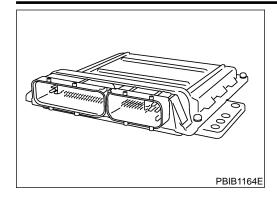
With GST

- 1. Turn ignition switch ON.
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-441.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No Yes GO TO 2. No INSPECTION END


2 REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM NATS)", EC-93.
- 3. Perform "Accelerator Pedal Released Position Learning", EC-73.
- 4. Perform "Throttle Valve Closed Position Learning", EC-73.
- 5. Perform "Idle Air Volume Learning", EC-73.

► INSPECTION END

DTC P1065 ECM POWER SUPPLY (BACK UP)

Component Description

Component Description

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

GI

MA

EM

LC

EC

FE

ECM Terminals and Reference Value

IAEC1244

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			,		CL
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MT
121	W/R	Power supply for ECM (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)	AT
·	·		_		/Ä\

On Board Diagnosis Logic

NAEC1240

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back-up RAM system does not function properly.	Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

AX SU

TF

PD

DTC Confirmation Procedure

NOTE:

NAEC1241

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

ST

BR

K(S)

BT

HA

SC

EL

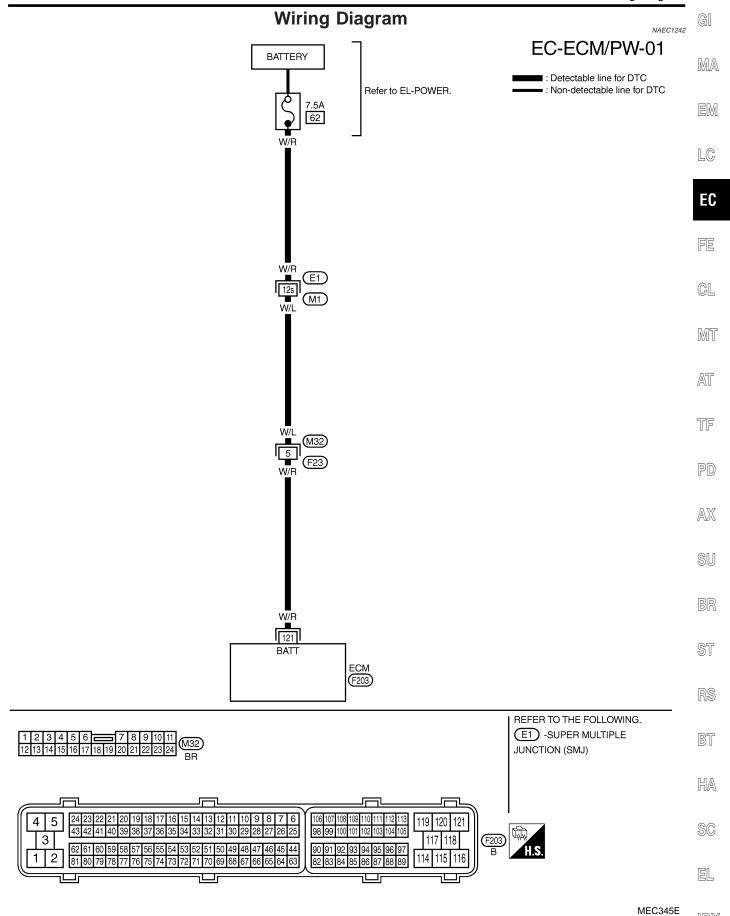
With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 5. Repeat steps 3 and 4 four times.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-446.

DATA MONITOR

MONITOR

NO DTC

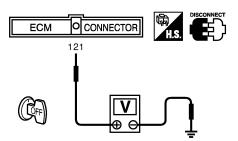

ENG SPEED XXXX rpm

SEF058Y

DTC P1065 ECM POWER SUPPLY (BACK UP)

DTC Confirmation Procedure (Cont'd)

With GST Follow the procedure "WITH CONSULT-II" above.


Diagnostic Procedure

NAEC1243

MBIB0026E

1 CHECK ECM POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check voltage between ECM terminal 121 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK		GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E1, M1
- Harness connectors M32, F23
- 7.5A fuse
- Harness for open or short between ECM and fuse
 - Repair or replace harness or connectors.

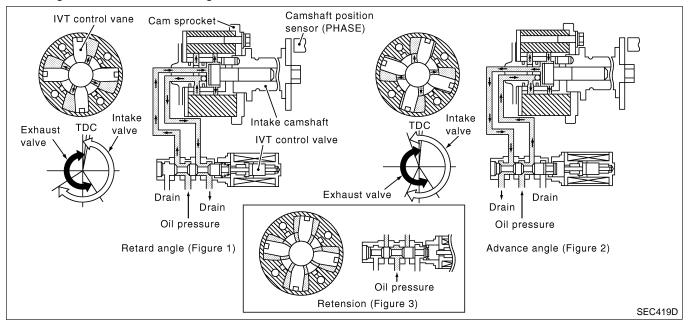
3 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. OK or NG OK GO TO 4.

DTC P1065 ECM POWER SUPPLY (BACK UP)

Diagnostic Procedure (Cont'd)

4 PERFOR	M DTC CONFI	RMATION PROCEDURE	
With CONSU			1
Turn ignition s		" mode with CONSULT-II.	
3. Touch "ERASE	≣".		
Perform "DTO See EC-443.	Confirmation	Procedure".	1
i. Is the 1st trip I	DTC P1065 disp	played again?	
With GST] [
. Turn ignition s			l
. Touch "ERASE			П
Perform "DTO See EC-443.	3 Confirmation	Procedure".	ľ
5. Is the 1st trip I	DTC P1065 disp	played again?	
		Yes or No	
′es	•	GO TO 5.	
10	>	INSPECTION END	
			1
REPLACI	E ECM		
. Replace ECM.		(NIATC) eventure and registration of all NIVIC (NIATC) ignition less IDs. Defeates "NIVIC (NIC	
		[NATS] system and registration of all NVIS (NATS) ignition key IDs. Refer to "NVIS (NISSYSTEM — NATS)", EC-93.	
. Perform "Acce	elerator Pedal Re	eleased Position Learning", EC-73.	
 Perform "Inrolle A Perform "Idle A 		d Position Learning", EC-73. ning", EC-73.	
		INSPECTION END	
]

Description


SYSTEM DESCRIPTION

NAEC1371

NAEC1371S01

			14/12/10/1001
Sensor	Input signal to ECM function	ECM	Actuator
Crankshaft position sensor (POS)	Engine speed and piston position		
Camshaft position sensor (PHASE)	- Engine speed and piston position	Intake	Intake valve timing control sole-
Engine coolant temperature sensor	Engine coolant temperature	valve tim- ing control	noid valve
Vehicle speed signal*1	Vehicle speed		

^{*1:} This signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the camshaft timing control valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1372

MONITOR ITEM	CONDITION		SPECIFICATION
INT/V TIM (B1)	 Engine: After warming up Shift lever N Quickly depressed accelerator 	Idle	0° CA
INT/V TIM (B2)	pedal No-load	2,000 rpm	Approximately 12 - 18° CA
INT/V SOL (B1)	Engine: After warming up Shift lever N Ouighly depressed appellarator.	Idle	0%
INT/V SOL (B2) Quickly depressed accelerator		2,000 rpm	Approximately 40%

DTC P1110, P1135 IVT CONTROL

On Board Diagnosis Logic

On Board Diagnosis Logic

=NAEC1373

GI

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	MA
P1110 1110 (Bank 1)	Intake valve timing control performance	The alignment of the intake valve timing control has been misregistered.	Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal	EM
P1135 1135 (Bank 2)			pick-up portion of the camshaft	LC

FAIL-SAFE MODE

NAEC1373S01

When malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function.

FE

EC

MT

GL

DTC Confirmation Procedure

AT

CAUTION:

NAEC1374

Always drive at a safe speed.

NOTE:

If DTC P1110 or P1135 is displayed with DTC P1111 or P1136, first perform trouble diagnosis for DTC P1111 or P1136, EC-451.

TF

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

SU

(P) WITH CONSULT-II

NAEC1374S01

Turn ignition switch ON.

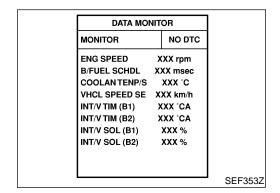
Select "DATA MONITOR" mode with CONSULT-II.

Maintain the following conditions for at least 10 conecutive seconds.

ST

ENG SPEED	1,200 - 2,000 rpm (A constant rotation is maintained.)
COOLAN TEMPS	More than 60°C (140°F)
Selector lever	1st position
Driving location	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

BT


HA

SC

4) Maintain the following conditions for at least 20 conecutive seconds.

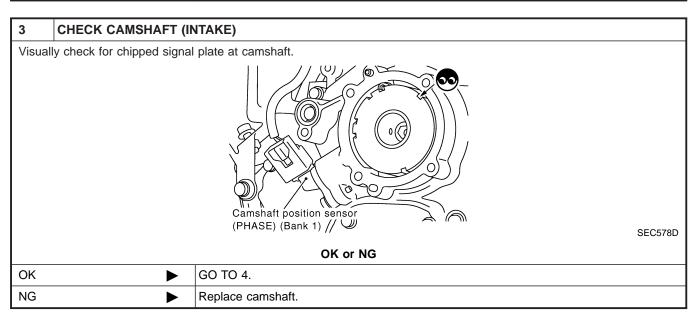
EL

ENG SPEED	Idle
COOLAN TEMPS	More than 60°C (140°F)
Selector lever	P or N position

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-450.

WITH GST

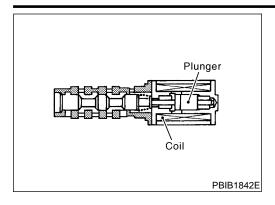
Follow the procedure "With CONSULT-II" above.


NAEC1374S02

Diagnostic Procedure

NAEC1375

1	CHECK CRANKSHAFT POSITION SENSOR (POS)	
Refer to "Component Inspection", EC-325.		
OK or NG		
OK	OK • GO TO 2.	
NG	NG Replace crankshaft position sensor (POS).	


2	2 CHECK CAMSHAFT POSITION SENSOR (PHASE)		
Refer to "Component Inspection", EC-333.			
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	•	Replace.	

4	CHECK INTERMITTENT INCIDENT		
	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. For Wiring Diagram, refer to EC-321 CKP sensor (POS), and EC-328 for CMP sensor (PHASE).		
OK or NG			
	► INSPECTION END		

DTC P1111, P1136 IVT CONTROL SOLENOID VALVE

Component Description

Component Description

Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

EM

GI

MA

CONSULT-II Reference Value in Data Monitor Mode NAEC1037

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
INT/V SOL (B1)	 Engine: After warming up Shift lever N Quickly depressed accelerator 	Idle	0%	
INT/V SOL (B2)	pedal No-load	2,000 rpm	Approximately 40%	

ECM Terminals and Reference Value

Specification data are reference values, and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground

ΓERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
10	P/L	Intake valve timing control solenoid	[Engine is running]	7 - 8√★
		valves (bank 2)	 Warm-up condition When revving engine up to 2,000 rpm quickly. 	
			quickly.	≥ 10.0 V/Div PBIB1790E
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
				7 - 8V★
11	OR/B	Intake valve timing control solenoid valves (bank 1)	 [Engine is running] Warm-up condition When revving engine up to 2,000 rpm 	
			quickly.	>> 10.0 V/Div
				PBIB1790E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC-451

EC

FE

GL

MIT

TF

DTC P1111, P1136 IVT CONTROL SOLENOID VALVE

On Board Diagnosis Logic

On Board Diagnosis Logic NAEC1039 Trouble diagnosis DTC No. **DTC Detecting Condition** Possible Cause name P1111 Intake valve timing An improper voltage is sent to the ECM through Harness or connectors control solenoid valve intake valve timing control solenoid valve. (Intake valve timing control solenoid 1111 (Bank 1) circuit valve circuit is open or shorted.) • Intake valve timing control solenoid P1136 valve 1136 (Bank 2)

DATA MO	NITOR	
MONITOR	NO DTC	
ENG SPEED B/FUEL SCHDL COOLAN TENP/S VHCL SPEED SE INT/V TIM (B1) INT/V TIM (B2) INT/V SOL (B1) INT/V SOL (B2)	XXX °C XXX km/h XXX °CA XXX °CA XXX %	
		SEF353

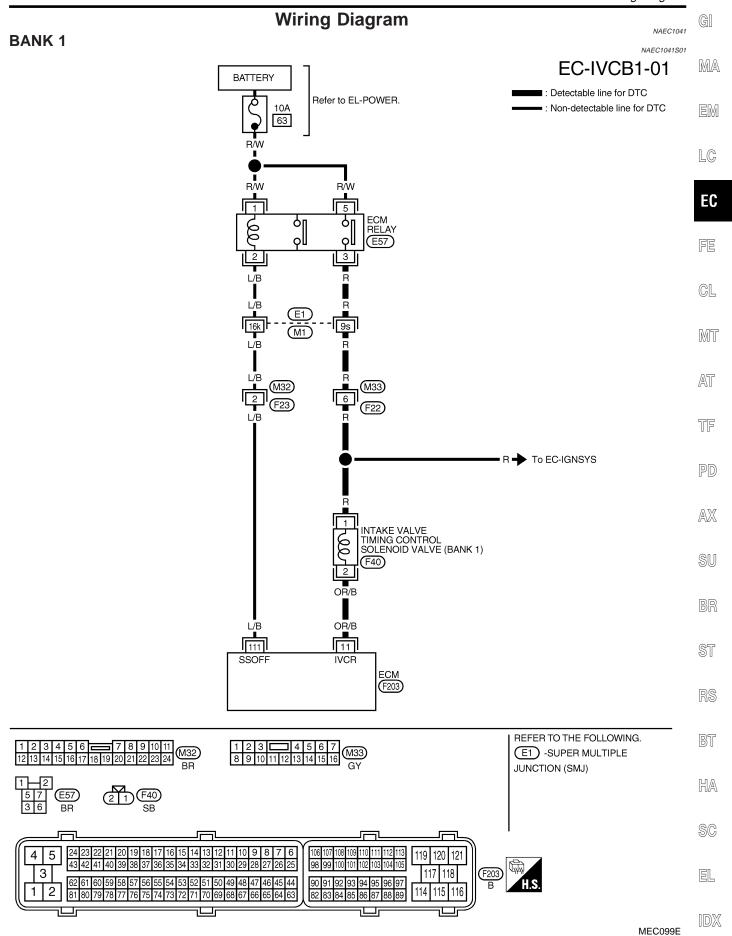
DTC Confirmation Procedure

NAEC1040

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


NAFC1040S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-455.

WITH GST

NAEC1040S02

Follow the procedure "With CONSULT-II" above.

DTC P1111, P1136 IVT CONTROL SOLENOID VALVE Wiring Diagram (Cont'd) **BANK 2** NAEC1041S02 EC-IVCB2-01 BATTERY : Detectable line for DTC Refer to EL-POWER. : Non-detectable line for DTC 63 R/W R/W <u>5</u> ECM RELAY E57 L/B 9s 16k (M1) (F23) (F22) R To EC-IGNSYS INTAKE VALVE TIMING CONTROL SOLENOID VALVE (BANK 2) P/L 111 10 SSOFF IVCL ECM (F203) REFER TO THE FOLLOWING. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GY E1) -SUPER MULTIPLE JUNCTION (SMJ)

MEC100E

120

118

F203 B

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

3

INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

NAEC1042

MA

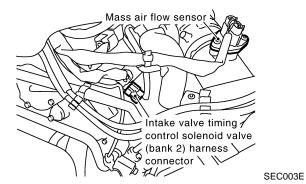
LC

EC

GL

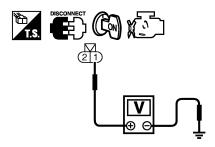
MI

AT


TF

SEC556D

Turn ignition switch OFF.


2. Disconnect intake valve timing control solenoid valve harness connector.

3. Turn ignition switch ON.

4. Check voltage between intake valve timing control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK	GO TO 3.
NG	GO TO 2.

2 DETECT MALFUNCTION PART

Check the following.

- Harness connectors E1, M1
- Harness connectors M33, F22
- Harness continuity between intake valve timing control solenoid valve and ECM relay
 - Repair harness or connectors.

3 CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness connectors continuity between ECM terminal 11 (bank 1) or 10 (bank 2) and intake valve timing control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

$\alpha \nu$		NG
UN	or	NG

OK ►	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

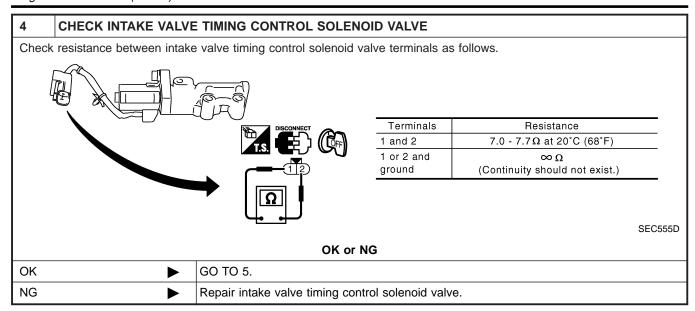
BR

AX

@T

MØ

BT


HA

SC

EL

DTC P1111, P1136 IVT CONTROL SOLENOID VALVE

Diagnostic Procedure (Cont'd)

5	5 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

Component Description

Component Description

NAEC1245

GI

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

MA

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

ı	NΑ	EC	12

LC

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause	EC
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.		FE
P1121 1121	Electric throttle control actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator	CL
		C)	ECM detects that the throttle valve is stuck open.		MT

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

AT

TF

Detected items	Engine operating condition in fail-safe mode
Malfunction A	The ECM controls the electric throttle throttle actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.

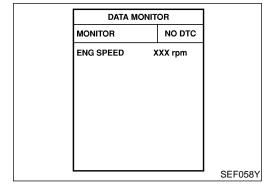
PD

AX

SU

DTC Confirmation Procedure

FOR MALFUNCTION C.


NOTE:

Perform PROCEDURE FOR MALFUNCTION A AND B first. If the DTC cannot be confirmed, perform PROCEDURE

BR

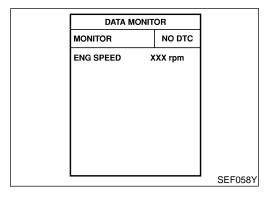
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

BT

PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

HA


- Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Shift selector lever to D position (A/T) or 1st position (M/T), and wait at least 3 seconds.
- 4) Shift selector lever to P position (A/T) or Neutral position (M/T).
- Turn ignition switch OFF and wait at least 10 seconds.
- 6) Turn ignition switch ON and wait at least 1 second.
- Shift selector lever to D position (A/T) or 1st position (M/T), and wait at least 3 seconds.

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

DTC Confirmation Procedure (Cont'd)

- 8) Shift selector lever to P position (A/T) or Neutral position (M/T).
- 9) Turn ignition switch OFF, wait at least 10 seconds, and then turn ON
- 10) If DTC is detected, go to "Diagnostic Procedure", EC-458.
- With GST

Follow the procedure "WITH CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

- (P) With CONSULT-II
- 1) Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Shift selector lever to D position (A/T) or 1st position (M/T), and wait at least 3 seconds.
- 4) Shift selector lever to N or P position.
- 5) Start engine and let it idle for 3 seconds.
- 6) If DTC is detected, go to "Diagnostic Procedure", EC-458.

With GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

NAEC1248 CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY Remove the intake air duct. 2. Check if a foreign matter is caught between the throttle valve and the housing. Electric throttle control actuator Throttle valve SEC513D OK or NG OK GO TO 2. NG Remove the foreign matter and clean the electric throttle control actuator inside.

2 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform "Throttle Valve Closed Position Learning", EC-73.
- 3. Perform "Idle Air Volume Learning", EC-73.

► INSPECTION END

Description

NAEC1249

Description

NOTE:

If DTC P1122 is displayed with DTC P1121 or P1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to EC-457, 467.

1 MA

GI

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

LC

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides the feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

ECM Terminals and Reference Value

NAEC1268

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

EC

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	OR	Throttle control motor relay power supply	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
4	L/W	Throttle control motor (Close)	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal is released	0 - 14V★
5	L/B	Throttle control motor (Open)	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal is fully depressed	0 - 14V★
104	L	Throttle control motor relay	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)
		,	[Ignition switch ON]	0 - 1.0V

 $[\]star$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

FE

GL

MIT

AT

TF

PD

AX

SU

BR

ST

BT

HA

SC

EL

On Board Diagnosis Logic

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

=NAEC1250

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	Harness or connectors (Throttle control motor circuit is open or shorted.) Electric throttle control actuator

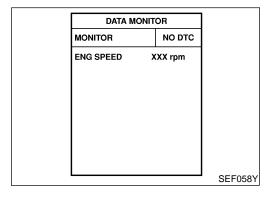
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

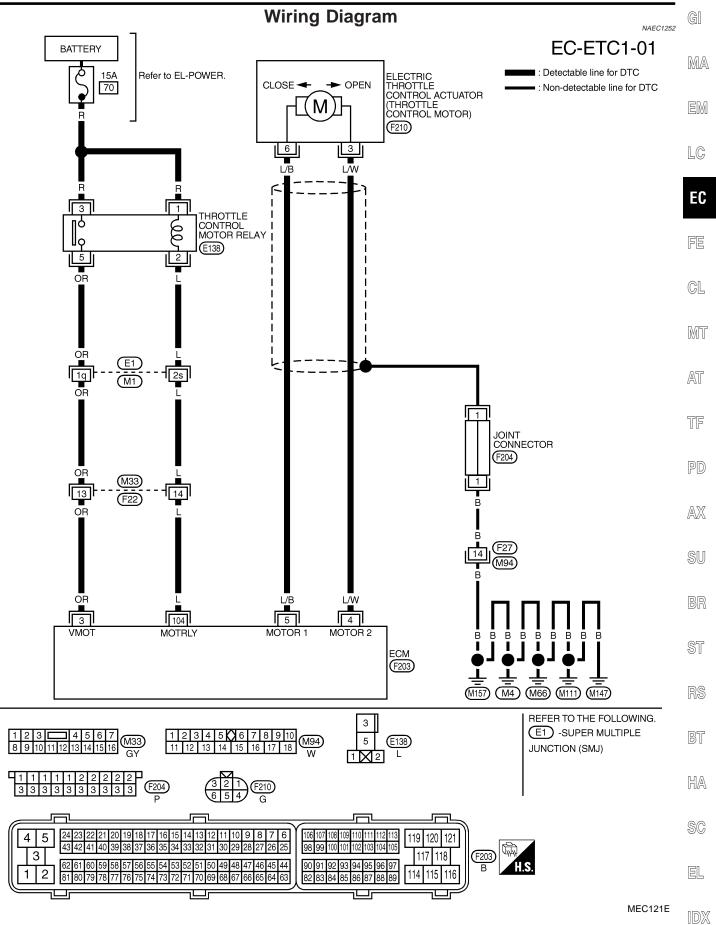

NAEC1251

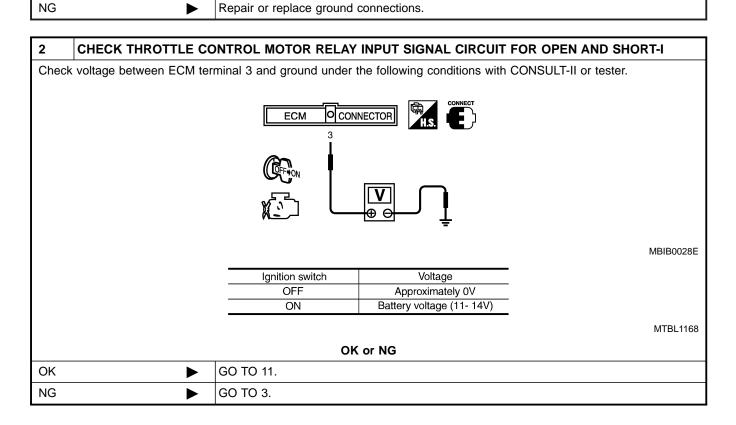
NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

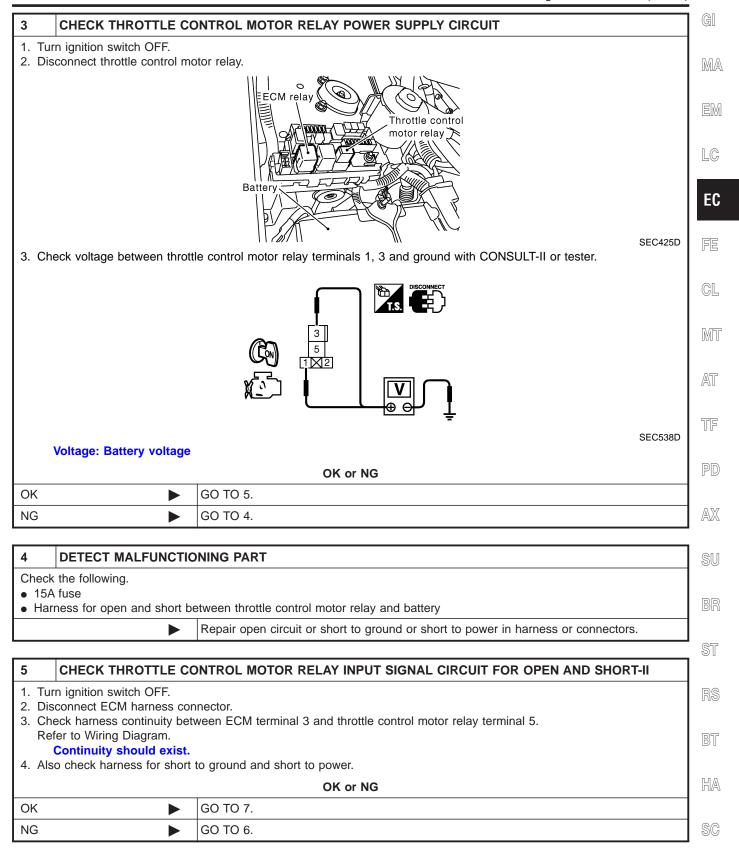
Before performing the following procedure, confirm that battery voltage is more than 11V when engine is running.


(II) With CONSULT-II


- 1) Turn ignition switch ON and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-462.

With GST

Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

Diagnostic Procedure (Cont'd)

EL

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART Check the following. • Harness connectors E1, M11 • Harness connectors M33, F22 • Harness for open and short between throttle control motor relay and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

7	CHECK THROTTLE CO	NTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
Re	 Check harness continuity between ECM terminal 104 and throttle control motor relay terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG			
OK	OK ▶ GO TO 9.			
NG	•	GO TO 8.		

8	DETECT MALFUNCTIONING PART	
HariHari	Check the following. Harness connectors E1, M1 Harness connectors M33, F22 Harness for open and short between throttle control motor relay and ECM	
	•	Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK THROTTLE CONTROL MOTOR RELAY		
Refer to "Component Inspection", EC-466.			
	OK or NG		
OK	•	GO TO 10.	
NG	>	Replace throttle control motor relay.	

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

AX

SU

BR

ST

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT 1. Turn ignition switch OFF. 2. Disconnect electric throttle control actuator harness connector. Electric throttle control actuator Engine front Electric throttle control 引 actuator harness connector SEC433D 3. Disconnect ECM harness connector. 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
2	5	Should not exist
	4	Should exist
6	5	Should exist
	4	Should not exist

MTBL1377

5. Also check harness for short to ground and short to power.

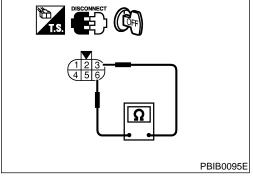
OK or NG

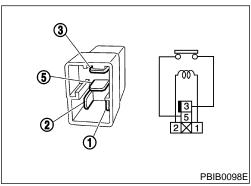
OK	GO TO 12.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

12 CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY 1. Remove the intake air duct. 2. Check if foreign matter is caught between the throttle valve and the housing. Electric throttle control actuator Throttle valve SEC513D OK or NG OK GO TO 13. NG Remove the foreign matter and clean the electric throttle control actuator inside.

EL

HA


SC


Diagnostic Procedure (Cont'd)

13	3 CHECK THROTTLE CONTROL MOTOR			
Refer	Refer to "Component Inspection", EC-466.			
	OK or NG			
OK	•	GO TO 14.		
NG	>	GO TO 15.		

14	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	OK or NG		
ОК	>	GO TO 15.	
NG	>	Repair or replace harness or connectors.	

15	REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR			
1. Re	Replace the electric throttle control actuator.			
2. Per	2. Perform "Throttle Valve Closed Position Learning", EC-73.			
3. Per	3. Perform "Idle Air Volume Learning", EC-73.			
	► INSPECTION END			

Component Inspection THROTTLE CONTROL MOTOR

NAEC1254

....

- Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25°C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform "Throttle Valve Closed Position Learning", EC-73.
- 5. Perform "Idle Air Volume Learning", EC-73.

THROTTLE CONTROL MOTOR RELAY

NAEC1254S02

- 1. Apply 12V direct current between relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace throttle control motor relay.

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

Component Description

Component Description

Power supply for the Throttle Control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

EM

MA

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1256

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	• Ignition switch: ON	ON

EC

LC

ECM Terminals and Reference Value

NAFC1269

Specification data are reference values and are measured between each terminal and ground.

GL

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

MT

	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
	3	OR	Throttle control motor relay power supply	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	
104	104		Throttle control motor	ntrol motor [Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)	TF
		relay	[Ignition switch ON]	0 - 1.0V	PD	

17/5

AX

On Board Diagnosis Logic

NAEC1257

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	(
P1124 1124	Throttle control motor relay circuit short	ECM detects that the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay	[
P1126 1126	Throttle control motor relay circuit open	ECM detects that a voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay	. [

FAIL-SAFE MODE

NAEC1257S01

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

HA

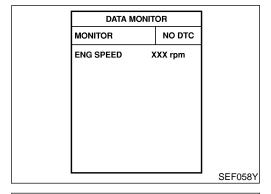
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

SC

EL

DTC Confirmation Procedure

NOTE:

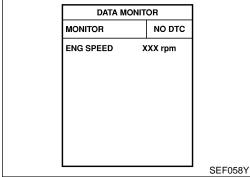

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

NAEC1258

PROCEDURE FOR DTC P1124

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

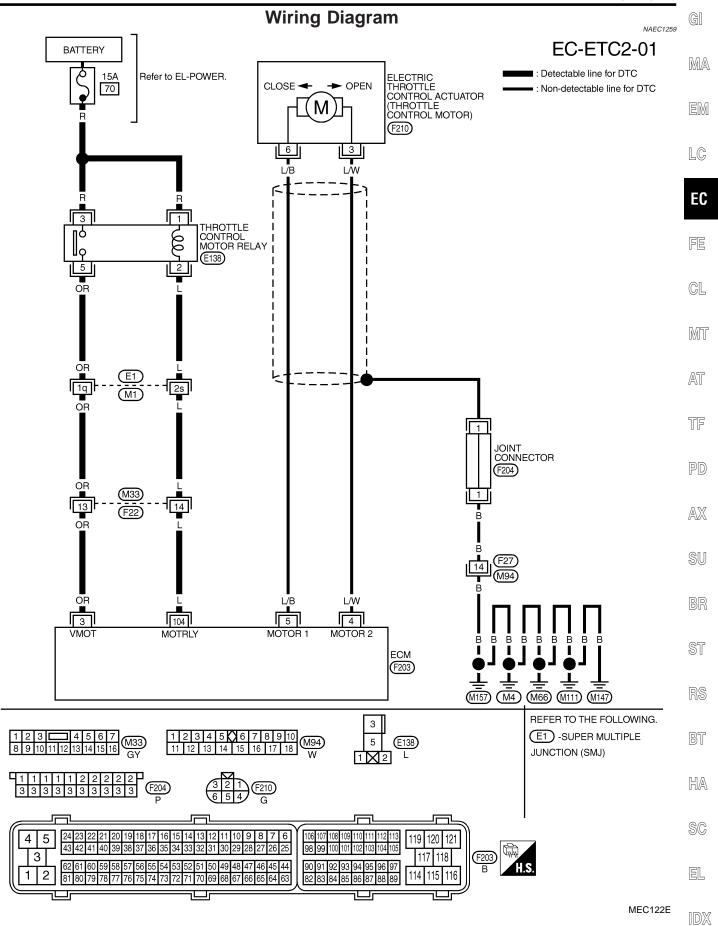


(P) With CONSULT-II

- 1) Turn ignition switch ON and wait at least 1 second.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-470.

With GST

Follow the procedure "With CONSULT-II" above.

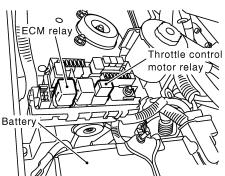


PROCEDURE FOR DTC P1126

- (P) With CONSULT-II
- 1) Turn ignition switch ON and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-470.

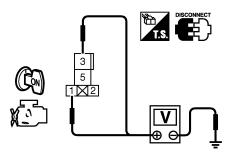
® With GST

Follow the procedure "With CONSULT-II" above.



Diagnostic Procedure

NAEC1260


1 CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle control motor relay.

SEC425D

3. Check voltage between throttle control motor relay terminals 1, 3 and ground with CONSULT-II or tester.

SEC538D

Voltage: Battery voltage

OK	or	NC
UN	or	NG

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

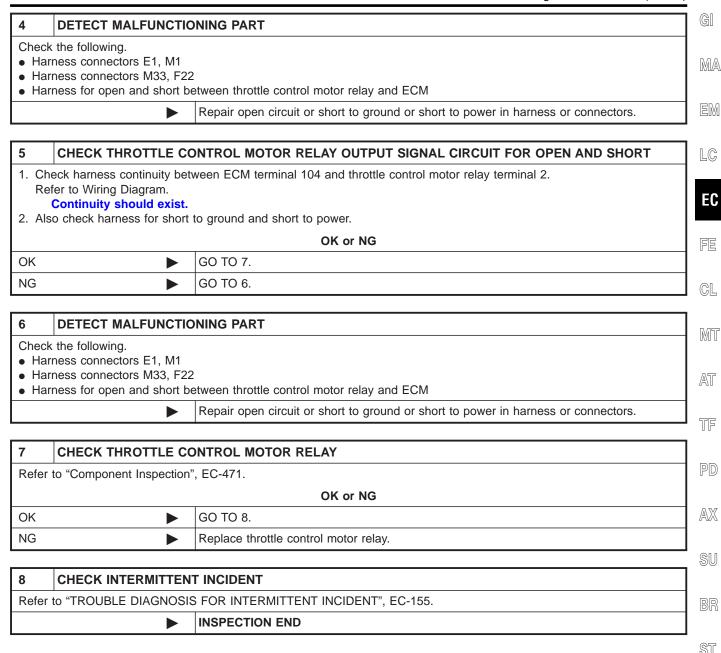
Check the following.

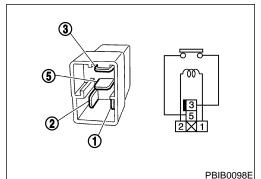
- 15A fuse
- Harness for open and short between throttle control motor relay and battery
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 3 and throttle control motor relay terminal 5. Refer to Wiring Diagram.

Continuity should exist.


4. Also check harness for short to ground and short to power.


OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

Diagnostic Procedure (Cont'd)

Component Inspection THROTTLE CONTROL MOTOR RELAY

NAEC1261

Bī

HA

SC

4 - - - 1 0

- 1. Apply 12V direct current between relay terminals 1 and 2.
- Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

3. If NG, replace throttle control motor relay.

Component Description

NAEC1262

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

ECM Terminals and Reference Value

NAEC1270

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	L/W	Throttle control motor (Close)	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal is released	0 - 14V★ >> 5V/Div 1 ms/Div T PBIB1104E
5	L/B	Throttle control motor (Open)	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal is fully depressed	0 - 14V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

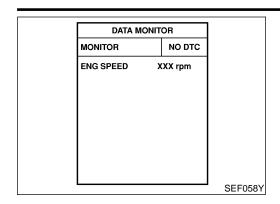
On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

NAEC1263

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1128 1128	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

DTC Confirmation Procedure


NAEC1264

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DTC P1128 THROTTLE CONTROL MOTOR

DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- 1) Turn ignition switch ON and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-475.

MA

G[

EM

LC

Follow the procedure "With CONSULT-II" above.

EC

FE

CL

MT

AT

TF

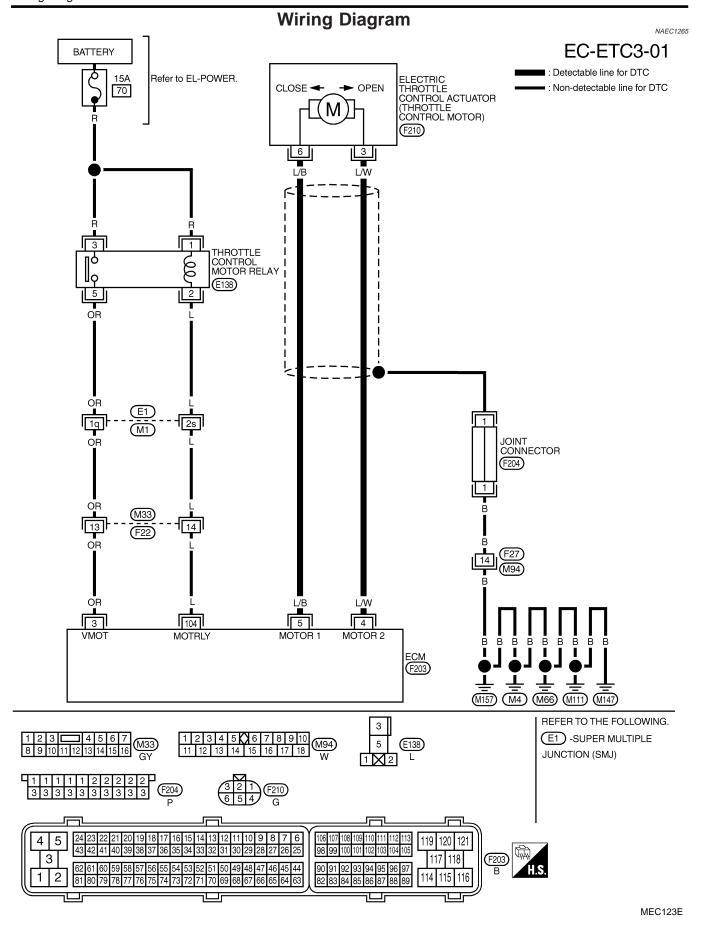
PD

 $\mathbb{A}\mathbb{X}$

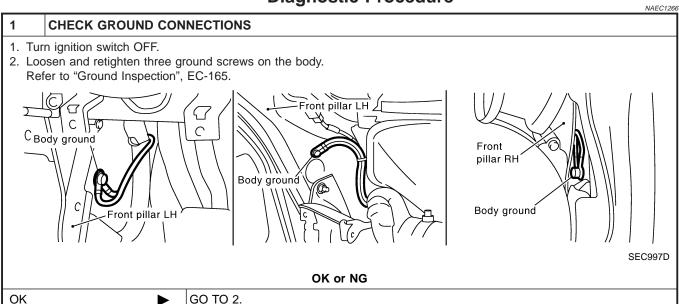
SU

BR

ST

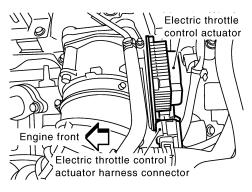

RS

BT


HA

SC

EL


CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

Repair or replace ground connections.

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Disconnect ECM harness connector.

NG

3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity	
3	5	Should not exist	
	4	Should exist	
•	5	Should exist	
6	4	Should not exist	

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 3.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

MT

G[

MA

EM

LC

EC

FE

CL

AT

TF

AX

SU

BR

SEC433D

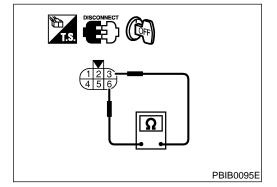
MTBL1377

BT

HA

SC

EL


DTC P1128 THROTTLE CONTROL MOTOR

Diagnostic Procedure (Cont'd)

3	CHECK THROTTLE CO	NTROL MOTOR		
Refer	Refer to "Component Inspection", EC-476.			
OK or NG				
OK	>	GO TO 4.		
NG	>	GO TO 5.		

4	CHECK INTERMITTENT	INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
OK or NG			
OK	>	GO TO 5.	
NG	>	Repair or replace harness or connectors.	

5	REPLACE ELECTRIC T	HROTTLE CONTROL ACTUATOR	
1. Re	place the electric throttle co	ontrol actuator.	
2. Per	2. Perform "Throttle Valve Closed Position Learning", EC-73.		
3. Per	3. Perform "Idle Air Volume Learning", EC-73.		
	•	INSPECTION END	

Component Inspection THROTTLE CONTROL MOTOR

NAEC1267

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25°C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform "Throttle Valve Closed Position Learning", EC-73.
- 5. Perform "Idle Air Volume Learning", EC-73.

Description

GI

MA

EM

LC

EC

FE

MT

TF

PD

AX

SU

BR

ST

BT

HA

SC

EL

Description

If DTC P1130 is displayed with P1165, first perform trouble diagnosis for DTC P1165, EC-543.

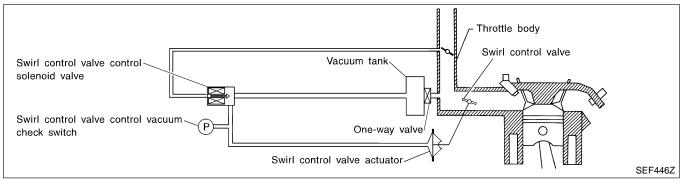
SYSTEM DESCRIPTION

NAFC1043S01

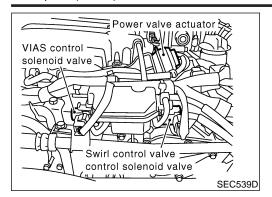
Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position	Swirl con- trol valve control	Swirl control valve control sole- noid valve Vacuum signal Swirl control valve actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Mass air flow sensor	Amount of intake air		↓ Swirl control valve	_
Engine coolant temperature sensor	Engine coolant temperature			

This system has a swirl control valve in the intake passage of each cylinder.

While idling and during low engine speed operation, the swirl control valve closes. Thus the velocity of the air in the intake passage increases, promoting the vaporization of the fuel and producing a swirl in the combustion chamber.


Because of this operation, this system tends to increase the burning speed of the gas mixture, improve fuel consumption, and increase the stability in running conditions.

Also, except when idling and during low engine speed operation, this system opens the swirl control valve. In this condition, this system tends to increase power by improving intake efficiency via reduction of intake flow resistance, intake flow.


The solenoid valve controls swirl control valve's shut/open condition. This solenoid valve is operated by the ECM.

Accelerator pedal position sensor (Idle position)	Engine speed (A/T)	Engine speed (M/T)	Swirl control valve control solenoid valve	Swirl control valve
ON	Below 3,200 rpm	Below 2,400 rpm	ON	Closed
OFF	Less than 3,200 rpm	Less than 2,400 rpm	ON	Closed
OFF	More than 3,600 rpm	More than 2,800 rpm	OFF	Open

When engine coolant temperature is below 10°C (50°F) and above 55°C (131°F), swirl control valve is kept open regardless of above condition.

Description (Cont'd)

COMPONENT DESCRIPTION

Swirl Control Valve Control Solenoid Valve

NAEC1043S02

NAEC104350

The swirl control valve control solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the solenoid valve is bypassed to apply intake manifold vacuum to the swirl control valve actuator. This operation closes the swirl control valve. When the ECM sends an OFF signal, the vacuum signal is cut and the swirl control valve opens.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1044

MONITOR ITEM	CONDITION		SPECIFICATION
SWRL CONT S/V	Engine speed: Idle	Engine coolant temperature is between 15°C (59°F) to 50°C (122°F).	ON
		Engine coolant temperature is above 55°C (131°F).	OFF

ECM Terminals and Reference Value

NAEC1045

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
27	27 IG 1	Swirl control valve con-	 [Engine is running] Idle speed Engine coolant temperature is between 15 to 50°C (59 to 122°F). 	0 - 1.0V
27			 [Engine is running] Idle speed Engine coolant temperature is above 55°C (131°F). 	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

			On Board Diagnosis L	OGIC NAEC1046
DTC No.	Trouble diagnosis name		DTC Detecting Condition	Possible Cause
P1130 1130	Swirl control valve control solenoid valve	A)	An improper voltage signal is sent to ECM through swirl control valve control solenoid valve.	Harness or connectors (The swirl control valve control solenoid valve circuit is open or shorted.) Swirl control valve control solenoid valve
		В)	The vacuum signal is not sent to swirl control valve under specified driving conditions, even though swirl control valve control solenoid valve is ON.	Harness or connector (The swirl control valve control solenoid valve circuit is open.) Swirl control valve control solenoid
				valve Intake system (Intake air leaks) Hoses and tubes between intake
				manifold, vacuum tank and swirl control valve actuator Swirl control valve actuator
				Swirl control valve control vacuum check switch Mass air flow sensor Complete position access (DLASE)
				Camshaft position sensor (PHASE) Throttle position sensor Accelerator pedal position sensor
		C)	The vacuum signal is sent to swirl control valve even though swirl control valve control solenoid valve is OFF.	Harness or connector (The swirl control valve control solenoid valve circuit is shorted.)
				Swirl control valve control vacuum check switch Camshaft position sensor (PHASE) Thought position sensor
				 Throttle position sensor Accelerator pedal position sensor Hoses and tubes between air cleaner and swirl control valve vacuum check
				switch Swirl control valve control solenoid valve

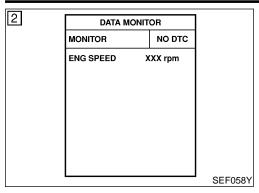
DTC Confirmation Procedure

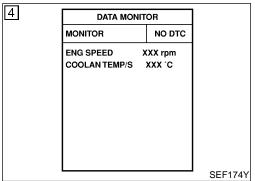
Perform Procedure for malfunction A first. If the 1st trip DTC cannot be confirmed, perform Procedure for malfunction B. If the 1st trip DTC is not confirmed on Procedure for malfunction B, perform Procedure for malfunction C.

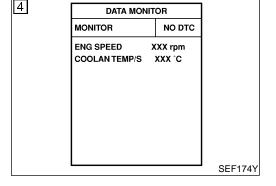
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

ST


BT


HA


SC

EL

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION A

(A) With CONSULT-II

NAEC1047S01

NAEC1047S0101

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-482.

With GST

NAEC1047S0102

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B TESTING CONDITION:

NAFC1047S02

- For best results, perform the test at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm that battery voltage is more than 10V at idle, then stop engine immediately.

(A) With CONSULT-II

NAEC1047S0201

- 1) Turn ignition switch OFF and wait at least 10 seconds.
- 2) Turn ignition switch ON.
- Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4) Confirm COOLAN TEMP/S value is 40°C (104°F) or less. If the value is more than 40°C (104°F), park the vehicle in a cool place and retry from step 1.
- Start engine and wait until COOLAN TEMP/S value increases to more than 55°C (131°F).
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-482.

With GST

NAEC1047S0202

Follow the procedure "With CONSULT-II" above.

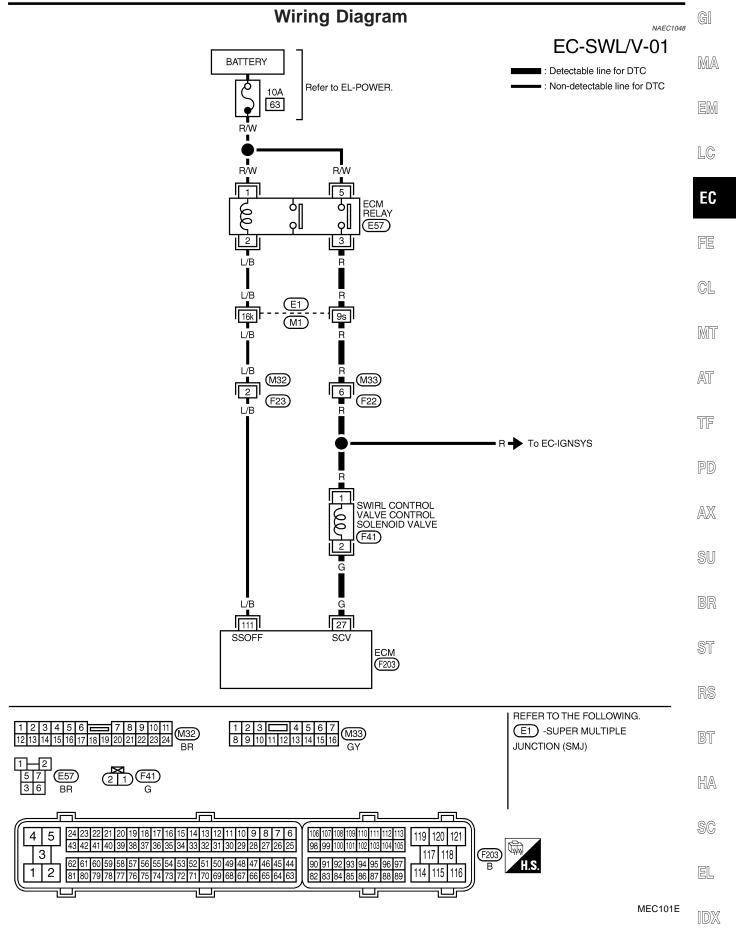
PROCEDURE FOR MALFUNCTION C TESTING CONDITION:

NAEC1047S03

- For best results, perform the test at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(A) With CONSULT-II

NAEC1047S030


- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and let it idle for at least 20 seconds. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-482.

With GST

NAEC1047S0302

Follow the procedure "With CONSULT-II" above.

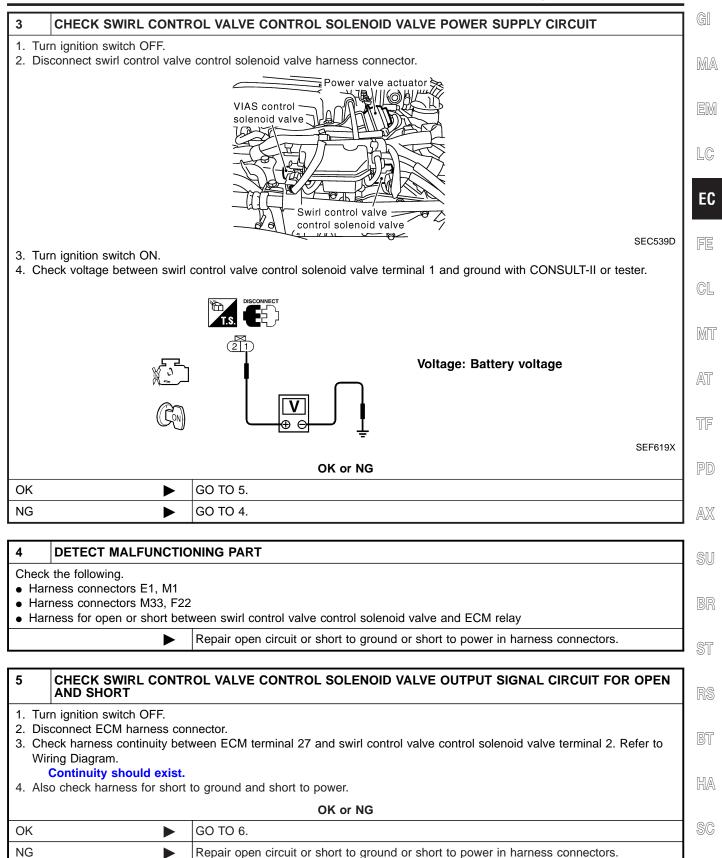
Wiring Diagram

Diagnostic Procedure

NG

Diagnostic Procedure PROCEDURE A

NAEC1049

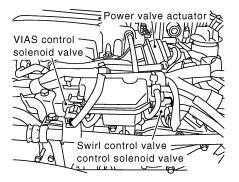

			NAEC1049S0
1	INSPECTION START		
Do y	ou have CONSULT-II?		
		Yes or No	
Yes	•	GO TO 2.	
No	•	GO TO 3.	

2	CHECK SWIRL CONTR	OL VALVE CO	ONTROL SOLE	NOID V	ALVE CIRCUIT
1. Tur 2. Sel	n ignition switch ON. ect "SWIRL CONT SOL V. ich "ON" and "OFF" on CO			with CO	NSULT-II.
			ACTIVE TES	Т	
			SWIRL CONT SOL VALVE	OFF	
			MONITOR		
			ENG SPEED	XXX rpm	
				<u> </u>	SEC004E
4. Ma	4. Make sure that clicking sound is heard from the swirl control valve control solenoid valve.				
	OK or NG				
ОК	•	GO TO 6.			

GO TO 3.

Diagnostic Procedure (Cont'd)

EIL



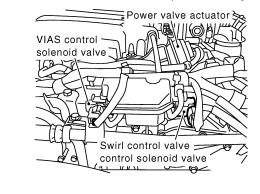
Diagnostic Procedure (Cont'd)

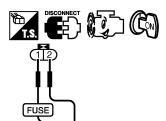
CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE

(II) With CONSULT-II

- 1. Reconnect the disconnected harness connectors.
- 2. Start engine and let it idle.
- 3. Remove vacuum hose connected to swirl control valve actuator.
- 4. Select "SWIRL CONT SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Touch "ON" and "OFF" on CONSULT-II screen.
- 6. Check vacuum existence and operation delay time under the following conditions.

SWIRL CONT SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.


Operation takes less than 1 second.



SEC540D

Without CONSULT-II

- 1. Reconnect ECM harness connector.
- 2. Remove vacuum hose connected to swirl control valve actuator.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between swirl control valve control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence and operation delay time under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

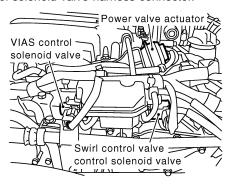
Operation takes less than 1 second.

SEC541D

ОК	>	GO TO 7.
NG	•	Replace intake manifold collector assembly.

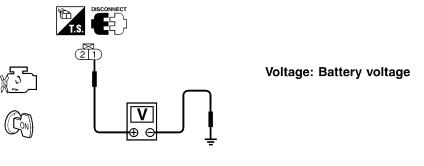
7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	>	INSPECTION END	

OK or NG


Diagnostic Procedure (Cont'd)

		PROCEDURE B	NAEC1049S02
1 CHECK	INTAKE SYST	EM	W.Ediologo
Start engine a Check intake		air leake	N
Z. Check intake	all system for a	OK or NG	
OK (With CONS	ULT-II)	GO TO 2.	
OK (Without CO	NSULT-	GO TO 3.	
II) NG		Denois inteles queters	
NG	<u> </u>	Repair intake system.	
2 CHECK	SWIRL CONT	ROL VALVE CONTROL SOLENOID VALVE CIRCUIT	
	L CONT SOL V	VALVE" in "ACTIVE TEST" mode with CONSULT-II. ONSULT-II screen. ACTIVE TEST	F
		SWIRL CONT SOL VALVE OFF MONITOR ENG SPEED XXX rpm	R
			<i>.</i>
			SEC004E
3. Make sure that	at clicking soun	d is heard from the swirl control valve control solenoid valve.	P
OK		OK or NG GO TO 6.	
NG		GO TO 3.	
			<u> </u>
			P
			S
			R
			00
			ļ,
			8
			<u> </u>

Diagnostic Procedure (Cont'd)


CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect swirl control valve control solenoid valve harness connector.

SEC539D

- 3. Turn ignition switch ON.
- 4. Check voltage between swirl control valve control solenoid valve terminal 1 and ground with CONSULT-II or tester.

OK or NG

SEF619X

ОК	>	GO TO 5.
NG	•	GO TO 4.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E1, M1
- Harness connectors M33, F22
- Harness for open or short between swirl control valve control solenoid valve and ECM relay
 - Repair open circuit or short to ground or short to power in harness connectors.

5 CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 27 and swirl control valve control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK ►	GO TO 6.
NG 🕨	Repair open circuit or short to ground or short to power in harness connectors.

Diagnostic Procedure (Cont'd)

G[

MA

EM

LC

EC

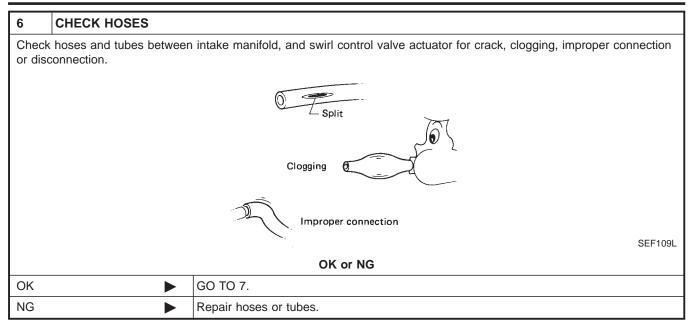
FE

GL

MT

AT

TF


PD

 $\mathbb{A}\mathbb{X}$

SU

BR

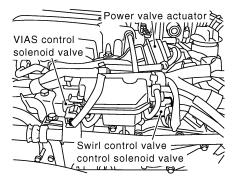
ST

RS

HA

BT

SC


EL

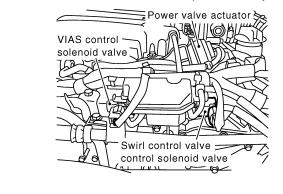
Diagnostic Procedure (Cont'd)

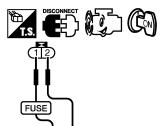
CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Reconnect the disconnected harness connectors.
- 2. Start engine and let it idle.
- 3. Remove vacuum hose connected to swirl control valve actuator.
- 4. Select "SWIRL CONT SOL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Touch "ON" and "OFF" on CONSULT-II screen.
- 6. Check vacuum existence and operation delay time under the following conditions.

SWIRL CONT SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.


Operation takes less than 1 second.



SEC540D

Without CONSULT-II

- 1. Reconnect ECM harness connector.
- 2. Remove vacuum hose connected to swirl control valve actuator.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between swirl control valve control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence and operation delay time under the following conditions.

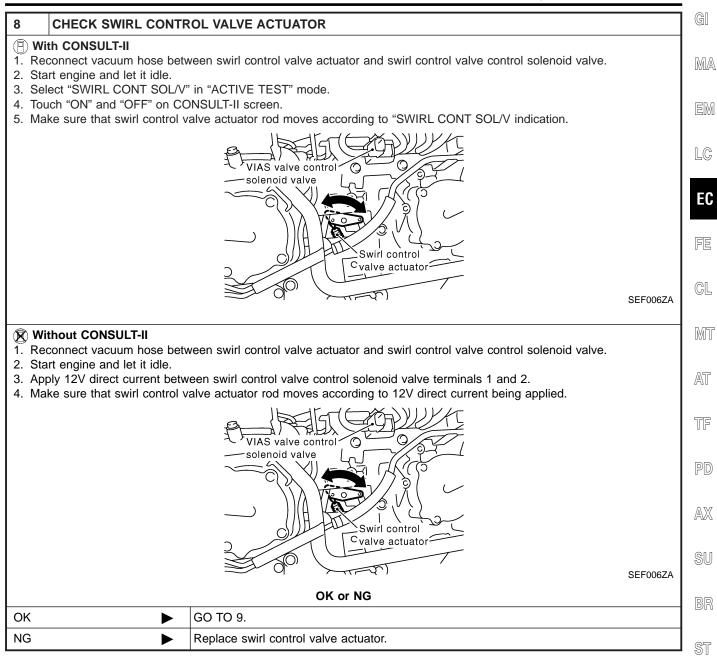
Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

Operation takes less than 1 second.

SEC541D

OK •	>	GO TO 8.
NG	•	Replace intake manifold collector assembly.

OK or NG

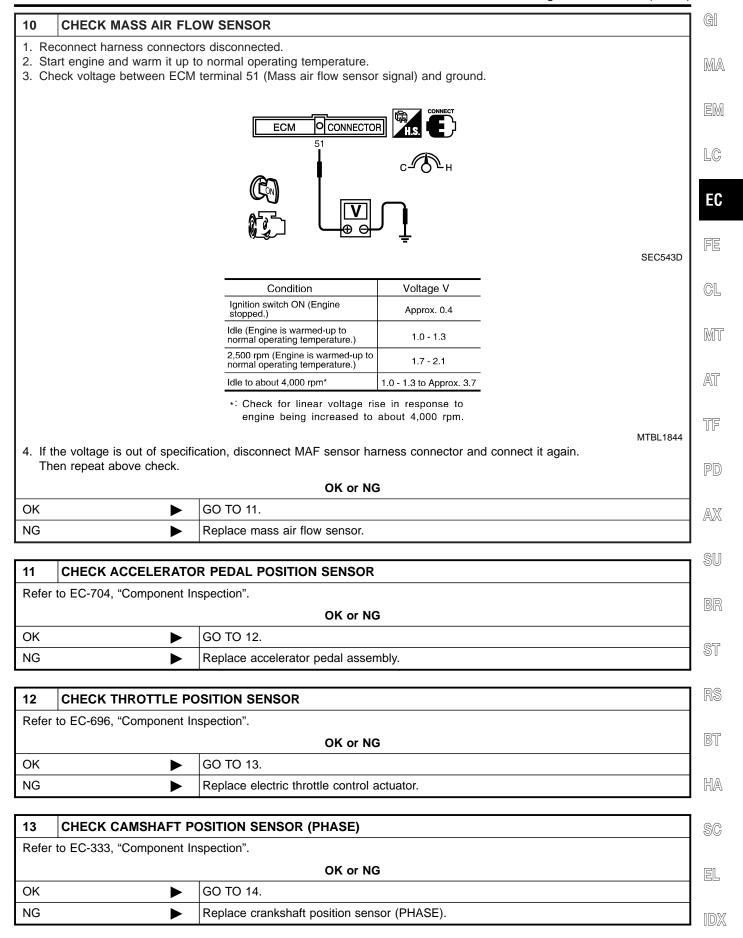

Diagnostic Procedure (Cont'd)

BT

HA

SC

EL



EC-489

Diagnostic Procedure (Cont'd)

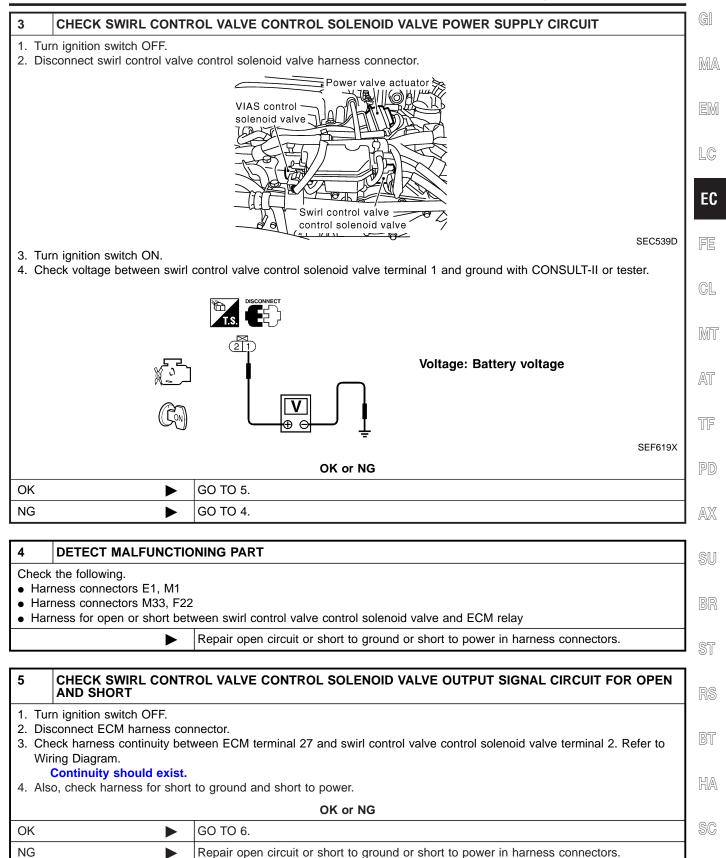
CHECK SWIRL CONTROL VALVE CONTROL VACUUM CHECK SWITCH 1. Turn ignition switch OFF. 2. Disconnect vacuum hose connected to swirl control valve control vacuum check switch. 3. Attach vacuum pump to swirl control valve control vacuum check switch. 4. Turn ignition switch ON. 5. Check voltage between ECM terminal 59 and ground under the following conditions. O CONNECTOR **ECM** 59 Swirl control valve control vacuum check switch Vacuum pump SEC542D Applied pressure Voltage V More than -20.0 kPa (-150 mmHg, -5.91 inHg) Engine ground –20.0 to –23.0 kPa (–150 to –172 mmHg, –5.91 to –6.77 inHg) Engine ground or Approx. 4.8 Less than -23.0 kPa (-172 mmHg, -6.77 inHg) Approx. 4.8 MTBL1369 OK or NG OK GO TO 10. NG Replace swirl control valve control vacuum check switch.

Diagnostic Procedure (Cont'd)

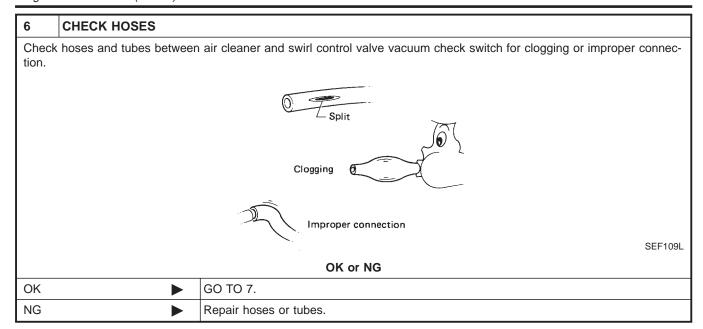
Diagnostic Procedure (Cont'd)

14	14 CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	► INSPECTION END	

PROCEDURE C


NAFC1049S03

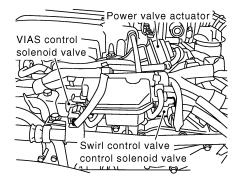
1	1 INSPECTION START		
Do yo	Do you have CONSULT-II?		
	Yes or No		
Yes	>	GO TO 2.	
No	>	GO TO 3.	


OK •	GO TO 6.
NG ▶	GO TO 3.

Diagnostic Procedure (Cont'd)

EIL

Diagnostic Procedure (Cont'd)



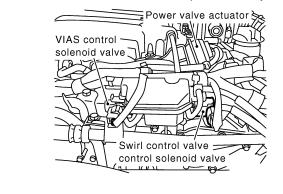
Diagnostic Procedure (Cont'd)

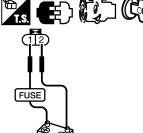
CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Reconnect the disconnected harness connectors.
- 2. Start engine and let it idle.
- 3. Remove vacuum hose connected to swirl control valve actuator.
- 4. Select "SWIRL CONT SOL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Touch "ON" and "OFF" on CONSULT-II screen.
- 6. Check vacuum existence and operation delay time under the following conditions.

SWIRL CONT SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.


Operation takes less than 1 second.



SEC540D

Without CONSULT-II

- 1. Reconnect ECM harness connector.
- 2. Remove vacuum hose connected to swirl control valve actuator.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between swirl control valve control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence and operation delay time under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

Operation takes less than 1 second.

SEC541D

OK >	GO TO 8.
NG ►	Replace intake manifold collector assembly.

OK or NG

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

AX SU

ST

D@

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

CHECK SWIRL CONTROL VALVE CONTROL VACUUM CHECK SWITCH 1. Turn ignition switch OFF. 2. Disconnect vacuum hose connected to swirl control valve control vacuum check switch. 3. Attach vacuum pump to swirl control valve control vacuum check switch. 4. Turn ignition switch ON. 5. Check voltage between ECM terminal 59 and ground under the following conditions. O CONNECTOR **ECM** 59 Swirl control valve control vacuum check switch Vacuum pump SEC542D Voltage V Applied pressure More than -20.0 kPa (-150 mmHg, -5.91 inHg) Engine ground –20.0 to –23.0 kPa (–150 to –172 mmHg, –5.91 to –6.77 inHg) Engine ground or Approx. 4.8 Less than -23.0 kPa (-172 mmHg, -6.77 inHg) Approx. 4.8 MTBL1369 OK or NG OK GO TO 9. NG Replace swirl control valve control vacuum check switch.

9	9 CHECK CAMSHAFT POSITION SENSOR (PHASE)	
Refer	Refer to EC-333, "Component Inspection".	
	OK or NG	
OK	>	GO TO 10.
NG	•	Replace camshaft position sensor (PHASE).

10	0 CHECK THROTTLE POSITION SENSOR			
Refer	Refer to EC-696, "Component Inspection".			
	OK or NG			
ОК	OK ▶ GO TO 11.			
NG	>	Replace electric throttle control actuator.		

11	11 CHECK ACCELERATOR PEDAL POSITION SENSOR		
Refer	Refer to EC-704, "Component Inspection".		
	OK or NG		
OK	OK ▶ GO TO 12.		
NG	>	Replace accelerator pedal assembly.	

Diagnostic Procedure (Cont'd)

12	12 CHECK INTERMITTENT INCIDENT				
Perform	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.				
	► INSPECTION END				

GI

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

CL

MT

AT

TF

PD

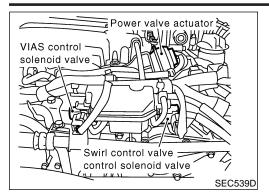
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

Component Description

The swirl control valve control solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the solenoid valve is bypassed to apply intake manifold vacuum to the swirl control valve actuator. This operation closes the swirl control valve. When the ECM sends an OFF signal, the vacuum signal is cut and the swirl control valve opens.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1051

MONITOR ITEM	CONDITION		SPECIFICATION
SWRL CONT S/V	Engine speed: Idle	Engine coolant temperature is between 15°C (59°F) to 50°C (122°F).	ON
		Engine coolant temperature is above 55°C (131°F).	OFF

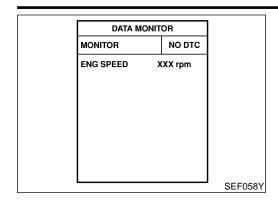
ECM Terminals and Reference Value

NAEC1052

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
27	G Swirl control valve control solenoid valve	Swirl control valve con-	 [Engine is running] Idle speed Engine coolant temperature is between 15 to 50°C (59 to 122°F). 	0 - 1.0V
		[Engine is running] ■ Idle speed ■ Engine coolant temperature is above 55°C (131°F).	BATTERY VOLTAGE (11 - 14V)	

On Board Diagnosis Logic

NAEC1053

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1131 1131	Swirl control valve control solenoid valve circuit	An improper voltage signal is sent to ECM through swirl control valve control solenoid valve.	Harness or connectors (The swirl control valve control solenoid valve circuit is open or shorted.) Swirl control valve control solenoid valve

DTC Confirmation Procedure

DTC Confirmation Procedure

NAEC1054

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

MA

G[

(E) WITH CONSULT-II

NAEC1054S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-501.

LC

EC

WITH GST

NAEC1054S02

Follow the procedure "With CONSULT-II" above.

01001002

GL

MT

AT

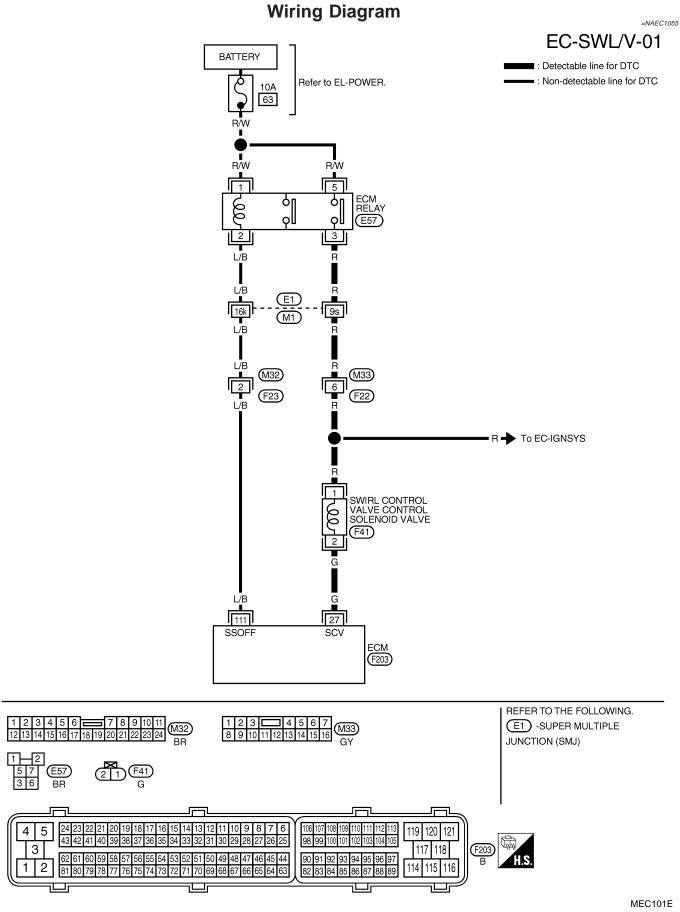
TF

PD

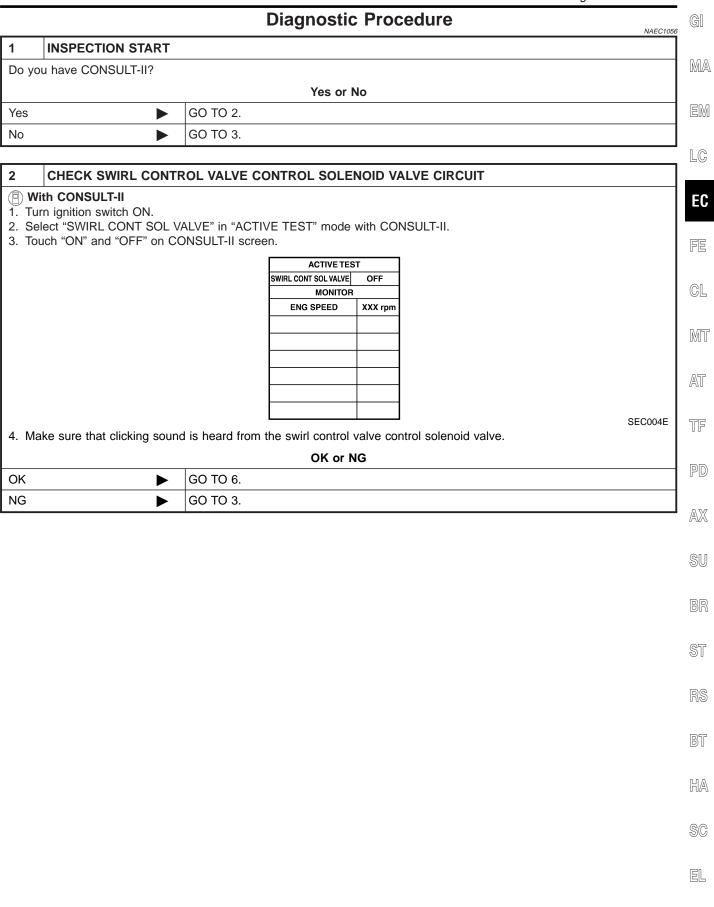
AX SU

BR

ST


RS

BT


HA

SC

EL

Diagnostic Procedure

Diagnostic Procedure (Cont'd) CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT 1. Turn ignition switch OFF. 2. Disconnect swirl control valve control solenoid valve harness connector. VIAS control solenoid valve Swirl control valve control solenoid valve SEC539D 3. Turn ignition switch ON. 4. Check voltage between swirl control valve control solenoid valve terminal 1 and ground with CONSULT-II or tester. Voltage: Battery voltage

OK or NG

SEF619X

	DETECT MALEUNICTIC	AUNO DADT
NG	>	GO TO 4.
OK	>	GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

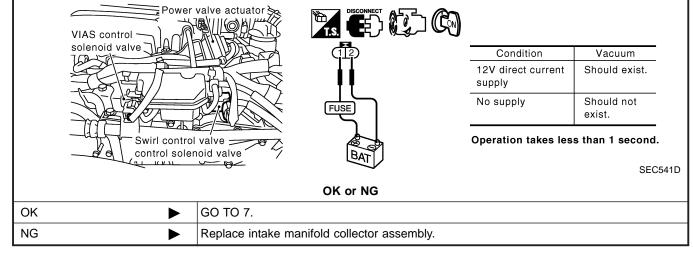
- Harness connectors E1, M1
- Harness connectors M33, F22
- Harness for open or short between swirl control valve control solenoid valve and ECM relay
 - Repair open circuit or short to ground or short to power in harness connectors.

5 CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 27 and swirl control valve control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK	or	NG
----	----	----

OK ►	GO TO 6.
NG ▶	Repair open circuit or short to ground or short to power in harness connectors.

Diagnostic Procedure (Cont'd)

DTC P1131 SWIRL CONTROL VALVE CONTROL SOLENOID VALVE CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE (P) With CONSULT-II 1. Reconnect the disconnected harness connectors. 2. Start engine and let it idle. 3. Remove vacuum hose connected to swirl control valve actuator. 4. Select "SWIRL CONT SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II. 5. Touch "ON" and "OFF" on CONSULT-II screen. 6. Check vacuum existence and operation delay time under the following conditions. ower valve actuator } VIAS control SWIRL CONT SOL VALVE Vacuum solenoid valve ON Should exist. OFF Should not exist. Operation takes less than 1 second. Swirl control valve control solenoid valve (R) Without CONSULT-II 1. Reconnect ECM harness connector.

- 2. Remove vacuum hose connected to swirl control valve actuator.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between swirl control valve control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence and operation delay time under the following conditions.

7	7 CHECK INTERMITTENT INCIDENT			
Perfo	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	► INSPECTION END			

GI

MA

EM

LC

EC

FE

GL

MT

SEC540D

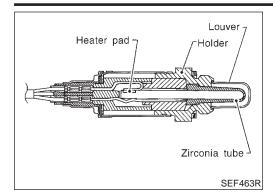
AT

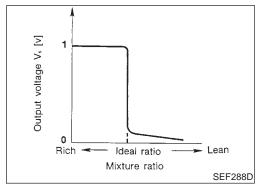
TF

PD

SU

AX


ST


BT

HA

SC

EL

Component Description

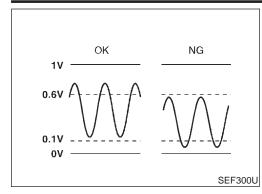
The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONI	DITION	SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value


NAEC1149

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	G/B	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
35	G	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

0	П
115	
(GI	
	ш

MA

LC

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1143 1143 (Bank 1)	Heated oxygen sensor 1 lean shift monitoring	The maximum and minimum voltage from the sensor are not reached to the specified voltages.	Heated oxygen sensor 1 heaterFuel pressure
P1163 1163 (Bank 2)			InjectorIntake air leaks

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

EC

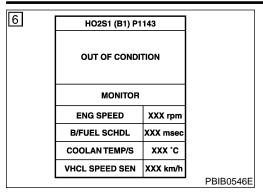
GL

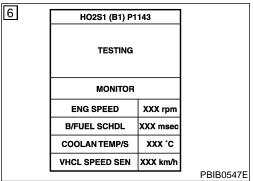
MT

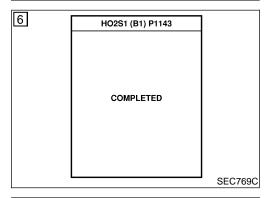
AT

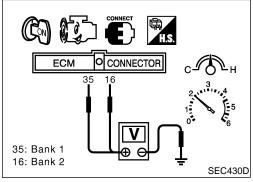
TF

NAEC1151


 $\mathbb{A}\mathbb{X}$


SU


HA


SC

EL

WITH CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- Turn ignition switch ON and select "HO2S1 (B1)/(B2) P1143/ P0154" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Start engine and let it idle for at least 3 minutes.

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,300 - 2,800 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	3 - 14 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-507.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- If NG, go to "Diagnostic Procedure", EC-507.

MA

LC

EC

FE

GL

MT

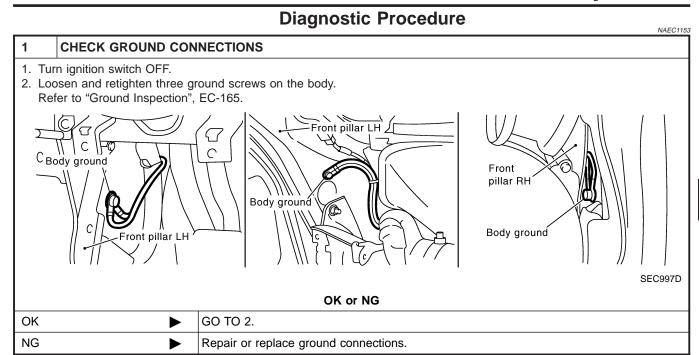
AT

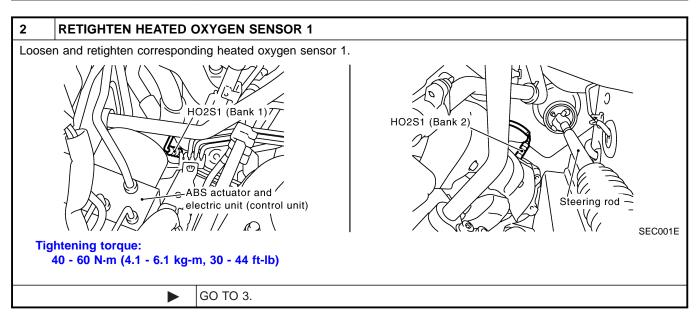
TF

PD

 $\mathbb{A}\mathbb{X}$

SU

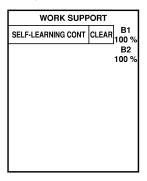

BT


HA

SC

EL

[DX

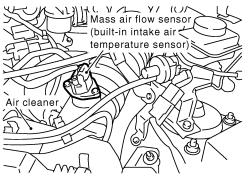


EC-507

CLEAR THE SELF-LEARNING DATA

(I) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".



SEF968Y

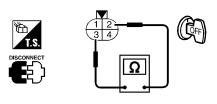
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

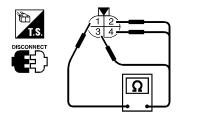
Without CONSULT-II

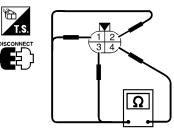
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.

SEF960YA

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?


Yes or No


Yes	Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-273.
No •	GO TO 4.

CHECK HEATED OXYGEN SENSOR HEATER 1

- 1. Stop engine.
- 2. Disconnect HO2S1 harness connector.
- 3. Check resistance between HO2S1 terminals as follows.

SEF249Y

Terminals	Resistance	
2 and 3	3.3 - 4.0Ω at 25 °C (77 °F)	
1 and 2, 3, 4 4 and 1, 2, 3	$∞\Omega$ (Continuity should not exist.)	

MTBL1782

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	•	GO TO 6.
NG	•	Replace malfunctioning heated oxygen sensor 1.

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

@T

RS

BT

HA

SC

EL

5 CHECK HEATED OXYGEN SENSOR 1

- (I) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED COOLAN TEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V XXX V		

SEF967Y

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

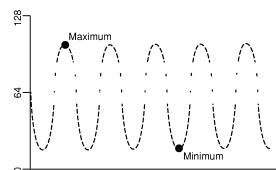
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

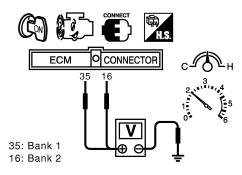
Trigger	ENG	HO2S1	
	SPEED	(B1)	
	rpm	٧	
XXX	XXX	XXX	

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 7.	
NG Replace malfunctioning heated oxygen sensor 1.		

CHECK HEATED OXYGEN SENSOR 1

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEC430D

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - $0.3V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 7.	
NG Replace malfunctioning heated oxygen sensor 1.		

7 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.

For circuit, refer to "Wiring Diagram", EC-246.

GI

MA

LC

EC

FE

GL

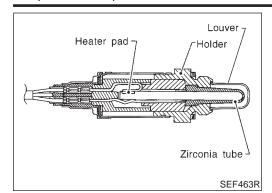
MT

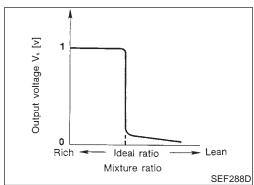
AT

TF

PD AX

RS


BT


HA

SC

EL

 \mathbb{M}

Component Description

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NAEC1156

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

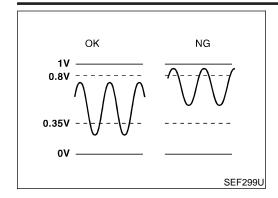
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
16	G/B	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	
35	I Heated OXVIDEN SENSOR I		[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	

DTC Detecting Condition

The maximum and minimum voltages from the

sensor are outside the specified voltages.


Possible Cause

Heated oxygen sensor 1

• Heated oxygen sensor 1 heater

Fuel pressure

Injector

Trouble diagnosis

name

Heated oxygen sen-

sor 1 rich shift moni-

toring

DTC No.

P1144

(Bank 1)

P1164 1164 (Bank 2)

1144

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high and "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

□ □	
((31)	
w	

MA

LC

- FE	-

GL

MT

MT	
/~\ I	

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

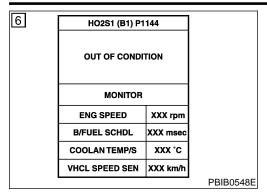
TESTING CONDITION:

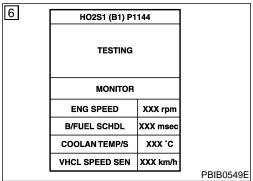
- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

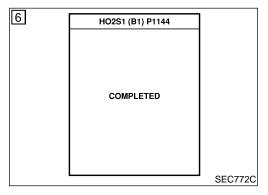
TF

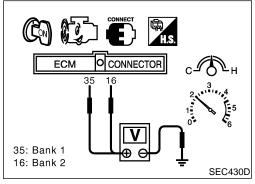
NAEC1158

 $\mathbb{A}\mathbb{X}$


SU


BT


HA


SC

EL

WITH CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "HO2S1 (B1)/(B2) P1144/ P1164" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Start engine and let it idle for at least 3 minutes.

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,300 - 2,800 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	3 - 14 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-515.

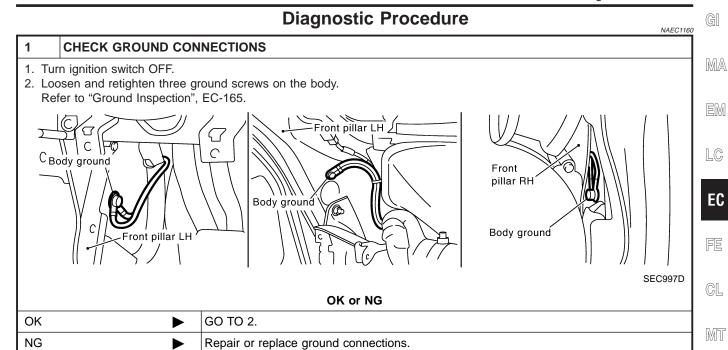
Overall Function Check

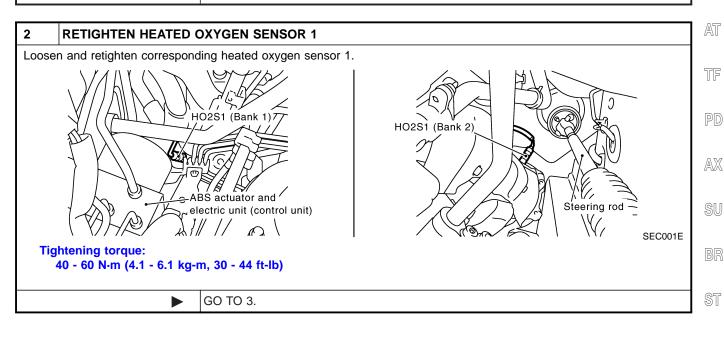
Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- If NG, go to "Diagnostic Procedure", EC-515.

EC

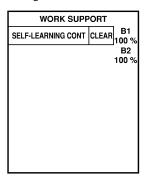

BT


HA

SC

EL

[DX

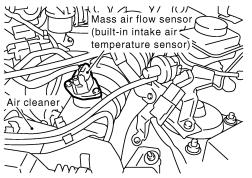


EC-515

CLEAR THE SELF-LEARNING DATA

With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

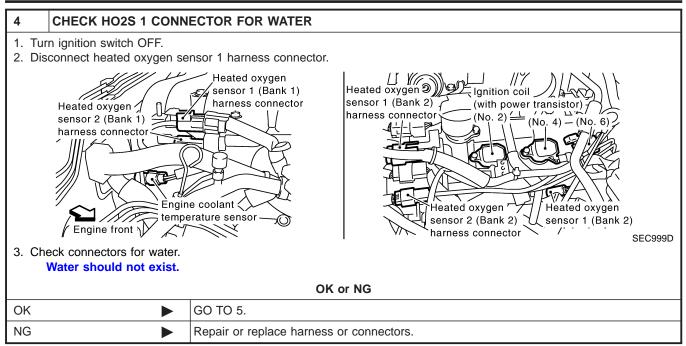


SEF968Y

4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.


SEF960YA

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

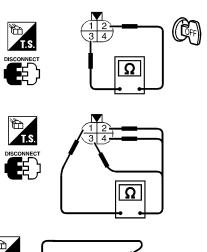
Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Yes or No

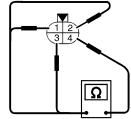
Yes	Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-282.
No •	GO TO 4.

EL

[DX


MA

EM


LC

5 CHECK HEATED OXYGEN SENSOR 1 HEATER

Check resistance between HO2S1 terminals as follows.

SEF249Y

Terminals	Resistance
2 and 3	3.3 - 4.0Ω at 25 °C (77 °F)
1 and 2, 3, 4 4 and 1, 2, 3	∞Ω (Continuity should not exist.)

MTBL1782

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK (With CONSULT-II)		GO TO 6.
OK (Without CONSULT-		GO TO 7.
II)		
NG	•	Replace malfunctioning heated oxygen sensor 1.

CHECK HEATED OXYGEN SENSOR 1

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

ITOR
NO DTC
XXX rpm
xxx v
XXX °C
XXX V
LEAN

SEF646Y

MA

LC

EC

GL

MI

AT

TF

AX

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown below.

Bank 1

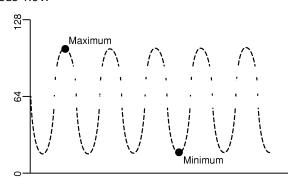
cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

Bank 2

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

 Maximum voltage should be over 0.6V at least one time.

 Minimum voltage should be below 0.30V at least one time.

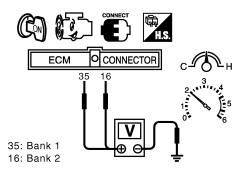
SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

	1		N.I	_
U	n	or	IA	G

OK	GO TO 8.
NG	Replace malfunctioning heated oxygen sensor 1.


EL

HA

CHECK HEATED OXYGEN SENSOR 1

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 (HO2S1 bank 1 signal) or 16 (HO2S1 bank 2 signal) and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEC430D

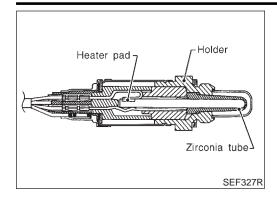
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - $0.3V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 8.
NG •	Replace malfunctioning heated oxygen sensor 1.

8 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.

For circuit, refer to "Wiring Diagram", EC-246.

► INSPECTION END

Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

п 🙈

LC

EC

FE

GL

MT

AT

GI

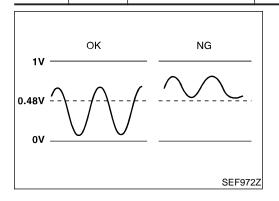
MA

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM CONDITION **SPECIFICATION** HO2S2 (B1) 0 - 0.3V ←→ Approx. 0.6 - 1.0V • Engine: After warming up HO2S2 (B2) After keeping engine speed Revving engine from idle up to HO2S2 MNTR between 3,500 and 4,000 rpm 3,000 rpm (B1) for 1 minute and at idle for 1 $\mathsf{LEAN} \longleftrightarrow \mathsf{RICH}$ HO2S2 MNTR minute under no load (B2)

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

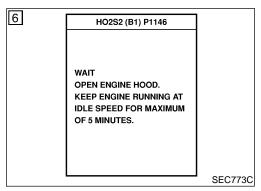
C1163 TF

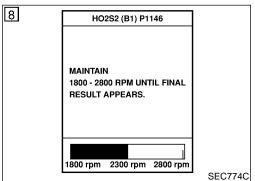
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

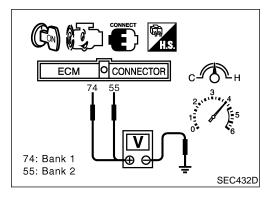
3			, ,	9	_
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	AX
			 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after 		SU
55 I ()R/I	Heated oxygen sensor 2 (bank 2)	the following conditions are met. • After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	0 - Approximately 1.0V	BR	
74	OR	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after the following conditions are met. After keeping the engine speed between 3,500 	0 - Approximately 1.0V	- ST RS
			and 4,000 rpm for 1 minute and at idle for 1 minute under no load		BT

On Board Diagnosis Logic


The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.


c1164 HA

SC


EL

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1146 1146 (Bank 1)	Heated oxygen sensor 2 minimum voltage monitoring	The minimum voltage from the sensor is not reached to the specified voltage.	Harness or connectors (The sensor circuit is open or shorted.)
P1166 1166 (Bank 2)			Heated oxygen sensor 2Fuel pressureInjector

DTC Confirmation Procedure

...=

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-II

NAFC1165S01

- 1) Start engine and warm it up to the normal operating tempera-
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4) Let engine idle for 1 minute.
- 5) Select "HO2S2 (B1) P1146" or "HO2S2 (B2) P1166" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Follow the instruction of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to EC-526, "Diagnostic Procedure". If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b) Turn ignition switch ON and select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up while monitoring "COOLAN TEMP/S" indication on CONSULT-II.
- d) When "COOLAN TEMP/S" indication reaches to 70°C (158°F), go to step 3.

Overall Function Check

NAEC1

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

NAEC1166S01

- Start engine and warm it up to the normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.

- Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S2 bank 2 signal) and ground.
- Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.48V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.48V at least once during this procedure.
- 8) If NG, go to "Diagnostic Procedure", EC-526.

MA

LC

EC

FE

GL

MT

AT

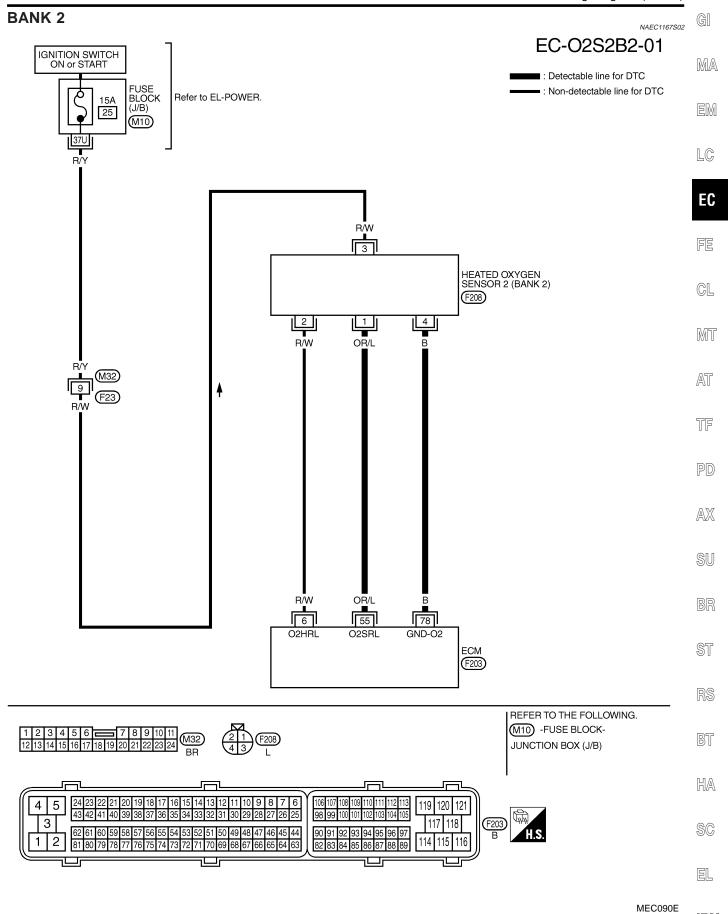
TF

PD

 $\mathbb{A}\mathbb{X}$

SU

ST


BT

HA

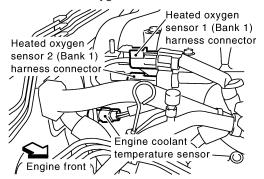
SC

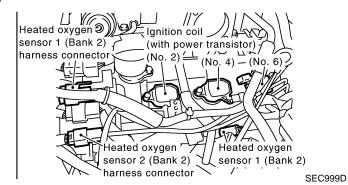
EL

Wiring Diagram =NAEC1167 **BANK 1** NAEC1167S01 EC-02S2B1-01 IGNITION SWITCH ON or START ■ : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 15A 25 (M10) R/W HEATED OXYGEN SENSOR 2 (BANK 1) 4 2 P/B OR В P/B OR 25 74 78 O2HRR O2SRR GND-O2 ECM F203 REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B) 5 119 3 2

Diagnostic Procedure NAEC1168 **CHECK GROUND CONNECTIONS** 1. Turn ignition switch OFF. 2. Loosen and retighten three ground screws on the body. Refer to "Ground Inspection", EC-165. Front pillar LH Front pillar RH Body ground Body ground SEC997D OK or NG OK GO TO 2. NG Repair or replace ground connections.

HA


SC


EL

GI **CLEAR THE SELF-LEARNING DATA** (II) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. MA 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". EM WORK SUPPORT SELF-LEARNING CONT CLEAR 100 % B2 LC 100 % EC SEF968Y 4. Run engine for at least 10 minutes at idle speed. GL Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine? Without CONSULT-II MI 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed. AT Mass air flow sensor (built-in intake air TF temperature sensor) Air cleaner AX SU SEF960YA 4. Stop engine and reconnect mass air flow sensor harness connector. 5. Make sure DTC P0102 is displayed. 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91. 7. Make sure DTC P0000 is displayed. 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? ST Is it difficult to start engine? Yes or No Yes Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-282. GO TO 3. No BT

CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

3. Disconnect ECM harness connector.

4. Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

_				_
\mathbf{c}	ĸ	or	N	c

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and rear HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Бапк
P1146	74	1	Bank 1
P1166	55	1	Bank 2

MTBL1371

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

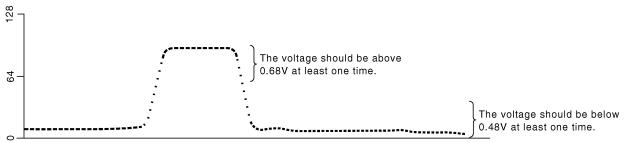
DTC	Term	Bank	
	ECM	Sensor	Бапк
P1146	74	1	Bank 1
P1166	55	1	Bank 2

MTBL1371

Continuity should not exist.

3. Also check harness for short to ground and short to power.

OK or NG


OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	•	GO TO 6.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

(Reference data)

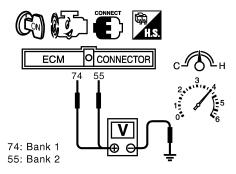
SEF972YA

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 8.
NG •	Replace malfunctioning heated oxygen sensor 2.

6 CHECK HEATED OXYGEN SENSOR 2-I

Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S2 bank 2 signal) and ground.
- 6. Check the voltage when rewing up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

SEC432D

The voltage should be above 0.68V at least once during this procedure.

OK (יו וט	1

OK •	GO TO 8.
NG •	GO TO 7.

G[

MA

LC

EC

35

GL

MT

AT

TF

AX

ST

RS

BT

HA

SC.

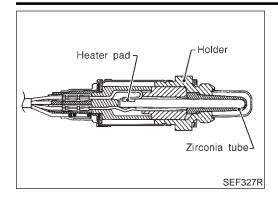
DTC P1146, P1166 HO2S2

Diagnostic Procedure (Cont'd)

7 CHECK HEATED OXYGEN SENSOR 2-II

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 6; or check voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "OD" OFF (A/T).

The voltage should go below 0.48V at least once during this procedure.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

0	K	or	N	C

OK •	GO TO 8.
NG ►	Replace malfunctioning heated oxygen sensor 2.

8	CHECK INTERMITTENT INCIDENT		
Refer	efer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	•	INSPECTION END	

Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

LC

EC

FE

GL

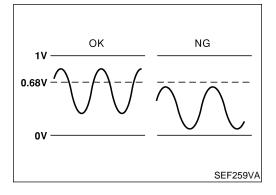
GI

MA

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM CONDITION **SPECIFICATION** HO2S2 (B1) 0 - 0.3V ←→ Approx. 0.6 - 1.0V • Engine: After warming up HO2S2 (B2) • After keeping engine speed Revving engine from idle up to HO2S2 MNTR between 3,500 and 4,000 rpm MT 3,000 rpm (B1) for 1 minute and at idle for 1 $\mathsf{LEAN} \longleftrightarrow \mathsf{RICH}$ HO2S2 MNTR minute under no load (B2)

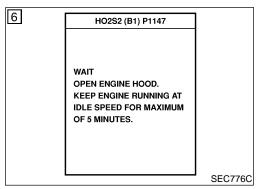

ECM Terminals and Reference Value

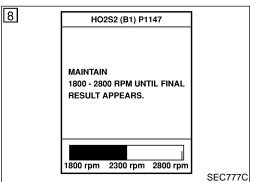
Specification data are reference values and are measured between each terminal and ground.

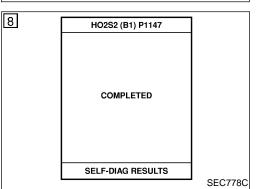
TF

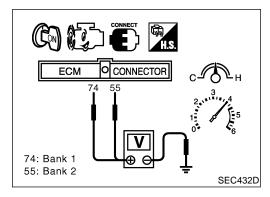
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	AX
		Heated oxygen sensor	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm after 		SU
55	OR/L	2 (bank 2)	 the following conditions are met. After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V	BR
			[Engine is running] • Warm-up condition		ST
74	OR	Heated oxygen sensor 2 (bank 1)	 Revving engine from idle up to 3,000 rpm after the following conditions are met. After keeping the engine speed between 3,500 	0 - Approximately 1.0V	RS
			and 4,000 rpm for 1 minute and at idle for 1 minute under no load		BT




On Board Diagnosis Logic


The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.


EL

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1147 1147 (Bank 1) P1167 1167 (Bank 2)	Heated oxygen sensor 2 maximum voltage monitoring	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injector Intake air leaks

DTC Confirmation Procedure

NAEC1173

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-II

NAFC1173S01

- 1) Start engine and warm it up to the normal operating tempera-
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4) Let engine idle for 1 minute.
- Select "HO2S2 (B1) P1147" or "HO2S2 (B2) P1167" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6) Start engine and follow the instruction of CONSULT-II.
- 7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".

If "NG" is displayed, refer to EC-536, "Diagnostic Procedure". If "CAN NOT BE DIAGNOSED" is displayed, perform the following.

- a) Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b) Turn ignition switch ON and select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- c) Start engine and warm it up while monitoring "COOLAN TEMP/S" indication on CONSULT-II.
- d) When "COOLAN TEMP/S" indication reaches to 70°C (158°F), go to step 3.

Overall Function Check

NAEC11

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

NAEC1174S01

- Start engine and warm it up to the normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.

- 4) Let engine idle for 1 minute.
- 5) Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S2 bank 2 signal) and ground.
- 6) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.

If the voltage can be confirmed in step 6, step 7 is not necessary.

- 7) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be above 0.68V at least once during this procedure.
- 8) If NG, go to "Diagnostic Procedure", EC-536.

GI

MA

LC

EC

--

FE

GL

MT

AT

TF

PD

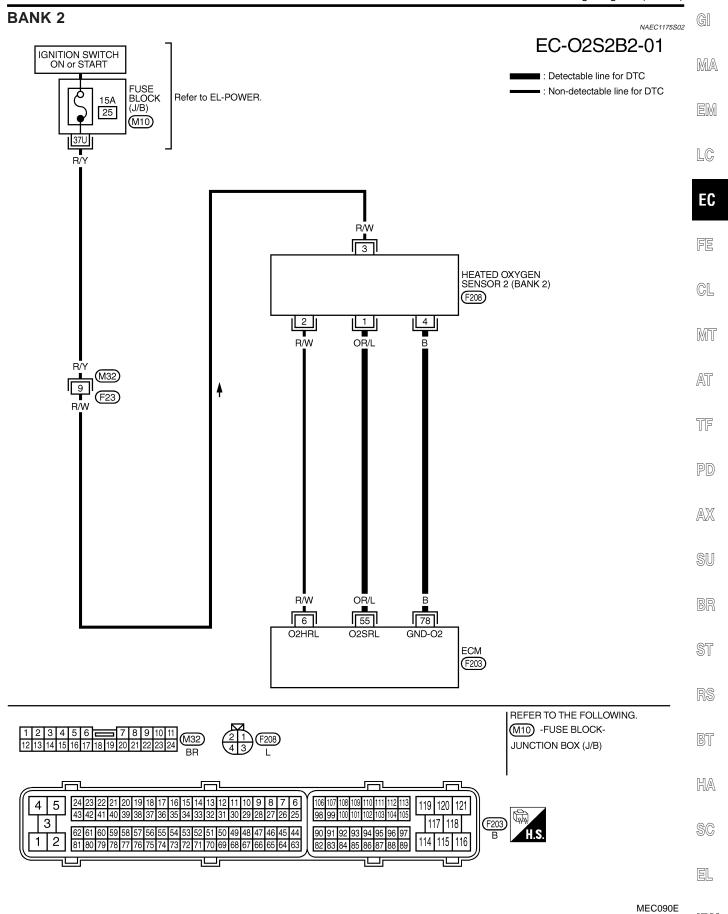
 $\mathbb{A}\mathbb{X}$

SU

RR

ST

RS


BT

HA

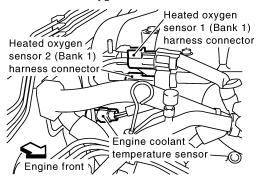
SC

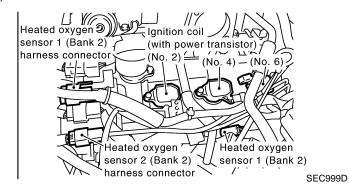
EL

Wiring Diagram =NAEC1175 **BANK 1** NAEC1175S01 EC-02S2B1-01 IGNITION SWITCH ON or START ■ : Detectable line for DTC FUSE BLOCK (J/B) : Non-detectable line for DTC Refer to EL-POWER. 15A 25 (M10) R/W HEATED OXYGEN SENSOR 2 (BANK 1) 4 2 P/B OR В P/B OR 25 74 78 O2HRR O2SRR GND-O2 ECM F203 REFER TO THE FOLLOWING. M10 -FUSE BLOCK-JUNCTION BOX (J/B) 5 119 3

Diagnostic Procedure NAEC1176 **CHECK GROUND CONNECTIONS** 1. Turn ignition switch OFF. 2. Loosen and retighten three ground screws on the body. Refer to "Ground Inspection", EC-165. Front pillar LH Front pillar RH Body ground Body ground SEC997D OK or NG OK GO TO 2. NG Repair or replace ground connections.

HA


SC


EL

GI **CLEAR THE SELF-LEARNING DATA** (II) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. MA 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". EM WORK SUPPORT SELF-LEARNING CONT CLEAR 100 % B2 LC 100 % EC SEF968Y 4. Run engine for at least 10 minutes at idle speed. GL Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine? Without CONSULT-II MI 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed. AT Mass air flow sensor (built-in intake air TF temperature sensor) Air cleaner AX SU SEF960YA 4. Stop engine and reconnect mass air flow sensor harness connector. 5. Make sure DTC P0102 is displayed. 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-91. 7. Make sure DTC P0000 is displayed. 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? ST Is it difficult to start engine? Yes or No Yes Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-273. GO TO 3. No BT

CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

3. Disconnect ECM harness connector.

4. Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK		N.I	~
UN	Or	N	(7

OK ▶	GO TO 4.	
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.	

4 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Donk	
DIC	ECM	Sensor	Bank
P1147	74	1	Bank 1
P1167	55	1	Bank 2

MTBL1379

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

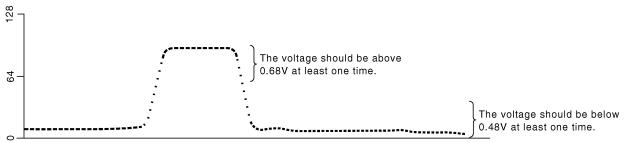
DTC	Term	Donk	
	ECM	Sensor	Bank
P1147	74	1	Bank 1
P1167	55	1	Bank 2

MTBL1379

Continuity should not exist.

3. Also check harness for short to ground and short to power.

OK or NG


OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	•	GO TO 6.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

(Reference data)

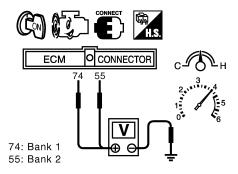
SEF972YA

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%. CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 8.
NG ►	Replace malfunctioning heated oxygen sensor 2.

6 CHECK HEATED OXYGEN SENSOR 2-I

Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 bank 1 signal) or 55 (HO2S bank 2 signal) and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

SEC432D

The voltage should be above 0.68V at least once during this procedure.

0	K	or	NG

OK D	>	GO TO 8.
NG	>	GO TO 7.

G[

MA

LC

EC

313

GL

MIT

AT

TF

PD

SU

RR

__

BT

HA

SC

EL

DTC P1147, P1167 HO2S2

Diagnostic Procedure (Cont'd)

7 CHECK HEATED OXYGEN SENSOR 2-II

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 6; or check voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "OD" OFF (A/T).

The voltage should go below 0.48V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

0	K	or	N	C

OK ▶	GO TO 8.
NG ▶	Replace malfunctioning heated oxygen sensor 2.

8	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	>	INSPECTION END	

DTC P1148, P1168 CLOSED LOOP CONTROL

On Board Diagnosis Logic

On Board Diagnosis Logic

★ The closed loop control has the one trip detection logic.

		-		
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	MA
P1148 1148 (Bank 1)	Closed loop control	The closed loop control function for right bank does not operate even when vehicle is driving in the specified condition, the closed loop control	 The front heated oxygen sensor circuit is open or shorted. Heated oxygen sensor 1 	EM
P1168 1168 (Bank 2)		function for left bank does not operate even when vehicle is driving in the specified condition.	Heated oxygen sensor 1 heater	LC
		DTC Confirmation Pro	coduro	EC

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

FE

GI

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

GL

TESTING CONDITION:

Never raise engine speed above 3,600 rpm during the DTC Confirmation Procedure. If the engine speed limit is exceeded, retry the procedure from step 2.

MT

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

TF

PD

AX

SU

(P) WITH CONSULT-II

Start engine and warm it up to the normal operating temperature.

- 2) Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.

- Let engine idle for 1 minute.
- Select "DATA MONITOR" mode with CONSULT-II.

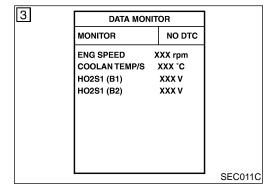
Hold engine speed at 2,000 rpm and check one of the following.

BT

"HO2S1 (B1)/(B2)" voltage should go above 0.70V at least

"HO2S1 (B1)/(B2)" voltage should go below 0.21V at least

once. If the check result is NG, perform "Diagnosis Procedure",

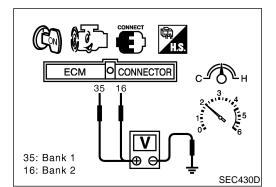

SC

EC-542.

If the check result is OK, perform the following step.

7) Let engine idle at least 5 minutes. Maintain the following condition at least 50 consecutive sec-

EL



onds.

B/FUEL SCHDL	3.6 msec or more (A/T) 3.0 msec or more (M/T)
ENG SPEED	1,500 rpm or more
Selector lever	Suitable position
VHCL SPEED SE	More than 70 km/h (43 MPH)

During this test, P0134 and/or P0154 may be displayed on CONSULT-II screen.

9) If DTC is detected, go to "Diagnostic Procedure", EC-542.

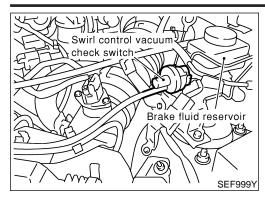
Overall Function Check

NAEC106

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

WITH GST

AFC1066S01


- Start engine and warm it up to the normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4) Let engine idle for 1 minute.
- 5) Set voltmeter probes between ECM terminal 35 [Heated oxygen sensor 1 bank 1 signal] or 16 [Heated oxygen sensor 1 bank 2 signal] and ground.
- 6) Check the following with engine speed held at 2,000 rpm constant under no-load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- 7) If NG, go to "Diagnostic Procedure", EC-542.

Diagnostic Procedure

NAEC1067

Perform trouble diagnosis for "DTC P0133, P0153", EC-233.

Component Description

Component Description

The swirl control valve control vacuum check switch detects vacuum signal to the swirl control valve, and sends ON or OFF signal to the ECM.

When vacuum is supplied to the valve, the swirl control valve control vacuum check switch sends OFF signal to the ECM.

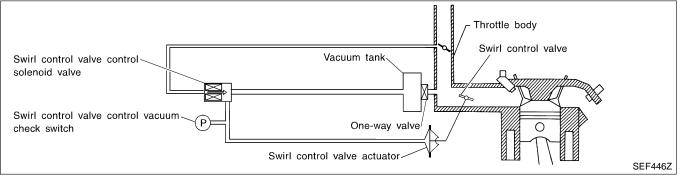
The swirl control valve control vacuum check switch is not used to control the engine system, it is used for on board diagnosis.

LC

EC

GL

MT


AT

TF

PD

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

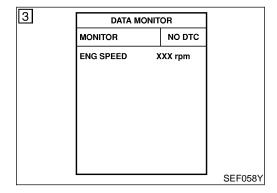
MONITOR ITEM	CONDITION	SPECIFICATION
SWL CON VC SW	 Engine speed: Idle Engine coolant temperature is between 15°C (59°F) to 50°C (122°F). 	OFF
	 Engine speed: Idle Engine coolant temperature is above 55°C (131°F). 	ON

ECM Terminals and Reference Value

NAEC1070

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI-					ST
NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	RS
59		Swirl control valve con-	 [Engine is running] Idle speed Engine coolant temperature is between 15 to 50°C (59 to 122°F). 	Approximately 5V	BT
59	W/B	trol vacuum check switch	 [Engine is running] Idle speed Engine coolant temperature is above 55°C 	0 - 1.0V	HA
			(131°F).		SC

EL

On Board Diagnosis Logic

	On Board Diagnosis Logic				
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause		
P1165 1165	Swirl control valve control vacuum check switch	The swirl control valve control vacuum check switch remains OFF under specified engine conditions.	Harness or connectors (Swirl control valve control vacuum check switch circuit is open.) Hoses (Hoses are clogged or connected incorrectly.) Swirl control valve control solenoid valve Swirl control valve control vacuum check switch		

DTC Confirmation Procedure

NAEC1072

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

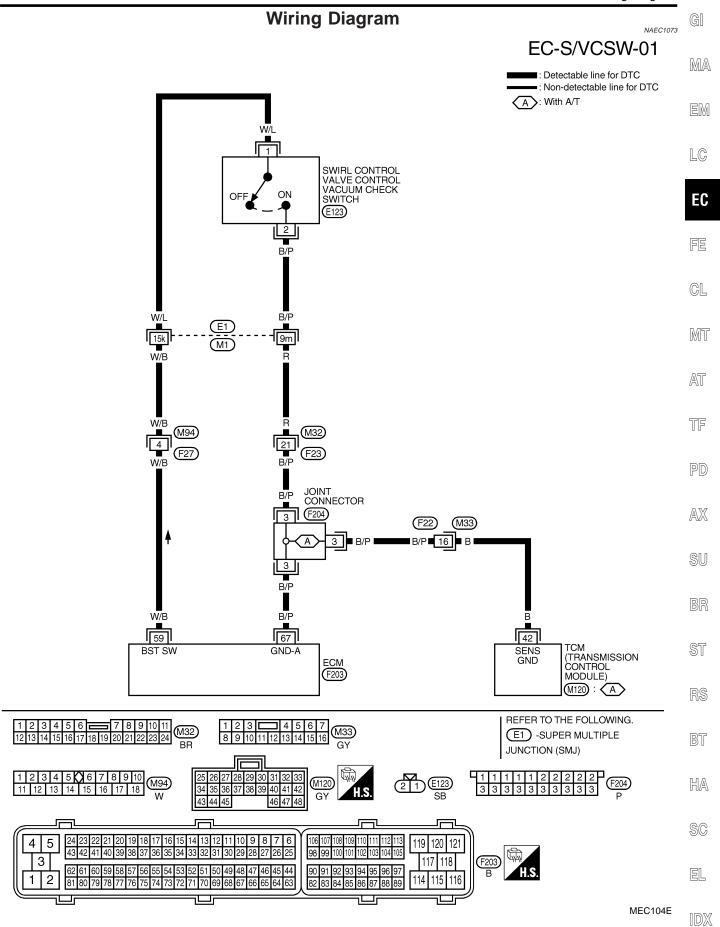
TESTING CONDITION:

For best results, perform the test at a temperature above 5°C (41°F).

(II) WITH CONSULT-II

NAEC1072S01

- 1) Turn ignition switch OFF and wait at least 10 seconds.
- 2) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II and wait at least 5 seconds.


If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-546.

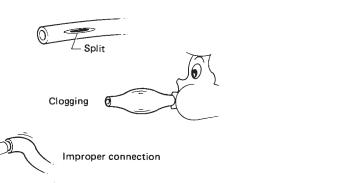
WITH GST

NAEC1072S02

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

Diagnostic Procedure

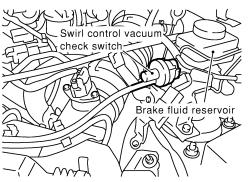

Diagnostic Procedure

NAEC1074

SEF109L

1 CHECK HOSES

- 1. Turn ignition switch OFF.
- 2. Check hose for clogging or improper connection.



OK or NG

OK		GO TO 2.
NG		Repair or reconnect the hose.

2 CHECK SWIRL CONTROL VALVE CONTROL VACUUM CHECK SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

1. Disconnect swirl control valve control vacuum check switch harness connector.

SEF999Y

- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between terminal 2 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

 Continuity should exist.
- 5. Also check harness for short to power.

OK or NG

OK •	GO TO 4.
NG •	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E1, M1
- Harness connectors M32, F23
- Harness connectors F22, M33 (A/T models)
- Joint connector F204
- Harness for open or short between swirl control valve control vacuum check switch and ECM
- Harness for open or short between swirl control valve control vacuum check switch and TCM
 - Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

G[

MA

EM

LC

EC

FE

GL

MT

AT

TF

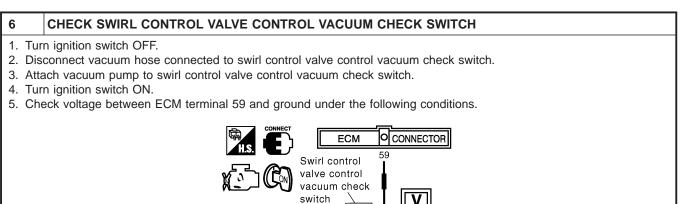
PD

AX

SU

ST

RS


BT

HA

SC

4	CHECK SWIRL CONTI OPEN AND SHORT	OL VALVE CONTROL VACUUM CHECK SWITCH INPUT SIGNAL CIRCUIT FOR	
Re	efer to Wiring Diagram. Continuity should exist.	ween ECM terminal 59 and swirl control valve control vacuum check switch terminal 1. to ground and short to power.	
	OK or NG		
OK	•	GO TO 6.	
NG	>	GO TO 5.	

5	DETECT MALFUNCTIONING PART		
HarHar	Check the following. • Harness connectors E1, M1 • Harness connectors M94, F27 • Harness for open or short between swirl control valve control vacuum check switch and ECM		
	Repair open circuit or short to ground or short to power in harness connectors.		

Swirl control valve control vacuum check switch

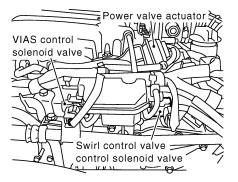
Vacuum pump

Applied pressure	Voltage V
More than -20.0 kPa (-150 mmHg, -5.91 inHg)	Engine ground
-20.0 to -23.0 kPa (-150 to -172 mmHg, -5.91 to -6.77 inHg)	Engine ground or Approx. 4.8
Less than -23.0 kPa (-172 mmHg, -6.77 inHg)	Approx. 4.8

MTBL1369

SEC542D

OK or NG			
OK	•	GO TO 7.	
NG Replace swirl control valve control vacuum check switch.			


EL

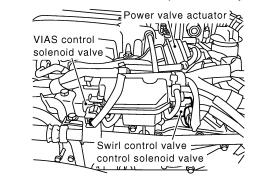
Diagnostic Procedure (Cont'd)

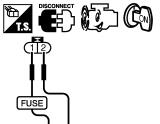
CHECK SWIRL CONTROL VALVE CONTROL SOLENOID VALVE

(I) With CONSULT-II

- 1. Reconnect the disconnected harness connectors.
- 2. Start engine and let it idle.
- 3. Remove vacuum hose connected to swirl control valve actuator.
- 4. Select "SWIRL CONT SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Touch "ON" and "OFF" on CONSULT-II screen.
- 6. Check vacuum existence and operation delay time under the following conditions.

SWIRL CONT SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.


Operation takes less than 1 second.



SEC540D

Without CONSULT-II

- 1. Reconnect ECM harness connector.
- 2. Remove vacuum hose connected to swirl control valve actuator.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between swirl control valve control solenoid valve terminals and 2.
- 5. Check vacuum existence and operation delay time under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

Operation takes less than 1 second.

SEC541D

OK •	GO TO 8.
NG	Replace intake manifold collector assembly.

OK or NG

8	CHECK INTERMITTENT	T INCIDENT
Perfor	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-155.
	>	INSPECTION END

Description

The malfunction information related to TCS is transferred through the CAN communication line from ABS actuator and electric unit (control unit) to ECM.

Be sure to erase the malfunction information such as DTC not only for ABS actuator and electric unit (control unit) but also for ECM after TCS related repair.

GI

On Board Diagnosis Logic

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

	\sim
	((,,
_	

DTC No. Trouble diagnosis nam P1211 1211 TCS control unit	Trouble diagnosis name	DTC detecting condition	Possible cause
	TCS control unit	ECM receives a malfunction information from ABS actuator and electric unit (Control unit).	ABS actuator and electric unit (control unit) TCS related parts

GL

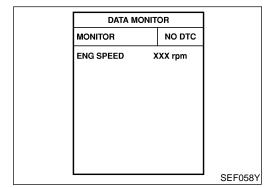
MIT

AT

DTC Confirmation Procedure

NAFC1273

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

PD

AX

BR

(II) With CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 60 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-550.

BT

WITH GST

Follow the procedure "WITH CONSULT-II" above.

HA

SC

EL

DTC P1211 ABS/TCS CONTROL UNIT

Diagnostic Procedure

Diagnostic Procedure

Go to BR-91, "TROUBLE DIAGNOSIS".

NAEC1274

Description

NOTE:

If DTC P1212 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to "DTC U1000, U1001 CAN COMMUNICATION LINE", EC-166.

MA

NAEC1275

This CAN communication line is used to control the smooth engine operation during the TCS operation. Pulse signals are exchanged between ECM and ABS actuator and electric unit (control unit).

GI

Be sure to erase the malfunction information such as DTC not only in ABS actuator and electric unit (control unit) but also ECM after the ABS related repair.

On Board Diagnosis Logic

LC

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P1212 1212	TCS communication line	ECM cannot receive the information from ABS actuator and electric unit (control unit) continuously.	Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit) Dead (Weak) battery	(

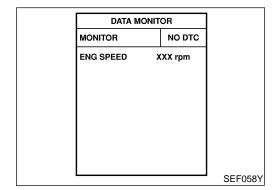
GL MIT

AT

DTC Confirmation Procedure

NAFC1277

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

PD

AX

SU

BR

(P) WITH CONSULT-II

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle for at least 10 seconds.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-552.

BT

B WITH GST

Follow the procedure "WITH CONSULT-II" above.

HA

SC

EL

DTC P1212 ABS/TCS COMMUNICATION LINE

Diagnostic Procedure

Diagnostic Procedure

Go to BR-91, "TROUBLE DIAGNOSIS".

NAEC1278

On Board Diagnosis Logic

GI

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise. When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

MA

This self-diagnosis has the one trip detection logic.

\neg	$\Box \Box$	
_	INVAL	

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1217 1217	Engine over temperature	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. Engine coolant is not within the specified range. 	 Cooling fan (Crankshaft driven) Thermostat Radiator hose Radiator Radiator cap Water pump For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-557.

EC

LC

CAUTION:

When a malfunction is indicated be sure to replace the coolant, follow the procedure in "Changing Engine Coolant", "ENGINE MAINTENANCE", MA-15. Also, replace the engine

MT

GL

1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", "REC-OMMENDED FLUIDS AND LUBRICANTS", MA-13.

AT

TF

After refilling coolant, run engine to ensure that no water-flow noise is emitted.

AX

SU

Overall Function Check

Use this procedure to check the overall function of the coolant overtemperature enrichment protection check, a DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high-pressure fluid escaping from the radiator.

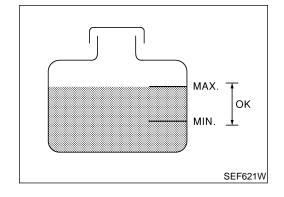
Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

BT

HA

(A) WITH CONSULT-II

1) Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir and/or radiator is below the proper range, go to "Diagnostic Procedure", EC-554.

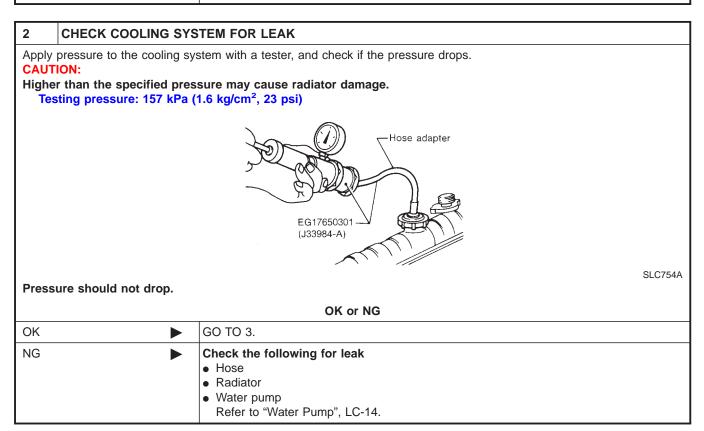

SC

2) Confirm whether customer filled the coolant or not. If customer filled the coolant, go to "Diagnostic Procedure", EC-554.

EL

WITH GST

1) Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir and/or radiator is below the



- proper range, and go to "Diagnostic Procedure", EC-554.
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, go to "Diagnostic Procedure", EC-554.

Diagnostic Procedure

NAEC1170

1	CHECK COOLING FAN	(CRANKSHAFT DRIVEN) OPERATION
Start	engine and make sure that	cooling fan (crankshaft driven) operates.
		OK or NG
OK	•	GO TO 2.
NG	•	Check cooling fan (crankshaft driven). Refer to LC-23, "Cooling Fan (Crankshaft driven)".

DTC P1217 ENGINE OVER TEMPERATURE

Diagnostic Procedure (Cont'd)

MA

LC

EC

GL

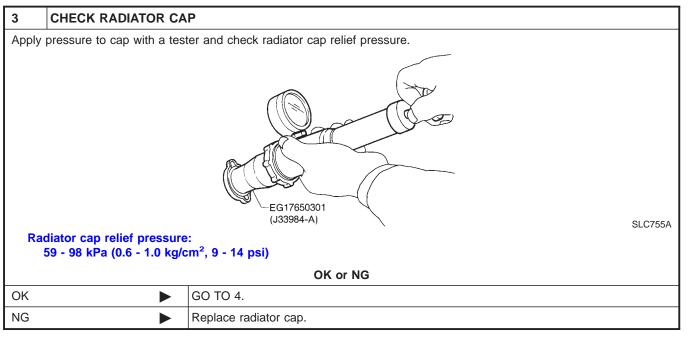
MT

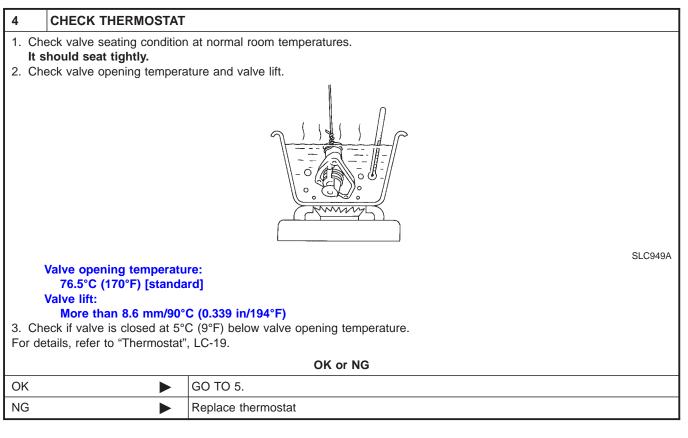
AT

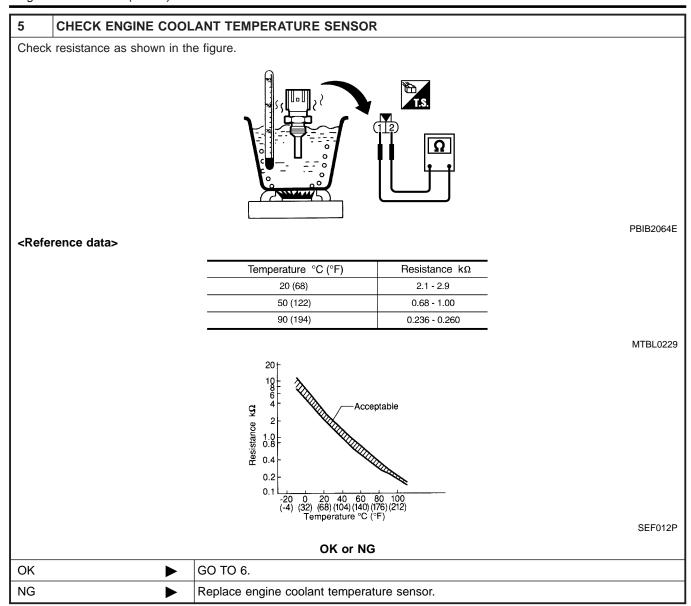
TF

PD

AX


SU


BT


HA

SC

EL

6	CHECK MAIN 12 CAUS	SES
If the	cause cannot be isolated, ç	go to "MAIN 12 CAUSES OF OVERHEATING", EC-557.
	>	INSPECTION END

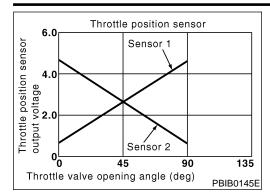
DTC P1217 ENGINE OVER TEMPERATURE

Main 12 Causes of Overheating

			Main 12 Cause	s of Overheating	=NAEC1180	
Engine	Step	Inspection item	Equipment	Standard	Reference page	
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_	
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRICANTS", MA-12.	
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE", MA-15.	
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM", LC-12.	
ON*1	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM", LC-12.	
ON*1	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM", LC-19, LC-22.	
ON*1	7	Cooling fan (Crankshaft driven)	Visual	Operating	See LC-23, "Cooling Fan (Crankshaft driven)".	
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_	
ON*2	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_	
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE", MA-15.	
OFF*3	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTENANCE", MA-14.	
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYL- INDER HEAD DISTORTION", EM-48.	
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYL-INDER BLOCK DISTOR-TION AND WEAR", EM-70.	

^{*1:} Engine running at 3,000 rpm for 10 minutes.

For more information, refer to "Engine Cooling System", "OVERHEATING CAUSE ANALYSIS", LC-27.


HA

^{*2:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*3:} After 60 minutes of cool down time.

Component Description

NAEC1279

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

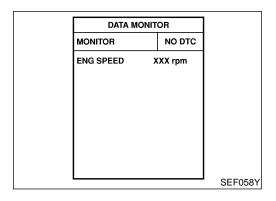
On Board Diagnosis Logic

NAFC1280

The MIL will not light up for this self-diagnosis.

		_	
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure


NOTE:

NAEC1281

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

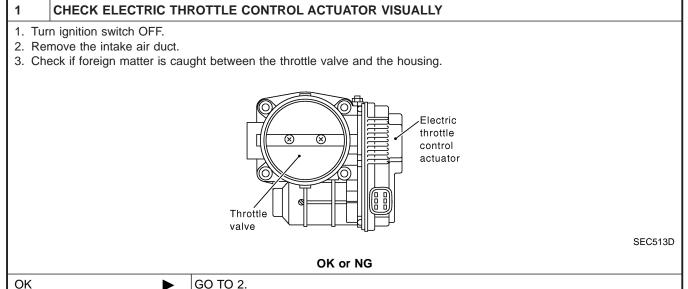
(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch OFF, wait at least 10 seconds.
- Turn ignition switch ON.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-559.

With GST

Follow the procedure "With CONSULT-II" above.

MA


G[

EM

LC

Diagnostic Procedure

IAEC1282

Remove the foreign matter and clean the electric throttle control actuator inside.

2 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform "Throttle Valve Closed Position Learning", EC-73.
- 3. Perform "Idle Air Volume Learning", EC-73.

NG

▶ INSPECTION END

EC

FE

GL

MT

AT

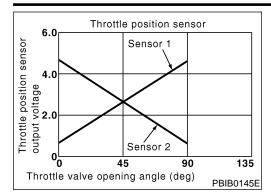
TF

AX

SU

BK

ST


D@

BT

HA

SC

EL

Component Description

NAEC1283

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

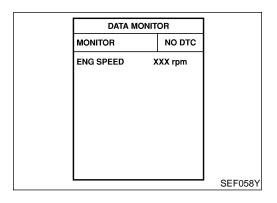
On Board Diagnosis Logic

NAFC1284

The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure


NAEC1285

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch OFF, wait at least 10 seconds.
- 4) Turn ignition switch ON.
- 5) Repeat steps 3 and 4, 32 times.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-561.

With GST

Follow the procedure "With CONSULT-II" above.

MA

G[

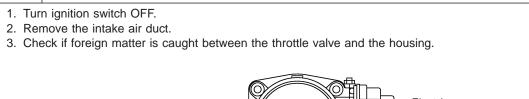
EM

LC

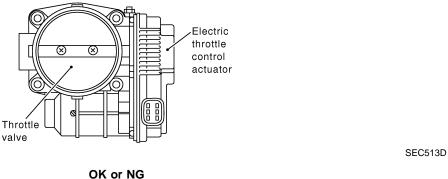
EC

FE

GL


MT

AT


TF

Diagnostic Procedure

AEC1286

CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

2 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform "Throttle Valve Closed Position Learning", EC-73.
- 3. Perform "Idle Air Volume Learning", EC-73.

▶ INSPECTION END

AX

SU

BR

ST

D@

BT

HA

SC

EL

 \mathbb{D}

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
48	P/B	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch ON]	Approximately 5V
49	P/B	Sensor power supply (Refrigerant pressure sensor)	[Ignition switch ON]	Approximately 5V
68	L	Sensor power supply (Power steering pressure sensor)	[Ignition switch ON]	Approximately 5V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch ON]	Approximately 5V

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

NAEC1287

NAEC1291

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1229 1229	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	Harness or connectors (APP sensor 1 circuit is shorted.) (PSP sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) (EVAP control system pressure sensor circuit is shorted.) Accelerator pedal position sensor Power steering pressure sensor EVAP control system pressure sensor Refrigerant pressure sensor

FAIL-SAFE MODE

NAEC1287S01

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

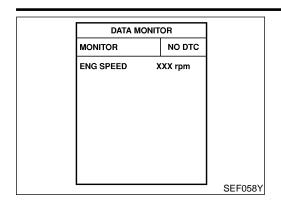
Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

NAEC1288

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

DTC P1229 SENSOR POWER SUPPLY

DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 1 second.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-565.

MA

G[

EM

LC

With GST

Follow the procedure "With CONSULT-II" above.

EC

FE

CL

MT

AT

TF

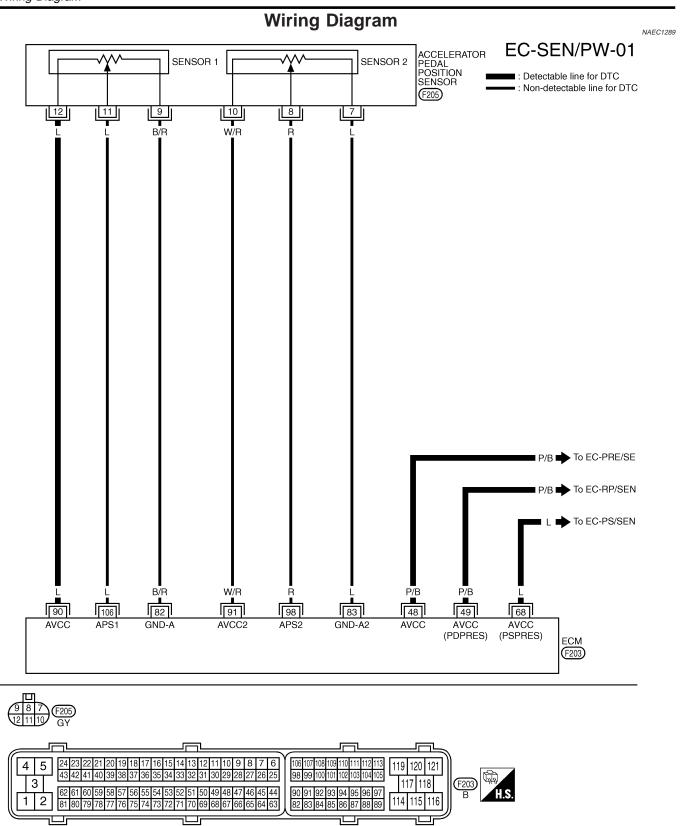
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

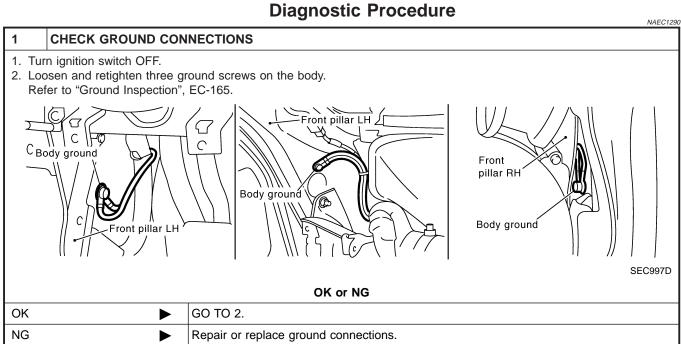

RS

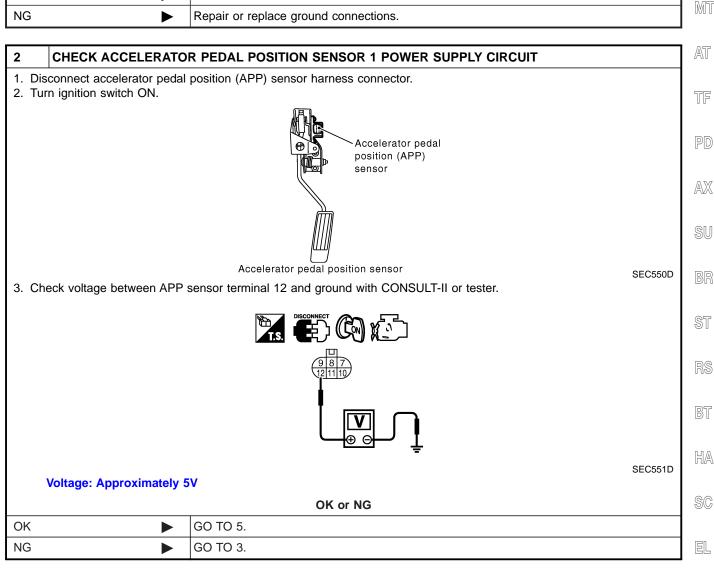
BT

HA

SC

EL


MA


EM

LC

EC

GL

DTC P1229 SENSOR POWER SUPPLY

Diagnostic Procedure (Cont'd)

NG

Check harness for short to power and short to ground, between the following terminals. ECM terminal 48 and EVAP control system pressure sensor terminal 3. Refer to "Wiring Diagram", EC-380. ECM terminal 68 and power steering pressure sensor terminal 1. Refer to "Wiring Diagram", EC-437. ECM terminal 49 and refrigerant pressure sensor terminal 3. Refer to "Wiring Diagram", EC-737. ECM terminal 90 and APP sensor terminal 12. Refer to "Wiring Diagram", EC-564. OK or NG

Repair short to ground or short to power in harness or connectors.

4	CHECK COMPONENTS	3	
RePo	Check the following. Refrigerant pressure sensor (Refer to "COMPONENT INSPECTION", HA-103.) Power steering pressure sensor (Refer to "Component Inspection", EC-440.) EVAP control system pressure sensor (Refer to "Diagnostic Procedure", EC-381.)		
	OK or NG		
OK	•	GO TO 7.	
NG	•	Replace malfunctioning component.	

5	CHECK APP SENSOR		
Refer	Refer to "Component Inspection", EC-689.		
	OK or NG		
OK	>	GO TO 7.	
NG	>	GO TO 6.	

6	REPLACE ACCELERATOR PEDAL ASSEMBLY		
1. Rep	Replace accelerator pedal assembly.		
2. Per	2. Perform "Accelerator Pedal Released Position Learning", EC-73.		
3. Per	3. Perform "Throttle Valve Closed Position Learning", EC-73.		
4. Per	4. Perform "Idle Air Volume Learning", EC-73.		
	INSPECTION END		

7	REPLACE ACCELERATOR PEDAL ASSEMBLY		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	► INSPECTION END		

On Board Diagnosis Logic

NAEC1377

NOTE:

If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-602.)

MA

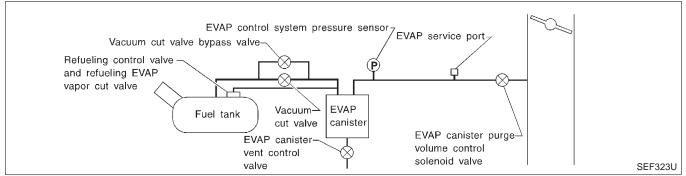
This diagnosis detects leaks in the EVAP purge line using the vapor pressure in the fuel tank.

⊐n /1

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

LC

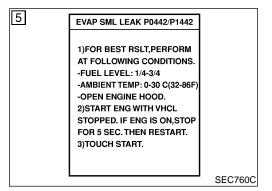
If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

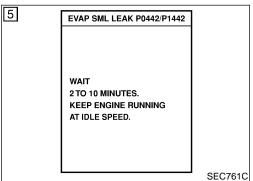


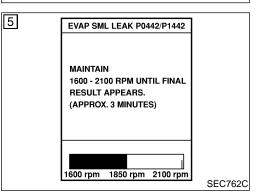
EC

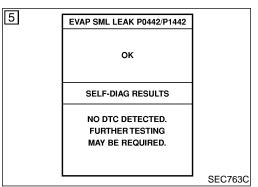
GL

MT


AT




DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1442 1442	EVAP control system small leak detected (positive pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve
			 EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and
			the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged.
			 Water separator EVAP canister is saturated with water. EVAP control system pressure sensor Fuel level sensor and the circuit Refueling control valve ORVR system leaks


CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NAEC1378

NOTE:

- If DTC P1442 is displayed with P1448, first perform trouble diagnosis for DTC P1448 (See EC-602).
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.

(P) WITH CONSULT-II

NAEC1378S01

- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

 Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-123.

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-569.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

NAEC1378S02

NOTE

Be sure to read the explanation of "Driving Pattern" on EC-84 before driving vehicle.

- Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-84.
- 3) Stop vehicle.
- Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.

DTC Confirmation Procedure (Cont'd)

GI

MA

LC

EC

GL

MIT

AT

TF

AX

SU

- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch OFF and wait at least 10 seconds.
- 6) Start engine.

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving Pattern", EC-84.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1442 is displayed on the screen, go to "Diagnostic Procedure", EC-569.
- If P0442 is displayed on the screen, go to "Diagnostic Procedure", EC-351.
- If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-342.
- If P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

1. Turn ignition switch OFF.
2. Check for genuine NISSAN fuel filler cap design.

SEF915U

OK or NG

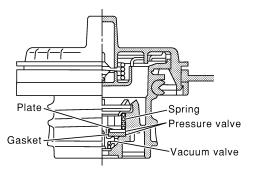
OK

Replace with genuine NISSAN fuel filler cap.

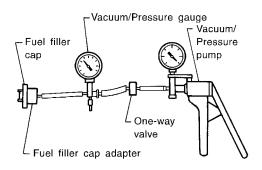
2	CHECK FUEL FILLER CAP INSTALLATION		
Check that the cap is tightened properly by rotating the cap clockwise.			
OK or NG			
OK	>	GO TO 3.	
NG Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.			

EL

SC


HA

Diagnostic Procedure (Cont'd)


3	CHECK FUEL FILLER CAP FUNCTION				
Check	Check for air releasing sound while opening the fuel filler cap.				
	OK or NG				
OK	OK 🕨 GO TO 5.				
NG		GO TO 4.			

4 CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF445Y

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

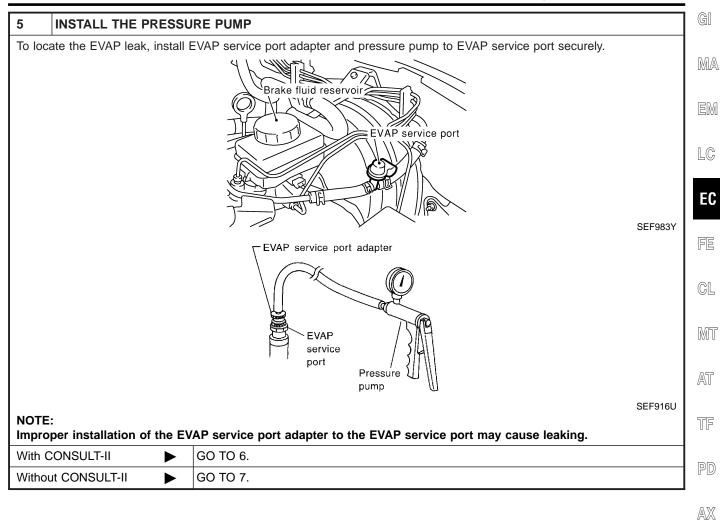
OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.

Diagnostic Procedure (Cont'd)

SU

BR

ST

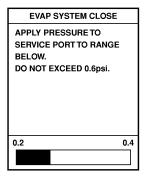

RS

BT

HA

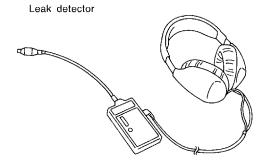
SC

EL



Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

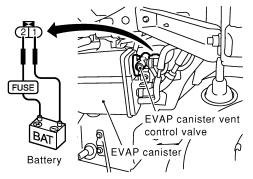

- With CONSULT-II
- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

 NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

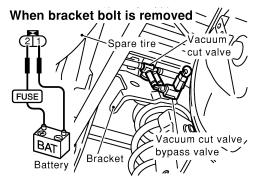
4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

SEF200U


OK or NG

OK ►	GO TO 8.
NG ►	Repair or replace.

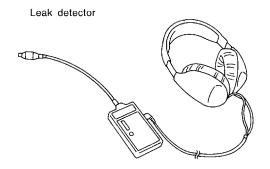
CHECK FOR EVAP LEAK


⋈ Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

SEC930C

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEC932C

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

SEF200U

OK	or	NG
----	----	----

OK •	GO TO 8.
NG •	Repair or replace.

G[

MA

LC

EC

FE

CL

MT

AT

TF

AX

SU

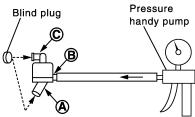
BR

ST

RS

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A): Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

• Do not disassemble water separator.

О	Κ	or	Ν	G

OK		GO 10 9.
NG	>	Replace water separator.

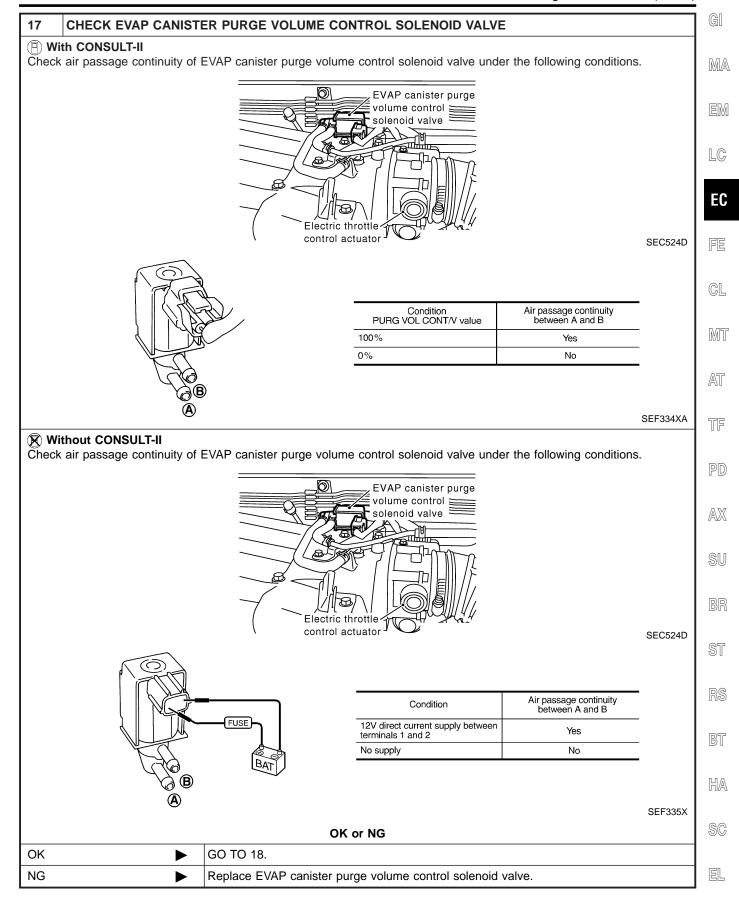
9	9 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT				
Refer	Refer to "DTC Confirmation Procedure", EC-372.				
	OK or NG				
OK	•	GO TO 10.			
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.			

10 CHECK IF EVAP CANISTER SATURATED WITH WATER 1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Does water drain from the EVAP canister? EVAP canister Vent control valve Yes PGO TO 11. No (With CONSULT-II) GO TO 13. No (Without CONSULT-II) GO TO 14. GO TO 14.

1 CHECK EVAP	CANIST	ΓER							
Weigh the EVAP canist			ent control va	alve attac	ched.				
			OK or I	NG					
OK (With CONSULT-II)	•	GO TO 13.							
OK (Without CONSULT II)	-	GO TO 14.							
NG	>	GO TO 12.							
12 DETECT MALF	FUNCTI	ONING PART							
Check the following.EVAP canister for daEVAP hose between		anistar and water se	uparator for o	logging (or poor cor	noction			
• EVAP Hose between	EVAPO	Repair hose or rep			or boor cor	inection			
		Trepair flose of fer	JIACE L VAI	carrister.					
13 CHECK EVAP	CANIST	TER PURGE VOLU	ME CONTR	ROL SOI	LENOID V	ALVE OPE	RATION		
(P) With CONSULT-II									
1. Disconnect vacuum	hose to	EVAP canister purge	e volume cor	ntrol sole	enoid valve	at EVAP se	ervice port.		
 Disconnect vacuum Start engine. 		. •		ntrol sole	enoid valve	at EVAP se	ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI 	L CONT	V" in "ACTIVE TEST	Γ" mode.				ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	V" in "ACTIVE TEST screen to increase "I	Γ" mode. PURG VOL (CONT/V	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	V" in "ACTIVE TEST screen to increase "I	Γ" mode. PURG VOL (ngine up to 2	CONT/V' 2,000 rpr	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving e	Γ" mode. PURG VOL (CONT/V' 2,000 rpr	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving e	Γ" mode. PURG VOL 0 ngine up to 2 ACTIVE TES	CONT/V' 2,000 rpr st xxx %	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving e	T" mode. PURG VOL 0 ngine up to 2 ACTIVE TES	CONT/V' 2,000 rpr st xxx %	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr st xxx %	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED	CONT/V' 2,000 rpr ST XXX %	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr ST	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr ST	" opening to		ervice port.		
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr ST	" opening to		ervice port.		
1. Disconnect vacuum 2. Start engine. 3. Perform "PURG VOI 4. Touch "Qu" on CON 5. Check vacuum hose	L CONT, SULT-II e for vac	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr ST	" opening to		ervice port.	PBIB167	8E
 Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON 	L CONT, SULT-II e for vac	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr ST	" opening to		ervice port.	PBIB167	8E
T. Disconnect vacuum Start engine. Perform "PURG VOI Touch "Qu" on CON Check vacuum hose	L CONT, SULT-II e for vac	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1	CONT/V' 2,000 rpr ST	" opening to		ervice port.	PBIB167	8E
1. Disconnect vacuum 2. Start engine. 3. Perform "PURG VOI 4. Touch "Qu" on CON 5. Check vacuum hose Vacuum should	L CONT, SULT-II e for vac	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVETES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1 A/F ALPHA-B2	CONT/V' 2,000 rpr ST	" opening to		ervice port.	PBIB167	8E
1. Disconnect vacuum 2. Start engine. 3. Perform "PURG VOI 4. Touch "Qu" on CON 5. Check vacuum hose Vacuum should	L CONT, SULT-II e for vaci	/V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVETES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1 A/F ALPHA-B2	CONT/V' 2,000 rpr ST	" opening to		ervice port.	PBIB167	8E
1. Disconnect vacuum 2. Start engine. 3. Perform "PURG VOI 4. Touch "Qu" on CON 5. Check vacuum hose Vacuum should	L CONT, SULT-II e for vaci	V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVETES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1 A/F ALPHA-B2	CONT/V' 2,000 rpr ST	" opening to		ervice port.	PBIB167	8E
OK NG	exist.	V" in "ACTIVE TEST screen to increase "I uum when revving ei	T" mode. PURG VOL (ngine up to 2 ACTIVE TES RG VOL CONT/V MONITOR ENG SPEED A/F ALPHA-B1 A/F ALPHA-B2 OK or N	CONT/V' 2,000 rpr ST XXX % XXX rpm XX % XX %	" opening to	o 100%.		PBIB167	8E

14 011201		IN TORIOL TOLOMIC GOLLINGID WEVE OF LIVINGH					
₩ithout CONSULT-II							
1. Start engine and warm it up to normal operating temperature.							
2. Stop engine.							
3. Disconnect	3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.						
	4. Start engine and let it idle for at least 80 seconds.						
	5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.						
Vacuum	Vacuum should exist.						
	OK or NG						
OK	•	GO TO 17.					
NG	>	GO TO 15.					

HA

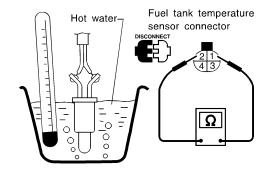

SC

EL

Diagnostic Procedure (Cont'd)

15	15 CHECK VACUUM HOSE				
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-32.				
	OK or NG				
OK (W	/ith CONSULT-II)	•	GO TO 16.		
OK (W	/ithout CONSULT-	•	GO TO 17.		
NG			Repair or reconnect the hose.		

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XX % A/F ALPHA-B2 XX % PBIB1678E OK or NG GO TO 18. OK NG GO TO 17.



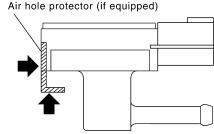
DTC P1442 EVAP CONTROL SYSTEM

Diagnostic Procedure (Cont'd)

18 CHECK FUEL TANK TEMPERATURE SENSOR1. Remove fuel level sensor unit.

2. Check resistance between fuel level sensor unit terminals 1 and 2 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90


SEF974Y

OK or NG

OK •	GO TO 19.
NG •	Replace fuel level sensor unit.

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

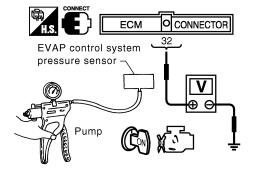
GI

MA

LC

EC

GL


MT

AT

TF

AX

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value
	•

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

G

OK ►	GO TO 20.
NG •	Replace EVAP control system pressure sensor.

20	CHECK EVAP PURGE LINE
----	-----------------------

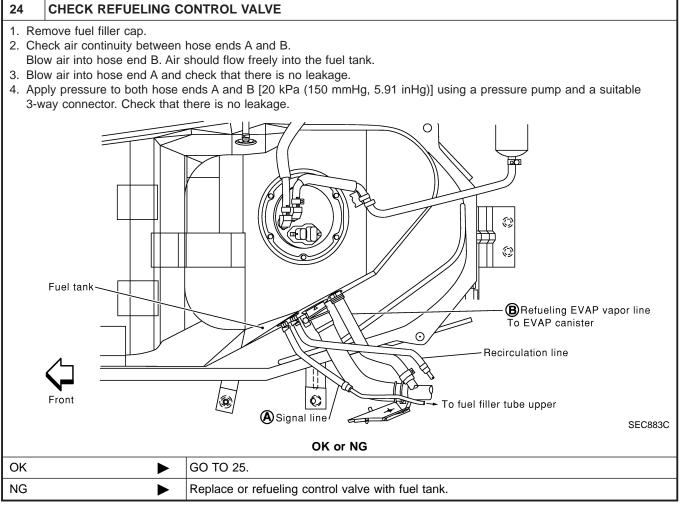
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-38.

OK or NG

OK	GO TO 21.
NG	Repair or reconnect the hose.

21 CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.	
	•	GO TO 22.

 \mathbb{M}


HA

SC

EL

22	CHECK REFUELING EV	VAP VAPOR LINE
• Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.		
OK or NG		
OK	>	GO TO 23.
NG	•	Repair or replace hoses and tubes.

23	CHECK SIGNAL LINE	AND RECIRCULATION LINE	
 Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection. OK or NG 			
OK	•	GO TO 24.	
NG		Repair or replace hoses, tubes or filler neck tube.	

25	CHECK FUEL LEVEL S	ENSOR	
Refer	Refer to EL-125, "Fuel Level Sensor Unit Check".		
	OK or NG		
OK	>	GO TO 26.	
NG	•	Replace fuel level sensor unit.	

DTC P1442 EVAP CONTROL SYSTEM

		Diagnostic Procedure (Cont'd)	
26	CHECK INTERMITTEN	I INCIDENT	G
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-155.	
	>	INSPECTION END	M
		-	

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

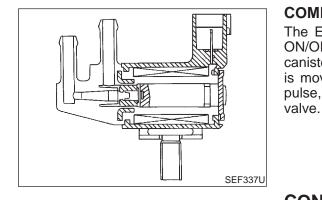
BT

HA

SC

EL

Description


Description SYSTEM DESCRIPTION

NAEC1089

3131EW DESCRIPTION			NAEC1089S01
Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2 and piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position	EVAP can-	
Accelerator pedal position sensor	Accelerator pedal position	ister purge	EVAP canister purge volume control solenoid valve
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	flow control	
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Vehicle speed signal*1	Vehicle speed		
Battery	Battery voltage*2		

^{*1:} This signal is sent to the ECM through CAN communication line.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1090

MONITOR ITEM	COND	SPECIFICATION	
Engine: After warming up Air conditioner switch OFF	Engine: After warming up Air conditioner switch OFF	Idle (Vehicle stopped)	0%
PURG VOL C/V	Shift lever: N No-load	2,000 rpm	_

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

ECM Terminals and Reference Value

ECM Terminals and Reference Value

NAEC1091

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

MA

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

				_	. 1511
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	LC
		EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)*	FE
45	L/Y	volume control sole- noid valve		BATTERY VOLTAGE (11 - 14V)★	Mī
			[Engine is running] • Engine speed is about 2,000 rpm (More than 100		AT
			seconds after starting engine).	▶ 10.0 V/Div 50 ms/Div [7]	TF
				SEC991C	PD

 $[\]star$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

On Board Diagnosis Logic

NAEC109

AX

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	SU
P1444 1444	EVAP canister purge volume control sole- noid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.) 	BR ST

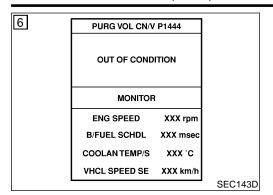
DTC Confirmation Procedure

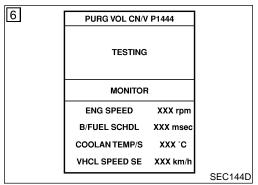
NAEC1093

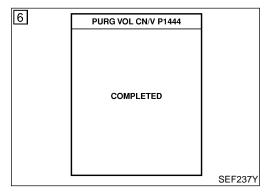
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

SC


BT


TESTING CONDITION:


Always perform test at a temperature of 0°C (32°F) or more.

EL

DTC Confirmation Procedure (Cont'd)

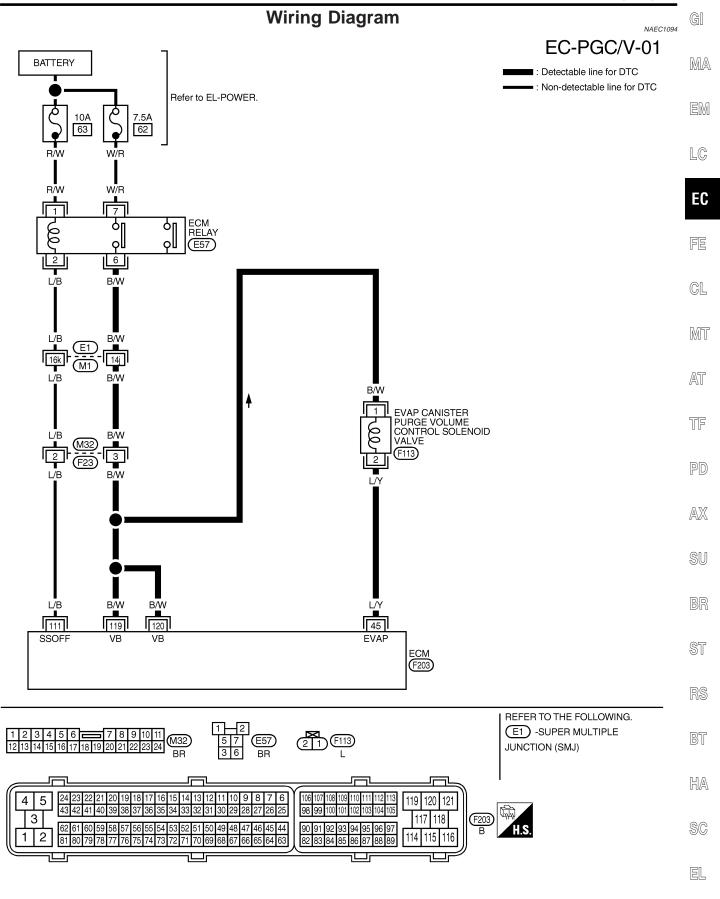
(P) WITH CONSULT-II

NAEC1093S0

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 4) Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".
- 6) Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take for approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-586.

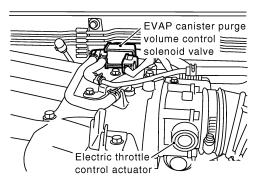

WITH GST

NAFC1093S02

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 10 seconds.
- 3) Start engine and let it idle for at least 20 seconds.
- 4) Select "MODE 7" with GST.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-586.

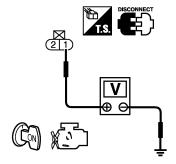
Wiring Diagram

MEC096E


Diagnostic Procedure

Diagnostic Procedure

NAFC109


1 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

SEC524D

- 3. Turn ignition switch ON.
- 4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

PBIB0080E

Voltage: Battery voltage

OK or NG

OK	GO TO 3.
NG	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E1, M1
- Harness connectors M32, F23
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

MT

AT

TF

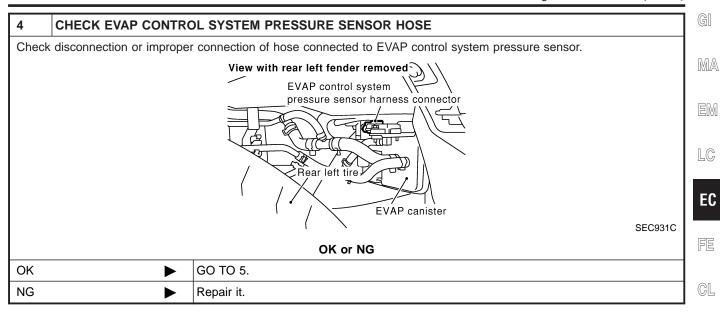
PD

AX

SU

BR

ST

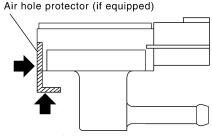

RS

BT

HA

SC

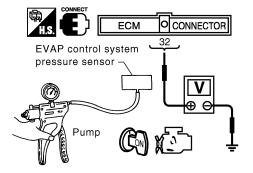
EL



5	5 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR			
2. Ch	 Disconnect EVAP control system pressure sensor harness connector. Check connectors for water. Water should not exist. 			
	OK or NG			
OK	OK ▶ GO TO 6.			
NG	NG Replace EVAP control system pressure sensor.			

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK (With CONSULT-II)		GO TO 7.	
OK (Without CONSULT-		GO TO 8.	
NG		Replace EVAP control system pressure sensor.	

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

- With CONSULT-II
- 1. Turn ignition switch OFF.
- 2. Reconnect harness connectors disconnected.
- 3. Start engine.

4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST				
PURG VOL CONT/V	XXX %			
MONITOR				
ENG SPEED	XXX rpm			
A/F ALPHA-B1	XX %			
A/F ALPHA-B2	XX %			

PBIB1678E

OK or NG

OK	>	GO TO 9.
NG	>	GO TO 8.

8 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100%	Yes
0%	No

SEF334XA

(R) Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

SEF335X

OK or NG

OK ▶	GO TO 9.
NG •	Replace EVAP canister purge volume control solenoid valve.

GI

MA

LC

EC

FE

CL

MT

AT

TF

AX SU

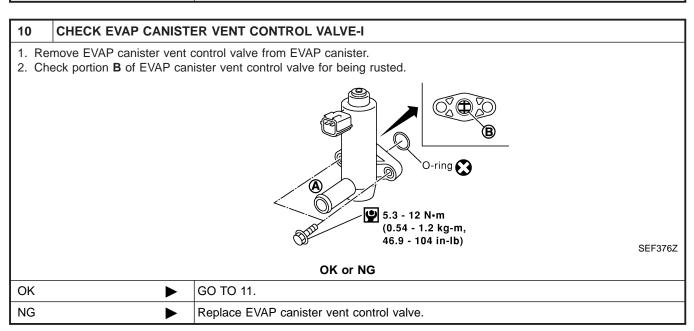
BR

ST

M

BT

HA

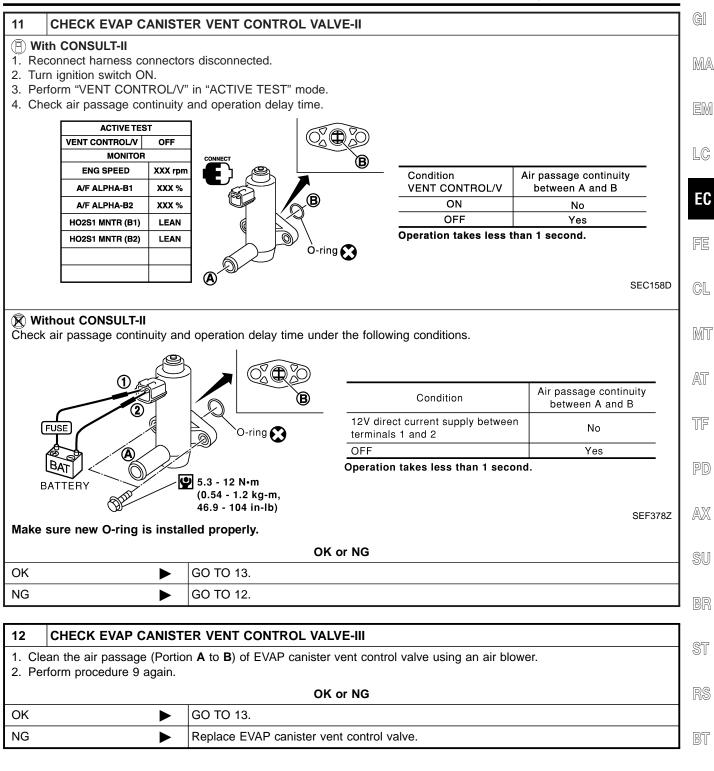

. . .

SC

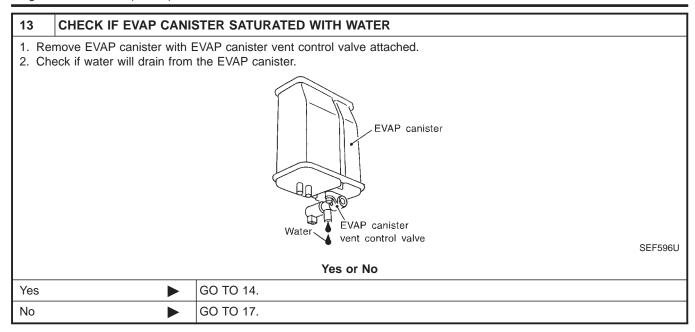
EL

Diagnostic Procedure (Cont'd)

9	CHECK RUBBER TUBE	FOR CLOGGING
 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 		
OK or NG		
OK	OK 🕨 GO TO 10.	
NG	•	Clean the rubber tube using an air blower.



Diagnostic Procedure (Cont'd)


HA

SC

EL

Diagnostic Procedure (Cont'd)

14	4 CHECK EVAP CANISTER		
	Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). OK or NG		
OK	OK GO TO 16.		
NG	•	GO TO 15.	

15	DETECT MALFUNCTIONING PART	
• EVA	Check the following. • EVAP canister for damage • EVAP hose between EVAP canister and water separater for clogging or poor connection	
	•	Repair hose or replace EVAP canister.

Diagnostic Procedure (Cont'd)

EC

TF

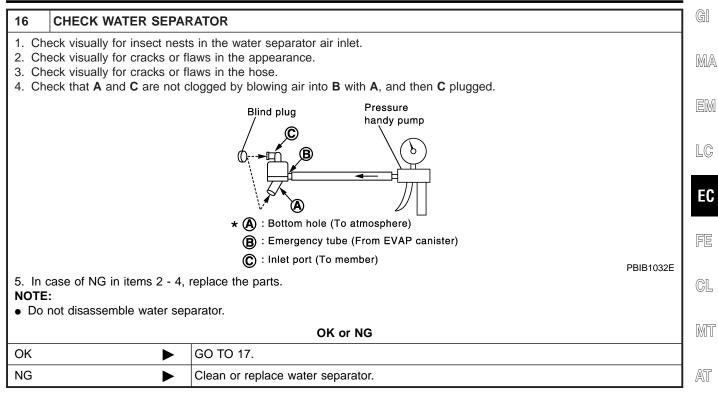
PD

 $\mathbb{A}\mathbb{X}$

SU

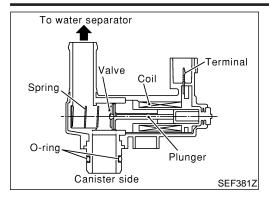
BR

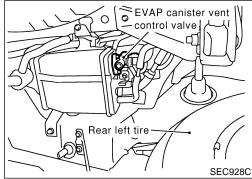
ST


RS

BT

HA


SC


EL

17	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	► INSPECTION END	

Component Description

Component Description

VAEC109

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System (Small Leak) diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1097

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

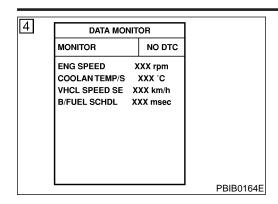
ECM Terminals and Reference Value

NAEC1098

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
117	G/R	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NAEC1099

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1446 1446	EVAP canister vent control valve closed	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water.

DTC Confirmation Procedure

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

LC

MA

NAEC1100

NAEC1100S01

(P) WITH CONSULT-II

) Turn ignition switch ON.

2) Select "DATA MONITOR" mode with CONSULT-II.

3) Start engine.

4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE

If a malfunction exists, NG result may be displayed quicker.

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-597.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NAEC1100S02

MT AT

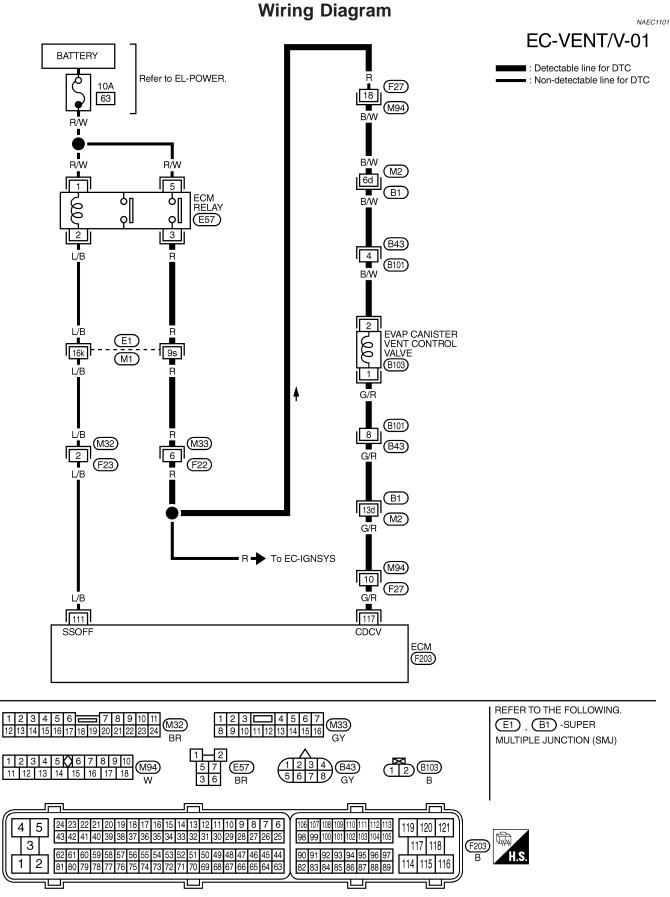
PD

TF

AX

SU

BK

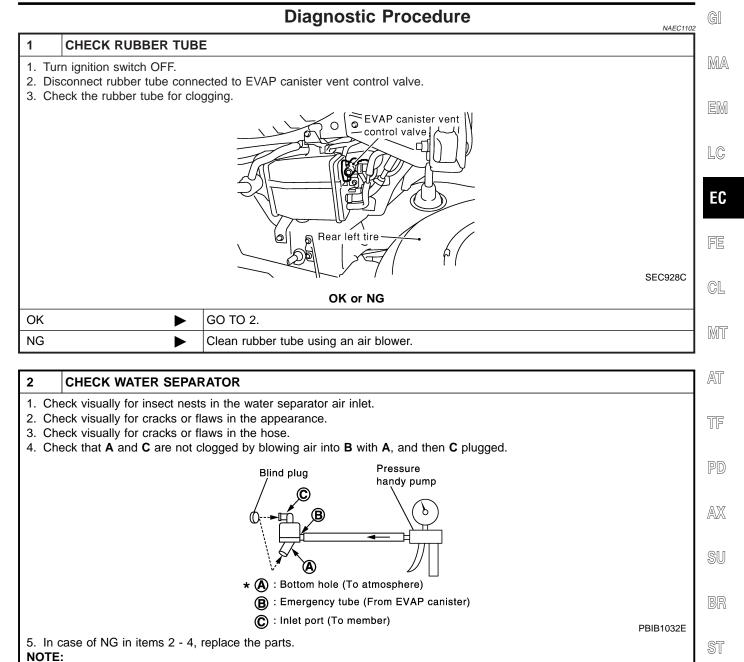

91

RS

HA

SC

EL



Diagnostic Procedure

HA

SC

EL

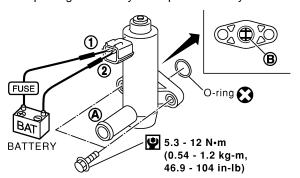
EC-597

OK or NG

• Do not disassemble water separator.

OK NG GO TO 3.

Clean or replace water separator.


Diagnostic Procedure (Cont'd)

3 CHECK EVAP CANISTER VENT CONTROL VALVE-I 1. Remove EVAP canister vent control valve from EVAP canister. 2. Check portion B of EVAP canister vent control valve for being rusted. O-ring 5 5.3 - 12 N·m (0.54 - 1.2 kg-m, 46.9 - 104 in-lb) SEF376Z

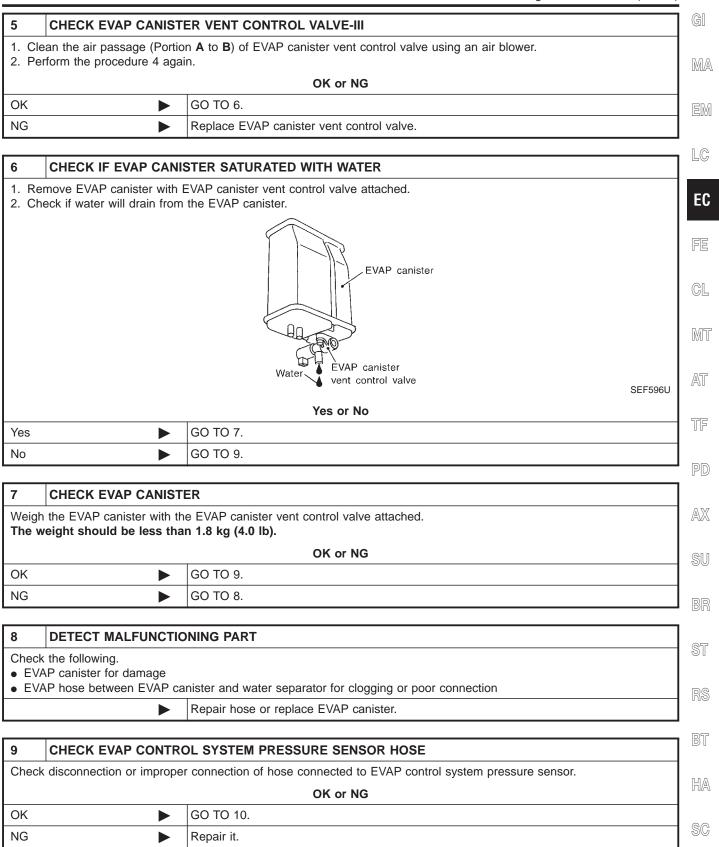
GO TO 4. OK NG Replace EVAP canister vent control valve. 4 CHECK EVAP CANISTER VENT CONTROL VALVE-II (P) With CONSULT-II 1. Turn ignition switch ON. 2. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode. 3. Check air passage continuity and operation delay time. ACTIVE TEST VENT CONTROL/V OFF MONITOR **ENG SPEED** XXX rpm Condition Air passage continuity A/F ALPHA-B1 XXX % VENT CONTROL/V between A and B ON A/F ALPHA-B2 XXX % Νo OFF Yes HO2S1 MNTR (B1) LEAN Operation takes less than 1 second. HO2S1 MNTR (B2) LEAN O-ring 🔀 SEC158D

Check air passage continuity and operation delay time under the following conditions.

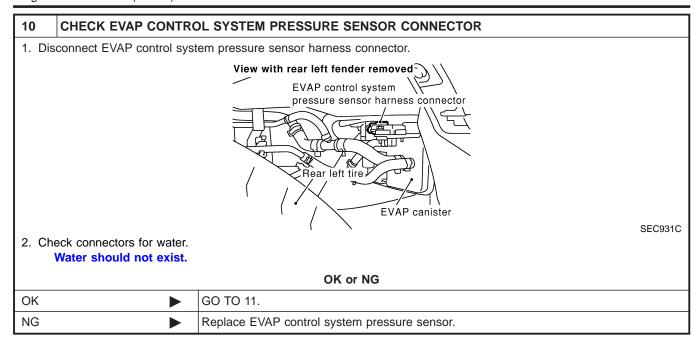
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

SEF378Z

Operation takes less than 1 second.

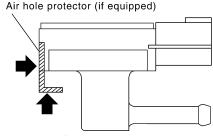

Make sure new O-ring is installed properly.

OK or NG


OK ►	GO TO 6.
NG •	GO TO 5.

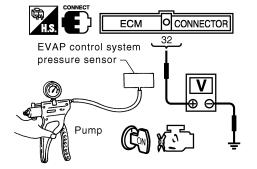
Diagnostic Procedure (Cont'd)

EL


Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
- Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

G

OK ►	GO TO 12.
NG •	Replace EVAP control system pressure sensor.

12	CHECK INTERMITTENT INCIDENT			
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.				
	► INSPECTION END			

GI

MA

LC

EC

GL

MT

AT

TF

PD

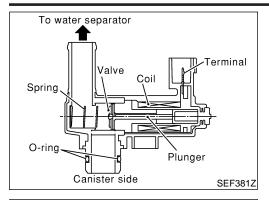
AX

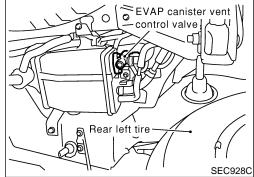
SU

RR

. . .

BT


HA


SC

EL

 \mathbb{M}

Component Description

Component Description

NOTE:

If DTC P1448 is displayed with P0442, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1104

NAEC1103

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

NAEC1105

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
117	G/R	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NAEC1106

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1448 1448	EVAP canister vent control valve open	EVAP canister vent control valve remains opened under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve

DTC Confirmation Procedure

DTC Confirmation Procedure

NAEC1107

NOTE:

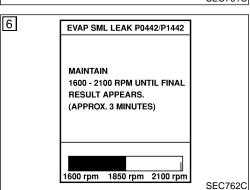
 If DTC P1448 is displayed with P0442 or P1442, perform trouble diagnosis for DTC P1448 first. MA

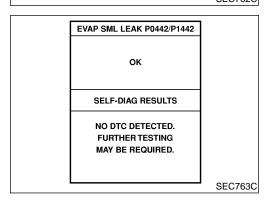
GI

 If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

EM

EVAP SML LEAK P0442/P1442


1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON,STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.


SEC760C

EVAP SML LEAK P0442/P1442

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEC761C

WITH CONSULT-II TESTING CONDITION:

NAFC1107S01

 Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.

E

EC

 Always perform test at a temperature of 0 to 30°C (32 to 86°F).

Open engine hood before conducting the following procedure.

MT

- 1) Turn ignition switch ON.
- 2) Turn ignition switch OFF and wait at least 10 seconds.

AT

TF

- 3) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met.

COOLAN TEMP/S 0 - 70°C (32 - 158°F)

INT/A TEMP SE 0 - 30°C (32 - 86°F)

PD

5) Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

 $\mathbb{A}\mathbb{X}$

Follow the instruction displayed.

SU

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-123.

6) Make sure that "OK" is displayed. If "NG" is displayed, go to the following step.

ST

NOTE:

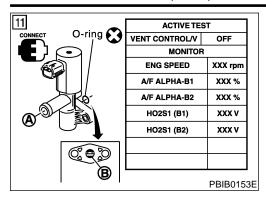
Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

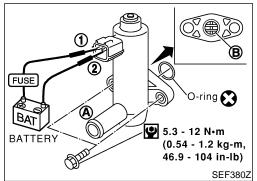
RS

- 7) Stop engine and wait at least 10 seconds, then turn "ON".
- 8) Disconnect hose from water separator.

BT vith

Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.


HA


10) Touch "ON" and "OFF" alternately.

SC

EL

DTC Confirmation Procedure (Cont'd)

11)	Make	sure	the	following.
-----	------	------	-----	------------

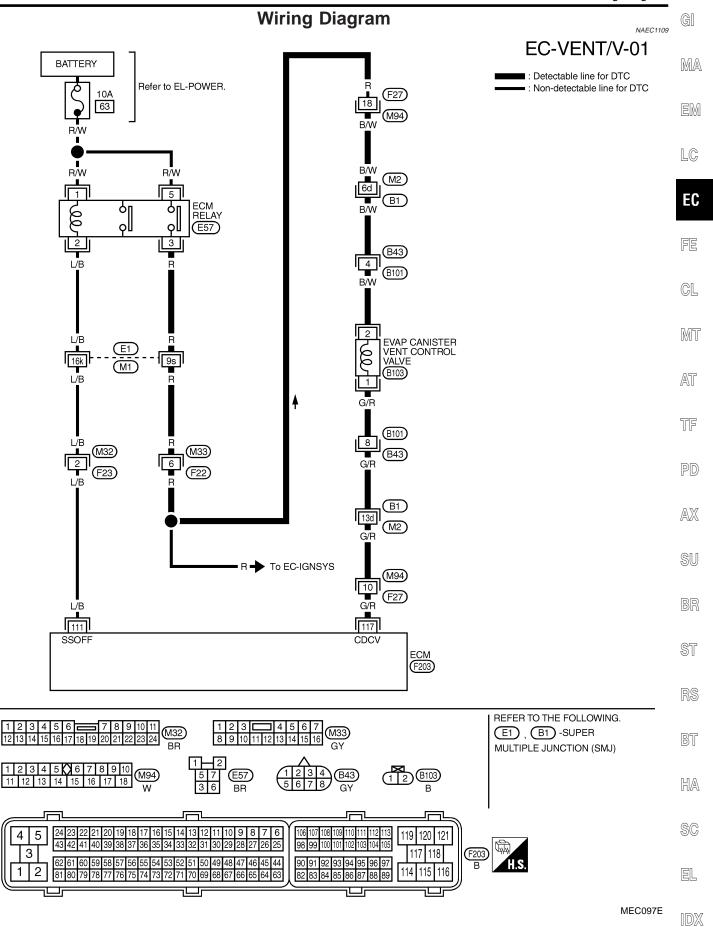
Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to "Diagnostic Procedure", EC-606. If the result is OK, go to "Diagnostic Procedure" for DTC P0442, EC-351.

Overall Function Check

NAFC110

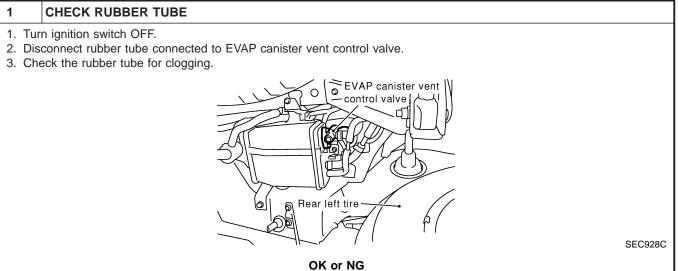
Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a 1st trip DTC might not be confirmed.

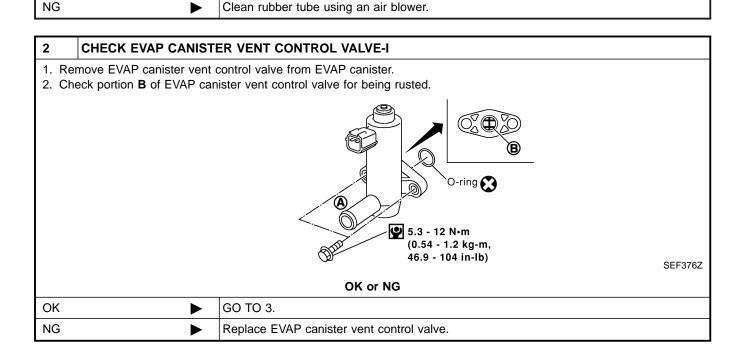

WITH GST

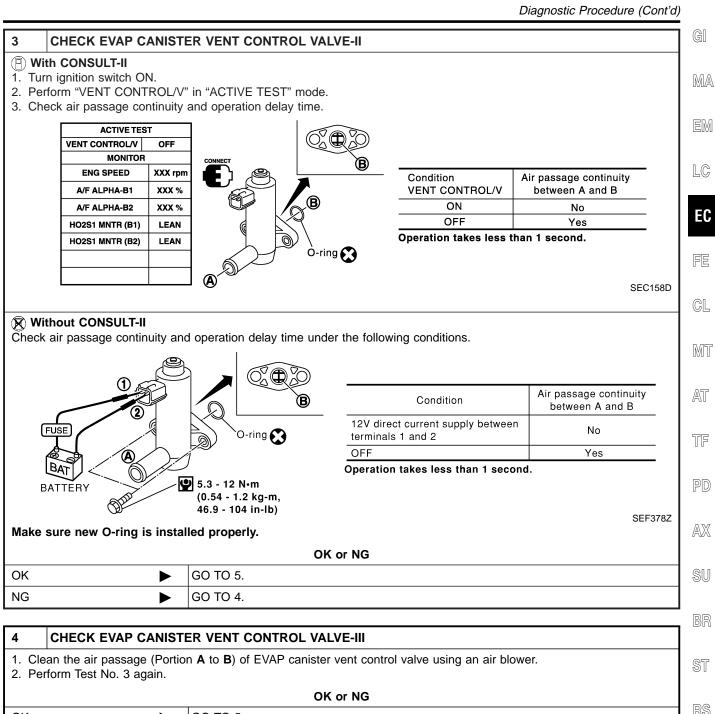
NAEC1108S01

- 1) Disconnect hose from water separator.
- Disconnect EVAP canister vent control valve harness connector
- 3) Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes


If the result is NG, go to "Diagnostic Procedure", EC-606. If the result is OK, go to "Diagnostic Procedure" for DTC P0442, EC-351.


OK


Diagnostic Procedure

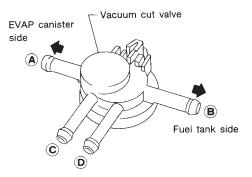
NAEC1110

GO TO 2.

CHECK EVAP CANISTE	ER VENT CONTROL VALVE-III	
Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform Test No. 3 again.		
OK or NG		
>	GO TO 5.	
•	Replace EVAP canister vent control valve.	
=	an the air passage (Portion form Test No. 3 again.	

BT

HA


SC

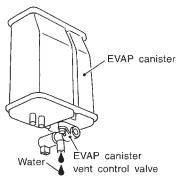
EL

Diagnostic Procedure (Cont'd)

5 CHECK VACUUM CUT VALVE

- 1. Turn ignition switch OFF.
- 2. Remove vacuum cut valve.
- 3. Check vacuum cut valve as follows:

SEF379Q


- a. Plug port C and D with fingers.
- b. Apply vacuum to port A and check that there is no suction from port B.
- c. Apply vacuum to port **B** and check that there is suction from port **A**.
- d. Blow air in port B and check that there is a resistance to flow out of port A.
- e. Open port C and D.
- f. Blow air in port A check that air flows freely out of port C.
- g. Blow air in port B check that air flows freely out of port D.

OK or NG

OK •	GO TO 6.
NG ►	Replace vacuum cut valve.

6 CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes	GO TO 7.
No •	GO TO 9.

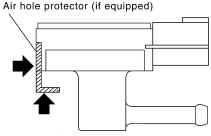
7 CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

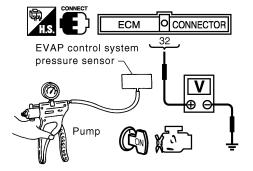
	0.1.0.1.10
OK •	GO TO 9.
NG	GO TO 8.


Diagnostic Procedure (Cont'd)

		Diagnostic Procedure ((Cont'd)
8 DETEC	T MALFUNCTION	ONING PART	GI
Check the follo			
EVAP canistEVAP hose t		anister and water separator for clogging or poor connection	M/
	•	Repair hose or replace EVAP canister.	
9 CHECK	EVAP CONTR	OL SYSTEM PRESSURE SENSOR HOSE	
Check disconne	ection or imprope	er connection of hose connected to EVAP control system pressure sensor.	L
		OK or NG	E
OK		GO TO 10.	
NG		Repair it.	_ F[
10 CHECK	EVAP CONTR	OL SYSTEM PRESSURE SENSOR CONNECTOR	
1. Disconnect	EVAP control sys	stem pressure sensor harness connector.	
		View with rear left fender removed	
		EVAP control system \rightarrow \rightarro	
			A
		Rear left tire	
			T
		EVAP canister	
2. Check conn	ectors for water.	SE	C931C P
Water sh	nould not exist.		0.5
		OK or NG	
OK	<u> </u>	GO TO 11.	
NG		Replace EVAP control system pressure sensor.	S
			B
			الا
			S
			R
			B
			H
			S

Diagnostic Procedure (Cont'd)

11 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

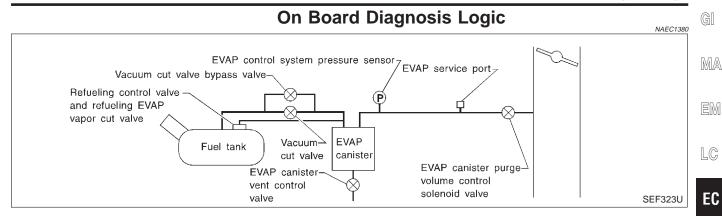
SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

ОК	>	GO TO 12.
NG	•	Replace EVAP control system pressure sensor.


12	CHECK INTERMITTENT	T INCIDENT
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-155.
	>	INSPECTION END

FE

GL

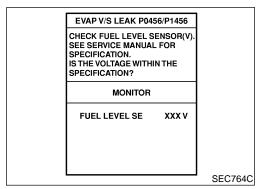
MT

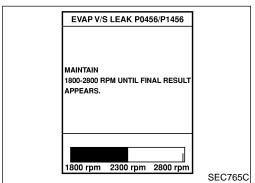
AT

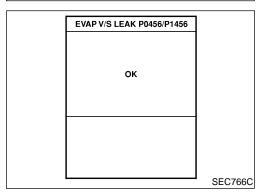
This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the vapor pressure in the fuel tank same as a conventional EVAP small leak diagnosis.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel

If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.


If ECM judges a leak which corresponds to a very small leak, the very small leak P1456 will be detected.


If ECM judges a leak equivalent to a small leak, EVAP small leak P1442 will be detected.


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1456 1456	Evaporative emission control system very small leak (positive	 EVAP system has a very small leak. EVAP system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to
	pressure check)		 close. Foreign matter caught in fuel filler cap Leak is in line between intake mani-
			fold and EVAP canister purge volume control solenoid valve.
			 Foreign matter caught in EVAP canister vent control valve EVAP canister or fuel tank leaks
			EVAP purge line (Pipe and rubber tube) leaks EVAP purge line rubber tube beat
			 EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor
			 Loose or disconnected rubber tube EVAP canister vent control valve and the circuit
			 EVAP canister purge volume control solenoid valve and the circuit
			 Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged.
			 Water separator EVAP canister saturated with water EVAP control system pressure sensor
			Refueling control valveORVR system leaks
			 Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid
			valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NAEC1381

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

- If DTC P1456 is displayed with P1442, perform TROUBLE DIAGNOSIS FOR DTC P1456 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- After repair, make sure that the hoses and clips are installed properly.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following condition is met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- a) Fuel filler cap is removed.
- b) Refilled or drained the fuel.
- c) EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 1) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.

FUEL LEVEL SE: 1.08 - 0.2V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F)

FUEL T/TMP SE: 0 - 35°C (32 - 95°F)

INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Turn ignition switch ON.
- 5) Select "EVP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-614.

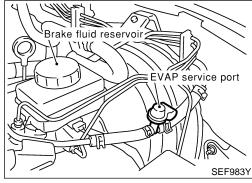
NOTE:

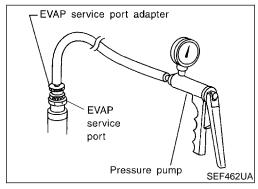
- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to "Basic inspection", EC-123.
- MA

GI

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

EC


GL


MT

TF

PD

AX

Overall Function Check

NAFC1382

NAEC1382

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

y F

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- 1) Attach the EVAP service port adapter securely to the EVAP AT service port.
- 2) Set the pressure pump and a hose.
- 3) Also set a vacuum gauge via 3-way connector and a hose.
- 4) Turn ignition switch ON.
- 5) Connect GST and select MODE 8.
- 6) Using MODE 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- 7) Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg)

If NG, go to diagnostic procedure, EC-614. If OK, go to next step.

- B) Disconnect GST.
- 9) Start engine and warm it up to normal operating temperature.
- 10) Turn ignition switch OFF and wait at least 10 seconds.
- 11) Restart engine and let it idle for 90 seconds.
- 12) Keep engine speed at 2,000 rpm for 30 seconds.
- 13) Turn ignition switch OFF.

BT

NOTE:

For more information, refer to GST instruction manual.

HA

SC

EL

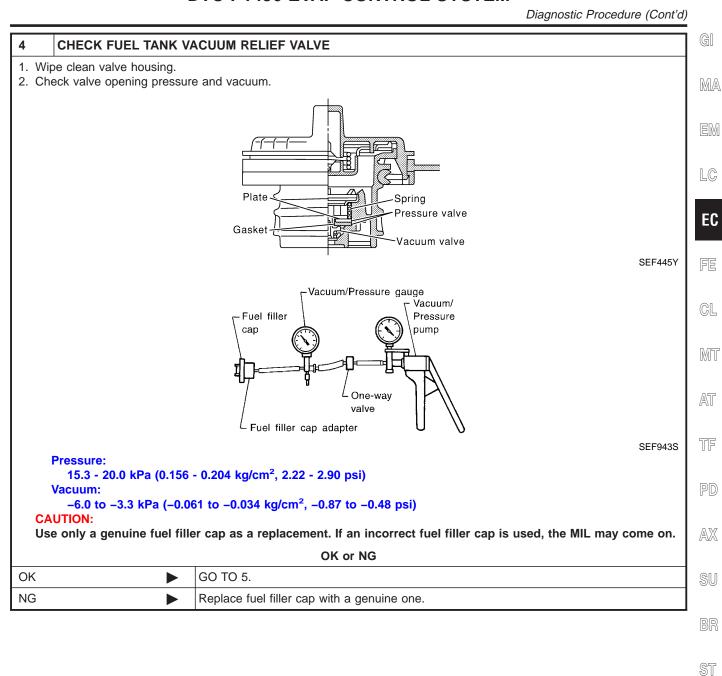
 \mathbb{M}

NG

Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

1. Turn ignition switch OFF.
2. Check for genuine NISSAN fuel filler cap design.


NISSAN

OK
OK GO TO 2.

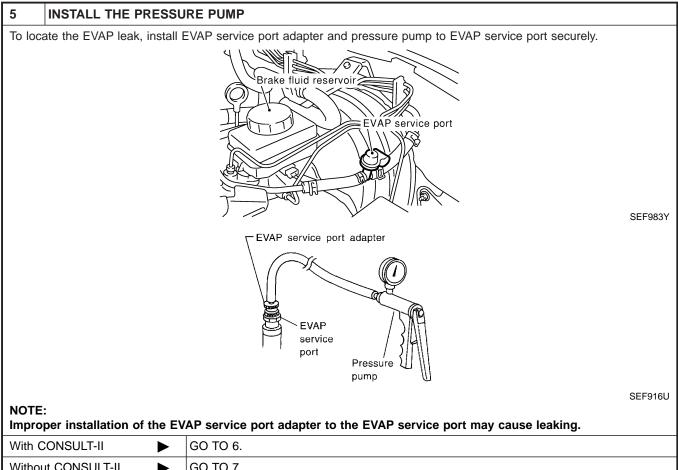
2	CHECK FUEL FILLER CAP INSTALLATION				
Check	Check that the cap is tightened properly by rotating the cap clockwise.				
	OK or NG				
OK	>	GO TO 3.			
NG	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 				

Replace with genuine NISSAN fuel filler cap.

3	CHECK FUEL FILLER CAP FUNCTION				
Check for air releasing sound while opening the fuel filler cap.					
	OK or NG				
OK	>	GO TO 5.			
NG	•	GO TO 4.			

EC-615

BT


HA

SC

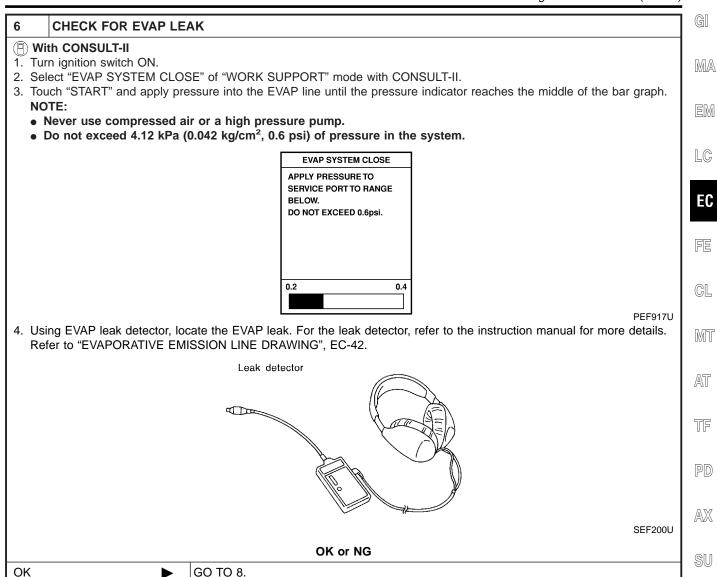
EL

[DX

Diagnostic Procedure (Cont'd)

With CONSULT-II	>	GO TO 6.
Without CONSULT-II		GO TO 7.

Diagnostic Procedure (Cont'd)


ST

BT

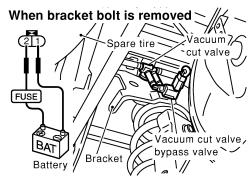
HA

SC

EL

OK		GO TO 8.
NG	>	Repair or replace.

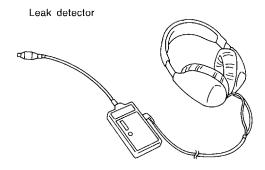
CHECK FOR EVAP LEAK


Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

SEC930C

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



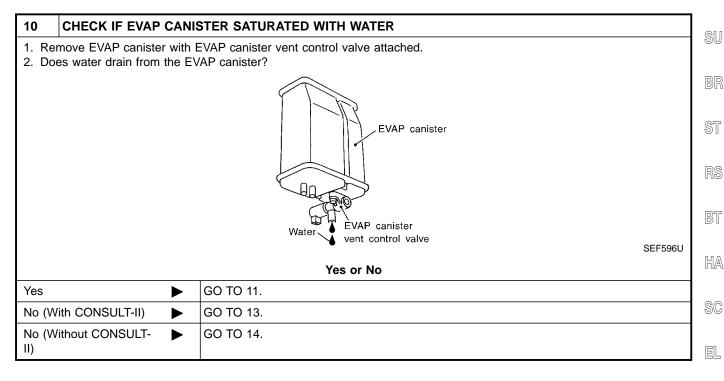
SEC932C

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42.

SEF200U


OK or NG

OK ►	GO TO 8.
NG ►	Repair or replace.

Diagnostic Procedure (Cont'd)

9	CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT				
Refer	Refer to "DTC Confirmation Procedure", EC-372.				
	OK or NG				
ОК	>	GO TO 10.			
NG	NG Repair or replace EVAP canister vent control valve and O-ring or harness/connector.				

TF

PD

AX

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER			
_	h the EVAP canister weight should be le		e EVAP canister vent control valve attached. n 1.8 kg (4.0 lb).	
	OK or NG			
OK (\	With CONSULT-II)	•	GO TO 13.	
OK (\ II)	Without CONSULT-	•	GO TO 14.	
NG			GO TO 12.	

12 DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST				
PURG VOL CONT/V	XXX %			
MONITOR				
ENG SPEED	XXX rpm			
A/F ALPHA-B1	XX %			
A/F ALPHA-B2	XX %			

PBIB1678E

Vacuum should exist.

OK or NG

OK		GO TO 16.
NG		GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ►	GO TO 15.

Diagnostic Procedure (Cont'd)

15	CHECK VACUUM	HOS	E	G
Check	vacuum hoses for o	cloggin	g or disconnection. Refer to "Vacuum Hose Drawing", EC-32.	
			OK or NG	\mathbb{N}
OK (W	Vith CONSULT-II)		GO TO 16.	
OK (W	Vithout CONSULT-	•	GO TO 17.	
NG			Repair or reconnect the hose.	П

16	CHECK EVAP CANIST	ER PURGE V	OLUME CONTR	OL SOI	LENOID VALVE
	ith CONSULT-II art engine.				
2. Pe		V" in "ACTIVE T	TEST" mode with	CONSL	JLT-II. Check that engine speed varies according
			ACTIVE TES	Т	
			PURG VOL CONT/V	XXX %	
			MONITOR		
			ENG SPEED	XXX rpm	
			A/F ALPHA-B1	XX %	
			A/F ALPHA-B2	XX %	
					PBIB1678
			OK or N	IG	
OK	>	GO TO 18.			
NG		GO TO 17.			

ST

EC

FE

CL

MT

AT

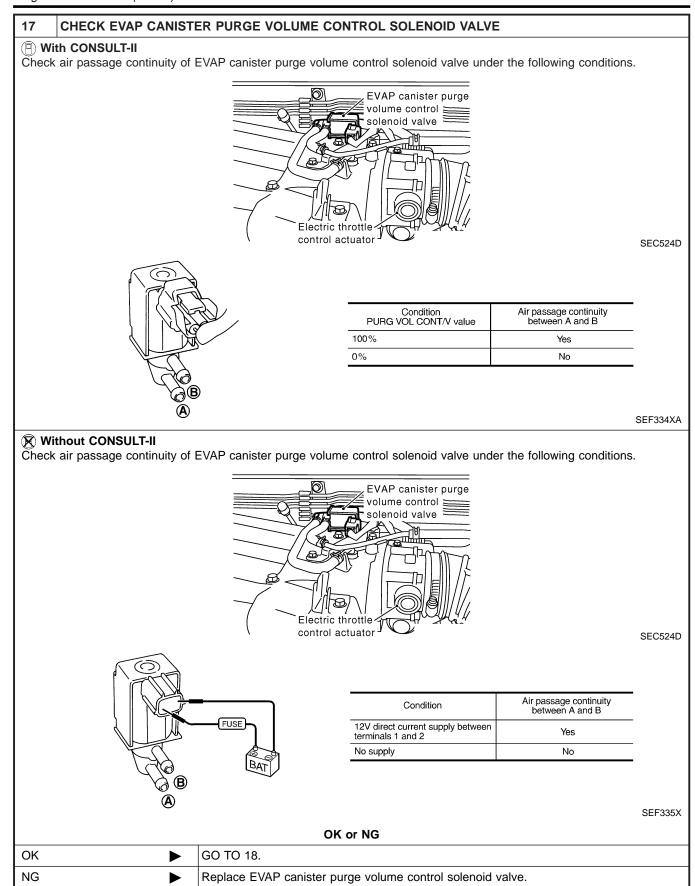
TF

PD

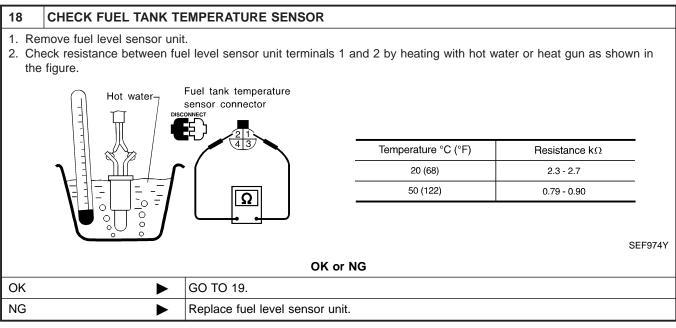
 $\mathbb{A}\mathbb{X}$

SU

BR


RS

BT


HA

SC

EL

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

EC

, Fe

CL

MT

AT

TF

PD

AX

SU

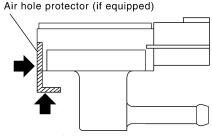
BR

ST

RS

BT

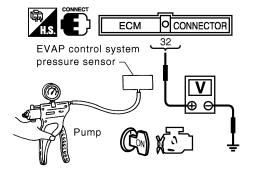
HA


SC

EL

 $\mathbb{D}\mathbb{X}$

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

ОК	•	GO TO 20.
NG		Replace EVAP control system pressure sensor.

20	CHECK EVAP PURGE LINE		
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-38. OK or NG			
OK	>	GO TO 21.	
NG	.	Repair or reconnect the hose.	

21	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	▶ GO TO 22.		

Diagnostic Procedure (Cont'd)

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

RS

BT

HA

SC

EL

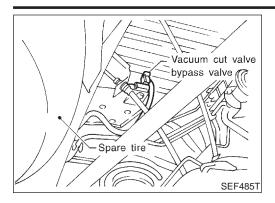
[DX

22	22 CHECK REFUELING EVAP VAPOR LINE		GI
 Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-42. 			l Mæ
OK or NG			
OK ▶ GO TO 23.		l em	
NG	>	Repair or replace hoses and tubes.	

23	CHECK SIGNAL LINE AND RECIRCULATION LINE	
• Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.		
OK or NG		
OK	•	GO TO 24.
NG	•	Repair or replace hoses, tubes or filler neck tube.

24

CHECK REFUELING CONTROL VALVE



25	25 CHECK FUEL LEVEL SENSOR		
Refer to EL-140, "Fuel Level Sensor Unit Check".			1
OK or NG			
OK	>	GO TO 26.	1
NG	•	Replace fuel level sensor unit.] [

Diagnostic Procedure (Cont'd)

26	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	► INSPECTION END			

Description

Description COMPONENT DESCRIPTION

=NAEC1116

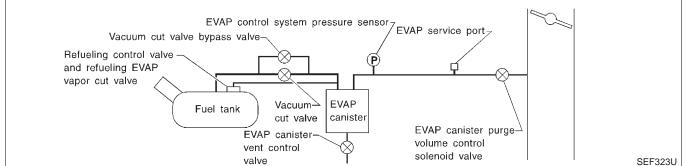
The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

MA

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

EM

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.


The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

LC

EC

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NAEC1116S02

MI AT

GL

TF

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

NAEC1117

Specification data are reference values.

CONDITION **SPECIFICATION** Ignition switch: ON OFF

ECM Terminals and Reference Value

NAEC1118

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

MONITOR ITEM

VC/V BYPASS/V

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

HA

SC

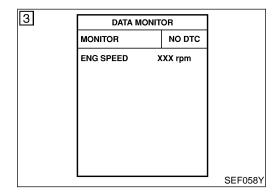
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
112	G/W	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

EL

On Board Diagnosis Logic

On Board Diagnosis Logic			
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1490 1490	Vacuum cut valve bypass valve circuit	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.) Vacuum cut valve bypass valve

DTC Confirmation Procedure

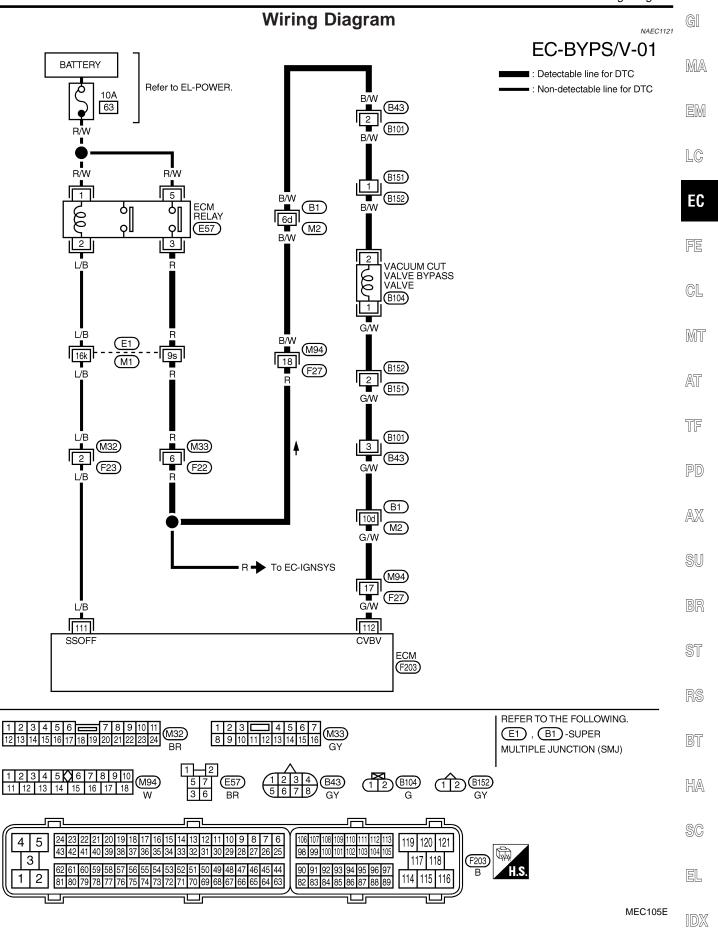

NAEC1120

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

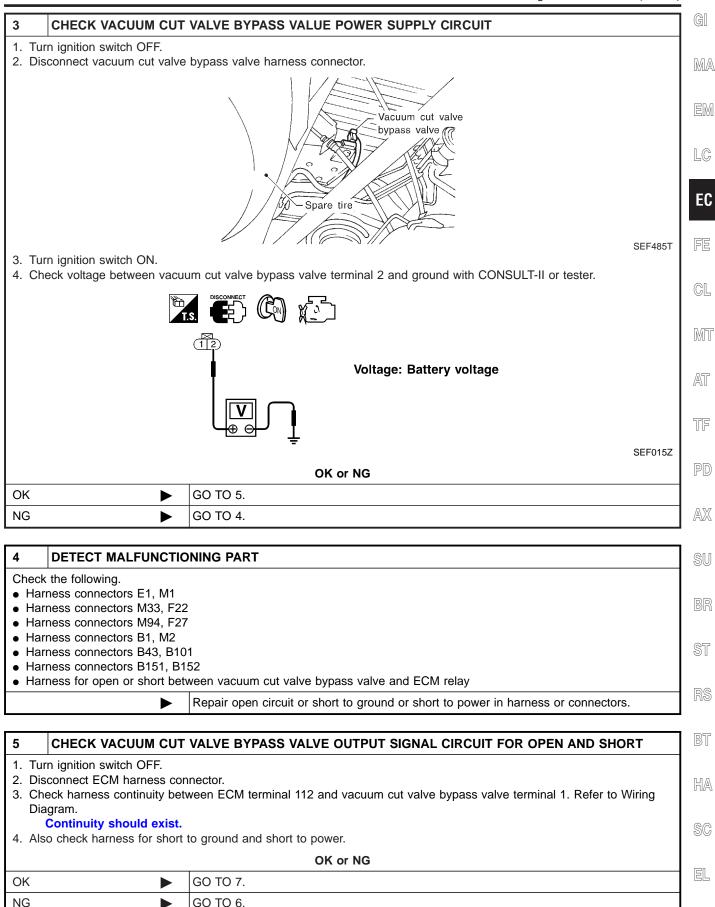
Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.


(II) WITH CONSULT-II

NAEC1120S01

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-630.
- **WITH GST**

NAEC1120S02


Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure NAEC1122 **INSPECTION START** Do you have CONSULT-II? Yes or No Yes GO TO 2. GO TO 3. No

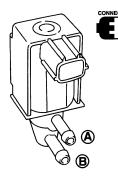
2 CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT With CONSULT-II 1. Turn ignition switch OFF and then ON. 2. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II. 3. Touch "ON/OFF" on CONSULT-II screen. ACTIVE TEST VC/V BYPASS/V OFF MONITOR XXX rpm **ENG SPEED** A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) LEAN HO2S1 MNTR (B2) LEAN PBIB0157E 4. Make sure that clicking sound is heard from the vacuum cut valve bypass valve. OK or NG GO TO 7. OK

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors B152, B151
- Harness connectors B101, B43
- Harness connectors B1, M2
- Harness connectors M94, F27
- Harness for open or short between vacuum cut valve bypass valve and ECM

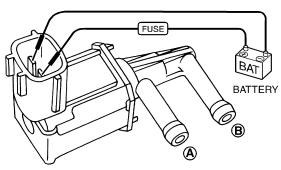
Repair open circuit or short to ground or short to power in harness or connectors.

CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VC/V BYPASS/V	YPASS/V OFF	
MONITOR	ì	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	


Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

Operation takes less than 1 second.

SEC156D

⋈ Without CONSULT-II

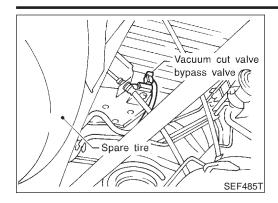
Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

SEF358X

OK or NG


ı	OK	>	GO TO 8.
ı	NG		Replace vacuum cut valve bypass valve.

8 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.

► INSPECTION END

Description

Description COMPONENT DESCRIPTION

NAEC1123

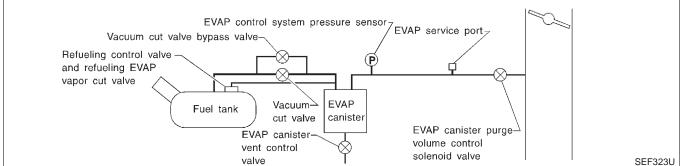
NAEC1123S01 The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

MA

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

EM

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.


The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

LC

EC

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NAEC1123S02

MI

GL

AT

TF

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

NAEC1124

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

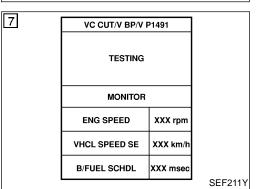
ECM Terminals and Reference Value

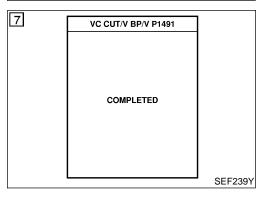
NAEC1125

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

HA


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
112	G/W	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)


EL

SC

On Board Diagnosis Logic NAEC1126 Trouble diagnosis DTC No. **DTC Detecting Condition** Possible Cause name P1491 Vacuum cut valve Vacuum cut valve bypass valve does not operate Vacuum cut valve bypass valve 1491 bypass valve properly. Vacuum cut valve · Bypass hoses for clogging EVAP control system pressure sensor and circuit EVAP canister vent control valve Hose between fuel tank and vacuum cut valve cloqued Hose between vacuum cut valve and EVAP canister clogged EVAP canister • EVAP purge port of fuel tank for clog-

7	VC CUT/V BP/V P1491		
	OUT OF CONDITION		
	MONITOR		
	ENG SPEED	XXX rpm	
	VHCL SPEED SE	XXX km/h	
	B/FUEL SCHDL	XXX msec	
			SEF210Y

DTC Confirmation Procedure

NAEC1127

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

ging

TESTING CONDITION:

For best results, perform test at a temperature of 5 to 30°C (41 to 86°F).

(P) WITH CONSULT-II

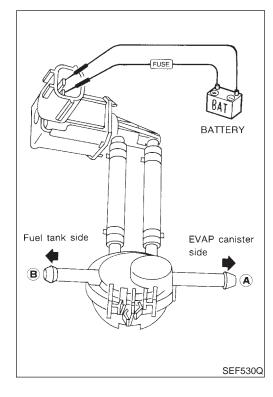
NAEC1127S01

- 1) Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF and wait at least 10 seconds.
- 4) Start engine and let it idle for at least 70 seconds.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED	Idle speed or more
Selector lever	Suitable position
Vehicle speed	37 km/h (23 MPH) or more
B/FUEL SCHDL	1.3 - 10 msec

If "TESTING" is not displayed after 5 minutes, retry from step 3.

Make sure that "OK" is displayed after touching "SELF-DIAG


DTC Confirmation Procedure (Cont'd)

RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-637.

MA

LC

Overall Function Check

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

WITH GST

1) Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.

GL

Apply vacuum to port **A** and check that there is no suction from port **B**.

MT

3) Apply vacuum to port B and check that there is suction from

AT

port A. Blow air in port **B** and check that there is a resistance to flow out of port A.

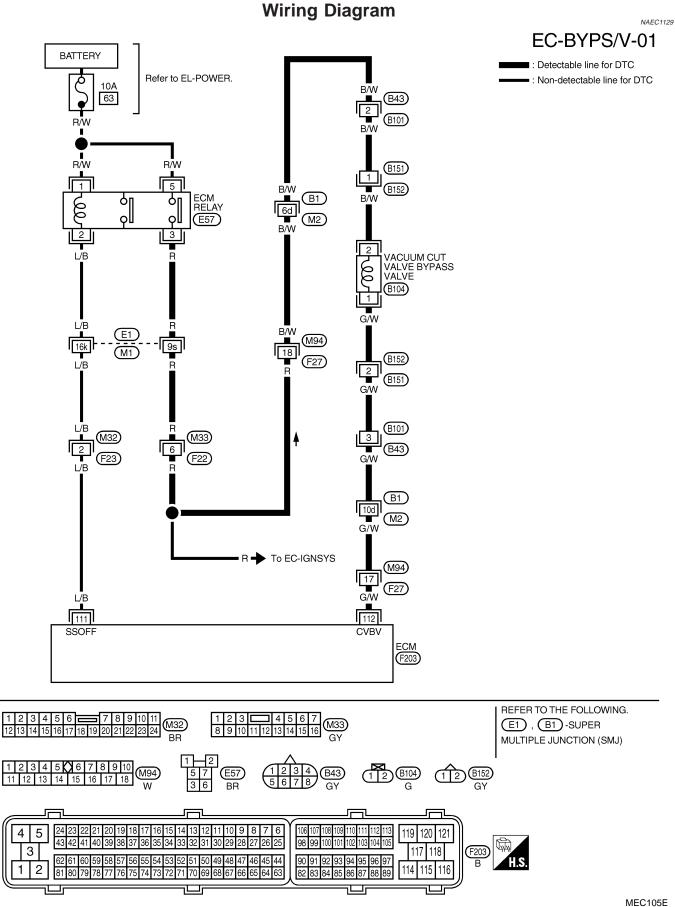
Supply battery voltage to the terminal.

TF

Blow air in port A and check that air flows freely out of port B.

Blow air in port **B** and check that air flows freely out of port **A**.

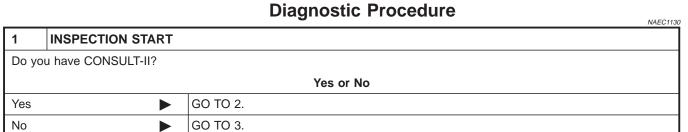
If NG, go to "Diagnostic Procedure", EC-637.

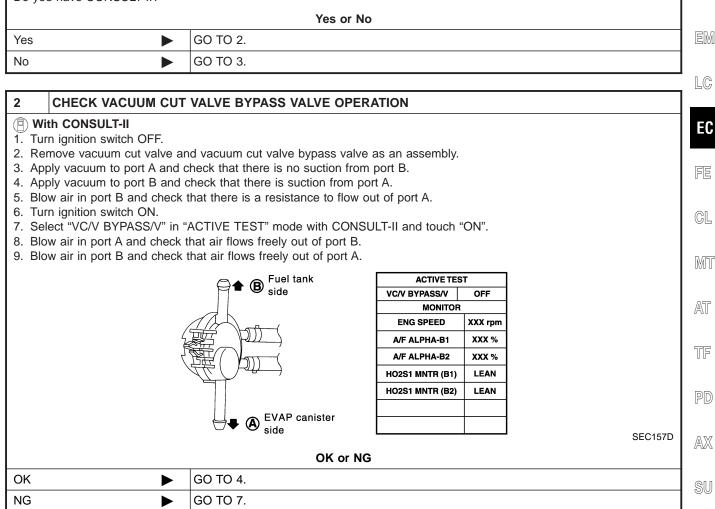

 $\mathbb{A}\mathbb{X}$

SU

HA

SC


EL



Diagnostic Procedure

G[

MA

BR

ST

BT

HA

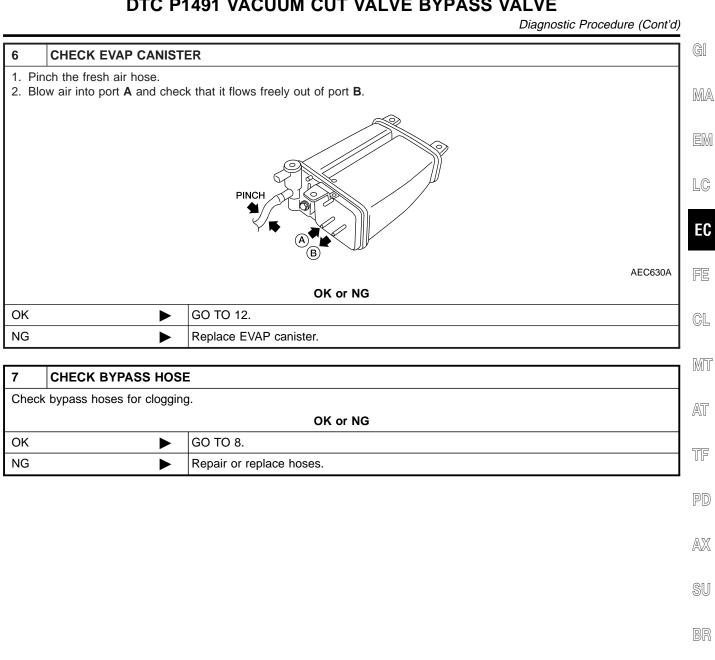
SC

EL

Diagnostic Procedure (Cont'd)

OK

NG


3 CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION © Without CONSULT-II 1. Turn ignition switch OFF. 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly. 3. Apply vacuum to port A and check that there is no suction from port B. 4. Apply vacuum to port B and check that there is a resistance to flow out of port A. 5. Blow air in port B and check that there is a resistance to flow out of port A. 6. Disconnect vacuum cut valve bypass valve harness connector. 7. Supply battery voltage to the terminal. 8. Blow air in port A and check that air flows freely out of port B. 9. Blow air in port B and check that air flows freely out of port A. By Fuel tank side EVAP canister side SEF914U

4	CHECK EVAP PURGE I	LINE	
Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection.			
	OK or NG		
OK	•	GO TO 5.	
NG	•	Repair it.	

OK or NG

GO TO 4.

5	CHECK EVAP PURGE	PORT	
Check EVAP purge port of fuel tank for clogging.			
	OK or NG		
OK	OK ▶ GO TO 6.		
NG	•	Clean EVAP purge port.	

ST

RS

BT

HA

SC

EL

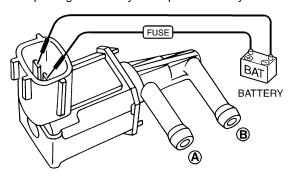
Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE

With CONSULT-II

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VC/V BYPASS/V OFF		
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	


Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

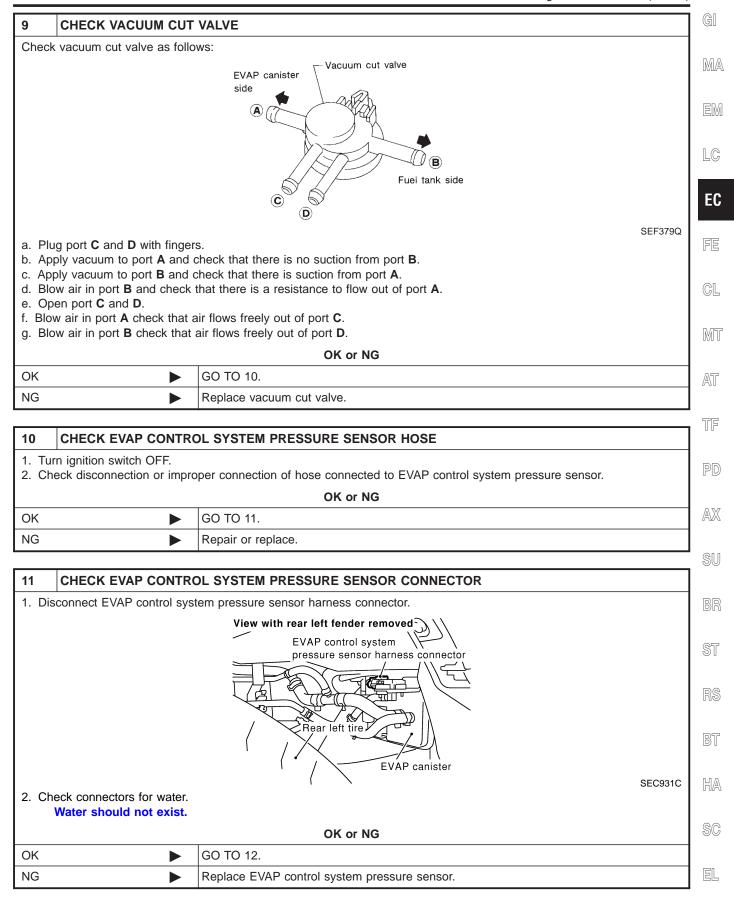
Operation takes less than 1 second.

SEC156D

⊗ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

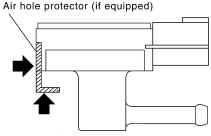
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No


Operation takes less than 1 second.

SEF358X

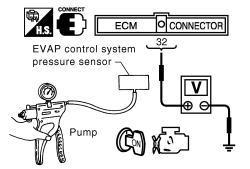
OK or NG

OK ▶	GO TO 9.
NG ►	Replace vacuum cut valve bypass valve.


Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

12 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

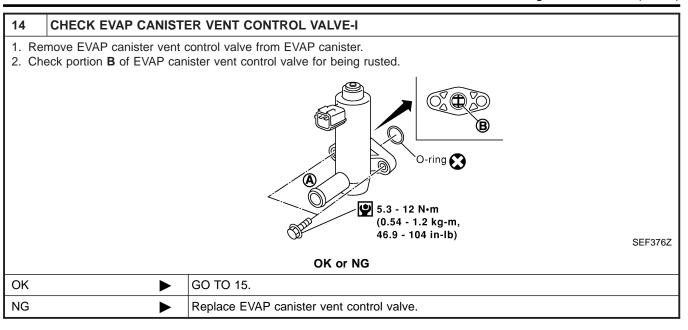
SEF799W

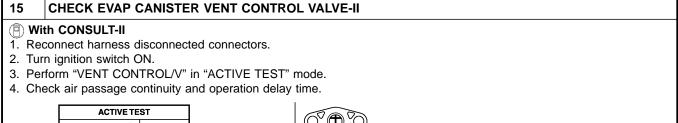
- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

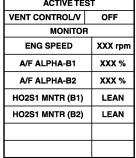
Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

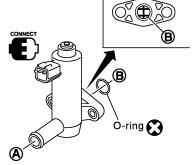
SEC422D

CAUTION:

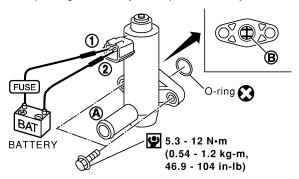

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


OK or	NG
-------	----


OK •	>	GO TO 13.
NG	>	Replace EVAP control system pressure sensor.


13	CHECK RUBBER TUBE	FOR CLOGGING
Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging.		
OK or NG		
OK	•	GO TO 14.
NG	>	Clean the rubber tube using an air blower.

Diagnostic Procedure (Cont'd)


between A and B
No
Yes

Operation takes less than 1 second.

SEC158D

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

SEF378Z

Make sure new O-ring is installed properly.

01/		NIO
OK	or	NG

OK •	GO TO 17.
NG ►	GO TO 16.

EC-643

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

AX

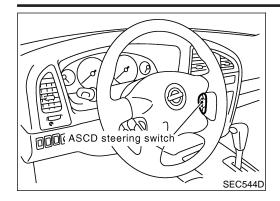
SU

ST

BT

HA

SC


EL

Diagnostic Procedure (Cont'd)

16	CHECK EVAP CANISTE	ER VENT CONTROL VALVE-III
 Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform the Test No. 15 again. 		
OK or NG		
OK	•	GO TO 17.
NG	•	Replace EVAP canister vent control valve.

17	CHECK INTERMITTENT	INCIDENT
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	•	INSPECTION END

CONDITION

Component Description

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to EC-54 for the ASCD function.

• MAIN switch: Pressed

MAIN switch: Released

CANCEL switch: Pressed

CANCEL switch: Released

RESUME/ACCEL switch:

RESUME/ACCEL switch:

SET/COAST switch:

SET/COAST switch:

Pressed

Released

Pressed

Released

MA

LC

EC

CONSULT-II Reference Value in Data Monitor Mode

ON

OFF

ON

OFF

ON

OFF

ON

OFF

Specification data are reference values.

. Ignition switch: ON

. Ignition switch: ON

Ignition switch: ON

• Ignition switch: ON

MONITOR ITEM

NAEC1293

SPECIFICATION	
	CL
	MT
	AT
	TF
	PD

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NAEC1299 SU

AX

CAUTION:

SET SW

MAIN SW

CANCEL SW

RESUME/ACC SW

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

- BF

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	ST
67	B/P	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	RS
99	LY	ASCD steering switch	[Ignition switch ON] • ASCD steering switch: OFF	Approximately 4V	BT
			[Ignition switch ON] • MAIN switch: Pressed	Approximately 0V	HA
			[Ignition switch ON] • CANCEL switch: Pressed	Approximately 1V	SC
			[Ignition switch ON] • SET/COAST switch: Pressed	Approximately 2V	EL
			[Ignition switch ON] ■ RESUME/ACCEL switch: Pressed	Approximately 3V	IDX

On Board Diagnosis Procedure

NAEC1294

This self-diagnosis has the one trip detection logic. The MIL will not light up for this self-diagnosis. NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-441.

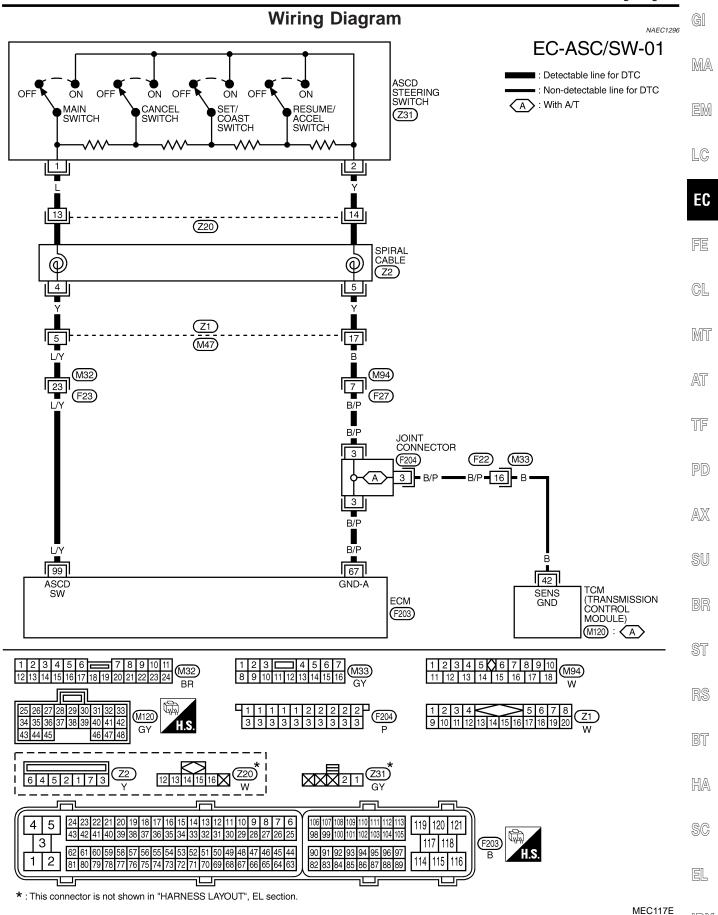
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The ASCD steering switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

NAEC1295

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 10 seconds.
- 4. Press "MAIN" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press "RESUME/ACCEL" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press "SET/COAST" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press "CANCEL" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. If DTC is detected, go to "Diagnostic Procedure", EC-648.

With GST

Follow the procedure "With CONSULT-II" above.

[DX

Diagnostic Procedure NAEC1297 **CHECK GROUND CONNECTIONS** 1. Turn ignition switch OFF. 2. Loosen and retighten three ground screws on the body. Refer to "Ground Inspection", EC-165. Front pillar LH Front pillar RH Body ground Body ground SEC997D OK or NG OK GO TO 2. NG Repair or replace ground connections.

DTC P1564 ASCD STEERING SWITCH

Diagnostic Procedure (Cont'd)

CHECK ASCD STEERING SWITCH CIRCUIT

With CONSULT-II

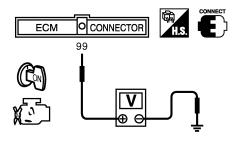
1. Turn ignition switch ON.

2. Select "MAIN SW", "RESUME/ACC SW", "SET SW" and "CANCEL SW" in "DATA MONITOR" mode with CONSULT-II.

DATA MONITOR			
MONITOR	NO DTC		
MAIN SW	OFF		
CANCEL SW	OFF		
RESUME/ACC SW	OFF		
SET SW	OFF		

3. Check each item indication under the following conditions.

Switch	Monitor item	Condition	Indication
CRUISE	MAIN SW	Pressed	ON
Chuise	WAIN SW	Released	OFF
COAST/SET SET SW		Pressed	ON
COAST/SET	SELOW	Released	OFF
ACCEL/RES RESUME/ACC SW		Pressed	ON
ACCELINES	NESUIVIE/ACC SW	Released	OFF
CANCEL	CANOEL OW	Pressed	ON
CANCEL	CANCEL SW	Released	OFF


MTBL1193

SEC006D

◯ Without CONSULT-II

1. Turn ignition switch ON.

2. Check voltage between ECM terminal 99 and ground with pressing each button.

PBIB0311E

Switch	Condition	Voltage [V]
CRUISE SW	Pressed	Approx. 0
CHUISE SW	Released	Approx. 4
COAST/SET SW	Pressed	Approx. 2
COAST/SET SW	Released	Approx. 4
ACCEL/RES SW	Pressed	Approx. 3
ACCEL/RES SW	Released	Approx. 4
CANCEL SW	Pressed	Approx. 1
CANCEL SW	Released	Approx. 4

MTBL1400

OK ▶	GO TO 5.
NG ▶	GO TO 3.

GI

MA

LC

EC

FE

CL

MT

. —

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

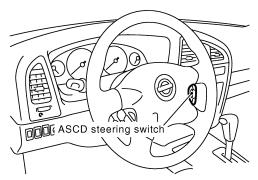
SU

BR

ST

RS

BT


HA

SC

EL

3 CHECK ASCD STEERING SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect ASCD steering switch harness connector.

SEC544D

4. Check harness continuity between ASCD steering switch terminal 2 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ▶	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector Z20
- Spiral cable Z2
- Harness connectors Z1, M47
- Harness connectors M94, F27
- Harness connectors F22, M33
- Joint connector F204
- Harness for open and short between ECM and ASCD steering switch
- Harness for open and short between TCM and ASCD steering switch

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 99 and ASCD steering switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

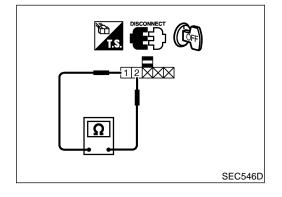
OK or NG

OK	GO TO 7.
NG	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector Z20
- Spiral cable Z2
- Harness connectors Z1, M47
- Harness connectors M32, F23
- Harness for open and short between ECM and ASCD steering switch


Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1564 ASCD STEERING SWITCH

Diagnostic Procedure (Cont'd)

7	7 CHECK ASCD STEERING SWITCH		GI
Refer to "Component Inspection", EC-651.			
	OK or NG		
OK	•	GO TO 8.	
NG	•	Replace ASCD steering switch.	EM

8	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
► INSPECTION END		

Component Inspection ASCD STEERING SWITCH

NAEC1298

1. Disconnect ASCD steering switch.

 Check continuity between terminals 1 and 2 by pushing each switch.

Switch	Condition	Resistance [kΩ]
MAIN SW	Pressed	Approx. 0
WAIN SW	Released	Approx. 4
SET/COAST SW	Pressed	Approx. 0.66
SET/COAST SW	Released	Approx. 4
RESUME/ACCEL SW	Pressed	Approx. 1.48
RESUME/ACCEL SW	Released	Approx. 4
CANCEL SW	Pressed	Approx. 0.25
CANCEL SW	Released	Approx. 4

PD

LC

EC

FE

CL

MT

AT

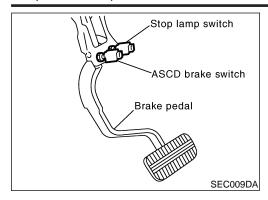
TF

SU

BR

ST

RS


BT

HA

SC

EL

 $\mathbb{D}\mathbb{X}$

Component Description

NAEC130

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON.

ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal).

Refer to EC-54 for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1301

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW 1 (ASCD brake switch)	Ignition switch: ON	Brake pedal fully released Clutch pedal is fully released (M/T models)	ON
		Brake pedal depressed Clutch pedal is depressed (M/T models)	OFF
BRAKE SW 2 (Stop lamp switch) • Ignition	- Ignition awitch: ON	Brake pedal fully released	OFF
	Ignition switch: ON	Brake pedal depressed	ON

ECM Terminals and Reference Value

NAEC1307

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	G/Y	Stop Jamp quitab	[Ignition switch ON] • Brake pedal is fully released	Approximately 0V
101	G/Y	Stop lamp switch	[Ignition switch ON] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)
	L/Y AS		 [Ignition switch ON] Brake pedal is fully released Clutch pedal is fully released (M/T models) 	BATTERY VOLTAGE (11 - 14V)
108		8 L/Y ASCD brake switch	[Ignition switch ON] • Brake pedal is depressed • Clutch pedal is depressed (M/T models)	Approximately 0V

On Board Diagnosis Procedure

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this self-diagnosis.

- If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-441.
- If DTC P1572 is displayed with DTC P1805, first perform the trouble diagnosis for DTC P1805. Refer to EC-669.
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed. 1st trip DTC is erased when ignition switch OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble Diagnosis Name	DTC	Detecting Condition	Possible Cause
P1572 1572	A)	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to ECM at the same time.	 Harness or connectors (The stop lamp switch circuit is shorted.) Harness or connectors (The ASCD brake switch circuit is shorted.) Harness or connectors (The ASCD clutch switch circuit is shorted.) (M/T models) Stop lamp switch 	
	B)	ASCD brake switch signal is not sent to ECM for extremely long time while the vehicle is driving.	 Stop lamp switch ASCD brake switch ASCD clutch switch (M/T models) Incorrect stop lamp switch installation Incorrect ASCD brake switch installation Incorrect ASCD clutch switch installation (M/T models) ECM 	

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- Procedure for malfunction B is not described here. It takes extremely long time to complete procedure for malfunction B. By performing procedure for malfunction A, the incident that causes malfunction B can be detected.

TESTING CONDITION:

Steps 4 and 5 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

=NAEC1302

EM

EC

GL

MIT

AT

SU

AX

NAEC1303

SC

EL

DTC Confirmation Procedure (Cont'd)

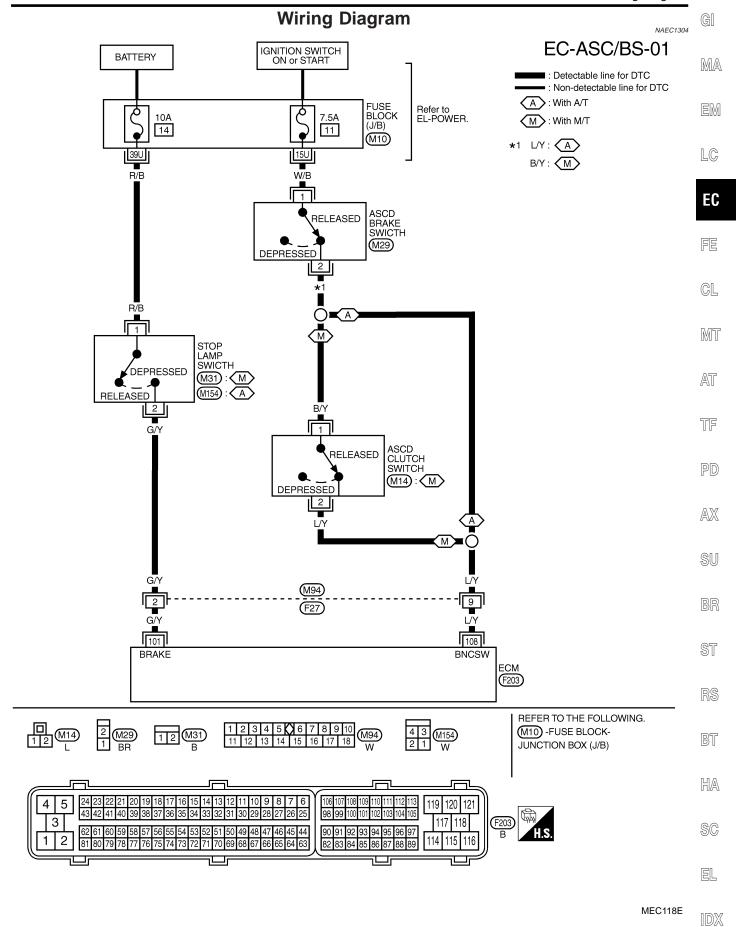
DATA MO	NITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
VHCL SPEED SE	XXX km/h
CRUISE LAMP	ON
BRAKE SW 1	ON
BRAKE SW 2	OFF

(P) With CONSULT-II

- 1) Start engine (VDC switch OFF).
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Press MAIN switch and make sure that CRUISE indicator lights up.
- 4) Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-656.


If 1st trip DTC is not detected, go to the following step.

5) Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)	
Selector lever	Suitable position	
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned vehicle speed.	

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-656.

With GST Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

NAEC1305

CHECK OVERALL FUNCTION-I

With CONSULT-II

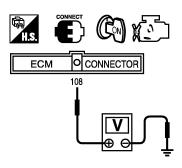
- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check the indication of "BRAKE SW1" under the following conditions.

DATA MONITOR				
MONITOR NO DTO				
BRAKE SW1	OFF			

SEC011D

A/T models

7 T Models	
CONDITION	INDICATION
When brake pedal is depressed.	OFF
When brake pedal is released.	ON


M/T models

CONDITION	INDICATION
When clutch pedal or brake pedal is depressed.	OFF
When clutch pedal and brake pedal are released.	ON

MTBL1334

Without CONSULT-II

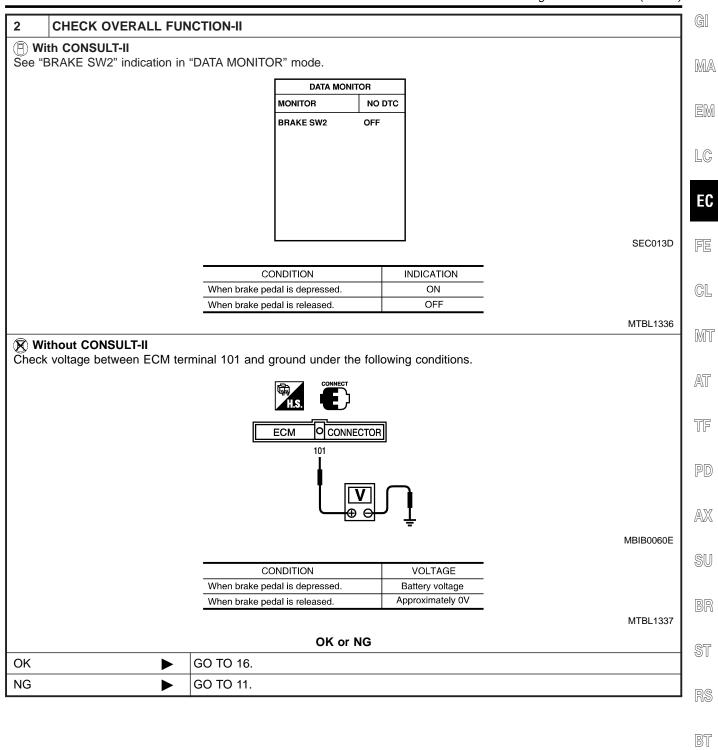
- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

MBIB0061E

A/T models

CONDITION

When brake pedal is depressed.	Αp	proximately 0V
When brake pedal is released.	Е	Battery voltage
M/T models		
CONDITION		VOLTAGE
When clutch pedal or brake pedal is depres	sed.	Approximately 0V
When clutch pedal and brake pedal are rele	ased.	Battery voltage


VOLTAGE

MTBL1335

OK or NG

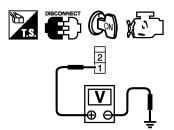
OK •	GO TO 2.
NG ▶	GO TO 3.

Diagnostic Procedure (Cont'd)

EC-657

HA

SC


EL

[DX

Diagnostic Procedure (Cont'd)

3 CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

PBIB0857E

Voltage: Battery voltage

OI	K	or	Ν	G
----	---	----	---	---

OK (A/T models)		GO TO 5.
OK (M/T models)	•	GO TO 7.
NG		GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M10
- 7.5A fuse
- Harness for open or short between ASCD brake switch and fuse
 - Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for open to ground and short to power.

OK or NG

OK •	GO TO 10.
NG •	GO TO 6.

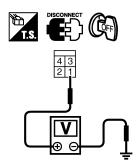
6 DETECT MALFUNCTIONING PART

Check the following.

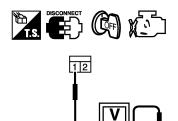
- Harness connectors M94, F27
- Harness for open and short between ECM and ASCD brake switch

Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)


EL

		Diagnostic Procedure (Cont	<i>u</i>)
7 CHECK AS	SCD CLUTCH	SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	= (
1. Turn ignition sw 2. Disconnect ASC 3. Disconnect ECN	CD clutch switc	ch harness connector.	
4. Check harness switch terminal Refer to Wiring	continuity betw 2 and ECM ter	ween ASCD brake switch terminal 2 and ASCD clutch switch terminal 1, ASCD clutch	
		to ground and short to power.	
		OK or NG	┦╸
OK NO		GO TO 9.	41
NG		GO TO 8.	_ •
B DETECT N	MALFUNCTIO	NING PART	╗╵
	tors M94, F27 and short be	etween ASCD brake switch and ASCD clutch switch	
Harness for ope		etween ASCD clutch switch and ECM	-
	•	Repair open circuit or short to ground or short to power in harness or connectors.	┙
CHECK AS	SCD CLUTCH	SWITCH	٦
Refer to "Compone			\dashv
		OK or NG	
OK	•	GO TO 10.	
NG	•	Replace ASCD clutch switch.	
10 CHECK AS	SCD BRAKE	SMITCH	7
Refer to "Compone			+
tolor to Compone	inopoolion ,	OK or NG	
214	•	GO TO 16.	+
JK			\dashv
	>	Replace ASCD brake switch.	
	>	Replace ASCD brake switch.	┙
	•	Replace ASCD brake switch.	
	•	Replace ASCD brake switch.	
	•	Replace ASCD brake switch.	
	>	Replace ASCD brake switch.	
	•	Replace ASCD brake switch.	
		Replace ASCD brake switch.	
	•	Replace ASCD brake switch.	
OK NG		Replace ASCD brake switch.	


11 CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT 1. Turn ignition switch OFF.

- 2. Disconnect stop lamp switch harness connector.
- 3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

A/T models

M/T models

PBIB0117E

SEC547D

Voltage: Battery voltage

OK or NG

OK	GO TO 13.
NG	GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M10
- 10A fuse
- Harness for open or short between stop lamp switch and fuse

Repair open circuit or short to ground in harness or connectors.

13 CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between stop lamp switch terminal 2 and ECM terminal 101. Refer to wiring diagram.

 Continuity should exist
- 3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 15.
NG ▶	GO TO 14.

Diagnostic Procedure (Cont'd)

G[

MA

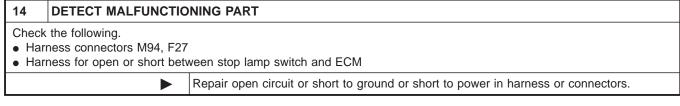
LC

EC

FE

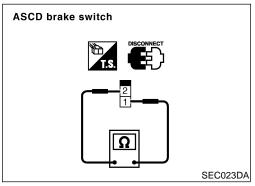
GL

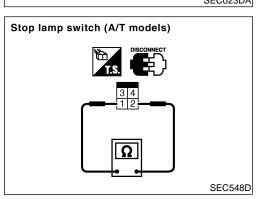
MT

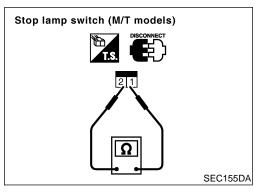

AT

TF

PD


 $\mathbb{A}\mathbb{X}$


NAEC1306



15	CHECK STOP LAMP S	WITCH	
Refer	Refer to "Component Inspection", EC-661.		
OK or NG			
OK	OK 🕨 GO TO 16.		
NG	NG Replace stop lamp switch.		

16	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
► INSPECTION END			

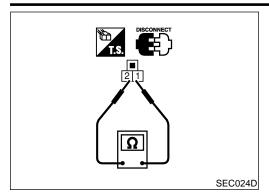
Component Inspection ASCD BRAKE SWITCH AND STOP LAMP SWITCH

	Continuity	
Condition	ASCD brake switch	Stop lamp switch
When brake pedal is depressed	No	Yes
When brake pedal is released	Yes	No

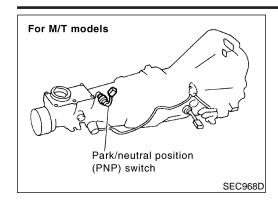
Check each switch after adjusting brake pedal — refer to BR section.

SU BR ST

RS


BT

HA


SC

EL

Component Inspection (Cont'd)

ASCD CLUTCH SWITCH (FOR M/T MODELS)		
Condition	Continuity	
When clutch pedal is depressed	No	
When clutch pedal is released	Yes	

Specification data are reference values.

Component Description

When the gear position is P (A/T models only) or N, park/neutral position (PNP) switch is ON.

ECM detects the position because the continuity of the line (the "ON" signal) exists.

For A/T models, the park/neutral position (PNP) switch assembly also includes a transmission range switch to detect selector lever position.

MA

LC

EC

CONSULT-II Reference Value in Data Monitor Mode

•			
MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: P or N	ON
F/N FUSI 3W	● Igrillion Switch. On		

OFF Except above

MT

GL

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

AT

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TF

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	PD	
102	L	PNP switch	[Ignition switch ON] ■ Gear position is P (A/T models) or N (Neutral position).	Gear position is P (A/T models) or N (Neutral	Approximately 0V	AX
			[Ignition switch ON] • Except the above gear position	BATTERY VOLTAGE (11 - 14V)	SU	

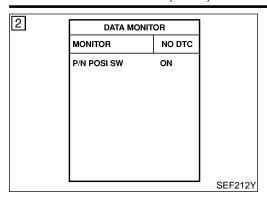
On Board Diagnosis Logic

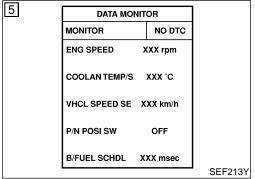
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1706 1706	Park/Neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

DTC Confirmation Procedure

HA

Always drive vehicle at a safe speed.


NOTE:


CAUTION:

SC

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

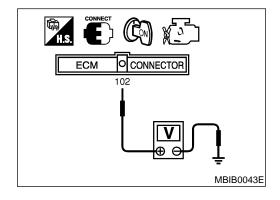
EL

(P) WITH CONSULT-II

1) Turn ignition switch ON.

NAEC1138S01

 Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.


Position (Selector lever)	Known-good signal
N or P position (A/T) Neutral position (M/T)	ON
Except the above position	OFF

If NG, go to "Diagnostic Procedure", EC-666. If OK, go to following step.

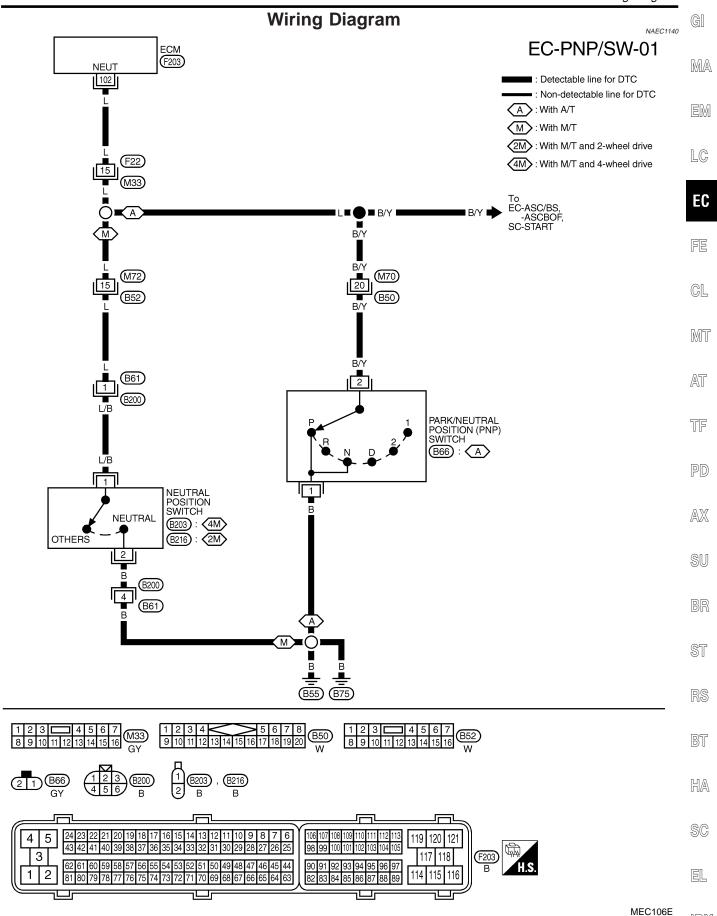
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- 5) Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	More than 1,500 rpm (A/T) More than 1,800 rpm (M/T)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	More than 3.7 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position (A/T) 5th position (M/T)

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-666.

Overall Function Check

Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

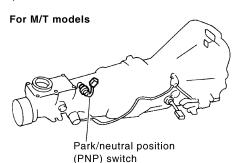

B WITH GST

NAEC1139S01

- 1) Turn ignition switch ON.
- Check voltage between ECM terminal 102 and ground under the following conditions.

Condition (Gear position)	Voltage V (Known-good data)	
P or N position (A/T) Neutral position (M/T)	Approx. 0	
Except the above position	Battery voltage	

3) If NG, go to "Diagnostic Procedure", EC-666.


Diagnostic Procedure FOR M/T MODELS

NAEC1141

NAEC1141S01

CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect park/neutral position (PNP) switch harness connector.

SEC968D

- 3. Check harness continuity between PNP switch terminal 2 and ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to power.

Ok	(o	r I	N	G
----	-----	-----	---	---

OK •	GO TO 3.
NG	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B200, B61
- Harness for open or short between park/neutral position (PNP) switch and ground
 - Repair open circuit or short to power in harness or connectors.

3 CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 102 and PNP switch terminal 1. Refer to Wiring Diagram.Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F22, M33
- Harness connectors M72, B52
- Harness connectors B61, B200
- Harness for open or short between park/neutral position (PNP) switch and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1706 PNP SWITCH

Diagnostic Procedure (Cont'd)

5 CHECK PARK/NEUTRAL POSITION (PNP) SWITCH		GI		
Refer to MT-5 "Position Switch Check".				
OK or NG			MA	
OK	•	GO TO 6.		
NG		Replace park/neutral position (PNP) switch.		EN

6	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.				
	► INSPECTION END				

EC

LC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

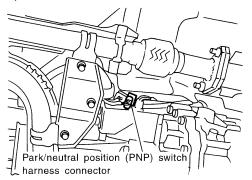
ST

RS

BT

HA

SC


EL

FOR A/T MODELS

=NAEC1141S02

1 CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect park/neutral position (PNP) switch harness connector.

SEF011SA

- Check harness continuity between PNP switch terminal 1 and ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to power.

OK or NG

	OK •	•	GO TO 2.
NG Repair open circuit or short to power in harness or		Repair open circuit or short to power in harness or connectors.	

2 CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 102 and PNP switch terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F22, M33
- Harness connectors M70, B50
- Harness for open or short between ECM and park/neutral position (PNP) switch

Repair open circuit or short to ground or short to power in harness or connectors.

4	4 CHECK PARK/NEUTRAL POSITION (PNP) SWITCH		
Refer	Refer to AT-105, "Diagnostic Procedure".		
	OK or NG		
OK ▶ GO TO 5.			
NG	•	Replace park/neutral position (PNP) switch.	

5	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIGNOSIS FOR INTERMITTENT INCIDENT", EC-155.				
	INSPECTION END				

Description

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

MA

CONSULT-II Reference Value in Data Monitor

Specification data are reference values.

ЕC	13	09	

MONITOR ITEM	CONE	SPECIFICATION	
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
BRAKE SW	• Ignition switch. On	Brake pedal: Slightly depressed	

LC

EC

ECM Terminals and Reference Value

NAEC1315

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

GL

	TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MT
_	101	G/Y	Stop lamp switch	[Engine is running] • Brake pedal fully released	Approximately 0V	AT
	101	G/ I		[Engine is running] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)	TF

On Board Diagnosis Logic

The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	_
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch	- A' SI

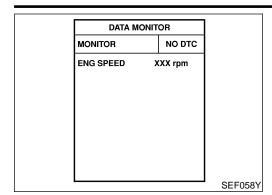
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Engine operating condition in fail-safe mode

ECM controls the electric throttle control actuator by regulating the throttle opening to small range. Therefore, acceleration will be poor.

Condition	Driving condition	
When engine is idling	Normal	
When accelerating	Poor acceleration	


HA

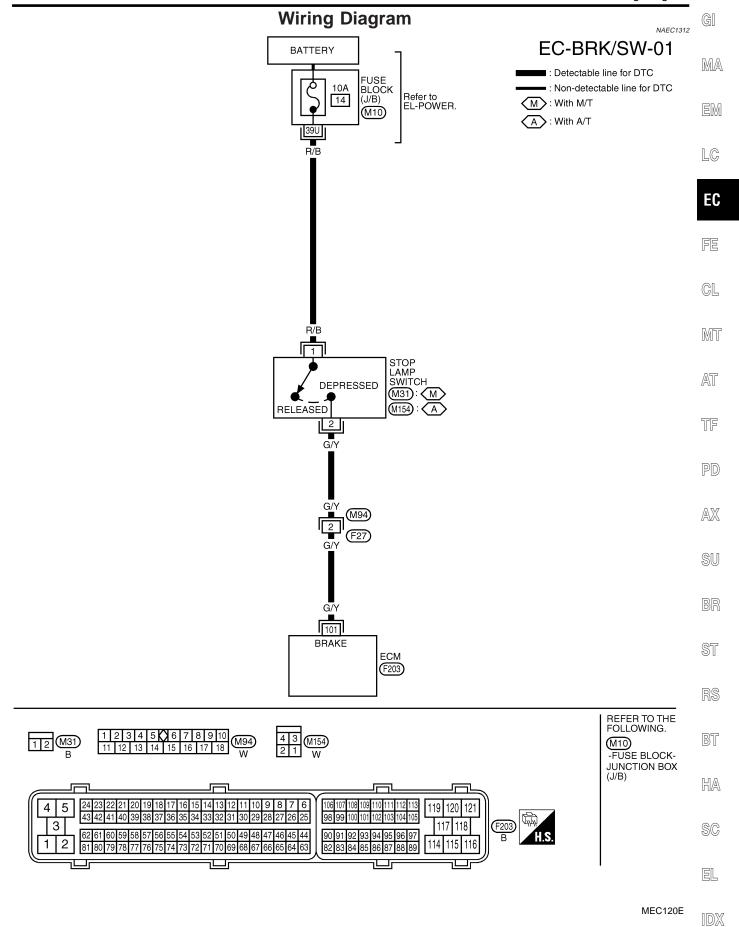
SC

EL

DTC P1805 BRAKE SWITCH

DTC Confirmation Procedure

DTC Confirmation Procedure


=NAEC1311

(F) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-672.

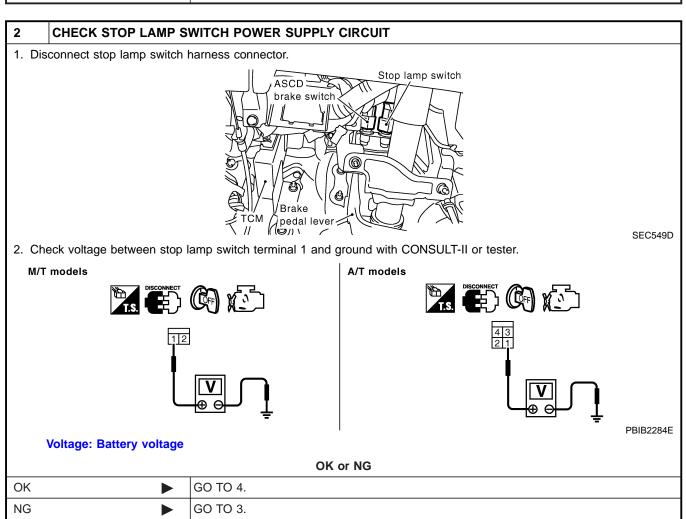
WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

NAEC1313

1 CHECK STOP LAMP SWITCH CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.

Brake pedal	Stop lamp
Fully released	Not illuminated
Depressed	Illuminated

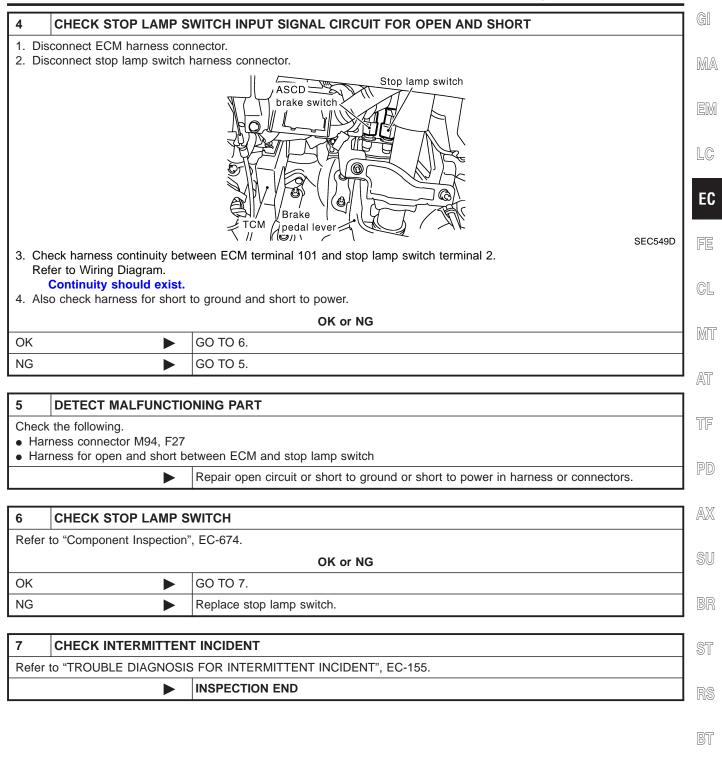
MTBL1138

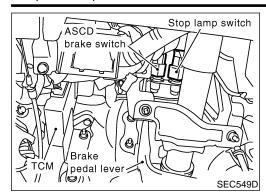
OK or NG

OK		GO TO 4.
NG	•	GO TO 2.

3 DETECT MALFUNCTIONING PART

Check the following.

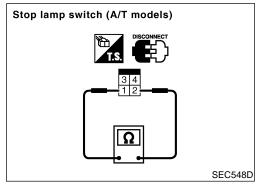

- 10A fuse
- Fuse block (J/B) connector M10
- Harness for open and short between stop lamp switch and battery


Repair open circuit or short to ground or short to power in harness or connectors.

HA

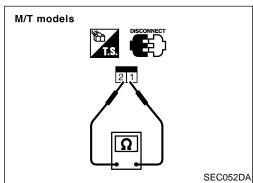
SC

EL



Component Inspection STOP LAMP SWITCH

=NAEC1314


1. Disconnect stop lamp switch harness connector.

2. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity	
Brake pedal fully released	Should not exist.	
Brake pedal depressed	Should exist.	

3. If NG, replace stop lamp switch.

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

MA

EC

GL

MI

AT

CONSULT-II Reference Value in Data Monitor

Specification data are reference values.

MONITOR ITEM CONDITION **SPECIFICATION** • Ignition switch: ON 0.5 - 1.0V Accelerator pedal: Fully released (engine stopped) ACCEL SEN1 • Shift lever: D (A/T models) AX 4.0 - 4.7V Accelerator pedal: Fully depressed "1st" (M/T models) Ignition switch: ON Accelerator pedal: Fully released 0.3 - 1.2V (engine stopped) ACCEL SEN2* • Shift lever: D (A/T models) Accelerator pedal: Fully depressed 3.9 - 4.8V 1st (M/T models) Ignition switch: ON Accelerator pedal: Fully released ON (engine stopped) **CLSD THL POS OFF** • Shift lever: D (A/T models) Accelerator pedal: Slightly depressed 1st (M/T models)

Mode

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	B/R	Sensor ground (APP sensor 1)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
83	L	Sensor ground (APP sensor 2)	[Ignition switch ON]	Approximately 0V

TF

SU

NAEC1323

HA

SC

EL

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

DTC P2122, P2123 APP SENSOR

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
90	90 L Sensor power supply (APP sensor 1)		[Ignition switch ON]	Approximately 5V
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V
00	R	Accelerator pedal position sensor 2	 [Ignition switch ON] Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	0.15 - 0.6V
98			[Ignition switch ON] ■ Engine stopped ■ Shift lever: D (A/T models) ■ Shift lever position is 1st (M/T models) ■ Accelerator pedal fully depressed	1.95 - 2.4V
106		Accelerator pedal posi-	 [Ignition switch ON] Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	0.5 - 1.0V
106	tion sensor 1	[Ignition switch ON] ■ Engine stopped ■ Shift lever: D (A/T models) ■ Shift lever position is 1st (M/T models) ■ Accelerator pedal fully depressed	3.9 - 4.7V	

On Board Diagnosis Logic

NAEC1318

These self-diagnoses have the one trip detection logic.

NOTE:

If DTC P2122 or P2123 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to EC-562.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or shorted.)
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	Accelerator pedal position sensor (Accelerator pedal position sensor 1)

FAIL-SAFE MODE

NAEC1318S01

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

NOTE:

NAEC1319

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

, MA

G[

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

EM

LC

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

(I) With CONSULT-II

1. Turn ignition switch ON.

2. Select "DATA MONITOR" mode with CONSULT-II.

3. Start engine and let it idle for 1 second.

4. If DTC is detected, go to "Diagnostic Procedure", EC-679.

EC

FE

CL

MT

AT

With GST

Follow the procedure "WITH CONSULT-II" above.

PD

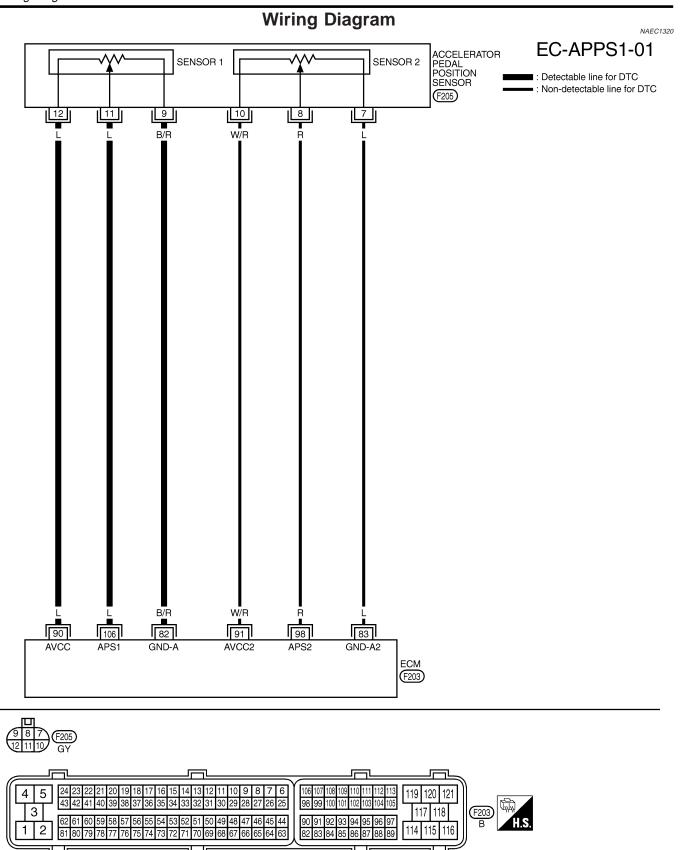
TF

AX

SU

BR

ST

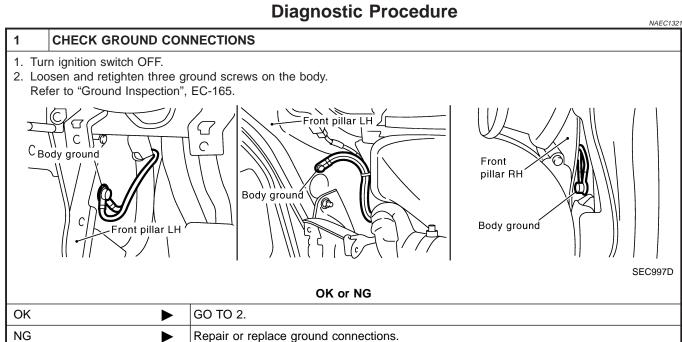

RS

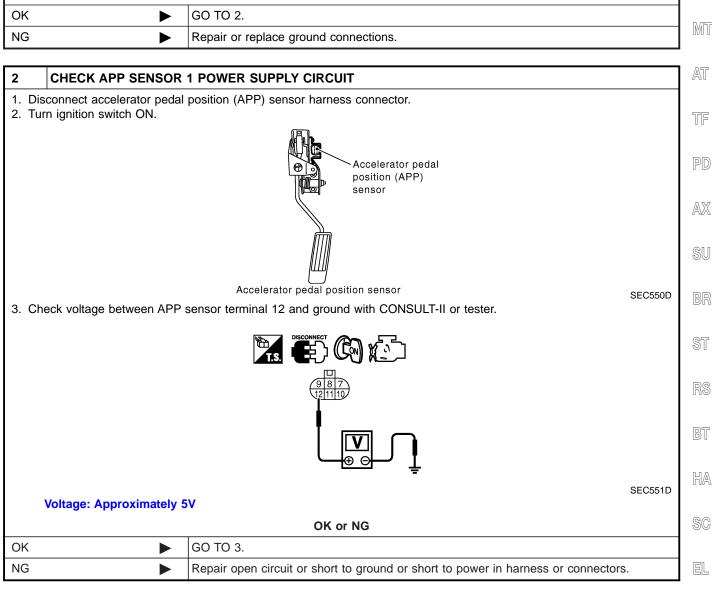
BT

HA

SC

EL


MA


EM

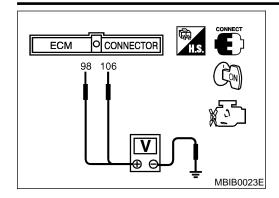
LC

EC

GL

DTC P2122, P2123 APP SENSOR

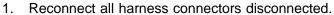
Diagnostic Procedure (Cont'd)


3 CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 9 and ECM terminal 82. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK Repair open circuit or short to ground or short to power in harness or connectors.

4	CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
Ref	Check harness continuity between ECM terminal 106 and APP sensor terminal 11. Refer to Wiring Diagram Continuity should exist. 2. Also check harness for short to ground and short to power.		
	OK or NG		
OK	>	GO TO 5.	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	

5	CHECK APP SENSOR		
Refer	Refer to "Component Inspection", EC-681.		
	OK or NG		
OK	>	GO TO 7.	
NG	>	GO TO 6.	

6	REPLACE ACCELERAT	FOR PEDAL ASSEMBLY			
	Replace accelerator pedal assembly.				
	2. Perform "Accelerator Pedal Released Position Learning", EC-73.				
	3. Perform "Throttle Valve Closed Position Learning", EC-73.				
4. Per	4. Perform "Idle Air Volume Learning", EC-73.				
	•	INSPECTION END			


7	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.				
	•	INSPECTION END			

Component Inspection

ACCELERATOR PEDAL POSITION SENSOR

=NAEC1322

2. Turn ignition switch ON.

 Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

MA	
U\U <i>U</i> ~\\	

Terminal	Accelerator pedal	Voltage
106 (Accelerator pedal posi-	Fully released	0.5 - 1.0V
tion sensor 1)	Fully depressed	3.9 - 4.7V
98 (Accelerator pedal posi-	Fully released	0.15 - 0.6V
tion sensor 2)	Fully depressed	1.95 - 2.4V

EC

FE

4. If NG, replace accelerator pedal assembly.

7. Perform "Idle Air Volume Learning", EC-73.

Perform "Accelerator Pedal Released Position Learning", EC-73.

MT

6. Perform "Throttle Valve Closed Position Learning", EC-73.

AT

TF

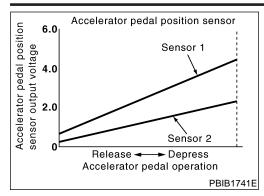
PD

 $\mathbb{A}\mathbb{X}$

SU

RR

ST


RS

BT

HA

SC

EL

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1325

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON (engine stopped)	Accelerator pedal: Fully released	0.5 - 1.0V
ACCLL SLIVI	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Fully depressed	4.0 - 4.7V
ACCEL SEN2*	 Ignition switch: ON (engine stopped) Shift lever: D (A/T models) 1st (M/T models) 	Accelerator pedal: Fully released	0.3 - 1.2V
ACCEL SEN2		Accelerator pedal: Fully depressed	3.9 - 4.8V
	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THL POS	(engine stopped)Shift lever: D (A/T models)1st (M/T models)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

ECM Terminals and Reference Value

NAEC1331

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	L	Sensor power supply (Throttle position sensor)	[Ignition switch ON]	Approximately 5V
82	B/R	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

DTC P2127, P2128 APP SENSOR

ECM Terminals and Reference Value (Cont'd)

			EGW Terrimak	s and Reference value (Contu)		
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	© N	
83	L	Sensor ground (APP sensor 2)	[Ignition switch ON]	Approximately 0V	ШV	
90	L	Sensor power supply (APP sensor 1)	[Ignition switch ON]	Approximately 5V		
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V	L	
00	R	Accelerator pedal posi-	[Ignition switch ON] • Engine stopped • Shift lever: D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal posi-	 Engine stopped Shift lever: D (A/T models) Shift lever position is 1st (M/T models) 	0.15 - 0.6V	E
98		K	tion	tion sensor 2	[Ignition switch ON] ■ Engine stopped ■ Shift lever: D (A/T models) ■ Shift lever position is 1st (M/T models) ■ Accelerator pedal fully depressed	1.95 - 2.4V
106	L	Accelerator pedal position sensor 1	• E • S	[Ignition switch ON] ■ Engine stopped ■ Shift lever: D (A/T models) ■ Shift lever position is 1st (M/T models) ■ Accelerator pedal fully released	0.5 - 1.0V	Æ
			[Ignition switch ON] • Engine stopped • Shift lever: D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	3.9 - 4.7V	T	

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

NAEC1326

	-	1		
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	SU
P2127 2127	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	 Harness or connectors (The APP sensor 2 circuit is open or shorted.) (TP sensor circuit is shorted.) 	BR
P2128 2128	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	 Accelerator pedal position sensor (Accelerator pedal position sensor 2) Electric throttle control actuator (TP sensors 1 and 2) 	ST RS

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

NAEC1326S01

Engine operating condition in fail-safe mode

HA

BT

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

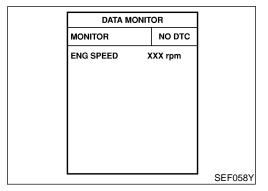
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

SC

So, the acceleration will be poor.

EL

DTC Confirmation Procedure

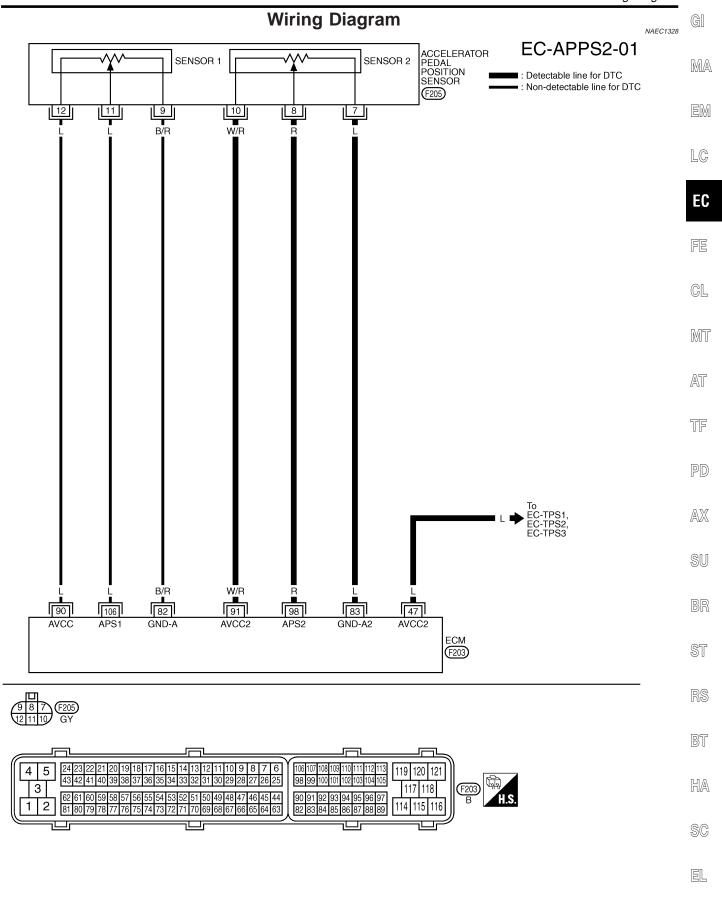

NOTE:

NAEC1327

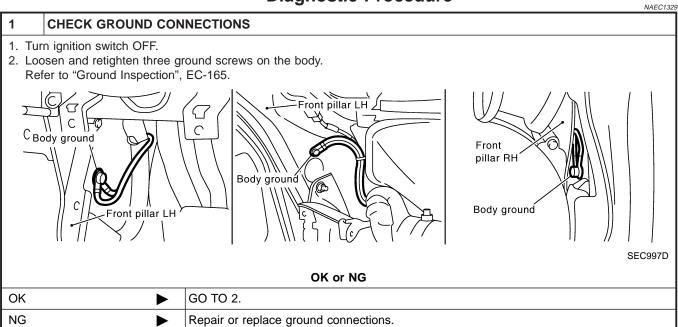
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

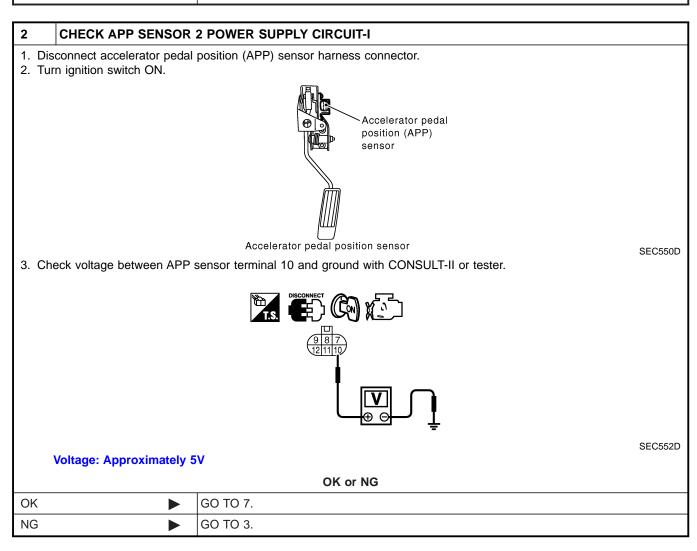
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.


(I) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 1 second.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-686.


With GST


Follow the procedure "With CONSULT-II" above.

MEC747E

Diagnostic Procedure

DTC P2127, P2128 APP SENSOR

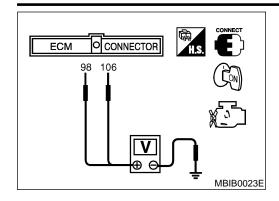
Diagnostic Procedure (Cont'd)

SC

EL

1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 10 and ECM terminal 91. Refer to Wiring Diagram. Continuity should exist. OK or NG OK	
3. Check harness continuity between APP sensor terminal 10 and ECM terminal 91. Refer to Wiring Diagram. OK or NG OK	\neg
Refer to Wiring Diagram. Continuity should exist. OK or NG OK CON CON CON CON CON CON CON	
Continuity should exist. OK or NG OK	
GOK	
Repair or replace open circuit. 4 CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III Check harness for short to power and short to ground, between the following terminals. • ECM terminal 47 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. • ECM terminal 91 and APP sensor terminal 10. Refer to "Wiring Diagram", EC-693. OK or NG OK GO TO 5. Repair short to ground or short to power in harness or connectors. 5 CHECK THROTTLE POSITION SENSOR Refer to "Component Inspection", EC-696. OK or NG OK GO TO 11. NG GO TO 6. 6 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END 7 CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG	
4 CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III Check harness for short to power and short to ground, between the following terminals. ■ ECM terminal 47 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. ■ ECM terminal 91 and APP sensor terminal 10. Refer to "Wiring Diagram", EC-695. OK or NG OK ■ GO TO 5. NG ■ Repair short to ground or short to power in harness or connectors. 5 CHECK THROTTLE POSITION SENSOR Refer to "Component Inspection", EC-696. OK or NG OK ■ GO TO 11. NG ■ GO TO 6. 6 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END 7 CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG	
Check harness for short to power and short to ground, between the following terminals. ECM terminal 47 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. ECM terminal 91 and APP sensor terminal 10. Refer to "Wiring Diagram", EC-693. OK or NG OK or NG OK	᠋.
Check harness for short to power and short to ground, between the following terminals. ECM terminal 47 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. ECM terminal 91 and APP sensor terminal 10. Refer to "Wiring Diagram", EC-693. OK or NG OK or NG OK	—,I
ECM terminal 47 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. ECM terminal 91 and APP sensor terminal 10. Refer to "Wiring Diagram", EC-685. OK or NG OK or NG OK Sepair short to ground or short to power in harness or connectors. CHECK THROTTLE POSITION SENSOR Refer to "Component Inspection", EC-696. OK or NG OK Sepair Section Sensor OK or NG OK Sequence Section Sensor OK or NG OK Sequence Section Sensor OK or NG OK Sequence Section Sensor OK or NG OK Sequence Section Sensor OK or NG OK Sepair Senso	'
OK	
Repair short to ground or short to power in harness or connectors. CHECK THROTTLE POSITION SENSOR	
5 CHECK THROTTLE POSITION SENSOR Refer to "Component Inspection", EC-696. OK or NG OK	
Refer to "Component Inspection", EC-696. OK or NG OK	
Refer to "Component Inspection", EC-696. OK or NG OK	
OK or NG OK	
OK	
GO TO 6. 6 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END 7 CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK	
6 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END 7 CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG	
1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG	
1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG	_
2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG	
3. Perform "Idle Air Volume Learning", EC-73. INSPECTION END CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK	
TOUR CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 8.	
 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. OK or NG OK 	
1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 8.	
 Disconnect ECM harness connector. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. OK or NG OK 	
 3. Check harness continuity between APP sensor terminal 7 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 8. 	
Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 8.	
Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 8.	
OK or NG OK GO TO 8.	
OK ▶ GO TO 8.	
r	
NG Repair open circuit or short to ground or short to power in harness or connectors.	

DTC P2127, P2128 APP SENSOR


Diagnostic Procedure (Cont'd)

8	CHECK APP SENSOR	2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
Re	fer to Wiring Diagram. Continuity should exist.	to ground and short to power.
		OK or NG
OK	>	GO TO 9.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK APP SENSOR	
Refer	to "Component Inspection"	, EC-689.
		OK or NG
OK	>	GO TO 11.
NG	>	GO TO 10.

10	REPLACE ACCELERAT	OR PEDAL ASSEMBLY
	place accelerator pedal ass	sembly. eleased Position Learning", EC-73.
3. Per		d Position Learning", EC-73.
		INSPECTION END

11	CHECK INTERMITTENT	INCIDENT
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-155.
	>	INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.

 Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

EM	

MA

Terminal	Accelerator pedal	Voltage
106 (Accelerator pedal posi-	Fully released	0.5 - 1.0V
tion sensor 1)	Fully depressed	3.9 - 4.7V
98 (Accelerator pedal posi-	Fully released	0.15 - 0.6V
tion sensor 2)	Fully depressed	1.95 - 2.4V

EC

FE

4. If NG, replace accelerator pedal assembly.

7. Perform "Idle Air Volume Learning", EC-73.

, GL

Perform "Accelerator Pedal Released Position Learning", EC-73.

MT

6. Perform "Throttle Valve Closed Position Learning", EC-73.

AT

TF

PD

AX

SU

BR

ST


RS

BT

HA

SC

EL

Component Description

Electric throttle control actuator Consists of throttle control motor. throttle position sensor, etc. The throttle position sensor responds to the throttle vale movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve form these signal and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC1333

MONITOR ITEM	COND	OITION	SPECIFICATION
THRTL SEN1	 Ignition switch: ON (Engine stopped) Shift lever: 	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2*	D (A/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

ECM Terminals and Reference Value

NAEC1339

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	L	Sensor power supply	[Ignition switch ON]	Approximately 5V
50	BR	Throttle position sensor	 [Ignition switch ON] Engine stopped Shift lever position is D (A/T models) Shift lever position is 1st (M/T models) Accelerator pedal fully released 	More than 0.36V
50	DK	1	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	Less than 4.75V

DTC P2135 TP SENSOR

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
66	BR/Y	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	MA EM
	DDAW	Throttle position sensor	[Ignition switch ON] ■ Engine stopped ■ Shift lever position is D (A/T models) ■ Shift lever position is 1st (M/T models) ■ Accelerator pedal fully released	Less than 4.75V	L©
69	BR/W	2	[Ignition switch ON] • Engine stopped • Shift lever position is D (A/T models) • Shift lever position is 1st (M/T models) • Accelerator pedal fully depressed	More than 0.36V	EC
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V	GL

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

sensor 2.

Trouble diagnosis

name

Throttle position sen-

performance problem

sor circuit range/

DTC No.

P2135

2135

AT **DTC Detecting Condition** Possible Cause Rationally incorrect voltage is sent to ECM com- Harness or connector TF pared with the signals from TP sensor 1 and TP (The TP sensor 1 and 2 circuit is open or shorted.) (APP sensor 2 circuit is shorted.)

Electric throttle control actuator (TP

sensor 1 and 2) Accelerator pedal position sensor FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

NOTE:

So, the acceleration will be poor.

DTC Confirmation Procedure

If DTC Confirmation Procedure has been previously conducted,

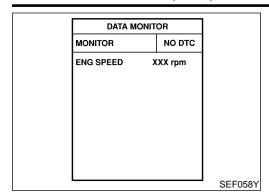
always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

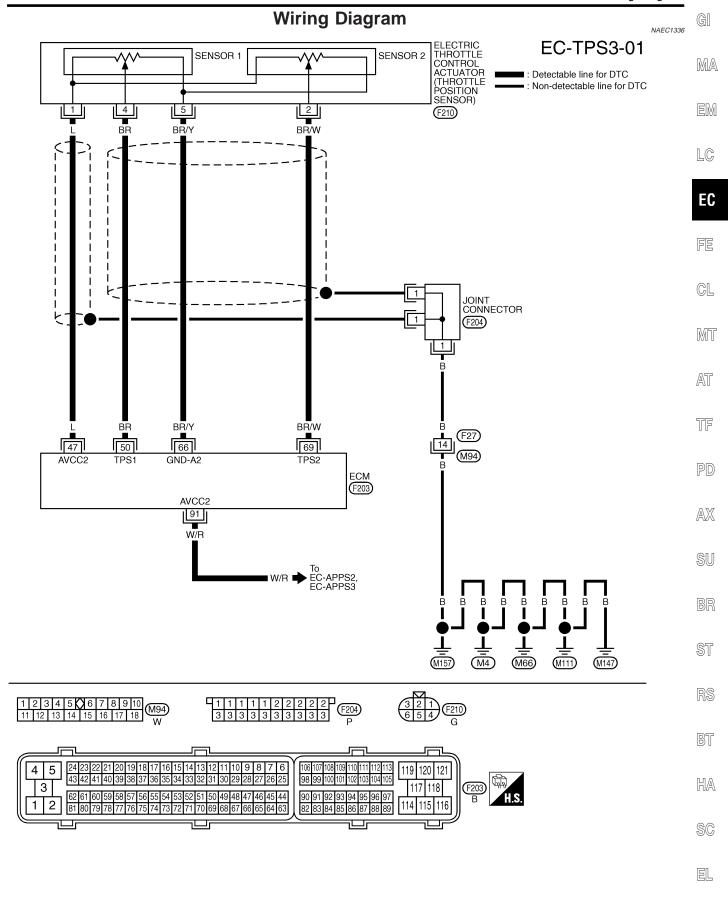
MT NAEC1334

NAEC1334S01

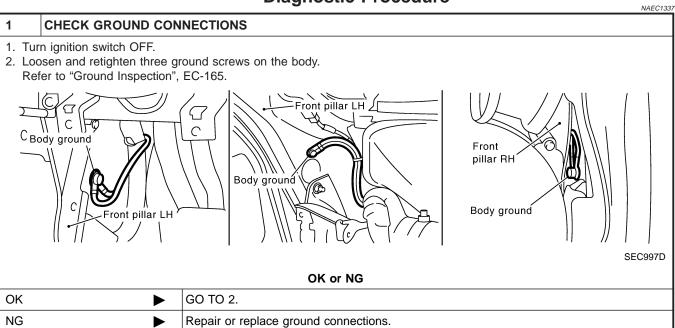


DTC P2135 TP SENSOR

DTC Confirmation Procedure (Cont'd)

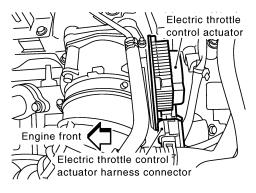

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-694.

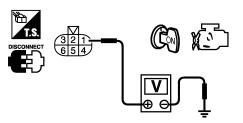

With GST

Follow the procedure "WITH CONSULT-II" above.

MEC748E



Diagnostic Procedure



2 CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-I

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

PBIB0082E

SEC433D

Voltage: Approximately 5V

OK or NG

OK ►	GO TO 3.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

SC

EL

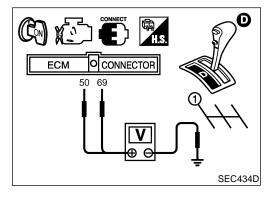
3 C	HECK THROTTLE PO	SITION SENSOR 2 POWER SUPPLY CIRCUIT-II	GI
 Disco Check Refer 	ignition switch OFF. onnect ECM harness con k harness continuity beto to Wiring Diagram. ontinuity should exist.	nector. ween electric throttle control actuator terminal 1 and ECM terminal 47.	MA
00	ontinuity should exist.	OK or NG	
OK		GO TO 4.	-
NG		Repair or replace open circuit.	
ING		Trepair of replace open circuit.	
4 C	CHECK THROTTLE PO	OSITION SENSOR 2 POWER SUPPLY CIRCUIT-III	— EC
Check ha	arness for short to powe terminal 47 and electric	r and short to ground, between the following terminals. throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. asor terminal 10. Refer to "Wiring Diagram", EC-685.	
		OK or NG	
OK	•	GO TO 5.	
NG	•	Repair short to ground or short to power in harness or connectors.	
5 C	CHECK APP SENSOR		۸۶۶
Refer to	"Component Inspection"	, EC-689.	
		OK or NG	
OK	•	GO TO 11.	TF
NG	•	GO TO 6.	
			─ PD
6 R	REPLACE ACCELERA	TOR PEDAL ASSEMBLY	
1. Repla 2. Perfo	ace accelerator pedal as: rm "Accelerator Pedal R rm "Throttle Valve Close	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73.	
1. Repla 2. Perfo	ace accelerator pedal as: rm "Accelerator Pedal R	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. rning", EC-73.	
1. Repla 2. Perfo	ace accelerator pedal as: rm "Accelerator Pedal R rm "Throttle Valve Close	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73.	AX SU
1. Repla 2. Perfo 3. Perfo 4. Perfo	ace accelerator pedal assum "Accelerator Pedal Romm" "Throttle Valve Close rm "Idle Air Volume Lear	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. ening", EC-73. INSPECTION END	AX
1. Repla 2. Perfor 3. Perfor 4. Perfor	ace accelerator pedal as: rm "Accelerator Pedal R rm "Throttle Valve Close rm "Idle Air Volume Lear CHECK THROTTLE PC	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. rning", EC-73.	AX SU BR
1. Repla 2. Perfor 3. Perfor 4. Perfor 7 C 1. Turn i 2. Disco 3. Check Refer	cace accelerator pedal as: rm "Accelerator Pedal R rm "Throttle Valve Close rm "Idle Air Volume Lear CHECK THROTTLE PC ignition switch OFF. onnect ECM harness con k harness continuity betwoods	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. rning", EC-73. INSPECTION END PSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT	AX SU
1. Repla 2. Perfo 3. Perfo 4. Perfo 7 C 1. Turn i 2. Disco 3. Check Refer Co	cace accelerator pedal assum "Accelerator Pedal Rum "Throttle Valve Close rum "Idle Air Volume Lear "Idle Air	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. rning", EC-73. INSPECTION END PSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT Innector.	AX SU BR ST
1. Repla 2. Perfo 3. Perfo 4. Perfo 7 C 1. Turn i 2. Disco 3. Check Refer Co	cace accelerator pedal assum "Accelerator Pedal Rum "Throttle Valve Close rum "Idle Air Volume Lear "Idle Air	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. ening", EC-73. INSPECTION END DISTION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT enector. ween electric throttle control actuator terminal 5 and ECM terminal 66.	AX SU BR ST
1. Repla 2. Perfo 3. Perfo 4. Perfo 7 C 1. Turn i 2. Disco 3. Check Refer Co	cace accelerator pedal assum "Accelerator Pedal Rum "Throttle Valve Close rum "Idle Air Volume Lear "Idle Air	sembly. eleased Position Learning", EC-73. d Position Learning", EC-73. ming", EC-73. INSPECTION END DISTION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT mector. ween electric throttle control actuator terminal 5 and ECM terminal 66. to ground and short to power.	AX SU SU BR ST RS

8 CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4, ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

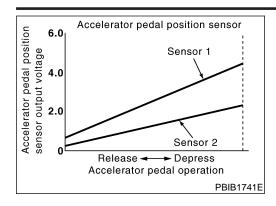

OK or NG

OK •	GO TO 9.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK THROTTLE POSITION SENSOR		
Refer	Refer to "Component Inspection", EC-696.		
	OK or NG		
ОК	>	GO TO 11.	
NG	>	GO TO 10.	

10	REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR		
1. Re	. Replace the electric throttle control actuator.		
2. Pei	Perform "Throttle Valve Closed Position Learning", EC-73.		
3. Per	Perform "Idle Air Volume Learning", EC-73.		
	▶ INSPECTION END		

11	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.	
	► INSPECTION END	


Component Inspection THROTTLE POSITION SENSOR

NAEC1338

- 1. Reconnect all harness connectors disconnected.
- 2. Perform "Throttle Valve Closed Position Learning", EC-73.
- Turn ignition switch ON.
- Set selector lever to D position (A/T models) or 1st position (M/T models).
- 5. Check voltage between ECM terminals 50 (TP sensor 1), 69 (TP sensor 2) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50 (Throttle position sensor	Fully released	More than 0.36V
1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform "Throttle Valve Closed Position Learning", EC-73.
- 8. Perform "Idle Air Volume Learning", EC-73.

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

MA

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

EC

GL

MIT

AT

TF

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	. PD
ACCEL SEN1	Ignition switch: ON (engine stopped)	Accelerator pedal: Fully released	0.5 - 1.0V	. re
ACCEL SEIVI	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Fully depressed	4.0 - 4.7V	
4.0051.051.04	Ignition switch: ON (engine stopped)	Accelerator pedal: Fully released	0.3 - 1.2V	SU
ACCEL SEN2*	Shift lever: D (A/T models) 1st (M/T models)	Accelerator pedal: Fully depressed	3.9 - 4.8V	
	Ignition switch: ON (angine stepped)	Accelerator pedal: Fully released	ON	BR
CLSD THL POS	(engine stopped)Shift lever: D (A/T models)1st (M/T models)	Accelerator pedal: Slightly depressed	OFF	ST

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

ECM Terminals and Reference Value

NAEC1347

Specification data are reference values and are measured between each terminal and ground.

HA

SC

EL

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	L	Sensor power supply (Throttle position sensor)	[Ignition switch ON]	Approximately 5V
82	B/R	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

DTC P2138 APP SENSOR

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
83	L	Sensor ground (APP sensor 2)	induition switch ONI	
90	L	Sensor power supply (APP sensor 1)	[Ignition switch ON]	Approximately 5V
91	W/R	Sensor power supply (APP sensor 2)	[Ignition switch ON]	Approximately 5V
98	R	Accelerator pedal position sensor 2	[Ignition switch ON] ■ Engine stopped ■ Accelerator pedal fully released	0.15 - 0.6V
90			[Ignition switch ON] ■ Engine stopped ■ Accelerator pedal fully depressed	1.95 - 2.4V
106		Accelerator pedal position sensor 1	[Ignition switch ON] ■ Engine stopped ■ Accelerator pedal fully released	0.5 - 1.0V
106	L		[Ignition switch ON] ■ Engine stopped ■ Accelerator pedal fully depressed	3.9 - 4.7V

On Board Diagnosis Logic

NAEC1342

This self-diagnosis has the one trip detection logic.

NOTE:

If DTC P2138 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to EC-562.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P2138 2138	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) (TP sensor circuit is shorted.) Accelerator pedal position sensor 1 and 2 Electric throttle control actuator (TP sensors 1 and 2)

FAIL-SAFE MODE

NAEC1342S01

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

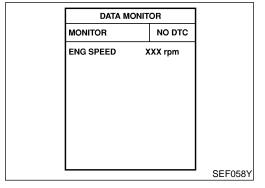
NOTE:

NAEC1343

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

MA

G[


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

EM

LC

EC

(I) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-701.

FE

CL

MT

AT

TF

With GST

Follow the procedure "WITH CONSULT-II" above.

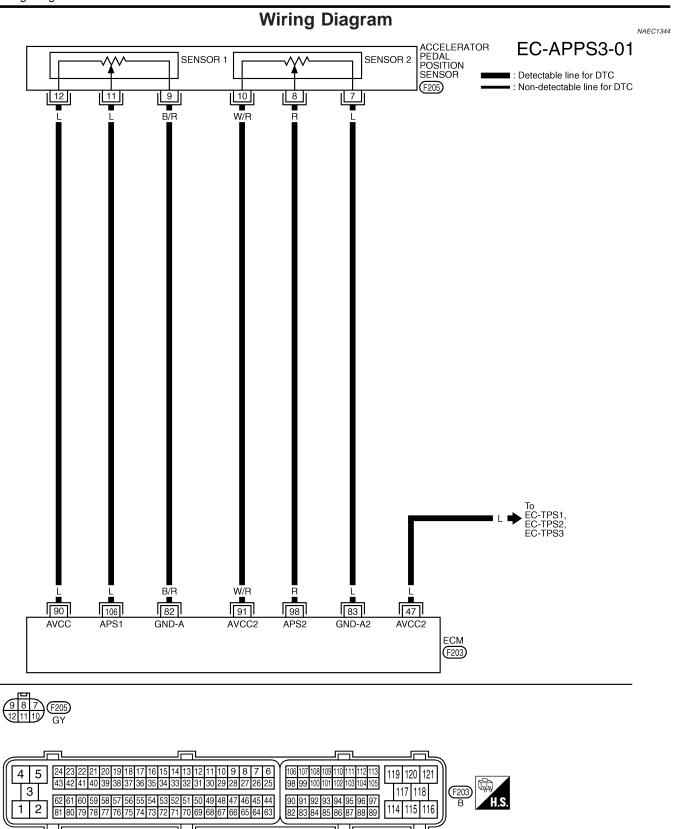
PD

AX

SU

BR

ST

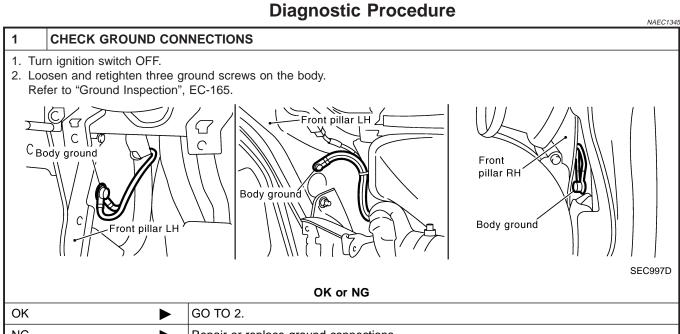

RS

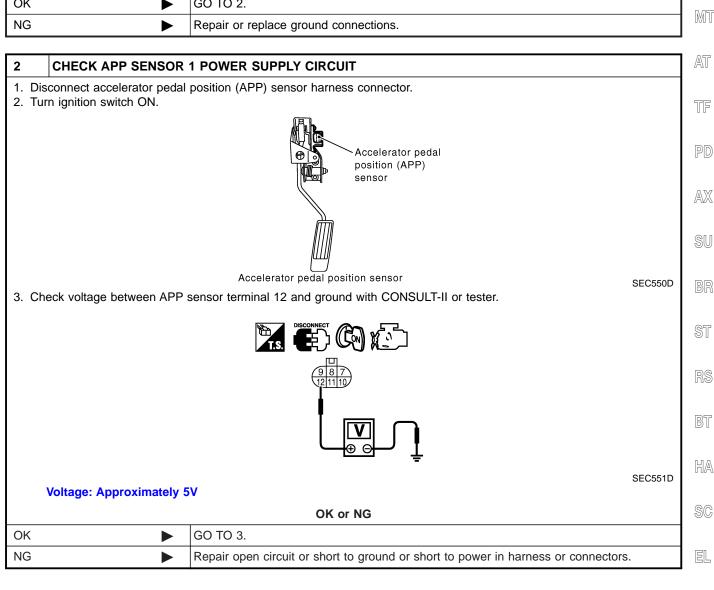
BT

HA

SC

EL


MA


EM

LC

EC

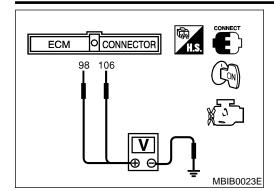
GL

NG

4	CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II			
2. Dis 3. Ch Re	 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between APP sensor terminal 10 and ECM terminal 91. Refer to Wiring Diagram. Continuity should exist. 			
	OK or NG			
OK	OK GO TO 5.			
NG	NG Repair or replace open circuit.			

GO TO 4.

5	CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III		
• ECN	Check harness for short to power and short to ground, between the following terminals. • ECM terminal 47 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-693. • ECM terminal 91 and APP sensor terminal 10. Refer to "Wiring Diagram", EC-685. OK or NG		
ОК	OK ▶ GO TO 6.		
NG	>	Repair short to ground or short to power in harness or connectors.	


6	CHECK THROTTLE POSITION SENSOR			
Refer	Refer to "Component Inspection", EC-696.			
	OK or NG			
OK	OK			
NG	>	GO TO 7.		

7 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-73. 3. Perform "Idle Air Volume Learning", EC-73.

SC

EL

8 CHECK	APP SENSOR	GROUND CIRCUIT FOR OPEN AND SHORT
	ECM harness cor	nnector. ween ECM terminal 82 and APP sensor terminal 9, ECM terminal 83 and APP sensor ter-
Refer to Wir	ty should exist.	to ground and short to power
4. AISO CHECK I	iamess for short	to ground and short to power. OK or NG
OK		GO ТО 9.
NG		Repair open circuit or short to ground or short to power in harness or connectors.
	<u> </u>	
9 CHECK	APP SENSOR	INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
	ess continuity bet	ween ECM terminal 106 and APP sensor terminal 11, ECM terminal 98 and APP sensor
terminal 8. Refer to Wir Continui	ing Diagram by should exist.	
		to ground and short to power.
		OK or NG
OK		GO TO 10.
OIX		
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.
NG	ADD OFNOOD	Repair open circuit or short to ground or short to power in harness or connectors.
NG 10 CHECK	APP SENSOR	
NG 10 CHECK	APP SENSOR onent Inspection	", EC-704.
NG CHECK Refer to "Comp		", EC-704. OK or NG
NG 10 CHECK Refer to "Comp OK		", EC-704. OK or NG GO TO 12.
NG CHECK Refer to "Comp		", EC-704. OK or NG
NG 10 CHECK Refer to "Comp OK NG	onent Inspection	", EC-704. OK or NG GO TO 12. Replace accelerator pedal assembly.
NG CHECK Refer to "Comp OK NG 11 REPLA	onent Inspection	", EC-704. OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY
NG CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc	onent Inspection	", EC-704. OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY sembly. Released Position Learning", EC-73.
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi	CE ACCELERA elerator pedal as celerator Pedal Roottle Valve Close	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY seembly. Released Position Learning", EC-73. ed Position Learning", EC-73.
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi	onent Inspection	", EC-704. OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY assembly. Released Position Learning", EC-73. and Position Learning", EC-73. and Position Learning", EC-73.
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi	CE ACCELERA elerator pedal as celerator Pedal Roottle Valve Close	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY seembly. Released Position Learning", EC-73. ed Position Learning", EC-73.
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi 4. Perform "Idle	CE ACCELERA elerator pedal as celerator Pedal Roottle Valve Close	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY seembly. Released Position Learning", EC-73. ed Position Learning", EC-73. rning", EC-73. INSPECTION END
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi 4. Perform "Idle	CE ACCELERA elerator pedal as celerator Pedal Rottle Valve Close Air Volume Lea	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY seembly. Released Position Learning", EC-73. ed Position Learning", EC-73. rning", EC-73. INSPECTION END
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi 4. Perform "Idle	CE ACCELERA elerator pedal as celerator Pedal Rottle Valve Close Air Volume Lea	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY (Seembly). Released Position Learning", EC-73. (See Position Learning", EC-73. (See Position Learning", EC-73. (See Position Learning", EC-73. (See Position Learning"). INSPECTION END
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi 4. Perform "Idle	ce ACCELERA elerator pedal Reportie Valve Close Air Volume Lea INTERMITTEN BLE DIAGNOSIS	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY seembly. Released Position Learning", EC-73. ad Position Learning", EC-73. rning", EC-73. INSPECTION END T INCIDENT S FOR INTERMITTENT INCIDENT", EC-155.
NG 10 CHECK Refer to "Comp OK NG 11 REPLA 1. Replace acc 2. Perform "Acc 3. Perform "Thi 4. Perform "Idle	ce ACCELERA elerator pedal Reportie Valve Close Air Volume Lea INTERMITTEN BLE DIAGNOSIS	OK or NG GO TO 12. Replace accelerator pedal assembly. TOR PEDAL ASSEMBLY seembly. Released Position Learning", EC-73. ad Position Learning", EC-73. rning", EC-73. INSPECTION END T INCIDENT S FOR INTERMITTENT INCIDENT", EC-155.

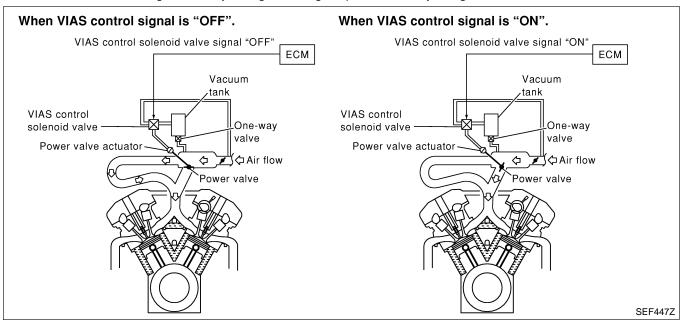
Component Inspection ACCELERATOR PEDAL POSITION SENSOR

=NAEC1346

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106 (Accelerator pedal posi-	Fully released	0.5 - 1.0V
tion sensor 1)	Fully depressed	3.9 - 4.7V
98 (Accelerator pedal posi-	Fully released	0.15 - 0.6V
tion sensor 2)	Fully depressed	1.95 - 2.4V

- 4. If NG, replace accelerator pedal assembly.
- Perform "Accelerator Pedal Released Position Learning", EC-73.
- 6. Perform "Throttle Valve Closed Position Learning", EC-73.
- 7. Perform "Idle Air Volume Learning", EC-73.


Description

Description SYSTEM DESCRIPTION

NAEC0596 NAFC0596S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Mass air flow sensor	Amount of intake air			EM
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position	VIAS con-		LC
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed* and piston position	trol	VIAS control solenoid valve	EC
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*			FE

^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the effective suction port length is equivalent to the total length of the intake manifold collector's suction port including the intake valve. This long suction port provides increased air intake which results in improved suction efficiency and higher torque generation.

The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore opens the power valve to two suction passages together in the collector.

Under this condition, the effective port length is equivalent to the length of the suction port provided independently for each cylinder. This shortened port length results in enhanced engine output with reduced suction resistance under high speeds.

GI

GL

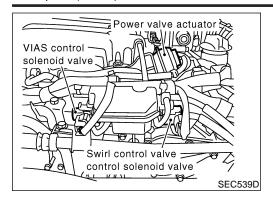
MI

AT

TF

PD

AX


SU

HA

SC

EL

Description (Cont'd)

COMPONENT DESCRIPTION

Power Valve

NAEC0596S02

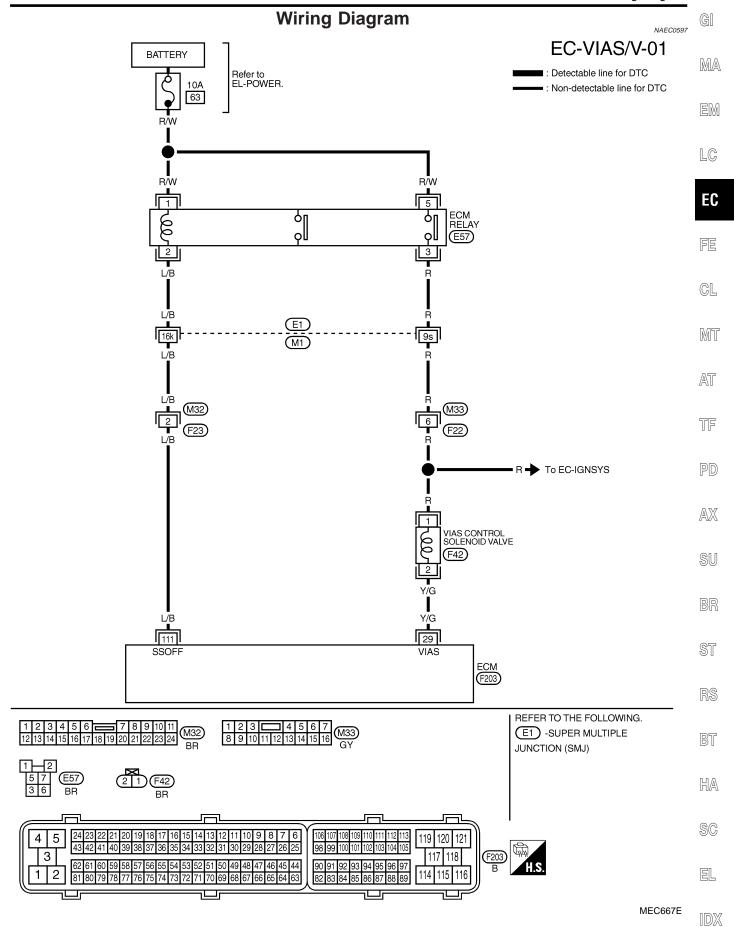
The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve

FCOFOCCOO

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

ECM Terminals and Reference Value


NAFC0684

Specification data are reference values and are measured between each terminal and ground.

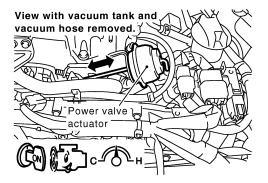
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	VIC	VIAS control solenoid	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
29	29 Y/G		[Engine is running] • Engine speed is above 5,000 rpm.	0 - 1.0V

Diagnostic Procedure

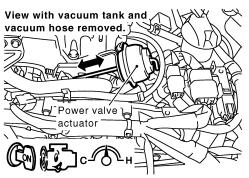
NAEC0598


1 CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.

ACTIVE TEST			
VIAS SOL VALVE OFF			
MONITOR			
ENG SPEED	XXX rpm		


PBIB0844E

SEC558D

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Rev engine quickly up to above 5,000 rpm and make sure that power valve actuator rod moves.

SEC558D

OK or NG

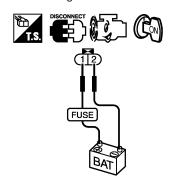
OK	•	INSPECTION END
NG (With CONSULT-II)	>	GO TO 2.
NG (Without CONSULT-II)	>	GO TO 3.

Diagnostic Procedure (Cont'd)

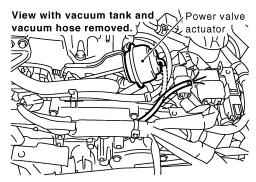
HA

SC

EL


G[**CHECK VACUUM EXISTENCE** With CONSULT-II 1. Stop engine and disconnect vacuum hose connected to power valve actuator. MA 2. Start engine and let it idle. 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II. 4. Turn VIAS control solenoid valve "ON" and "OFF", and check for the existence of vacuum under the following condi-EM ACTIVE TEST LC VIAS SOL VALVE OFF MONITOR **ENG SPEED** XXX rpm EC FE GL PBIB0844E View with vacuum tank and $\sqrt{}$ ∖. Power valve vacuum hose removed. 🏌 MT AT TF SEC559D VIAS SOL VALVE Vacuum $\mathbb{A}\mathbb{X}$ ON Should exist. OFF Should not exist. MTBL1174 OK or NG OK Repair or replace power valve actuator. NG GO TO 4. ST BT

Diagnostic Procedure (Cont'd)

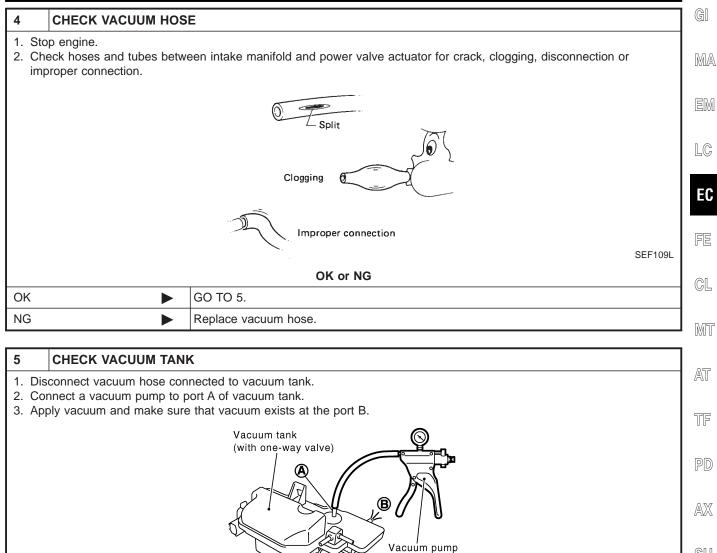

CHECK VACUUM EXISTENCE

Without CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check for the existence of vacuum under the following conditions.

PBIB0845E

SEC559D


Condition	Vacuum		
12V direct current supply	Should exist.		
No supply	Should not exist.		

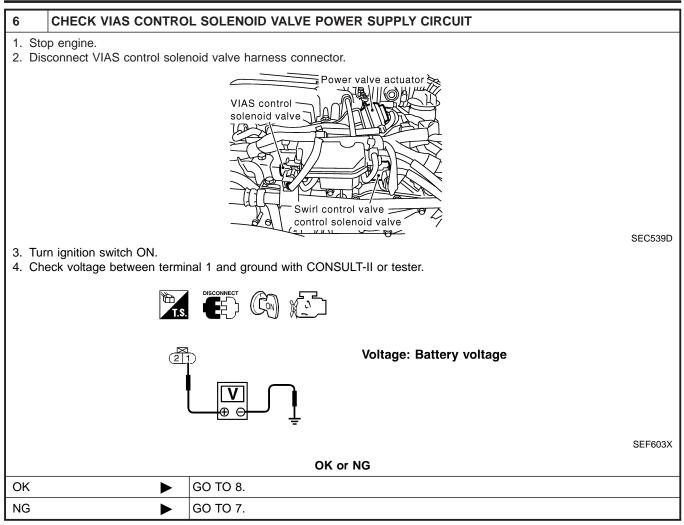
MTBL1175

OK or NG

OK •	Repair or replace power valve actuator.
NG ►	GO TO 4.

Diagnostic Procedure (Cont'd)

OK or NG


GO TO 6.

Replace vacuum tank.

OK

NG

Diagnostic Procedure (Cont'd)

7	DETECT MALFUNCTIONING PART		
HarHar	Check the following. • Harness connectors E1, M1 • Harness connectors M33, F22 • Harness continuity between VIAS control solenoid valve and ECM relay		
	•	Repair harness or connectors.	

8	CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT				
2. Di 3. Ch	 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between ECM terminal 29 and terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 				
	OK or NG				
OK	•	GO TO 9.			
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.			

Diagnostic Procedure (Cont'd)


G[CHECK VIAS CONTROL SOLENOID VALVE (II) With CONSULT-II 1. Reconnect disconnected harness connector. MA 2. Turn ignition switch ON. 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode. 4. Check air passage continuity and operation delay time under the following conditions. ACTIVE TEST LC VIAS SOL VALVE ON MONITOR $\mathbf{B}\mathbf{A}$ ENG SPEED XXX rpm EC FE PBIB0177E GL Air passage continuity Condition Air passage continuity VIAS SOL VALVE between A and B between A and C MT ON Yes No **OFF** Yes MTBL1171 AT Without CONSULT-II Check air passage continuity and operation delay time under the following conditions. TF FUSE **(2**) (B)(A AX (**C**) **BATTERY** SU MEC488B Condition VIAS SOL VALVE Air passage continuity between A and B Air passage continuity between A and C 12V direct current ST supply between terminals 1 and 2 Yes No No supply No Yes MTBL1172 OK or NG BT GO TO 10. OK NG Replace VIAS control solenoid valve. HA 10 CHECK INTERMITTENT INCIDENT SC Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. **INSPECTION END** EL

Component Description

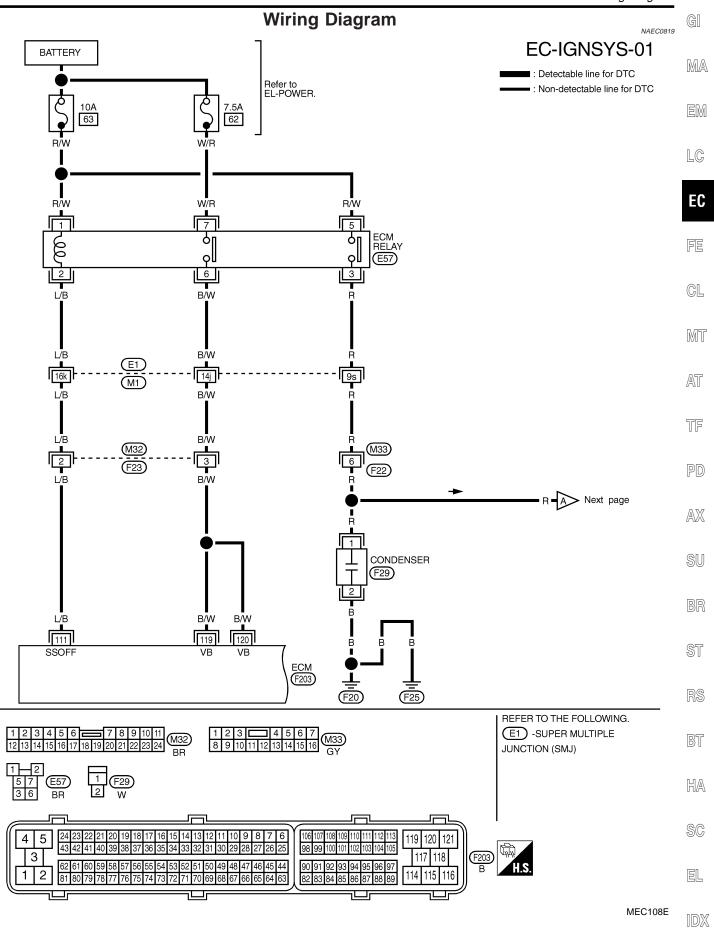
IGNITION COIL & POWER TRANSISTOR

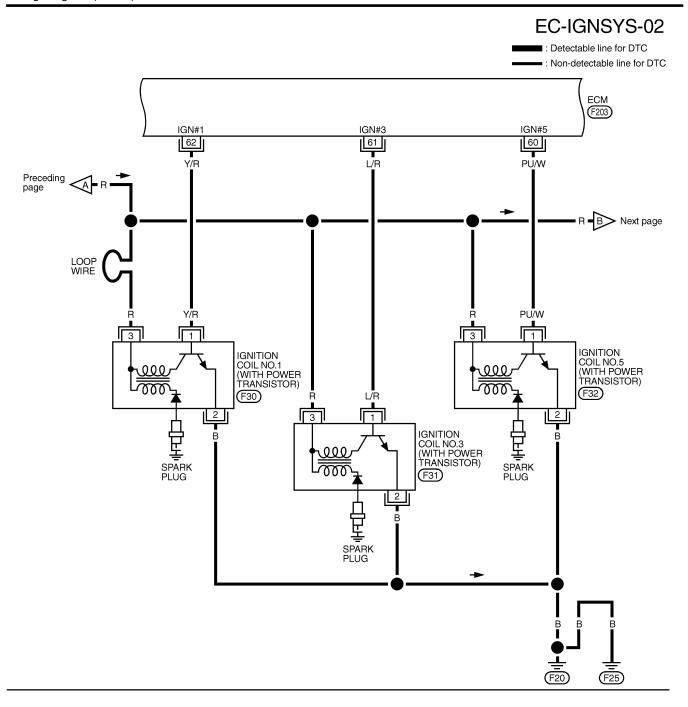
NAEC0817

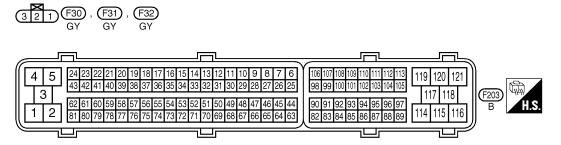
The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This ON/OFF operation induces the proper high voltage in the coil secondary circuit.

ECM Terminals and Reference Value

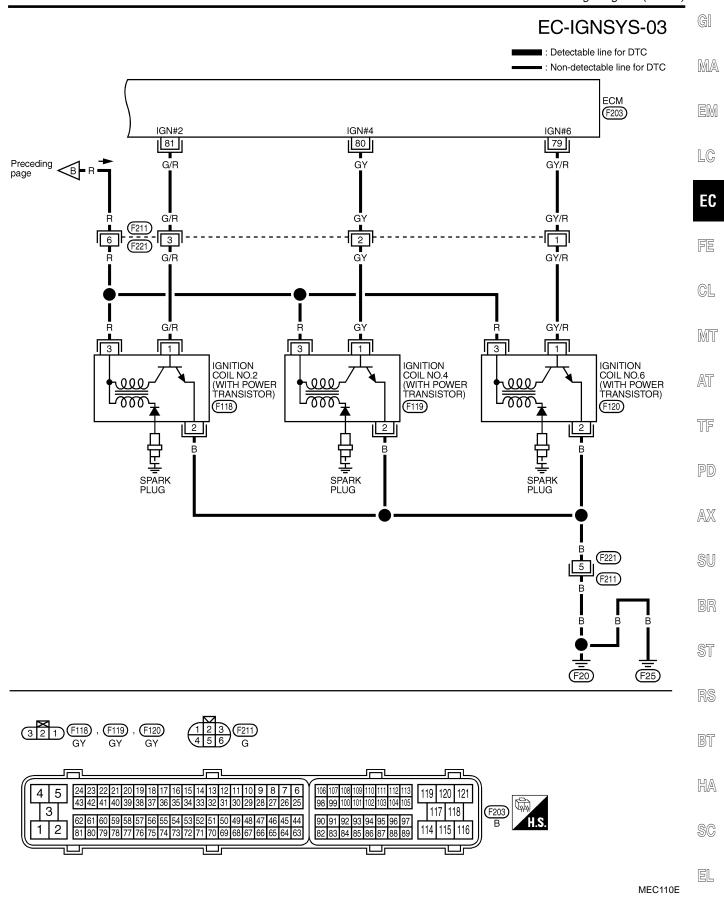
NAEC0818


Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.


CAUTION


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			•	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
60 61 62	PU/W L/R Y/R	Ignition signal No. 5 Ignition signal No. 3	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	0 - 0.2V★
79 80 81	GY/R GY G/R	Ignition signal No. 1 Ignition signal No. 6 Ignition signal No. 4 Ignition signal No. 2	 [Engine is running] Warm-up condition Engine speed is 2,500 rpm. 	0.1 - 0.3V★


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

MEC109E

EC-717

Diagnostic Procedure

				NAEC0820
1	CHECK ENGINE START			
	Turn ignition switch OFF, and restart engine. Is engine running?			
				Yes or No
Yes (V	With CONSULT-II)		GO TO 2.	
Yes (V II)	Vithout CONSULT-	•	GO TO 3.	
No			GO TO 4.	

2 SEARCH FOR MALFUNCTIONING CIRCUIT

(P) With CONSULT-II

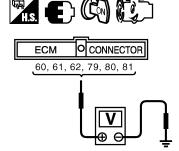
- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Search for circuit which does not produce a momentary engine speed drop.

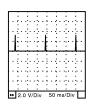
ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	

PBIB0133E

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 13.


3 CHECK OVERALL FUNCTION


⋈ Without CONSULT-II

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 60, 61, 62, 79, 80, 81 and ground with oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

NOTE:

The pulse cycle changes depending on rpm at idle.

SEC579D

OK or NG

OK •	INSPECTION END
NG ►	GO TO 14.

G[

MA

LC

EC

FE

GL

MT

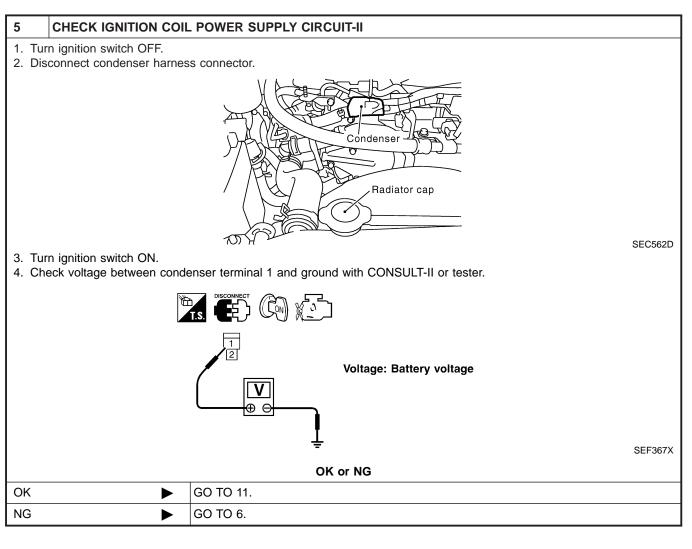
AT

TF

AX

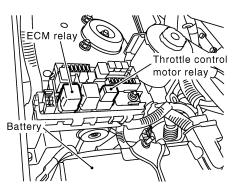
SU

ST


BT

HA

SC


EL

6 CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay.

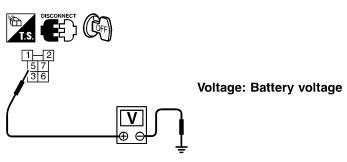
SEC425D

- Check harness continuity between ECM relay terminal 3 and condenser terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 8.
NG	•	GO TO 7.

7 DETECT MALFUNCTIONING PART


Check the following.

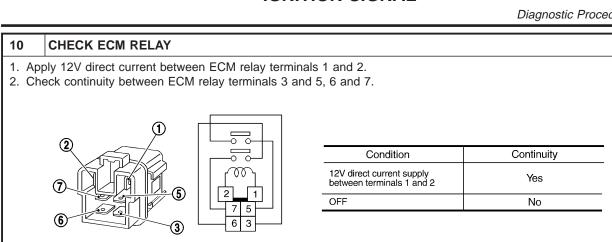
- Harness connectors E1, M1
- Harness connectors M33, F22
- Harness for open or short between ECM relay and condenser

Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK IGNITION COIL POWER SUPPLY CIRCUIT-IV

Check voltage between ECM relay terminal 5 and ground with CONSULT-II or tester.

SEF010Z


OK		GO TO 10.
NG	>	GO TO 9.

9 DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Harness for open and short between ECM relay and fuse

Repair or replace harness or connectors.

SEF296X

MA

LC

EC

GL

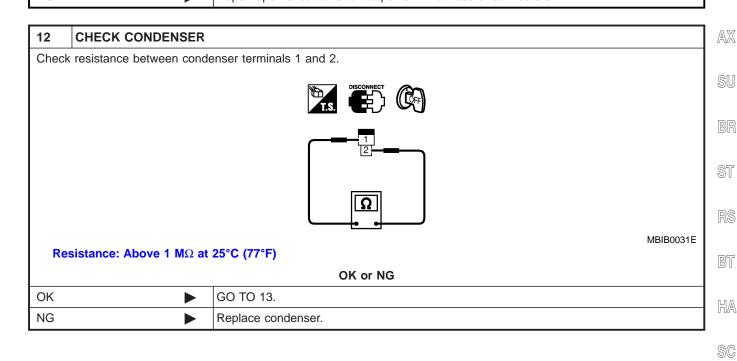
MT

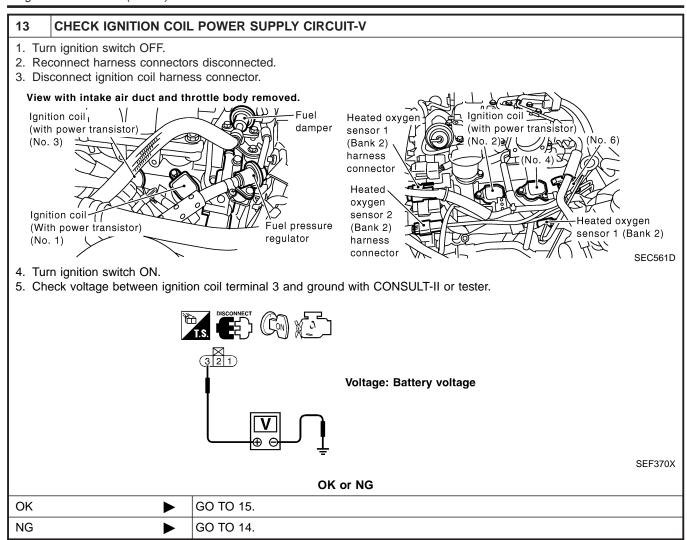
AT

TF

PD

EL


[DX


		OK or NG
•	GO TO 20.	

NG Replace ECM relay.

OK

11	CHECK CONDENSER GROUND CIRCUIT FOR OPEN AND SHORT		
2. Che	 Turn ignition switch OFF. Check harness continuity between condenser terminal 2 and ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power. 		
	OK or NG		
OK	•	GO TO 12.	
NG	•	Repair open circuit or short to power in harness or connectors.	

14	DETECT MALFUNCTIONING PART	
• Harı	Check the following. • Harness connector F211, F221 (Ignition coil No. 2, No. 4, No. 6) • Harness for open or short between ignition coil and harness connector F22	
	•	Repair or replace harness or connectors.

15	CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT		
2. Che	 Turn ignition switch OFF. Check harness continuity between ignition coil terminal 2 and ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power. 		
	OK or NG		
OK	>	GO TO 17.	
NG	•	GO TO 16.	

16	DETECT MALFUNCTIONING PART	
• Har	Check the following. • Harness connectors F221, F211 (Ignition coil No. 2, No. 4, No. 6) • Check the harness for open between ignition coil and ground.	
	•	Repair or replace harness or connectors.

G[

MA

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

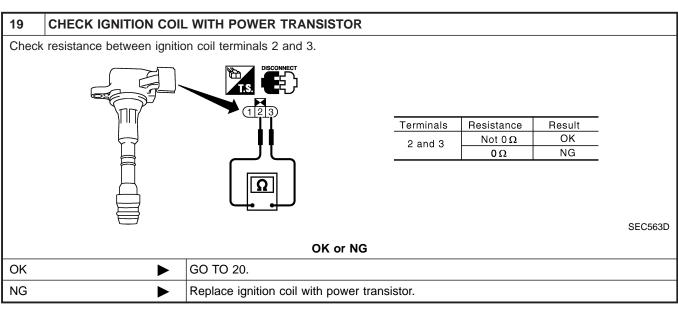
SU

BR

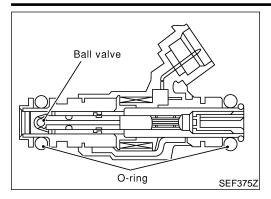
ST

RS

BT


HA

SC


EL

17	CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
2. Che Dia	 Disconnect ECM harness connector. Check harness continuity between ECM terminals 62, 81, 61, 80, 60, 79 and ignition coil terminal 1. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 		
	OK or NG		
OK	>	GO TO 19.	
NG	>	GO TO 18.	

18	DETECT MALFUNCTIONING PART		
• Har	Check the following. • Harness connectors F211, F221 (Ignition coil No. 2, No. 4, No. 6) • Check the harness for open or short between ignition coil and ECM.		
Repair open circuit or short to ground or short to power in harness or connectors.			

20	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	>	INSPECTION END	

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

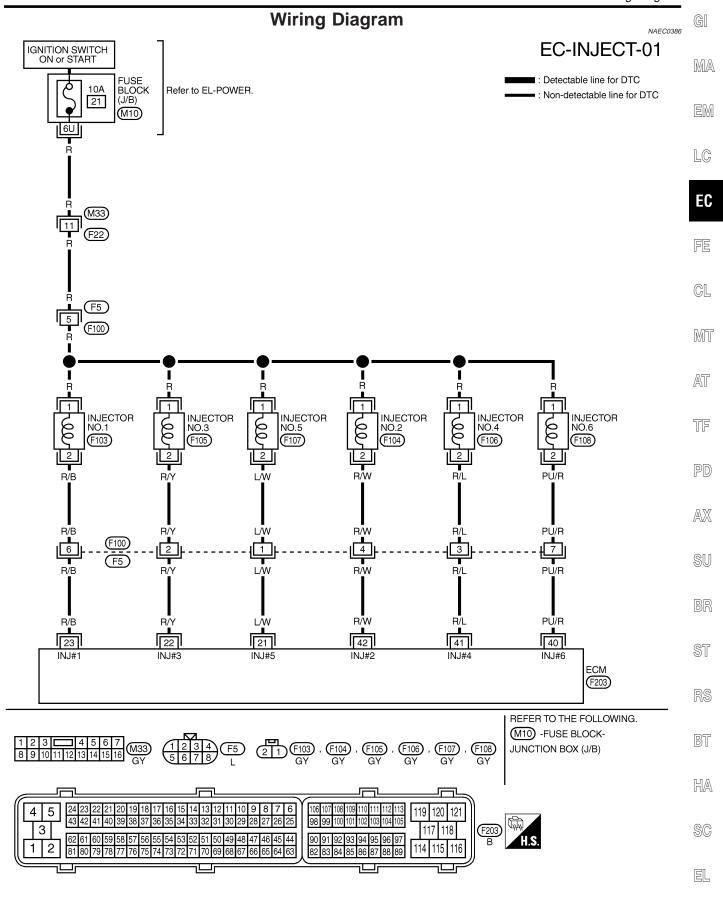
Specification data are reference values.

NAEC0384

MONITOR ITEM	CONDITION		SPECIFICATION
Engine: After warming up Air conditioner switch: OFF		Idle	2.4 - 3.2 msec
INJ PULSE-B1	Shift lever: NNo-load	2,000 rpm	1.9 - 2.8 msec
B/FUEL SCHDL	ditto	Idle	2.0 - 3.2 msec
		2,000 rpm	1.4 - 2.6 msec

ECM Terminals and Reference Value

NAEC0685


Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

	1			
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21 22 23	L/W R/Y R/B	Injector No. 5 Injector No. 3 Injector No. 1	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	BATTERY VOLTAGE (11 - 14V)*
40 41 42	PU/R R/L R/W	Injector No. 6 Injector No. 4 Injector No. 2	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)* 10.0 V/Dlv 50 ms/Div SEC985C

 $[\]star$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

MEC111E

Diagnostic Procedure

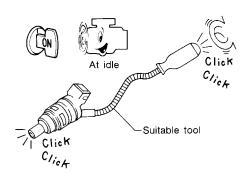
1 INSPECTION START

Turn ignition switch to "START".
Is any cylinder ignited?

Yes PGO TO 2.

No PGO TO 3.

2 CHECK OVERALL FUNCTION

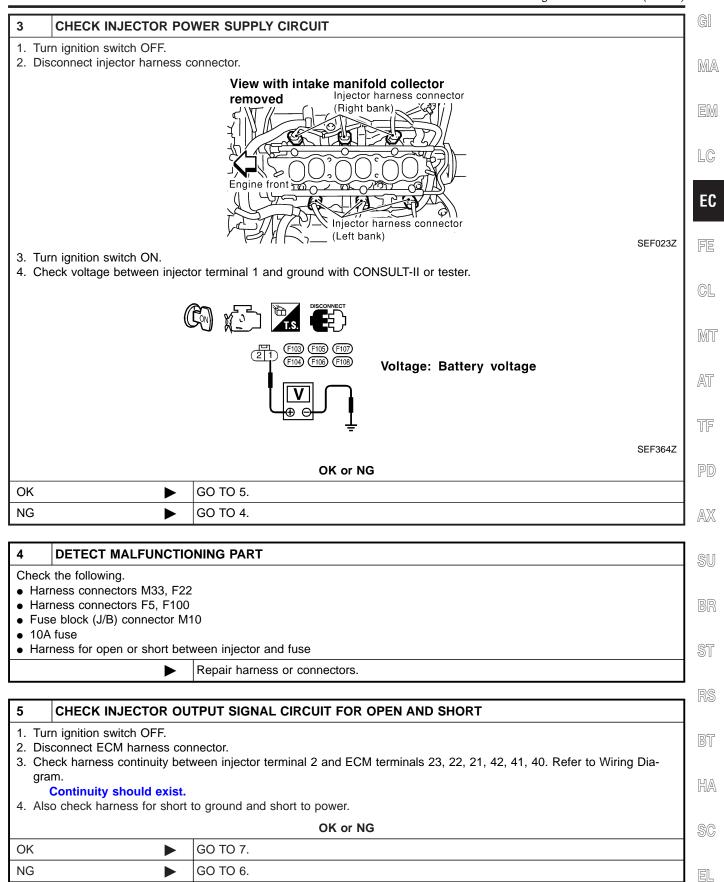

- (P) With CONSULT-II
- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TES	Т
POWER BALANCE	
MONITOR	
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v

3. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

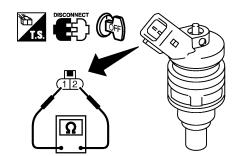

MEC703B

PBIB0133E

Clicking noise should be heard.

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 3.


6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F100, F5
- Harness for open or short between injector and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: $13.5 - 17.3 \Omega$ [at $10 - 60^{\circ}$ C ($50 - 140^{\circ}$ F)]

SEF964XF

OK or NG

OK ▶	GO TO 8.
NG ▶	Replace injector.

8 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.

► INSPECTION END

System Description

NAEC0392

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed* and piston position	Fuel pump	Fuel pump relay	EM
Battery	Battery voltage*	COLLIO		الالاك

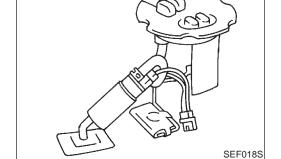
LC

The ECM activates the fuel pump for several seconds after the ignition switch is turned ON to improve engine startability. If the ECM receives a 120° signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the 120° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

EC

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

GL


The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

TF

PD

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NAEC0394

MONITOR ITEM	CONDITION	SPECIFICATION
	 Ignition switch is turned to ON. (Operates for 1 second.) Engine running and cranking 	ON
	Except as shown above	OFF

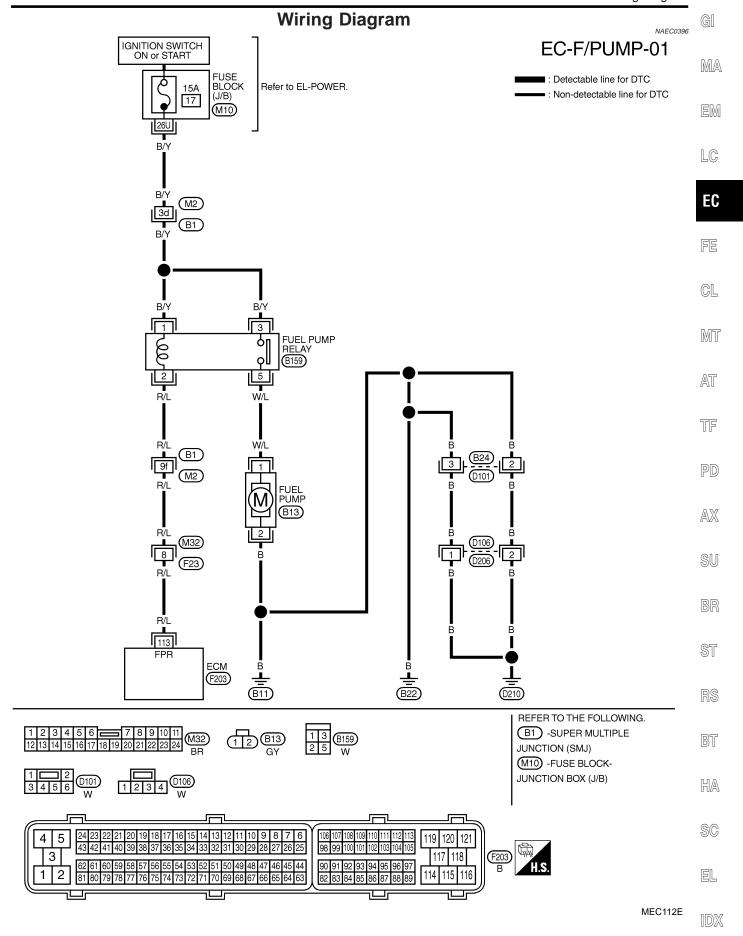
HA

SC

EL

^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

ECM Terminals and Reference Value

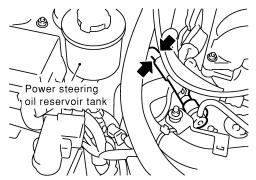

=NAEC0686

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
113 R/L	R/L	R/L Fuel pump relay	[Ignition switch ON] ● For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
			[Ignition switch ON] ■ 1 second passed after turning ignition switch ON.	BATTERY VOLTAGE (11 - 14V)



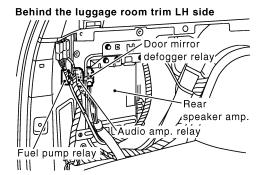
Diagnostic Procedure

NAEC0397

1 CHECK OVERALL FUNCTION

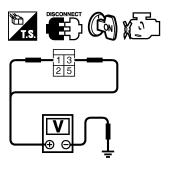
- 1. Turn ignition switch ON.
- 2. Pinch fuel feed hose with two fingers.

SEF025Z


Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned ON.

OK or NG

OK ▶	•	INSPECTION END
NG >	•	GO TO 2.


2 CHECK FUEL PUMP RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.

SEC564D

- 3. Turn ignition switch ON.
- 4. Check voltage between terminals 1, 3 and ground with CONSULT-II or tester.

SEC565D

Voltage: Battery voltage

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.

GI

MA

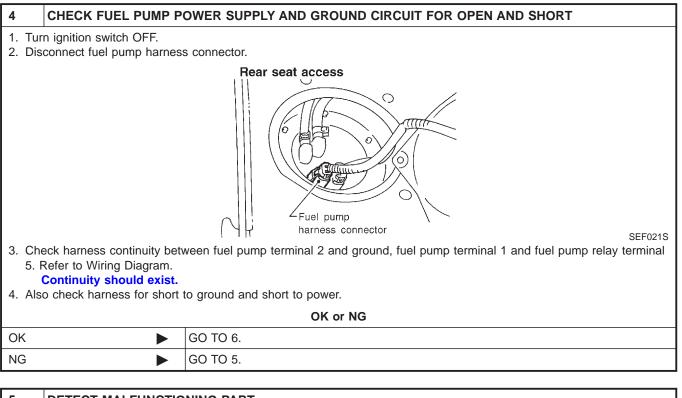
LC

EC

GL

MT

AT


TF

PD

AX

SU

3 DETECT MALFUNCTIONING PART Check the following. • Fuse block (J/B) connector M10 • 15A fuse in fuse block (J/B) • Harness connectors M2, B1 • Harness for open or short between fuse and fuel pump relay and fuse Repair harness or connectors. 4 CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF.

5	DETECT MALFUNCTIONING PART		
	Check the following.		
Har	Harness connectors B24, D101		
Har	Harness connectors D106, D206		

Harness for open or short between fuel pump relay and fuel pump

Harness for open between fuel pump and ground

Harriess for open between fuel pump and ground

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
Disconnect ECM harness connector. Check harness continuity between ECM terminal 113 and fuel pump relay terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.		
OK or NG		
•	GO TO 8.	
•	GO TO 7.	
	connect ECM harness con eck harness continuity bety Continuity should exist.	

HA

SC

7 DETECT MALFUNCTIONING PART

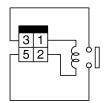
Check the following.

- Harness connectors B1, M2
- Harness connectors M32, F23
- Harness for open or short between ECM and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK FUEL PUMP RELAY

With CONSULT-II

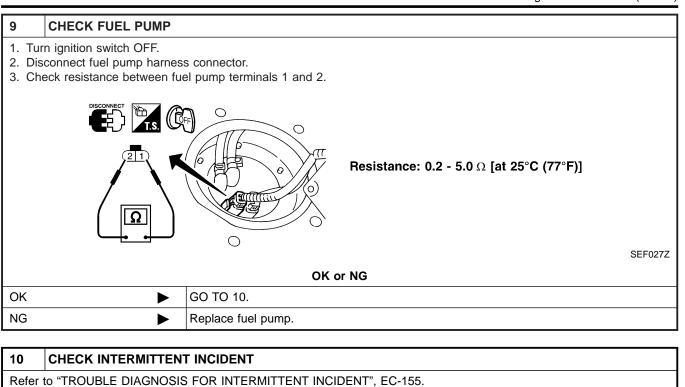

- 1. Reconnect fuel pump relay, fuel pump harness connector and ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Turn fuel pump relay "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TE	ST
FUEL PUMP RELAY	ON
MONITOI	7
ENG SPEED	XXX rpm

SEF073Y

Without CONSULT-II

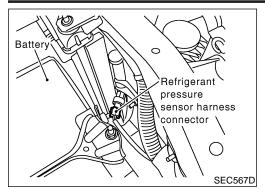
Check continuity between terminals 3 and 5 under the following conditions.


SEC566D

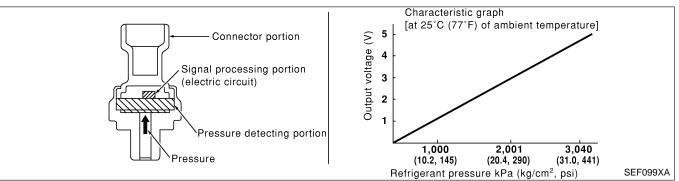
Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

MTBL1373

OK or NG


OK •	GO TO 9.
NG •	Replace fuel pump relay.

INSPECTION END

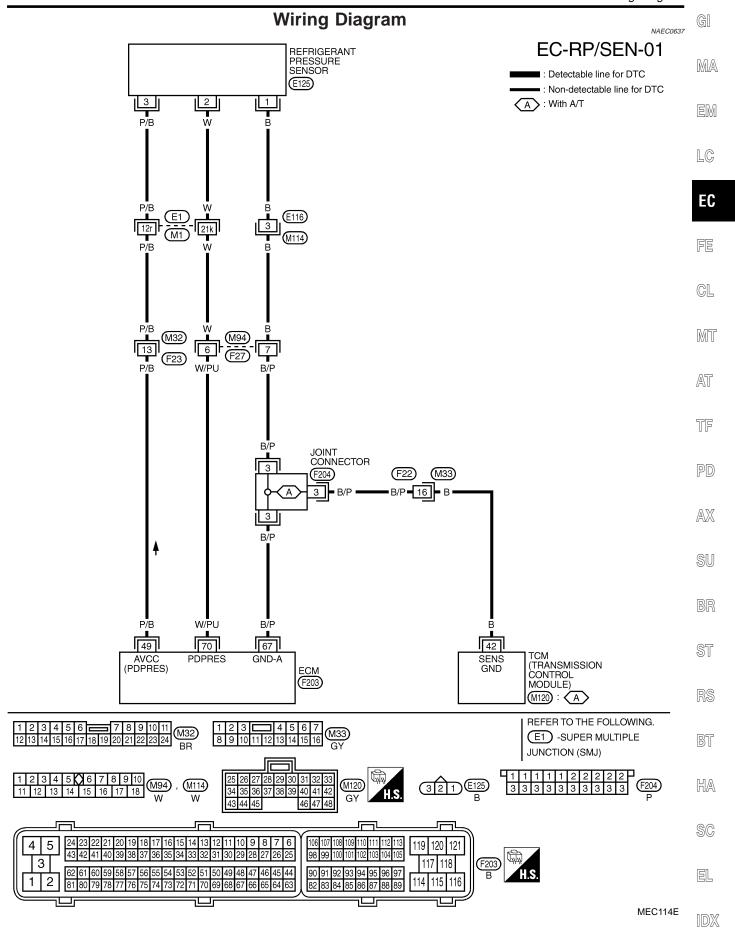

G[

MA

Description

The refrigerant pressure sensor is installed at the condenser of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM.

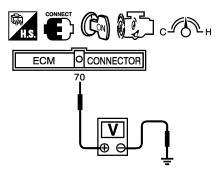
ECM Terminals and Reference Value


NAEC0689

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

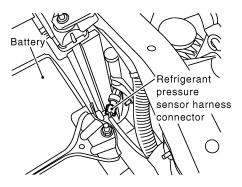
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	P/B	Sensor power supply	[Ignition switch ON]	Approximately 5V
67	B/P	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
70	W/PU	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are ON. (Compressor operates.) 	1.0 - 4.0V

Diagnostic Procedure

CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch ON.
- 3. Check voltage between ECM terminal 70 and ground with CONSULT-II or tester.

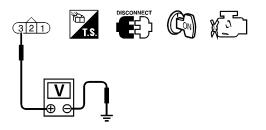

Voltage: 1 - 4V

OK or NG

OK J	INSPECTION END
NG	GO TO 2.

2 CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn A/C switch and blower switch OFF.
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.



SEC567D

NAEC0638

PBIB0832E

- 4. Turn ignition switch ON.
- 5. Check voltage between refrigerant pressure sensor terminal 3 and ground with CONSULT-II or tester.

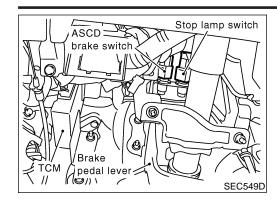
Voltage: Approximately 5V

SEF030Z

OK	or	NG
----	----	----

OK •	GO TO 4.
NG ►	GO TO 3.

REFRIGERANT PRESSURE SENSOR


Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART Check the following. • Harness connectors E1, M1 MA Harness connectors M32, F23 • Harness for open or short between ECM and refrigerant pressure sensor Repair harness or connectors. 4 CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. EC 3. Disconnect TCM harness connector. 4. Check harness continuity between refrigerant pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram. Continuity should exist. 5. Also check harness for short to ground and short to power. OK or NG GL OK GO TO 6. NG GO TO 5. Mī **DETECT MALFUNCTIONING PART** 5 Check the following. Harness connectors E116, M114 Harness connectors M94, F27 TF Joint connector F204 Harness for open between ECM and refrigerant pressure sensor Harness connectors F22, M33 (A/T models) PD Harness for open between TCM and refrigerant pressure sensor (A/T models) Repair open circuit or short to ground or short to power in harness or connectors. AX 6 CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Dia-Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK **GO TO 8.** NG GO TO 7. **DETECT MALFUNCTIONING PART** Check the following. Harness connectors E1, M1 Harness connectors M94, F27 Harness for open or short between ECM and refrigerant pressure sensor HA Repair open circuit or short to ground or short to power in harness or connectors. CHECK REFRIGERANT PRESSURE SENSOR Refer to HA-15, "Refrigerant pressure sensor". EL OK or NG GO TO 9. OK NG Replace refrigerant pressure sensor.

REFRIGERANT PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

9	9 CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.			
	>	INSPECTION END		

Component Description

When depressing the brake pedal, ASCD brake switch is turned OFF and stop lamp switch is turned ON.

ECM detects the state of the brake pedal by this two kinds of input (ON/OFF signal).

Refer to EC-54 for the ASCD function.

GI

MA

EM

LC

EC

GL

MT

AT

TF

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode Specification data are reference values.

NAEC1349

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW 1	Inviting autitule ON	Brake pedal fully released Clutch pedal is fully released (M/T models)	ON
(ASCD brake switch)	Ignition switch: ON	Brake pedal depressed Clutch pedal is depressed (M/T models)	OFF
BRAKE SW 2	Lonition quitable ON	Brake pedal fully released	OFF
(Stop lamp switch)	Ignition switch: ON	Brake pedal depressed	ON

ECM Terminals and Reference Value

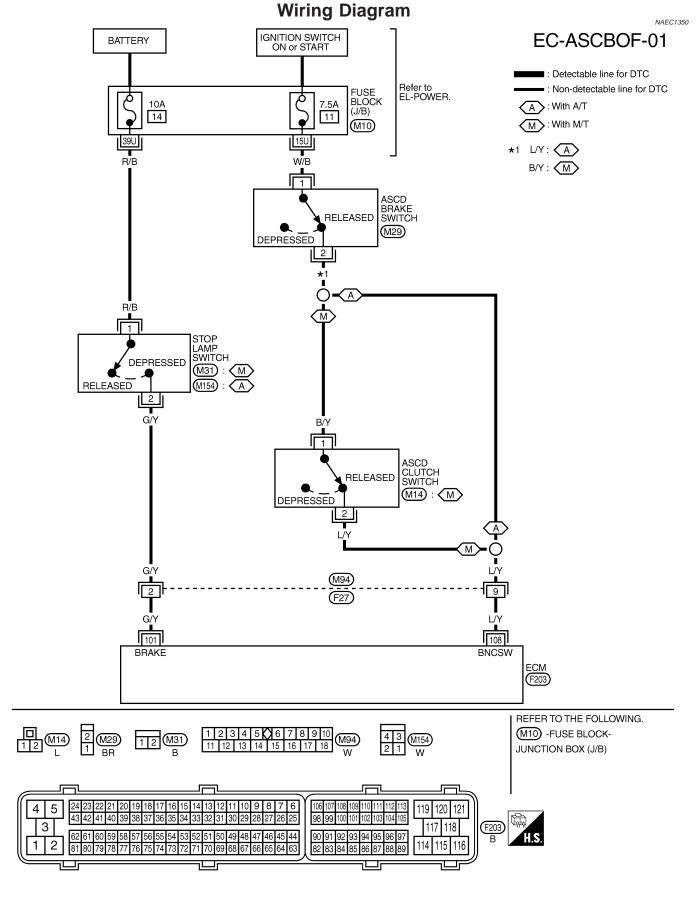
Specification data are reference values and are measured between each terminal and ground.

NAEC1356

PD

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

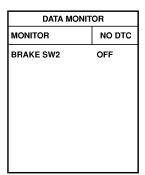

 $\mathbb{A}\mathbb{X}$

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	S
101 G/Y	CN	Stop lamp switch	[Ignition switch ON] • Brake pedal is fully released	Approximately 0V	- B
	G/Y		[Ignition switch ON] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)	_ S
108 L	1.07		[Ignition switch ON] ■ Brake pedal is fully released ■ Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)	_ R
	L/Y	ASCD brake switch	 [Ignition switch ON] Brake pedal is depressed Clutch pedal is depressed (M/T models) 	Approximately 0V	 B

HA

SC

EL

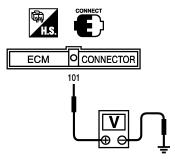

MEC119E

Diagnostic Procedure G[NAEC1351 **CHECK OVERALL FUNCTION-I** MA (P) With CONSULT-II 1. Turn ignition switch ON. 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II. EM 3. Check the indication of "BRAKE SW1" under the following conditions. DATA MONITOR MONITOR NO DTC **BRAKE SW1** OFF FE SEC011D A/T models CONDITION INDICATION MT OFF When brake pedal is depressed. When brake pedal is released. ON M/T models AT CONDITION INDICATION When clutch pedal or brake pedal is depressed. OFF When clutch pedal and brake pedal are released. ON MTBL1334 Without CONSULT-II 1. Turn ignition switch ON. 2. Check voltage between ECM terminal 108 and ground under the following conditions. AX CONNECTOR ECM 108 MBIB0061E A/T models CONDITION VOLTAGE When brake pedal is depressed. Approximately 0V When brake pedal is released. Battery voltage BT M/T models CONDITION VOLTAGE HA When clutch pedal or brake pedal is depressed. Approximately 0V When clutch pedal and brake pedal are released. Battery voltage MTBL1335 OK or NG OK GO TO 2. NG GO TO 3.

2 CHECK OVERALL FUNCTION-II

With CONSULT-II

See "BRAKE SW2" indication in "DATA MONITOR" mode.


SEC013D

CONDITION	INDICATION
When brake pedal is depressed.	ON
When brake pedal is released.	OFF

MTBL1336

Without CONSULT-II

Check voltage between ECM terminal 101 and ground under the following conditions.

MBIB0060E

CONDITION	VOLTAGE
When brake pedal is depressed.	Battery voltage
When brake pedal is released.	Approximately 0V

MTBL1337

OK or NG

OK ►	INSPECTION END
NG ▶	GO TO 11.

GI

MA

LC

EC

GL

MT

AT

TF

PD

AX

SU

PBIB0857E

CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT 1. Turn ignition switch OFF. 2. Disconnect ASCD brake switch harness connector. 3. Turn ignition switch ON. 4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester. DISCONNECT CON KEET Voltage: Battery voltage OK or NG GO TO 5. OK (A/T models) OK (M/T models) GO TO 7. NG GO TO 4. **DETECT MALFUNCTIONING PART** Check the following. • Fuse block (J/B) connector M10 • 7.5A fuse • Harness for open or short between ASCD brake switch and fuse Repair open circuit or short to ground or short to power in harness or connectors. 5

5	CHECK ASCD BRAKE	SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
1. Tur	rn ignition switch OFF.				
2. Dis	sconnect ECM harness con	nector.			
3. Ch	eck harness continuity bety	veen ECM terminal 108 and ASCD brake switch terminal 2.			
	fer to Wiring Diagram.				
	Continuity should exist.				
4. Als	so check harness for open t	o ground and short to power.			
	OK or NG				
OK	>	GO TO 10.			
NG	•	GO TO 6.			

6	DETECT MALFUNCTIONING PART			
	Check the following. • Harness connectors M94, F27			
	Harness for open and short between ECM and ASCD brake switch			
	>	Repair open circuit or short to ground or short to power in harness or connectors.		
			•	

EL

BT

HA

SC

ASCD BRAKE SWITCH

Diagnostic Procedure (Cont'd)

7 CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1, ASCD clutch switch terminal 2 and ECM terminal 108.

Refer to Wiring Diagram.

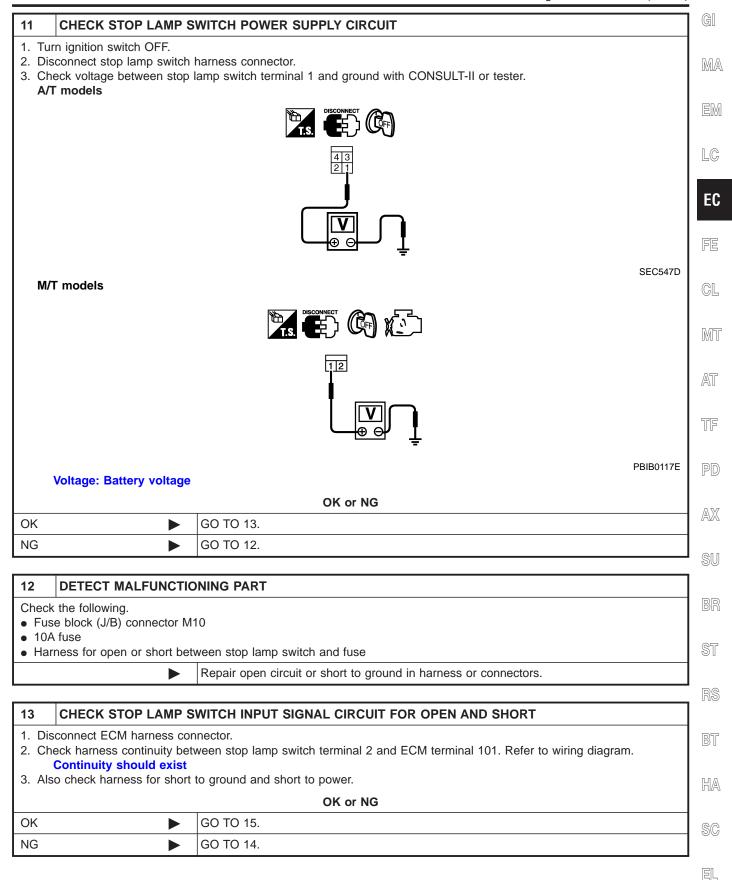
Continuity should exist.

5. Also check harness for open to ground and short to power.

0	K	or	N	C

OK •	GO TO 9.
NG ▶	GO TO 8.

8 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors M94, F27
- Harness for open and short between ASCD brake switch and ASCD clutch switch
- Harness for open and short between ASCD clutch switch and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK ASCD CLUTCH SWITCH		
Refer to "Component Inspection", EC-661.			
	OK or NG		
OK	OK ▶ GO TO 10.		
NG	>	Replace ASCD clutch switch.	

10	CHECK ASCD BRAKE SWITCH		
Refer	Refer to "Component Inspection", EC-661.		
	OK or NG		
ОК	OK ▶ GO TO 16.		
NG	>	Replace ASCD brake switch.	

ASCD BRAKE SWITCH

Diagnostic Procedure (Cont'd)

14	DETECT MALFUNCTIONING PART	
Har	Check the following. • Harness connectors M94, F27 • Harness for open or short between stop lamp switch and ECM	
	•	Repair open circuit or short to ground or short to power in harness or connectors.

15	CHECK STOP LAMP SWITCH		
Refer	Refer to "Component Inspection", EC-661.		
	OK or NG		
OK	OK 🕨 GO TO 16.		
NG	•	Replace stop lamp switch.	

16	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	•	INSPECTION END	

Component Description

NAEC1352

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

MA

CRUISE indicator illuminates when MAIN switch on steering switch is turned ON to indicate that ASCD system is ready for operation. SET indicator illuminates when following conditions are met. CRUISE indicator illuminates, and SET/COAST switch on steering switch is turned ON while vehicle speed is within range of ASCD setting.

SET indicator remains lit during ASCD control. Refer to EC-54 for ASCD functions.

LC

EC

FE

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode

IΔEC1353

TF

Specification data are reference values.

Specification data are reference values.					
MONITOR ITEM	CONDITION		SPECIFICATION		
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time → at the 2nd time	$ON \to OFF$		
SET LAMP	MAIN switch: ON When vehicle speed is between 40 km/h	ASCD is operating.	ON		
SET LAWIP		ASCD is not operating.	OFF		

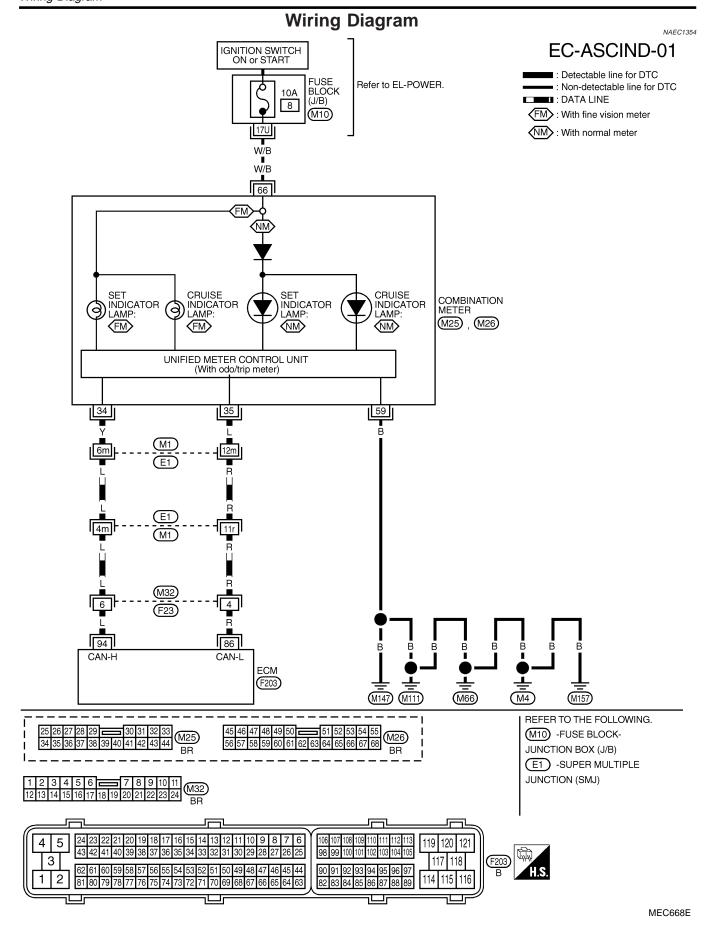
- PD

AX

SU

BR

37


RS

37

HA

SC

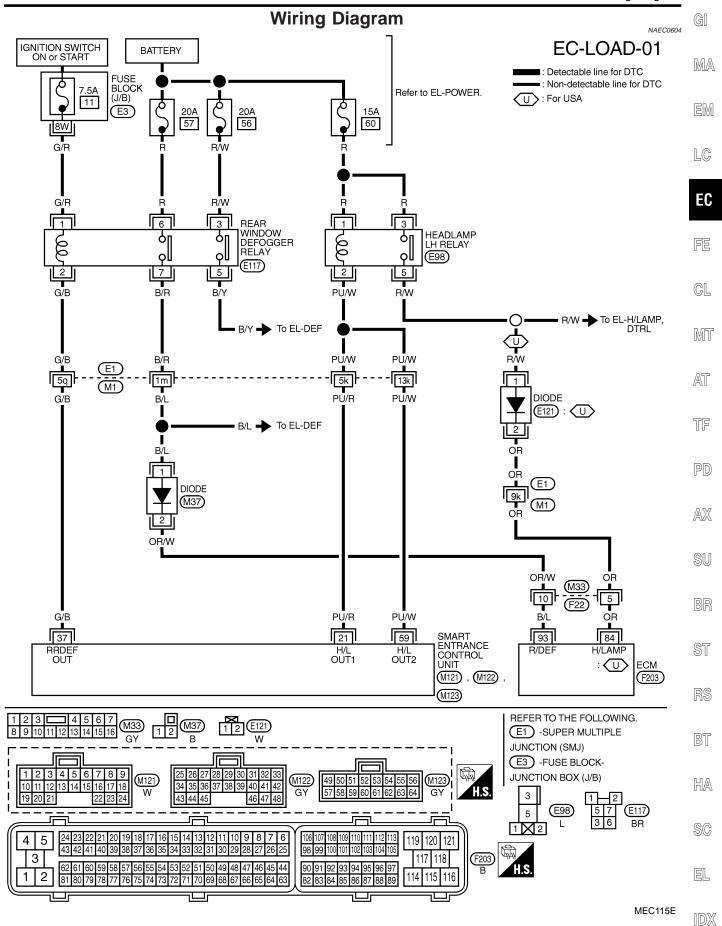
EL

				Diagil	ostic Procedure
		Diagnostic	Procedure		NAEC135
1	CHECK OVERALL FUI	NCTION			
Chec	k ASCD indicator under the	e following conditions.			
	MONITOR ITEM	CONDITION	l .	SPECIFICATION	
	CRUISE LAMP	• Ignition switch : ON	MAIN switch : Pressed at the 1st time → at the 2nd time	ON → OFF	
	SET LAMP	MAIN switch : ON When vehicle speed is between 40 km/h	ASCD is operating.	ON	
	SET LAMIF	(25 MPH) and 144 km/h (89 MPH)	ASCD is not operating.	OFF	
					MTBL1881
		OK or N	G		
OK	•	INSPECTION END			
NG	<u> </u>	GO TO 2.	30 TO 2.		
2	CHECK DTC				
	sure that DTC U1000 or U	I1001 is not displayed			
Make		OK or N	G		
OK					
NG Perfo		Perform "Diagnostic Procedure"	erform "Diagnostic Procedure" for DTC U1000 or U1001, EC-168.		
3	CHECK COMBINATION	N METER OPERATION			
Chec	k that combination meter o	perates normally.			
		OK or N	G		
OK	OK ▶ GO TO 4.				
NG		Check combination meter circuit	t. Refer to EL-124.		
4	4 CHECK INTERMITTENT INCIDENT				
Refe	r to "TROUBLE DIAGNOSI	S FOR INTERMITTENT INCIDEN	IT", EC-155.		
	>	INSPECTION END			

ELECTRICAL LOAD SIGNAL

ECM Terminals and Reference Value

ECM Terminals and Reference Value


NAEC0690

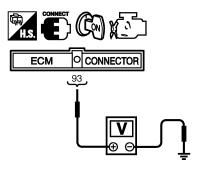
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
84 OR		[Engine is running] • Headlamp: ON	BATTERY VOLTAGE (11 - 14V)	
	OK	Headlamp signal	[Engine is running] • Headlamp: OFF	ov
03	93 18/1	Rear window defogger	[Engine is running] • Rear window defogger: ON	BATTERY VOLTAGE (11 - 14V)
93 D/I		signal	[Engine is running] • Rear window defogger: OFF	ov

Diagnostic Procedure


NAEC0605

Turn ignition switch ON.

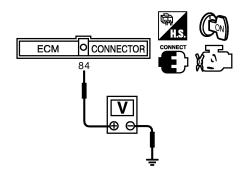
1. Turn ignition switch ON.

2. Check voltage between ECM terminal 93 and ground under the following conditions.

CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

SEC568D

Condition	Voltage
Rear window defogger switch "ON"	BATTERY VOLTAGE
Rear window defogger switch "OFF"	0V


MTBL1374

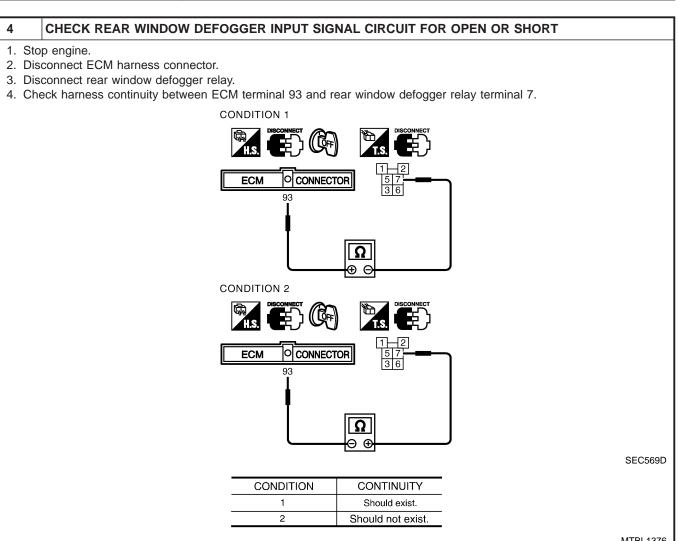
OK or NG

OK •	GO TO 2.
NG ►	GO TO 3.

2 CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check voltage between ECM terminal 84 and ground under the following conditions.

Condition	Voltage
Lighting switch "ON" at 1st position	BATTERY VOLTAGE
Lighting switch "OFF"	OV


MTBL1375

MBIB0158E

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 7.

3 CHECK	REAR WINDOV	V DEFOGGER FUNCTION	
	rear window defo	ogger switch. the rear windshield heated up? Yes or No	
Yes	•	GO TO 4.	
No	>	Refer to EL-192, "Rear Window Defogger".	

MTBL1376

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

5 **DETECT MALFUNCTIONING PART**

Check the following.

- Harness connectors E1, M1
- Harness connectors M33, F22
- Diode M37
- Harness for open and short between ECM and rear window defigger relay
 - Repair open circuit or short to ground or short to power in harness or connectors.

EC-755

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

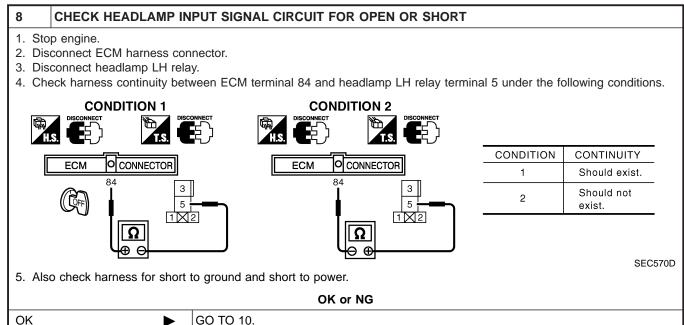
AX

SU

BT

HA

SC

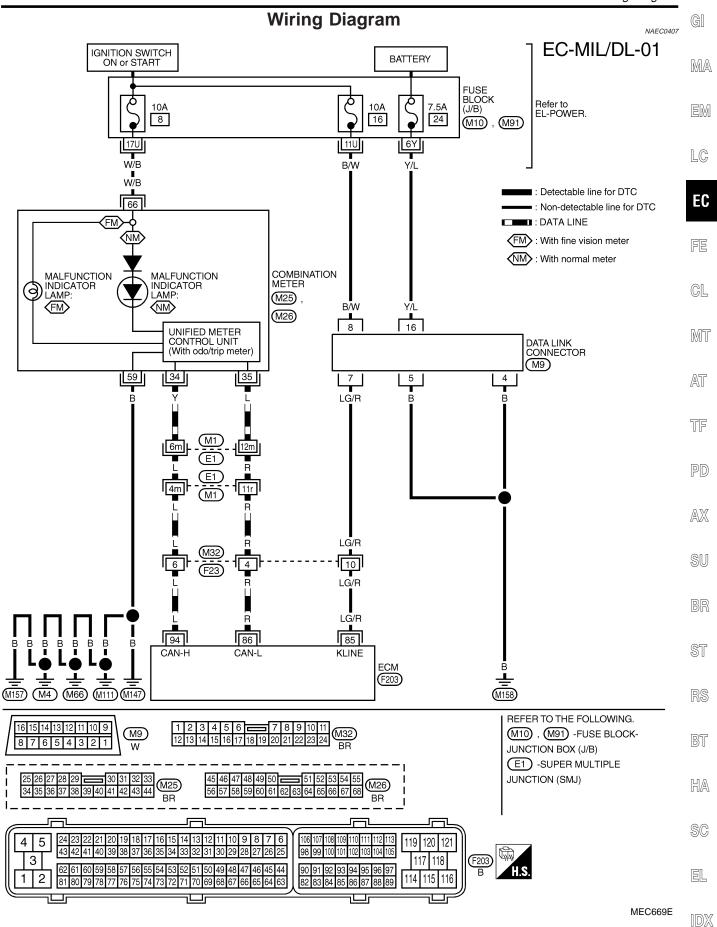

EL

ELECTRICAL LOAD SIGNAL

Diagnostic Procedure (Cont'd)

6 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155. INSPECTION END

7	CHECK HEADLAMP FU	UNCTION	
2. Tur	 Start engine. Turn the lighting switch ON at 1st position with high beam. Check that headlamps are illuminated. 		
OK or NG			
OK	>	GO TO 8.	
NG	>	Refer to EL-35, "HEADLAMP (FOR USA)".	


NG	>	GO TO 9.	
9	DETECT MALFUNCTIONING PART		
Check	Check the following. Harness connectors E1 M1		

Diode E121Harness for open and short between ECM and headlamp LH relay

Harness connectors M33, F22

Repair open circuit or short to ground or short to power in harness or connectors.

10	10 CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-155.		
	>	INSPECTION END	

At 2,500 rpm

	Fuel Pressu	re Regulator	NAEC0408
Condition		Fuel pressure at idling kPa (kg/cm², psi)	
Vacuum hose is connected.		Approximately 235 (2.4, 34)	
Vacuum hose is disconnected.		Approximately 294 (3.0, 43)	
	Idle Speed a	and Ignition Timing	NAEC040s
Target idle speed	No-load*1 (in P or N position)	M/T: 750±50 rpm A/T: 750±50 rpm	
Air conditioner: ON	In P or N position	825 rpm or more	
Ignition timing	In P or N position	15°±5° BTDC	
Steering wheel: Kept in straight-ahe Supply voltage	Mass Air Flo	Battery voltage (11 - 14V)	NAEC1412
Output voltage at idle		1.0 - 1.3V*	
Mass air flow (Using CONSULT-II or GST)		2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*	
: Engine is warmed up to normal opera		ant Temperature Sensor	NAEC0412
Temperature °C (°F)		Resistance kΩ	
20 (68)		2.1 - 2.9	
50 (122)		0.68 - 1.00	
90 (194)	Heated Oxyg	gen Sensor 1 Heater	
Resistance [at 25°C (77°F)]		3.3 - 4.0Ω	NAEC0414
	Heated Oxyg	gen Sensor 2 Heater	NAEC0422
Resistance [at 23°C (73°F)]		Approximately 11Ω	
	Fuel Pump		NAEC0415
Resistance [at 25°C (77°F)]		0.2 - 5.0Ω	
	Injector		NAEC0417
Resistance [at 10 - 60°C (50 - 140°F)]		13.5 - 17.3Ω	
	Calculated L	oad Value	NAEC0420
		Calculated load value % (Using CONSULT-II or GST)	
		Calculated load value % (Ostrig CONSOLT-II of GST)	

12.0 - 25.0

SERVICE DATA AND SPECIFICATIONS (SDS)

OLIVIOL DATA	Intake Air Tempe	erature Sensor	
	Intake Air Temperature Sensor	NAEC0421	G[
Temperature °C (°F)	Resistance kΩ		D/A.
25 (77)	1.9 - 2.1		M
	Fuel Tank Temperature Sensor	NAEC0424	EN
Temperature °C (°F)	Resistance kΩ		
20 (68)	2.3 - 2.7		LC
50 (122)	0.79 - 0.90		E
	Crankshaft Position Sensor (POS)	NAEC1357	E
	Camshaft Position Sensor (PHASE)	NAEC1358	FE
Refer to "Component Inspection", EC-326.			Cl
			M
			Aī
			TF
			P
			A
			Sl
			B
			\$1
			R
			B
			H
			S(
			EL

NOTES