

GI

MA

EM

LC

ENGINE CONTROL SYSTEM

SECTION

CONTENTS

DIAGNOSTIC TROUBLE CODE INDEX	4
Alphabetical & P No. Index for DTC	4
PRECAUTIONS AND PREPARATION	
Special Service Tool	8
Commercial Service Tools	
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	10
Precautions for On Board Diagnostic (OBD)	
System of Engine and A/T	10
Engine Fuel & Emission Control System	
Precautions	
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	14
Circuit Diagram	14
System Diagram	16
Engine Control Component Parts Location	17
Vacuum Hose Drawing	19
System Chart	20
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	
Multiport Fuel Injection (MFI) System	21
Electronic Ignition (EI) System	23
Air Conditioning Cut Control	24
Fuel Cut Control (at no load & high engine	
speed)	
EVAPORATIVE EMISSION SYSTEM	26
Description	
Inspection	
Evaporative Emission Line Drawing	
On Board Refueling Vapor Recovery (ORVR)	
POSITIVE CRANKCASE VENTILATION	
Description	
Inspection	
BASIC SERVICE PROCEDURE	
Fuel Pressure Release	
Fuel Pressure Check	
Injector Removal and Installation	
Throttle Opener	
Fast Idle Cam (FIC) Inspection and Adjustment	40
Direct Ignition System - How to Check Idle	
Speed and Ignition Timing	40
Idle Speed/Ignition Timing/Idle Mixture Ratio	
Adjustment	42

ON BOARD DIAGNOSTIC SYSTEM	EC
DESCRIPTION49	
Introduction49	
Two Trip Detection Logic49	FE
Emission-related Diagnostic Information50	
Malfunction Indicator Lamp (MIL)65	AT
OBD System Operation Chart69	/A\ []
CONSULT-II74	
Generic Scan Tool (GST)85	PD
TROUBLE DIAGNOSIS - Introduction87	
Introduction87	
Diagnostic Worksheet87	FA
TROUBLE DIAGNOSIS - Work Flow	
Work Flow89	RA
Description for Work Flow90	Ln1/A1
TROUBLE DIAGNOSIS - Basic Inspection91	
Basic Inspection	BR
TROUBLE DIAGNOSIS - General Description	
Diagnostic Trouble Code (DTC) Inspection	0-
Priority Chart	ST
Fail-Safe Chart	
Symptom Matrix Chart	RS
CONSULT-II Reference Value in Data Monitor Mode102	110
Major Sensor Reference Graph in Data Monitor	
Mode	BT
ECM Terminals and Reference Value	
TROUBLE DIAGNOSIS FOR INTERMITTENT	ΠΠΔ
INCIDENT	HA
Description	
Common I/I Report Situations	EL
Diagnostic Procedure	
TROUBLE DIAGNOSIS FOR POWER SUPPLY 118	
Main Power Supply and Ground Circuit118	IDX
TROUBLE DIAGNOSIS FOR DTC P0100124	
Mass Air Flow Sensor (MAFS)124	
TROUBLE DIAGNOSIS FOR DTC P0105132	
Absolute Pressure Sensor132	
TROUBLE DIAGNOSIS FOR DTC P0110140	
Intake Air Temperature Sensor140	
TROUBLE DIAGNOSIS FOR DTC P0115145	
Engine Coolant Temperature Sensor (ECTS)145	
TROUBLE DIAGNOSIS FOR DTC P0120150	

CONTENTS (Cont'd)

Throttle Position Sensor15	
TROUBLE DIAGNOSIS FOR DTC P012516	31
Engine Coolant Temperature (ECT) Sensor16	31
TROUBLE DIAGNOSIS FOR DTC P0130 (-B1),	
P0150 (-B2)	66
Front Heated Oxygen Sensors (Front HO2S)	
(Circuit) (P0130: Left bank), (P0150: Right bank)16	26
	50
TROUBLE DIAGNOSIS FOR DTC P0131 (-B1),	- 4
P0151 (-B2)	4
Front Heated Oxygen Sensor (Lean shift	
monitoring) (Front HO2S) (P0131: Left bank),	
(P0151: Right bank)17	74
TROUBLE DIAGNOSIS FOR DTC P0132 (-B1),	
P0152 (-B2)18	30
Front Heated Oxygen Sensor (Rich shift	
monitoring) (Front HO2S) (P0132: Left bank),	
(P0152: Right bank)18	30
TROUBLE DIAGNOSIS FOR DTC P0133 (-B1),	
P0153 (-B2)18	26
Front Heated Oxygen Sensor (Response	50
monitoring) (Front HO2S) (P0133: Left bank),	~~
(P0153: Right bank)18	36
TROUBLE DIAGNOSIS FOR DTC P0134 (-B1),	
P0154 (-B2)	95
Front Heated Oxygen Sensor (High voltage)	
(Front HO2S) (P0134: Left bank), (P0154: Right	
bank)19	95
TROUBLE DIAGNOSIS FOR DTC P0135 (-B1),	
P0155 (-B2))2
Front Heated Oxygen Sensor Heater (P0135:	
Left bank), (P0155: Right bank)20	12
TROUBLE DIAGNOSIS FOR DTC P0137 (-B1),	
P0157 (-B2)	าย
Rear Heated Oxygen Sensor (Min. Voltage	50
Monitoring) (Rear HO2S) (P0137: Left bank),	~~
(P0157: Right bank)	98
TROUBLE DIAGNOSIS FOR DTC P0138 (-B1),	
P0158 (-B2)2	16
Rear Heated Oxygen Sensor (Max. Voltage	
Monitoring) (Rear HO2S) (P0138: Left bank),	
(P0158: Right bank)2	16
TROUBLE DIAGNOSIS FOR DTC P0139 (-B1),	
P0159 (-B2)	24
Rear Heated Oxygen Sensor (Response	
Monitoring) (Rear HO2S) (P0139: Left bank),	
(P0159: Right bank)22	24
TROUBLE DIAGNOSIS FOR DTC P0140 (-B1),	
P0160 (-B2)	31
Rear Heated Oxygen Sensor (High voltage)	
(Rear HO2S) (P0140: Left bank), (P0160: Right	
bank)	31
,	

TROUBLE DIAGNOSIS FOR DTC P0141 (-B1),	
P0161 (-B2)	237
Rear Heated Oxygen Sensor Heaters (P0141:	
Left bank), (P0161: Right bank)	237
TROUBLE DIAGNOSIS FOR DTC P0171 (-B1),	
P0174 (-B2)	243
Fuel Injection System Function (Lean side)	
(P0171: Left bank), (P0174: Right bank)	243
TROUBLE DIAGNOSIS FOR DTC P0172 (-B1),	
P0175 (-B2)	249
Fuel Injection System Function (Rich side)	
(P0172: Left bank), (P0175: Right bank)	249
TROUBLE DIAGNOSIS FOR DTC P0180	255
Fuel Tank Temperature Sensor	255
TROUBLE DIAGNOSIS FOR DTC P0300 - P0308	260
No. 1 - 8 Cylinder Misfire, Multiple Cylinder	
Misfire	260
TROUBLE DIAGNOSIS FOR DTC P0325 (-B1),	
P0330 (-B2)	265
Knock Sensor (KS) (P0325: Left bank), (P0330:	
Right bank)	265
TROUBLE DIAGNOSIS FOR DTC P0335	268
Crankshaft Position Sensor (CKPS) (OBD)	268
TROUBLE DIAGNOSIS FOR DTC P0340	273
Camshaft Position Sensor (CMPS)	
TROUBLE DIAGNOSIS FOR DTC P0400	279
EGR Function (Close)	279
TROUBLE DIAGNOSIS FOR DTC P0402	288
EGRC-BPT Valve Function	288
TROUBLE DIAGNOSIS FOR DTC P0420 (-B1),	
P0430 (-B2)	
Three Way Catalyst Function (P0420: Left bank)),
(P0430: Right bank)	
TROUBLE DIAGNOSIS FOR DTC P0440	296
Evaporative Emission (EVAP) Control System	
(Small Leak) (Negative Pressure)	
TROUBLE DIAGNOSIS FOR DTC P0443	307
Evaporative Emission (EVAP) Canister Purge	
Volume Control Valve (Circuit)	
TROUBLE DIAGNOSIS FOR DTC P0446	313
Evaporative Emission (EVAP) Canister Vent	
Control Valve (Circuit)	
TROUBLE DIAGNOSIS FOR DTC P0450	318
Evaporative Emission (EVAP) Control System	
Pressure Sensor	
TROUBLE DIAGNOSIS FOR DTC P0455	324
Evaporative Emission (EVAP) Control System	6 6 6 6
(Gross Leak)	
TROUBLE DIAGNOSIS FOR DTC P0500	
Vehicle Speed Sensor (VSS) TROUBLE DIAGNOSIS FOR DTC P0505	
TROUBLE DIAGNOUSIS FOR DIC FUSUS	

CONTENTS (Cont'd)

Idle Air Control Valve (IACV) - Auxiliary Air	
Control (AAC) Valve	338
TROUBLE DIAGNOSIS FOR DTC P0510	344
Closed Throttle Position Switch	344
TROUBLE DIAGNOSIS FOR DTC P0600, P1605	350
A/T Communication Line (P0600) and A/T	
Diagnostic Communication Line (P1605)	350
TROUBLE DIAGNOSIS FOR DTC P0605	353
Engine Control Module (ECM)	353
TROUBLE DIAGNOSIS FOR DTC P1105	356
Manifold Absolute Pressure (MAP)/Barometric	
Pressure (BARO) Switch Solenoid Valve	356
TROUBLE DIAGNOSIS FOR DTC P1110 (-B1),	
P1135 (-B2)	365
Intake Valve Timing Control (P1110: Left bank),	
(P1135: Right bank)	365
TROUBLE DIAGNOSIS FOR DTC P1120	373
Secondary Throttle Position Sensor (STPS)	373
TROUBLE DIAGNOSIS FOR DTC P1125	
Tandem Throttle Position Sensor	379
TROUBLE DIAGNOSIS FOR DTC P1140 (-B1),	
P1145 (-B2)	380
Intake Valve Timing Control Position Sensor	
(P1140: Left bank), (P1145: Right bank)	380
TROUBLE DIAGNOSIS FOR DTC P1148 (-B1),	
P1168 (-B2)	386
Closed Loop Control (P1148: Left bank), (P1168:	
Right bank)	
TROUBLE DIAGNOSIS FOR DTC P1210	388
Traction Control System (TCS) Signal Circuit	388
TROUBLE DIAGNOSIS FOR DTC P1220	391
Fuel Pump Control Module (FPCM)	391
TROUBLE DIAGNOSIS FOR DTC P1320	
Ignition Signal	397
TROUBLE DIAGNOSIS FOR DTC P1336	405
Crankshaft Position Sensor (CKPS) (OBD)	
(COG)	405
TROUBLE DIAGNOSIS FOR DTC P1400	410
EGRC-solenoid Valve	410
TROUBLE DIAGNOSIS FOR DTC P1401	415
EGR Temperature Sensor	415
TROUBLE DIAGNOSIS FOR DTC P1402	
EGR Function (Open)	421
TROUBLE DIAGNOSIS FOR DTC P1440	430
Evaporative Emission (EVAP) Control System	
`	

Control Valve (Close)450TROUBLE DIAGNOSIS FOR DTC P1447455Evaporative Emission (EVAP) Control System9Purge Flow Monitoring455TROUBLE DIAGNOSIS FOR DTC P1448462Evaporative Emission (EVAP) Canister Vent60Control Valve (Open)462TROUBLE DIAGNOSIS FOR DTC P1490468Vacuum Cut Valve Bypass Valve (Circuit)468Vacuum Cut Valve Bypass Valve (Circuit)468TROUBLE DIAGNOSIS FOR DTC P1491473Vacuum Cut Valve Bypass Valve473Vacuum Cut Valve Bypass Valve473TROUBLE DIAGNOSIS FOR DTC P1492479Evaporative Emission (EVAP) Canister Purge60Control Valve/Solenoid Valve (Circuit)479TROUBLE DIAGNOSIS FOR DTC P1493485Evaporative Emission (EVAP) Canister Purge60Control Valve/Solenoid Valve485TROUBLE DIAGNOSIS FOR DTC P1493485Evaporative Emission (PNP) Switch492Park/Neutral Position (PNP) Switch492Park/Neutral Position (PNP) Switch492ROUBLE DIAGNOSIS FOR ECM - ABS/TCS60COMM NG498ABS/TCS Communication Line498TROUBLE DIAGNOSIS FOR NON-DETECTABLE513Injector513Natt Signal519Fuel Pump Control521Power Steering Oil Pressure Switch525Electrical Load Signal530MIL & Data Link Connectors533SERVICE DATA AND SPECIFICATIONS (SDS)534	(Small Leak) (Positive Pressure)	430	
Volume Control Valve 442 TROUBLE DIAGNOSIS FOR DTC P1446 450 Evaporative Emission (EVAP) Canister Vent 50 TROUBLE DIAGNOSIS FOR DTC P1447 455 Evaporative Emission (EVAP) Control System 455 Purge Flow Monitoring 455 TROUBLE DIAGNOSIS FOR DTC P1448 462 Evaporative Emission (EVAP) Canister Vent 60 Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1448 462 Vacuum Cut Valve Bypass Valve (Circuit) 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve (Circuit) 479 Evaporative Emission (EVAP) Canister Purge 60 Control Valve/Solenoid Valve (Circuit) 479 Evaporative Emission (EVAP) Canister Purge 70 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 ROUBLE DIAGNOSIS FOR OVERHEAT 501 Owerheat<	TROUBLE DIAGNOSIS FOR DTC P1444	442	
Volume Control Valve 442 TROUBLE DIAGNOSIS FOR DTC P1446 450 Evaporative Emission (EVAP) Canister Vent M Control Valve (Close) 450 TROUBLE DIAGNOSIS FOR DTC P1447 455 Evaporative Emission (EVAP) Control System Purge Flow Monitoring Purge Flow Monitoring 455 TROUBLE DIAGNOSIS FOR DTC P1448 462 Evaporative Emission (EVAP) Canister Vent Control Valve (Open) Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1490 468 Vacuum Cut Valve Bypass Valve (Circuit) 473 Vacuum Cut Valve Bypass Valve 473 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve (Circuit) 479 Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 TROUBLE DIA	Evaporative Emission (EVAP) Canister Purge		a
Evaporative Emission (EVAP) Canister Vent M Control Valve (Close) 450 TROUBLE DIAGNOSIS FOR DTC P1447 455 Evaporative Emission (EVAP) Control System 455 Purge Flow Monitoring. 455 TROUBLE DIAGNOSIS FOR DTC P1448 462 Evaporative Emission (EVAP) Canister Vent 60 Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1490 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 Vacuum Cut Valve Bypass Valve 473 Evaporative Emission (EVAP) Canister Purge 79 Evaporative Emission (EVAP) Canister Purge 70 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 70 Control Valve/Solenoid Valve 485 Evaporative Emission (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line<	Volume Control Valve	442	GII
Control Valve (Close)	TROUBLE DIAGNOSIS FOR DTC P1446	450	
Control Valve (Close) 450 TROUBLE DIAGNOSIS FOR DTC P1447 455 Evaporative Emission (EVAP) Control System 9 Purge Flow Monitoring 455 TROUBLE DIAGNOSIS FOR DTC P1448 462 Evaporative Emission (EVAP) Canister Vent 6 Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1490 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve (Circuit) 479 Evaporative Emission (EVAP) Canister Purge 479 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 60 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position Line 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR NON-DETECTABLE	Evaporative Emission (EVAP) Canister Vent		MA
Evaporative Emission (EVAP) Control System Image Flow Monitoring	Control Valve (Close)	450	
Purge Flow Monitoring	TROUBLE DIAGNOSIS FOR DTC P1447	455	
Purge Flow Monitoring 455 TROUBLE DIAGNOSIS FOR DTC P1448 462 Evaporative Emission (EVAP) Canister Vent 462 Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1490 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 TROUBLE DIAGNOSIS FOR DTC P1492 479 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve 485 Evaporative Emission (EVAP) Canister Purge 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 493 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR NON-DETECTABLE 501 Overheat 501 TROUBLE DIAGNOSIS FOR NON-DETECTABLE 513 <th>Evaporative Emission (EVAP) Control System</th> <th></th> <th>EM</th>	Evaporative Emission (EVAP) Control System		EM
Evaporative Emission (EVAP) Canister Vent 462 Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1490 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 Vacuum Cut Valve Bypass Valve 473 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 TROUBLE DIAGNOSIS FOR DTC P1492 479 Evaporative Emission (EVAP) Canister Purge 479 Control Valve/Solenoid Valve (Circuit) 479 Evaporative Emission (EVAP) Canister Purge 485 Evaporative Emission (EVAP) Canister Purge 60 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1706 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR NON-DETECTABLE 501 Overheat 501 STROUBLE DIAGNOSIS FOR NON-DETECTABLE 513 Injector 513	Purge Flow Monitoring	455	
Evaporative Emission (EVAP) Canister Vent Control Valve (Open) 462 TROUBLE DIAGNOSIS FOR DTC P1490 468 Vacuum Cut Valve Bypass Valve (Circuit) 468 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 Vacuum Cut Valve Bypass Valve 473 TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 Frouble DIAGNOSIS FOR DTC P1492 479 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 60 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1706 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 Injector 513 Injector 513 Injector 513	TROUBLE DIAGNOSIS FOR DTC P1448	462	
Control Valve (Open)462TROUBLE DIAGNOSIS FOR DTC P1490468Vacuum Cut Valve Bypass Valve (Circuit)468TROUBLE DIAGNOSIS FOR DTC P1491473Vacuum Cut Valve Bypass Valve473TROUBLE DIAGNOSIS FOR DTC P1492479Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit)479TROUBLE DIAGNOSIS FOR DTC P1493485Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve485Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve485TROUBLE DIAGNOSIS FOR DTC P1706492Park/Neutral Position (PNP) Switch492Park/Neutral Position (PNP) Switch497ABS/TCS Control Unit497ABS/TCS Control Unit497ABS/TCS Communication Line498TROUBLE DIAGNOSIS FOR OVERHEAT501Overheat501Start Signal513Injector513Start Signal519Fuel Pump Control521Power Steering Oil Pressure Switch525Electrical Load Signal530MIL & Data Link Connectors533SERVICE DATA AND SPECIFICATIONS (SDS)534	Evaporative Emission (EVAP) Canister Vent		LC
TROUBLE DIAGNOSIS FOR DTC P1490		462	
Vacuum Cut Valve Bypass Valve (Circuit)			
TROUBLE DIAGNOSIS FOR DTC P1491 473 Vacuum Cut Valve Bypass Valve 473 TROUBLE DIAGNOSIS FOR DTC P1492 479 Evaporative Emission (EVAP) Canister Purge 479 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve 485 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1706 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 TROUBLE DIAGNOSIS FOR ABS/TCS C/U SIGNAL SIGNAL 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR NON-DETECTABLE 513 Injector 513 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors	Vacuum Cut Valve Bypass Valve (Circuit)	468	EV
TROUBLE DIAGNOSIS FOR DTC P1492 479 Evaporative Emission (EVAP) Canister Purge 479 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1493 485 TROUBLE DIAGNOSIS FOR DTC P1706 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 SIGNAL 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR OVERHEAT 501 Overheat 501 Overheat 501 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors 533 SERVICE DATA AND SPECIFICATIONS (SDS) 534			
TROUBLE DIAGNOSIS FOR DTC P1492 479 Evaporative Emission (EVAP) Canister Purge 479 Control Valve/Solenoid Valve (Circuit) 479 TROUBLE DIAGNOSIS FOR DTC P1493 485 Evaporative Emission (EVAP) Canister Purge 485 Control Valve/Solenoid Valve 485 TROUBLE DIAGNOSIS FOR DTC P1493 485 TROUBLE DIAGNOSIS FOR DTC P1706 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 SIGNAL 497 ABS/TCS Control Unit 497 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR OVERHEAT 501 Overheat 501 Overheat 501 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors 533 SERVICE DATA AND SPECIFICATIONS (SDS) 534	Vacuum Cut Valve Bypass Valve	473	FE
Control Valve/Solenoid Valve (Circuit)			
TROUBLE DIAGNOSIS FOR DTC P1493475 Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve Control Valve/Solenoid Valve ABS TROUBLE DIAGNOSIS FOR DTC P1706	Evaporative Emission (EVAP) Canister Purge		
Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve TROUBLE DIAGNOSIS FOR DTC P1706 492 Park/Neutral Position (PNP) Switch 492 Park/Neutral Position (PNP) Switch 492 TROUBLE DIAGNOSIS FOR ABS/TCS C/U SIGNAL 497 ABS/TCS Control Unit 497 ABS/TCS Control Unit 498 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR OVERHEAT 501 Overheat 501 STROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS 1njector 513 Injector 513 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors S33 SERVICE DATA AND SPECIFICATIONS (SDS)	Control Valve/Solenoid Valve (Circuit)	479	AT
Control Valve/Solenoid Valve	TROUBLE DIAGNOSIS FOR DTC P1493	485	
Control Valve/Solenoid Valve	Evaporative Emission (EVAP) Canister Purge		۵D
Park/Neutral Position (PNP) Switch	Control Valve/Solenoid Valve	485	ry
TROUBLE DIAGNOSIS FOR ABS/TCS C/U SIGNAL 497 ABS/TCS Control Unit 497 TROUBLE DIAGNOSIS FOR ECM - ABS/TCS COMM NG 498 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR OVERHEAT 501 Overheat 501 STROUBLE DIAGNOSIS FOR NON-DETECTABLE 513 Injector 513 Injector 513 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors 533 SERVICE DATA AND SPECIFICATIONS (SDS) 534	TROUBLE DIAGNOSIS FOR DTC P1706	492	
TROUBLE DIAGNOSIS FOR ABS/TCS C/U SIGNAL 497 ABS/TCS Control Unit 497 TROUBLE DIAGNOSIS FOR ECM - ABS/TCS COMM NG 498 ABS/TCS Communication Line 498 ABS/TCS Communication Line 498 TROUBLE DIAGNOSIS FOR OVERHEAT 501 Overheat 501 STROUBLE DIAGNOSIS FOR NON-DETECTABLE 513 Injector 513 Injector 513 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors 533 SERVICE DATA AND SPECIFICATIONS (SDS) 534	Park/Neutral Position (PNP) Switch	492	FA
ABS/TCS Control Unit			
TROUBLE DIAGNOSIS FOR ECM - ABS/TCS COMM NG	SIGNAL	497	
COMM NG	ABS/TCS Control Unit	497	RA
ABS/TCS Communication Line	TROUBLE DIAGNOSIS FOR ECM - ABS/TCS		
ABS/TCS Communication Line	COMM NG	498	തര
TROUBLE DIAGNOSIS FOR OVERHEAT 501 Overheat 501 TROUBLE DIAGNOSIS FOR NON-DETECTABLE 513 Injector 513 Start Signal 519 Fuel Pump Control 521 Power Steering Oil Pressure Switch 525 Electrical Load Signal 530 MIL & Data Link Connectors 533 SERVICE DATA AND SPECIFICATIONS (SDS) 534	ABS/TCS Communication Line	498	BR
TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS .513 Injector .513 Start Signal .519 Fuel Pump Control .521 Power Steering Oil Pressure Switch .525 Electrical Load Signal .530 MIL & Data Link Connectors .533 SERVICE DATA AND SPECIFICATIONS (SDS)	TROUBLE DIAGNOSIS FOR OVERHEAT	501	
TROUBLE DIAGNOSIS FOR NON-DETECTABLE ITEMS. .513 Injector .513 Start Signal .519 Fuel Pump Control. .521 Power Steering Oil Pressure Switch .525 Electrical Load Signal .530 MIL & Data Link Connectors .533 SERVICE DATA AND SPECIFICATIONS (SDS)	Overheat	501	ST
Injector	TROUBLE DIAGNOSIS FOR NON-DETECTABLE		0.0
Start Signal	ITEMS	513	
Fuel Pump Control. .521 Power Steering Oil Pressure Switch .525 Electrical Load Signal. .530 MIL & Data Link Connectors .533 SERVICE DATA AND SPECIFICATIONS (SDS) .534 General Specifications .534	Injector	513	RS
Power Steering Oil Pressure Switch	Start Signal	519	
Electrical Load Signal			65
Electrical Load Signal	Power Steering Oil Pressure Switch	525	BT
SERVICE DATA AND SPECIFICATIONS (SDS)534			
SERVICE DATA AND SPECIFICATIONS (SDS)534 General Specifications	MIL & Data Link Connectors	533	HA
	SERVICE DATA AND SPECIFICATIONS (SDS)	534	u u <i>u</i> U
Inspection and Adjustment534			
	Inspection and Adjustment	534	EL

When you read wiring diagrams:

Read GI section, "HOW TO READ WIRING DIAGRAMS".
See EL section, "POWER SUPPLY ROUTING" for power distribution circuit.

When you perform trouble diagnoses, read GI section, "HOW TO FOLLOW FLOW CHART IN TROUBLE DIAGNOSES" and "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".

IDX

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

Items	DT	C*6	Reference page		ltems		DTC*6	
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1			(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	Reference page
*COOLAN T SEN/CIRC	P0125	0908	EC-161	FPCM/CIRCUIT		P1220	1305	EC-391
A/T 1ST GR FNCTN	P0731	1103	AT-95		FR O2 SE HEATER-B1	P0135	0901	EC-202
A/T 2ND GR FNCTN	P0732	1104	AT-100		FR O2 SE HEATER-B2	P0155	1001	EC-202
A/T 3RD GR FNCTN	P0733	1105	AT-104		FRONT O2 SENSOR-B1	P0130	0303	EC-166
A/T 4TH GR FNCTN	P0734	1106	AT-108		FRONT O2 SENSOR-B1	P0133	0409	EC-186
A/T COMM LINE	P0600	0504	EC-350		FRONT O2 SENSOR-B1	P0132	0410	EC-180
A/T DIAG COMM LINE	P1605	0804	EC-350		FRONT O2 SENSOR-B1	P0131	0411	EC-174
A/T TCC S/V FNCTN	P0744	1107	AT-118		FRONT O2 SENSOR-B1	P0134	0412	EC-195
ABS-TCS C/U SIGNAL	_	0107	EC-498		FRONT O2 SENSOR-B2	P0153	0413	EC-186
ABSL PRES SEN/CIRC	P0105	0803	EC-132		FRONT O2 SENSOR-B2	P0152	0414	EC-180
AIR TEMP SEN/CIRC	P0110	0401	EC-140		FRONT O2 SENSOR-B2	P0151	0415	EC-174
ATF TEMP SEN/CIRC	P0710	1208	AT-85		FRONT O2 SENSOR-B2	P0150	0503	EC-166
CAM POS SEN/CIR	P0340	0101	EC-273		FRONT O2 SENSOR-B2	P0154	0509	EC-195
CLOSED LOOP-B1	P1148	0307	EC-386		FUEL SYS LEAN/BK1	P0171	0115	EC-243
CLOSED LOOP-B2	P1168	0308	EC-386		FUEL SYS LEAN/BK2	P0174	0210	EC-243
CLOSED TP SW/CIRC	P0510	0203	EC-344		FUEL SYS RICH/BK1	P0172	0114	EC-249
COOLANT T SEN/CIRC	P0115	0103	EC-145		FUEL SYS RICH/BK2	P0175	0209	EC-249
CPS/CIRC (OBD) COG	P1336	0905	EC-405		FUEL TEMP SEN/CIRC	P0180	0402	EC-255
CPS/CIRCUIT (OBD)	P0335	0802	EC-268		IACV/AAC VLV/CIRC	P0505	0205	EC-338
CYL 1 MISFIRE	P0301	0608	EC-260		IGN SIGNAL-PRIMARY	P1320	0201	EC-397
CYL 2 MISFIRE	P0302	0607	EC-260		INT/V TIM CONT-B1	P1110	0805	EC-365
CYL 3 MISFIRE	P0303	0606	EC-260		INT/V TIM CONT-B2	P1135	1301	EC-365
CYL 4 MISFIRE	P0304	0605	EC-260		INTK TIM S/CIRC-B1	P1140	1303	EC-380
CYL 5 MISFIRE	P0305	0604	EC-260		INTK TIM S/CIRC-B2	P1145	1304	EC-380
CYL 6 MISFIRE	P0306	0603	EC-260		KNOCK SEN/CIRC-B1	P0325	0304	EC-265
CYL 7 MISFIRE	P0307	0602	EC-260		KNOCK SEN/CIRC-B2	P0330	0212	EC-265
CYL 8 MISFIRE	P0308	0601	EC-260		L/PRESS SOL/CIRC	P0745	1205	AT-125
ECM	P0605	0301	EC-353		MAF SEN/CIRCUIT*3	P0100	0102	EC-124
ECM-ABSTCS COMM	_	0404	EC-498		MAP/BAR SW SOL/CIR	P1105	1302	EC-356
NG					MULTI CYL MISFIRE	P0300	0701	EC-260
EGR SYSTEM	P0400	0302	EC-279		NATS MALFUNCTION	—	—	EC-69
EGR SYSTEM	P1402	0514	EC-421		NO SELF DIAGNOSTIC	P0000	0505	_
EGR TEMP SEN/CIRC	P1401	0305	EC-415		FAILURE INDICATED			
EGRC SOLENOID/V	P1400	1005	EC-410		NO SELF DIAGNOSTIC FAILURE INDICATED	No DTC	Flashing*5	EC-65
EGRC-BPT VALVE	P0402	0306	EC-288		O/R CLTCH SOL/CIRC	P1760	1203	AT-143
ENGINE SPEED SIG	P0725	1207	AT-92		OVER HEAT	_	0208	EC-501
EVAP PURG FLOW/ MON	P1447	0111	EC-455		P-N POS SW/CIRCUIT	P1706	1003	EC-492
EVAP SMALL LEAK	P1440	0213	EC-430		PNP SW/CIRC	P0705	1101	AT-81
EVAP SMALL LEAK	P0440	0705	EC-296		PURG CONT/V & S/V	P1493	0312	EC-485
EVAPO SYS PRES SEN	P0450	0704	EC-318		PURG CONT/V S/V	P1492	0807	EC-479
EVAP GROSS LEAK	P0455	0715	EC-324					<u> </u>

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

IDX

DIAGNOSTIC TROUBLE CODE INDEX

Alphabetical & P No. Index for DTC (Cont'd)

Items	DT	Reference	
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	page
PURG VOLUME CONT/V	P1444	0214	EC-442
PURG VOLUME CONT/V	P0443	1008	EC-307
REAR O2 SENSOR-B1	P0137	0511	EC-208
REAR O2 SENSOR-B1	P0140	0512	EC-231
REAR O2 SENSOR-B1	P0139	0707	EC-224
REAR O2 SENSOR-B1	P0138	0510	EC-216
REAR O2 SENSOR-B2	P0158	0313	EC-216
REAR O2 SENSOR-B2	P0157	0314	EC-208
REAR O2 SENSOR-B2	P0160	0315	EC-231
REAR O2 SENSOR-B2	P0159	0708	EC-224
RR O2 SE HEATER-B1	P0141	0902	EC-237
RR O2 SE HEATER-B2	P0161	1002	EC-237
SFT SOL A/CIRC*3	P0750	1108	AT-129
SFT SOL B/CIRC*3	P0755	1201	AT-133
TACM SW SIGNALS	P1210	0106	EC-388
TANDEM TP SEN/CIRC	P1125	0110	EC-379
TCC SOLENOID/CIRC	P0740	1204	AT-114
THRTL POS SEN/ CIRC*3	P0120	0403	EC-150
TP SEN/CIRC A/T*3	P1705	1206	AT-137
TP SEN2/CIRCUIT	P1120	0406	EC-373
TW CATALYST SYS-B1	P0420	0702	EC-293
TW CATALYST SYS-B2	P0430	0703	EC-293
Unable to access ECM	—	—	EC-98
VC CUT/V BYPASS/V	P1491	0311	EC-473
VC/V BYPASS/V	P1490	0801	EC-468
VEH SPD SEN/CIR AT*4	P0720	1102	AT-89
VEH SPEED SEN/ CIRC*4	P0500	0104	EC-333
VENT CONTROL VALVE	P1446	0215	EC-450
VENT CONTROL VALVE	P1448	0309	EC-462
VENT CONTROL VALVE	P0446	0903	EC-313

*1: In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

*2: These numbers are prescribed by SAE J2012.

*3: When the fail-safe operation occurs, the MIL illuminates.

*4: The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the failsafe condition at the same time.

*5: While engine is running.

*6: 1st trip DTC No. is the same as DTC No.

NOTE: Regarding Y33 models, "-B1" indicates left bank and "-B2" indicates right bank.

Alphabetical & P No. Index for DTC (Cont'd)

P NO. INDEX FOR DTC

DTC*6		Items		DTC	C*6	Items	
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page	CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page
_	_	Unable to access ECM	EC-98	P0180	0402	FUEL TEMP SEN/CIRC	EC-255
_	0107	ABS-TCS C/U SIGNAL	EC-498	P0300	0701	MULTI CYL MISFIRE	EC-260
—	0208	OVER HEAT	EC-501	P0301	0608	CYL 1 MISFIRE	EC-260
_	0404	ECM-ABSTCS COMM	EC-498	P0302	0607	CYL 2 MISFIRE	EC-260
		NG		P0303	0606	CYL 3 MISFIRE	EC-260
—	_	NATS MALFUNC	EC-69	P0304	0605	CYL 4 MISFIRE	EC-260
No DTC	Flashing*5	NO SELF DIAGNOSTIC FAILURE INDICATED	EC-65	P0305	0604	CYL 5 MISFIRE	EC-260
BOOOD	0505	NO SELF DIAGNOSTIC		P0306	0603	CYL 6 MISFIRE	EC-260
P0000	0505	FAILURE INDICATED		P0307	0602	CYL 7 MISFIRE	EC-260
P0100	0102	MAF SEN/CIRCUIT*3	EC-124	P0308	0601	CYL 8 MISFIRE	EC-260
P0105	0803	ABSL PRES SEN/CIRC	EC-132	P0325	0304	KNOCK SEN/CIRC-B1	EC-265
P0110	0401	AIR TEMP SEN/CIRC	EC-140	P0330	0212	KNOCK SEN/CIRC-B2	EC-265
P0115	0103	COOLANT T SEN/CIRC	EC-145	P0335	0802	CPS/CIRCUIT (OBD)	EC-268
P0120	0403	THRTL POS SEN/ CIRC*3	EC-150	P0340	0101	CAM POS SEN/CIR	EC-273
P0125	0908	*COOLAN T SEN/CIRC	EC-161	P0400	0302	EGR SYSTEM	EC-279
P0125	0303	FRONT O2 SENSOR-B1	EC-166	P0402	0306	EGRC-BPT VALVE	EC-288
P0130	0303	FRONT O2 SENSOR-B1	EC-174	P0420	0702	TW CATALYST SYS-B1	EC-293
P0131	0411	FRONT O2 SENSOR-B1	EC-174 EC-180	P0430	0703	TW CATALYST SYS-B2	EC-293
P0132	0410	FRONT O2 SENSOR-B1	EC-180 EC-186	P0440	0705	EVAP SMALL LEAK	EC-296
P0133	0409	FRONT O2 SENSOR-B1	EC-180 EC-195	P0443	1008	PURG VOLUME	EC-307
P0135	0901	FR O2 SE HEATER-B1	EC-202	DOMAG	0903		FC 242
P0137	0511	REAR O2 SENSOR-B1	EC-202	P0446 P0450	0903	VENT CONTROL VALVE	EC-313 EC-318
P0138	0510	REAR O2 SENSOR-B1	EC-216			EVAPO STS PRES SEN	
P0139	0707	REAR O2 SENSOR-B1	EC-224	P0455	0715	VEH SPEED SEN/	EC-324
P0140	0512	REAR O2 SENSOR-B1	EC-231	P0500	0104	CIRC*4	EC-333
P0141	0902	RR 02 SE HEATER-B1	EC-237	P0505	0205	IACV/AAC VLV/CIRC	EC-338
P0150	0503	FRONT O2 SENSOR-B2	EC-166	P0510	0203	CLOSED TP SW/CIRC	EC-344
P0151	0415	FRONT O2 SENSOR-B2	EC-174	P0600	0504	A/T COMM LINE	EC-350
P0152	0414	FRONT O2 SENSOR-B2	EC-180	P0605	0301	ECM	EC-353
P0153	0413	FRONT O2 SENSOR-B2	EC-186	P0705	1101	PNP SW/CIRC	AT-81
P0154	0509	FRONT O2 SENSOR-B2	EC-195	P0710	1208	ATF TEMP SEN/CIRC	AT-85
P0155	1001	FR O2 SE HEATER-B2	EC-202	P0720	1102	VEH SPD SEN/CIR AT*4	AT-89
P0157	0314	REAR O2 SENSOR-B2	EC-208	P0725	1207	ENGINE SPEED SIG	AT-92
P0158	0313	REAR O2 SENSOR-B2	EC-216	P0731	1103	A/T 1ST GR FNCTN	AT-95
P0159	0708	REAR O2 SENSOR-B2	EC-224	P0732	1104	A/T 2ND GR FNCTN	AT-100
P0160	0315	REAR O2 SENSOR-B2	EC-231	P0733	1105	A/T 3RD GR FNCTN	AT-104
P0161	1002	RR O2 SE HEATER-B2	EC-237	P0734	1106	A/T 4TH GR FNCTN	AT-108
P0171	0115	FUEL SYS LEAN/BK1	EC-243	P0740	1204	TCC SOLENOID/CIRC	AT-114
P0172	0114	FUEL SYS RICH/BK1	EC-249	P0744	1107	A/T TCC S/V FNCTN	AT-118
P0174	0210	FUEL SYS LEAN/BK2	EC-243	P0745	1205	L/PRESS SOL/CIRC	AT-125
P0175	0209	FUEL SYS RICH/BK2	EC-249	P0750	1108	SFT SOL A/CIRC*3	AT-129
			<u> </u>	P0755	1201	SFT SOL B/CIRC*3	AT-133

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

IDX

DIAGNOSTIC TROUBLE CODE INDEX

Alphabetical & P No. Index for DTC (Cont'd)

DTO	C*6	Items	Reference
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	page
P1105	1302	MAP/BAR SW SOL/CIR	EC-356
P1110	0805	INT/V TIM CONT-B1	EC-365
P1120	0406	TP SEN2/CIRCUIT	EC-373
P1125	0110	TANDEM TP SEN/CIRC	EC-379
P1135	1301	INT/V TIM CONT-B2	EC-365
P1140	1303	INTK TIM S/CIRC-B1	EC-380
P1145	1304	INTK TIM S/CIRC-B2	EC-380
P1148	0307	CLOSED LOOP-B1	EC-386
P1168	0308	CLOSED LOOP-B2	EC-386
P1210	0106	TACM SW SIGNALS	EC-388
P1220	1305	FPCM/CIRCUIT	EC-391
P1320	0201	IGN SIGNAL-PRIMARY	EC-397
P1336	0905	CPS/CIRC (OBD) COG	EC-405
P1400	1005	EGRC SOLENOID/V	EC-410
P1401	0305	EGR TEMP SEN/CIRC	EC-415
P1402	0514	EGR SYSTEM	EC-421
P1440	0213	EVAP SMALL LEAK	EC-430
P1444	0214	PURG VOLUME CONT/V	EC-442
P1446	0215	VENT CONTROL VALVE	EC-450
P1447	0111	EVAP PURG FLOW/ MON	EC-455
P1448	0309	VENT CONTROL VALVE	EC-462
P1490	0801	VC/V BYPASS/V	EC-468
P1491	0311	VC CUT/V BYPASS/V	EC-473
P1492	0807	PURG CONT/V S/V	EC-479
P1493	0312	PURG CONT/V & S/V	EC-485
P1605	0804	A/T DIAG COMM LINE	EC-350
P1705	1206	TP SEN/CIRC A/T*3	AT-137
P1706	1003	P-N POS SW/CIRCUIT	EC-492
P1760	1203	O/R CLTCH SOL/CIRC	AT-143
numbers a *2: These num *3: When the *4: The MIL in nal" and t	are controlle mbers are pr fail-safe ope lluminates w	de II (Self-diagnostic rest d by NISSAN. rescribed by SAE J2012. eration occurs, the MIL ill hen both the "Revolution speed sensor signal" mee ame time.	uminates. sensor sig-

*5: While engine is running.

*6: 1st trip DTC No. is the same as DTC No.

NOTE: Regarding Y33 models, "-B1" indicates left bank and "-B2" indicates right bank.

Special Service Tool

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number (Kent-Moore No.) Tool name	Description	
(J38365-A) Heated oxygen sensor wrench		Loosening or tightening heated oxygen sen- sor
	NT636	3/8 drive a: 22 mm (0.87 in)

Commercial Service Tools

Tool name (Kent-Moore No.)	Description	
Leak detector (J41416)	NT703	Locating the EVAP leak
EVAP service port adapter (J41413-OBD)	NT704	Applying positive pressure through EVAP ser- vice port
Hose clipper		Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [(EVAP small leak positive pressure)].
Fuel filler cap adapter	NT720 Approx. 20 mm (0.79 in)	Checking fuel tank vacuum relief valve open- ing pressure
Socket wrench	19 mm (0.75 in) More than NT705 (1.26 in)	Removing and installing engine coolant tem- perature sensor

PRECAUTIONS AND PREPARATION

Commercial Service Tools (Cont'd)

Tool name (Kent-Moore No.)	Description			_
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)		a Mating b surface shave	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown below.	GI
(3-45037-12)	NT778	cylinder	a: J-43897-18 18 mm diameter, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter, for Titania Oxygen Sensor	MA - EM
Anti-seize lubricant (Permatex [™] 133AR or equivalent meeting MIL specification MIL-A-907)			Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.	LC
				EC
	NT779	- v		FE

PD

AT

RA

FA

BR

ST

RS

BT

HA

EL

IDX

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

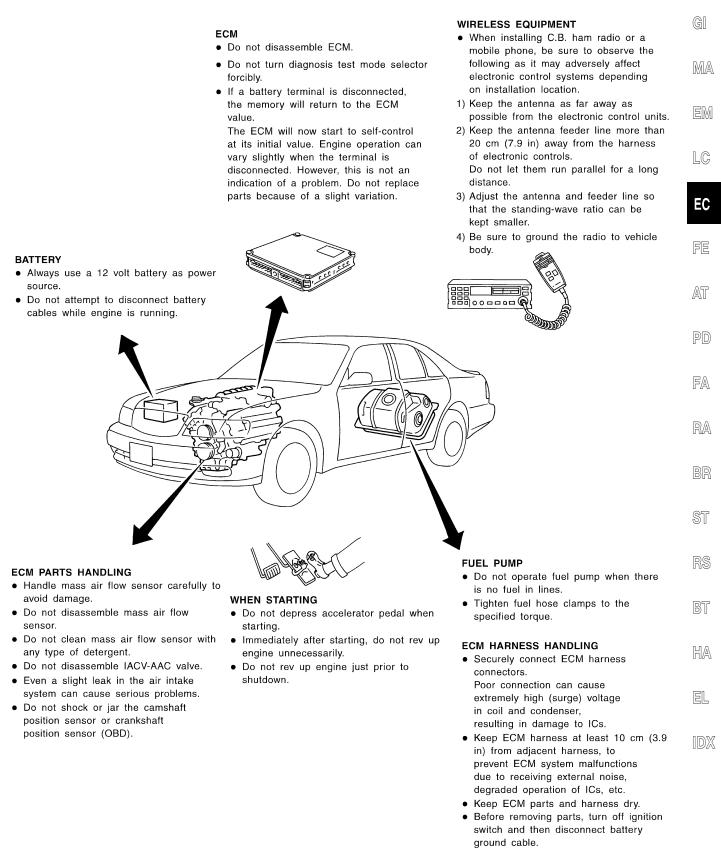
The Supplemental Restraint System "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a seat belt, help to reduce the risk or severity of injury to the driver and front passenger in a frontal collision. The Supplemental Restraint System consists of air bag modules (located in the center of the steering wheel and on the instrument panel on the passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.

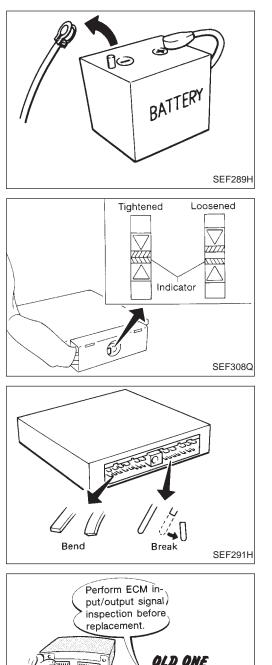
In addition to the supplemental air bag modules for a frontal collision, the supplemental side air bag used along with the seat belt helps to reduce the risk or severity of injury to the driver and front passenger in a side collision. The supplemental side air bag consists of air bag modules (located in the outer side of front seats), satellite sensor, diagnosis sensor unit (one of components of supplemental air bags for a frontal collision), wiring harness, warning lamp (one of components of supplemental air bags for a frontal collision). Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses (except "SEAT BELT PRE-TENSIONER" connector) can be identified with yellow harness connector (and with yellow harness protector or yellow insulation tape before the harness connectors).

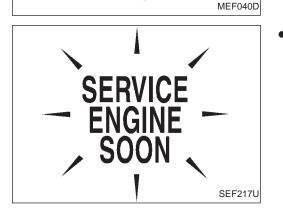
Precautions for On Board Diagnostic (OBD) System of Engine and A/T


The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.


CAUTION:

- Be sure to turn the ignition switch "OFF" and disconnect the negative battery terminal before the repair or inspection work. The open/short circuit of the related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after the work. The loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure to connect the connector without water, grease, dirt, bent terminals, etc. in it.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL section, "Description", "HARNESS CONNECTOR".
- Be sure to route and clamp the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after the work. The misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EGR system or the fuel injection system, etc.
- Be sure to erase the unnecessary (already fixed) malfunction information in the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

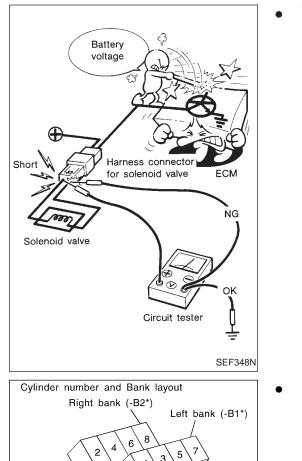

Precautions

- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM. Because battery voltage is applied to ECM even if ignition switch is turned off.
- When connecting ECM harness connector, tighten securing bolt until the gap between the orange indicators disappears.

• When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.

 Before replacing ECM, perform ECM input/output signal inspection and make sure whether ECM functions properly or not. (See page EC-107.)

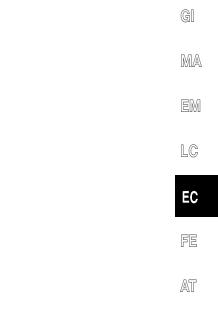


LIDU DIDATIO

After performing each TROUBLE DIAGNOSIS, perform "OVERALL FUNCTION CHECK" or "DTC (Diagnostic Trouble Code) CONFIRMATION PROCEDURE". The DTC should not be displayed in the "DTC CONFIRMA-TION PROCEDURE" if the repair is completed. The "OVERALL FUNCTION CHECK" should be a good result if the repair is completed.

PRECAUTIONS AND PREPARATION

Crankshaft pulley


SEF202UA

Front

*: CONSULT-II indication

Precautions (Cont'd)

When measuring ECM signals with a circuit tester, never bring the two tester probes into contact. Accidental contact of probes will cause a short circuit and damage the ECM power transistor.

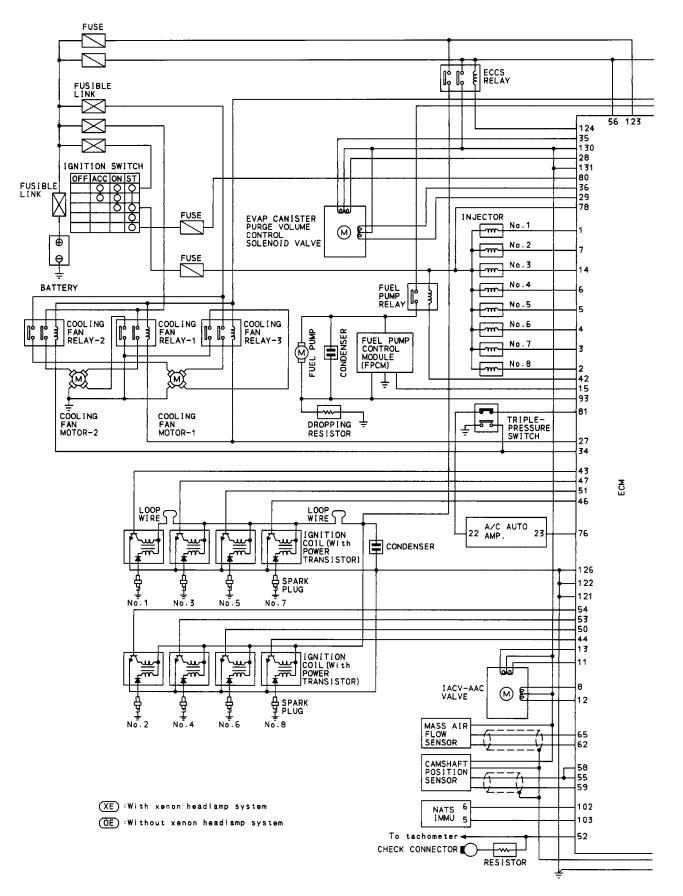
- Regarding model Y33, "-B1" indicates the left bank and "-B2" indicates the right bank as shown in the figure. PD
 - FA

RA

- BR
- ST

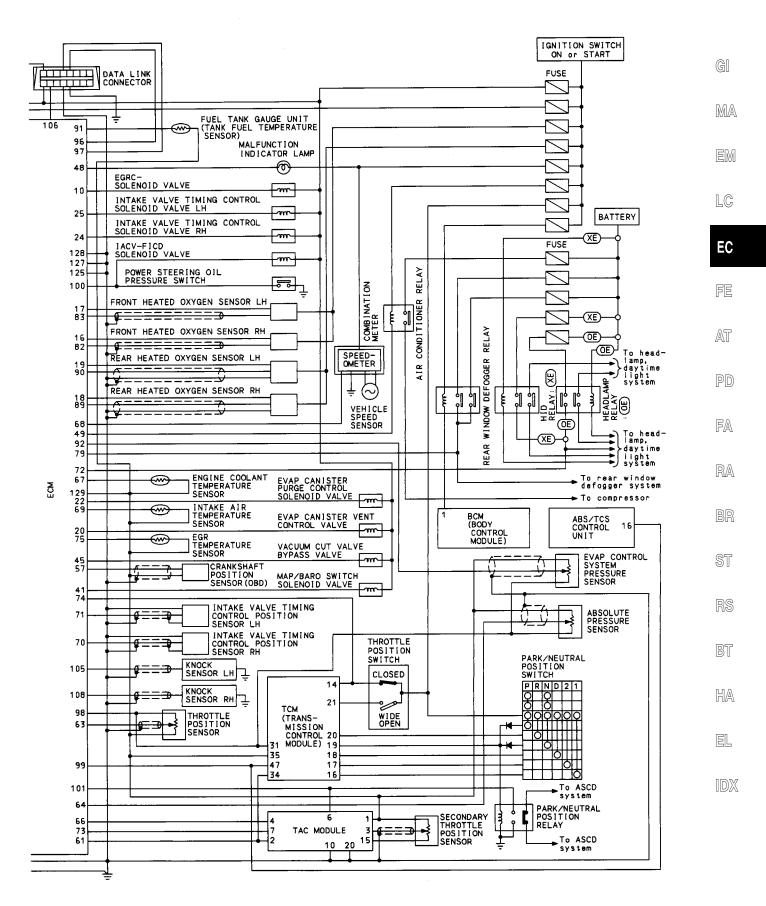
RS

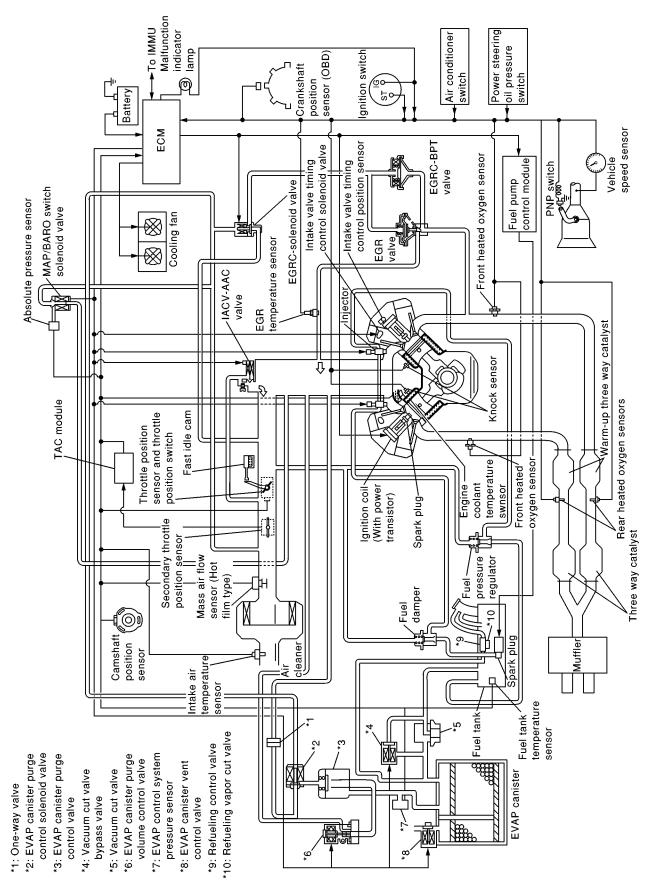
BT


HA

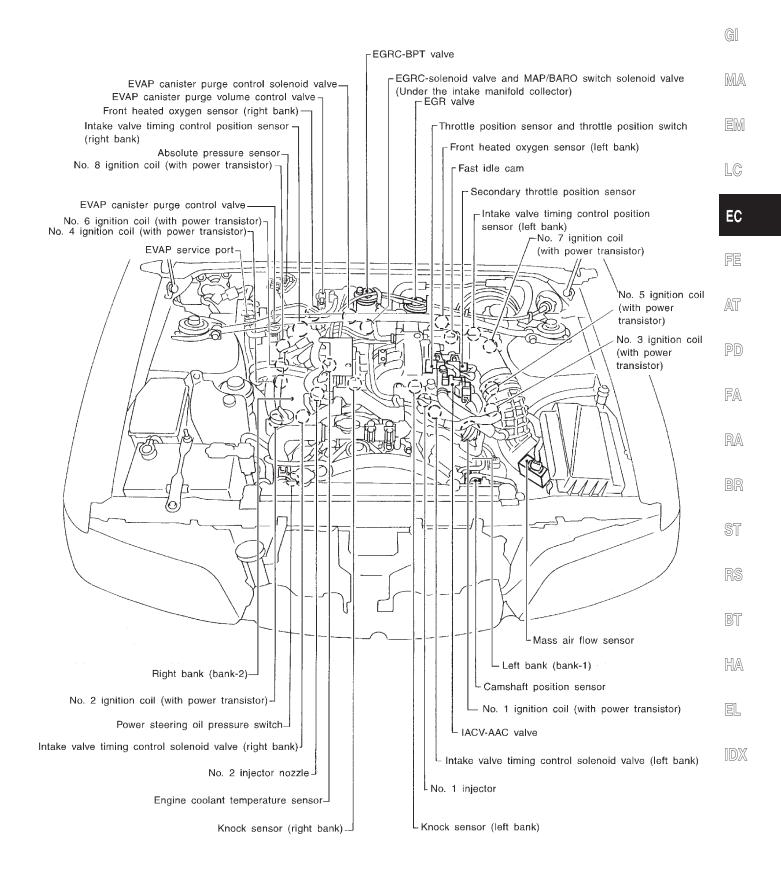
EL

IDX

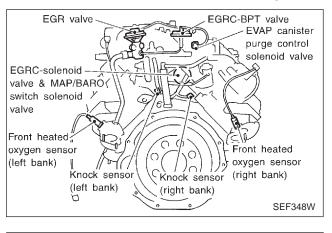

Circuit Diagram

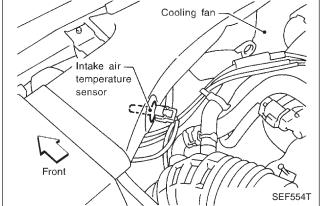

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

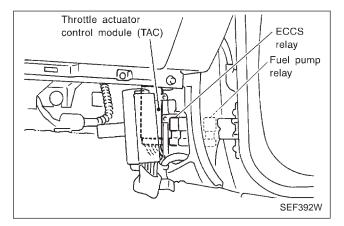
Circuit Diagram (Cont'd)

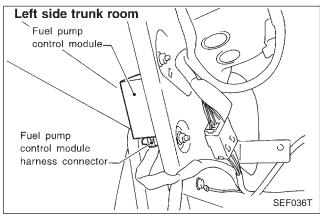


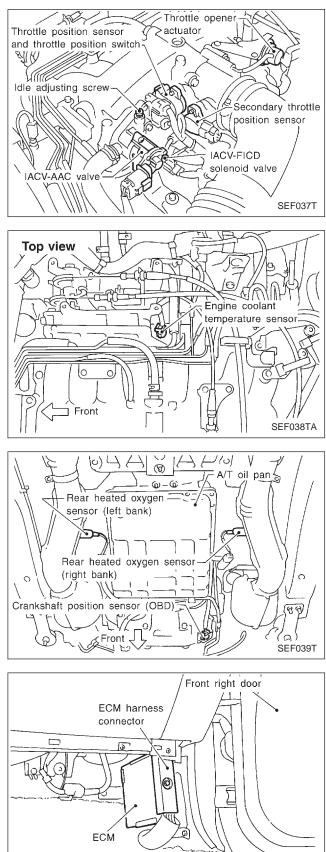
System Diagram

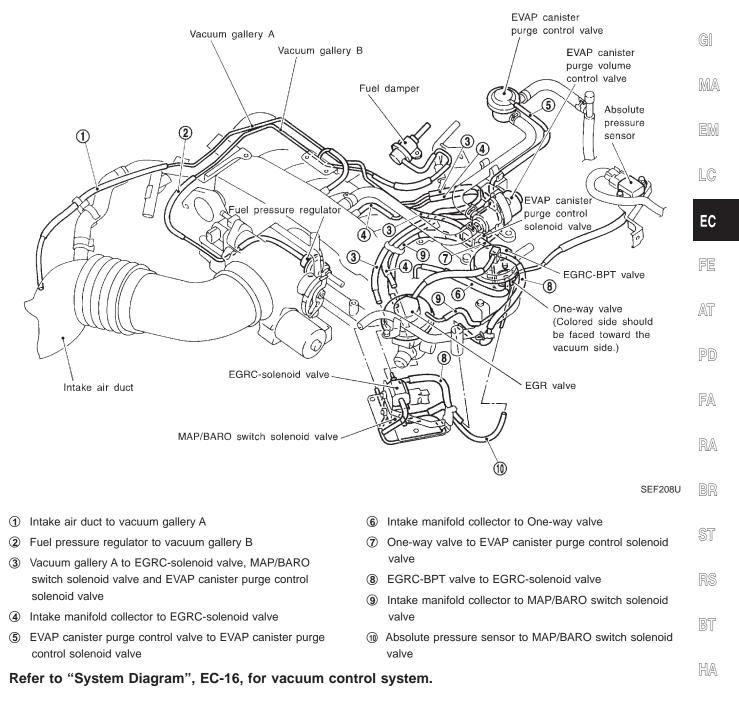

Engine Control Component Parts Location



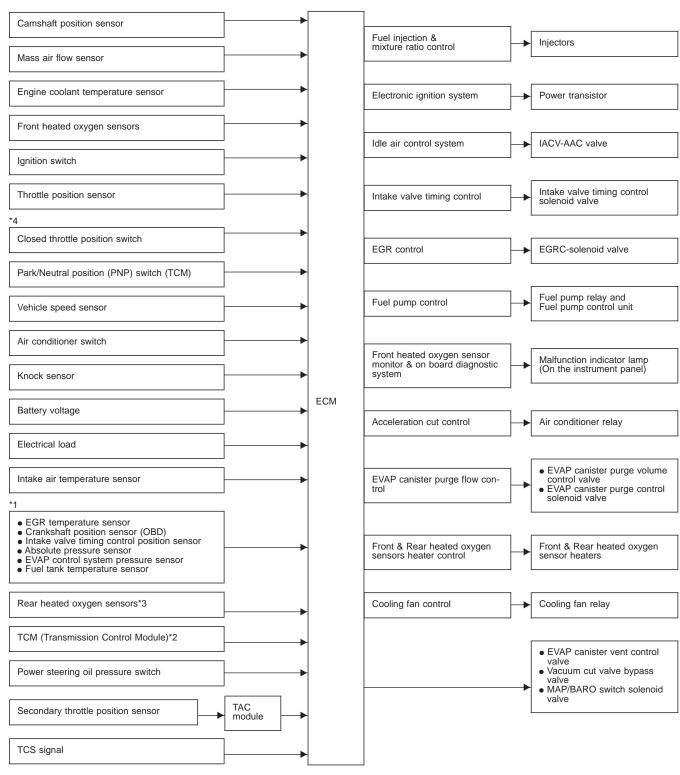



ENGINE AND EMISSION CONTROL OVERALL SYSTEM





SEF349W


Vacuum Hose Drawing

Note: Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

IDX

System Chart

*1: These sensors are not used to control the engine system. They are used only for the on board diagnosis.

*2: The DTC related to A/T and gear position will be sent to ECM.

*3: This sensor is not used to control the engine system under normal conditions.

*4: This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

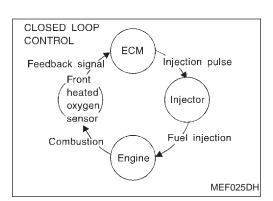
BR

Multiport Fuel Injection (MFI) System

INPUT/OUTPUT SIGNAL LINE

Camshaft position sensor	Engine speed and piston position			0.5
Mass air flow sensor	Amount of intake air			GI
Engine coolant temperature sensor	Engine coolant temperature			MA
Front heated oxygen sensor	Density of oxygen in exhaust gas			EM
Throttle position sensor	Throttle position			LC
	Throttle valve idle position			EC
PNP switch (TCM)	Park/Neutral position	ECM	► Injector	EV
Vehicle speed sensor	Vehicle speed			FE
Ignition switch	Start signal			AT
Battery	Battery voltage			PD
Rear heated oxygen sensor*	Density of oxygen in exhaust gas			FA
Secondary throttle position sensor TAC module	Secondary throttle valve opening angle			RA

*: Under normal conditions, this sensor is not used to control the engine system.


BASIC MULTIPORT FUEL INJECTION SYSTEM

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

The amount of fuel injected is compensated for to improve engine performance. This will be made under various operating conditions as listed below. <Fuel increase>

- During warm-up • When starting the engine • During acceleration • HA Hot-engine operation • When selector lever is changed from "N" to "D" • High-load, high-speed operation • EL <Fuel decrease> During deceleration • During high speed operation • IDX • Extremely high engine coolant temperature
- During TCS operation
- During high engine speed operation

Multiport Fuel Injection (MFI) System (Cont'd) MIXTURE RATIO FEEDBACK CONTROL

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a front heated oxygen sensor in the exhaust manifold to monitor if the engine is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about front heated oxygen sensor, refer to pages EC-166. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Rear heated oxygen sensor is located downstream of the three way catalyst. Even if the switching characteristics of the front heated oxygen sensor shift, the air-fuel ratio is controlled to stoichiometric by the signal from the rear heated oxygen sensor.

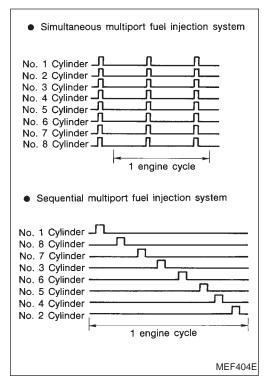
OPEN LOOP CONTROL

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of front heated oxygen sensor or its circuit
- Insufficient activation of front heated oxygen sensor at low engine coolant temperature
- High-engine coolant temperature
- During warm-up
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the front heated oxygen sensor. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both Manufacturing differences (i.e. mass air flow sensor hot film) and characteristic changes during operation (i.e. injector clogging) directly affect mixture ratio.


Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short-term fuel trim and long-term fuel trim.

"Short-term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the front heated oxygen sensor indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long-term fuel trim" is overall fuel compensation carried out longterm to compensate for continual deviation of the short-term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd) **FUEL INJECTION SYSTEM**

Two types of systems are used.

Sequential multiport fuel injection system

Fuel is injected into each cylinder during each engine cycle accord-GI ing to the firing order. This system is used when the engine is running.

Simultaneous multiport fuel injection system

MA Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM. EM

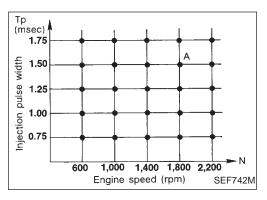
The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the LC fail-safe mode (CPU) or crankshaft position sensor (REF) is operating. EC

FUEL SHUT-OFF

FE Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

AT


PD

Electronic Ignition (EI) System

INPUT/OUTPUT SIGNAL LINE

Camshaft position sensor	Engine speed and piston position			FA
Mass air flow sensor	Amount of intake air			RA
Engine coolant temperature sensor	Engine coolant temperature	>		BR
Throttle position sensor	Throttle position Throttle valve idle position			ST
Vehicle speed sensor	Vehicle speed			-
Ignition switch	Start signal	ECM -	Power transistor	RS
Knock sensor	Engine knocking			BT
PNP switch (TCM)	Park/Neutral position			HA
Battery	Battery voltage			EL
	C Throttle position odule (Secondary throttle position sensor)	→		
				IDX

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Electronic Ignition (EI) System (Cont'd) SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine.

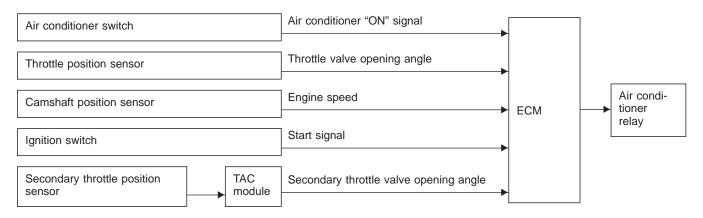
The ignition timing data is stored in the ECM. This data forms the map shown below.

The ECM detects information such as the injection pulse width and camshaft position sensor signal. Responding to this information, ignition signals are transmitted to the power transistor.

e.g. N: 1,800 rpm, Tp: 1.50 msec

A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.


- 1 At starting
- 2 During warm-up
- 3 At idle
- 4 Hot engine operation
- 5 At acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- After a few seconds when the TCS has started operating.

Fuel Cut Control (at no load & high engine speed)

INPUT/OUTPUT SIGNAL LINE

Vehicle speed sensor	Vehicle speed	GI
PNP switch (TCM)	Park/Neutral position	MA
Throttle position sensor	Throttle position	EM
Engine coolant temperature sensor	Engine coolant temperature	LC
Camshaft position sensor	Engine speed and piston position	EC
	If the engine speed is above 1,400 rpm with no load (for example, in neutral and engine speed over 1,400 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.	FE
	Fuel cut will operate until the engine speed reaches 1,000 rpm, then fuel cut is cancelled.	AT
	NOTE: This function is different than deceleration control listed under multiport fuel injection on EC-21.	PD

FA

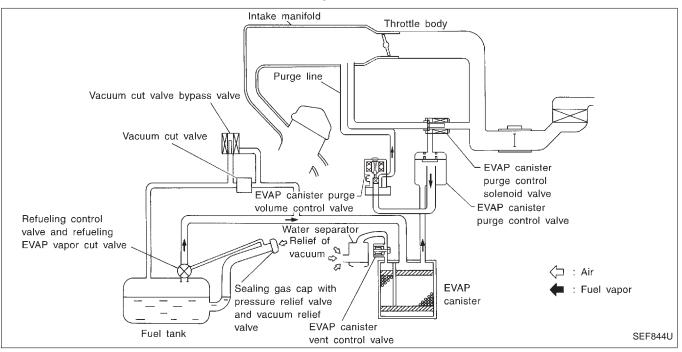
RA

BR

ST

RS

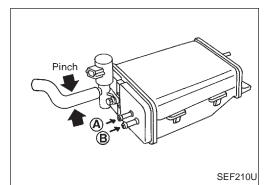
BT


HA

EL

IDX

Description



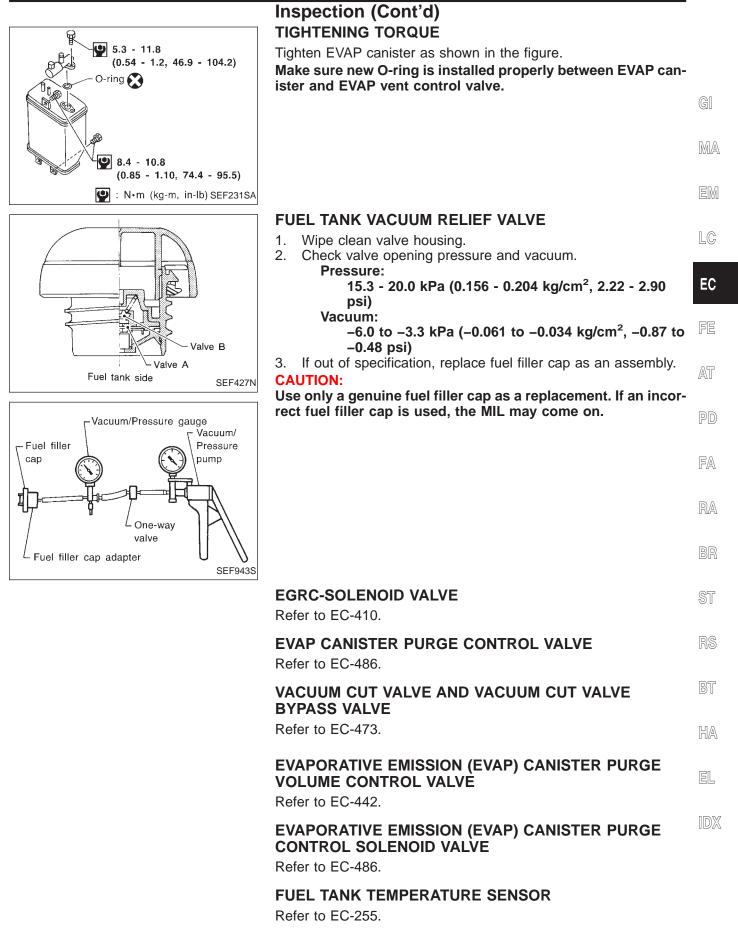
The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon. This is where the vapor is stored when the engine is not operating.

The vapor in the EVAP canister is purged by the air flowing through the EVAP canister purge volume control valve which is controlled by engine control module. When the engine operates, the flow rate of vapor controlled by the EVAP canister purge volume control valve is proportionally regulated as the air flow increases.

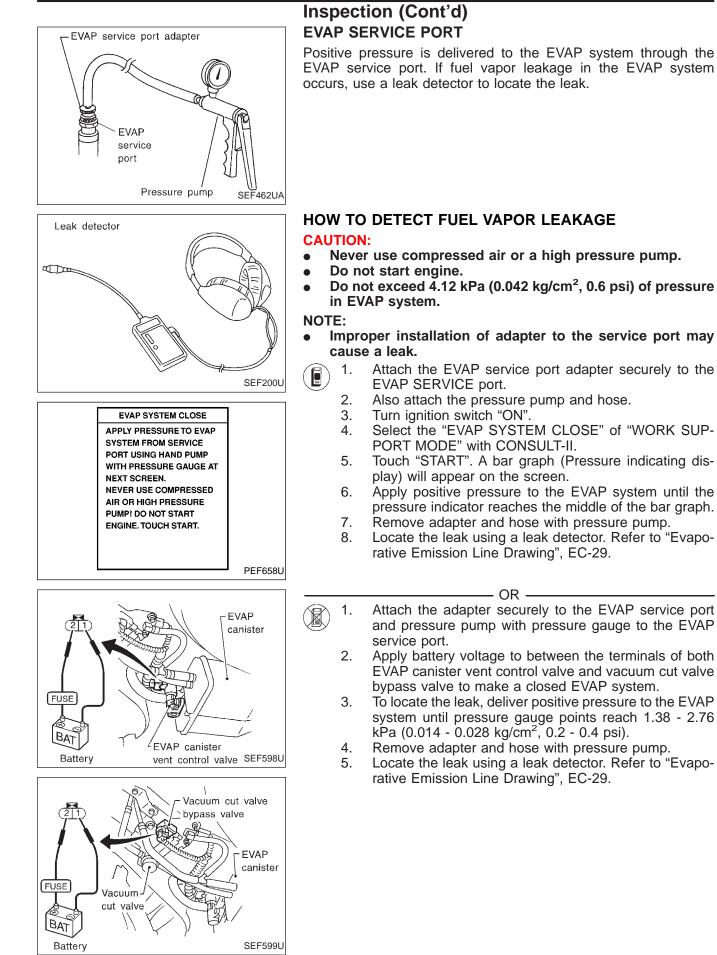
The EVAP canister purge control valve shuts off the vapor purge line during decelerating and idling; under normal operating conditions the valve is usually open.

Inspection


EVAP CANISTER

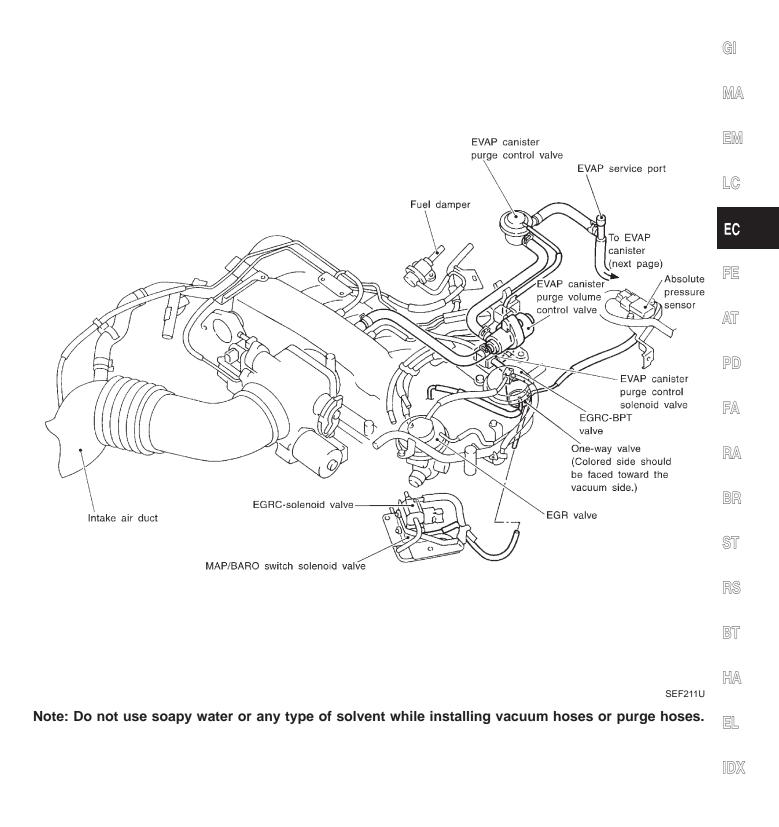
Check EVAP canister as follows:

- 1. Pinch the fresh air hose.
- Blow air into port (A) and check that it flows freely out of port (B).


EVAPORATIVE EMISSION SYSTEM

EC-27

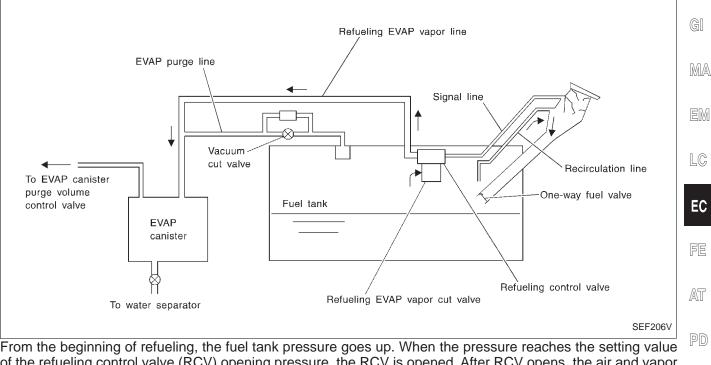
EVAPORATIVE EMISSION SYSTEM



EC-28

Evaporative Emission Line Drawing

EVAPORATIVE EMISSION SYSTEM


Evaporative Emission Line Drawing (Cont'd)

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere. When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

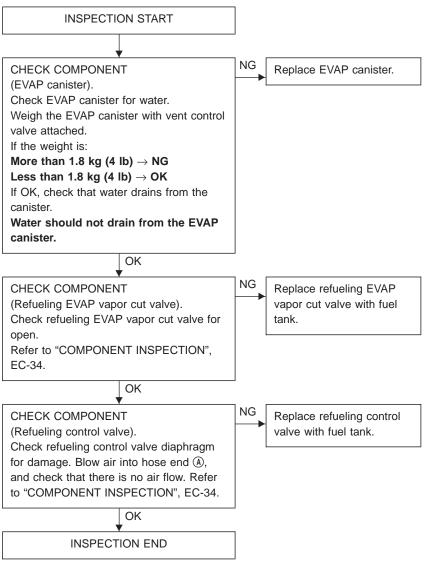
When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

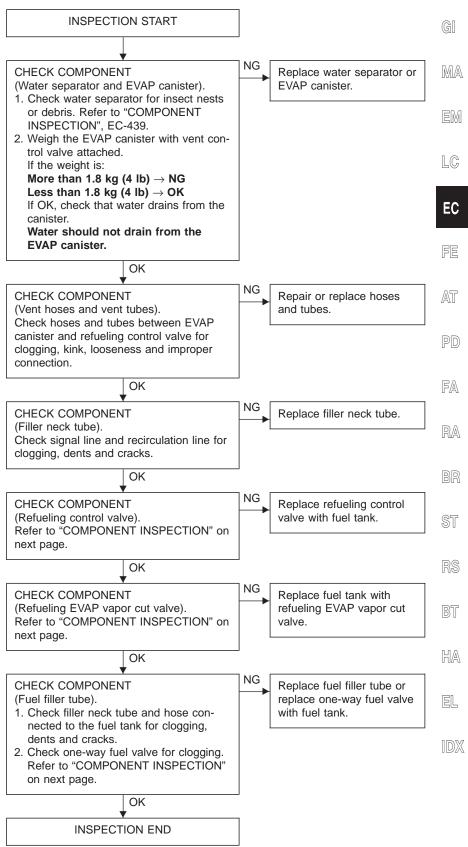
- Before removing fuel line parts, carry out the following procedures:
- a. Put drained fuel in an explosion-proof container and put lid on securely.
- b. Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-37.
 c. Disconnect battery ground cable.
 Always replace O-ring when the fuel gauge retainer is removed.
 Do not kink or twist hose and tube when they are installed.
 Do not tighten hose and clamps excessively to avoid damaging hoses.
 After installation, run engine and check for fuel leaks at connection.
 Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
- Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

[D]X


EVAPORATIVE EMISSION SYSTEM

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

DIAGNOSTIC PROCEDURE


SYMPTOM: Fuel odor from EVAP canister is strong.

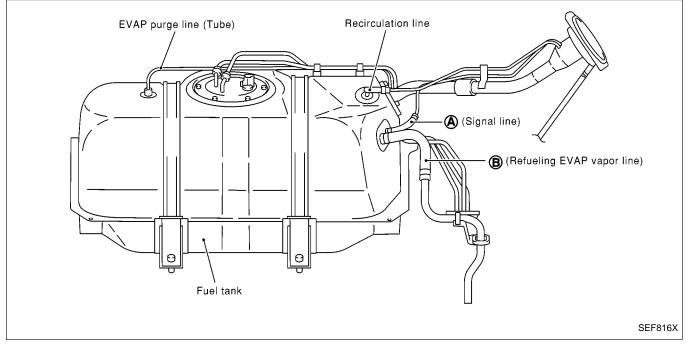
\$\$

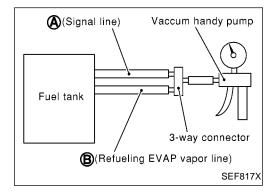
On Board Refueling Vapor Recovery (ORVR) (Cont'd)

SYMPTOM: Cannot refuel/Fuel odor from the fuel filler opening is strong while refueling.

EVAPORATIVE EMISSION SYSTEM

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


COMPONENT INSPECTION


Refueling control valve

Check refueling control valve as follows:

- 1. Remove fuel filler cap.
- Check air continuity between hose ends (A) and (B).
 Blow air into the hose end (B). Air should flow freely into the fuel tank.
- 3. Blow air into hose end (A) and check there is no leakage.
- 4. Apply pressure to both hose ends (A) and (B) [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. And check there is no leakage.

If NG, replace refueling control valve with fuel tank.

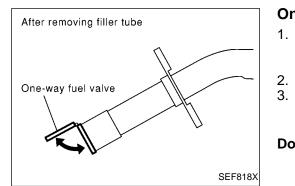
Refueling EVAP vapor cut valve

- 1. Remove fuel tank. Refer to "FUEL SYSTEM" in FE section. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
 - b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
 - c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
 - a. Remove fuel gauge retainer.
 - b. Drain fuel from the tank using a hand pump into a fuel container.
- 2. Check refueling EVAP vapor cut valve for being stuck to close as follows.

Blow air into the refueling EVAP vapor cut valve (from hose end (B)), and check that the air flows freely into the tank.

- 3. Check EVAP vapor cut valve for being stuck to open as following.
- a. Connect vacuum pump to hose ends (A) and (B) using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.


EVAPORATIVE EMISSION SYSTEM

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

- c. Put fuel tank upside down.
- Apply vacuum pressure to both hose ends (A) and (B) [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.
 If NG, replace refueling EVAP vapor cut valve with fuel tank.

EM

One-way fuel valve

- Drain fuel from the tank. Refer to "COMPONENT INSPECTION" of refueling EVAP vapor cut valve on previous page.
 Remove fuel filler tube and hose.
- Remove fuel filler tube and hose.
 Check one-way fuel valve for operation as follows.
 - When pushing with finger, the valve should open; when finger is released, the valve should shut.

Do not drop any material into the tank.

If NG, replace one-way fuel valve with fuel tank.

PD

FA

RA

BR

ST

RS

BT

HA

EL

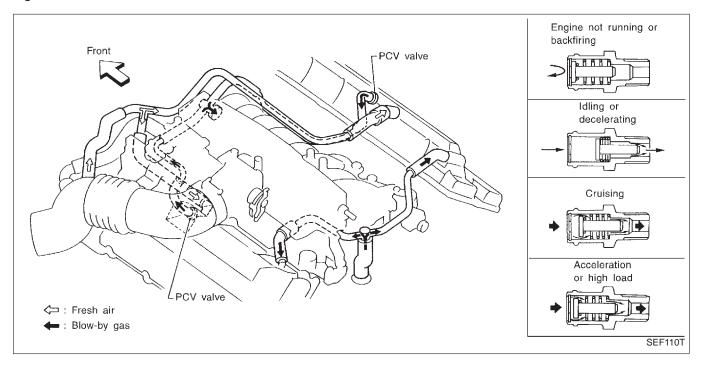
IDX

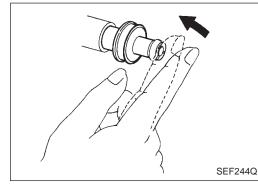
AT

Description

This system returns blow-by gas to both the intake manifold and air cleaner.

The positive crankcase ventilation (PCV) value is provided to conduct crankcase blow-by gas to the intake manifold.

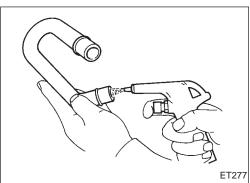

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.


Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air cleaner, through the hose connecting air cleaner to rocker cover, into the crankcase.

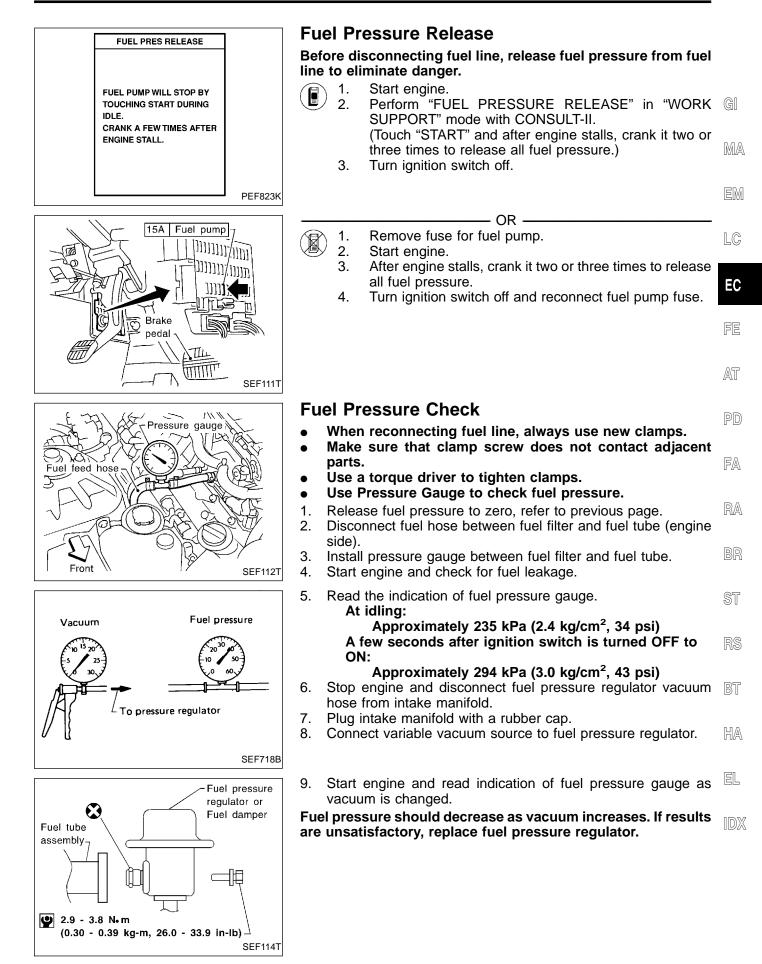
Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve, and its flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by some of the flow will go through the hose connection to the air cleaner under all conditions.

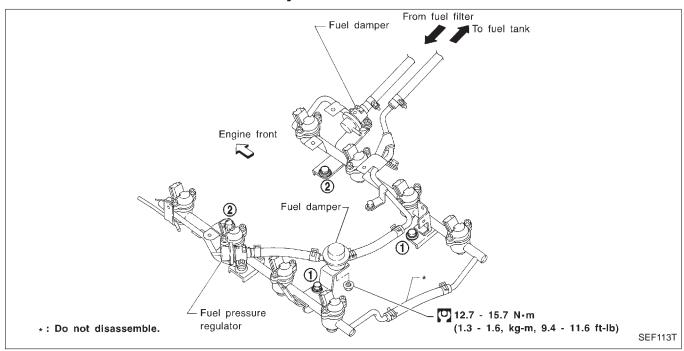


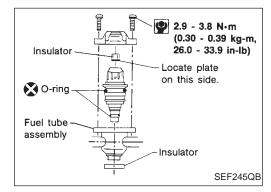
Inspection

PCV (Positive Crankcase Ventilation) VALVE


With engine running at idle, remove ventilation hose from PCV valve; if valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.

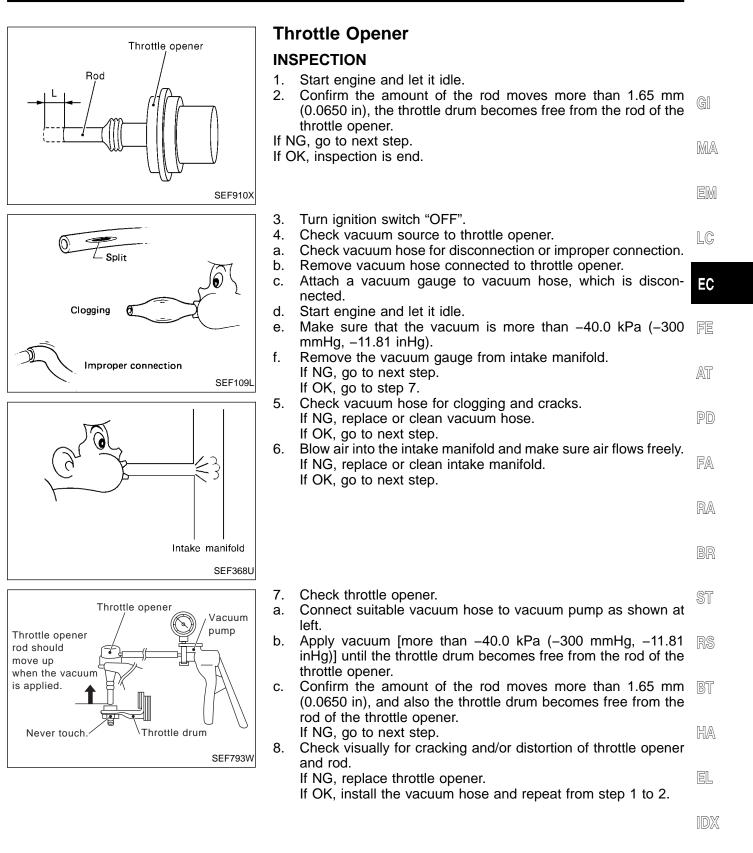
PCV HOSE


- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.



Injector Removal and Installation

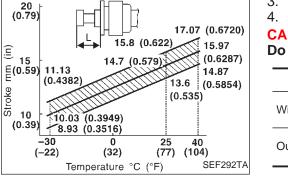
- 1. Release fuel pressure to zero, refer to previous page.
- 2. Remove intake manifold collector. Refer to EM section ("TIM-ING CHAIN").
- 3. Disconnect vacuum hose from pressure regulator.
- 4. Disconnect fuel hoses from fuel tube assembly.
- Do not disassemble fuel tube assembly.
- 5. Disconnect injector harness connectors.
- 6. Remove injectors with fuel tube assembly.
- Push injector tail piece.
- Do not pull on the connector.
- 7. Push out any malfunctioning injector from fuel tube assembly.
- 8. Replace or clean injector as necessary.
- 9. Install injector to fuel tube assembly.
- Always replace O-rings with new ones.
- Lubricate O-rings with a smear of engine oil.
- 10. Install injectors with fuel tube assembly to intake manifold.

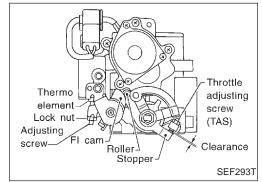

Tighten in numerical order shown in the figure.

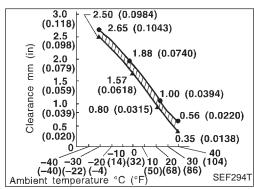
- a) First, tighten all bolts to 9.3 to 10.8 N⋅m (0.95 to 1.1 kg-m, 6.9 to 8.0 ft-lb).
- b) Then, tighten all bolts to 21 to 26 N·m (2.1 to 2.7 kg-m, 15 to 20 ft-lb).
- 11. Install fuel hoses to fuel tube assembly.
- 12. Reinstall any parts removed in reverse order of removal.

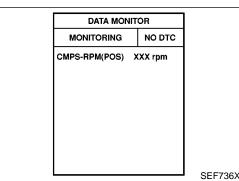
CAUTION:

After properly connecting fuel hose to injector and fuel tube assembly, check connection for fuel leakage.








Fast Idle Cam (FIC) Inspection and Adjustment

- 1. Remove throttle body from engine.
- 2. Wait for at least 3 hours.
 - (This step is necessary to bring the temperature of the thermoelement to the room temperature

- 3. Measure thermo-element stroke (L) and room temperature.
- 4. Check thermo-element stroke (L) as shown in the figure.

CAUTION:

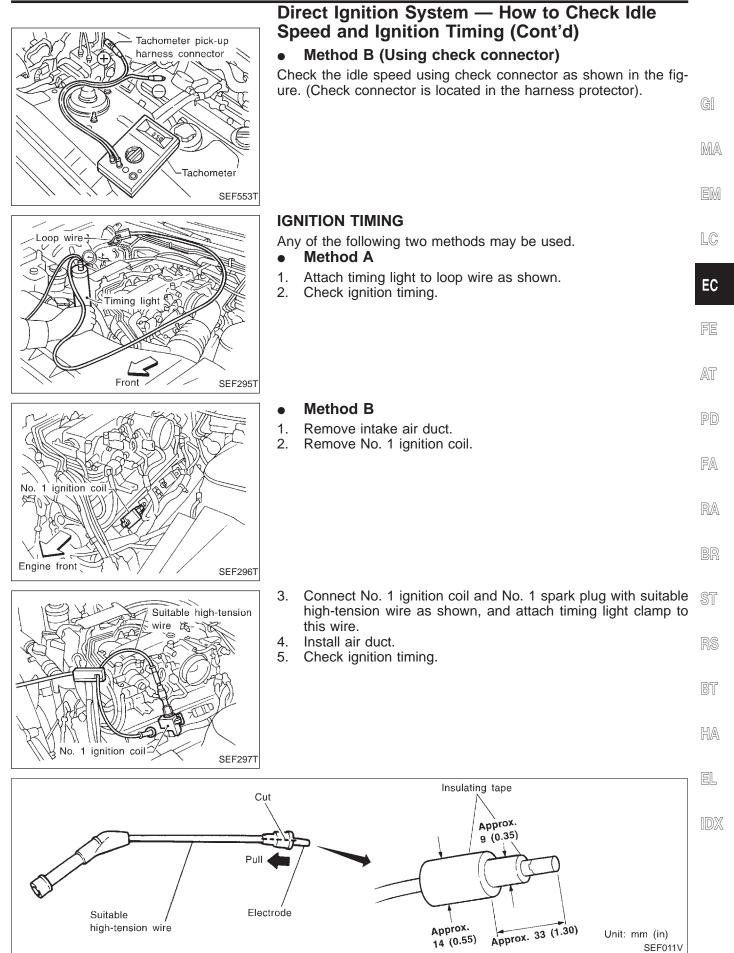
Do not adjust TAS.

L: Thermo-element stroke	Judgement
Within oblique line	Thermo-element is normal \rightarrow Adjust FI cam (go to step 5).
Out of oblique line	Replace thermo-element \rightarrow Adjust FI cam (go to step 2).

5. Measure clearance between stopper and throttle adjusting screw (TAS) as shown in the figure. If out of specification, adjust the clearance using adjusting screw.

CAUTION:

Do not adjust throttle adjusting screw (TAS).

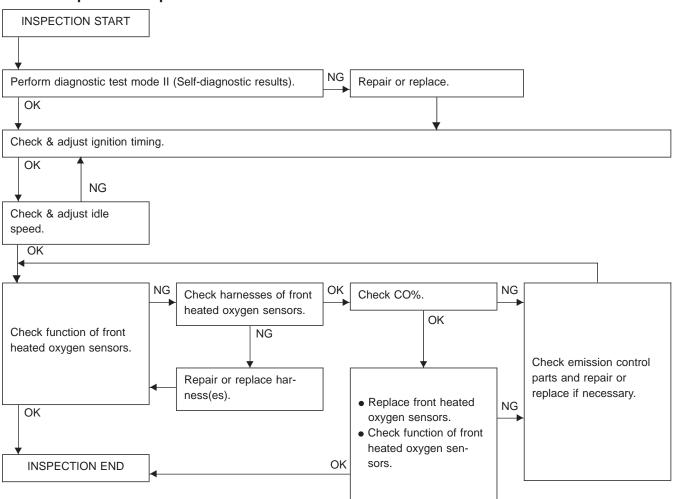

- 6. After adjustment, tighten lock nut of adjusting screw.
 - 🕑 : 1.5 2.0 N m (0.15 0.2 kg-m, 13.0 17.4 in-lb)
- 7. Reinstall throttle body.
- 8. After warming up engine, check that there is a clearance between FI cam and roller.

Direct Ignition System — How to Check Idle Speed and Ignition Timing

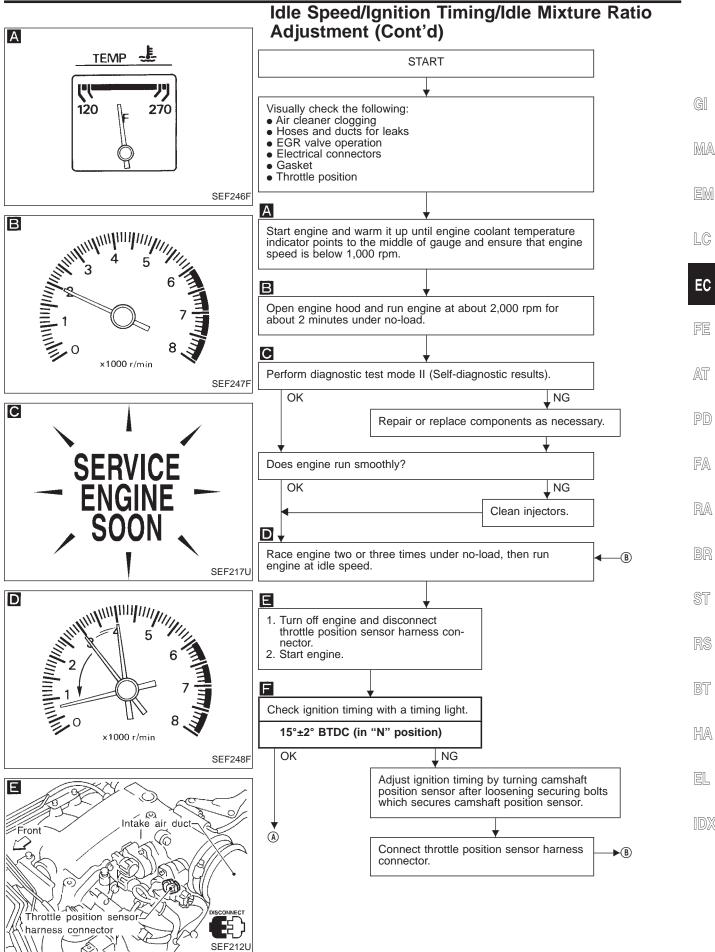
IDLE SPEED

• Method A (Using CONSULT-II)

Check idle speed in "DATA MONITOR" mode with CONSULT-II.

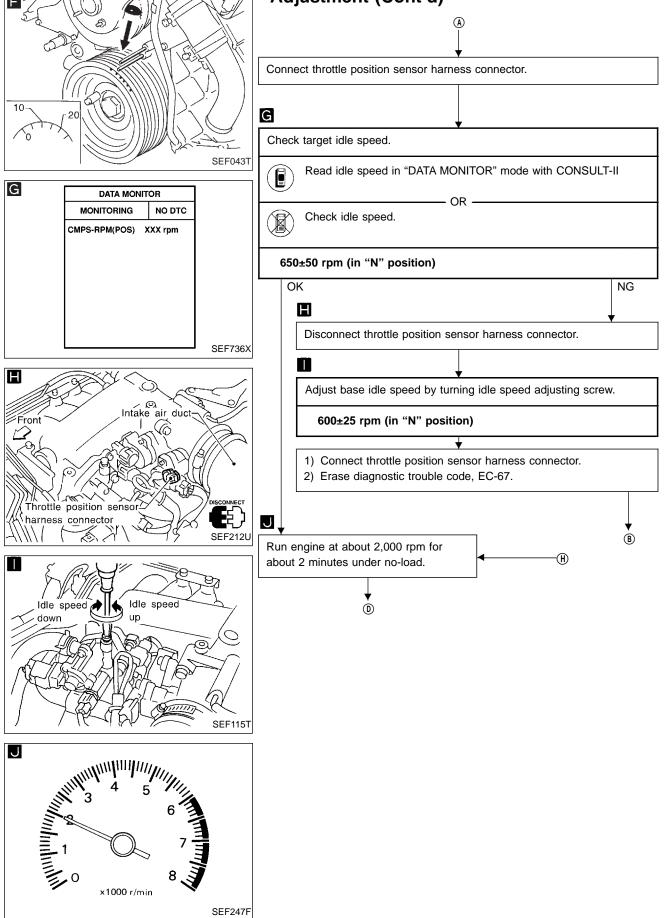


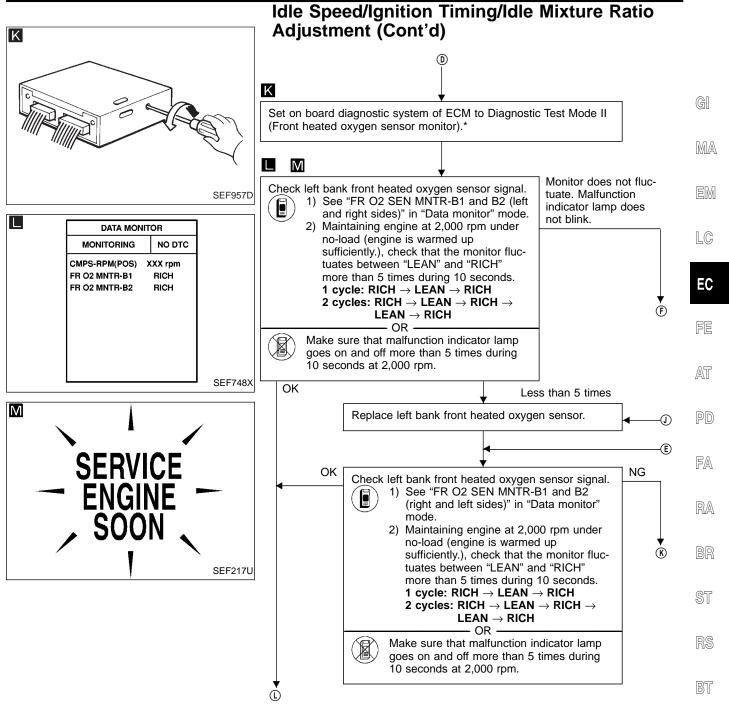
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

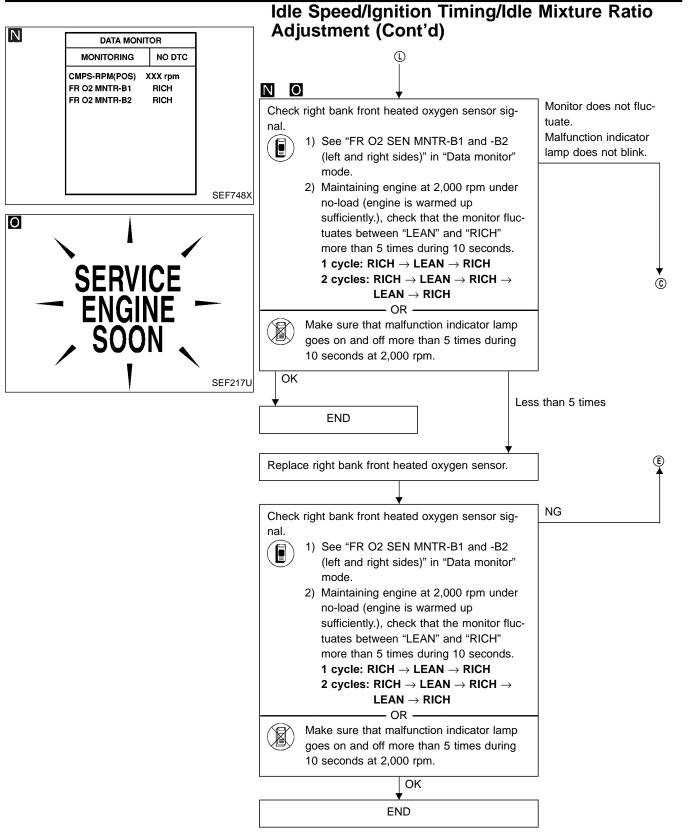

PREPARATION

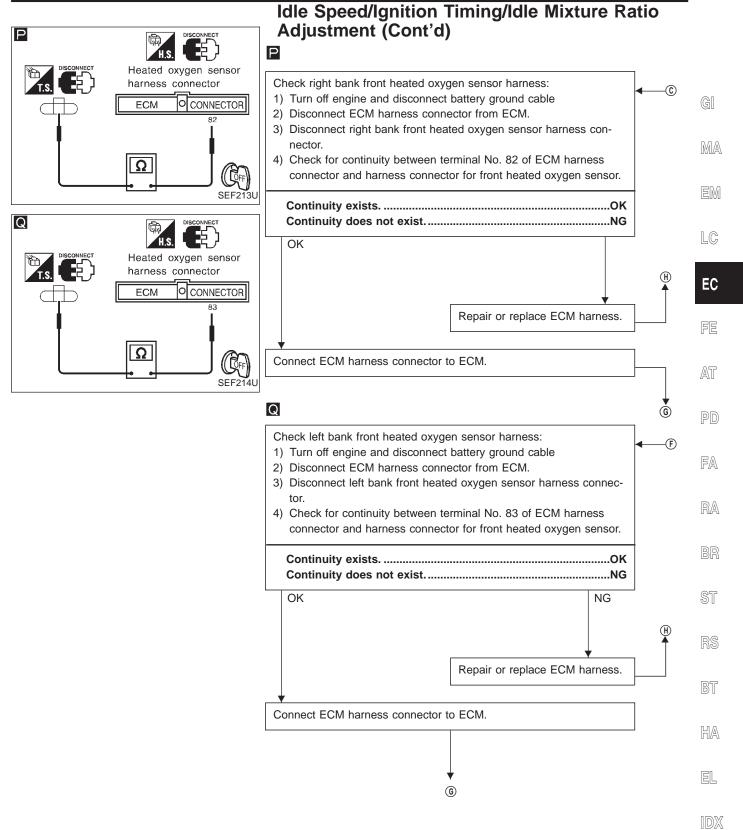
- Make sure that the following parts are in good order.
- (1) Battery
- (2) Ignition system
- (3) Engine oil and coolant levels
- (4) Fuses
- (5) ECM harness connector
- (6) Vacuum hoses
- (7) Air intake system
- (Oil filler cap, oil level gauge, etc.)
- (8) Fuel pressure
- (9) Engine compression
- (10) EGR valve operation
- (11) Throttle valve
- (12) EVAP system

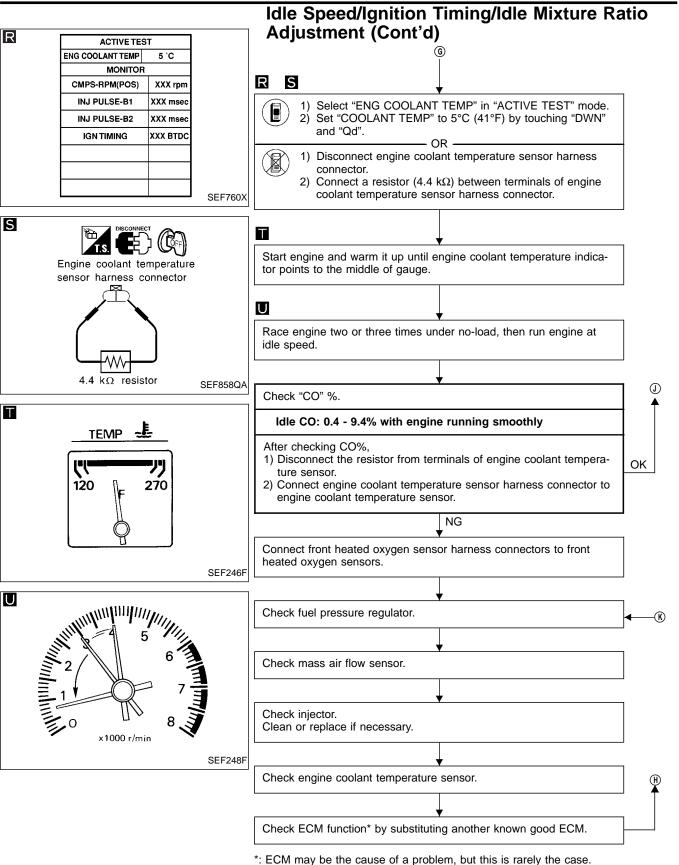
- On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- When checking idle speed, ignition timing and mixture ratio of A/T models, shift lever to "N" position.
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear window defogger.
- Keep front wheels pointed straight ahead.
- Make the check after the cooling fan has stopped.




Overall inspection sequence




*: If the battery is weak, front heated oxygen sensor monitor may not function properly. Use this function after fully charging battery.


EL

HA

1DX

Note: If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

PD

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

- Diagnostic Trouble Code (DTC)Mode 3 of SAE J1979
- System Readiness Test (SRT) codeMode 1 of SAE J1979
- 1st Trip Diagnostic Trouble Code (1st Trip DTC)......Mode 7 of SAE J1979
- 1st Trip Freeze Frame data

MA The above information can be checked using procedures listed in the table below.

							EM
	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value	UVU
Diagnostic test mode II (Self-	x	X*1	_	_	_	_	LC
diagnostic results)							EC
CONSULT-II	X	X	X	Х	X	_	
GST	Х	X*2	Х		Х	Х	FE

*1: When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

*2: 1st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

AT The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode (Refer to EC-98.).

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in FA the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd RA trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL and store DTC and Freeze Frame data, even in the 1st trip, as shown below. RR

								, eu
	MIL			D	ГС	1st trip DTC		
Items	1st trip		2nd trip	1st trip	2nd trip	1st trip	2nd trip	ST
	Blinking	Lighting up	lighting up	displaying	displaying	displaying	displaying	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 (0701, 0608 - 0601) is being detected	x	_		x	_	х	_	R§ BT
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 (0701, 0608 - 0601) has been detected		x		x		х		HA
Closed loop control — DTC: P1148 (0307), P1168 (0308)	_	х	_	х	_	х	_	EL
Fail-safe items (Refer to EC-98.)	_	Х		X*1	_	X*1	_	
Except above	—	—	Х		Х	Х	Х	D

*1: Except "ECM".

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the first trip DTC did not reoccur, the first trip DTC will not be displayed. If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the first trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a first trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-63.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-60. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to page EC-89. Then perform "Diagnostic trouble code confirmation procedure" or "Overall function check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to read DTC and 1st trip DTC

DTC and 1st trip DTC can be read by the following methods.

- 1. The number of blinks of the malfunction indicator lamp in the Diagnostic Test Mode II (Self-Diagnostic Results) Examples: 0101, 0201, 1003, 1104, etc.
 - These DTCs are controlled by NISSAN.
 - 2. CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc. These DTCs are prescribed by SAE J2012.
 - (CONSULT-II also displays the malfunctioning component or system.)
- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC is shown at left. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0". If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESU	JLTS	SELF DIAG RES	DIAG RESULTS
	DTC RESULTS	TIME	DTC RESULTS	SULTS TIN
DTC	IACV-AAC VALVE [P0505]	0	IACV-AAC VALVE [P0505]	
display				

Emission-related Diagnostic Information (Cont'd)

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed and vehicle speed at the moment a malfunction is detected.

GI Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and are displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For MA details, see EC-77.

Only one set of freeze frame data (either 1st trip freeze frame data of freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no prior-EM ity for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory. 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

	Misfire — DTC: P0300 - P0308 (0701, 0608 - 0601) Fuel Injection System Function — DTC: P0171 (0115), P0172 (0114)	FE
2	Except the above items (Includes A/T related items)	
3 1st trip freeze frame data		AT

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze frame data is no longer stored (because only one freeze frame data FA or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory. RA

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-63.

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

BT In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

HA Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

EL The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

Emission-related Diagnostic Information (Cont'd)

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Performance Priority*2	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420, P0430
	2	EVAP control system (small leak) (nega- tive pressure)	P0440
EVAP SYSTEM	_	EVAP control system (small leak) (positive pressure)	P1440*1
	3	EVAP control system purge flow monitor- ing	P1447
		Front heated oxygen sensor (circuit)	P0130, P0150
	3	Front heated oxygen sensor (lean shift monitoring)	P0131, P0151
		Front heated oxygen sensor (rich shift monitoring)	P0132, P0152
		Front heated oxygen sensor (response monitoring)	P0133, P0153
O2 SENSOR		Front heated oxygen sensor (high voltage)	P0134, P0154
		Rear heated oxygen sensor (min. voltage monitoring)	P0137, P0157
		Rear heated oxygen sensor (max. voltage monitoring)	P0138, P0158
		Rear heated oxygen sensor (response monitoring)	P0139, P0159
		Rear heated oxygen sensor (high voltage)	P0140, P0160
O2 SEN HEATER	2	Front heated oxygen sensor heater	P0135, P0155
OZ JEN HEATER	3	Rear heated oxygen sensor heater	P0141, P0161
	3	EGR function (close)	P0400
EGR SYSTEM	3	EGRC-BPT valve function	P0402
	1	EGR function (open)	P1402

*1: P1440 [EVAP control system (small leak) (positive pressure) diagnosis] is one type of SRT related diagnosis. This diagnosis, however, does not contribute to setting the SRT as "CMPLT", when no malfunction exists in the EVAP system. Therefore, P0440 must be used instead of P1440.

*2: If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

			Example						
Self-diagnosis result		Diagnosis	\leftarrow ON \rightarrow O	0	n cycle FF \leftarrow ON \rightarrow O	$FF \leftarrow ON \rightarrow$	MA		
		P0400	OK (1)	— (1)	OK (2)	— (2)	-		
	Case 1	P0402	OK (1)	— (1)	— (1)	OK (2)	EM		
Case 1	P1402	OK (1)	OK (2)	— (2)	— (2)	-			
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"	- LC		
All OK Case 2	P0400	OK (1)	— (1)	— (1)	— (1)	- 60			
	P0402	— (0)	— (0)	OK (1)	— (1)	-			
	P1402	OK (1)	OK (2)	— (2)	— (2)	EC			
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"	-		
		P0400	OK	OK	—	—	- FE		
		P0402	—	—	—	—	- 65		
NG exists Case 3	P1402	NG	_	NG	NG (Consecutive NG)	AT			
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")	PD		
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"	_		

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

-: Self-diagnosis is not carried out.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT $\mathbb{R}^{\mathbb{R}}$ will indicate "CMPLT". \rightarrow Case 1 above

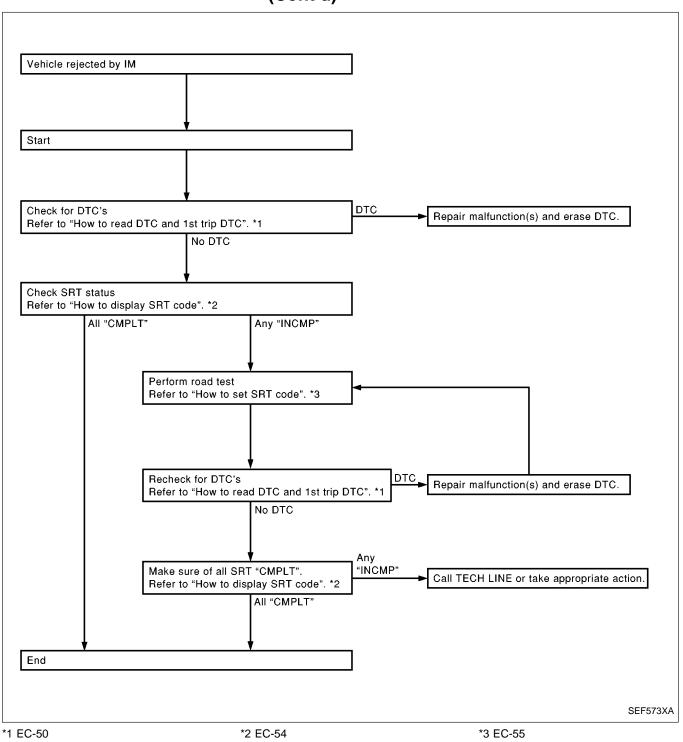
When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". \rightarrow Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".


SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

HA

FA

Emission-related Diagnostic Information (Cont'd)

How to display SRT code

- 1. Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.
- (2. Selecting Mode 1 with GST (Generic Scan Tool)

SRT STATU		
CATALYST EVAP SYSTEM O2 SENSOR O2 SEN HEATER EGR SYSTEM	CMPLT INCMP CMPLT CMPLT INCMP	PEF215U

Emission-related Diagnostic Information (Cont'd)

A sample of CONSULT-II display for SRT code is shown at left. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

MA

GI

EM

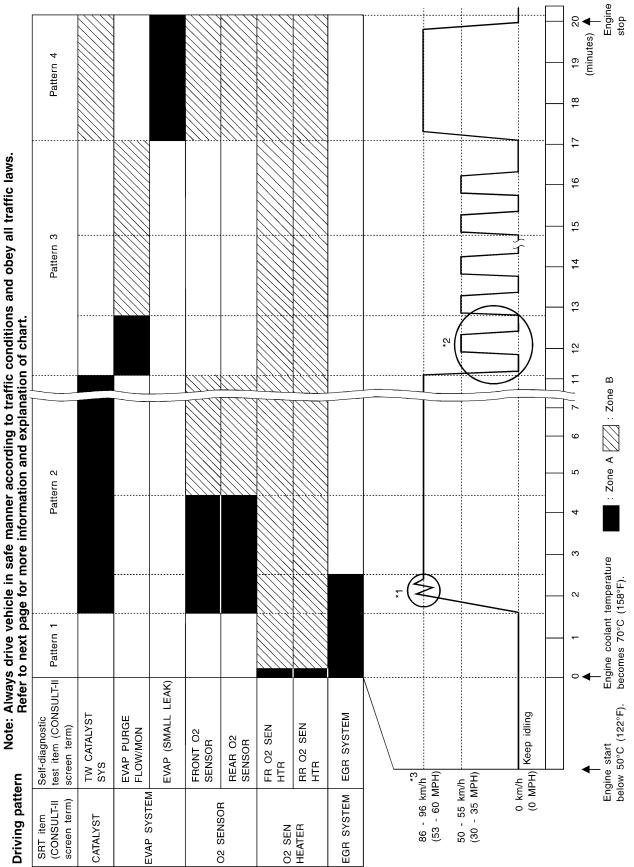
How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

With CONSULT-II

EC Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-52. FE

Without CONSULT-II


The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The AT driving pattern should be performed one or more times to set all SRT codes.

- PD
- FA
- RA
- BR
- ST
- RS

BT

HA

EL

Emission-related Diagnostic Information (Cont'd)

Driving patt

Driving pattern

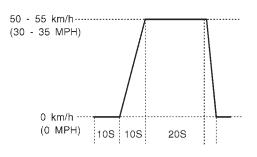
SEF574X

Ѻ¢╲ः

GI

Emission-related Diagnostic Information (Cont'd)

Gear


• The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required, for the diagnosis under normal conditions^{*}, is the shortest. Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.

Under different conditions [For example: ambient temperature is other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

- Pattern 1: The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminals (a) and (128) is 3.0 - 4.3 V.)
 - The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminals (i) and (128) is lower than 1.4 V.)
 - The engine is started at a fuel tank temperature warmer than 0°C (32°F) (where the voltage between the ECM terminal ③ and ground is less than 4.1V).
- Pattern 2: When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.
- Pattern 3: The driving pattern outlined in *2 must be repeated at least 3 times.
- Pattern 4: Tests are performed after the engine has been operated for at least 17 minutes.
 - The accelerator pedal must be held very steady during steady-state driving.
 - If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
 - 1) Decelerate vehicle to 0 km/h (0 MPH) and let it idle.
 - 2) Repeat driving pattern shown below at least 10 times.
 - During acceleration, hold the accelerator pedal as steady as possible. (The THROTL POS SEN valve of CONSULT-II should be between 0.8 to 1.2 V.)
 - 3) Repeat steps and 2 until the EGR system SRT is set.

SEF414S *3: Checking the vehicle speed with CONSULT-II or GST is advised.

Suggested transmission gear position

Set the selector lever in the "D" position with "OD" ON.

Suggested maximum speed in each gear

Downshift to a lower gear if the engine is not running $$\mathbb{M}\mathbb{A}$$ smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits, and drive according to the road conditions, which will ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

km/h (MPH)

1st 2nd 3rd 4th 5th	km/n (MPH) 50 (30) 95 (60) 145 (90) —	FE
Jui		PD
		FA
		RA
		BR
		ST
		RS
		BT
		HA
		EL
		IDX

Emission-related Diagnostic Information (Cont'd)

TEST VALUE AND TEST LIMIT (GST only — not applicable to CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (14 test items).

These data (test limit) are specified by Test ID (TID) and Component ID (CID). These data can be displayed on the GST screen.

X: Applicable —: Not applicable

SRT item	Self-diagnostic test Test value		Toot limit	Application	
SRIItem	item	TID	CID	- Test limit	Application
CATALYST	Three way catalyst function (Left bank)	01H	01H	Max.	x
	Three way catalyst function (Right bank)	03H	02H	Max.	x
	EVAP control sys- tem (Small leak)	05H	03H	Max.	x
EVAP SYSTEM	EVAP control sys- tem purge flow monitoring	06H	83H	Min.	x
		09H	04H	Max.	Х
	Front heated oxy-	0AH	84H	Min.	Х
	gen sensor (Left	0BH	04H	Max.	Х
	bank)	0CH	04H	Max.	Х
		0DH	04H	Max.	Х
		11H	05H	Max.	Х
	Front heated oxy-	12H	85H	Min.	Х
	gen sensor (Right	13H	05H	Max.	Х
O2 SENSOR	bank)	14H	05H	Max.	Х
02 SENSOR		15H	05H	Max.	Х
		19H	86H	Min.	Х
	Rear heated oxygen	1AH	86H	Min.	Х
	sensor (Left bank)	1BH	06H	Max.	Х
		1CH	06H	Max.	Х
		21H	87H	Min.	X
	Rear heated oxygen	22H	87H	Min.	Х
	sensor (Right bank)	23H	07H	Max.	Х
		24H	07H	Max.	Х

Emission-related Diagnostic Information (Cont'd)

	Self-diagnostic test	Self-diagnostic test Test value		To ad line it	Angligation	
SRT item	item	TID	CID	Test limit	Application	
	Front heated oxy-	29H	08H	Max.	X	
	gen sensor heater (Left bank)	2AH	88H	Min.	х	
	Front heated oxy-	2BH	09H	Max.	Х	
O2 SENSOR	gen sensor heater (Right bank)	2CH	89H	Min.	X	
-	Rear heated oxygen sensor heater (Left bank) Rear heated oxygen	2DH	0AH	Max.	X	
		2EH	8AH	Min.	Х	
		2FH	0BH	Max.	Х	
	sensor heater – (Right bank)	30H	8BH	Min.	Х	
		31H	8CH	Min.	Х	
		32H	8CH	Min.	Х	
	EGR function	33H	8CH	Min.	Х	_
EGR SYSTEM		34H	8CH	Min.	Х	
		35H	0CH	Max.	Х	_
	EGRC-BPT valve	36H	0CH	Max.	Х	
	function	37H	8CH	Min.	Х	

RA

BR

ST

RS

BT

HA

EL

IDX

Emission-related Diagnostic Information (Cont'd)

EXIT

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

	DTC	C*4		Test value/		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)	1st trip DTC*4	Reference page
NO SELF DIAGNOSTIC FAIL- URE INDICATED	P0000	0505	_	_	_	_
MAF SEN/CIRCUIT	P0100	0102	—	_	X	EC-124
ABSL PRES SEN/CIRC	P0105	0803	_	_	Х	EC-132
AIR TEMP SEN/CIRC	P0110	0401	_	_	Х	EC-140
COOLANT T SEN/CIRC	P0115	0103	_	_	Х	EC-145
THRTL POS SEN/CIRC	P0120	0403	_	_	Х	EC-150
*COOLAN T SEN/CIRC	P0125	0908	_	_	Х	EC-161
FRONT O2 SENSOR-B1	P0130	0303	х	Х	X*3	EC-166
FRONT O2 SENSOR-B1	P0131	0411	х	Х	X*3	EC-174
FRONT O2 SENSOR-B1	P0132	0410	х	Х	X*3	EC-180
FRONT O2 SENSOR-B1	P0133	0409	х	X	X*3	EC-186
FRONT O2 SENSOR-B1	P0134	0412	х	X	X*3	EC-195
FR O2 SE HEATER-B1	P0135	0901	х	X	X*3	EC-202
REAR O2 SENSOR-B1	P0137	0511	х	X	X*3	EC-208
REAR O2 SENSOR-B1	P0138	0510	x	X	X*3	EC-216
REAR O2 SENSOR-B1	P0139	0707	x	X	X*3	EC-224
REAR O2 SENSOR-B1	P0140	0512	х	X	X*3	EC-231
RR O2 SE HEATER-B1	P0141	0902	x	X	X*3	EC-237
FRONT O2 SENSOR-B2	P0150	0503	х	X	X*3	EC-202
FRONT O2 SENSOR-B2	P0151	0415	х	X	X*3	EC-174
FRONT O2 SENSOR-B2	P0152	0414	x	X	X*3	EC-180
FRONT O2 SENSOR-B2	P0153	0413	x	X	X*3	EC-186
FRONT O2 SENSOR-B2	P0154	0509	х	X	X*3	EC-195
FR O2 SE HEATER-B2	P0155	1001	x	X	X*3	EC-202
REAR O2 SENSOR-B2	P0157	0314	x	X	X*3	EC-208
REAR O2 SENSOR-B2	P0158	0313	х	X	X*3	EC-216
REAR O2 SENSOR-B2	P0159	0708	x	X	X*3	EC-224
REAR O2 SENSOR-B2	P0160	0315	x	X	X*3	EC-231
RR O2 SE HEATER-B2	P0161	1002	x	Х	X*3	EC-237
FUEL SYS LEAN/BK1	P0171	0115	_		X	EC-243
FUEL SYS RICH/BK1	P0172	0114	_	_	x	EC-249
FUEL SYS LEAN/BK2	P0174	0210	_	_	x	EC-243
FUEL SYS RICH/BK2	P0175	0209	_		x	EC-249
FUEL TEMP SEN/CIRC	P0180	0402	_	_	X	EC-255
MULTI CYL MISFIRE	P0300	0701	_	_	X	EC-260
CYL 1 MISFIRE	P0301	0608	_	_	X	EC-260
CYL 2 MISFIRE	P0302	0607	_	_	X	EC-260

*1: In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.
*2: These numbers are prescribed by SAE J2012.
*3: These are not displayed with GST.
*4: 1st trip DTC No. is the same as DTC No.

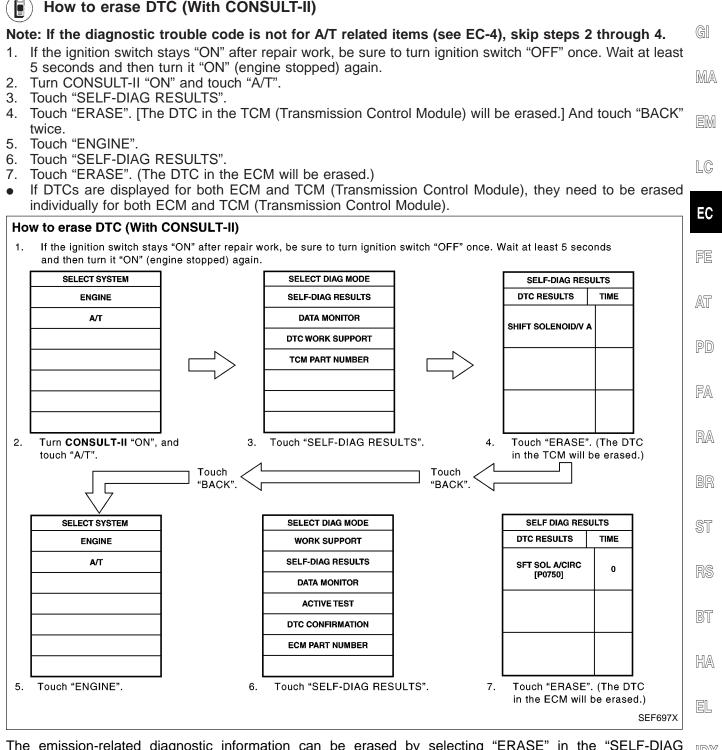
Emission-related Diagnostic Information (Cont'd)

			'				
						X: Applicable —: Not applicable	
Items	DT	DTC*4		Test value/			
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)	1st trip DTC*4	Reference page	G]
CYL 3 MISFIRE	P0303	0606	_	_	Х	EC-260	
CYL 4 MISFIRE	P0304	0605	_	_	Х	EC-260	MA
CYL 5 MISFIRE	P0305	0604	_	_	Х	EC-260	
CYL 6 MISFIRE	P0306	0603	_	_	Х	EC-260	EM
CYL 7 MISFIRE	P0307	0602	_	_	Х	EC-260	
CYL 8 MISFIRE	P0308	0601	—	_	X	EC-260	LC
KNOCK SEN/CIRC-B1	P0325	0304	_	_	X	EC-265	
KNOCK SEN/CIRC-B2	P0330	0212	_	_	Х	EC-265	EC
CPS/CIRCUIT (OBD)	P0335	0802	_	_	Х	EC-268	EU
CAM POS SEN/CIR	P0340	0101	_	_	Х	EC-273	
EGR SYSTEM	P0400	0302	Х	Х	X*3	EC-279	FE
EGRC-BPT VALVE	P0402	0306	Х	Х	X*3	EC-288	
TW CATALYST SYS-B1	P0420	0702	Х	Х	X*3	EC-293	AT
TW CATALYST SYS-B2	P0430	0703	Х	Х	X*3	EC-293	
EVAP SMALL LEAK	P0440	0705	Х	Х	X*3	EC-296	PD
PURG VOLUME CONT/V	P0443	1008	_	_	Х	EC-307	
VENT CONTROL VALVE	P0446	0903	_	_	Х	EC-313	
EVAPO SYS PRES SEN	P0450	0704	_	_	Х	EC-318	FA
EVAP GROSS LEAK	P0455	0715	_	X	X*3	EC-324	
VEH SPEED SEN/CIRC	P0500	0104	_	_	Х	EC-333	RA
IACV/AAC VLV/CIRC	P0505	0205	_	_	X	EC-338	
CLOSED TP SW/CIRC	P0510	0203	_	_	Х	EC-344	BR
A/T COMM LINE	P0600	0504	_	_	_	EC-350	•
ECM	P0605	0301	_	_	Х	EC-353	ST
PNP SW/CIRC	P0705	1101	_	_	Х	AT-81	. 01
ATF TEMP SEN/CIRC	P0710	1208	_	_	Х	AT-85	
VEH SPD SEN/CIR AT	P0720	1102	_	_	Х	AT-89	RS
ENGINE SPEED SIG	P0725	1207	_	_	Х	AT-92	
A/T 1ST GR FNCTN	P0731	1103	_	_	Х	AT-95	BT
A/T 2ND GR FNCTN	P0732	1104	_	_	Х	AT-100	
A/T 3RD GR FNCTN	P0733	1105	_	_	Х	AT-104	HA
A/T 4TH GR FNCTN	P0734	1106	_	_	Х	AT-108	
TCC SOLENOID/CIRC	P0740	1204	_	_	Х	AT-114	EL
A/T TCC S/V FNCTN	P0744	1107	-	_	Х	AT-118	
L/PRESS SOL/CIRC	P0745	1205	_	_	Х	AT-125	NMV
SFT SOL A/CIRC	P0750	1108	_	_	Х	AT-129	· IDX
SFT SOL B/CIRC	P0755	1201	_	_	Х	AT-133	
MAP/BAR SW SOL/CIR	P1105	1302	_	_	Х	EC-356	
INT/V TIM CONT-B1	P1110	0805	_	_	X	EC-365	

*1: In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.
*2: These numbers are prescribed by SAE J2012.
*3: These are not displayed with GST.
*4: 1st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information (Cont'd)

		(/			X: Applicable
Items	DTC	C*4		Test value/		—: Not applicable
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)	1st trip DTC*4	Reference page
TP SEN2/CIRCUIT	P1120	0406	—	_	Х	EC-373
TANDEM TP SEN/CIRC	P1125	0110	—	_	Х	EC-379
INT/V TIM CONT-B2	P1135	1301	—	_	Х	EC-365
INTK TIM S/CIRC-B1	P1140	1303	—	—	Х	EC-380
INTK TIM S/CIRC-B2	P1145	1304	—	_	Х	EC-380
CLOSED LOOP-B1	P1148	0307	—	_	Х	EC-386
CLOSED LOOP-B2	P1168	0308	—	_	Х	EC-386
TACM SW SIGNALS	P1210	0106	—	_	Х	EC-388
FPCM/CIRCUIT	P1220	1305	_	_	Х	EC-391
IGN SIGNAL-PRIMARY	P1320	0201	_	_	Х	EC-397
CPS/CIRC (OBD) COG	P1336	0905	_	_	Х	EC-405
EGRC SOLENOID/V	P1400	1005	_	_	Х	EC-410
EGR TEMP SEN/CIRC	P1401	0305	—	_	Х	EC-415
EGR SYSTEM	P1402	0514	Х	Х	X*3	EC-421
EVAP SMALL LEAK	P1440	0213	Х	Х	Х	EC-430
PURG VOLUME CONT/V	P1444	0214	—	_	Х	EC-442
VENT CONTROL VALVE	P1446	0215	—	_	Х	EC-450
EVAP PURG FLOW/MON	P1447	0111	Х	Х	X*3	EC-455
VENT CONTROL VALVE	P1448	0309	—	_	Х	EC-462
VC/V BYPASS/V	P1490	0801	—	_	Х	EC-468
VC CUT/V BYPASS/V	P1491	0311	_	_	Х	EC-473
PURG CONT/V S/V	P1492	0807	—	_	Х	EC-479
PURG CONT/V & S/V	P1493	0312	_	_	Х	EC-485
A/T DIAG COMM LINE	P1605	0804	—	_	Х	EC-350
TP SEN/CIRC A/T	P1705	1206	_	_	Х	AT-137
P-N POS SW/CIRCUIT	P1706	1003	_	_	Х	EC-492
O/R CLTCH SOL/CIRC	P1760	1203	_	_	Х	AT-143


*1: In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.
*2: These numbers are prescribed by SAE J2012.
*3: These are not displayed with GST.
*4: 1st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information (Cont'd)

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to erase DTC (With CONSULT-II)

The emission-related diagnostic information can be erased by selecting "ERASE" in the "SELF-DIAG IDX RESULTS" mode with CONSULT-II.

How to erase DTC (With GST) GST

Note: If the diagnostic trouble code is not for A/T related items (see page EC-4), skip step 2.

1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.

Emission-related Diagnostic Information (Cont'd)

- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

(NO Tools) How to erase DTC (No Tools)

- Note: If the diagnostic trouble code is not for A/T related items (see EC-4), skip step 2.
- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" again.
- 2. Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Change the diagnostic test mode from Mode II to Mode I by turning the mode selector on the ECM. (See EC-66.)

NOTE:

- If the battery terminal is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- Erasing the emission-related diagnostic information, using CONSULT-II or GST is easier and quicker than switching the mode selector on the ECM.

The following data are cleared when the ECM memory is erased.


- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values

7. Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

GI

LC

Malfunction Indicator Lamp (MIL)

The malfunction indicator lamp is located on the instrument panel.

- 1. The malfunction indicator lamp will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the malfunction indicator lamp does not light up, refer to EL section WARNING LAMPS or see EC-533.
- 2. When the engine is started, the malfunction indicator lamp $\mathbb{M}\mathbb{A}$ should go off.

If the lamp remains on, the on board diagnostic system has detected an engine system malfunction.

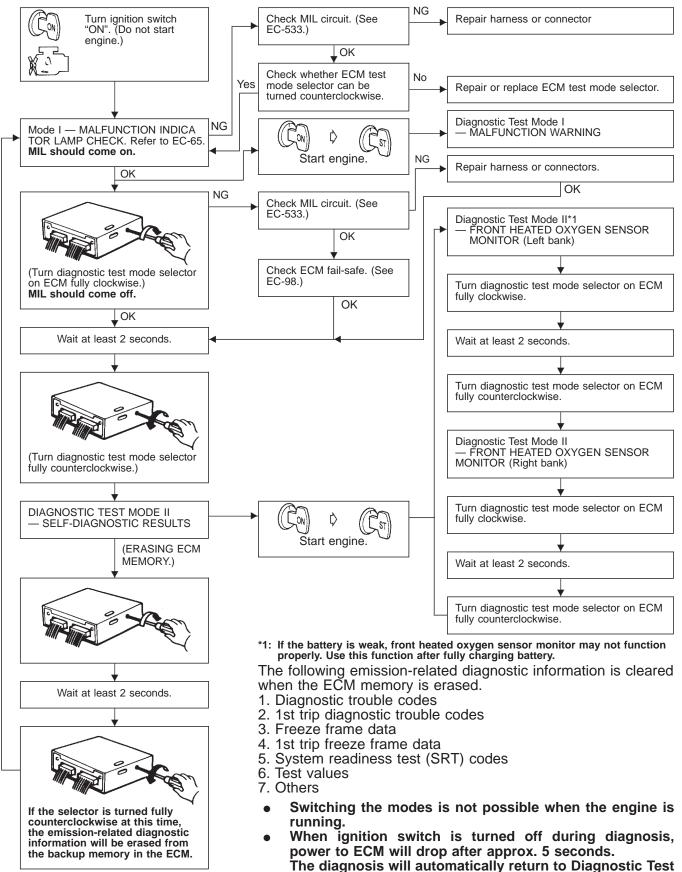
ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions.

Diagnostic Test Mode I

•		EC
1. BULB CHECK	: This function checks the bulb for damage (blown, open circuit, etc.) of	
	the malfunction indicator lamp. If the MIL does not come on, check MIL circuit and ECM test mode. (See next page.)	FE
2. MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (2 trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip.	AT
	 "Misfire (possible three way catalyst damage)" "Closed loop control" Fail-safe mode 	PD
Diagnostic Test Mode II		FA
3. SELF-DIAGNOSTIC RESULTS	: This function allows DTCs and 1st trip DTCs to be read.	RA
4. FRONT HEATED OXY- GEN SENSOR MONI-	: This function allows the fuel mixture condition (lean or rich), monitored by front heated oxygen sensor, to be read.	
TOR	by none neared oxygen sensor, to be read.	BR

MIL Flashing without DTC


If the ECM is in Diagnostic Test Mode II, the MIL may flash when the engine is running. In this case, check ECM test mode selector following "HOW TO SWITCH DIAGNOSTIC TEST MODES" on next page. How to switch the diagnostic test (function) modes and details of the above functions are described later. (See page EC-66.)

Condition		Diagnostic Test Mode I	Diagnostic Test Mode II	BI
Ignition switch in "ON" posi- tion	Engine stopped	BULB CHECK	SELF-DIAGNOSTIC RESULTS	HÆ
	Engine running	MALFUNCTION WARNING	FRONT HEATED OXYGEN SENSOR MONITOR	EL ID

Malfunction Indicator Lamp (MIL) (Cont'd)

HOW TO SWITCH DIAGNOSTIC TEST MODES

Mode I.
 Turn back diagnostic test mode selector to the fully counterclockwise position whenever vehicle is in use.

രി

LC

EL

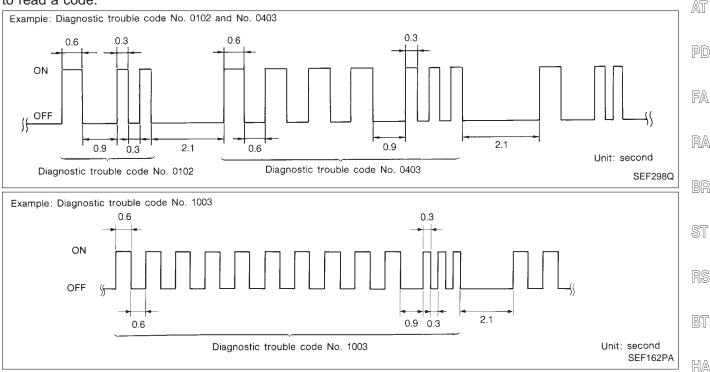
ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

Malfunction Indicator Lamp (MIL) (Cont'd)

DIAGNOSTIC TEST MODE I—BULB CHECK

In this mode, the MALFUNCTION INDICATOR LAMP on the instrument panel should stay ON. If it remains OFF, check the bulb. (See the WARNING LAMPS in the EL section. Or see EC-533.)

DIAGNOSTIC TEST MODE I—MALFUNCTION WARNING


			GII
	MALFUNCTION	Condition	
_	INDICATOR LAMP		
	ON	When the malfunction is detected or the ECM's CPU is malfunctioning.	MA
	OFF	No malfunction	

 These Diagnostic Trouble Code Numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC EM RESULTS).

DIAGNOSTIC TEST MODE II—SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MALFUNCTION INDI-CATOR LAMP as shown below.

The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode 1 (Malfunction warning), all displayed items are 1st trip DTC's. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTC's or 1st trip DTC's. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the consult or GST. A DTC will be used as an example for how to read a code.

Long (0.6 second) blinking indicates the two LH digits of number and short (0.3 second) blinking indicates the two RH digits of number. For example, the malfunction indicator lamp blinks 10 times for 6 seconds (0.6 sec x 10 times) and then it blinks three times for about 1 second (0.3 sec x 3 times). This indicates the DTC "1003" and refers to the malfunction of the park/neutral position switch.

In this way, all the detected malfunctions are classified by their diagnostic trouble code numbers. The DTC "0505" refers to no malfunction. (See DIAGNOSTIC TROUBLE CODE INDEX, refer to page EC-4.)

HOW TO ERASE DIAGNOSTIC TEST MODE II (Self-diagnostic results)

The diagnostic trouble code can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "HOW TO SWITCH DIAGNOS-TIC TEST MODES".)

- If the battery terminal is disconnected, the diagnostic trouble code will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

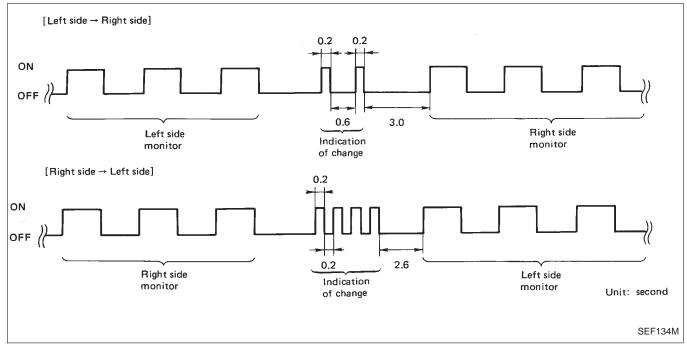
Malfunction Indicator Lamp (MIL) (Cont'd)

IAGNOSTIC TEST MODE II—FRONT HEATED OXYGEN SENSOR MONITOR

In this mode, the MALFUNCTION INDICATOR LAMP displays the condition of the fuel mixture (lean or rich) which is monitored by the front heated oxygen sensor.

MALFUNCTION INDICATOR LAMP	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean	Closed loop control	
OFF	Rich	Closed loop control	
*Remains ON or OFF	Any condition	Open loop control	

*: Maintains conditions just before switching to open loop.


To check the front heated oxygen sensor function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MALFUNCTION INDICATOR LAMP comes ON more than 5 times every 10 seconds when measured at 2,000 rpm under no-load.

If the battery is weak, front heated oxygen sensor monitor may not function properly. Use this function after fully charging battery.

How to switch monitored sensor from left bank to right bank or vice versa

- The following procedure should be performed while the engine is running.
- 1. Turn diagnostic test mode selector on ECM fully clockwise.
- 2. Wait at least 2 seconds.
- 3. Turn diagnostic test mode selector on ECM fully counterclockwise.

SELF DIAG RES	ULTS	
DTC RESULTS	TIME	
NATS MALFUNCTION [P1610]	0	
		SEF543X

Malfunction Indicator Lamp (MIL) (Cont'd)

IVIS (Infiniti Vehicle Immobiliser System - NATS)

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform selfdiagnostic results mode with CONSULT-II using NATS program card. Refer to "IVIS (Infiniti Vehicle Immobiliser System — NATS" in EL section.
- Confirm no self-diagnostic results of NATS is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NATS system and registration of all NATS ignition key IDs must be carried out with CONSULT-II using NATS program card. Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NATS initialization and NATS ignition key ID registration, refer to CONSULT-II operation manual, NATS.

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-49.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel injection system). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" IN "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

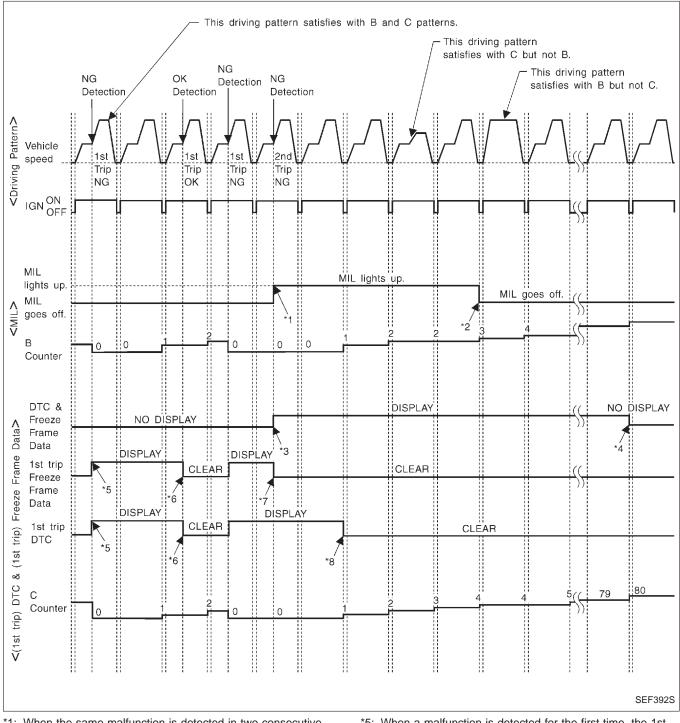
SUMMARY CHART

Items	Fuel Injection System	Misfire	Other	
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)	- RS
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)	-
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)	- BT
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)	HA

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-71.

For details about patterns "A" and "B" under "Other", see EC-71.

*1: Clear timing is at the moment OK is detected.


*2: Clear timing is when the same malfunction is detected in the 2nd trip.

1DX

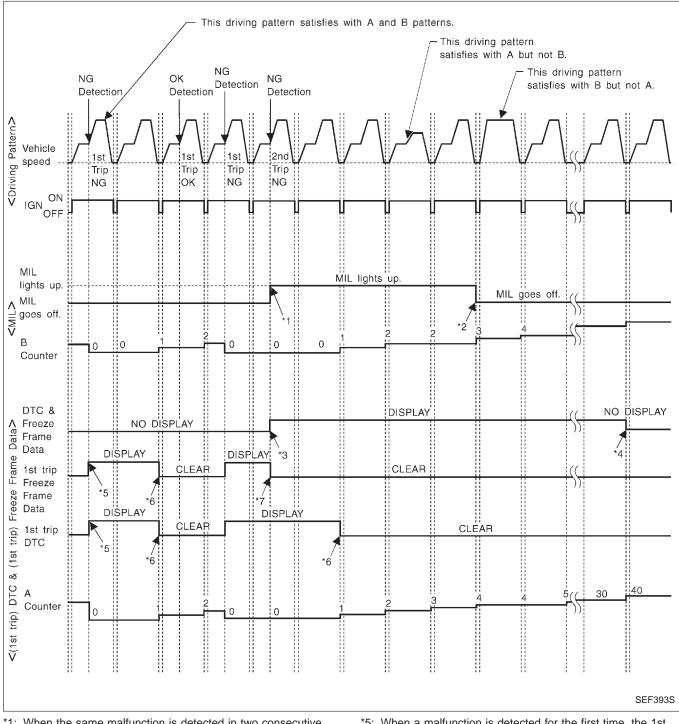
EL

FA

OBD System Operation Chart (Cont'd) RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction.

(The DTC and the freeze frame data still remain in ECM.)


- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven a time (pattern C) without the same malfunction after DTC is stored in ECM.

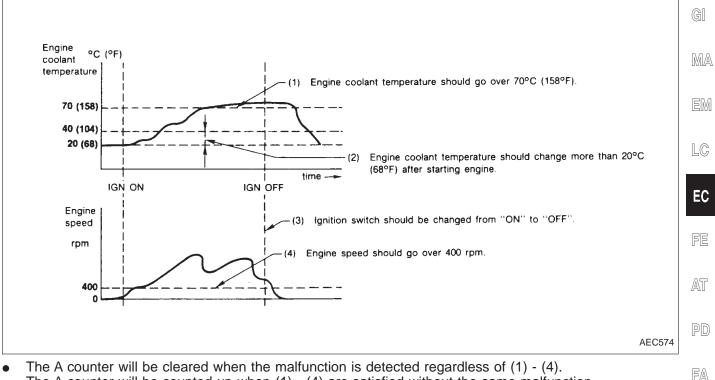
OBD System Operation Chart (Cont'd) EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<pre></pre>	
Driving pattern B means the vehicle operation as follows:	
 All components and systems should be monitored at least once by the OBD system. The B counter will reset when the malfunction is detected once regardless of the driving pattern. 	GI
	MA
<pre><driving c="" pattern=""></driving></pre>	
 Driving pattern C means the vehicle operation as follows: (1) The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm 	EM
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%] Engine coolant temperature (T) condition:	LC
 When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F). When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F). 	EC
Example:	
If the stored freeze frame data is as follows: Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F) To be satisfied with driving pattern C, the vehicle should run under the following conditions:	FE
Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)	AT
• The DTC will not be displayed after C counter reaches 60.	PD
• The 1st trip DTC will be cleared when C counter is counted a time without the same malfunction after DTC is stored in ECM.	FA
	RA
	BR
	ST
	RS
	BT
	HA
	EL
	IDX

OBD System Operation Chart (Cont'd) RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

*1: When the same malfunction is detected in two consecutive trips, MIL will light up.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.


(The DTC and the freeze frame data still remain in ECM.)

- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven a time (pattern A) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

OBD System Operation Chart (Cont'd) EXPLANATION FOR DRIVING PATTERNS EXCEPT FOR "MISFIRE < EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

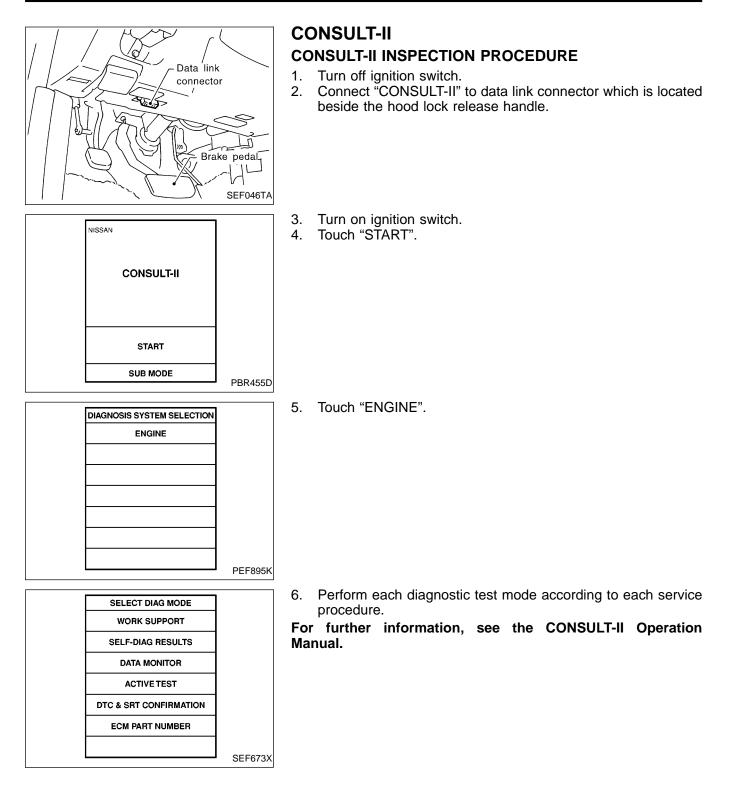
<Driving pattern A>

- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving pattern B>

Driving pattern B means the vehicle operation as follows:

- All components and systems should be monitored at least once by the OBD system.
- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").


RA

BR

HA

EL

CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

-		SELF-DIAGNOSTIC				-	D.	тс
Item			WORK RESULTS*1		D.171		CONFIRMATION	
				FREEZE FRAME DATA*2	DATA MONITOR	ACTIVE TEST	SRT STA- TUS	DTC WORK SUPPORT
	Camshaft position sensor		Х	Х	Х			
	Mass air flow sensor		Х		Х			
	Engine coolant temperature sensor		Х	Х	Х	Х		
	Front heated oxygen sensor		Х		Х		Х	Х
	Rear heated oxygen sensor		Х		Х		Х	Х
	Vehicle speed sensor		Х	Х	Х			
	Throttle position sensor	Х	Х		Х			
	Fuel tank temperature sensor		Х		Х	Х		
	EVAP control system pressure sensor		Х		Х			
	Absolute pressure sensor		Х		Х			
	EGR temperature sensor		Х		Х			
INPUT	Intake air temperature sensor		Х		Х			
	Crankshaft position sensor (OBD)		Х					
	Knock sensor		Х					
	Ignition switch (start signal)				Х			
	Closed throttle position switch		Х					
	Closed throttle position switch (throttle position sensor signal)				Х			
	Air conditioner switch				Х			
	Park/Neutral position switch		Х		Х			
	Power steering oil pressure switch				Х			
	Air conditioner switch				Х			
	Battery voltage				Х			
	Ambient air temperature switch				Х			
	Injectors				Х	Х		
	Power transistor (Ignition timing)		X (Ignition signal)		х	х		
	IACV-AAC valve	Х	Х		Х	Х		
	EVAP canister purge volume control valve		Х		Х	Х		Х
	Air conditioner relay				Х			
	Fuel pump relay	Х			Х	Х		
OUTPUT	EGRC-solenoid valve		Х		Х	Х		
	Front heated oxygen sensor heater		Х		Х		Х	
	Rear heated oxygen sensor heater		Х		Х		Х	
	EVAP canister purge control solenoid valve		Х		Х	Х		
	EVAP canister vent control valve		Х		Х	Х		
	Vacuum cut valve bypass valve		Х		Х	Х		Х
	MAP/BARO switch solenoid valve		Х		Х	Х		
	Calculated load value			Х	Х			

X: Applicable *1: This item includes 1st trip DTCs.

*2: This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-51.

IDX

٦

CONSULT-II (Cont'd)

FUNCTION

Г

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self- diagnosis status/result can be confirmed.
ECM part numbers	ECM part numbers can be read.

*1 The following emission-related diagnostic information is cleared when the ECM memory is erased.

Diagnostic trouble codes
 1st trip diagnostic trouble codes

- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values
- 7. Others

WORK SUPPORT MODE

WORK ITEM	CONDITION	USAGE
IACV-AAC/V ADJ	SET ENGINE SPEED AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. • ENGINE WARMED UP • NO-LOAD	When adjusting ignition timing and idle speed
FUEL PRESSURE RELEASE	• FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE THE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. • IGN SW "ON" • ENGINE NOT RUNNING • AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). • NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM • TANK FUEL TEMP. IS MORE THAN 0°C (32°F). • WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	When detecting EVAP vapor leak point of EVAP system

GI

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

CONSULT-II (Cont'd)

SELF-DIAGNOSTIC MODE

DTC and 1st trip DTC

Regarding items of "DTC and 1st trip DTC", refer to "DIAGNOSTIC TROUBLE CODE INDEX" (See EC-4.).

Freeze frame data and 1st trip freeze frame data

Freeze frame data item*1	Description
DIAG TROUBLE CODE [PXXXX]	• Engine control component part/control system has a trouble code, it is displayed as "PXXXX". [Refer to "Alphabetical & P No. Index for DTC (EC-4).]
FUEL SYS-B1*2	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction
FUEL SYS-B2*2	"MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using heated oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	• The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	• The engine coolant temperature at the moment a malfunction is detected is displayed.
S-FUEL TRM-B1 [%]	• "Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRM-B2 [%]	• The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
L-FUEL TRM-B1 [%]	• "Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRM-B2 [%]	• The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	• The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/h] or [mph]	• The vehicle speed at the moment a malfunction is detected is displayed.
ABSOL PRESS [kPa] or [kg/cm ²] or [psi]	• The absolute pressure at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	• The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	• The intake air temperature at the moment a malfunction is detected is displayed.

*2: Regarding model Y33, "-B1" indicates left bank and "-B2" indicates right bank.

EL

HA

IDX

CONSULT-II (Cont'd)

DATA MONITOR MODE

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks	
CMPS·RPM (POS) [rpm]	0	0	 Indicates the engine speed computed from the POS signal (1° signal) of the crankshaft position sensor (POS). 		
MAS AIR/FL SE [V]	\bigcirc	\bigcirc	 The signal voltage of the mass air flow sensor is displayed. 	• When the engine is stopped, a certain value is indicated.	
COOLAN TEMP/S [°C] or [°F]	0	0	• The engine coolant temperature (deter- mined by the signal voltage of the engine coolant temperature sensor) is displayed.	• When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.	
FR O2 SEN-B1 [V]	\bigcirc	\bigcirc	 The signal voltage of the front heated oxygen sensor is displayed. 		
FR O2 SEN-B2 [V]	\bigcirc				
RR O2 SEN-B1 [V]	\bigcirc	\bigcirc	 The signal voltage of the rear heated oxygen sensor is displayed. 		
RR 02 SEN-B2 [V]	\bigcirc				
FR O2 MNTR-B1 [RICH/LEAN]	0	0	 Display of front heated oxygen sensor signal during air-fuel ratio feedback con- trol: RICH means the mixture became "rich", and control is being affected 	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamp- 	
FR O2 MNTR-B2 [RICH/LEAN]	0	\bigcirc	toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	ing is displayed continuously.	
RR O2 MNTR-B1 [RICH/LEAN]	0		 Display of rear heated oxygen sensor signal during air-fuel ratio feedback con- trol: RICH means the amount of oxygen 	• When the engine is stopped, a certain value is indicated.	
RR O2 MNTR-B2 [RICH/LEAN]	0	0	after three way catalyst is relatively large. LEAN means the amount of oxygen after three way catalyst is relatively small.		
VHCL SPEED SE [km/h] or [mph]	\bigcirc	\bigcirc	• The vehicle speed computed from the vehicle speed sensor signal is displayed.		
BATTERY VOLT [V]	\bigcirc	\bigcirc	 The power supply voltage of ECM is dis- played. 		
THRTL POS SEN [V]	\bigcirc	\bigcirc	 The throttle position sensor signal volt- age is displayed. 		
THRTL/P SEN2 [V]	\bigcirc		 Secondary throttle position sensor signal voltage is displayed. 		
FUEL T/TMP SE [°C] or [°F]	0		 The fuel tank temperature judged from the tank fuel temperature sensor signal voltage is displayed. 		
EGR TEMP SEN [V]	\bigcirc		• The signal voltage of the EGR tempera- ture sensor is displayed.		
INT/A TEMP SE [°C] or [°F]	0		• The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.		

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically. Regarding Y33 model, "-B1" indicates left bank and "-B2" indicates right bank.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks	-
START SIGNAL [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition from the starter signal. 	• After starting the engine, [OFF] is displayed regardless of the starter signal.	_
CLSD THL/P SW [ON/OFF]			 Indicates mechanical contact [ON/OFF] condition from the closed throttle position switch signal. 		- GI
CLSD THL POS [ON/OFF]	\bigcirc	0	 Indicates idle position [ON/OFF] com- puted by ECM according to the throttle position sensor signal. 		- MA
AIR COND SIG [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 		EM
P/N POSI SW [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition from the park/neutral position switch signal. 		LC
PW/ST SIGNAL [ON/OFF]	\bigcirc	0	 [ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure signal is indi- cated. 		EC
LOAD SIGNAL [ON/OFF]	0	0	 Indicate [ON/OFF] condition from the electrical load signal and/or lighting switch. ON rear defogger is operating. OFF rear defogger is not operating. 		FE AT
AMB TEMP SW [ON/OFF]	0	0	 Indicate [ON/OFF] condition from the ambient temperature signal. ON When the ambient temperature is lower than specified value. OFF When the ambient temperature is higher than specified value. 		- PD - FA
IGNITION SW [ON/OFF]	\bigcirc		 Indicates [ON/OFF] condition from igni- tion switch. 		
A/C PRESS SW [ON/OFF]	0		 Indicate [ON/OFF] condition of air condi- tioner pressure switch signal. ON A/C pressure is higher than speci- fied value. OFF A/C pressure is lower than speci- fied value. 		- RA BR
INJ PULSE-B1 [msec]		0	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	 When the engine is stopped, a certain computed value is indicated. 	- ST
B/FUEL SCHDL			 "Base fuel schedule" indicates the fuel 		RS
[msec]		\bigcirc	injection pulse width programmed into ECM, prior to any learned on board cor- rection.		BT
IGN TIMING [BTDC]		0	• Indicates the ignition timing computed by ECM according to the input signals.	• When the engine is stopped, a certain value is indicated.	- HA
IACV-AAC/V [step]		0	 Indicates the IACV-AAC valve control value computed by ECM according to the input signals. 		_ EL
PURG VOL C/V [step]		0	 Indicates the EVAP canister purge volume control valve computed by the ECM according to the input signals. The opening becomes larger as the value increases. 		IDX
A/F ALPHA-B1 [%]			 The mean value of the air-fuel ratio feed- back correction factor per cycle is indi- cated. 	 When the engine is stopped, a certain value is indicated. This data also includes the data for the 	_
A/F ALPHA-B2 [%]			 The signal voltage of EVAP control system pressure sensor is displayed. 	air-fuel ratio learning control.	_

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
AIR COND RLY [ON/OFF]			• The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.	
FUEL PUMP RLY [ON/OFF]			 Indicates the fuel pump relay control con- dition determined by ECM according to the input signals. 	
INT/V SOL-B1 INT/V SOL-B2 [ON/OFF]			 The control condition of the intake valve timing control solenoid valve is indicated. ON Intake valve timing control is oper- ating. OFF Intake valve timing control is not operating. 	
INT/V TIM-B1 INT/V TIM-B2 [deg]			 Indicate [deg] of intake camshaft advanced angle. 	
COOLING FAN [HI/OFF]			 The control condition of the cooling fan (determined by ECM according to the input signal) is indicated. HI High speed operation OFF Stop 	
EGRC SOL/V [ON/OFF] (flow/cut)			 The control condition of the EGRC-sole- noid valve (determined by ECM accord- ing to the input signal) is indicated. OFF EGR is cut-off ON EGR is operational 	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
FR O2 HTR-B1 [ON/OFF]			 Indicates [ON/OFF] condition of front heated oxygen sensor's heater deter- mined by ECM according to the input 	
FR O2 HTR-B2 [ON/OFF]			signals.	
RR O2 HTR-B1 [ON/OFF]			 Indicates [ON/OFF] condition of rear heated oxygen sensor's heater deter- mined by ECM according to the input 	
RR O2 HTR-B2 [ON/OFF]			mined by ECM according to the input signals.	
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	
PURG CONT S/V [ON/OFF]			 The control condition of the EVAP canister purge control solenoid valve (computed by the engine control module according to the input signals) is indicated. ON Canister purge is operational OFF Canister purge operation is cutoff 	
CAL/LD VALUE [%]			 "Calculated load value" indicates the value of the current airflow divided by peak airflow. 	
ABSOL TH·P/S [%]			• "Absolute throttle position sensor" indi- cates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.	
MASS AIRFLOW [g·m/s]			 Indicates the mass airflow computed by ECM according to the signal voltage of the mass airflow sensor. 	
FPCM DR VOLT [V]			 The voltage between fuel pump and FPCM is displayed. 	

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks	
FPCM [LOW/HI]			 The control condition of the fuel pump control module (FPCM) (determined by ECM according to the input signal) is indicated. LOW Low amount of fuel flow HI High amount of fuel flow 		GI MA
MAP/BARO SW/V [MAP/BARO]			 The control condition of the MAP/BARO switch solenoid valve (determined by ECM according to the input signal) is indicated. MAP Intake manifold absolute pressure BARO Barometric pressure 		EM
ABSOL PRES/SE [V]			 The signal voltage of the absolute pres- sure sensor is displayed. 		LC
VOLTAGE [V]			• Voltage measured by the voltage probe.		EC
PULSE [msec] or [Hz] or [%]			 Pulse width, frequency or duty cycle measured by the pulse probe. 	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured. 	FE
		1		•	AT

FA

RA

BR

ST

RS

BT

HA

EL

IDX

CONSULT-II (Cont'd)

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Fuel injectors Front heated oxygen sensor
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening step using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connector IACV-AAC valve
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Adjust ignition timing (by moving camshaft position sensor)
POWER BALANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Ignition coil with power transistor Spark plugs
COOLING FAN	 Ignition switch: ON Turn the cooling fan "ON" and "OFF" using CONSULT-II. 	Cooling fan moves and stops.	Harness and connectorCooling fan motor
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	 Harness and connector Fuel pump relay
EGRC SOLENOID VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	 Harness and connector EGRC-solenoid valve
VALVE TIMING SOL	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	 Harness and connector Intake valve timing control solenoid valve
SELF-LEARNING CONT	 In this test, the coefficient of self-learning screen. 	ng control mixture ratio returns to the origin	hal coefficient by touching "CLEAR" on the
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control valve opening step using CONSULT-II. 	Engine speed changes according to the opening step.	 Harness and connector EVAP canister purge volume control valve
FUEL/T TEMP SEN	Change the fuel tank temperature using	g CONSULT-II.	•
VENT CONT/V	 Ignition switch: ON (Engine stopped) Turn the VENT CONT/V "ON and OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	 Harness or connector EVAP canister vent control valve
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn the VC/V BYPASS/V "ON and OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	 Harness or connector Vacuum cut bypass valve
PURG CONT S/V	 Engine: Run engine at 2,000 rpm. Turn the EVAP canister purge control solenoid valve "ON" and "OFF" using CONSULT-II and listen for operating sound. 	EVAP canister purge control solenoid valve makes an operating sound. Check vacuum signal for EVAP canister purge control valve. VC ON Vacuum exists. VC OFF Vacuum does not exist.	 Harness and connector EVAP canister purge control solenoid valve Vacuum hose
MAP/BARO SW/V	 Ignition switch: ON (Engine stopped) Turn the MAP/BARO switch solenoid valve between "MAP" and "BARO" using CONSULT-II and listen for operating sound. 	MAP/BARO switch solenoid valve makes an operating sound.	 Harness and connector MAP/BARO switch solenoid valve
FPCM	 Ignition switch: ON Select "LOW" and "HI" with CONSULT-II and check that "FPCM D/R VOLT" of CONSULT-II changes. 	"FPCM D/R VOLT" of CONSULT-II changes as follows; LOW Approx. 4.7V HI Approx. 0.4V	Harness and connector FPCM

GI

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

CONSULT-II (Cont'd)

DTC CONFIRMATION MODE

SRT STATUS mode

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-51.

SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC WORK SUPPORT mode

Test mode	Test item	Condition	Reference page			
	PURGE FLOW P1447		EC-455			
EVAPORATIVE	VC CUT/V BP/V P1491		EC-473	—— EM		
	PURG CN/V & S/V P1493		EC-486			
SYSTEM	PURG VOL CN/V P1444		EC-442	LC		
	EVAP SML LEAK P0440		EC-296			
	EVAP SML LEAK P1440		EC-430			
	FR O2 SEN-B1 P0131		EC-174	EC		
	FR O2 SEN-B1 P0132		EC-180			
	FR O2 SEN-B1 P0133		EC-186	FE		
	FR O2 SEN-B1 P0130		EC-166			
FR O2 SENSOR	FR O2 SEN-B2 P0151		EC-174			
	FR O2 SEN-B2 P0152	Refer to corresponding trouble diagnosis for DTC.	EC-180	AT		
	FR O2 SEN-B2 P0153		EC-186			
	FR O2 SEN-B2 P0150		EC-166	PD		
	RR O2 SEN-B1 P0137		EC-208	- PU		
	RR O2 SEN-B1 P0138		EC-216			
RR O2 SENSOR	RR O2 SEN-B1 P0139		EC-224	FA		
RR UZ SENSUR	RR O2 SEN-B2 P0157		EC-208			
	RR O2 SEN-B2 P0158		EC-216			
	RR O2 SEN-B2 P0159		EC-224	RA		
	EGR SYSTEM P0400		EC-279			
EGR SYSTEM	EGRC-BPT/VLV P0402		EC-288			
	EGR SYSTEM P1402		EC-421			

ST

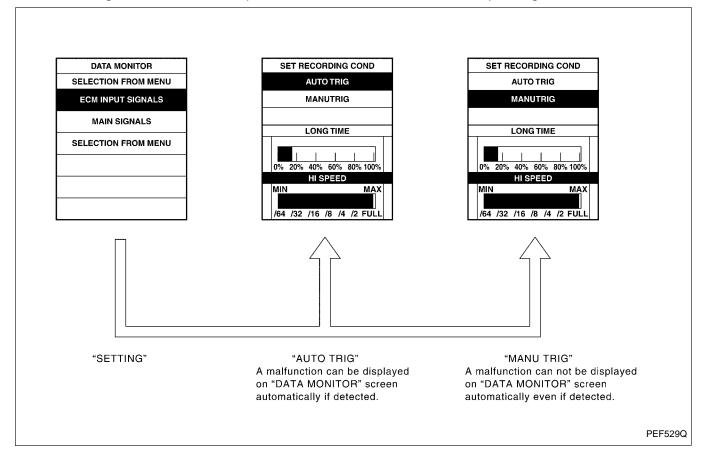
RS

BT

HA

EL

IDX



CONSULT-II (Cont'd)

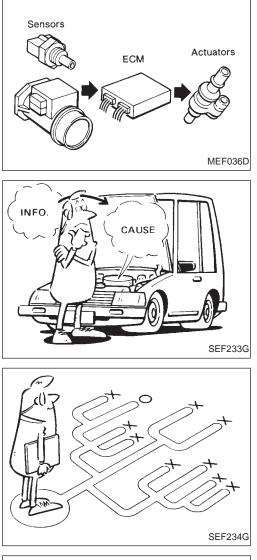
REAL TIME DIAGNOSIS IN DATA MONITOR MODE (Recording vehicle data)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1. "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT-II screen in real time. In other words, DTC/1st trip DTC and malfunction item will be displayed at the moment the malfunction is detected by ECM.
 DATA MONITOR can be performed continuously until a malfunction is detected. However, DATA MONI-TOR cannot continue any longer after the malfunction detection.
- 2. "MANU TRIG" (Manual trigger):
 - DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.
 - DATA MONITOR can be performed continuously even though a malfunction is detected.
- Use these triggers as follows:
- 1. "AUTO TRIG"
 - While trying to detect the DTC/1st trip DTC by performing the "DTC CONFIRMATION PROCEDURE", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
 - While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC CONFIRMATION PROCEDURE", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI section, "Incident Simulation Tests" in "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".)
- 2. "MANU TRIG"
 - If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

Generic Scan Tool (GST): Sample	Generic Scan Tool (GST)	
	DESCRIPTION Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 7 different functions explained on the next page. ISO9141 is used as the protocol. The name "GST" or "Generic Scan Tool" is used in this service manual.	GI MA
SEF139P		EM
- Data link	 GST INSPECTION PROCEDURE 1. Turn off ignition switch. 2. Connect "GST" to data link connector which is located under 	LC
connector	LH dash panel near the hood lock release handle.	EC
Brake pedal		FL
SEF046TA		AT
	 Turn ON ignition switch. Enter the program according to instruction on the screen or in the operation manual. 	PD
VTX GENERIC OBD II PROGRAM CARD	(*: Regarding GST screens in this section, sample screens are shown.)	FA
		RA
Press [ENTER]		BR
Sample screen* SEF398S		
OBD II FUNCTIONS	5. Perform each diagnostic mode according to each service pro- cedure.	ST
F0: DATA LIST F1: FREEZE DATA F2: DTCs F3: SNAPSHOT	For further information, see the GST Operation Manual of the tool maker.	RS
F4: CLEAR DIAG INFO F5: O2 TEST RESULTS F6: READINESS TESTS		BT
F7: ON BOARD TESTS F8: EXPAND DIAG PROT F9: UNIT CONVERSION		HA
Sample screen* SEF416S		EL

IDX


Generic Scan Tool (GST) (Cont'd)

FUNCTION

[Diagnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-77).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	 This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8		 This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed. EVAP canister vent control open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch "OFF" Low fuel temperature Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

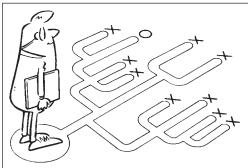
MA

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are EM caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

LC A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-89.


EC Before undertaking actual checks, take just a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, espe-FE cially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example below should be used.

AT Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

PD

FA

RA

SEF907L

KEY POINTS

	Vehicle & engine model
WHEN	Date, Frequencies
WHERE	Road conditions
HOW	Operating conditions,
	Weather conditions,
	Symptoms

Diagnostic Worksheet

There are many operating conditions that lead to the malfunctions of engine components. A good knowledge of such conditions can make troubleshooting faster and more accurate.

In general, each customer may feel differently about a given problem. It is important to fully understand the symptoms or conditions BT for a customer complaint.

Utilize a diagnostic worksheet like the one shown below in order to organize all the information for troubleshooting.

HA Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused engine misfire.
- EL Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for models with EVAP (SMALL LEAK)] diagnosis.

TROUBLE DIAGNOSIS — Introduction

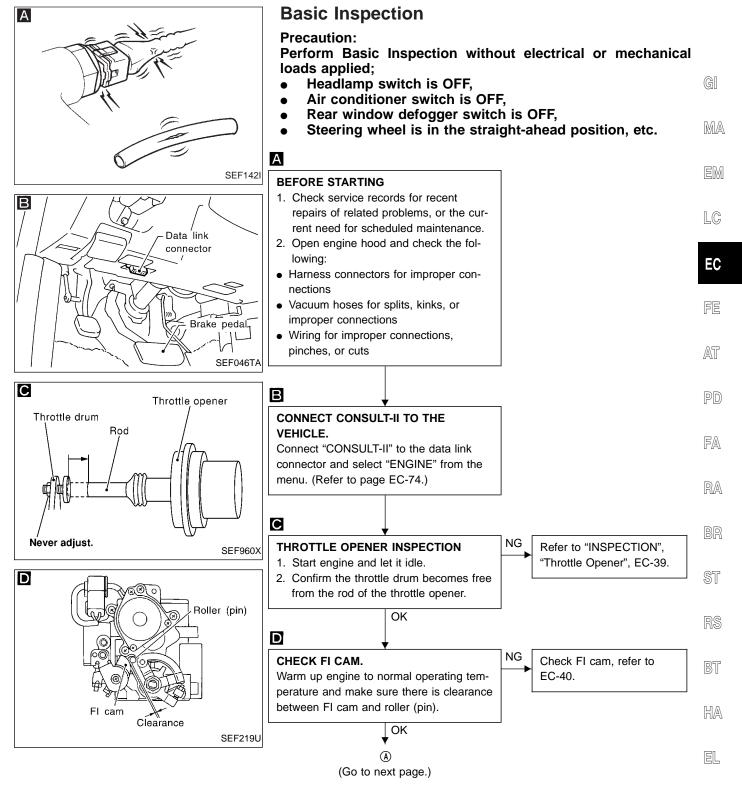
Diagnostic Worksheet (Cont'd)

WORKSHEET SAMPLE

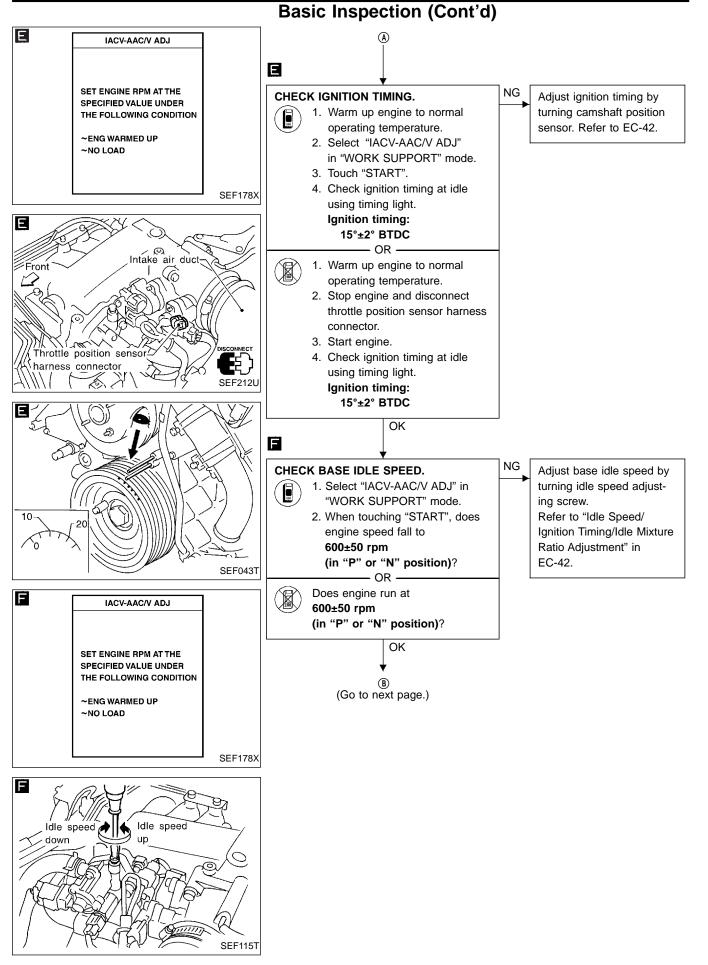
Customer nar	me MR/MS	Model & Year VIN
Engine #		Trans. Mileage
Incident Date		Manuf. Date In Service Date
Fuel and fuel	filler cap	 Vehicle ran out of fuel causing misfire. Fuel filler cap was left off or incorrectly screwed on.
	□ Startability	 Impossible to start No combustion Partial combustion affected by throttle position Partial combustion NOT affected by throttle position Possible but hard to start Others [
Cumptons	□ Idling	□ No fast idle □ Unstable □ High idle □ Low idle □ Others []
Symptoms	Driveability	□ Stumble □ Surge □ Knock □ Lack of power □ Intake backfire □ Exhaust backfire □ Others []
	□ Engine stall	At the time of start While idling While accelerating While decelerating Just after stopping While loading
Incident occu	rrence	□ Just after delivery □ Recently □ In the morning □ At night □ In the daytime
Frequency		□ All the time □ Under certain conditions □ Sometimes
Weather cond	ditions	□ Not affected
	Weather	□ Fine □ Raining □ Snowing □ Others []
	Temperature	□ Hot □ Warm □ Cool □ Cold □ Humid °F
Engine condit	tions	□ Cold □ During warm-up □ After warm-up Engine speedIII 0 2,000 4,000 6,000 8,000 rpm
Road condition	ons	□ In town □ In suburbs □ Highway □ Off road (up/down)
Driving condit	tions	 Not affected At starting While idling
Malfunction ir	ndicator lamp	□ Turned on □ Not turned on

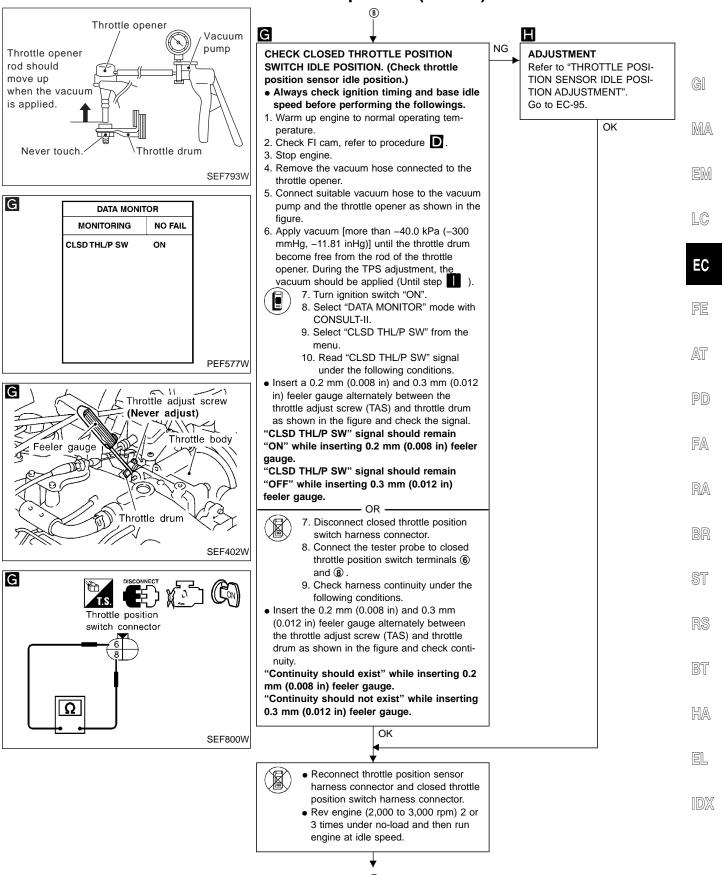
TROUBLE DIAGNOSIS — Work Flow

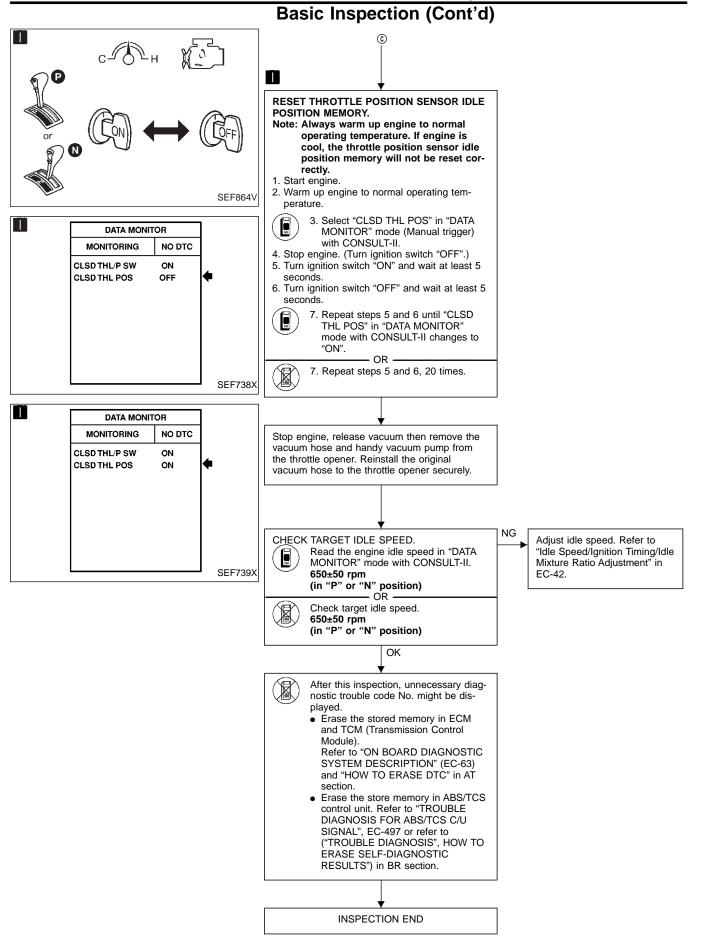
	Work	Flow			
СН	ECK IN				
	↓				
CHECK INCIDENT CONIL Listen to customer complete				· STEP I	GI
	¥				MA
Freeze Frame Data (Pre- If DTC is not available ev	write down), (1st trip) Diagnos check). Then clear. Paste it ir en if MIL lights up, check ECI	repair order sheet.	***	³ STEP II	EM
Also check related service Symptoms collected		o symptoms, except MIL			
Symptoms collected	lig	hts up, or (1st trip) TC exists at STEP II.			LC
Verify the symptom by dri tomer described.	ving in the condition the cus-]	**	I STEP III	EC
Normal Code at STEP II)	Malfunction Code (at STEP II)				FE
INCIDENT INFORMATIO Verify the (1st trip) DTC b	♦ N by performing the "DTC CONF	▼ FIRMATION PROCEDURE".	**	^I STEP IV	AT
	•				
Choose the appropriate a	ction.		*2	· STEP V	PD
Malfunction Code (at S	STEP II or IV) Vormal Coc	le (at both STEP II and IV)			
	BASIC INS				FA
	SYMPTOM	BASIS (at STEP I or III)			RA
	Perform inspections accord- ing to Symptom Matrix Chart.		-		
Ļ					BR
TROUBLE DIAGNOSIS F				STEP VI	ST
	REPAIR/REPLACE				
			-		RS
DTC CONFIRMATION PF	ROCEDURE (or OVERALL FL			· STEP VII	BT
Control Module).	sary (already fixed) DTCs in E	CM and TCM (Transmission			HA
	♦ОК				5 55 6
	CK OUT needed, drive the vehicle rn. Refer to EC-56.				EL
L					IDX


- *1: If the incident cannot be duplicated, see "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.
- *2: If the on board diagnostic system cannot be performed, check main power supply and ground circuit (See TROUBLE DIAGNOSIS FOR POWER SUPPLY, EC-118).
- *3: If time data of "SELF-DIAG RESULTS" is other than "0" or "1t" refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT", EC-117.
- *4: If the malfunction part cannot be found, refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

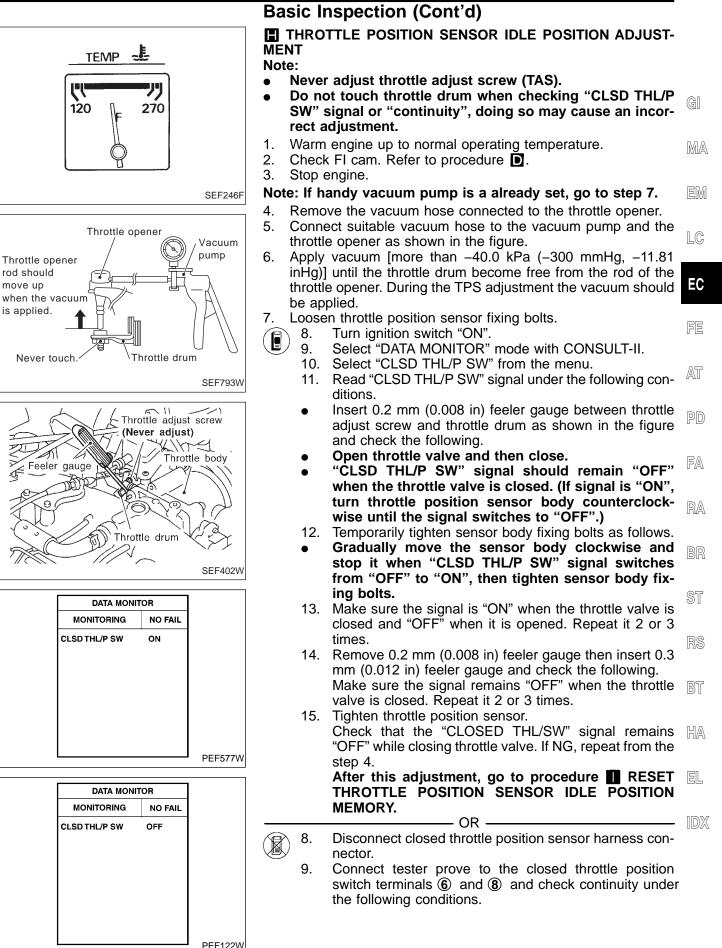
Description for Work Flow


STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-87.
STEP II	 Before confirming the concern, check and write down (print out using CONSULT-II or Generic Scan Tool) the Diagnostic Trouble Code (DTC) and the (1st trip) freeze frame data, then erase the code and the data. (Refer to EC-63.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See page EC-99.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON- SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	 Try to detect the (1st trip) Diagnostic Trouble Code by driving in (or performing) the "DTC CONFIRMATION PRO-CEDURE". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or Generic Scan Tool. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) In case the "DTC CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION on next page. Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-99.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CON- SULT-II. Refer to EC-102. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to GI section ("HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection"). Repair or replace the malfunction parts.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC CONFIRMATION PROCEDURE" and confirm the normal code (Diagnostic trouble code No. P0000 or 0505) is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission Control Module). (Refer to EC-63.)

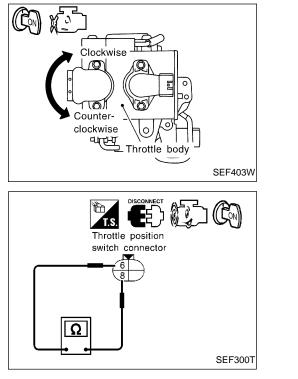

IDX


TROUBLE DIAGNOSIS — Basic Inspection Basic Inspection (Cont'd)

(Go to next page.)


TROUBLE DIAGNOSIS — Basic Inspection

EC-94



TROUBLE DIAGNOSIS — Basic Inspection

Basic Inspection (Cont'd)

- Insert the 0.2 mm (0.008 in) feeler gauge between the throttle adjust screw and throttle drum as shown in the figure and check the following.
- Open throttle valve then close.
- The continuity should not exist while closing the throttle valve. If the continuity exists, turn throttle position sensor body counterclockwise until the continuity does not exist.
- 10. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then tighten sensor body fixing bolts.
- 11. Make sure the continuity exists when the throttle valve is closed and continuity does not exist when it is opened. Repeat it 2 or 3 times.
- Remove 0.2 mm (0.008 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge and check the following. Make sure the continuity does not exist when the throttle valve is closed. Repeat it 2 or 3 times.
- Tighten throttle position sensor. Check that the continuity does not exist while closing the throttle valve. If NG, repeat from the step 5. After this adjustment, go to procedure RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.

Diagnostic Trouble Code (DTC) Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority		Detected items (DTC)	
1	• ECM (P0605, 0301)	• Vehicle speed sensor (P0500, 0104)	• Engine coolant temperature sensor (P0115, 0103) (P0125, 0908)
	• Mass air flow sensor (P0100, 0102)	 Intake air temperature sensor (P0110, 0401) 	• Ignition signal circuit (P1320, 0201)
	• Throttle position sensor (P0120, 0403)	 Knock sensor (P0325, 0304), (P0330, 0212) 	 Park/Neutral position switch (P1706, 1003)
	• EGRC-solenoid (P1400, 1005)	 Crankshaft position sensor (OBD) circuit (P0335, 0802) (P1336, 0905) 	 Camshaft position sensor (P0340, 0101)
	• A/T communication line (P0600, 0504), (P1605, 0804)	 Tank fuel temperature sensor (P0180, 0402) 	
2	• EGR temperature sensor (P1401, 0305)	 Rear heated oxygen sensor (P0137 - P0140) (0150 - 0152, 0707), (P0157 - P0160) (0313 - 0315, 0708) 	 EVAP control system pressure sensor (P0450, 0704)
	 A/T related sensors, solenoid valves and switches (P0705 - P0725, 1101 - 1208) (P0740, 1108 - 1206) 	 Front heated oxygen sensor's heater (P0135, 0901) (P0155, 1001) 	• Vacuum cut valve bypass valve (P1491, 0311) (P1490, 0807)
	• Absolute pressure sensor (P0105, 0803)	 Closed throttle position switch (P0510, 0203) 	• EVAP canister vent control valve (P0446, 0903) (P1446, 0215) (P1448, 0309)
	• MAP/BARO switch solenoid valve (P1105, 1302)	 Intake valve timing control position sensor circuit (P1140, 1303), (P1145, 1304) 	• EVAP canister purge volume con- trol valve (P1444, 0214) (P0443, 1008)
	• Tandem throttle position sensor (P1125, 0110)	 Front heated oxygen sensor (P0130 - P0134, 0303, 0409 - 0412) (P0150 - P0154, 0413 - 0415, 0503, 0509) 	• EVAP control system purge flow monitoring (P1447, 0111)
	• Secondary throttle position sensor (P1120, 0406)	 Rear heated oxygen sensors heater (P0141, 0902), (P0161, 1002) 	 EVAP canister purge control valve/ solenoid valve (P1493, 0312), (P1492, 0807)
3	• EGR function (P0400, 0302) (P1402, 0514)	• TCS signal (P1210, 0106)	• Fuel pump control module (FPCM) (P1220, 1305)
	 EVAP control system (SMALL LEAK) (P0440, 0705) (P1440, 0213) (GROSS LEAK) (P0455, 0715) 	 Misfire (P0300 - P0308, 0701 - 0601) 	 Fuel injection system function (P0172, 0114), (P0171, 0115), (P0175, 0209), (P0174, 0210)
	 EGRC-BPT valve function (P0402, 0306) 	 Closed loop control (P1148, 0307) (P1168, 0308) 	 Three way catalyst function (P0420, 0702) (P0430, 0703)
	• IACV-AAC valve (P0505, 0205)	• A/T function (P0731 - P0734, 1103 - 1106) (P0744, 1107)	 Intake valve timing control function (P1110, 0805), (P1135, 1301)

Fail-Safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions are detected due to the open or short circuit.

When the ECM enters the fail-safe mode, the MIL illuminates.

	No.									
CONSULT-II GST	ECM*	Detected items	Engine opera	ting condition in fail-safe mode						
P0100	0102	Mass air flow sensor cir- cuit	Engine speed will not rise mo	pre than 2,400 rpm due to the fuel cut.						
P0115	0103	Engine coolant tempera- ture sensor circuit	Engine coolant temperature will be determined by ECM based on the ti after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.							
			Condition	Engine coolant temperature decided (CONSULT-II display)						
			Just as ignition switch is turned Start	d ON or 40°C (104°F)						
			More than 4 minutes after ignit	ion Start 80°C (176°F)						
			Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)						
P0120	0403	Throttle position sensor circuit	Throttle position will be detern and the engine speed. Therefore, acceleration will be	mined based on the amount of mass air flow e poor.						
				Driving condition						
		When engine is idling	Normal							
			When accelerating	Poor acceleration						
P1210	0106	TCS signal circuit	TCS does not operate. For details, refer to BR section	on ("TROUBLE DIAGNOSIS FOR TCS").						
Unable to access ECM	Unable to access Diag- nostic Test Mode II	ECM	When the fail-safe system ac condition in the CPU of ECM the instrument panel lights to However, it is not possible to Engine control with ECM fa When the fail-safe system is	e ECM was judged to be malfunctioning. tivates, i.e. if the ECM detects a malfunction , the MALFUNCTION INDICATOR LAMP on warn the driver. access ECM and DTC cannot be confirmed. iil-safe operating, fuel injection, ignition timing, fuel ralve operation and cooling fan operation are						
				ECM fail-safe operation						
			Engine speed E	ngine speed will not rise more than 3,000 rpm.						
			Fuel injection	Simultaneous multiport fuel injection system						
			Ignition timing	Ignition timing is fixed at the preset value.						
			Fuel pump Fu	el pump relay is "ON" when engine is running and "OFF" when engine stalls.						
				poling fan relay "ON" (High speed condition) when engine is running, and "OFF" when engine stalls.						

*: In Diagnostic Test Mode II (Self-diagnostic results)

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

Reference page

SYMPTOM EATS/WATER TEMPERATURE HIGH F POWER/POOR ACCELERATION IO START/RESTART (EXCP. HA) Y DEAD (UNDER CHARGE) TION/SURGING/FLAT SPOT SIVE FUEL CONSUMPTION SIVE OIL CONSUMPTION KNOCK/DETONATION IO RETURN TO IDLE IDLE/HUNTING - Basic engine control system LE/LOW IDLE VIBRATION HARGING STALL SUOC

		HARD/N	ENGINE	HESITAT	SPARK P	LACK OF	HIGH ID	ROUGH	IDLING \	SLOW/N	OVERHE	EXCESS	EXCESS	OVERCO	OVERCH	BATTER	
Warranty s	ymptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	1P	1X	HA	
Fuel	Fuel pump circuit	1	1	2	3	2		3	3			3				2	EC-521
	Fuel pressure regulator system	2	3	4	4	4	4	4	4	4		4					EC-37
	Injector circuit	1	1	2	2	2	2	2	2			2					EC-513
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4					EC-26
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1				EC-36
	Incorrect idle speed adjustment	3	3				1	1	1	1		1					EC-42
	IACV-AAC valve circuit	1	1	2	2	2	2	2	2	2		2					EC-338
	IACV-FICD solenoid circuit		3				2	3	3	2							EC-525
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1					EC-42
	Ignition circuit	1	1	2	3	2		2	3			2					EC-397
EGR	EGRC-solenoid valve	2	3	3	3	3		3				3					EC-410
	EGR system	2	1	2	3	3	3	2	3	3		3					EC-421
Main powe	r supply and ground circuit	2	3	3	3	3		2	2		3	3				3	EC-118
Cooling	Cooling fan circuit	3	3	3	3	3	3	3	3	3	1	2		1		3	EC-501
Air conditio	ner circuit	3	3	3	3	3	3	3	3	3		3				3	HA section

Symptom Matrix Chart

1 - 6: The numbers refer to the order of inspection.

SYSTEM

BR

ST

RS

BT

HA

EC-99

IDX

EL

TROUBLE DIAGNOSIS — General Description Symptom Matrix Chart (Cont'd)

								SY	MPT	ОМ							
SYSTEM — Engine cor	ntrol system	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	OVERCOOLS	OVERCHARGING	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty sym		AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	1P	1X	HA	
Engine con-	Camshaft position sensor circuit	2	2	2	2	2	3	3	3								EC-273
trol	Mass air flow sensor circuit	1	1	2	3	2	2	2	2	2		2					EC-124
	Front heated oxygen sensor circuit	2	1	2	3	2		2	3			2					EC-195, 166
	Engine coolant temperature sensor circuit	1	1	3	3	3	3	2	3	3	2	3					EC-145, 161
	Throttle position sensor circuit		1	2		2	3	2	2	3		2					EC-150
	Incorrect throttle position sensor adjust- ment		2	3		3	1	3	3	1		3					EC-91
	Intake valve timing control system		3	3		3		3				3					EC-365, 380
	Vehicle speed sensor circuit		3	3		3						3					EC-333
	Knock sensor circuit	2	3	2	2	2	3	2				3					EC-265
	ECM	3	3	3	3	3	3	3	3	3	3	3					EC-353, 98
	Start signal circuit	2															EC-519
	Park/Neutral position switch circuit			3		3		3	3			3					EC-492
	FPCM	2	2	2		2		2									EC-391
	Power steering oil pressure switch circuit		2					3	3								EC-525

1 - 6: The numbers refer to the order of inspection.

TROUBLE DIAGNOSIS — General Description Symptom Matrix Chart (Cont'd)

								SY	MPT	OM								
SYSTEM — Engine m	echanical & other	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	OVERCOOLS	OVERCHARGING	BATTERY DEAD (UNDER CHARGE)	Reference page	gi Ma Em Lc
Warranty syr	notom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	1P	1X	HA		
Fuel	Fuel tank	5															FE section	EC
	Fuel piping	2		5	5	2		5	5			5	1					
	Vapor lock						1			1								
	Valve deposit		5				1			1			1					FE
	Poor fuel (Heavy weight gasoline, Low	5		5	5	5		5	5			5						
	octane)																—	
Air	Air duct	5																AT
	Air cleaner																	1-71
	Air leakage from air duct																	
	(Mass air flow sensor — throttle body)	4	5	5		5		5	5			5						PD
	Throttle body, Throttle wire	5			5		5			5	5						FE section	
	Air leakage from intake manifold/																_	
Cranking	Collector/Gasket																	FA
Cranking	Battery Alternator circuit	1	1	1		1		1	1			1			1	1		0 6-0
	Starter circuit																EL section	
	Theft warning circuit	3																RA
	PNP switch	4	-														AT section	
		6	-														EM section	
Engino	Drive plate	0															ENISECTION	BR
Engine	Cylinder head Cylinder head gasket	-									4							מוש
	Cylinder head gasket	-									4							
	Piston	-											6					ST
	Piston ring	6	6	6	6	6		6	6			6						01
	Connecting rod	-											<u> </u>					
	Bearing	-															EM section	ര
	Crankshaft	{											6					RS
Valve	Timing chain	6	6	6	6	6		6	6			6	6					
mechanism	Camshaft	5	5	5	5	5		5	5	1		5						65
	Intake valve		5				-			1								BT
	Exhaust valve	6	6	6	6	6		6	6			6	6					
Exhaust	Exhaust manifold/Tube/Muffler/Gasket																EM section &	ППА
Exhlaust	Three way catalytic converter	5	5	5	5	5	5	5			5						FE section	HA
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil								1				1			<u> </u>		
	gallery	5	5	5	5	5		5			5	5				5		P
	Oil level (Low)/Filthy oil	Ť																EL
Cooling	Radiator/Hose/Radiator filler cap																LC section	
5	Thermostat	1					5	1		5	1			2	1			
	Water pump	1						1			1			<u> </u>	1			IDX
	<u> </u>	5	5	5	5	5					4	5						
	Water gallery				1	1	L	4	I.	<u> </u>	4		1	—	1	1		
	Water gallery Cooling fan	1					5			5				2			EC section	
	Cooling fan	-					5			5	-			2	-		EC section MA section	
IVIS (Infiniti)		1	1				5			5	-			2				

1 - 6: The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
- * Specification data may not be directly related to their components signals/values/operations.
- i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor (POS) and other ignition timing related sensors.
- If the real-time diagnosis results are NG and the on board diagnostic system results are OK when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CONI	DITION	SPECIFICATION		
CMPS·RPM (POS)	Tachometer: Connect Run engine and compare tachometer in	Almost the same speed as the CON- SULT-II value.			
	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" 	Idle	1.0 - 1.7V		
MAS AIR/FL SE	 Shift lever: "N" No-load 	2,500 rpm	Approx. 2.1V		
COOLAN TEMP/S	Engine: After warming up		More than 82°C (180°F)		
FR O2 SEN-B1					
FR O2 SEN-B2			0 - 0.3V ↔ 0.6 - 1.0V		
FR O2 MNTR-B1	 Engine: After warming up 	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times		
FR O2 MNTR-B2			during 10 seconds.		
RR O2 SEN-B1			0 - 0.3V ↔ 0.6 - 1.0V		
RR O2 SEN-B2	Engine: After warming up	Revving engine from idle to 2,000 rpm guickly	0-0.37 0.0-1.07		
RR O2 MNTR-B1		LEAN ↔ RICH			
RR O2 MNTR-B2					
VHCL SPEED SE	Turn drive wheels and compare speede value	ometer indication with the CONSULT-II	Almost the same speed as the CONSULT-II value		
BATTERY VOLT			11 - 14V		
	Engine: After warming up Ignition switch: ON	Throttle valve: fully closed	0.15 - 0.85V		
THRTL POS SEN	 Hore than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump. 	Throttle valve: fully opened	3.5 - 4.7V		
		Throttle valve: fully closed	0.60 - 1.15V		
THRTL/P SEN2	(Engine stopped)	Throttle valve: fully open	4.3 - 4.7V		
EGR TEMP SEN	Engine: After warming up		Less than 4.5V		
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \rightarrow ON \rightarrow OFF$		
RR O2 MNTR-B1 • Engine: After warming up RR O2 MNTR-B2 • Turn drive wheels and compare speed value BATTERY VOLT • Ignition switch: ON (Engine stopped) BATTERY VOLT • Ignition switch: ON (Engine stopped) THRTL POS SEN • Engine: After warming up • Ignition switch: ON (Engine stopped) • More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump. THRTL/P SEN2 • Ignition switch: ON (Engine stopped) EGR TEMP SEN • Engine: After warming up START SIGNAL • Ignition switch: ON → START → ON CLSD THL POS • Engine: After warming up CLSD THL POS • Engine: After warming up AIR COND SIG • Engine: After warming up, idle the engine P/N POSI SW • Ignition switch: ON PW/ST SIGNAL • Engine: After warming up, idle the engine	Engine: After warming up Ignition switch: ON (Engine stopped)	Throttle valve: Idle position	ON		
	Throttle valve: Slightly open	OFF			
		Air conditioner switch: "OFF"	OFF		
AIR COND SIG		Air conditioner switch: "ON" (Compressor operates.)	ON		
	- Ignition switch: ON	Shift lever: "P" or "N"	ON		
F/IN F03I 3W		Except above	OFF		
PW/ST SIGNAL		Steering wheel in neutral position (forward direction)	OFF		
-		The steering wheel is turned	ON		
AMB TEMP SW	Engine: Running	Ambient air temperature more than 23.5°C	ON		
		Ambient air temperature less than 20.5°C	OFF		
LOAD SIGNAL	Engine: Running	Rear window defogger or headlamp "ON"	ON		
		Except above	OFF		
A/C PRESS SW	Engine: Running	A/C pressure is more than 1,422 - 1,618 kPa (14.5 - 16.5 kg/cm ² , 206 - 235 psi)	ON		
		A/C pressure is less than 1,128 - 1,422 kPa (11.5 - 14.5 kg/cm ² , 164 - 206 psi)	OFF		

Note: B1 indicates Left bank, B2 indicates Right bank.

TROUBLE DIAGNOSIS — General Description CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONI	DITION	SPECIFICATION			
IGNITION SW	• Ignition switch: $ON \rightarrow OFF$		$ON \rightarrow OFF$	-		
INJ PULSE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.4 - 3.2 msec.	(
INJ PULSE-B2	Shift lever: "N"No-load	2,000 rpm	1.9 - 2.8 msec.	-		
B/FUEL SCHDL	ditto	Idle	1.0 - 1.6 msec	N		
B/FUEL SCHDL	ditto	2,000 rpm	2.5 - 3.5 msec	_		
IGN TIMING	ditto	Idle	15° BTDC	- [
	Gitto	2,000 rpm	More than 25° BTDC	_		
IACV-AAC/V	ditto	Idle	2 - 10 step	_		
	Gitto	2,000 rpm	—	_ [
VF ALPHA-B1			50 450%	_		
VF ALPHA-B2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	50 - 159%			
EVAP SYS PRES	Ignition switch: ON	1	Approx. 3.4V	•		
AIR COND RLY	• Air conditioner switch: $OFF \rightarrow ON$		$OFF \rightarrow ON$			
	Ignition switch is turned to ON (Operat	es for 1 second)	ON	- [
FUEL PUMP RLY	Engine running and cranking		-	-		
	Except as shown above		OFF	-		
NT/V SOL-B1 NT/V SOL-B2	 Engine is running Engine speed is more than 2,000 rpm Quickly depressed accelerator pedal. 	$OFF \rightarrow ON$ (Using "INT/V TIM-B1(-2)", the difference of degree between "OFF" and "ON" is approximately 20 deg.)				
	Vehicle speed is more than 4 km/h (2 I	мрн)		_ [
NT/V TIM-B1 NT/V TIM-B2	Engine is running	Advanced angle (degree signal) of the intake camshaft should be displayed.	ſ			
		Engine coolant temperature is 94°C (201°F) or less	OFF	_ [
COOLING FAN	 After warming up engine, idle the engine. Air conditioner switch: "OFF"	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F) at vehicle speed less than 80 km/h (50 MPH)	HIGH	- [- [
		Engine coolant temperature is 105°C (221°F) or more	нідн	- [
	Engine: After warming up	Idle	OFF (Cut)	- (
EGRC SOL/V	 Air conditioner switch: "OFF" Shift lever: "D" No-load 	Revving engine up from idle to 3,000 rpm	ON (Flow)	-		
/ENT CONT/V	Ignition switch: ON	1	OFF	- [
R O2 HTR-B1	Engine speed: Idle		ON	-		
R O2 HTR-B2	Engine speed: Above 3,200 rpm		OFF	- [
RR O2 HTR-B1	Engine speed: Idle [after driving 2 minutes and a speed: Idle [after driving 2 minutes and a speed spee	utes at 70 km/h (43 MPH) or more]	ON	_ !		
-	• Engine speed: Above 3,600 rpm	(OFF	- ,		
RR O2 HTR-B2	Ignition switch: ON (Engine stopped)			_ [
/C/V BYPASS/V	Ignition switch: ON	T	OFF	-		
PURG CONT S/V	Engine: After warming up		OFF	-		
		2,000 rpm	ON	- '		
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" 	Idle	13.0 - 32%	-		
	 No-load 	2,500 rpm	13.0 - 25.5%			
ABSOL TH:P/S	 Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHg, 	Throttle valve fully closed	0.0%	-		
	 More than -40.6 k a (-500 mmmg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump. 	Throttle valve fully opened	Approx. 88%			

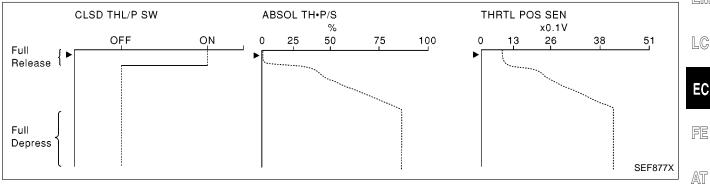
TROUBLE DIAGNOSIS — General Description CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION		SPECIFICATION
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" No-load 	Idle	3.0 - 6.0 g·m/s
		2,500 rpm	12.9 - 25.3 g·m/s
FPCM	 Within 16 seconds after starting engine, when engine coolant temperature is more than 100°C (212°F) 		$HIGH \to LOW$
FPCM D/R VOLT	 Within 16 seconds after starting engine, when engine coolant temperature is more than 100°C (212°F) 		Approx. 5V \rightarrow Approx. 0.4V
MAP/BARO SW/V	For 5 seconds after starting engine		BARO
	 More than 5 seconds after turning ignition switch "ON" More than 5 seconds after starting engine 		МАР
ABSOL PRES/SE	Engine: After warming up	For 5 seconds after starting engine	Approx. 4.4V
		More than 5 seconds after starting engine	Approx. 1.2V

GI

PD

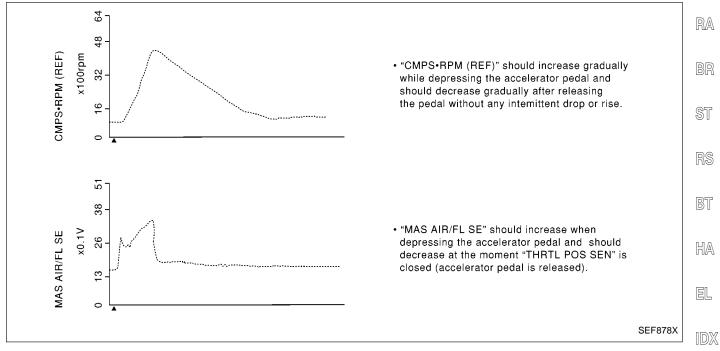
FA


Major Sensor Reference Graph in Data Monitor Mode

The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "HI SPEED" in "DATA MONITOR" with CONSULT-II.)

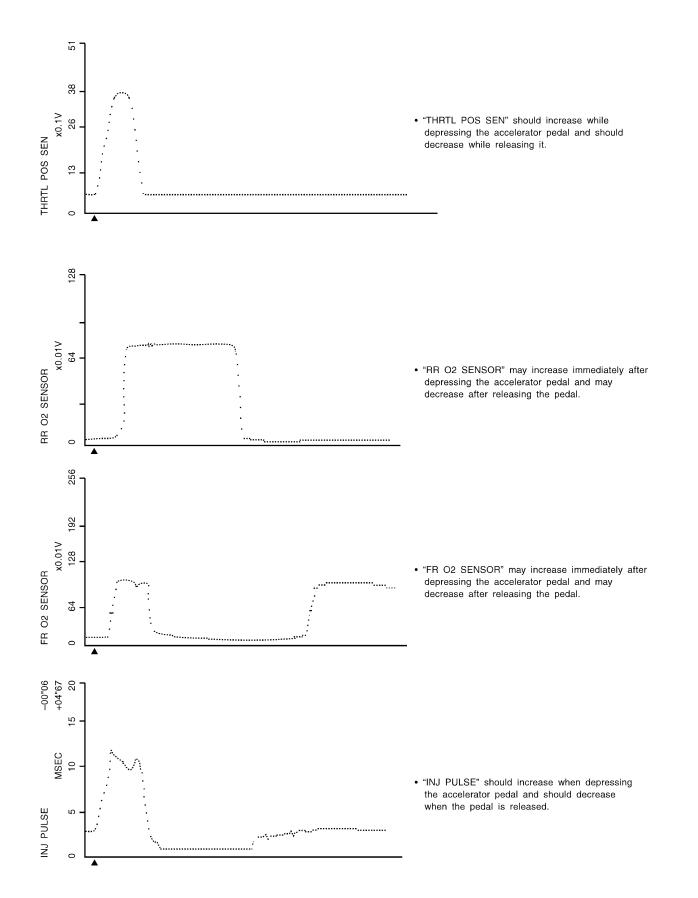
THRTL POS SEN, ABSOL TH P/S, CLSD THL/P SW

Below is the data for "THRTL POS SEN", "ABSOL TH·P/S" and "CLSD THL/P SW" when depressing the accelerator pedal with the ignition switch "ON".

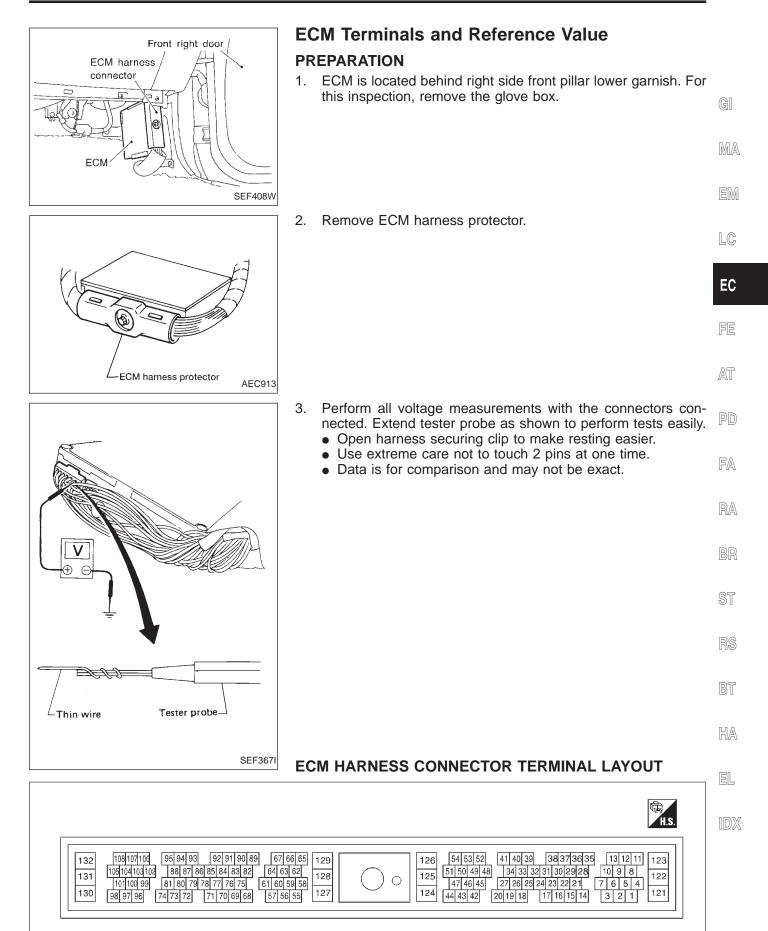

The signal of "THRTL POS SEN" and "ABSOL TH P/S" should rise gradually without any intermittent drop or rise after "CLSD THL/P SW" is changed from "ON" to "OFF".

CMPS RPM (POS), MAS AIR/FL SE, THRTL POS SEN, RR O2 SENSOR, FR O2 SENSOR, INJ PULSE

Below is the data for "CMPS RPM (POS)", "MAS AIR/FL SE", "THRTL POS SEN", "RR O2 SENSOR", "FR O2 SENSOR" and "INJ PULSE" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.


Each value is for reference, the exact value may vary.

TROUBLE DIAGNOSIS — General Description



Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

SEF218U

TROUBLE DIAGNOSIS — General Description

ECM Terminals and Reference Value (Cont'd)

ECM INSPECTION TABLE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
1 R/B 2 R/W 3 R/Y 14 R/L 4 W/R 5 PU/R 6 GY/L 7 LG	R/W R/Y	Injector No. 1 Injector No. 8 Injector No. 7 Injector No. 3 Injector No. 6 Injector No. 5 Injector No. 4 Injector No. 2	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 20 ms SEF549T
	W/R PU/R GY/L		Engine is running. Engine speed is 2,000 rpm.	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 20 ms SEF550T
10 L/Y	EGRC-solenoid valve	Engine is running. (Warm-up condition) Lift up drive wheels and rev engine from idle to 3,000 rpm in "D" position. Engine is running. (Warm-up condition)	0 - 0.7V BATTERY VOLTAGE	
				(11 - 14V)
8 11 12 13	GY/L PU G/Y Y	IACV-AAC valve	Engine is running.	0.1 - 14V
			Engine is cranking.	Approximately 0.4V
15	R/L	Fuel pump control module	Engine is running.	Approximately 10V
16 L/Y 17 G/W		()	Engine is running. Engine speed is below 3,200 rpm.	0 - 0.5V
	G/W		Engine is running. Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)
	Y/R L	Rear heated oxygen sen- sor heater (right bank) Rear heated oxygen sen- sor heater (left bank)	Engine is running. At idle [after driving 2 minutes at 70 km/h (43 MPH) or more]	0 - 0.5V
			Ignition switch "ON" Engine stopped Engine is running. Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	
20	P/B	EVAP canister vent con- trol valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	(
22	Y	EVAP canister purge con-	Engine is running.	BATTERY VOLTAGE (11 - 14V)	R
ZZ		trol solenoid valve	Engine is running. Engine speed is 2,000 rpm	Approximately 0V	
24	BR/Y	Intake valve timing control solenoid valve (right bank)	Engine is running. Intake valve timing control solenoid is operat- ing.	Approximately 0V	
25	BR	Intake valve timing control solenoid valve (left bank)	Engine is running. Intake valve timing control solenoid is not operating.	Battery voltage	
34	LG	Cooling fan relay-2	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)	
27	LG/R	Cooling fan relay-1 and -3	Engine is running. Cooling fan is operating.	0 - 1V	//
28 29 35 36	BR/Y G G/OR L/B	EVAP canister purge vol- ume control valve	Engine is running.	0 - 0.4V or BATTERY VOLTAGE (11 - 14V)	[
41	W	MAP/BARO switch sole- noid valve	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running. For 5 seconds after starting engine	Approximately 0V	
			Engine is running. Idle speed (For 5 minutes after starting engine) More than 5 seconds after starting engine	BATTERY VOLTAGE (11 - 14V)	() L
42	B/P	Fuel pump relay	Ignition switch "ON" For 5 second after turning ignition switch "ON" Engine is running.	0 - 1V	
			Ignition switch "ON" 5 second after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	ľ

EL

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
43 44 46 47	44G/RIgnition signal (No. 8)46L/RIgnition signal (No. 7)	Engine is running.	Approximately 0.38V (V) 4 2 0 50 ms SEF538T	
50 51 53 54	PU/W GY/R W/R R/L	Ignition signal (No. 3) Ignition signal (No. 6) Ignition signal (No. 5) Ignition signal (No. 4) Ignition signal (No. 2)	Engine is running. Engine speed is 2,000 rpm.	Approximately 0.55V
45	LG/B	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
48	PU/W	Malfunction indicator lamp	Ignition switch "ON" Engine is running.	Approximately 0.1V BATTERY VOLTAGE (11 - 14V)
49	B/R	Air conditioner relay	Engine is running. Both air conditioner switch and blower switch are "ON". Engine is running. Air conditioner switch is "OFF".	0 - 1V BATTERY VOLTAGE (11 - 14V)
52	W/G	Tachometer	Engine is running.	Approximately 7V
			Engine is running. (Warm-up condition)	Approximately 0 - 14V

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	
55		Crankshaft position sen-	Engine is running. (Warm-up condition)	Approximately 0.6 - 1.0V	GI MA EM
58	Ρ	Crankshaft position sen- sor (REF)	Engine is running. (Warm-up condition)	Approximately 0.8 - 0.9V (V) 10 5 0 10 ms SEF544T	LC EC FE AT
56	W/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	PD
57	B/R	Crankshaft position sen-	Engine is running. (Warm-up condition)	Approximately 1.7V (AC voltage) (V) 10 5 0 0 0.4 ms SEF545T	FA RA BR ST
	B/R Crankshaft position sen- sor (OBD)	Engine is running.] (Warm-up condition)	Approximately 0V () (V) 10 5 0 0.4 ms SEF546T	RS BT HA EL	

TROUBLE DIAGNOSIS — General Description

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
		Camshaft position sensor	Engine is running. (Warm-up condition)	Approximately 2.5V
59	L	(POS)	Engine is running. (Warm-up condition)	Approximately 2.4V (V) 10 5 0 0.4 ms SEF548T
61	L/W	Throttle position sensor signal	Ignition switch "ON" (Warm-up condition)* Accelerator pedal released	Approximately 0.5V
		Signal	Ignition switch "ON" (Warm-up condition)*	Approximately 4.2V
62	в	Mass air flow sensor ground	Engine is running. (Warm-up condition)	Approximately 0V
63	G	Throttle position concer	Ignition switch "ON" (Warm-up condition)* Accelerator pedal fully released	0.15 - 0.85V
63	G	Throttle position sensor	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully depressed	3.5 - 4.7V
64	w	Absolute pressure sensor	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running. For 5 seconds after starting engine	Approximately 4.4V
			Engine is running. (Warm-up condition)	Approximately 1.2V
			Engine is running. (Warm-up condition)	1.0 - 1.4V
65	W	Mass air flow sensor	Engine is running. (Warm-up condition)	Approximately 2.1V

*: More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
66	L	Secondary throttle posi-	Ignition switch "ON" Approximately 3 seconds after ignition switch "ON" and thereafter	Approximately 3.4V
00		tion sensor	Ignition switch "ON" Disconnect throttle motor harness connector. Fully close secondary throttle valve by hand.	Approximately 0.4V
67	Y/B	Engine coolant tempera- ture sensor	Engine is running.	0 - 4.8V Output voltage varies with engine coolant tempera- ture.
68	P/L	Vehicle speed sensor	Engine is running. Jack up rear wheels and run engine at idle in "D" position.	Approximately 5.2V
69	W/PU	Intake air temperature sensor	Engine is running.	0 - 4.8V Output voltage varies with intake air temperature.
70	R/L	Intake valve timing control position sensor (right	Engine is running.	Approximately 0V
71	L/W	bank) Intake valve timing control position sensor (left bank)	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V
72	R/Y	Headlamp switch	Engine is running. Headlamp switch is "OFF". Engine is running. Headlamp switch is "ON".	0V Battery voltage

TROUBLE DIAGNOSIS — General Description

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			Ignition switch "ON"	Approximately 5V
73	R	TCS signal	Ignition switch "ON" Disconnect throttle motor harness connector. Fully close secondary throttle valve by hand.	Approximately 0V
74	GY/L	Closed throttle position	Ignition switch "ON" (Warm-up condition)* Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)
7 -		switch	Ignition switch "ON" (Warm-up condition)	Approximately 0V
75		505	Engine is running. (Warm-up condition)	Less than 4.5V
75	W	EGR temperature sensor	Engine is running. (Warm-up condition)	0 - 1.0V
70		Ambient air temperature	Engine is running. Ambient air temperature is more than 23.5°C (74°C)	Approximately 5V
76 L/R	switch	Engine is running. Ambient air temperature is less than 20.5°C (69°F)	0V	
			Ignition switch "OFF"	0V
78	W	Ignition switch	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
79	L/R	Electrical load signal	Engine is running. Rear window defogger switch is "OFF". Headlamp switch is "OFF".	0V
79	L/K	Electrical load signal	Engine is running. Rear window defogger switch is "ON". Headlamp switch is "ON".	Battery voltage
			Ignition switch "ON"	Approximately 0V
80	SB	Start signal	Ignition switch "START"	BATTERY VOLTAGE (11 - 14V)
81	G/B	Air conditioner pressure switch	Engine is running.	Approximately 5V
82 83	R W	Front heated oxygen sen- sor (Right bank) Front heated oxygen sen- sor (Left bank)	Engine is running. After warming up to normal operating tem- perature and engine speed is 2,000 rpm.	0 - Approximately 1.0V (periodically change)
89 90	W Y	Rear heated oxygen sen- sor (RH) Rear heated oxygen sen- sor (LH)	Engine is running. After warming up to normal operating tem- perature and engine speed is 2,000 rpm.	0 - Approximately 1.0V

*: More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
91	R/L	Fuel tank temperature sensor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with fuel temperature.
92	LG	EVAP control system pressure sensor	Ignition switch "ON"	Approximately 3.4V
00		Fuel pump control module	When cranking the engine	Approximately 0V
93	G/R	(FPCM) check	After starting the engine	Approximately 5V
98	BR/W	Sensor's power supply	Ignition switch "ON"	Approximately 5V
99	R/L	A/T communication line (LAN)	Engine is running.	Approximately 2V
100	G	Power steering oil pres-	Engine is running. Steering wheel is being turned.	0 - 1.5V
		sure switch	Engine is running. Steering wheel is not being turned.	BATTERY VOLTAGE (11 - 14V)
101	G/OR	PNP switch	Ignition switch "ON" Gear position is "N" or "P".	Approximately 0V
			Ignition switch "ON" Except the above gear position	Approximately 5V
105 108	W W	Knock sensor (LH) Knock sensor (RH)	Engine is running.	2.0 - 3.0V
106	R	Data link connector	Ignition switch "ON" CONSULT-II or GST is disconnected.	6 - 10V
121 122	B B	ECM ground	Engine is running.	Engine ground
123	w	Current return	Engine is running.	BATTERY VOLTAGE (11 - 14V)
124	W/B	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
125 126	в	ECM ground	Engine is running.	Engine ground
127 128	в	ECM ground	Engine is running.	Engine ground
129	в	Sensor's ground	Engine is running. (Warm-up condition)	0V

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
130 131	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

Description

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

MA

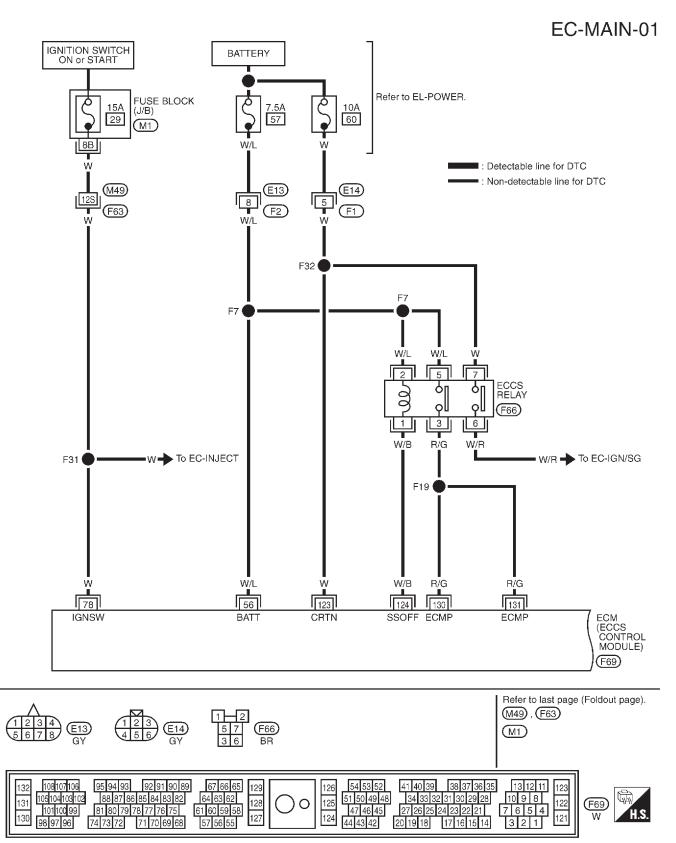
GI

Common I/I Report Situations

STEP in Work Flow Situation			
I	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".	LC	
III The symptom described by the customer does not recur.			
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.		
VI	The TROUBLE DIAGNOSIS for PXXXX does not indicate the problem area.	EC	

Diagnostic Procedure

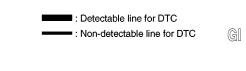
Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" (EC-63).		
	88	
Check ground terminals. Refer to "Circuit Inspection", "GROUND INSPECTION" (GI section).	PD	
	FA	
Perform "Incident Simulation Tests" (GI section).		
	RA	
Check connector terminals. Refer to "How to Check Enlarged Contact Spring of Terminal" (GI section).	BR	

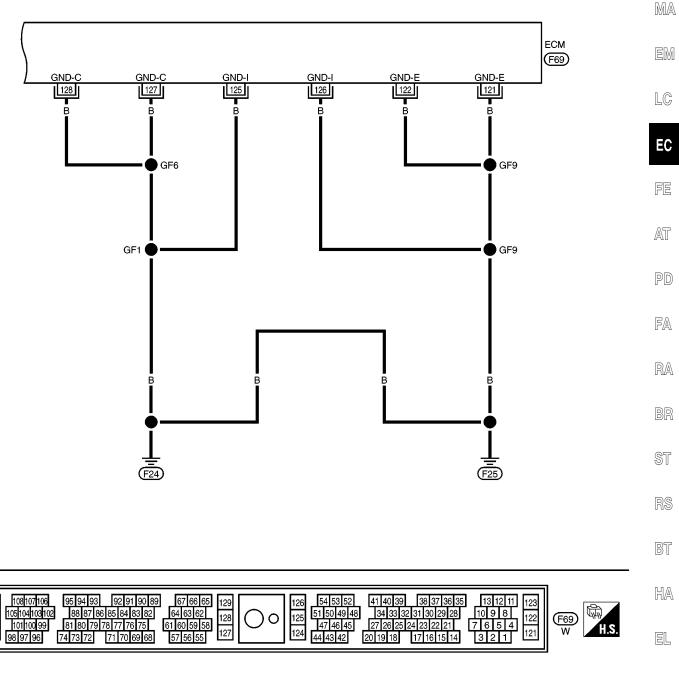

IDX

EL

HA

Main Power Supply and Ground Circuit



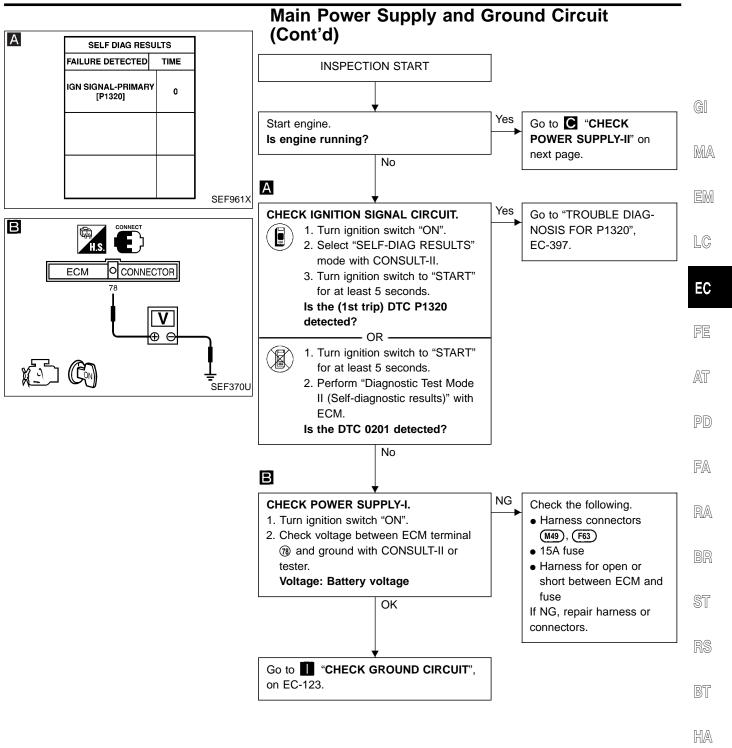

TEC471

Main Power Supply and Ground Circuit (Cont'd)

EC-MAIN-02

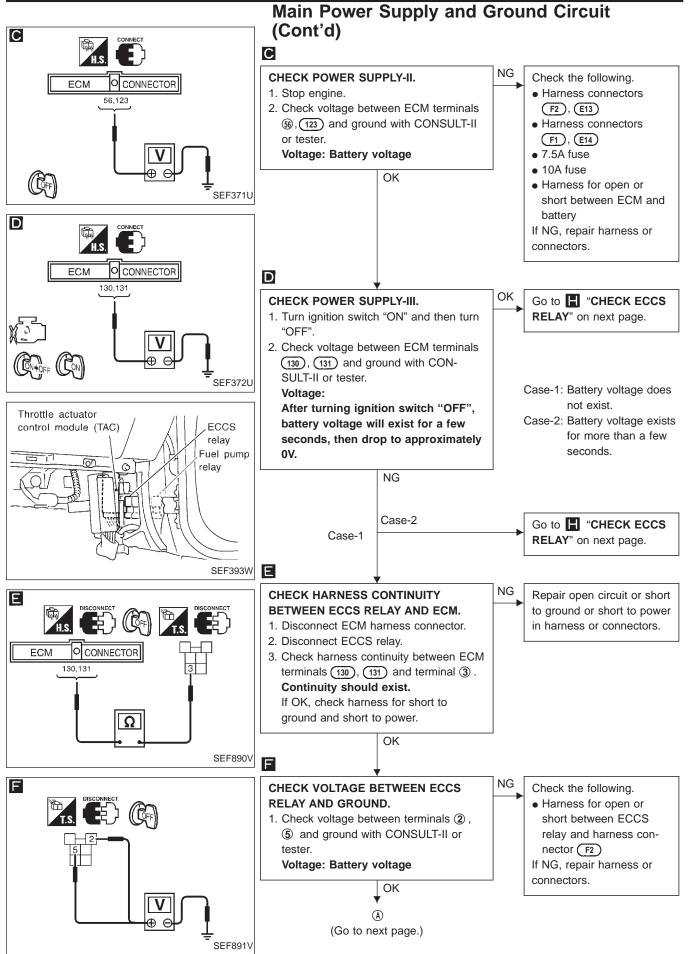
132 131

130

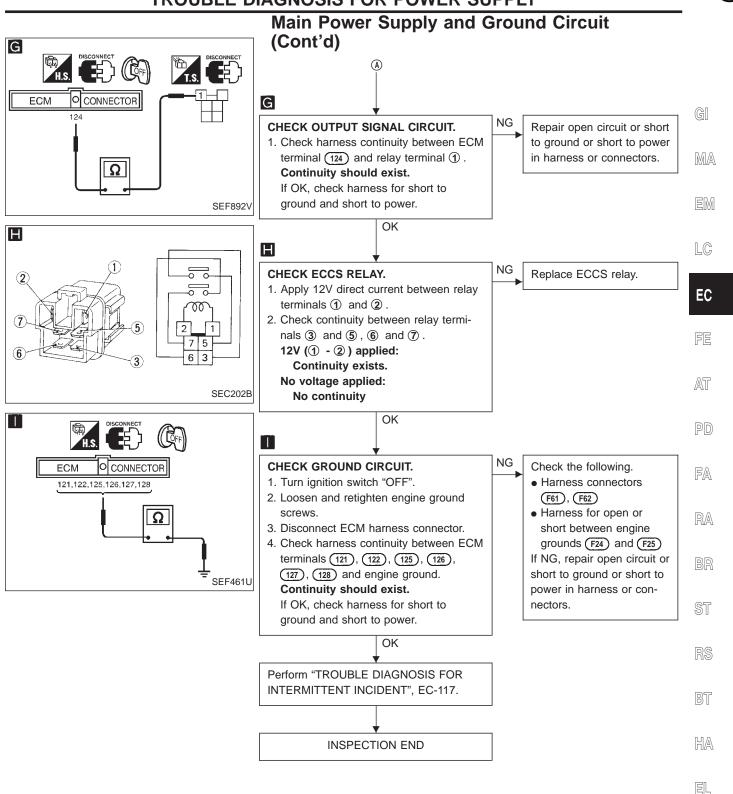


Main Power Supply and Ground Circuit (Cont'd)

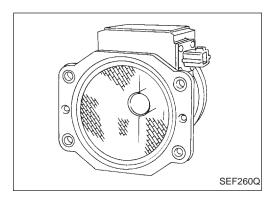
ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
56	W/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
121	в	ECM ground	Engine is running.	Engine ground
122	В	ECM ground	Engine is running.	Engine ground
123	W	Current return	Engine is running.	BATTERY VOLTAGE (11 - 14V)
124	W/B	ECCS relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF" Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	0 - 1V BATTERY VOLTAGE (11 - 14V)
125	в	ECM ground	Engine is running.	Engine ground
127	в	ECM ground	Engine is running.	Engine ground
128	в	ECM ground	Engine is running.	Engine ground
130 131	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)



EL


1DX

EC-122

Mass Air Flow Sensor (MAFS)

COMPONENT DESCRIPTION

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to the hot film as air flow increases. This maintains the temperature of the hot film. The ECM detects the air flow by means of this current change.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	1.0 - 1.7V
	Shift lever: "N"No-load	2,500 rpm	Approximately 2.1V
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" No-load 	Idle	13.0 - 32%
CALLD VALUE		2,500 rpm	13.0 - 25.5%
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	3.0 - 6.0 g·m/s
MASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	12.9 - 25.3 g·m/s

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
65	w	Mass air flow sensor	Engine is running. (Warm-up condition) Idle speed Engine is running. (Warm-up condition) Engine speed is 2,500 rpm.	1.0 - 1.4V Approximately 2.1V
62	в	Mass air flow sensor ground	Engine is running. (Warm-up condition)	Approximately 0V

ON BOARD DIAGNOSTIC LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0100 0102	A) An excessively high voltage from the sensor is sent to ECM when engine is not running.*	 Harness or connectors (The sensor circuit is open or shorted.) 	
	C) A high voltage from the sensor is sent to ECM under light load driving conditions.	Mass air flow sensor	
	B) An excessively low voltage from the sensor is sent to ECM* when engine is running.	 Harness or connectors (The sensor circuit is open or shorted.) 	
	D) A low voltage from the sensor is sent to ECM under heavy load driving conditions.	 Intake air leaks Mass air flow sensor 	
*: When the mal	function is detected, the ECM enters fail-safe mode and the	e MIL lights up. (Refer to EC-98.)	

Engine operating condition in fail-safe mode

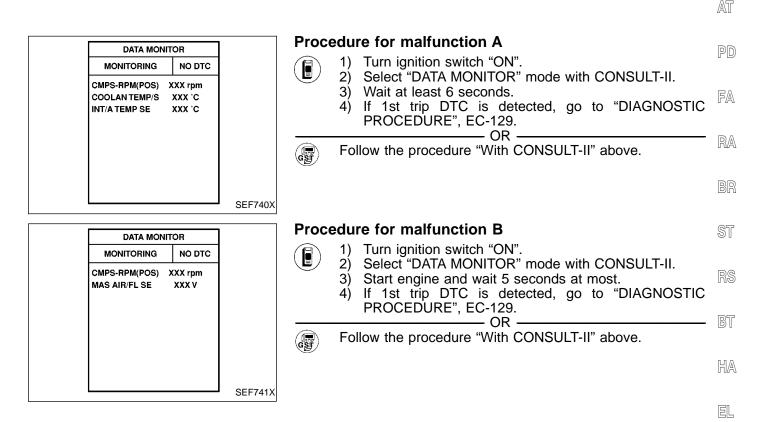
Engine speed will not rise more than 2,400 rpm due to the fuel cut.

EM

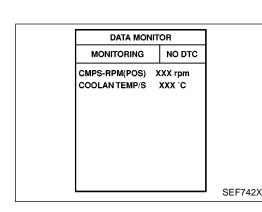
FE

TROUBLE DIAGNOSIS FOR DTC P0100

Mass Air Flow Sensor (MAFS) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE


Perform "Procedure for malfunction A" first. If 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B". If there is problem in "Procedure for malfunction B", perform "Procedure for malfunction C". If there is no problem on "Procedure for malfunction C", perform "Procedure for malfunction D".

CAUTION:


Always drive vehicle at a safe speed.

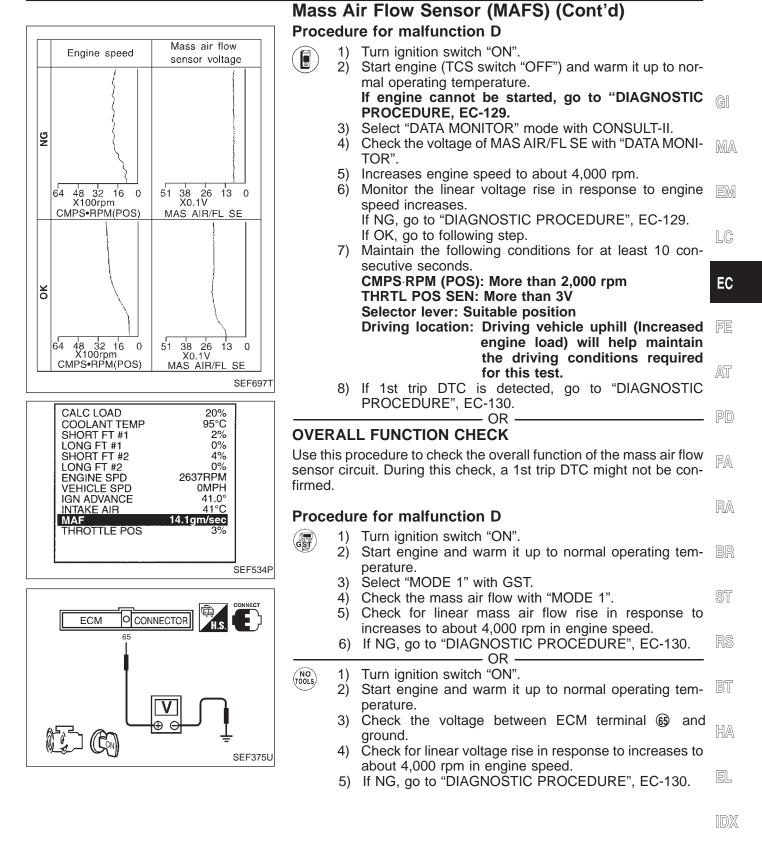
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

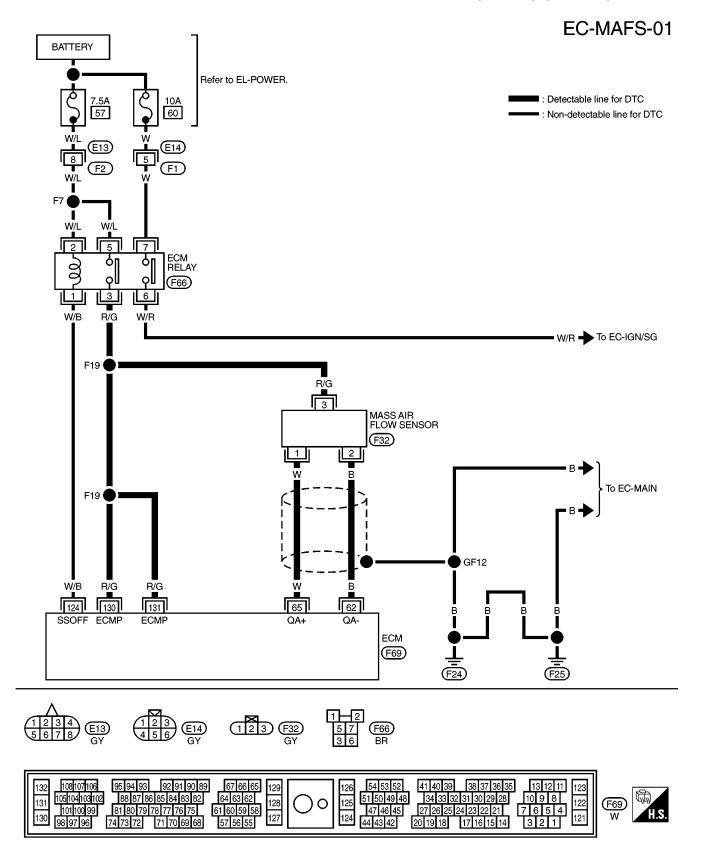
Mass Air Flow Sensor (MAFS) (Cont'd)

Procedure for malfunction C

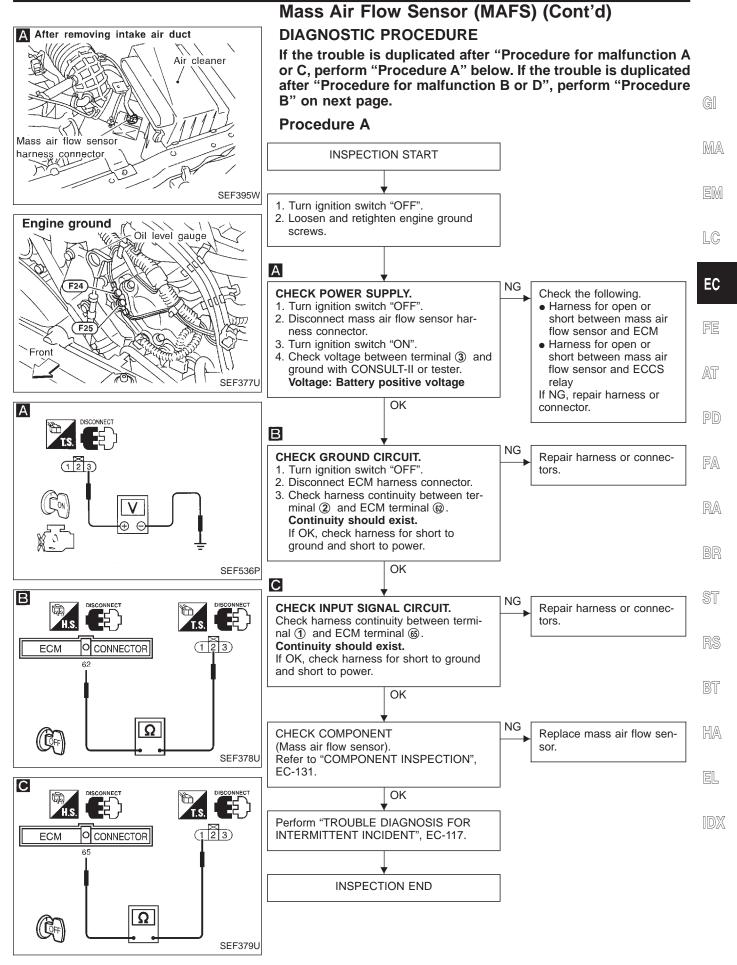
NOTE:

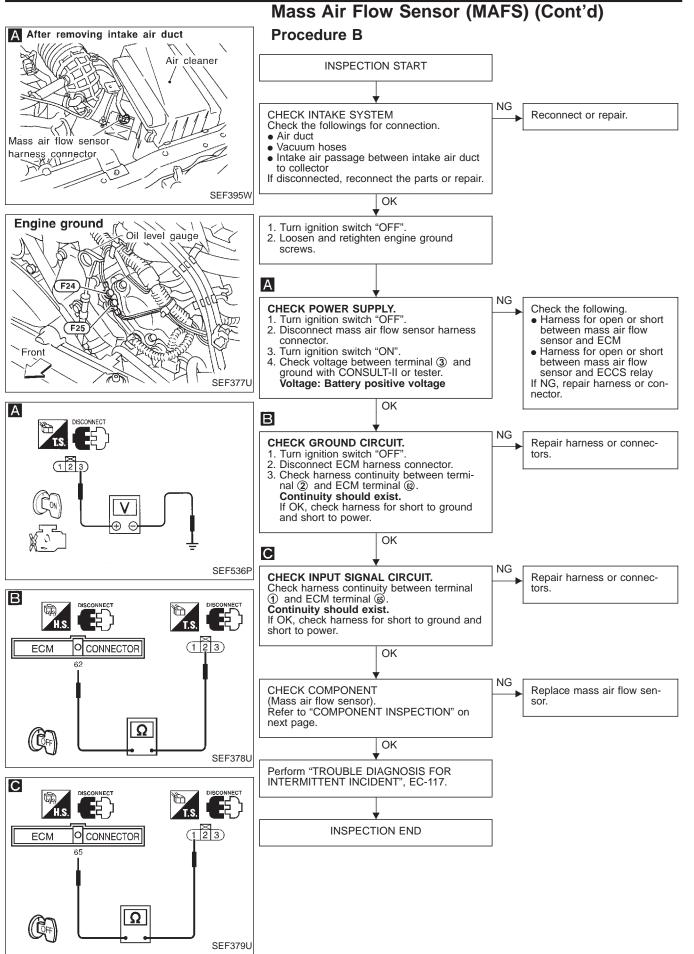

If the engine will not start or stop soon, wait at least 10 seconds with engine off (ignition switch "ON"), instead of running engine at idle speed.

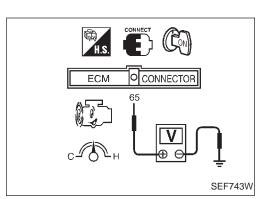
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- 4) Wait at least 10 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-130.

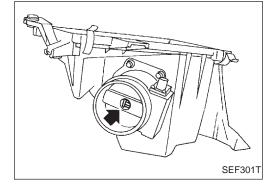


Follow the procedure "With CONSULT-II" above.




Mass Air Flow Sensor (MAFS) (Cont'd)


EXIT



Mass Air Flow Sensor (MAFS) (Cont'd) **COMPONENT INSPECTION**

Mass air flow sensor

- Turn ignition switch "ON". 1.
- Start engine and warm it up to normal operating temperature. 2. GI
- 3. Check voltage between ECM terminal 65 and ground.

Conditions	Voltage V	
Ignition switch "ON" (Engine stopped.)	Less than 1.0	MA
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7	EM
2,500 rpm	Approximately 2.1	
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0	I C

*: Check for linear voltage rise in response to increase to about 4,000 rpm in engine speed.

- EC If the voltage is out of specification, disconnect mass air flow 4. sensor harness connector and connect it again. Repeat above check.
- FE If NG, remove mass air flow sensor from air duct. Check hot 5. film for damage or dust.

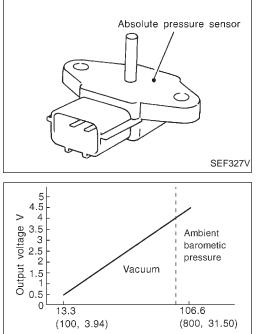
AT

PD

FA

RA

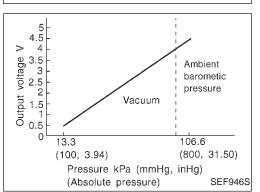
BR


ST

BT

HA

EL



Absolute Pressure Sensor

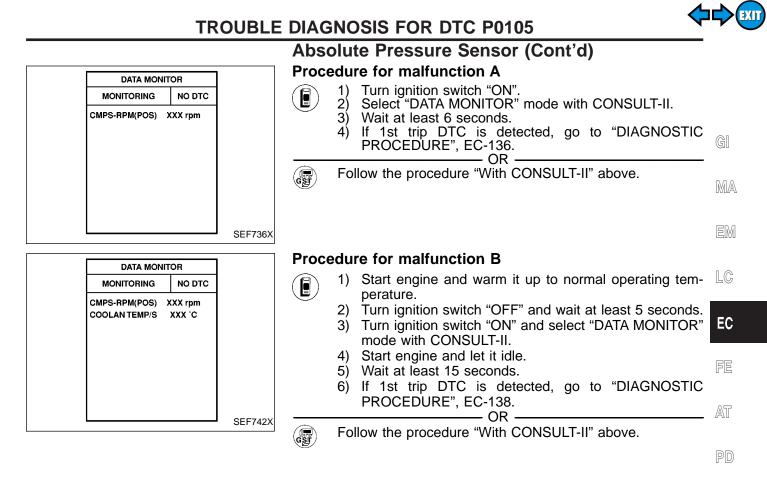
COMPONENT DESCRIPTION

The absolute pressure sensor is connected to the MAP/BARO switch solenoid valve by a hose. The sensor detects ambient barometric pressure and intake manifold pressure and sends the voltage signal to the ECM. As the pressure increases, the voltage rises.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0105 0803	 A) An excessively low or high voltage from the sensor is sent to ECM. 	 Harness or connectors (Absolute pressure sensor circuit is open or shorted.) Absolute pressure sensor
	B) A high voltage from the sensor is sent to ECM under light load driving conditions.	 Hoses (Hoses between the intake manifold and absolute pressure sensor are disconnected or clogged.) Intake air leaks MAP/BARO switch solenoid valve Absolute pressure sensor
	C) A low voltage from the sensor is sent to ECM under heavy load driving conditions.	Absolute pressure sensor

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE


Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B". If the 1st trip DTC is not confirmed on "Procedure for malfunction B", perform "Procedure for malfunction C".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

- FA

RA

BR

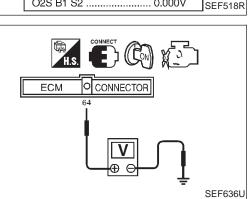
Procedure for malfunction C ST				
	-	rive vehicle at a safe speed.		
		Turn ignition switch "ON".	RS	
	2)	Select "DATA MONITOR" mode with CONSULT-II. The voltage of "ABSOL PRES/SE" should be more than 1.74 [V].	BT	
		If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-136. If the check result is OK, go to following step.	HA	
	3)	Start engine (TCS switch "OFF") and warm it up to nor- mal operating temperature.	EL	
	4)	Turn ignition switch "OFF" and wait at least 5 seconds.	۶L	
	5)	Start engine and let it idle for at least 13 seconds.		
	6) 7)	Select "DATA MONITOR" mode with CONSULT-II. Drive the vehicle at least 3 consecutive seconds under the following conditions,	IDX	
		B/FUEL SCHDL: More than 5.6 ms		
		CMPS RPM (POS): 3,000 - 4,800 rpm		
		Selector lever: Suitable position		
		Driving location: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.		

Absolute Pressure Sensor (Cont'd)

8) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-138.

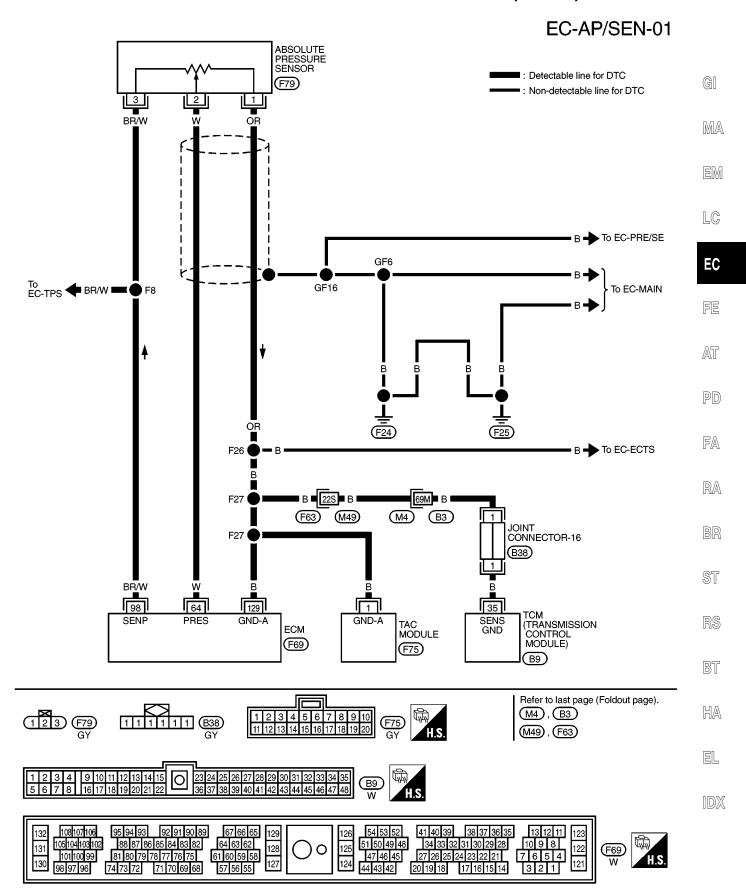
ENGINE SPD	
CALC LOAD 0.0% MAP 101KPaA	
MAF 0.25gm/s THROTTLE POS 0.0%	
INTAKE AIR 27°C FUEL SYS #1 OL	
FUEL SYS #2 UNUSED SHORT FT #1 0.0%	
LONG FT #1 0.0% O2S B1 S1 0.000V	
O2FT B1 S1 0.0% O2S B1 S2 0.000V	SEF518

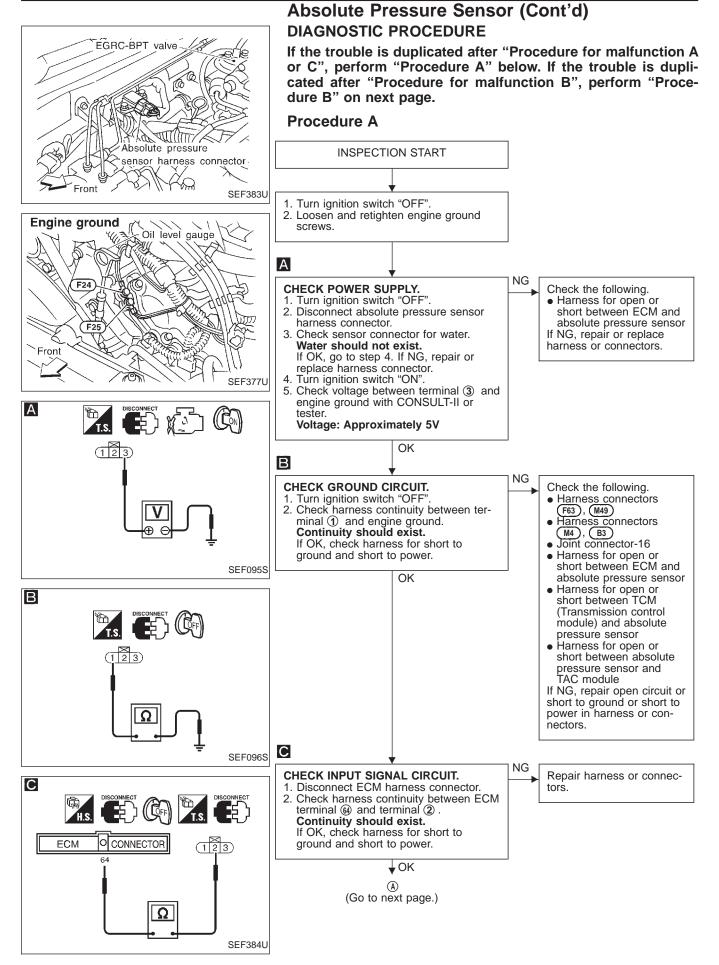
OVERALL FUNCTION CHECK

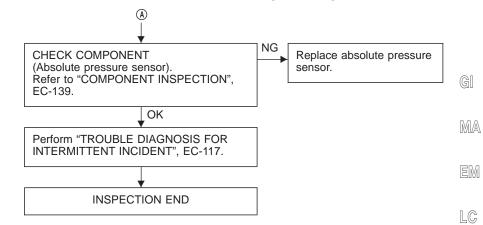

Use this procedure to check the overall function of the absolute pressure sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- OR -

- 1) Turn ignition switch "ON".
 - 2) Select "MAP" in "MODE 1" with GST.
 - Make sure that the pressure of "MAP" is more than 46 kPa (0.47 kg/cm², 6.7 psi).
 - 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-138.
 - OR –
 OR –
 OR –
 ON".


TOOLS


- 2) Make sure that the voltage between ECM terminal @ and engine ground is more than 1.74 [V].
- 3) If NG, go to "DIAGNOSTIC PROCEDURE", EC-138.

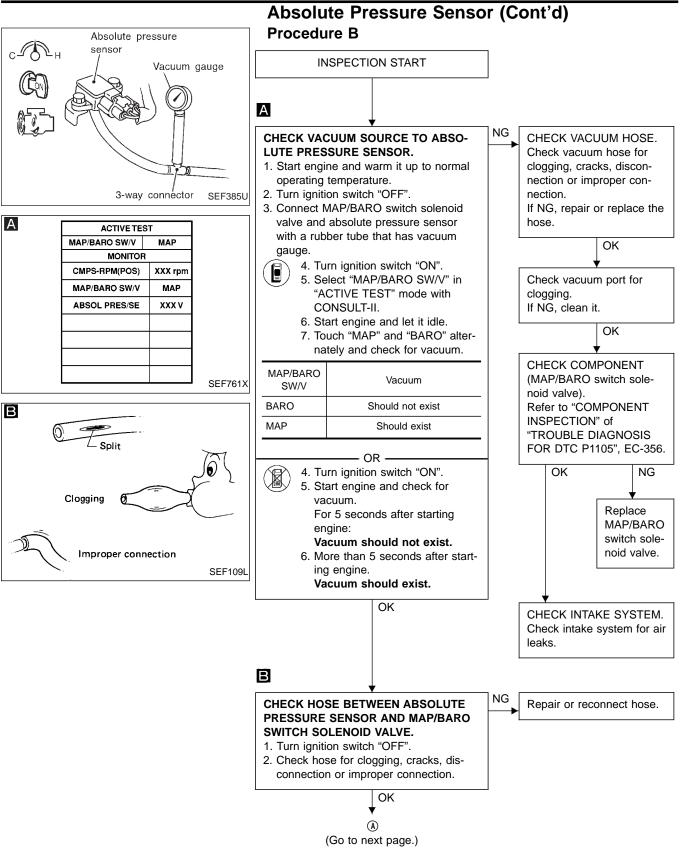

Absolute Pressure Sensor (Cont'd)

PD

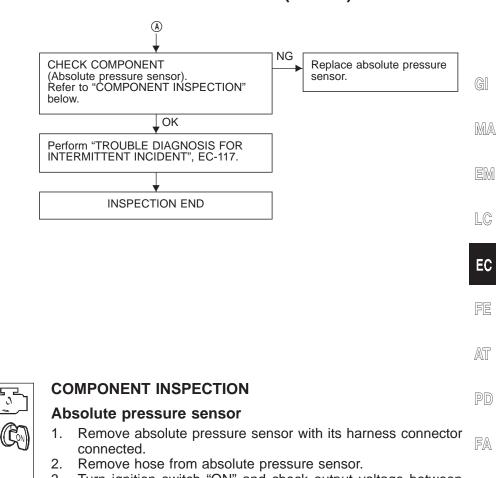
FA

RA

BR


ST

RS


BT

HA

EL

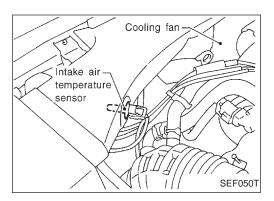
Absolute Pressure Sensor (Cont'd)

- ECM OCONNECTOR Absolute pressure sensor Pump Pump Pump SEF359W
 - Turn ignition switch "ON" and check output voltage between terminal @ and engine ground.
 - The voltage should be 3.2 to 4.8V.
 - Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value $_{\mbox{\scriptsize ST}}$ measured in step 3.

CAUTION:

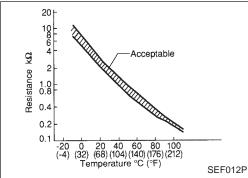
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.
- 5. If NG, replace absolute pressure sensor.


BT

RA

HA

EL



Intake Air Temperature Sensor COMPONENT DESCRIPTION

The intake air temperature sensor is mounted to the intake air duct. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor, which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

Intake air temperature °C (°F)	Voltage* (V)	Resistance $k\Omega$
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

* These data are reference values and are measured between ECM terminal (9) (Intake air temperature sensor) and ECM terminal (128) (ECM ground).

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0110	A) An excessively low or high voltage from the sensor is	Harness or connectors
0401	sent to ECM.	(The sensor circuit is open or shorted.)
		 Intake air temperature sensor
	B) Rationally incorrect voltage from the sensor is sent to	
	ECM, compared with the voltage signal from engine	
	coolant temperature sensor.	

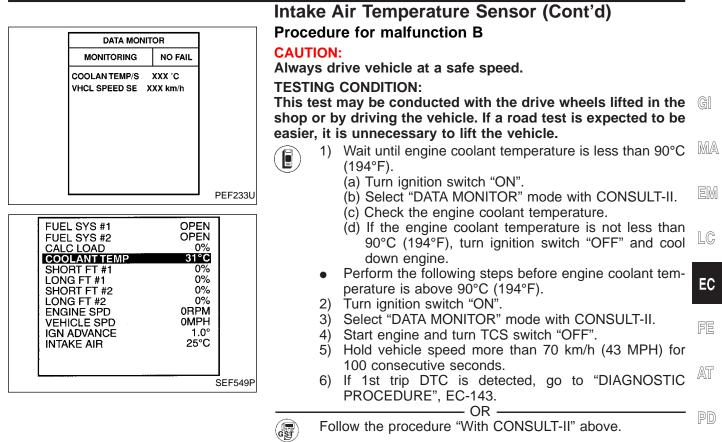
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first.

If 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


DATA MONITOR		
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
INT/A TEMP SE	XXX °C	
		SEF740>

Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Wait at least 5 seconds.

Follow the procedure "With CONSULT-II" above.

FA

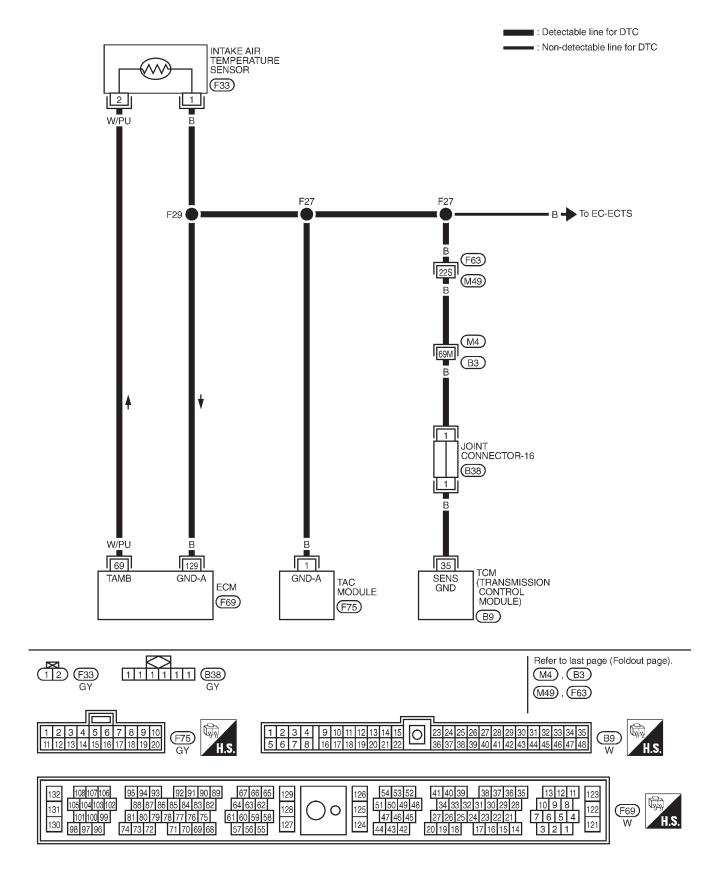
RA

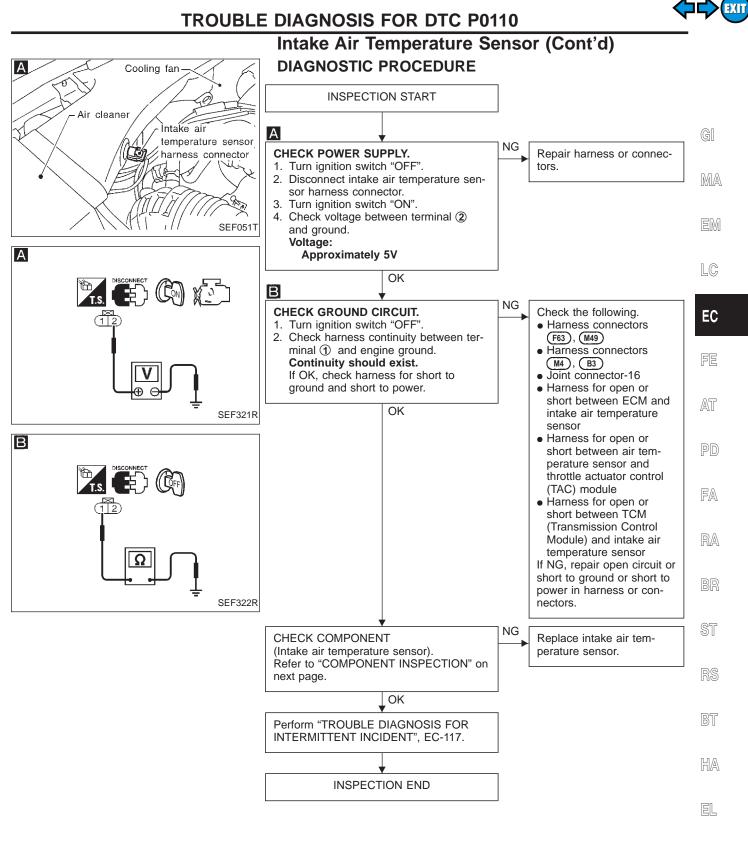
۵h

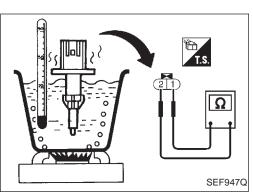
ST

RS

65

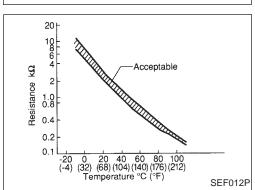

HA


EL



Intake Air Temperature Sensor (Cont'd)

EC-IATS-01

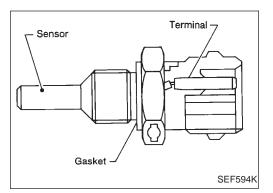


Intake Air Temperature Sensor (Cont'd) COMPONENT INSPECTION

€X(T

Intake air temperature sensor

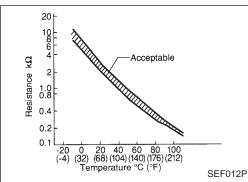
Check resistance as shown in the figure.



<Reference data>

Intake air temperature °C (°F)	Resistance kΩ	
20 (68)	2.1 - 2.9	
80 (176)	0.27 - 0.38	

If NG, replace intake air temperature sensor.


Engine Coolant Temperature Sensor (ECTS)

COMPONENT DESCRIPTION

The engine coolant temperature sensor is located near the No. 2 injector. The sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

EM

PD

<reference< th=""><th>data></th></reference<>	data>
--	-------

<

			LC	
Engine coolant tempera- ture	Voltage*	Resistance		
°C (°F)	V	kΩ		
-10 (14)	4.4	7.0 - 11.4	EC	
20 (68)	3.5	2.1 - 2.9		
50 (122)	2.2	0.68 - 1.00	- - FE	
90 (194)	1.0	0.236 - 0.260	r G	

*: These data are reference values and are measured between ECM terminal (a) (Engine coolant temperature sensor) and ECM terminal (128) (ECM AT ground).

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	FA
P0115 0103	sent to ECM.*	Harness or connectors (The sensor circuit is open or shorted.)Engine coolant temperature sensor	RA

*: When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

			BR
Engine operating condition in fail-safe mode	Condition	Engine coolant temperature decided (CONSULT-II DISPLAY)	05
Engine coolant temperature will be determined	Just as ignition switch is turned ON or Start	40°C (104°F)	ST
by ECM based on the time after turning igni- tion switch "ON" or "START".	More than 4 minutes after ignition Start	80°C (176°F)	
CONSULT-II displays the engine coolant tem- perature decided by ECM.	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	RS

BT

HA

EL

1D)X

DATA MON	TOR	
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX [°] C	
INT/A TEMP SE	XXX °C	

Engine Coolant Temperature Sensor (ECTS) (Cont'd)

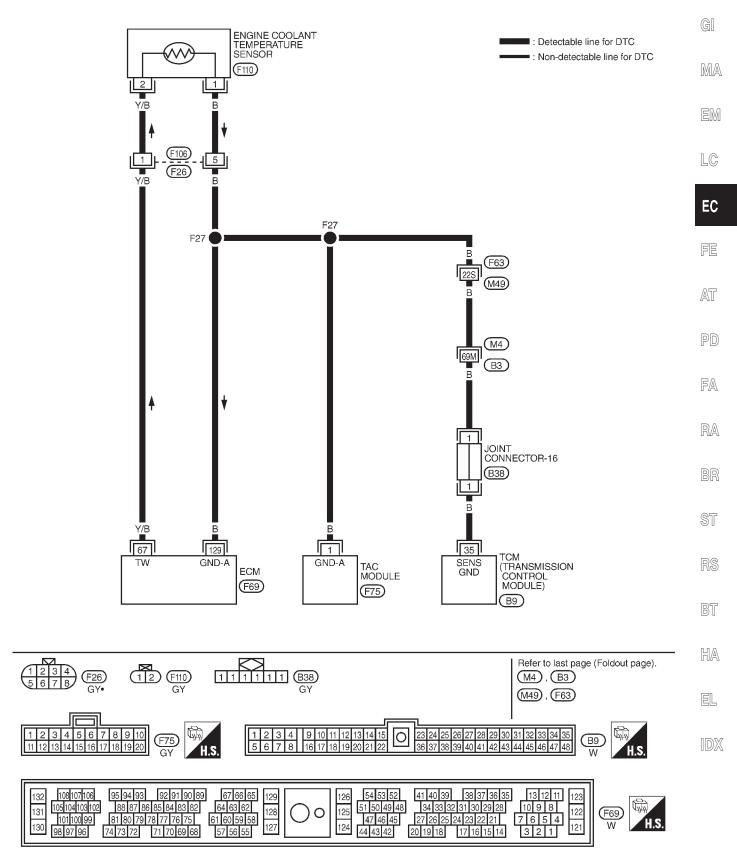
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

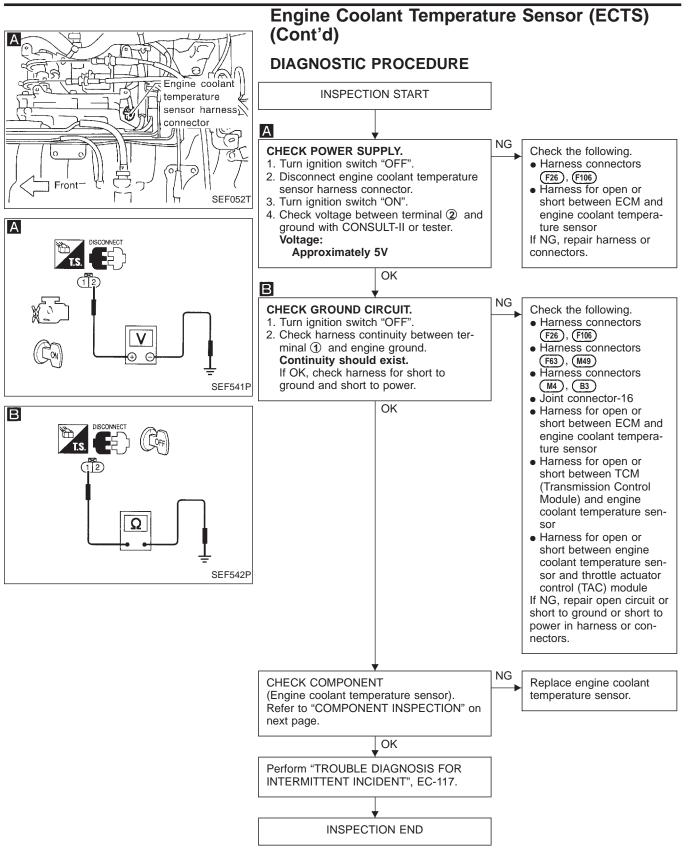
NOTE:

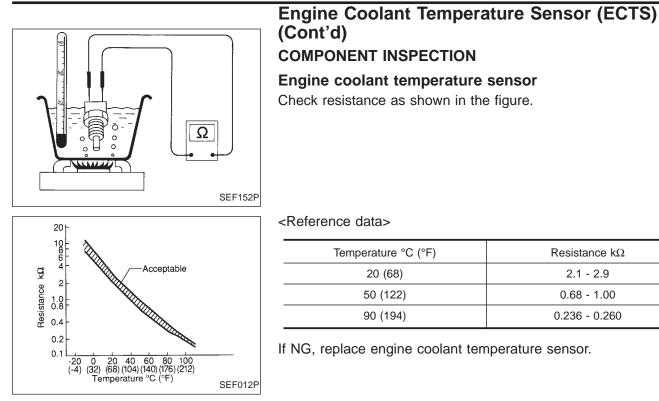
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Turn ignition switch "ON".
 Select "DATA MONITOR"
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Wait at least 5 seconds.
 - 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-148.

— OR -




Follow the procedure "With CONSULT-II" above.



Engine Coolant Temperature Sensor (ECTS) (Cont'd)

EC-ECTS-01

PD

FA

RA

BR

ST

RS

BT

HA

EL

IDX

AT

EXIT

GI

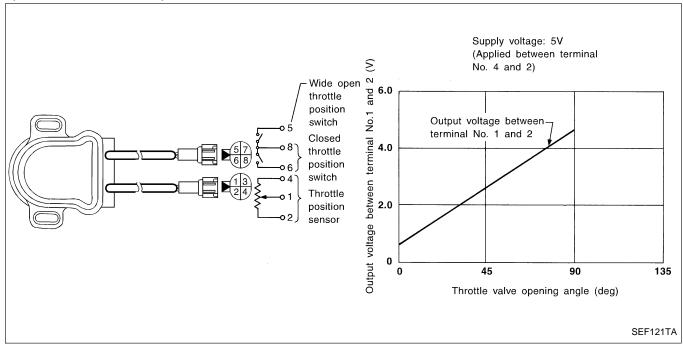
MA

EM

LC

EC

FE


Throttle Position Sensor

NOTE: If DTC P0510 (0203) is displayed with DTC P0120, perform TROUBLE DIAGNOSIS FOR DTC P0510 first (See EC-344.).

COMPONENT DESCRIPTION

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This one controls engine operation such as fuel cut. The throttle position sensor unit has a built-in "Wide open and closed throttle position switch".

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL POS SEN	 Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHg, 	Throttle valve: fully closed	0.15 - 0.85V
HINLET OU DEN	 Indicating -10.0 km a (-500 km mg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump. 	Throttle valve: fully opened	3.5 - 4.7V
ABSOL TH-P/S	 Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHq, 	Throttle valve fully closed	0.0%
ABOUL IN P/3	 More than -40.0 kFa (-300 mmrg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump. 	Throttle valve fully opened	Approx. 88%

IDX

TROUBLE DIAGNOSIS FOR DTC P0120

Throttle Position Sensor (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (18) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	GI
63	G	Throttle position sensor	Ignition switch "ON" (Warm-up condition)* Accelerator pedal fully released	0.15 - 0.85V	_ M/
63	G	signal	Ignition switch "ON" Accelerator pedal fully depressed	3.5 - 4.7V	EN
98	BR/W	Sensor's power supply	Ignition switch "ON"	Approximately 5V	-
129	в	Sensor's ground	Engine is running. (Warm-up condition)	0V	
*· More th	 	 kPa (_300 mmHa11 81 int	dα) of vacuum is applied to the throttle opener with a ha	l ndv.vacuum numn	- EC

*: More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	AT
P0120 0403	A) An excessively low or high voltage from the sensor is sent to ECM.*	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor 	PD
	B) A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor Fuel injector 	FA
		Camshaft position sensorMass air flow sensor	RA
	C) A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Intake air leaks 	BR
		Throttle position sensor	ST

*: When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode	Condition	Driving condition	RS
Throttle position will be determined based on the	When engine is idling	Normal	
amount of mass air flow and the engine speed. Therefore, acceleration will be poor.	When accelerating	Poor acceleration	BT

Perform "Procedure for malfunction A" first. If the DTC cannot be confirmed, perform "Procedure for malfunction B". If there is no problem on "Procedure for malfunction B", perform "Procedure for malfunction C". EL

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Throttle Position Sensor (Cont'd)

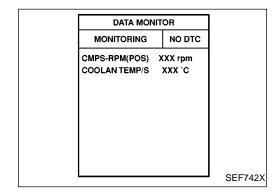
Procedure for malfunction A

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.
 - 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
 - 2) Start engine and maintain the following conditions for at least 5 consecutive seconds.
 VHCL SPEED SE: More than 4 km/h (2 MPH) Selector lever: Suitable position except "P" or "N"


position

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-155.
 OR

SEF744X

Follow the procedure "With CONSULT-II" above.

DATA MONITOR

CMPS-RPM(POS) XXX rpm

VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

NO DTC

XXX °C

XXX V

MONITORING

COOLAN TEMP/S

THRTL POS SEN

Procedure for malfunction B

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 10 seconds. If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

Selector lever: Suitable position except "P" or "N" Brake pedal: depressed Vehicle speed: 0 km/h (0 MPH)

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-156.

Follow the procedure "With CONSULT-II" above.

- OR

DATA MONITOR	
MONITORING	NO FAIL
THRTL POS SEN	XXX V
ABSOL TH-P/S	XXX %

Procedure for malfunction C

- 1) Start engine and warm it up to normal operating temperature.
 - 2) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 3) Turn ignition switch "ON".
 4) Select "MANULTRIG" and "HLSPEED" in "DAT
 - Select "MANU TRIG" and "HI SPEED" in "DATA MONI-TOR" mode with CONSULT-II.
 - 5) Select "THRTL POS SEN" and "ABSOL TH·P/S" in "DATA MONITOR" mode with CONSULT-II.

GI

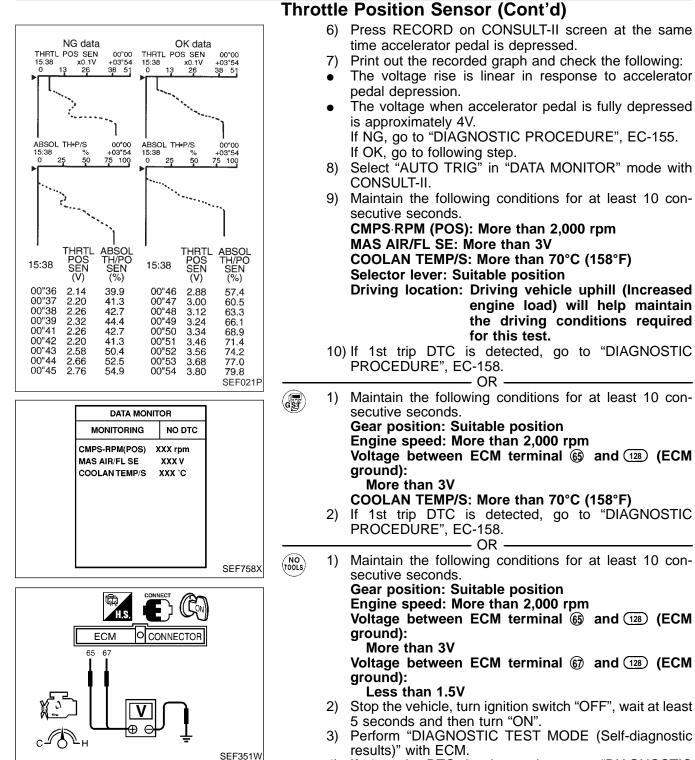
MA

LC

EC

FE

AT

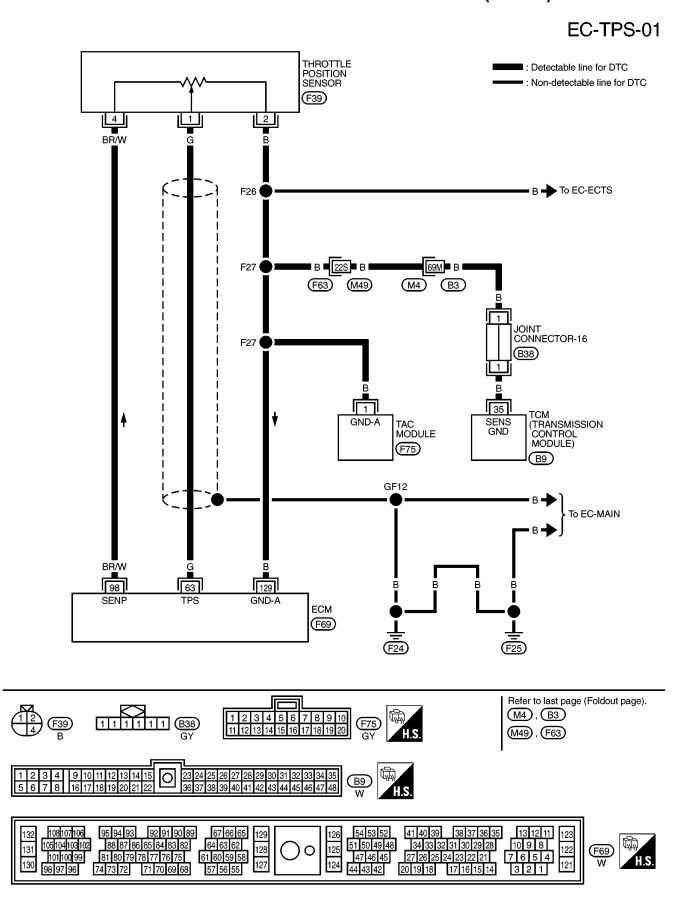

PD

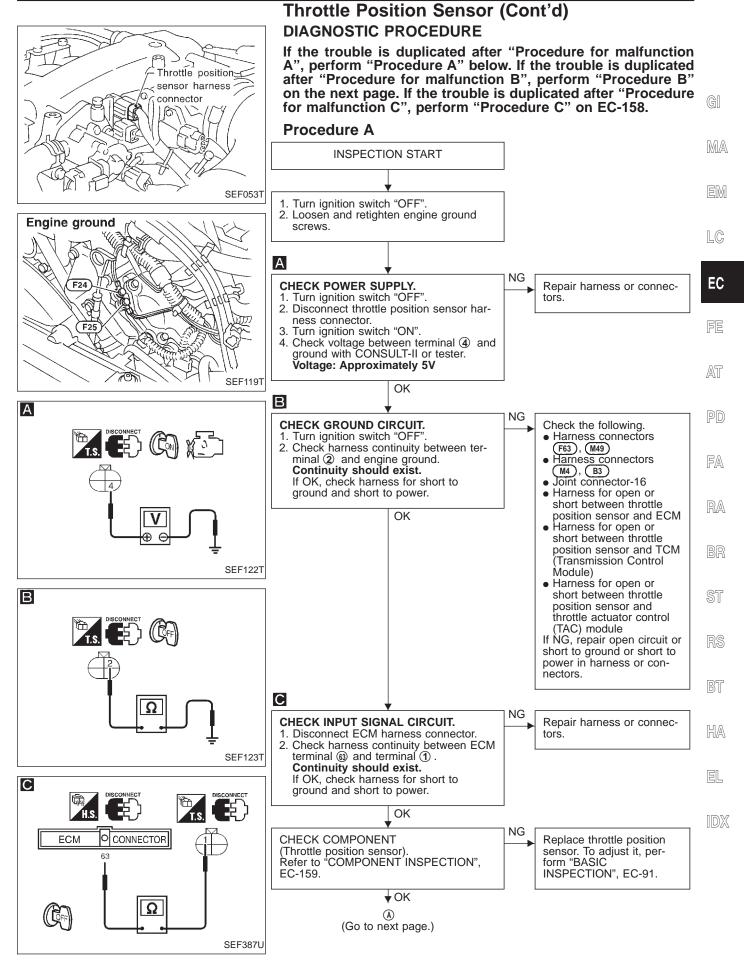
FA

RA

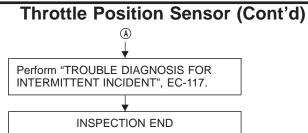
ST

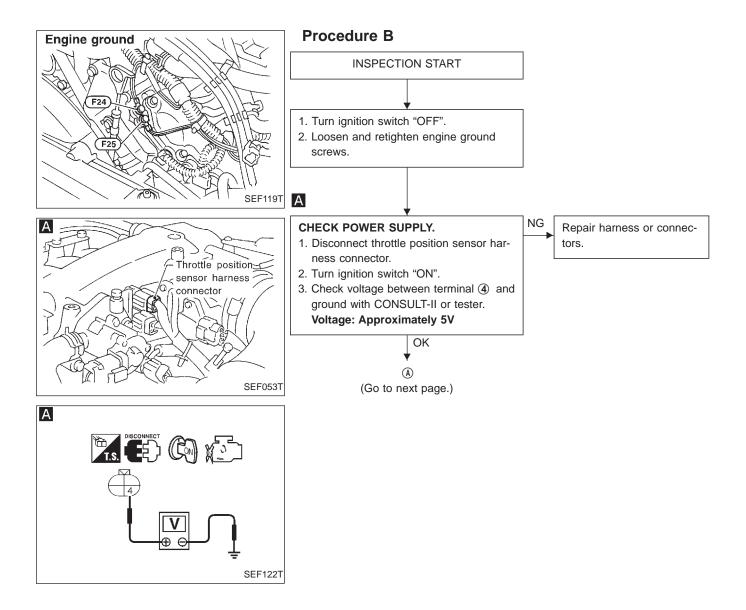
TROUBLE DIAGNOSIS FOR DTC P0120

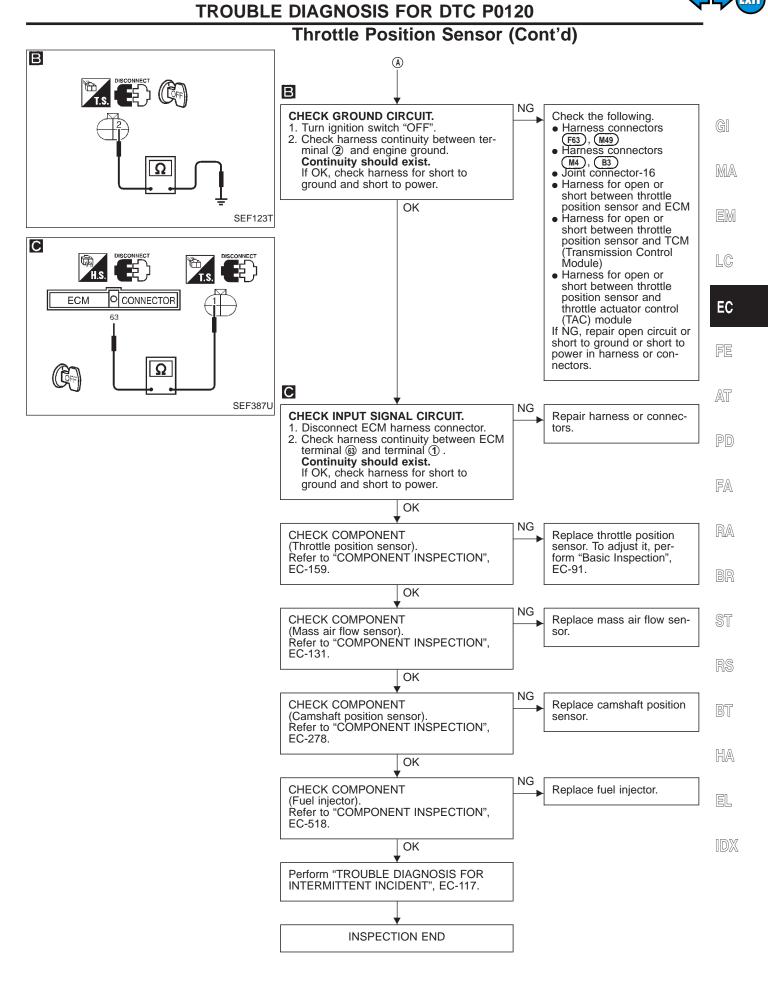



- Voltage between ECM terminal 67 and 128 (ECM BT Stop the vehicle, turn ignition switch "OFF", wait at least 5 seconds and then turn "ON". HA Perform "DIAGNOSTIC TEST MODE (Self-diagnostic
- If 1st trip DTC is detected, go to "DIAGNOSTIC EL PROCEDURE", EC-158.

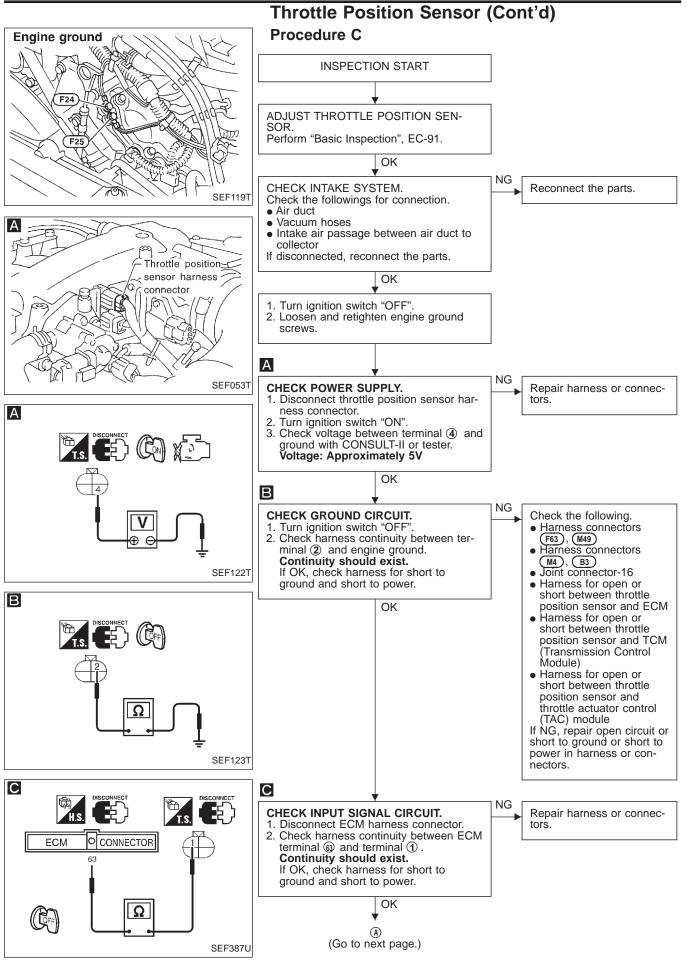
IDX

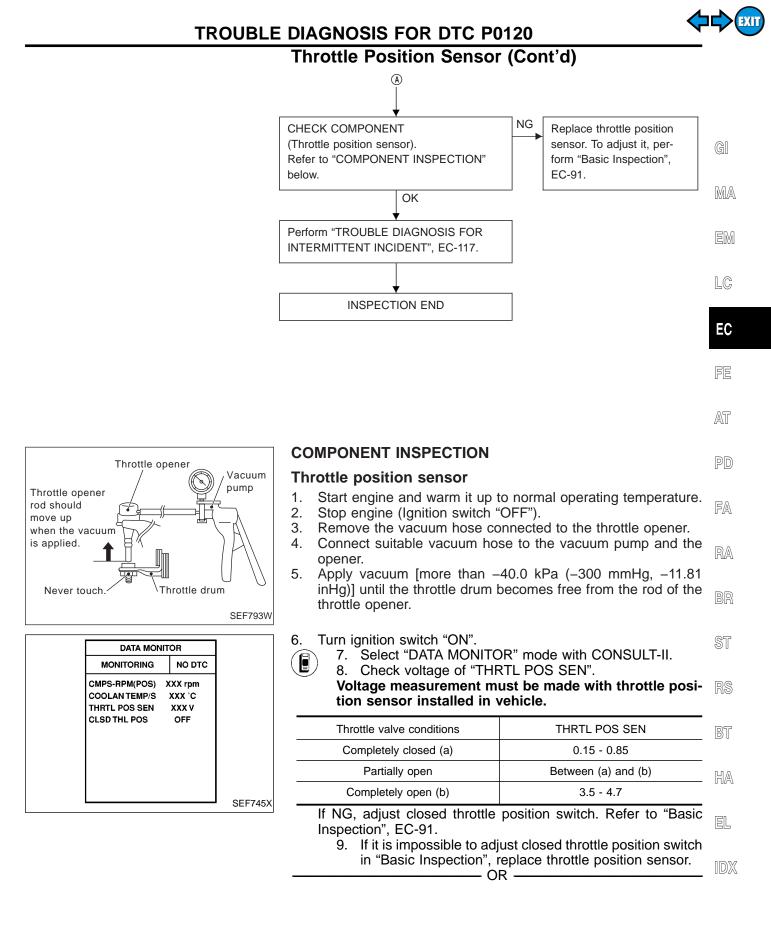

Throttle Position Sensor (Cont'd)



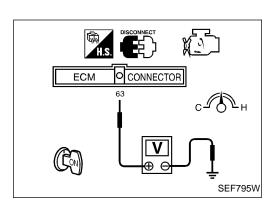


EC-155





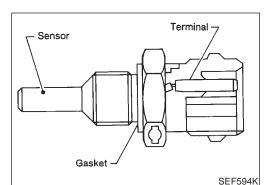
EC-157



EC-158

R

Throttle Position Sensor (Cont'd)


7. Check voltage between ECM terminal (3) (Throttle position sensor signal) and ground.

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V
Completely closed	0.15 - 0.85
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

8. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

Engine Coolant Temperature (ECT) Sensor COMPONENT DESCRIPTION

The engine coolant temperature sensor is located near the No. 2 injector. The sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

EM

MA

GI

<Reference data>

LC			Engine coolant
EC	Resistance kΩ	Voltage* V	temperature °C (°F)
EC	7.0 - 11.4	4.4	-10 (14)
FE	2.1 - 2.9	3.5	20 (68)
	0.68 - 1.00	2.2	50 (122)
052	0.236 - 0.260	1.0	90 (194)
AT	ed between ECM terminal	e values and are measure	* These data are reference

*: These data are reference values and are measured between ECM terminal (c) (Engine coolant temperature sensor) and ECM terminal (128) (ECM ground).

PD

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	FA
P0125 0908	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the 	 Harness or connectors (High resistance in the circuit) 	RA
_	engine.Engine coolant temperature is insufficient for closed loop fuel control.	 Engine coolant temperature sensor Thermostat 	BR

3S

HA

BT

EL

IDX

MONITORING NO DTC MPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX 'C NT/A TEMP SE XXX 'C
OOLAN TEMP/S XXX C
VIATENIF SE AAA O

Engine Coolant Temperature (ECT) Sensor (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

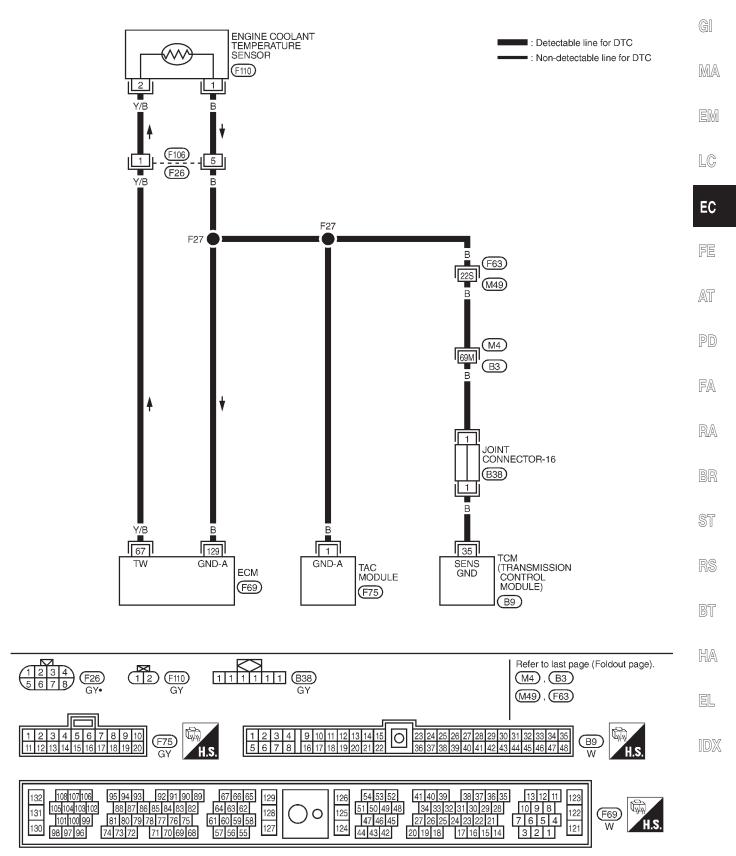
Do not overheat engine.

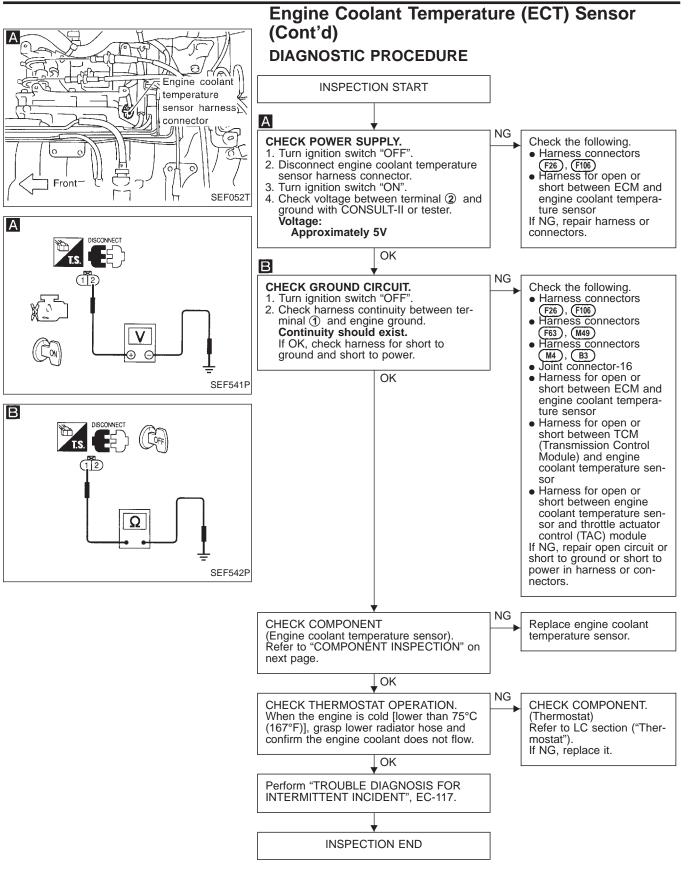
NOTE:

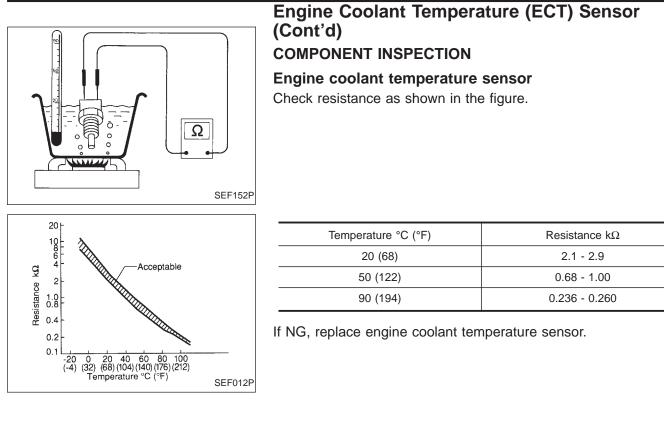
SEF740X

- If DTC P0115 (0103) is displayed with P0125 (0908), first perform TROUBLE DIAGNOSIS FOR DTC P0115, EC-145.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
 - 1) Turn ignition switch "ON".
 - 2) Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
 - Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
 - 4) Start engine and run it for 65 minutes at idle speed.

If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.




Follow the procedure "With CONSULT-II" above.



Engine Coolant Temperature (ECT) Sensor (Cont'd)

EC-ECTS-01

EM

GI

MA

LC

EC

FE

AT

PD

FA

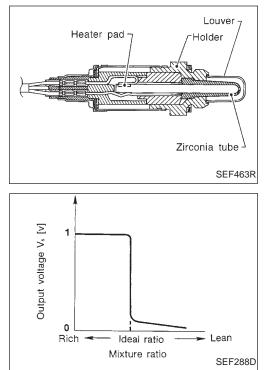
RA

BR

ST

RS

BT


HA

EL

IDX

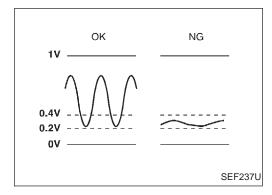
€X(II

Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank)

COMPONENT DESCRIPTION

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

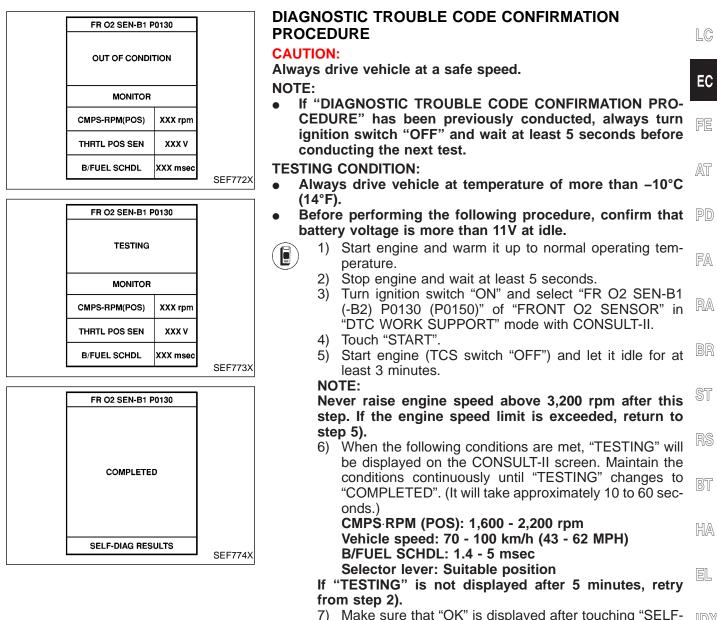
MONITOR ITEM	CONDITION		SPECIFICATION
FR O2 SEN-B1 FR O2 SEN-B2	Encies After warning up		0 - 0.3V ↔ 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	 Engine: After warming up 	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (RH)	R	Front heated oxygen sen-	Engine is running.	0 - Approximately 1.0V
83 (LH)	W	sors	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm.	(periodically change)

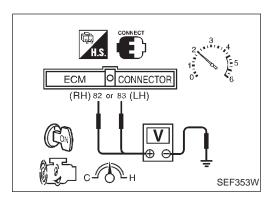
ON BOARD DIAGNOSIS LOGIC


Under the condition in which the front heated oxygen sensor signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

TROUBLE DIAGNOSIS FOR DTC P0130 (-B1), P0150 (-B2)

Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0130, 0303	• The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors	GI
(Left bank) P0150, 0503		(The sensor circuit is open or shorted.)Front heated oxygen censor	
(Right bank)			MA



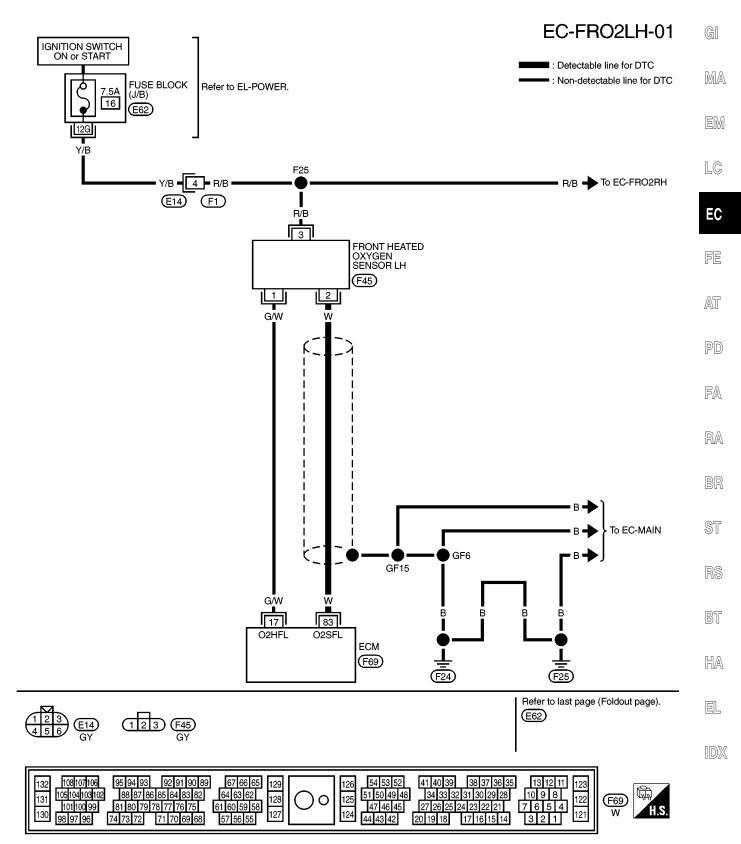
 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-171.

During this test, P1148 may be stored in ECM.

R

Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank) (Cont'd)

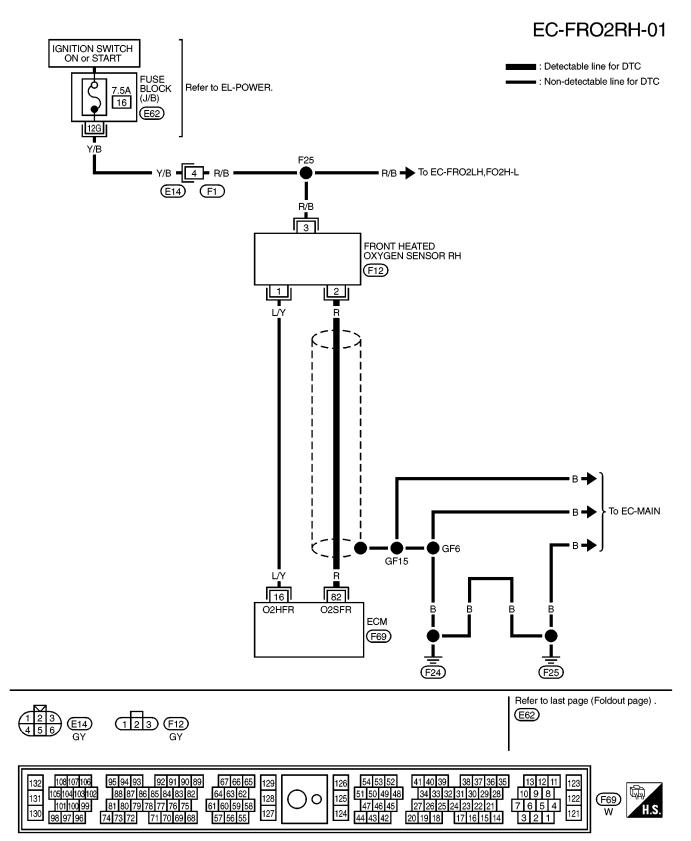
OR -


Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

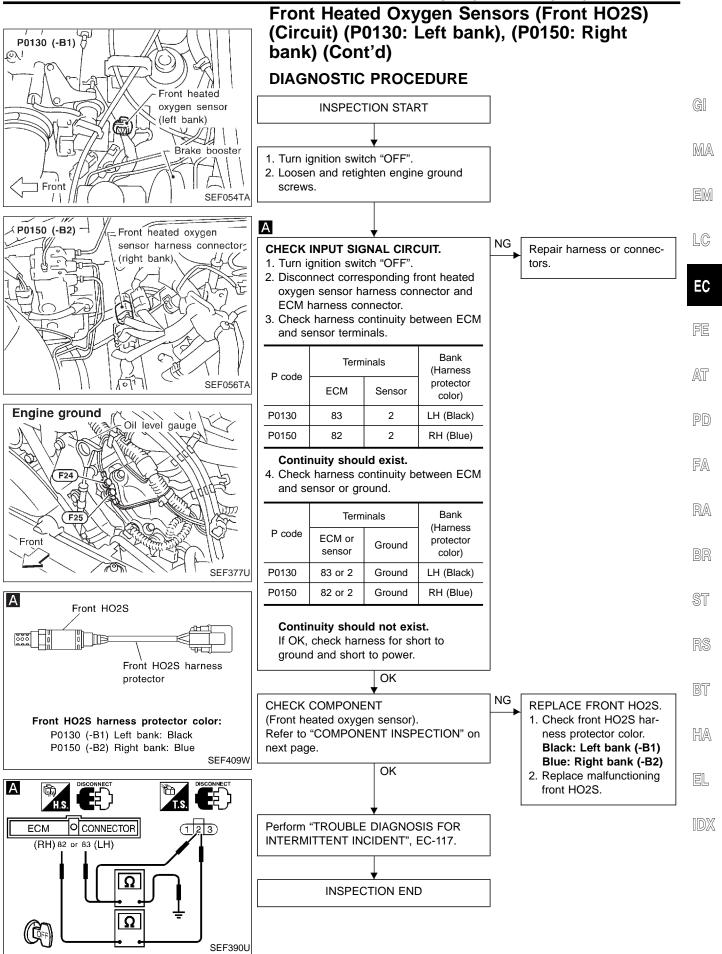
- 1) Start engine and warm it up to normal operating temperature.
 - 2) Set voltmeter probes between ECM terminal (2) RH, (3) LH (sensor signal) and ground.
 - 3) Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage does not remain in the range of 0.2 0.4V.
 - 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-171.

Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank) (Cont'd)

LEFT BANK



€X(I)



Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank) (Cont'd)

RIGHT BANK

TROUBLE DIAGNOSIS FOR DTC P0130 (-B1), P0150 (-B2)

DATA MON	IITOR	
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
FR O2 SEN-B1	XXX V	
FR O2 MNTR-B1	LEAN	
A/F ALPHA-B1	XXX %	
		SEF746X

Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank) (Cont'd)

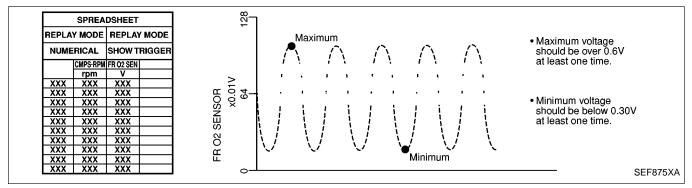
COMPONENT INSPECTION

Front heated oxygen sensor

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONI-TOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R

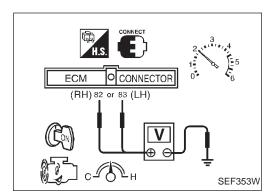

R = "FR O2 MNTR-B1 (-B2)", "RICH"

L = "FR O2 MNTR-B1 (-B2)", "LEAN"

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.30V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.



TROUBLE DIAGNOSIS FOR DTC P0130 (-B1), P0150 (-B2)

R

GI

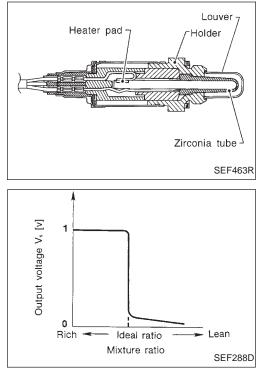
Front Heated Oxygen Sensors (Front HO2S) (Circuit) (P0130: Left bank), (P0150: Right bank) (Cont'd)

- 2) Set voltmeter probes between ECM terminal (2) RH, (3) LH (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 MA rpm constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR, EC-68).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time. LG
- The voltage never exceeds 1.0V.

EC

BR

RS


BT

HA

EL

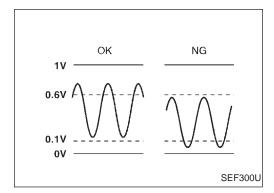
IDX

Front Heated Oxygen Sensor (Lean shift monitoring) (Front HO2S) (P0131: Left bank), (P0151: Right bank)

COMPONENT DESCRIPTION

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
FR O2 SEN-B1 FR O2 SEN-B2	- Engine: After werming up		0 - 0.3V ↔ 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	 Engine: After warming up 	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (RH)	R	Front heated oxygen sen-	Engine is running.	0 - Approximately 1.0V
83 (LH)	W	sor	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm.	(periodically change)

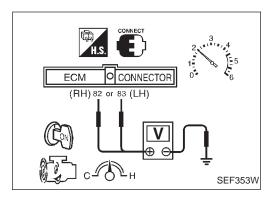
ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the output from the front heated oxygen sensor is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

IDX

TROUBLE DIAGNOSIS FOR DTC P0131 (-B1), P0151 (-B2)

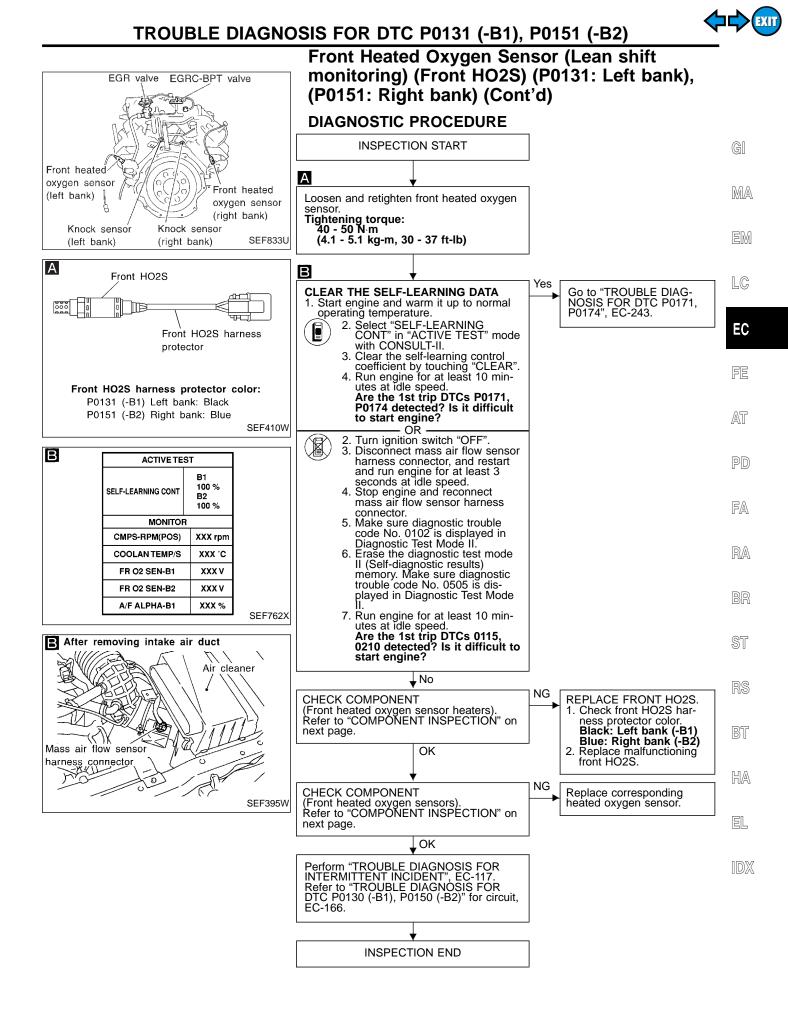
Front Heated Oxygen Sensor (Lean shift monitoring) (Front HO2S) (P0131: Left bank), (P0151: Right bank) (Cont'd)


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	a
P0131	• The maximum voltage from the sensor is not reached to the	 Front heated oxygen sensor 	GI
0411	specified voltage.	 Front heated oxygen sensor heater 	
(Left bank)		Fuel pressure	ПЛА
P0151		Injectors	MA
0415		 Intake air leaks 	
(Right bank)			EM

DIAGNOSTIC TROUBLE CODE CONFIRMATION	
FR O2 SEN-B1 P0131 PROCEDURE	LC
CAUTION	LV
Always drive vehicle at a safe speed.	
NOTE:	EC
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-	
CMPS-RPM(POS) XXX rpm DURE" has been previously conducted, always turn ignition	FE
switch "OFF" and wait at least 5 seconds before conducting	
B/FUEL SCHDL XXX msec TESTING CONDITION:	
B/FUEL SCHDL XXX msec SEF775X SEF775X SEF775X SEF775X	AT
Before performing following procedure, confirm that bat-	
	PD
TESTING 1) Start engine and warm it up to normal operating tem-	
	FA
	ra
MONITOR 3) Turn ignition switch "ON" and select "FR O2 SEN-B1 (-B2) P0131 (P0151)" of "FRONT O2 SENSOR" in	
CMPS-RPM(POS) XXX rpm "DTC WORK SUPPORT" mode with CONSULT-II.	RA
THETL POS SEN XXXV 4) Touch "START".	
5) Start engine (TCS switch "OFF") and let it idle for at	BR
B/FUEL SCHDL XXX msec least 3 minutes.	911
Note:	_
FR 02 SEN-B1 P0131 step. If the engine speed limit is exceeded, return to	ST
step 5).	
6) When the following conditions are met, "TESTING" will	RS
be displayed on the CONSOLT-IT screen. Maintain the	0.00
COMPLETED COMPLETED COMPLETED COMPLETED	
CMPS RPM (POS): 1,200 - 2,200 rpm	BT
Vehicle speed: 50 - 100 km/h (31 - 62 MPH)	
B/FUEL SCHDL: 1.4 - 5.0 ms	HA
Selector lever: Suitable position	
from stop 2)	r=n
7) Make sure that "OK" is displayed after touching "SELF-	EL
DIAG RESULTS". If "NG" is displayed, refer to "DIAG-	

NOSTIC PROCEDURE", EC-177.

R



Front Heated Oxygen Sensor (Lean shift monitoring) (Front HO2S) (P0131: Left bank), (P0151: Right bank) (Cont'd)

OR -OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal (3) LH, (2) RH (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.1V at least one time.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-177.

EC-177

Front Heated Oxygen Sensor (Lean shift monitoring) (Front HO2S) (P0131: Left bank), (P0151: Right bank) (Cont'd)

COMPONENT INSPECTION

Front heated oxygen sensor heater

Check resistance between terminals ③ and ① . Resistance: 2.3 - 4.3Ω at 25°C (77°F)

Check continuity between terminals (2) and (1), (3) and (2). Continuity should not exist.

If NG, replace the front heated oxygen sensor.

CAUTION:

AEC158A

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

DATA MON	IITOR	
MONITORING	MONITORING NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
FR O2 SEN-B1	XXX V	
FR O2 MNTR-B1	LEAN	
A/F ALPHA-B1	XXX %	
L		SEF746

3 2

Ω

DISCONNECT

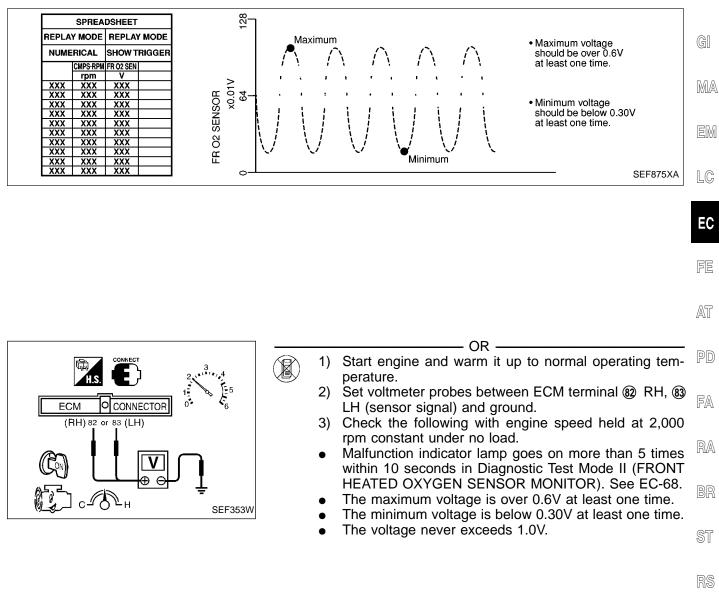
Front heated oxygen sensor

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONI-TOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R-L-R-

R = "FR O2 MNTR-B1 (-B2)", "RICH"


- L = "FR O2 MNTR-B1 (-B2)", "LEAN"
- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.30V at least once.
- The voltage never exceeds 1.0V.

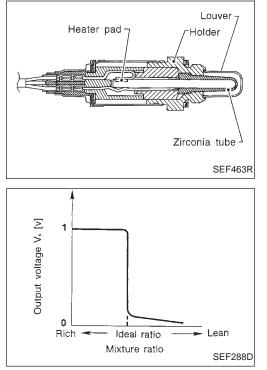
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

TROUBLE DIAGNOSIS FOR DTC P0131 (-B1), P0151 (-B2)

Front Heated Oxygen Sensor (Lean shift monitoring) (Front HO2S) (P0131: Left bank), (P0151: Right bank) (Cont'd)

بدا


BT

HA

EL

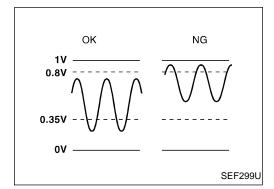
IDX

Front Heated Oxygen Sensor (Rich shift monitoring) (Front HO2S) (P0132: Left bank), (P0152: Right bank)

COMPONENT DESCRIPTION

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
FR O2 SEN-B1 FR O2 SEN-B2			0 - 0.3V ↔ 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	 Engine: After warming up 	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.

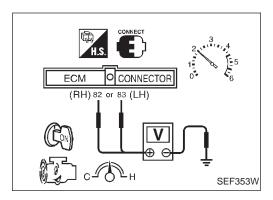
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (RH)	R	Front heated oxygen sen- sors	Engine is running. After warming up to normal operating tempera- ture and engine speed is 2,000 rpm.	0 - Approximately 1.0V (periodically change)
83 (LH)	W			

ON BOARD DIAGNOSIS LOGIC

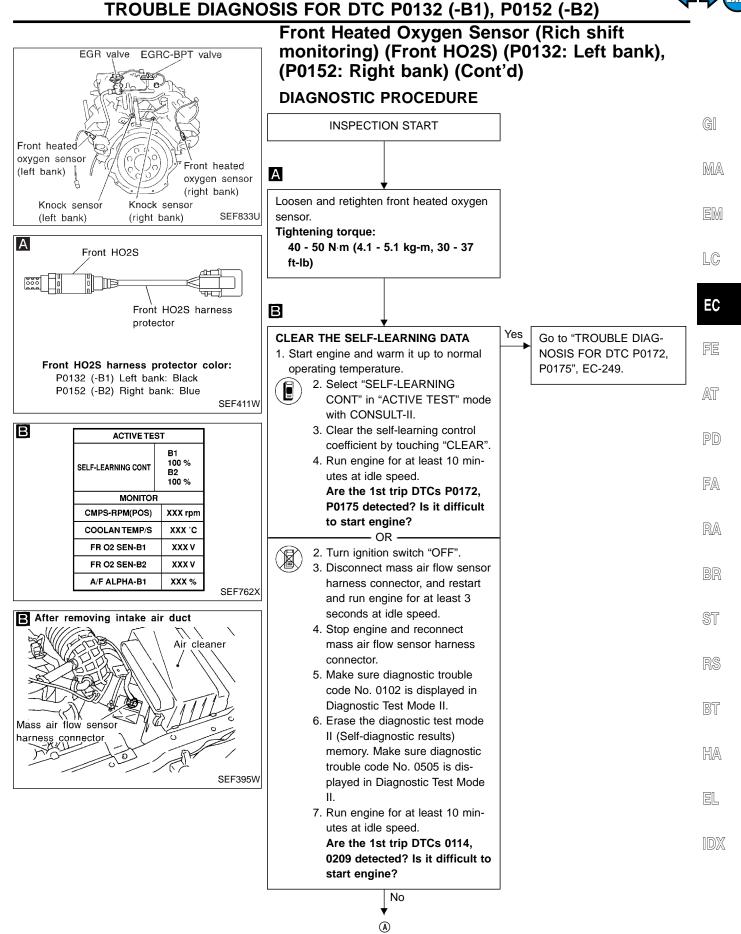
To judge the malfunction, the output from the front heated oxygen sensor is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.


TROUBLE DIAGNOSIS FOR DTC P0132 (-B1), P0152 (-B2)

Front Heated Oxygen Sensor (Rich shift monitoring) (Front HO2S) (P0132: Left bank), (P0152: Right bank) (Cont'd)

Diagnostic Trouble		Malfunctio	on is detected when	Check Items	
Code No.				(Possible Cause)	GI
P0132			mum voltages from the sensor are not	 Front heated oxygen sensor 	
0410	around the	specified vol	tages.	 Front heated oxygen sensor heater 	
(Left bank)				Fuel pressure	MA
P0152				Injectors	0000
0414					
(Right bank)					EM
FR O	2 SEN-B1 P0132		DIAGNOSTIC TROUBLE (PROCEDURE	CODE CONFIRMATION	LC
	OF CONDITION		CAUTION:		
001			Always drive vehicle at a sa	afe speed.	
			-		EC
	MONITOR		NOTE:		
				CODE CONFIRMATION PROCE-	
CMPS-RI	PM(POS) XXX rpm			y conducted, always turn ignition	FE
THRTL P	OS SEN XXX V			east 5 seconds before conducting	
			the next test.		
B/FUEL	SCHDL XXX msec		TESTING CONDITION:		AT
		SEF802X	 Always perform at a ter 	nperature above –10°C (14°F).	0 00
				wing procedure, confirm that bat-	
FR O	2 SEN-B1 P0132		tery voltage is more that		P
			() (1) Start anging and)		
	TESTING			warm it up to normal operating tem-	
	1231ing				FA
				vait at least 5 seconds.	LT LA
	MONITOR			h "ON" and select "FR O2 SEN-B1	
				52)" of "FRONT O2 SENSOR" in	6
CMPS-RI	PM(POS) XXX rpm			PORT" mode with CONSULT-II.	R/
THRTL P			Touch "START".		
			5) Start engine (TCS	switch "OFF") and let it idle for at	
B/FUEL	SCHDL XXX msec		least 3 minutes.		B
		SEF803X	NOTE:		
			Never raise engine s	speed above 3,200 rpm after this	e
FR O	2 SEN-B1 P0132			peed limit is exceeded, return to	SI
			step 5).		
				g conditions are met, "TESTING" will	
				he CONSULT-II screen. Maintain the	R
				ously until "TESTING" changes to	
c	OMPLETED			will take approximately 50 seconds.)	
					Bī
): 1,200 - 2,200 rpm	
) - 100 km/h (31 - 62 MPH)	
			B/FUEL SCHDL:		HÆ
SELF	DIAG RESULTS		Selector lever: Su	•	
		SEF804X		displayed after 5 minutes, retry	
			from step 2).		El
				K" is displayed after touching "SELF-	تا
			DIAG RESULTS".	If "NG" is displayed, refer to "DIAG-	
			NOSTIC PROCED	URE", EC-183.	ID.
					uĽ

R

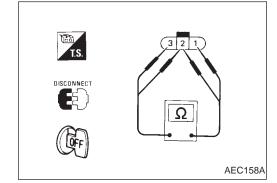


Front Heated Oxygen Sensor (Rich shift monitoring) (Front HO2S) (P0132: Left bank), (P0152: Right bank) (Cont'd)

OR -OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
 - 2) Set voltmeter probes between ECM terminal (2) RH, (3) LH (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-183.


(Go to next page.)

COMPONENT INSPECTION

Front heated oxygen sensor heater

- Check resistance between terminals (3) and (1). Resistance: 2.3 - 4.3Ω at 25°C (77°F)
- Check continuity between terminals (2) and (1), (3) and (2). Continuity should not exist.

If NG, replace the front heated oxygen sensor.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

EM

EC

FE

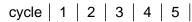
FA

DATA MON	IITOR	
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
FR O2 SEN-B1	XXX V	
FR O2 MNTR-B1	LEAN	
A/F ALPHA-B1	XXX %	
		SEF746X

CONNECTOR

(RH) 82 or 83 (LH)

сℒЉч

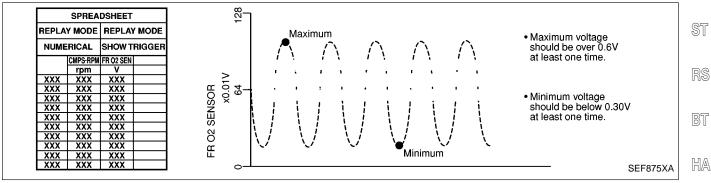

ECM

Front Heated Oxygen Sensor (Rich shift monitoring) (Front HO2S) (P0132: Left bank), (P0152: Right bank) (Cont'd)

Front heated oxygen sensor

- 1) Start engine and warm it up to normal operating tem-GI perature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONI-2) TOR" mode with CONSULT-II, and select "FR O2 MA SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode LC changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:


FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R

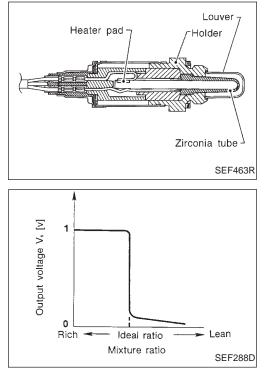
R = "FR O2 MNTR-B1 (-B2)", "RICH"

- L = "FR O2 MNTR-B1 (-B2)", "LEAN" AT "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.30V at PD least once.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- RA Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- OR -Start engine and warm it up to normal operating tem-1) perature.
- 2) Set voltmeter probes between ECM terminal (2) RH, (3) LH (sensor signal) and ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). See EC-68.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time.
- The voltage never exceeds 1.0V.


EC-185

SEF353W

 \mathbb{D}

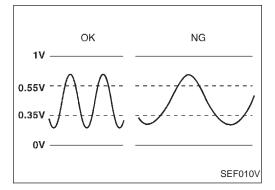
EL

Front Heated Oxygen Sensor (Response monitoring) (Front HO2S) (P0133: Left bank), (P0153: Right bank)

COMPONENT DESCRIPTION

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
FR O2 SEN-B1 FR O2 SEN-B2	Encies After mercies un		0 - 0.3V ↔ 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	 Engine: After warming up 	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (RH)	R	Front heated oxygen sen-	Engine is running.	0 - Approximately 1.0V
83 (LH)	W	sor	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm.	(periodically change)

ON BOARD DIAGNOSIS LOGIC

To judge the malfunction of front heated oxygen sensor, this diagnosis measures response time of the front heated oxygen sensor signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and front heated oxygen sensor temperature index. Judgment is based on whether the compensated time (front heated oxygen sensor cycling time index) is inordinately long or not.

TROUBLE DIAGNOSIS FOR DTC P0133 (-B1), P0153 (-B2)

Front Heated Oxygen Sensor (Response monitoring) (Front HO2S) (P0133: Left bank), (P0153: Right bank) (Cont'd)

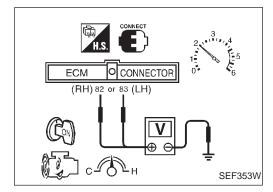
Diagnostic Trouble	Malfunction is detected when	Check Items	I
Code No.		(Possible Cause)	
P0133	• The response of the voltage signal from the sensor takes	 Harness or connectors 	GI
0409	more than the specified time.	(The sensor circuit is open or shorted.)	
(Left bank)		 Front heated oxygen sensor 	
		 Front heated oxygen sensor heater 	MA
		Fuel pressure	
P0153		Injectors	
0413		Intake air leaks	EM
(Right bank)		 Exhaust gas leaks 	
		• PCV	
		 Mass air flow sensor 	LC

FE

AT

FR O2 SEN-B1 P		
OUT OF CONDI		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
THRTL POS SEN	xxx v	
B/FUEL SCHDL	XXX msec	
		SEF778X

· · · · · · · · · · · · · · · · · · ·			
	FR O2 SEN-B1 F		
	TESTING		
	MONITOR		
	CMPS-RPM(POS)	XXX rpm	
	THRTL POS SEN	xxx v	
	B/FUEL SCHDL	XXX msec	
			SEF779X

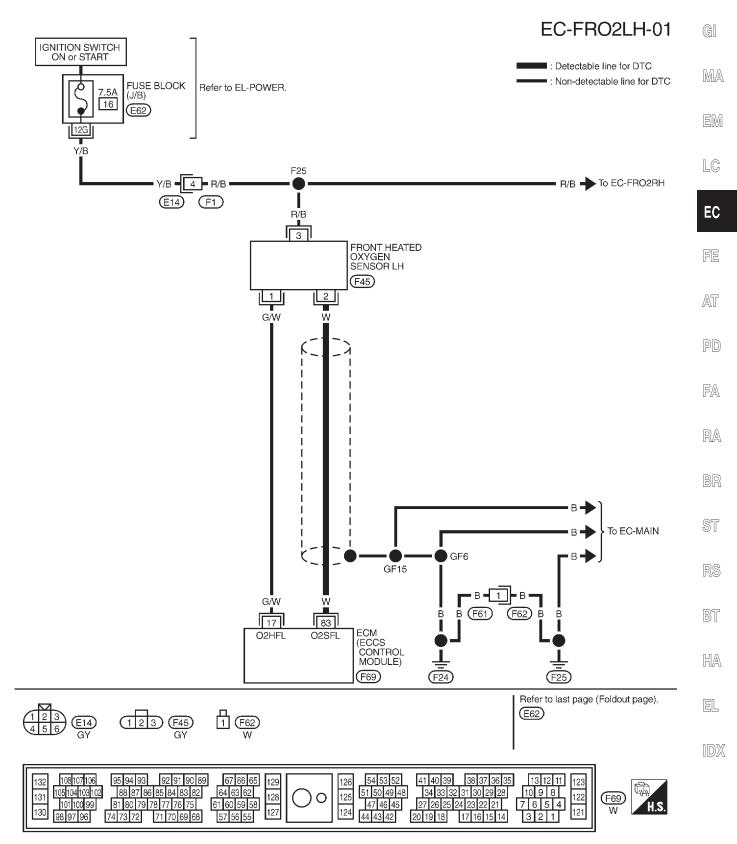

FR O2 SEN-B1 P0133]
COMPLETED	
SELF-DIAG RESULTS	
	SEF780X

DIAGNOSTIC TROUBLE CODE CONFIRMATION PD PROCEDURE **CAUTION:** Always drive vehicle at a safe speed. FA NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-RA DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test. TESTING CONDITION: Always perform at a temperature of above –10°C (14°F). Before performing following procedure, confirm that battery voltage is more than 11V at idle. 1) Start engine and warm it up to normal operating tem-perature. 2) Stop engine and wait at least 5 seconds. 3) Turn ignition switch "ON" and select "FR O2 SEN-B1 (-B2) P0133 (P0153)" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II. 4) Touch "START". 5) Start engine (TCS switch "OFF") and let it idle for at least 3 minutes. NOTE: Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5). IDX 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.) Engine seed: 1,700 - 2,500 rpm Vehicle speed: 50 - 120 km/h (31 - 75 MPH) B/FUEL SCHDL: 1.4 - 5.0 msec Selector lever: Suitable position

Front Heated Oxygen Sensor (Response monitoring) (Front HO2S) (P0133: Left bank), (P0153: Right bank) (Cont'd)

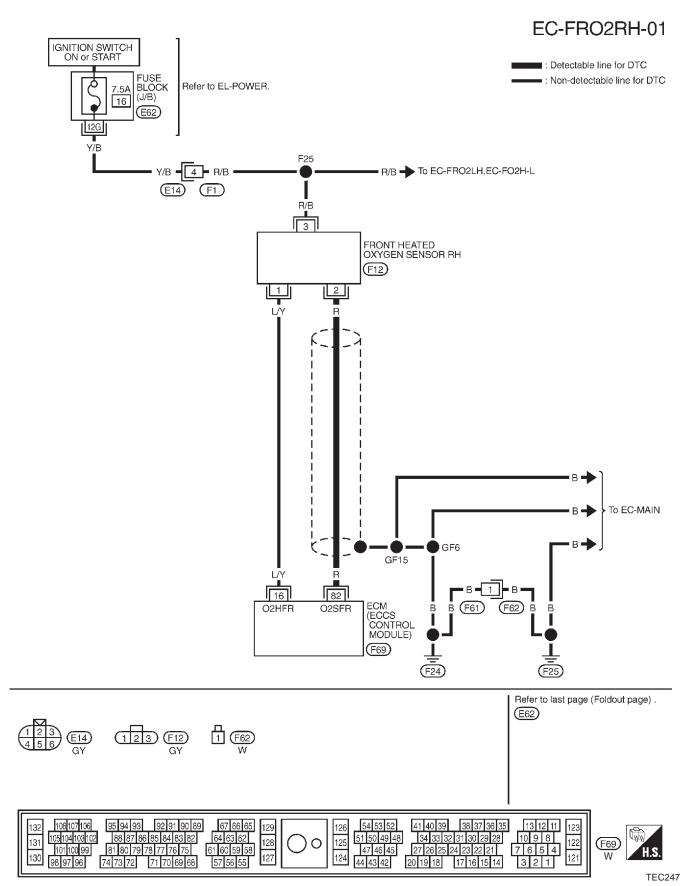
- If "TESTING" is not displayed after 5 minutes, retry from step 2).
- 7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-191.

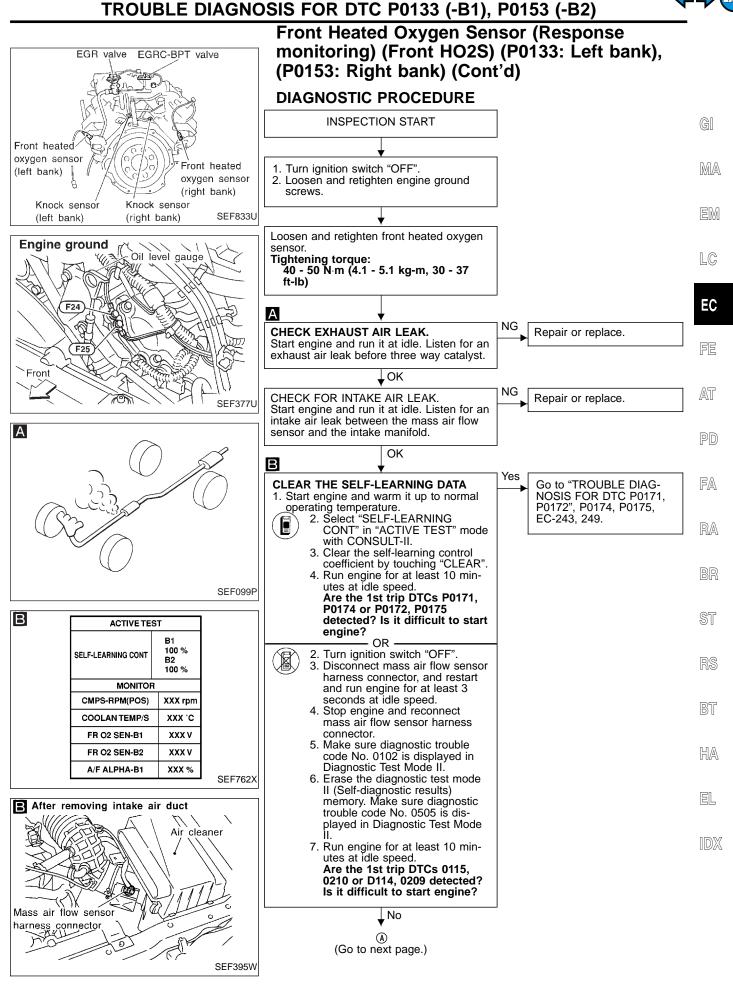
OR OVERALL FUNCTION CHECK

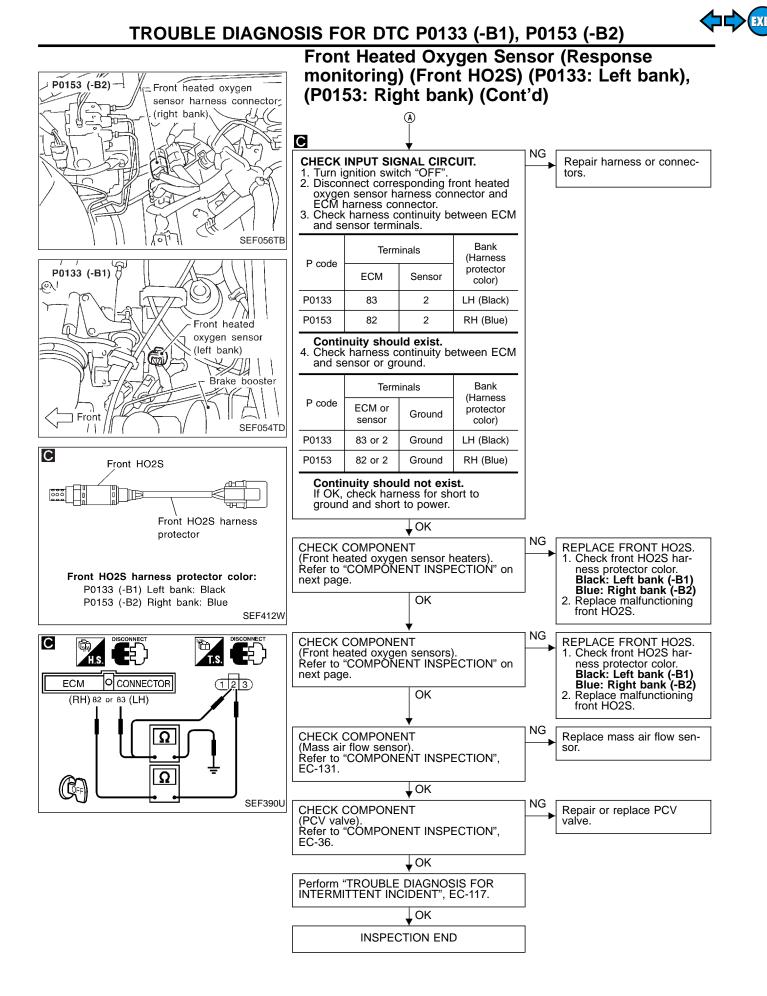

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
 - 2) Set voltmeter probes between ECM terminal @ RH,
 LH (sensor signal) and ground.
 - 3) Check the following with engine speed held at 2,000 rpm constant under no load.
 - Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). See EC-68.
 - 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-191.

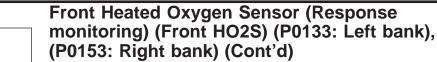
Front Heated Oxygen Sensor (Response monitoring) (Front HO2S) (P0133: Left bank), (P0153: Right bank) (Cont'd)


LEFT BANK





Front Heated Oxygen Sensor (Response monitoring) (Front HO2S) (P0133: Left bank), (P0153: Right bank) (Cont'd)


RIGHT BANK

	COMPONENT INSPECTION	
	Front heated oxygen sensor heater	GI
	Check resistance between terminals ③ and ①. Resistance: 2.3 - 4.3Ω at 25°C (77°F)	
	Check continuity between terminals ② and ①, ③ and ②. Continuity should not exist.	MA
	If NG, replace the front heated oxygen sensor.	
AEC158A	• Discard any heated oxygen sensor which has been	EM
	 dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool 	LC
	J-43897-18 or J-43897-12 and approved anti-seize lubri- cant.	EC
		FĽ
		AT
	Front heated oxygen sensor	
	1) Start engine and warm it up to normal operating temperature.	PD
	 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONI- TOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)". 	FA
	3) Hold engine speed at 2 000 rpm under no load during	٦A

- Hold engine speed at 2,000 rpm under no load during 3) - RA the following steps.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. ST

5 times (cycles) are counted as shown below:

- L = "FR O2 MNTR-B1 (-B2)", "LEAN" "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least
- once. HA "FR O2 SEN-B1 (-B2)" voltage goes below 0.30V at least once.
- The voltage never exceeds 1.0V.

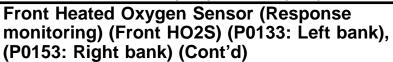
CAUTION:

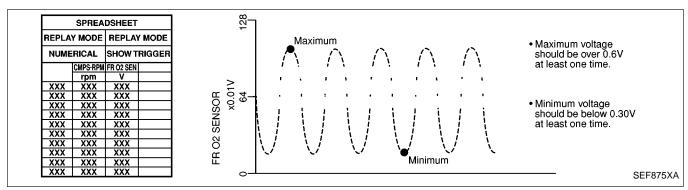
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

DATA MONITOR					
MONITORING	NO DTC				
CMPS-RPM(POS)	XXX rpm				
COOLAN TEMP/S	XXX °C				
FR O2 SEN-B1	XXX V				
FR O2 MNTR-B1	LEAN				
A/F ALPHA-B1	XXX %				

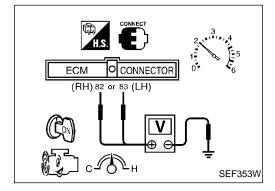
3 2

Ω

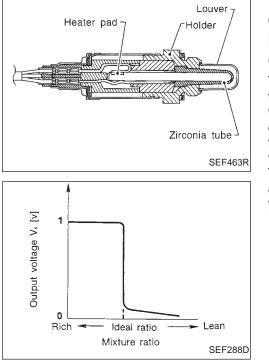

DISCONNECT


- 4) Touch "RECORD" on CONSULT-II screen. 5) Check the following.

EC-193


EL

TROUBLE DIAGNOSIS FOR DTC P0133 (-B1), P0153 (-B2)


R

			— OR					
1)	Start engine	and	warm	it up	to	normal	operating	tem-
	perature.							

- 2) Set voltmeter probes between ECM terminal (2) RH, (3) LH (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). See EC-68.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time.
- The voltage never exceeds 1.0V.

Front Heated Oxygen Sensor (High voltage) (Front HO2S) (P0134: Left bank), (P0154: Right bank)

COMPONENT DESCRIPTION

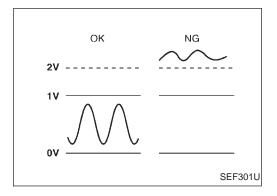
GI The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-MA end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V. LC

EC

AT

PD

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CON	DITION	SPECIFICATION	
FR O2 SEN-B1 FR O2 SEN-B2			0 - 0.3V ↔ 0.6 - 1.0V	FA
FR O2 MNTR-B1 FR O2 MNTR-B2	 Engine: After warming up 	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.	RA

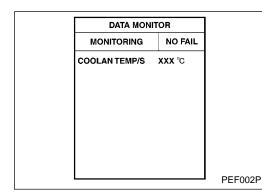
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	RS
82 (RH)	R	Front heated oxygen sen-	Engine is running.	0 - Approximately 1.0V	BT
83 (LH)	W	sor	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm.	(periodically change)	HA

ON BOARD DIAGNOSIS LOGIC

EL


To judge the malfunction, the diagnosis checks that the front heated oxygen sensor output is not inordinately high.

TROUBLE DIAGNOSIS FOR DTC P0134 (-B1), P0154 (-B2)

Front Heated Oxygen Sensor (High voltage) (Front HO2S) (P0134: Left bank), (P0154: Right bank) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0134	• An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors
0142		(The sensor circuit is open or shorted.)
(Left bank)		 Front heated oxygen sensor
P0154		
0509		
(Right bank)		

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

(GST)

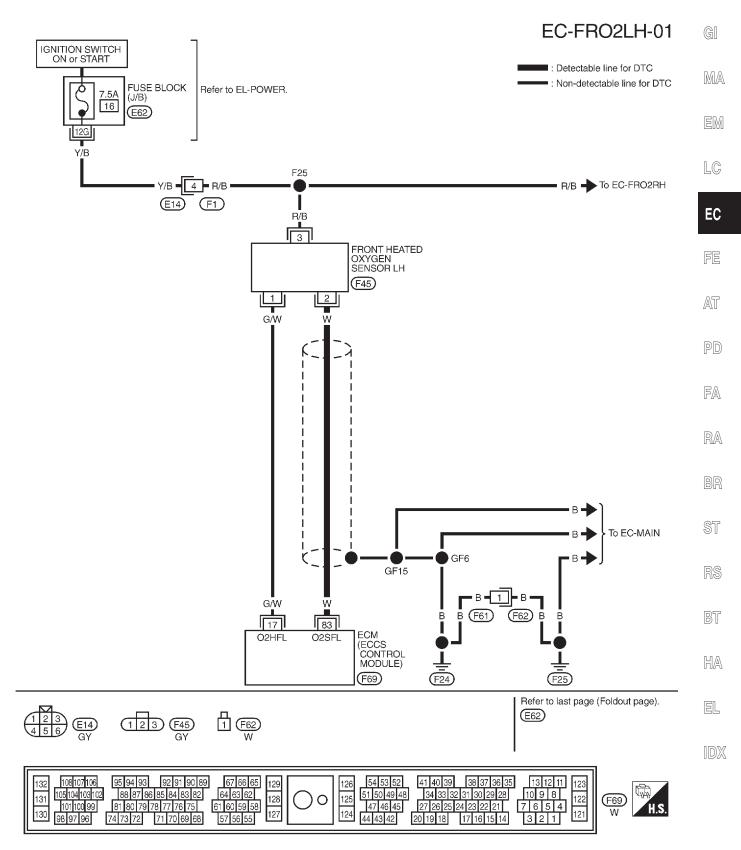
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Restart engine and let it idle for 32 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-199. OR ________OR ___________

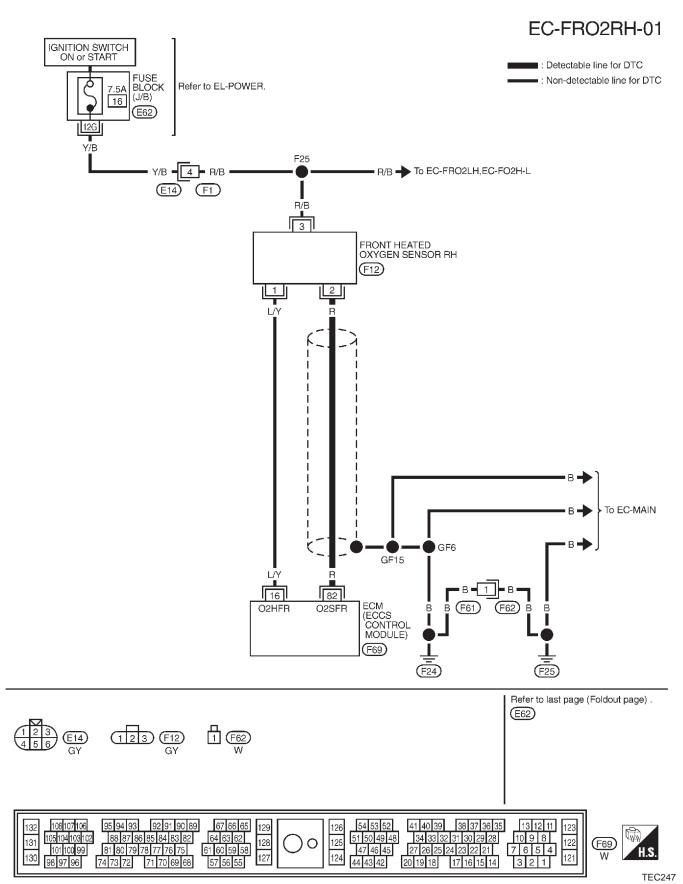
Wtih GST

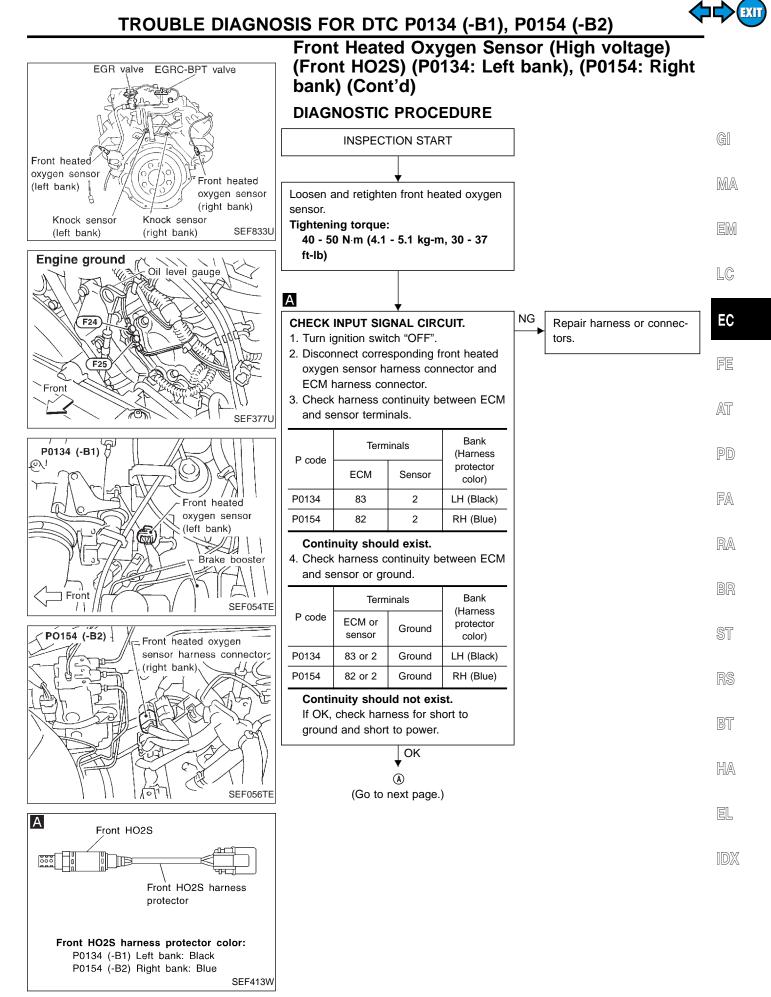
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Restart engine and let it idle for 32 seconds.
- 4) Turn ignition switch "OFF" and wait at least 5 seconds.
- 5) Restart engine and let it idle for 32 seconds.
- 6) Select "MODE 3" with GST.
- 7) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-199.
 OR

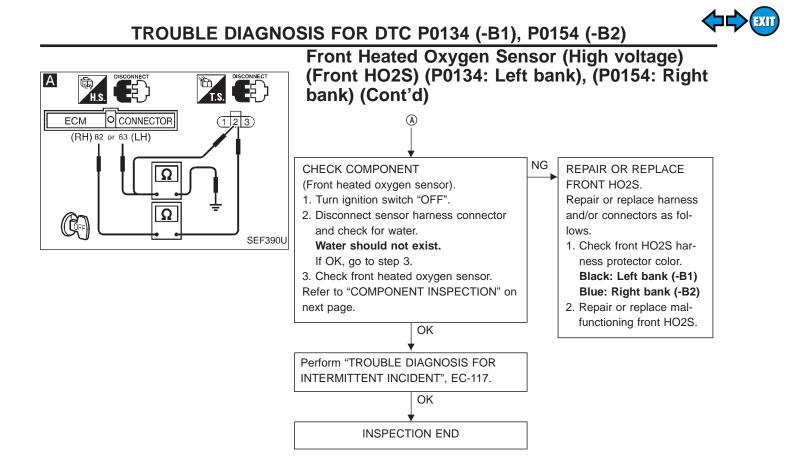

NO NOT TOOLS

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Restart engine and let it idle for 32 seconds.
- 4) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 5) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-199.
- When using GST, "DTC CONFIRMATION PROCEDURE" should be performed twice as much as when using CON-SULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

Front Heated Oxygen Sensor (High voltage) (Front HO2S) (P0134: Left bank), (P0154: Right bank) (Cont'd)


LEFT BANK





Front Heated Oxygen Sensor (High voltage) (Front HO2S) (P0134: Left bank), (P0154: Right bank) (Cont'd)

RIGHT BANK

GI

FE

AT

FA

DATA MON	IITOR	
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
FR O2 SEN-B1	XXX V	
FR O2 MNTR-B1	LEAN	
A/F ALPHA-B1	XXX %	

Front Heated Oxygen Sensor (High voltage) (Front HO2S) (P0134: Left bank), (P0154: Right bank) (Cont'd)

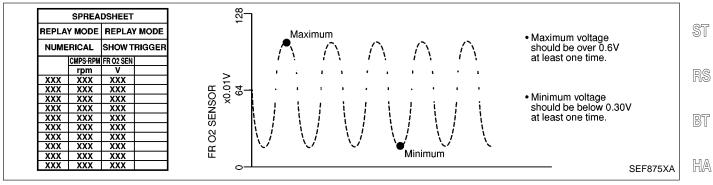
COMPONENT INSPECTION

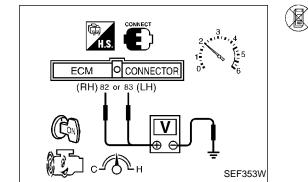
Front heated oxygen sensor

- Start engine and warm it up to normal operating tem-1) perature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONI-2) MA TOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3) Hold engine speed at 2,000 rpm under no load during EM the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following. 5)
- LC "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. EC

5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5


FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R


R = "FR O2 MNTR-B1 (-B2)", "RICH"

- L = "FR O2 MNTR-B1 (-B2)", "LEAN" "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.30V at PD least once.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- RA Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OR ·

- EL Start engine and warm it up to normal operating tem-1) perature.
- Set voltmeter probes between ECM terminal (2) RH, (3) 2) LH (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rom constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). See EC-68.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time.
- The voltage never exceeds 1.0V.

EC-201

 \mathbb{D}

Front Heated Oxygen Sensor Heater (P0135: Left bank), (P0155: Right bank)

SYSTEM DESCRIPTION

Camshaft position sensor	Engine speed	_	Front
Mass air flow sensor	Amount of intake air	ECM	 heated oxy- gen sensor heaters

The ECM performs ON/OFF control of the front heated oxygen sensor heaters corresponding to the engine speed.

OPERATION

Engine speed rpm	Front heated oxygen sensor heaters	
Above 3,200	OFF	
Below 3,200	ON	

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
O2 SEN HTR-B1	Engine speed: Idle	ON
O2 SEN HTR-B2	Engine speed: Above 3,200	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
17 (LH)	G/W	Front heated oxygen sen-	Engine is running. Engine speed is below 3,200 rpm.	0 - 0.5V
16 (RH)	L/Y	sor heaters (left bank)	Engine is running. Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0135 0901 (Left bank) P0155 1001 (Right bank)	 The current amperage in the front heated oxygen sensor heater circuit is out of the normal range. (The improper voltage drop signal is sent to ECM through the front heated oxygen sensor heater.) 	 Harness or connectors (The front heated oxygen sensor heater circuit is open or shorted.) Front heated oxygen sensor heater

DATA N	IONITOR
MONITORIN	G NO DTC
CMPS-RPM(PO	S) XXX rpm
COOLAN TEMP	/S XXX°C
FR O2 SEN-B1	xxx v
FR O2 MNTR-B	1 LEAN
FR O2 HTR-B1	ON
	SEF8'

Front Heated Oxygen Sensor Heater (P0135: Left bank), (P0155: Right bank) (Cont'd)
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

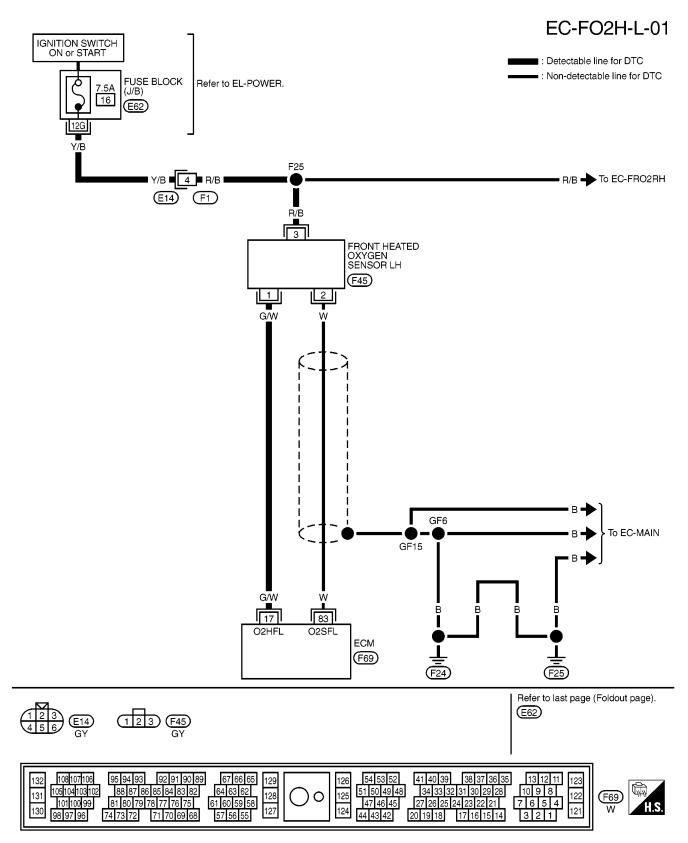
Before performing the following procedure, confirm that battery voltage is more than 10.5. $\hfill \mathbb{E}\mathbb{M}$

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
 - mode with CONSULT-II.
 2) Start engine and run it for at least 6 seconds at idle speed.
 - 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-206.
- Start engine and run it for at least 6 seconds at idle FE speed.
 - 2) Turn ignition switch "OFF" and wait at least 5 seconds.
 - Restart engine and run it for at least 6 seconds at idle AT speed.
 - 4) Select "MODE 3" with GST.
 - If DTC is detected, go to "DIAGNOSTIC PD PROCEDURE", EC-206.
- When using GST, "DIAGNOSTIC TROUBLE CODE CON-FIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. RA Therefore, using CONSULT-II is recommended.

BR

ST

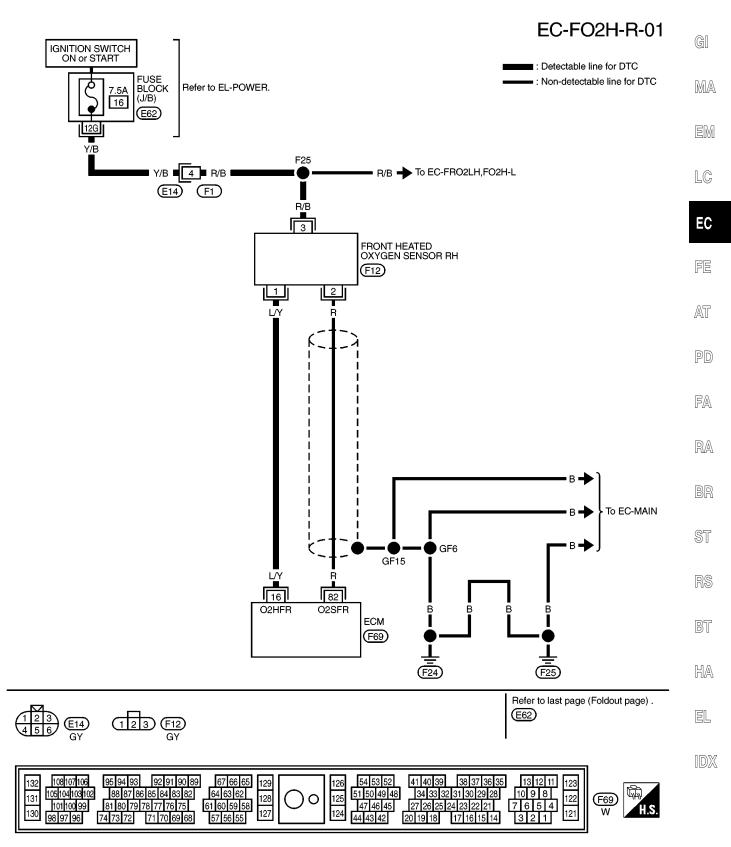
BT

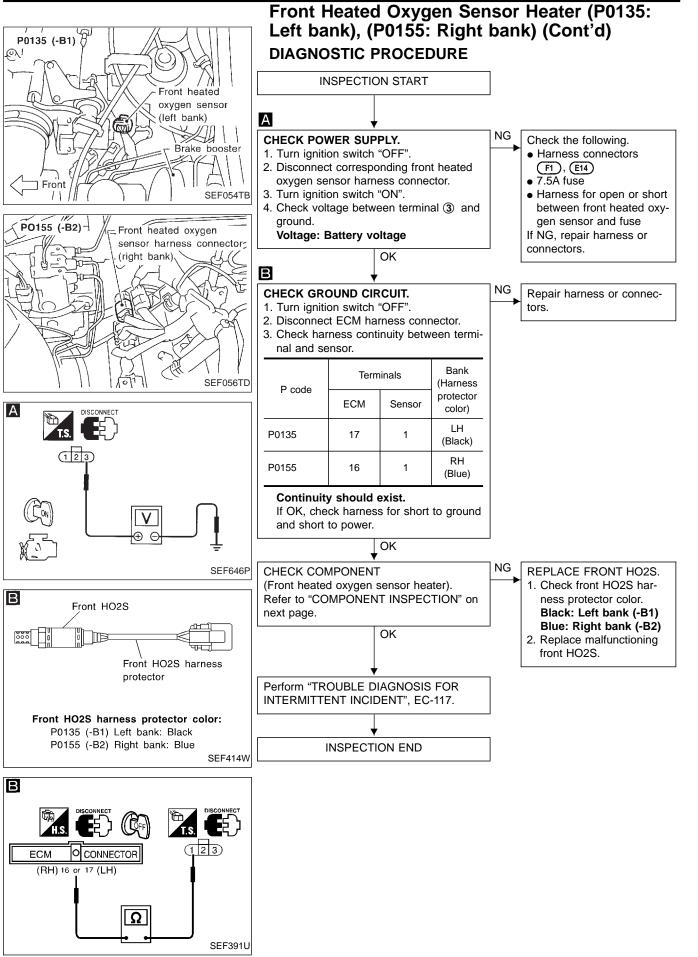

HA

EL

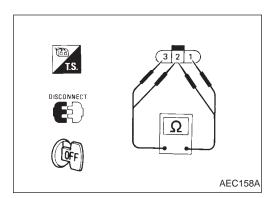
Front Heated Oxygen Sensor Heater (P0135: Left bank), (P0155: Right bank) (Cont'd)

LEFT BANK




TROUBLE DIAGNOSIS FOR DTC P0135 (-B1), P0155 (-B2)

Front Heated Oxygen Sensor Heater (P0135: Left bank), (P0155: Right bank) (Cont'd)


RIGHT BANK

TROUBLE DIAGNOSIS FOR DTC P0135 (-B1), P0155 (-B2)

TROUBLE DIAGNOSIS FOR DTC P0135 (-B1), P0155 (-B2)

Front Heated Oxygen Sensor Heater (P0135: Left bank), (P0155: Right bank) (Cont'd) COMPONENT INSPECTION

Front heated oxygen sensor heater

Check resistance between terminals (3) and (1) .	GI
Resistance: 2.3 - 4.3 Ω at 25°C (77°F)	eil
Check continuity between terminals (2) and (1), (3) and (2).	
Continuity should not exist.	MA
If NG, replace the front heated oxygen sensor.	0000 0
CAUTION:	
Discard any heated oxygen sensor which has been dropped	GM

Discard any heated oxygen sensor which has been dropped EM from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

LC

₽X(Π

FE

AT

PD

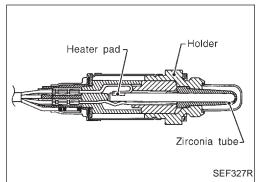
FA

RA

BR

ST

RS


BT

HA

EL

IDX

Rear Heated Oxygen Sensor (Min. Voltage Monitoring) (Rear HO2S) (P0137: Left bank), (P0157: Right bank)

COMPONENT DESCRIPTION

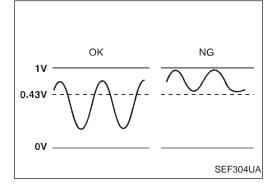
The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

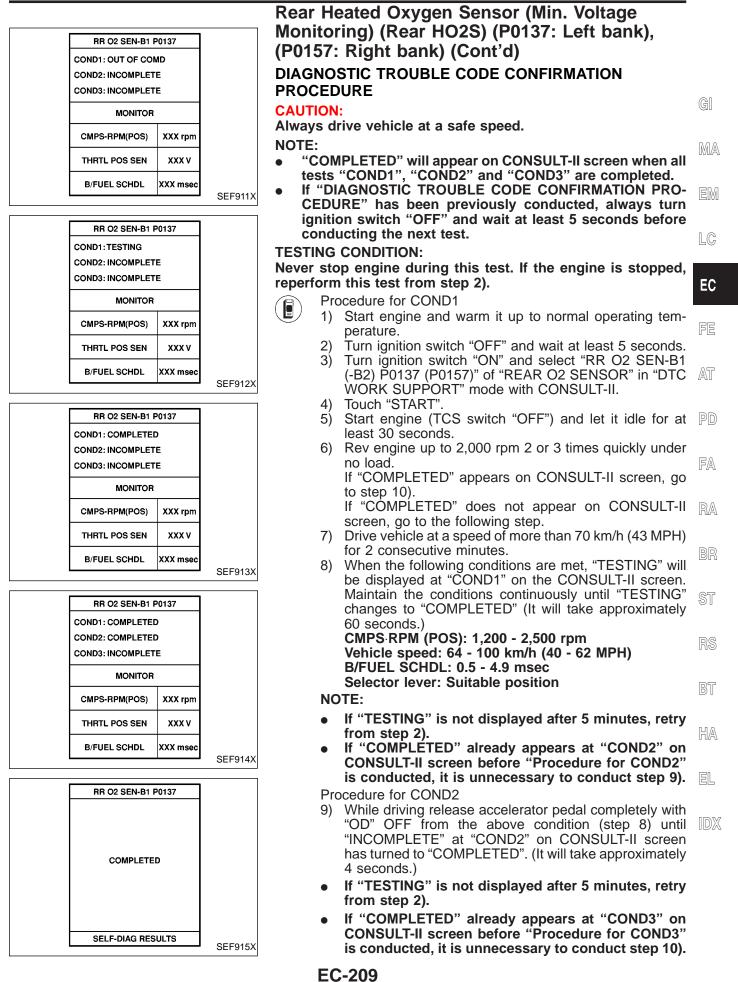

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
RR O2 SEN-B1 RR O2 SEN-B2	Engine: After warming up	Revving engine from idle up to 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
89 (RH)	W	Rear heated oxygen sen- sors	Engine is running.	0 - Approximately 1.0V
90 (LH)	Y		ture and revving engine from idle up to 2,000 rpm.	



ON BOARD DIAGNOSIS LOGIC

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the minimum voltage of the sensor is sufficiently low during the various driving condition such as fuel-cut.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0137 0511 (Left bank)	 The minimum voltage from the sensor is not reached to the specified voltage. 	Harness or connectors (The sensor circuit is open.)Rear heated oxygen sensors
P0157 0314 (Right bank)		Fuel pressureInjectors

Rear Heated Oxygen Sensor (Min. Voltage Monitoring) (Rear HO2S) (P0137: Left bank), (P0157: Right bank) (Cont'd)

Procedure for COND3

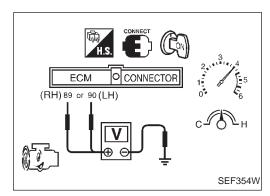
- 10) Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COM-PLETED". (It will take a maximum of approximately 6 minutes.)
- 11) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-213.

OR OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - 2) Stop vehicle with engine running.
 - 3) Set voltmeter probes between ECM terminals (8) (RH), (9) (LH) (sensor signal) and ground.
 - 4) Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.

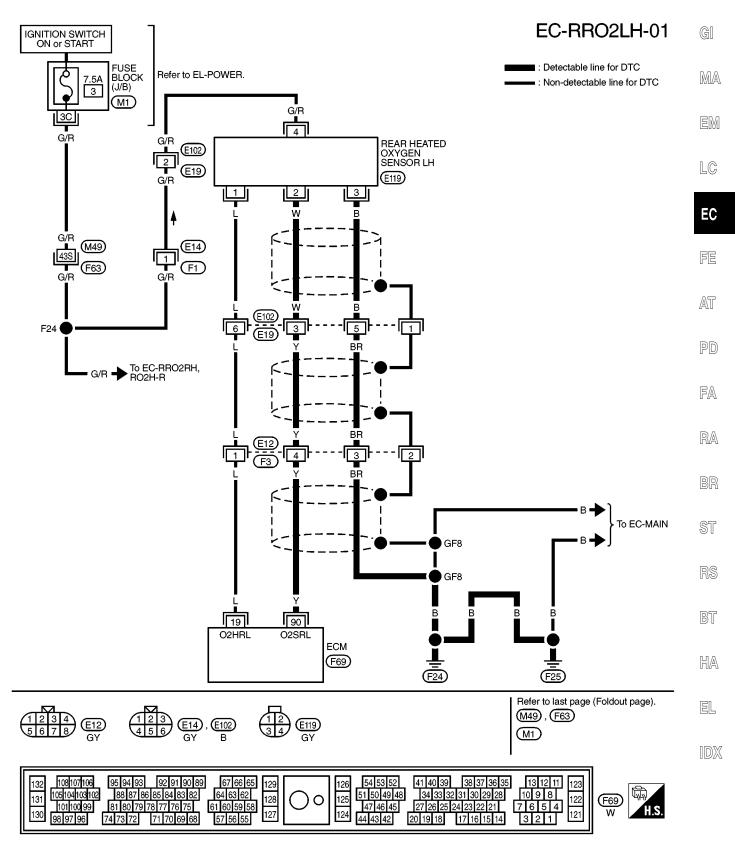
(depress and release accelerator pedal as soon as possible)


The voltage should be below 0.43V at least once during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

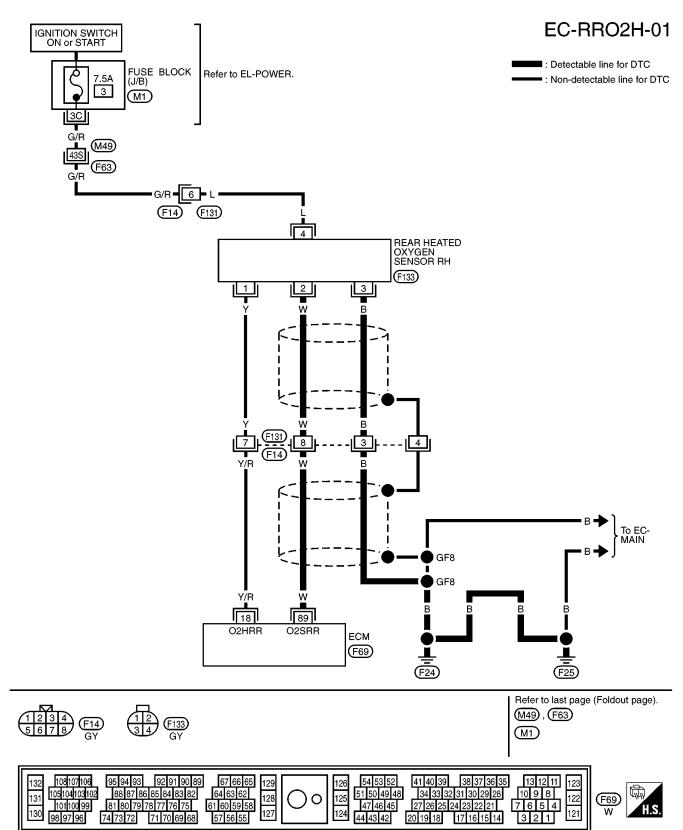
5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 The voltage should be below 0.43V at least once

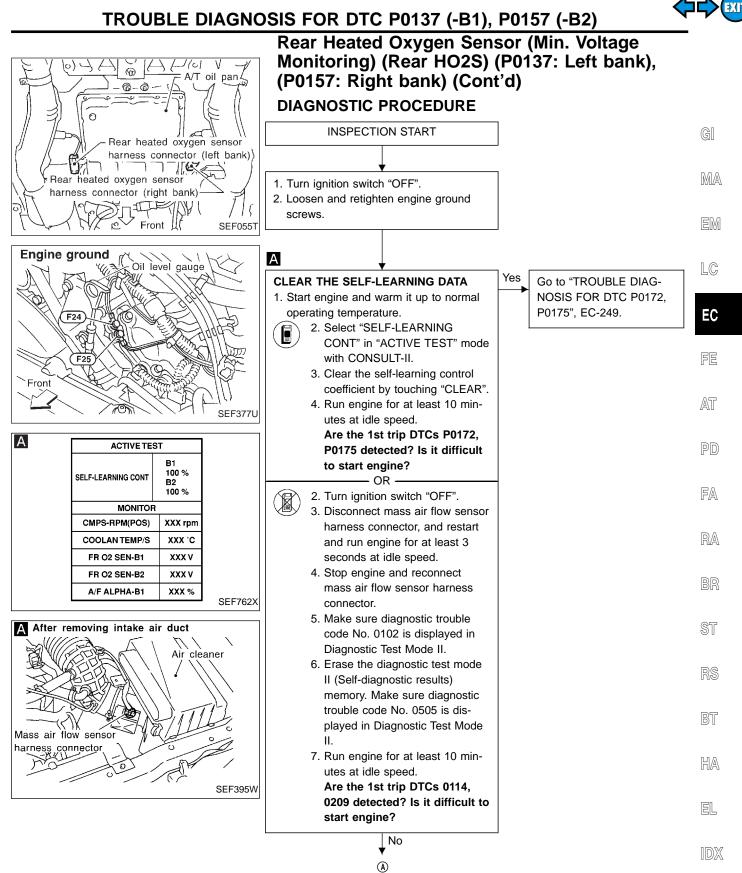
The voltage should be below 0.43V at least once during this procedure.


6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-213.

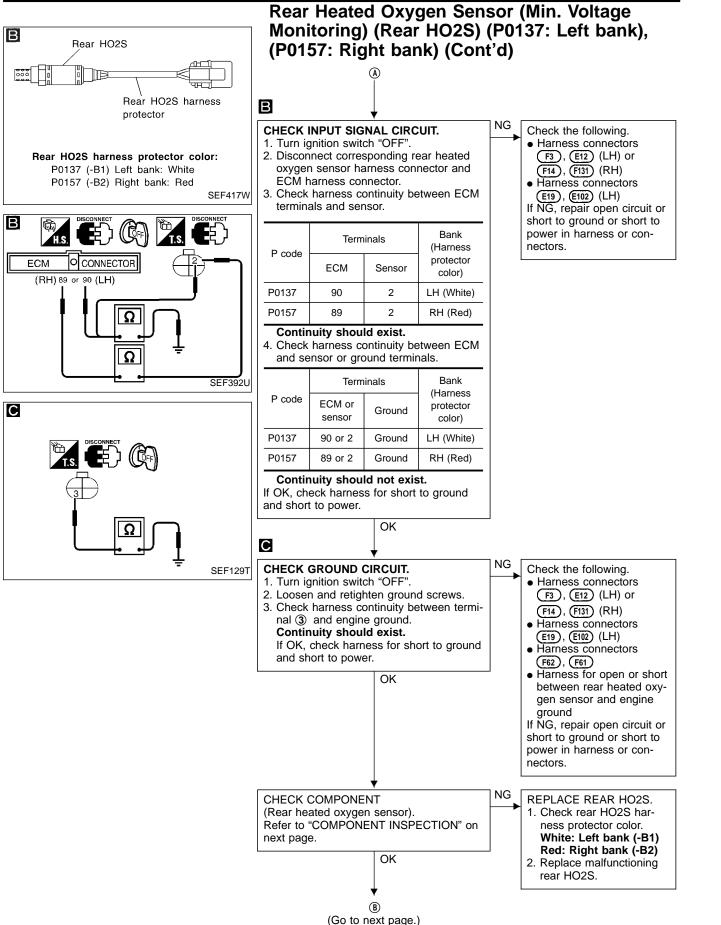
Rear Heated Oxygen Sensor (Min. Voltage Monitoring) (Rear HO2S) (P0137: Left bank), (P0157: Right bank) (Cont'd)

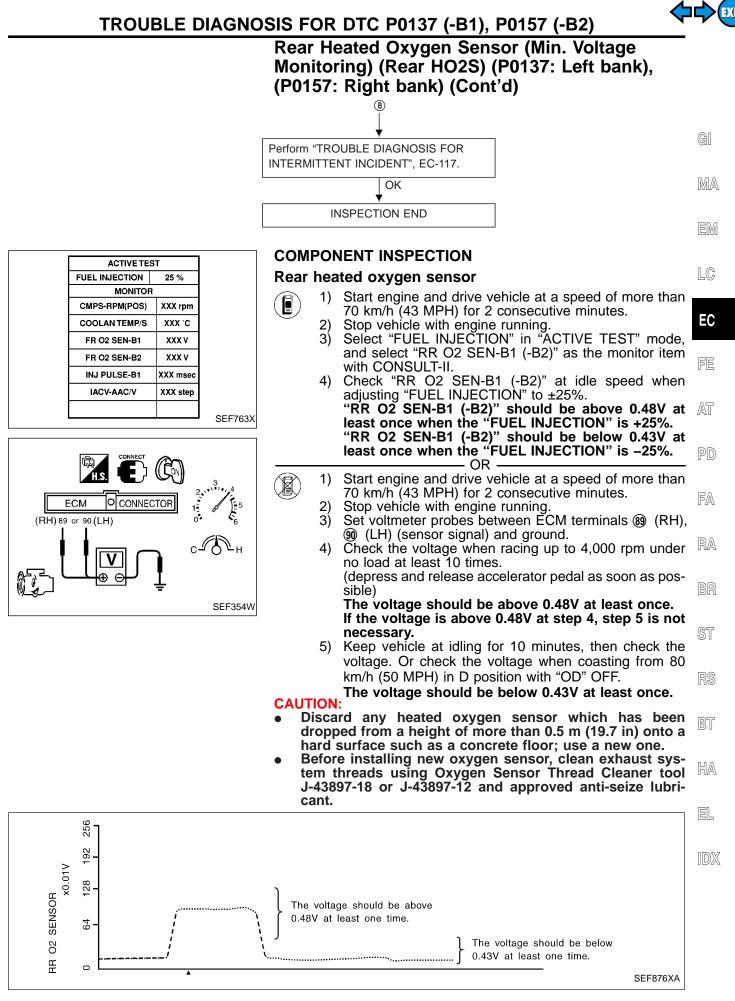
LEFT BANK

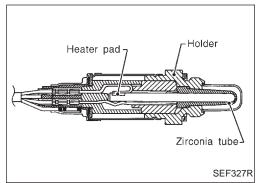



EXIT

Rear Heated Oxygen Sensor (Min. Voltage Monitoring) (Rear HO2S) (P0137: Left bank), (P0157: Right bank) (Cont'd)


RIGHT BANK




(Go to next page.)

TROUBLE DIAGNOSIS FOR DTC P0137 (-B1), P0157 (-B2)

Rear Heated Oxygen Sensor (Max. Voltage Monitoring) (Rear HO2S) (P0138: Left bank), (P0158: Right bank)

COMPONENT DESCRIPTION

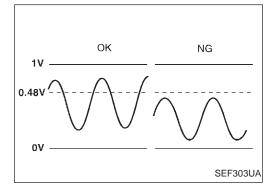
The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
RR O2 SEN-B1 RR O2 SEN-B2	Engine: After warming up	Revving engine from idle up to 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
90 (LH)	Y	Rear heated oxygen sen- sor	Engine is running.	
89 (RH)	W		ture and revving engine from idle up to 2,000 rpm.	0 - Approximately 1.0V

ON BOARD DIAGNOSIS LOGIC

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0138 (-B1) 0510 (Left bank)	 The maximum voltage from the sensor is not reached to the specified voltage. 	 Harness or connectors (The sensor circuit is open or shorted.) Rear heated oxygen sensor
P0158 (-B2) 0313 (Right bank)		Fuel pressureInjectorsIntake air leaks

					eated Oxygen Sensor (Max. Voltage	
	RR O2 SEN-B1 P	0138			ring) (Rear HO2S) (P0138: Left bank),	
	D1: OUT OF COM			(P0158:	Right bank) (Cont'd)	
	D2: INCOMPLETE			CAUTION	•	
	D3: INCOMPLETE				rive vehicle at a safe speed.	O 1
	MONITOR			NOTE:		GI
СМ	IPS-RPM(POS)	XXX rpm		 "CON tests 	IPLETED" will appear on CONSULT-II screen when all "COND1", "COND2" and "COND3" are completed.	ПЛА
тн	IRTL POS SEN	xxx v			AGNOSTIC TROUBLE CODE CONFIRMATION PRO- IRE" has been previously conducted, always turn	MA
B/	FUEL SCHDL	XXX msec	SEF916X	igniti	on switch "OFF" and wait at least 5 seconds before	EM
					ucting the next test.	
	RR O2 SEN-B1 P	0138			CONDITION:	
CON	D1: TESTING				op engine during this test. If the engine is stopped,	LC
CON	D2: INCOMPLETE	.		· ·	this test from step 2).	
CON	D3: INCOMPLETE	.			cedure for COND1	EA
	MONITOR				Start engine and warm it up to normal operating temperature.	EC
СМ	IPS-RPM(POS)	XXX rpm		2) 3)	Turn ignition switch "OFF" and wait at least 5 seconds. Turn ignition switch "ON" and select "RR O2 SEN-B1	FE
тн	IRTL POS SEN	xxx v		-)	(-B2) P0138 (P0158)" of "RR O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.	
B/	FUEL SCHDL	XXX msec		4)	Touch "START".	AT
			SEF917X	5)		5 6 5
	RR O2 SEN-B1 P	0138		- /	least 30 seconds.	PD
	D1: COMPLETED			6)	Rev engine to 2,000 rpm 2 or 3 times quickly under no	rø
	D2: INCOMPLETE					
	D3: INCOMPLETE				If "COMPLETED" appears on CONSULT-II screen, go	FA
	MONITOR				to step 10). If "COMPLETED" does not appear on CONSULT-II	
					screen, go to the following step.	
	IPS-RPM(POS)	XXX rpm		7)	Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.	RA
	FUEL SCHDL	XXX V XXX msec		8)	When the following conditions are met, "TESTING" will	BR
	TOLL SOUDE	AAA III3ec	SEF918X		be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING"	
					changes to "COMPLETED". (It will take approximately	0
	RR O2 SEN-B1 P	0138			60 seconds.)	ST
CON	D1: COMPLETED				CMPS RPM (POS): 1,200 - 2,500 rpm	
CON	D2: COMPLETED				Vehicle speed: 64 - 100 km/h (40 - 62 MPH)	RS
CON	D3: INCOMPLETE				B/FUEL SCHDL: 0.5 - 4.9 msec	ΝØ
	MONITOR				Selector lever: Suitable position	
СМ	IPS-RPM(POS)	XXX rpm		NC)TE: K "TESTING" is not displayed ofter 5 minutes, retry	BT
	IRTL POS SEN	XXX V		•	If "TESTING" is not displayed after 5 minutes, retry from step 2).	
		XXX msec		•	If "COMPLETED" already appears at "COND2" on CONSULT-II screen before "Procedure for COND2"	HA
			SEF919X		is conducted, it is unnecessary to conduct step 9).	
					ocedure for COND2	EL
	RR O2 SEN-B1 P	0138		9)	While driving, release accelerator pedal completely with	
	COMPLETED)			"OD" OFF from the above condition [step 8] until "INCOMPLETE" at "COND2" on CONSULT-II screen is turned to "COMPLETED". (It will take approximately 4 seconds.) DTE:	IDX
	SELF-DIAG RESU	11 TS		CC	"COMPLETED" is already appears at "COND3" on DNSULT-II screen before "Procedure for COND3" is nducted, it is unnecessary to conduct step 10).	
			SEF920X			

EC-217

Rear Heated Oxygen Sensor (Max. Voltage Monitoring) (Rear HO2S) (P0138: Left bank), (P0158: Right bank) (Cont'd)

Procedure for COND3

- 10) Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COM-PLETED". (It will take maximum of approximately 6 minutes.)
- 11) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-221.

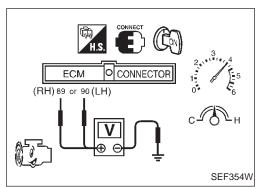
OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- OR

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - 2) Stop vehicle with engine running.
 - 3) Set voltmeter probes between ECM terminals (9) RH, (9) LH (sensor signal) and ground.
 - 4) Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.

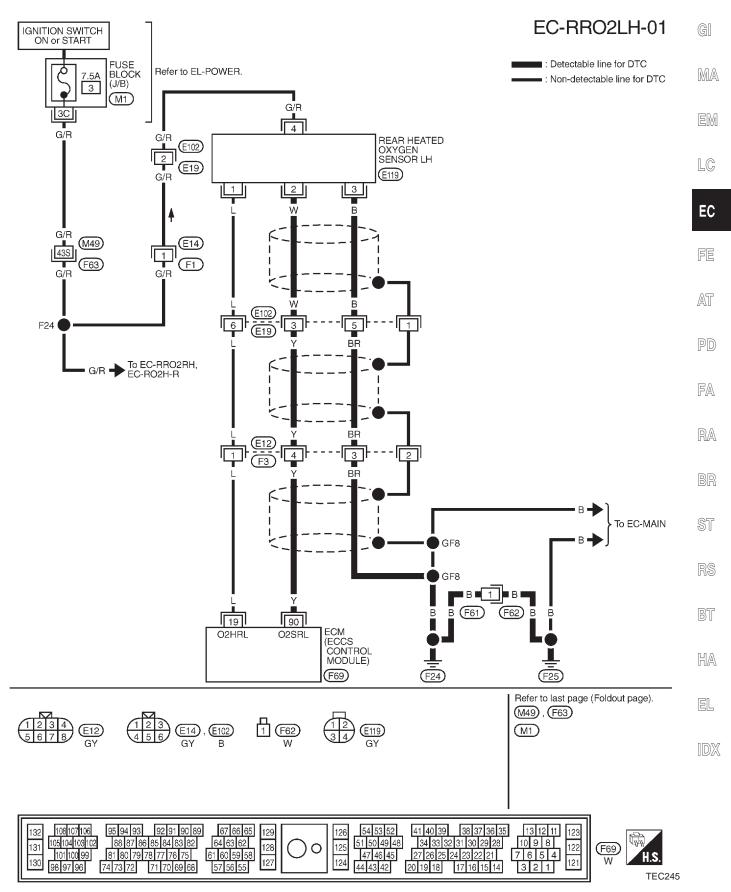
(depress and release accelerator pedal as soon as possible)


The voltage should be above 0.48V at least once during this procedure.

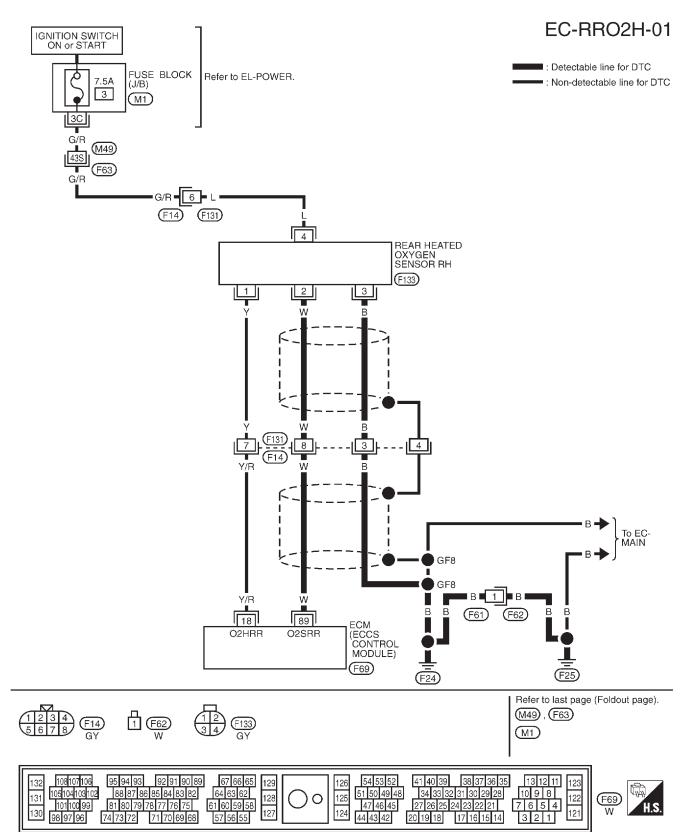
If the voltage can be confirmed in step 4, step 5 is not necessary.

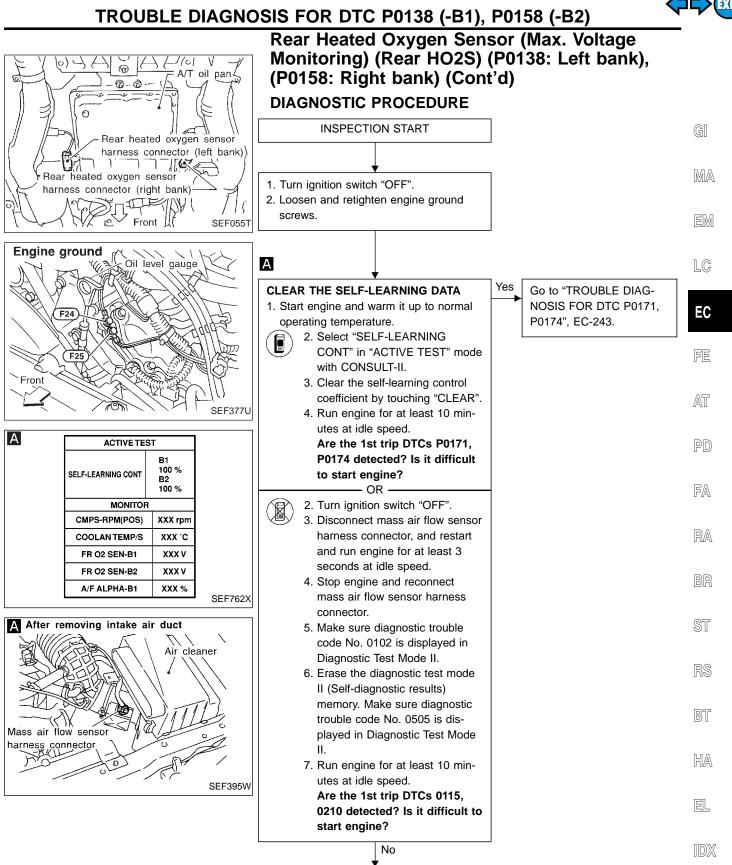
5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

The voltage should be above 0.48V at least once during this procedure.

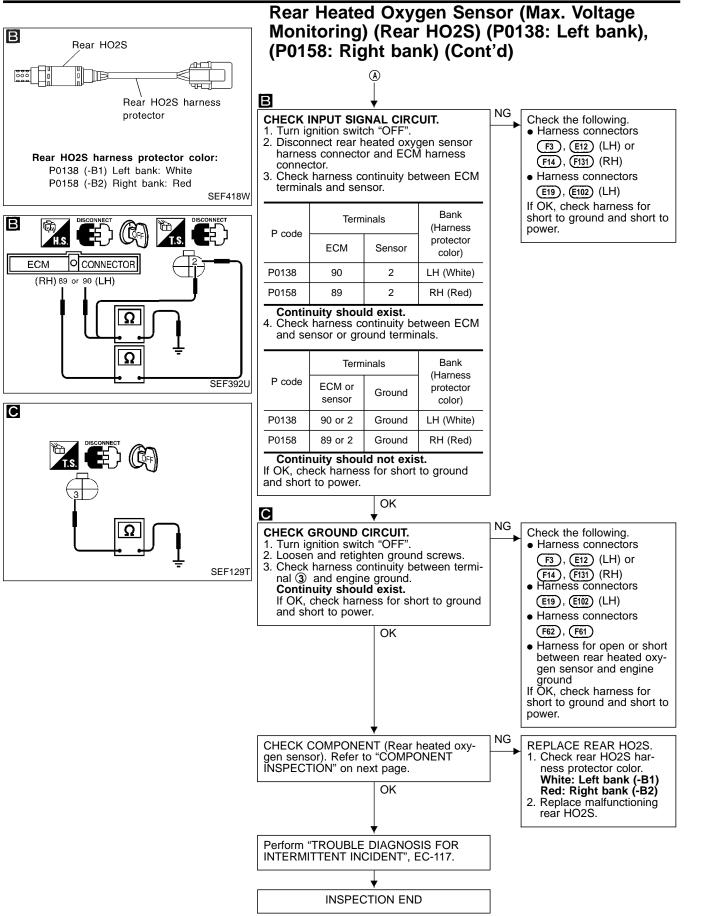

6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-221.

Rear Heated Oxygen Sensor (Max. Voltage Monitoring) (Rear HO2S) (P0138: Left bank), (P0158: Right bank) (Cont'd) EXIT

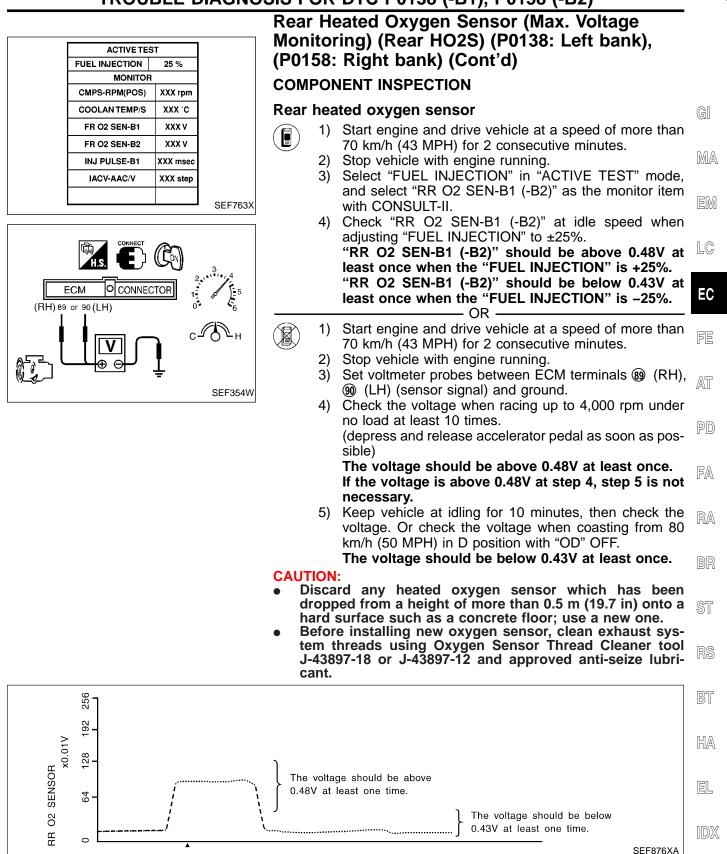

LEFT BANK

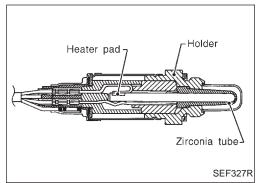


Rear Heated Oxygen Sensor (Max. Voltage Monitoring) (Rear HO2S) (P0138: Left bank), (P0158: Right bank) (Cont'd)


RIGHT BANK

♦ (Go to next page.)


TROUBLE DIAGNOSIS FOR DTC P0138 (-B1), P0158 (-B2)


EC-222

TROUBLE DIAGNOSIS FOR DTC P0138 (-B1), P0158 (-B2)

Rear Heated Oxygen Sensor (Response Monitoring) (Rear HO2S) (P0139: Left bank), (P0159: Right bank)

COMPONENT DESCRIPTION

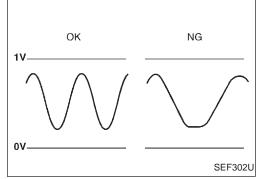
The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas on left and right bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the each rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

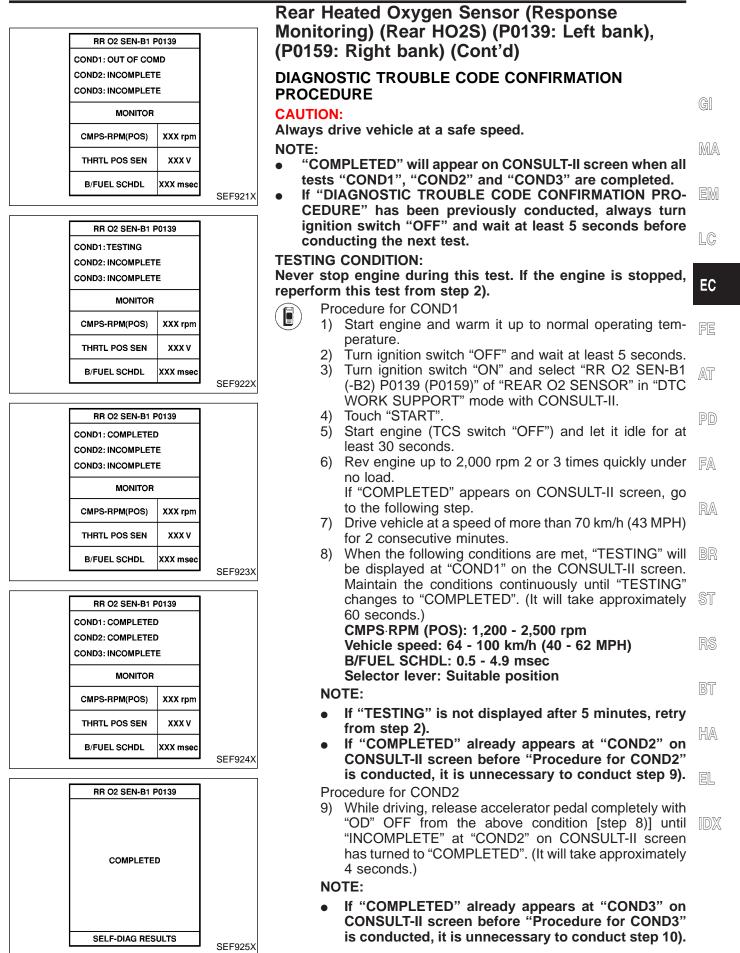

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
RR O2 SEN-B1			0 - 0.3V ↔ 0.6 - 1.0V
RR O2 SEN-B2 RR O2 MNTR-B1	 Engine: After warming up 	Revving engine from idle up to 2,000	
RR O2 MNTR-B2			LEAN ↔ RICH

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
89 (RH)	W	Rear heated oxygen sen-	Engine is running.	0 Approvimetely 1.0V
90 (LH)	Y	sors	After warming up to normal operating tempera- ture and revving engine from idle up to 2,000 rpm.	0 - Approximately 1.0V



ON BOARD DIAGNOSIS LOGIC

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0139	• It takes more time for the sensor to respond between rich and lean	 Harness or connectors
0707	than the specified time.	(The sensor circuit is open or shorted.)
(Left bank)		 Rear heated oxygen sensor
P0159		Fuel pressure
0708		Injectors
(Right bank)		Intake air leaks

Rear Heated Oxygen Sensor (Response Monitoring) (Rear HO2S) (P0139: Left bank), (P0159: Right bank) (Cont'd)

Procedure for COND3

- 10) Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COM-PLETED". (It will take a maximum of approximately 6 minutes.)
- 11) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".

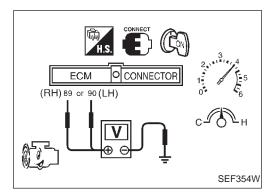
If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-229.

OR OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - 2) Stop vehicle with engine running.
 - 3) Set voltmeter probes between ECM terminals (9) RH, (9) LH (sensor signal) and ground.
 - 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(depress and release accelerator pedal as soon as possible)

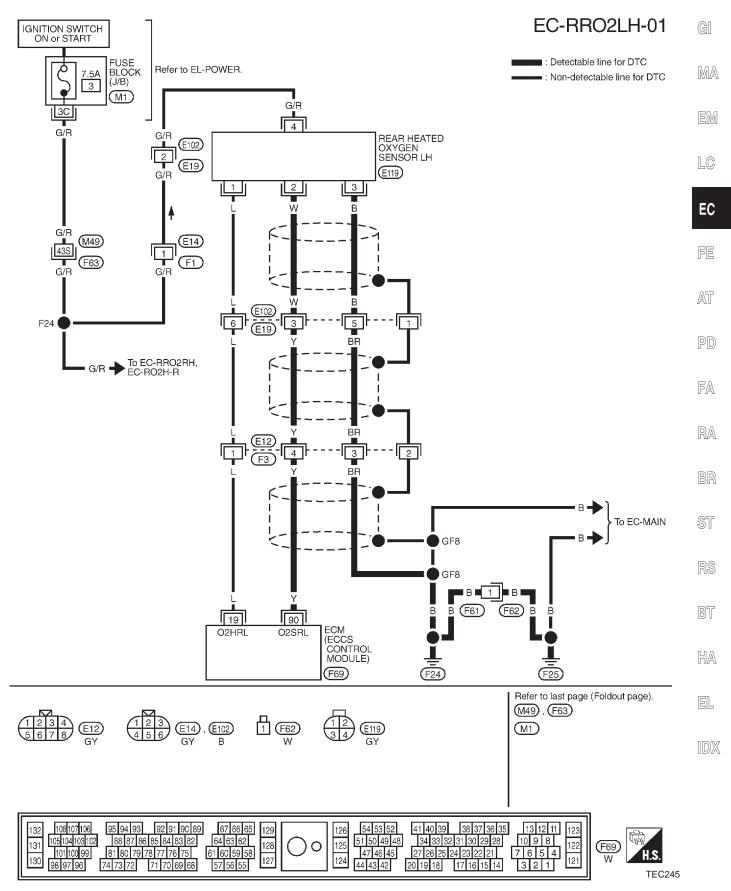

The voltage should be changed at more than 0.06V for 1 second during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

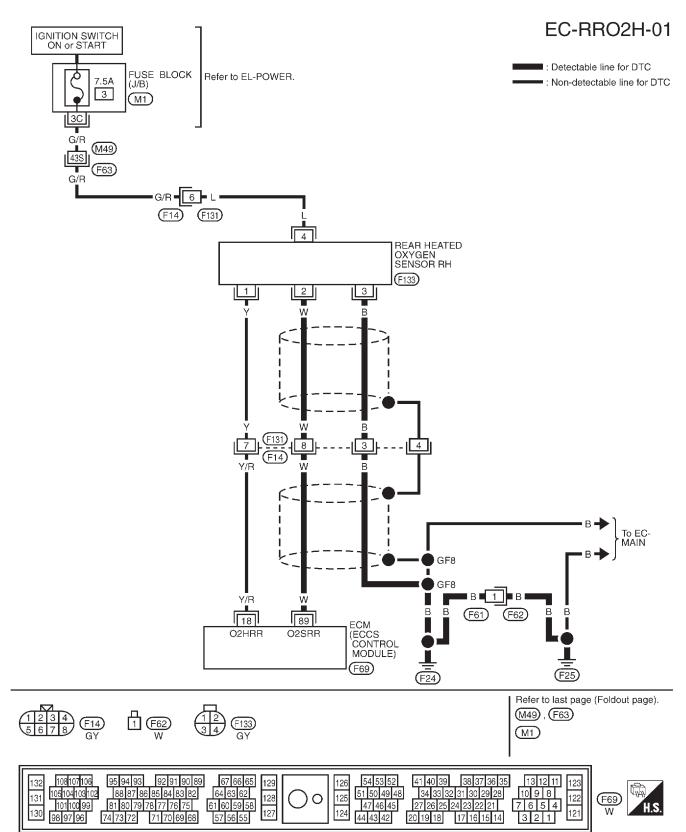
5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 The voltage should be changed at more than 0.06V

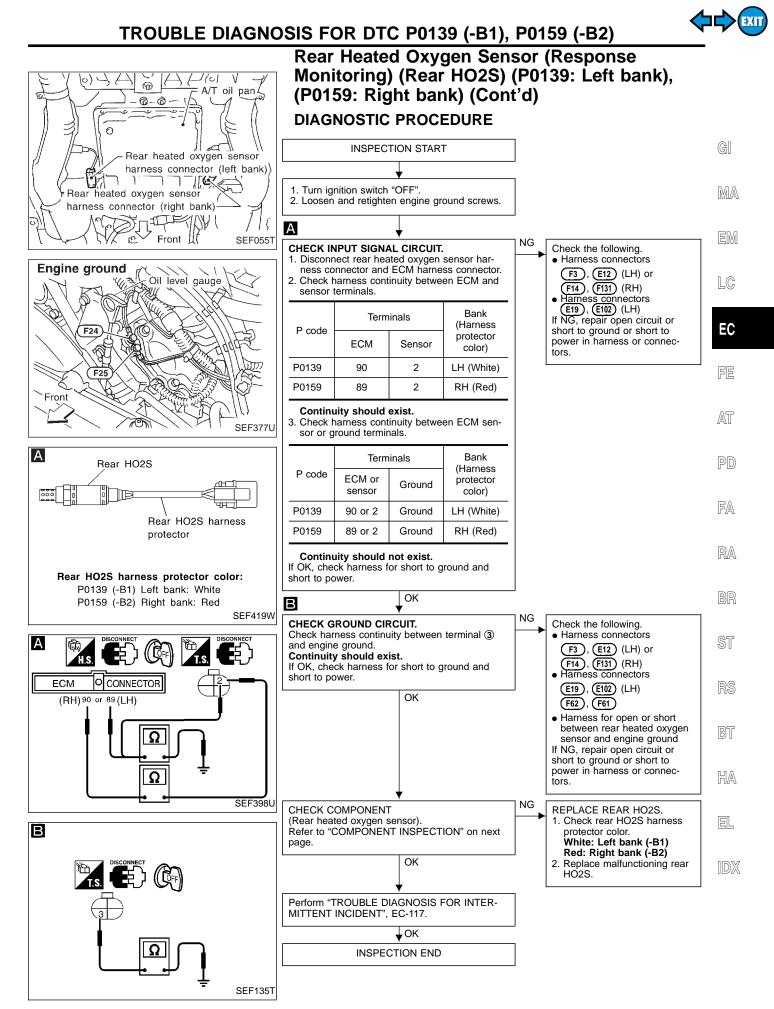
The voltage should be changed at more than 0.06V for 1 second during this procedure.

6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-229.

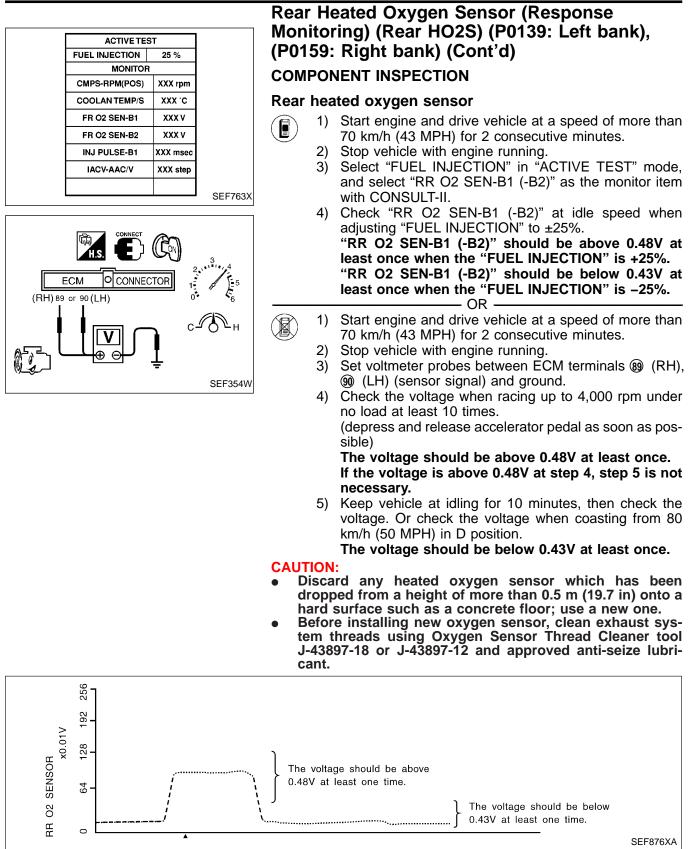


Rear Heated Oxygen Sensor (Response Monitoring) (Rear HO2S) (P0139: Left bank), (P0159: Right bank) (Cont'd)

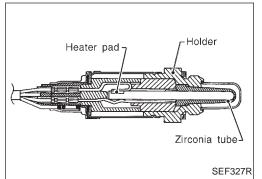

LEFT BANK



Rear Heated Oxygen Sensor (Response Monitoring) (Rear HO2S) (P0139: Left bank), (P0159: Right bank) (Cont'd)


RIGHT BANK

EC-229


GI

MA

LC

EC

٦A

Rear Heated Oxygen Sensor (High voltage) (Rear HO2S) (P0140: Left bank), (P0160: Right bank)

COMPONENT DESCRIPTION

The rear heated oxygen sensors (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas on left and right bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the each rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

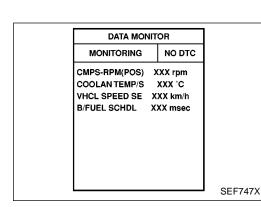
SEF305U

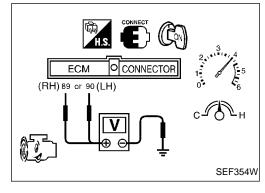
Specification data are reference values.

0V

MONITOR ITEM	CON	IDITION	SPECIFICATION	
RR O2 SEN-B1 RR O2 SEN-B2		Revving engine from idle up to 2,000	0 - 0.3V ↔ 0.6 - 1.0V	AT
RR O2 MNTR-B1 RR O2 MNTR-B2	 Engine: After warming up 	rpm	LEAN ↔ RICH	
				PD

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and (128) (ECM ground).


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	fa RA
89 (RH)	w	Rear heated oxygen sen-	Engine is running.	0 - Approximately 1.0V	
90 (LH)	Y	sors	ture and revving engine from idle up to 2,000 rpm.		BR
		·	ON BOARD DIAGNOSIS LOGIC		ST
2V	ок	NG	The rear heated oxygen sensor has a much between rich and lean than the front heat oxygen storage capacity before the three longer switching time. To judge the malfu	ed oxygen sensor. The way catalyst causes the unctions of rear heated	RS
1V —	1V		oxygen sensor, ECM monitors whether the high during the various driving condition su		BT

HA

			· EL
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0140 0512 (Left bank)	• An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open.) Rear heated oxygen sensor 	IDX
P0160 0315 (Right bank)			

Rear Heated Oxygen Sensor (High voltage) (Rear HO2S) (P0140: Left bank), (P0160: Right bank) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed. NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
 - 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - 3) Maintain the following conditions for at least 5 consecutive seconds.

CMPS·RPM (POS): 1,200 - 2,500 rpm VHCL SPEED SE: 64 - 100 km/h (40 - 62 MPH) B/FUEL SCHDL: 0.5 - 4.9 msec COOLAN TEMP/S: 70 - 100°C (158 - 212°F) Selector lever: Suitable position

- 4) Stop vehicle with engine running.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-235.

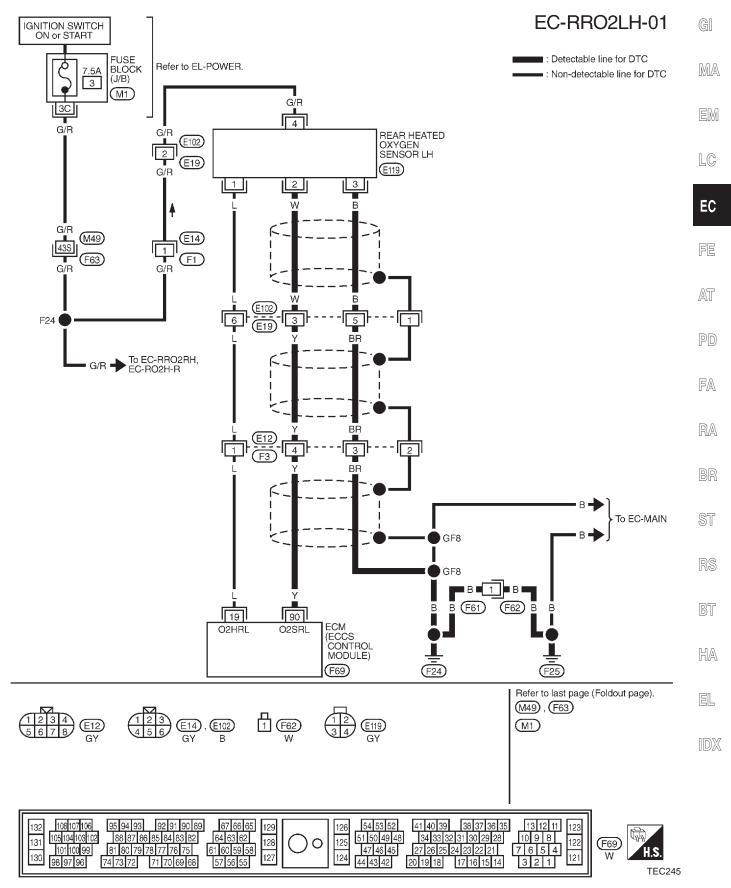
OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
 - 2) Set voltmeter probes between ECM terminals (B) RH, (9) LH (sensor signal) and ground.
 - Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

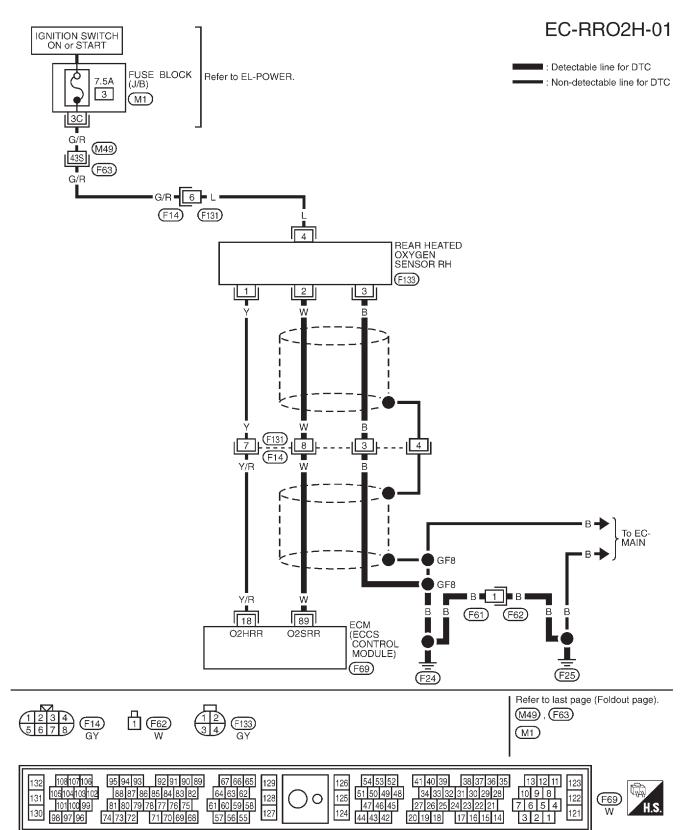
(depress and release accelerator pedal as soon as possible)

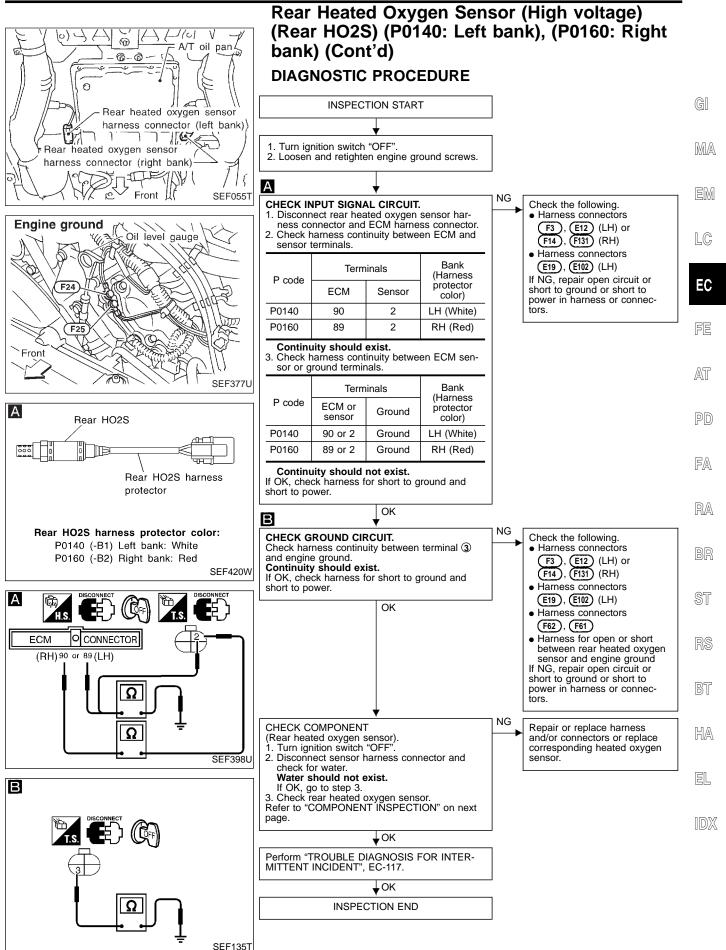
The voltage should be below 2V during this procedure.


4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-235.

TROUBLE DIAGNOSIS FOR DTC P0140 (-B1), P0160 (-B2)

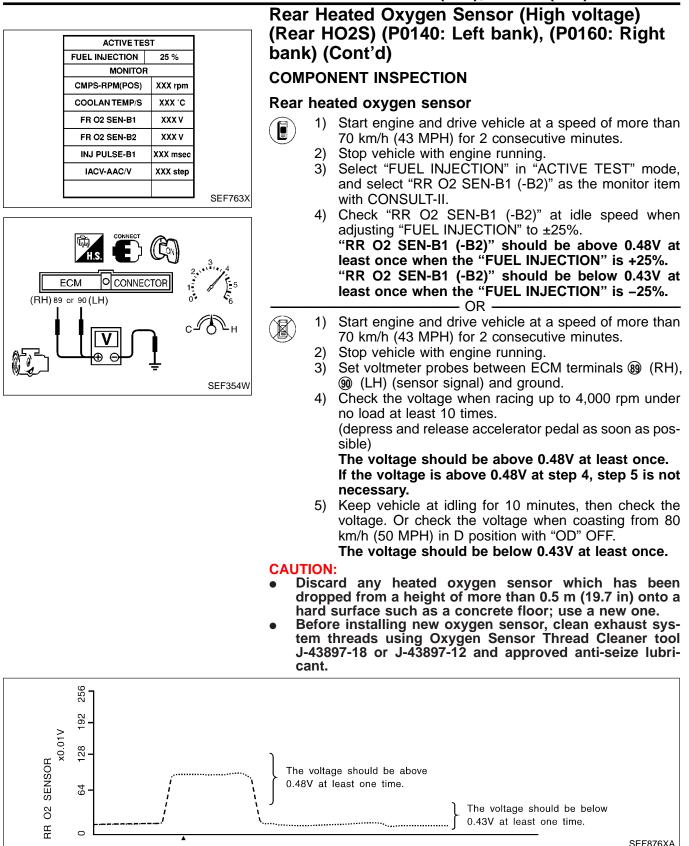
Rear Heated Oxygen Sensor (High voltage) (Rear HO2S) (P0140: Left bank), (P0160: Right bank) (Cont'd)


LEFT BANK



Rear Heated Oxygen Sensor (High voltage) (Rear HO2S) (P0140: Left bank), (P0160: Right bank) (Cont'd)

RIGHT BANK



TROUBLE DIAGNOSIS FOR DTC P0140 (-B1), P0160 (-B2)

EC-235

EM

AT

RA

Rear Heated Oxygen Sensor Heaters (P0141: Left bank), (P0161: Right bank)

SYSTEM DESCRIPTION

Camshaft position sensor	Engine speed			Rear	GI
		ECM	├	heated oxy- gen sensor	
Mass air flow sensor	Amount of intake air			heaters	MA

The ECM performs ON/OFF control of the rear heated oxygen sensor heaters corresponding to the engine speed.

OPERATION

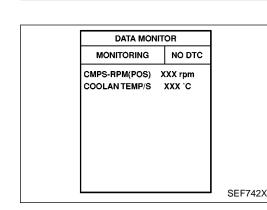
Engine speed rpm	Rear heated oxygen sensor heaters	LC
Ignition switch "ON" (Engine stopped)	OFF	50
At idle [after driving for 2 min- utes at a speed of more than 70 km/h (43 MPH)]	ON	FE

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
O2 SEN HTR-B1 O2 SEN HTR-B2	 Engine speed: At idle [after driving for 2 minutes at a speed of more than 70 km/h (43 MPH)] 	ON	PD
	 Engine speed: Above 3,600 rpm Ignition "ON" with engine stopped 	OFF	FA

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	BR
		Rear heated oxygen sen-	Engine is running. At idle [after driving 2 minutes at 70 km/h (43 MPH) or more]	0 - 0.5V	ST RS
18 19	Y/R L	sor heater (right bank) Rear heated oxygen sen- sor heater (left bank)	Ignition switch "ON" Engine stopped Engine is running. Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	nə BT
					HA

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	EL
P0141 0902 (Left bank) P0161 1002 (Right bank)	 The current amperage in the rear heated oxygen sensor heater circuit is out of the normal range. (The improper voltage drop signal is sent to ECM through the rear heated oxygen sensor heater.) 	 Harness or connectors (The rear heated oxygen sensor heater circuit is open or shorted.) Rear heated oxygen sensor heater 	IDX

Rear Heated Oxygen Sensor Heaters (P0141: Left bank), (P0161: Right bank) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION

NOTE:

PROCEDURE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

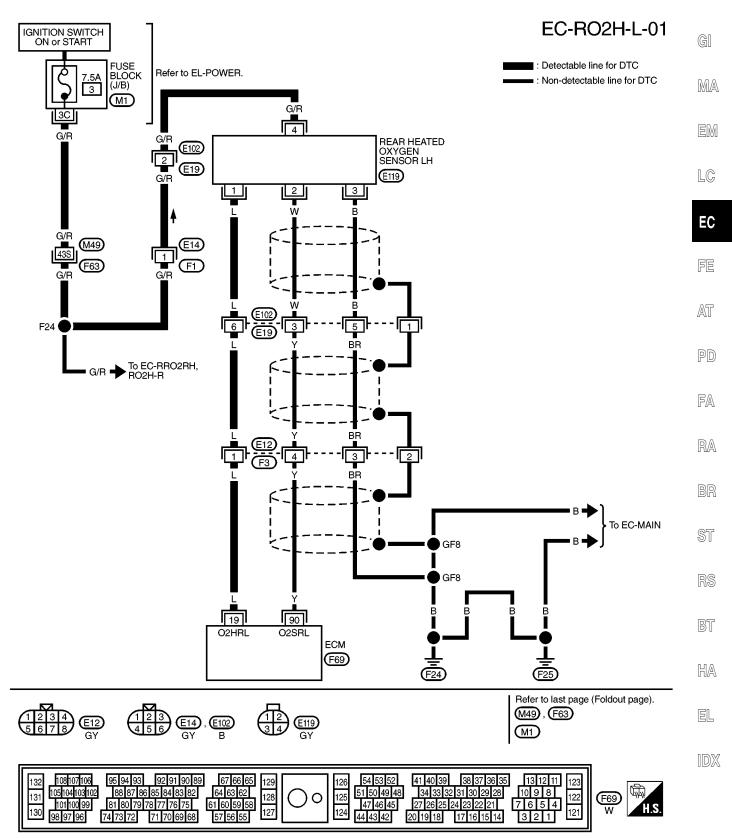
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
 - 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-241.
 OR

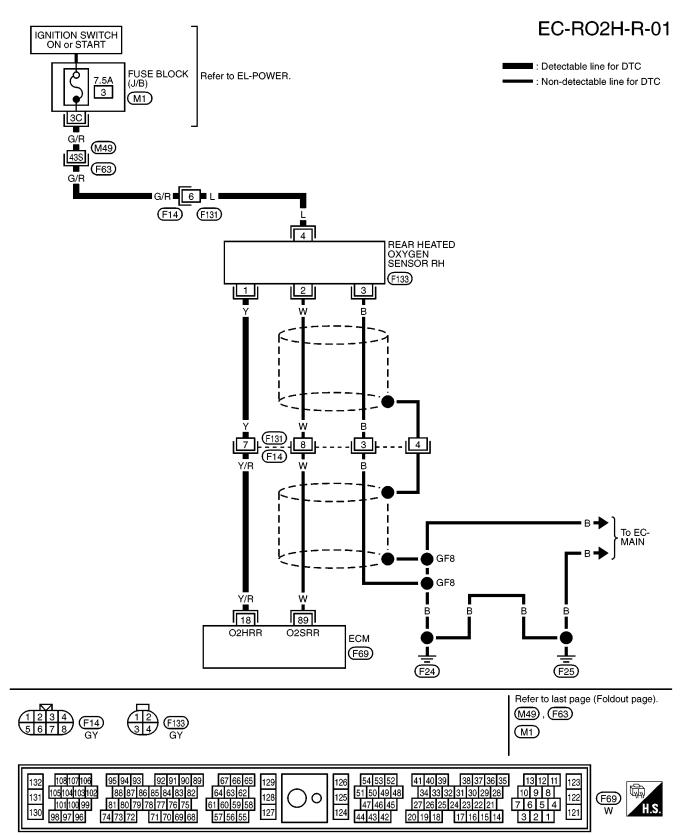
Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

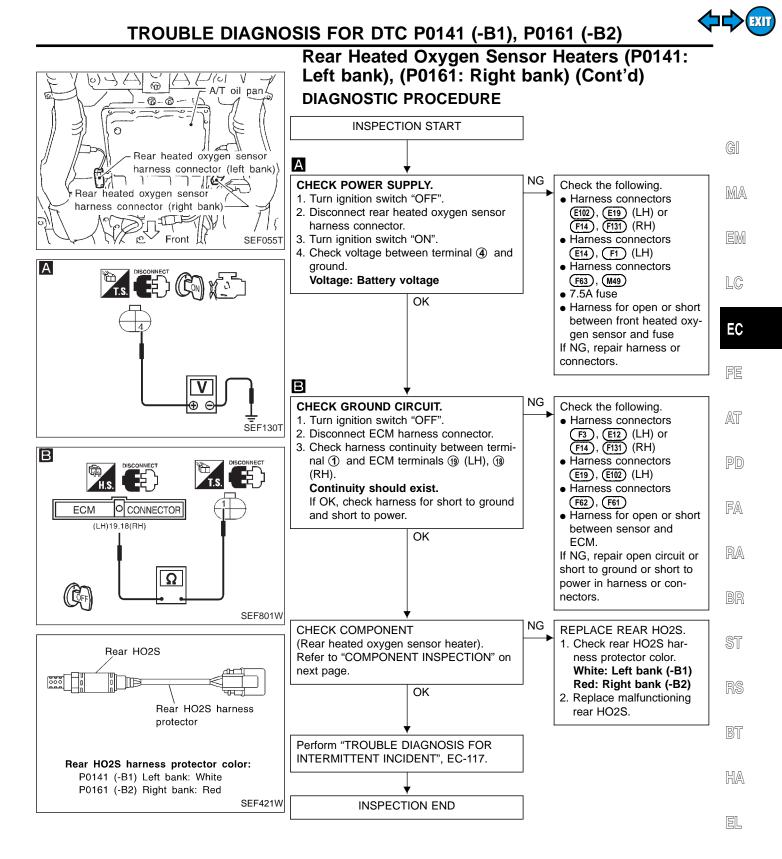
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 4) Select "MODE 3" with GST.
- 5) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-241.


When using GST, "DIAGNOSTIC TROUBLE CODE CONFIRMA-TION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

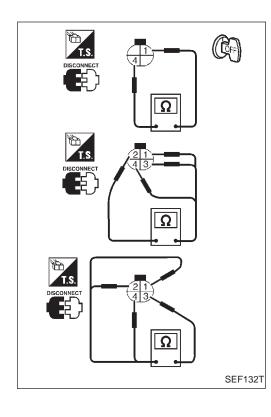
TROUBLE DIAGNOSIS FOR DTC P0141 (-B1), P0161 (-B2)

Rear Heated Oxygen Sensor Heaters (P0141: Left bank), (P0161: Right bank) (Cont'd)


LEFT BANK



Rear Heated Oxygen Sensor Heaters (P0141: Left bank), (P0161: Right bank) (Cont'd)


RIGHT BANK

IDX

Rear Heated Oxygen Sensor Heaters (P0141: Left bank), (P0161: Right bank) (Cont'd) COMPONENT INSPECTION

Rear heated oxygen sensor heater

Check the following.

- 1. Check resistance between terminals ④ and ①.
 - Resistance: 2.3 4.3Ω at 25°C (77°F)
- 2. Check continuity.

Terminal No.	Continuity
② and ① , ③ , ④	No
③ and ① , ② , ④	NO

If NG, replace the front heated oxygen sensor.

CAUTION:

_

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Fuel Injection System Function (Lean side) (P0171: Left bank), (P0174: Right bank)

ON BOARD DIAGNOSIS LOGIC

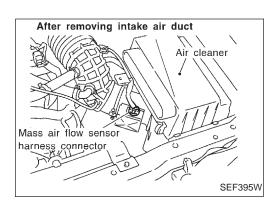
With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the GI theoretical mixture ratio based on the mixture ratio feedback signal from the front heated oxygen sensors. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the MA ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Front heated oxyge	(Mixture ratio feedback signal)	Injectors	EM
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	LC
P0171 0115 (Left bank)	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Front heated oxygen sensor Injectors 	EC
P0174 0210		Exhaust gas leaksIncorrect fuel pressure	FE
(Right bank)		Lack of fuelMass air flow sensor	AT

ACTIVE TEST		
SELF-LEARNING CONT	B1 100 % B2 100 %	
MONITO	1	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
FR O2 SEN-B1	XXX V	
FR O2 SEN-B2	XXX V	
A/F ALPHA-B1	XXX %	055300
		SEF762X

DATA MONITOR	
MONITORING	NO DTC
CMPS-RPM(POS)	XXX rpm
FR O2 MNTR-B1	RICH
FR O2 MNTR-B2	RICH

PROCEDURE


NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-FA DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test. RA

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds. 2) Turn ignition switch "ON" and select "SELF-LEARN 3)
- CONTROL" in "ACTIVE TEST" mode with CONSULT-II. ST 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC BT PROCEDURE", EC-247.
- 7) If it is difficult to start engine at step 6), the fuel injection system has a malfunction.
- HA 8) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-247. If engine does not start, visually check for EL exhaust and intake air leak. - OR

IDX

(GST

Fuel Injection System Function (Lean side) (P0171: Left bank), (P0174: Right bank) (Cont'd)

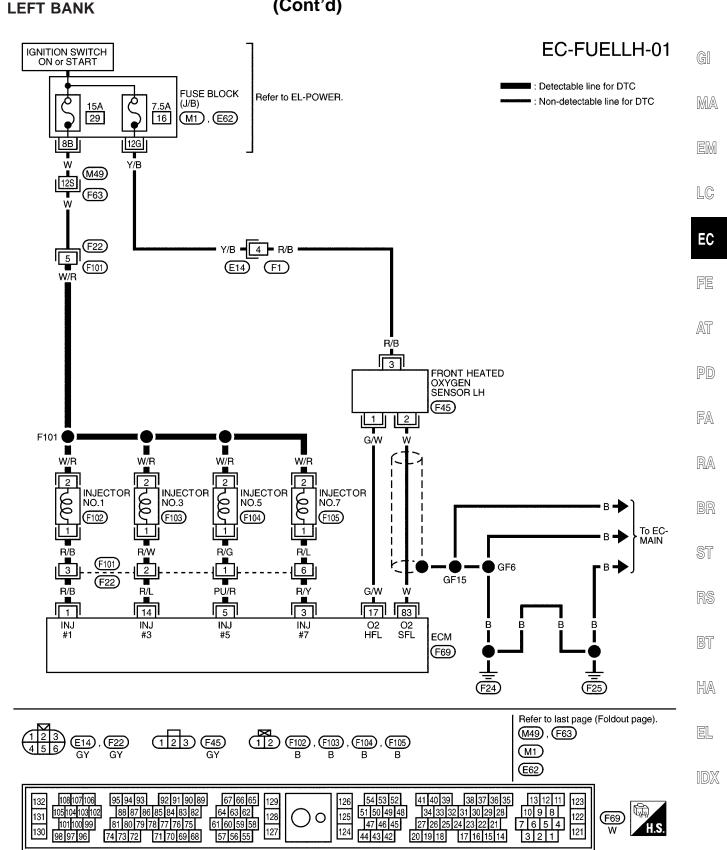
- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.
- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-247.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-247.

If the engine does not start, visually check for exhaust and intake air leak.

_____ OR -

1) Start engine and warm it up to normal operating temperature.

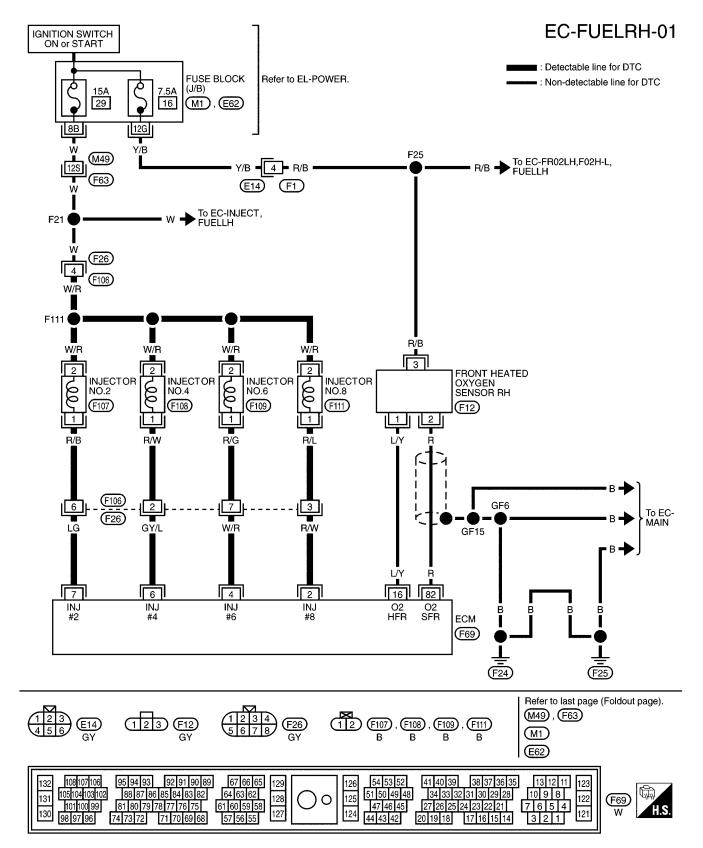
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector. Then restart engine and run it at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- 5) Turn ignition switch "ON".
- 6) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0102 is detected.
- 7) Erase the DTC 0102 by changing from Diagnostic Test Mode II to Diagnostic Test Mode I.
- 8) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0505 is detected.
- 9) Start engine again and run it for at least 10 minutes at idle speed.


The DTC 0115 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-247.

- 10) If it is difficult to start engine at step 9, the fuel injection system also has a malfunction.
- 11) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-247.

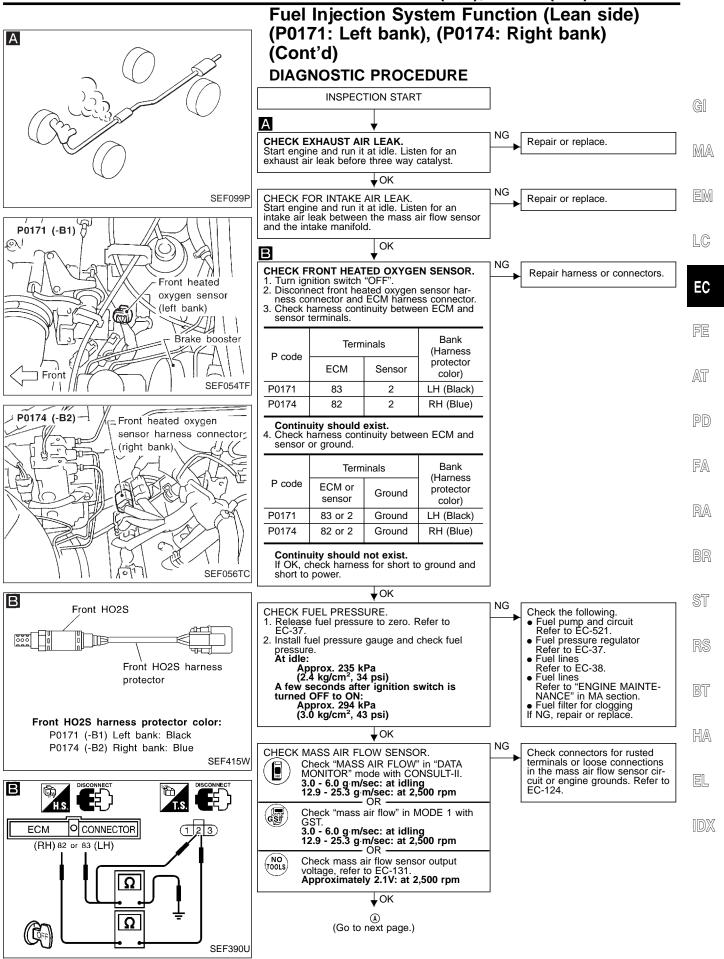
If the engine does not start, visually check for exhaust and intake air leak.

Fuel Injection System Function (Lean side) (P0171: Left bank), (P0174: Right bank) (Cont'd)

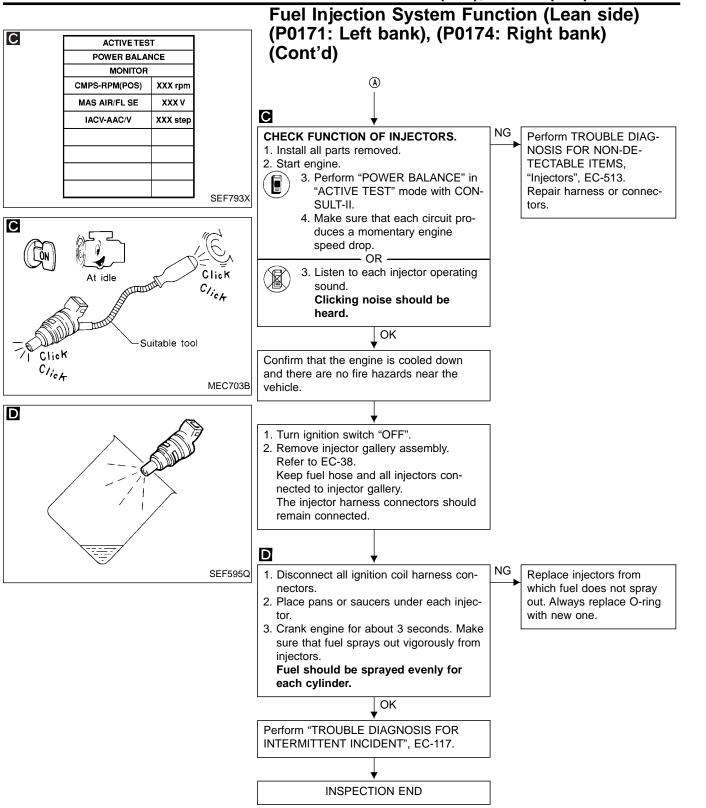


EXIT

TROUBLE DIAGNOSIS FOR DTC P0171 (-B1), P0174 (-B2)


Fuel Injection System Function (Lean side) (P0171: Left bank), (P0174: Right bank) (Cont'd)

RIGHT BANK


EXIT

TROUBLE DIAGNOSIS FOR DTC P0171 (-B1), P0174 (-B2)

EC-247

TROUBLE DIAGNOSIS FOR DTC P0171 (-B1), P0174 (-B2)

Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank)

ON BOARD DIAGNOSIS LOGIC

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the front heated oxygen sensors. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

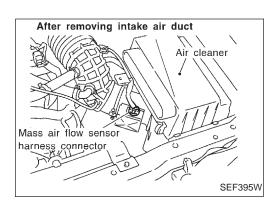
Front heated oxyger	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	→ Injectors	EM
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	LC
P0172 0114 (Left bank)	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Front heated oxygen sensor Injectors Exhaust gas leaks 	EC
P0175 0209 (Right bank)		Incorrect fuel pressureMass air flow sensor	FE
			AT

ACTIVE TES	ЭТ
SELF-LEARNING CONT	B1 100 % B2 100 %
MONITOR	
CMPS-RPM(POS)	XXX rpm
COOLAN TEMP/S	XXX °C
FR O2 SEN-B1	XXX V
FR O2 SEN-B2	XXX V
A/F ALPHA-B1	XXX %

DATA MON	IITOR
MONITORING	NO DTC
CMPS-RPM(POS)	XXX rpm
FR O2 MNTR-B1	RICH
FR O2 MNTR-B2	RICH

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
 3) Turn ignition switch "ON" and select "SELF-LEARN
- CONTROL" in "ACTIVE TEST" mode with CONSULT-II.
 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-253.
- 7) If it is difficult to start engine at step 6), the fuel injection system has a malfunction.

IDX

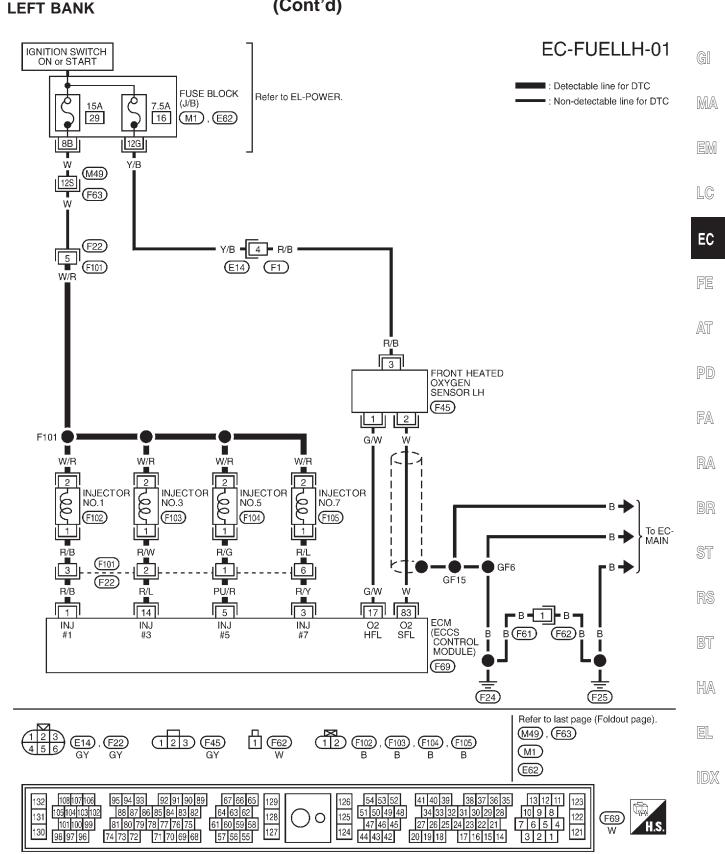
PD

(GST)

Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank) (Cont'd)

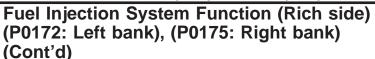
- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.
- 7) Start engine again and run it for at least 10 minutes at idle speed.
- Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-253.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-253. If engine does not start, remove ignition plugs and check for fouling, etc.

1) Start engine and warm it up to normal operating temperature.

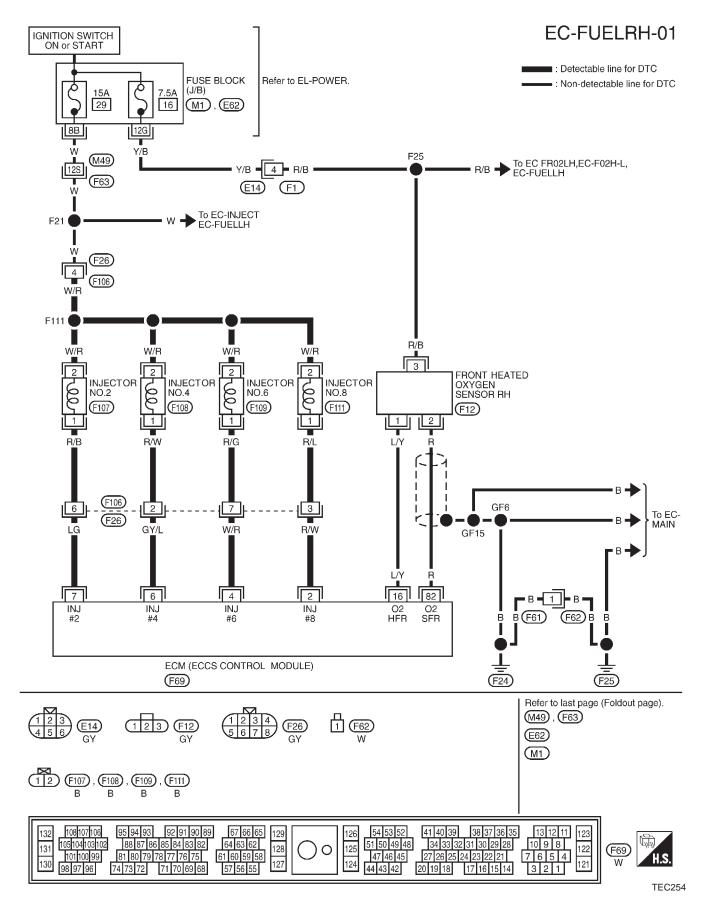

- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector.
- 4) Then restart engine and run it for at least 3 seconds at idle speed.
- 5) Stop engine and reconnect mass air flow sensor harness connector.
- 6) Turn ignition switch "ON".
- 7) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0102 is detected.
- 8) Erase the DTC 0102 by changing from Diagnostic Test Mode II to Diagnostic Test Mode I.
- 9) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0505 is detected.
- 10) Start engine again and run it for at least 10 minutes at idle speed.The DTC 0114 should be detected at this stage, if a

malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-253.

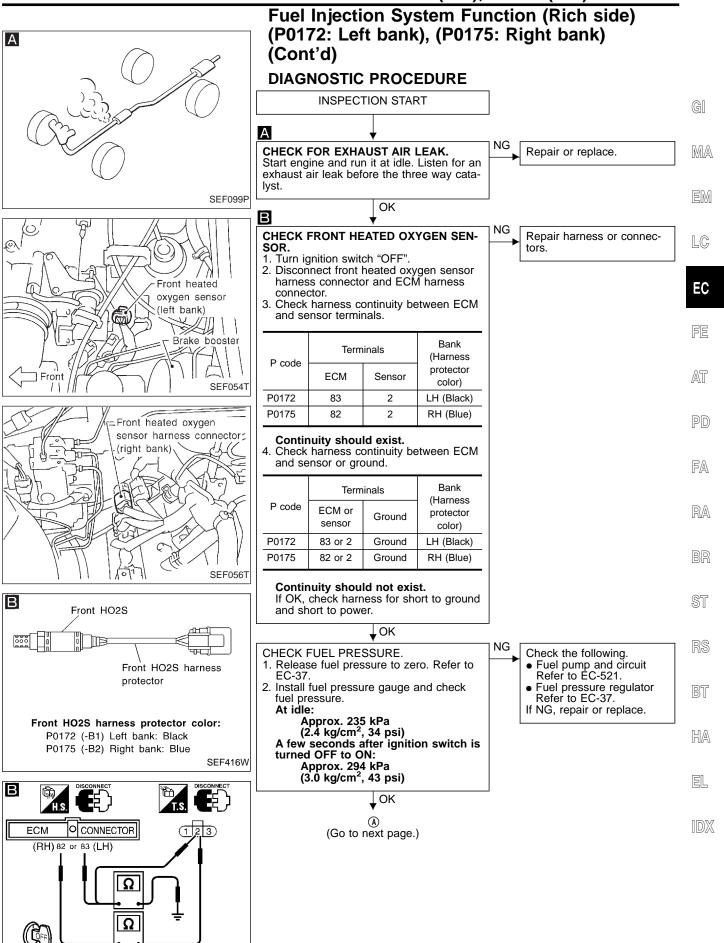
- 11) If it is difficult to start engine at step 10, the fuel injection system also has a malfunction.
- 12) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-253. If engine does not start, remove ignition plugs and check for fouling, etc.



Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank) (Cont'd)

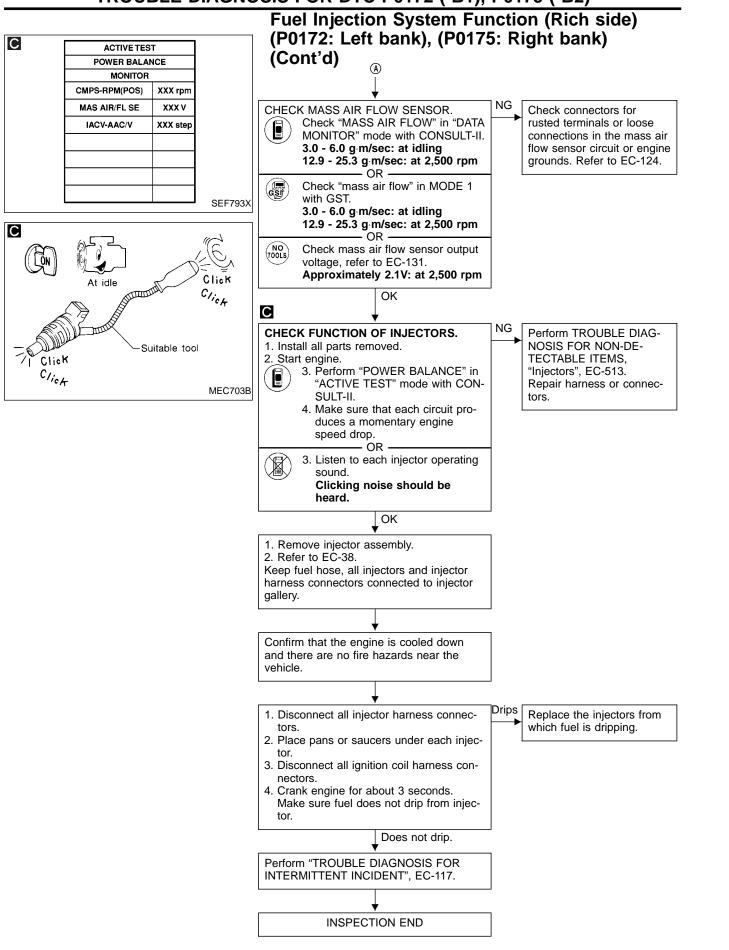

EXIT

TROUBLE DIAGNOSIS FOR DTC P0172 (-B1), P0175 (-B2)

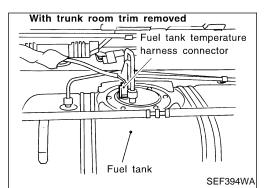


EXIT

RIGHT BANK

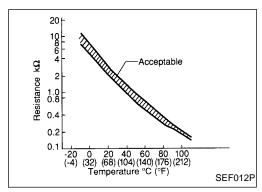


TROUBLE DIAGNOSIS FOR DTC P0172 (-B1), P0175 (-B2)



SEF390U

TROUBLE DIAGNOSIS FOR DTC P0172 (-B1), P0175 (-B2)



Fuel Tank Temperature Sensor

COMPONENT DESCRIPTION

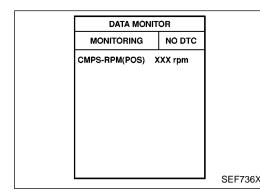
The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

EM

<ref< th=""><th>erence</th><th>data></th><th></th></ref<>	erence	data>	
~1.01		uala/	

Fluid temperature °C (°F)	Voltage* (V)	Resistance (kΩ)	LC
20 (68)	3.5	2.3 - 2.7	EC
50 (122)	2.2	0.79 - 0.90	

*: These data are reference values and are measured between ECM terminal (9) (Fuel tank temperature sensor) and ECM terminal (128) (ECM ground).


AT

PD

ST

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Causes)	FA
P0180	 An excessively high or low voltage is sent to ECM. 	Harness or connectors	
0402	• Rationally incorrect voltage is sent to ECM, compared	(The sensor circuit is open or shorted.)	٦A
	with the voltage signals from engine coolant tempera- ture sensor and intake air temperature sensor.	Fuel tank temperature sensor	RA

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Turn ignition switch "ON".
 Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-258.

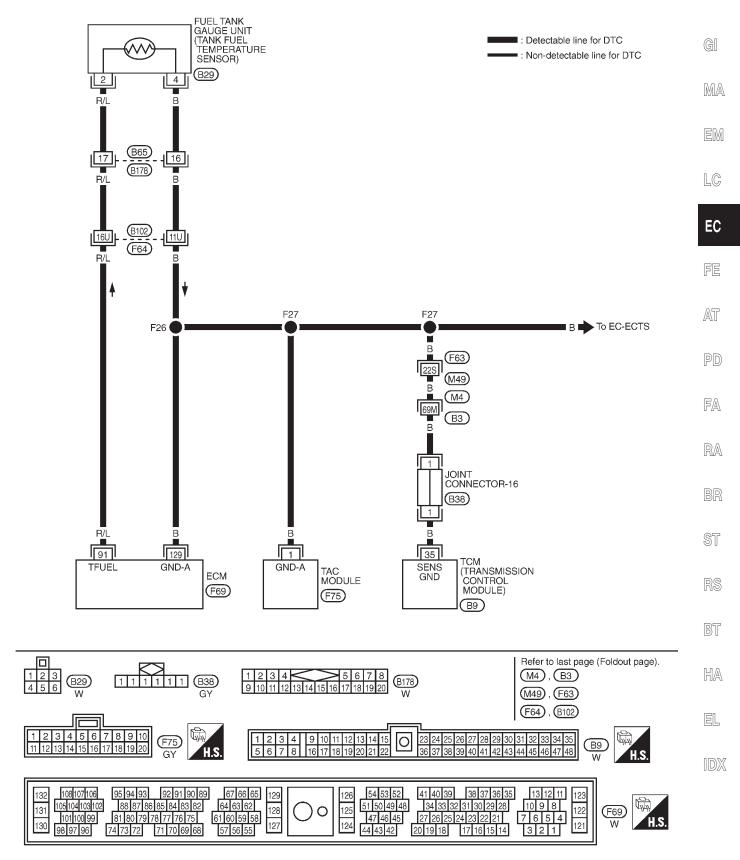
If the result is OK, go to following step.

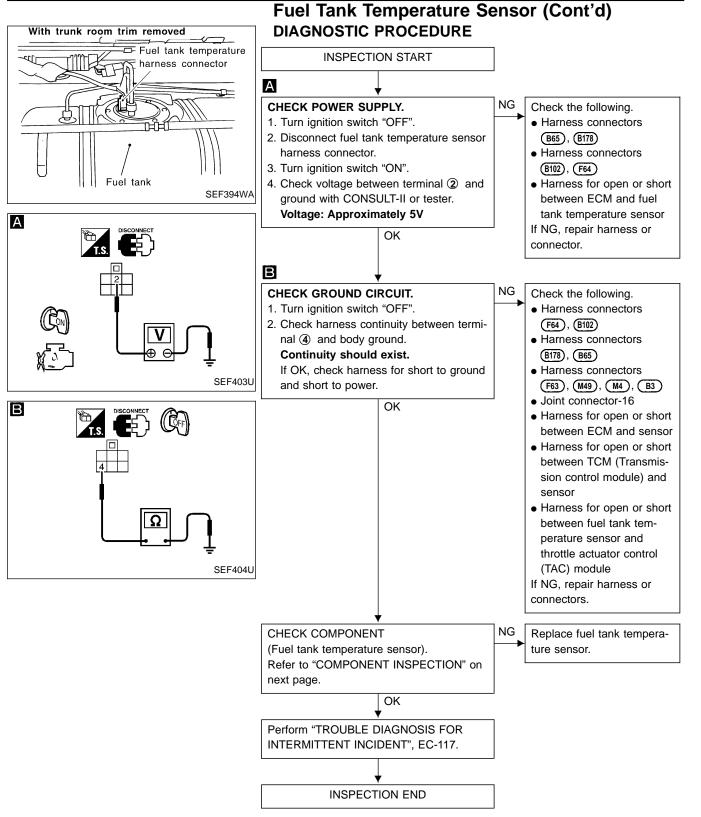
NOTE:

If "COOLAN TEMP/S" is already less than 90°C (194°F) before step 4), the result will be OK. If "COOLAN TEMP/S" is above 90°C (194°F), go to the

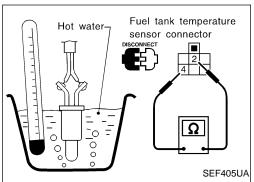
If "COOLAN TEMP/S" is above 90°C (194°F), go to the following step.

- Cool engine down until "COOLAN TEMP/S" is less than 90°C (194°F).
- 5) Wait at least 10 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-258.


Fuel Tank Temperature Sensor (Cont'd)



Follow the procedure "With CONSULT-II" above.


Fuel Tank Temperature Sensor (Cont'd)

EC-TFTS-01

Fuel Tank Temperature Sensor (Cont'd) COMPONENT INSPECTION

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance k Ω	
20 (68)	2.3 - 2.7	MA
50 (122)	0.79 - 0.90	

If NG, replace fuel tank temperature sensor.

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

IDX

EM

No. 1 - 8 Cylinder Misfire, Multiple Cylinder Misfire

ON BOARD DIAGNOSIS LOGIC

If misfire occurs, the engine speed will fluctuate. If the fluctuation is detected by the crankshaft position sensor (OBD), the misfire is diagnosed.

The misfire detection logic consists of the following two conditions.

Crankshaft position sensor (OBD)	Engine speed	ECM

1. One Trip Detection Logic (Three Way Catalyst Damage)

When a misfire is detected which will overheat and damage the three way catalyst, the malfunction indicator lamp (MIL) will start blinking; even during the first trip. In this condition, ECM monitors the misfire every 200 engine revolutions.

If the misfire frequency decreases to a level that will not damage the three way catalyst, the MIL will change from blinking to lighting up.

(After the first trip detection, the MIL will light up from engine starting. If a misfire is detected that will cause three way catalyst damage, the MIL will start blinking.)

2. Two Trip Detection Logic (Exhaust quality deterioration) When a misfire that will not damage the three way catalyst (but will affect exhaust emission) occurs, the malfunction indicator lamp will light up based on the second consecutive trip detection logic. In this condition, ECM monitors the misfire for each 1,000 revolutions of the engine.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0300 (0701)	Multiple cylinders misfire.	Improper spark plug
P0301 (0608)	No. 1 cylinder misfires.	Insufficient compression
P0302 (0607)	No. 2 cylinder misfires.	Incorrect fuel pressureEGR valve
P0303 (0606)	No. 3 cylinder misfires.	• The injector circuit is open or shorted.
P0304 (0605) • No. 4 cylinder misfires.		● Injectors ● Intake air leaks
P0305 (0604)	No. 5 cylinder misfires.	• The ignition secondary circuit is open or
P0306 (0603)	No. 6 cylinder misfires.	shorted.
P0307 (0602) • No. 7 cylinder misfires.		 Lack of fuel Magnetized signal plate (drive plate)
P0308 (0601)	No. 8 cylinder misfires.	Front heated oxygen sensor

DATA MON	DATA MONITOR		
MONITORING	NO	отс	
CMPS-RPM(POS)	XXX rp	m	
			SEF736X

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE (Overall)

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

1) Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.

EC-260

TROUBLE DIAGNOSIS FOR DTC P0300 - P0308

EC-261

No. 1 - 8 Cylinder Misfire, Multiple Cylinder Misfire (Cont'd)

- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Start engine again and drive at 1,500 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible during driving.

Refer to the freeze frame data for the test driving conditions.

5) If 1st trip DTC is detected, go to "DIAGNOSTIC EM PROCEDURE", EC-262.

Follow the procedure "With CONSULT-II" above.

EC

LC

MA

AT

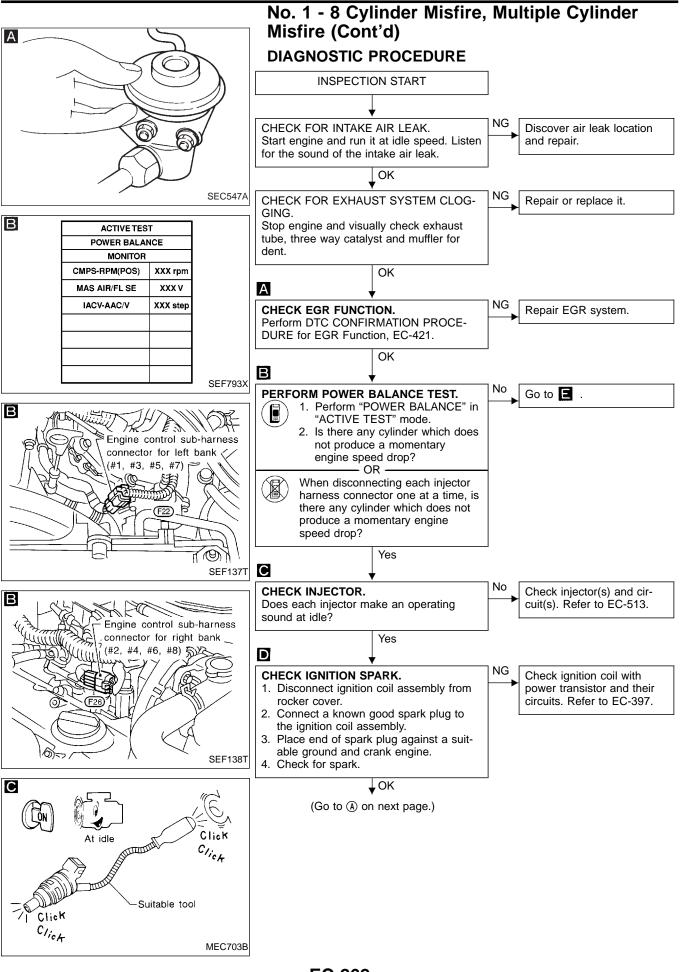
PD

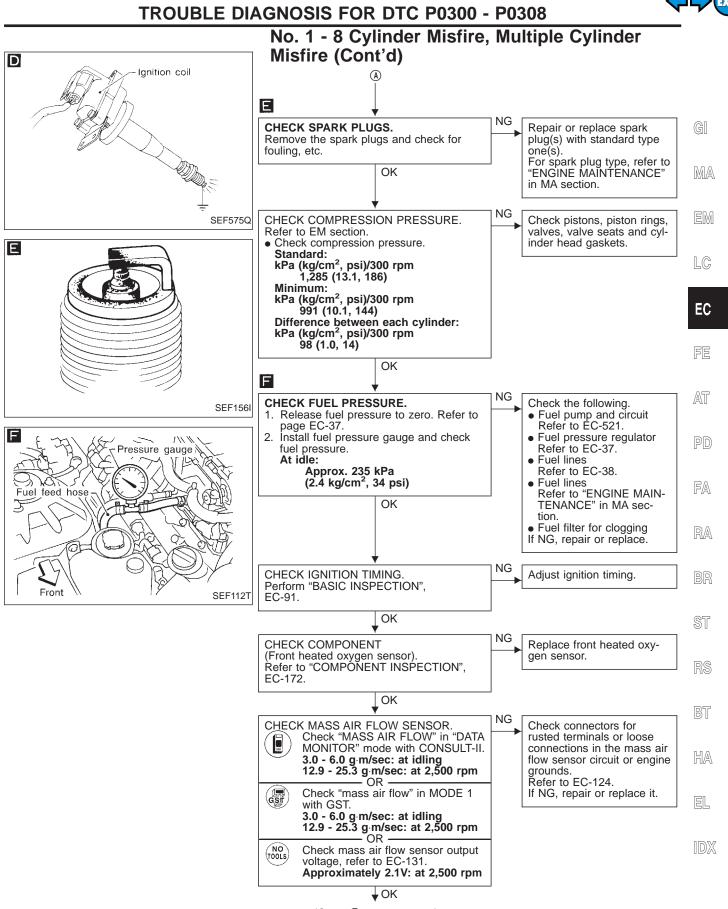
FA

RA

BR

ST


BT


HA

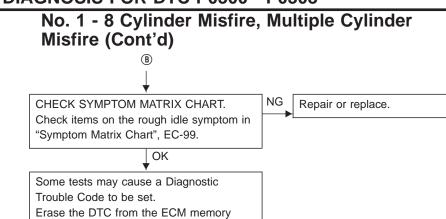
EL

IDX

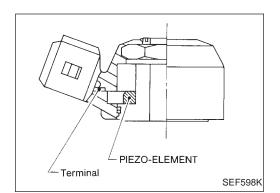
TROUBLE DIAGNOSIS FOR DTC P0300 - P0308

(Go to (B) on next page.)

EC-263



TROUBLE DIAGNOSIS FOR DTC P0300 - P0308


after performing the tests. Refer to EC-67.

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

INSPECTION END

EC-264

Knock Sensor (KS) (P0325: Left bank), (P0330: **Right bank)**

COMPONENT DESCRIPTION

The knock sensor is attached to the cylinder block. It senses GI engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. MA

EM

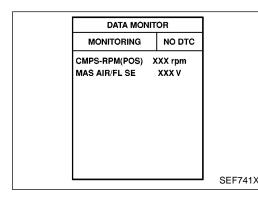
LC

EC

PD

ST

* Freeze frame data is not stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	FE
105 108	W W	Knock sensor (RH) Knock sensor (LH)	Engine is running.	2.0 - 3.0V	AT

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	FA
P0325 0304 (Left bank)	 An excessively low or high voltage from the knock sensor is sent to ECM. 	 Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor 	
P0330 0212 (Right bank)			RA
			BR

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

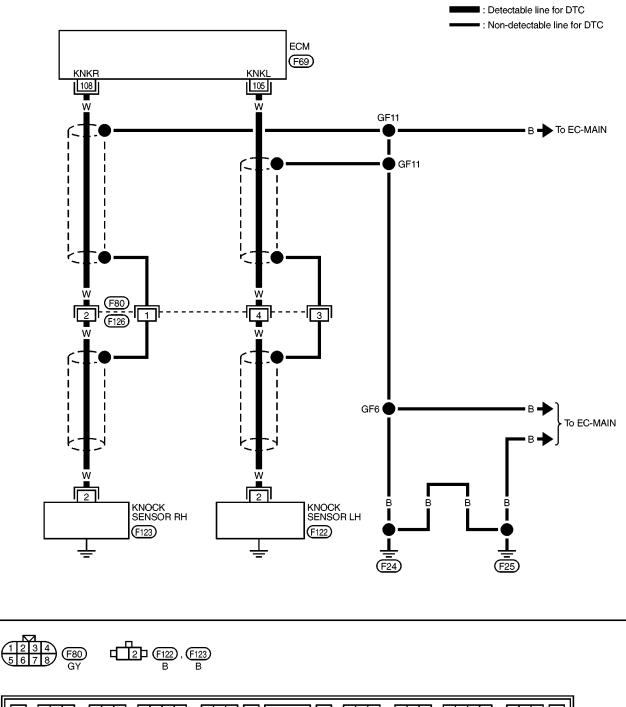
NOTE:

2)

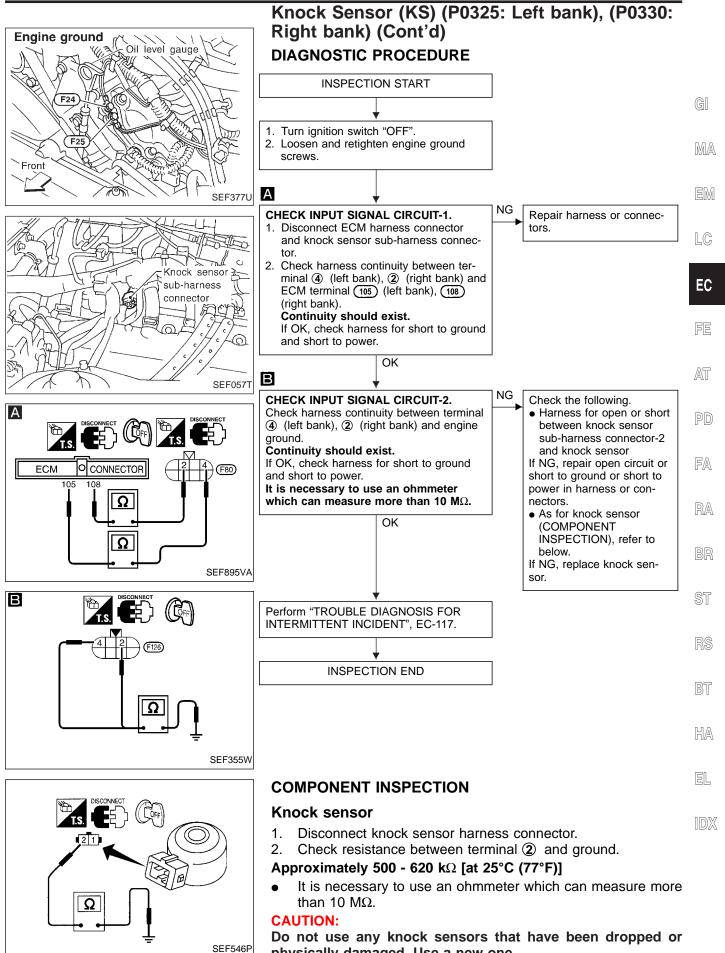
RS Before performing the following procedure, confirm that battery voltage is more than 10V. 1) Turn ignition switch "ON" and select "DATA MONITOR" BT

- mode with CONSULT-II. Start engine and run it for at least 5 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC HA PROCEDURE", EC-267. - OR ·

Follow the procedure "With CONSULT-II" above.

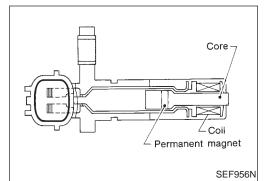

IDX

EL


Knock Sensor (KS) (P0325: Left bank), (P0330: Right bank) (Cont'd)

EC-KS-01

╞╘╱╦


TROUBLE DIAGNOSIS FOR DTC P0325 (-B1), P0330 (-B2)

EC-267

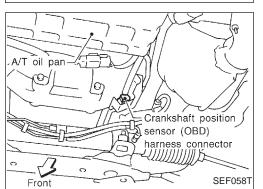
physically damaged. Use a new one.

Crankshaft Position Sensor (CKPS) (OBD)

COMPONENT DESCRIPTION

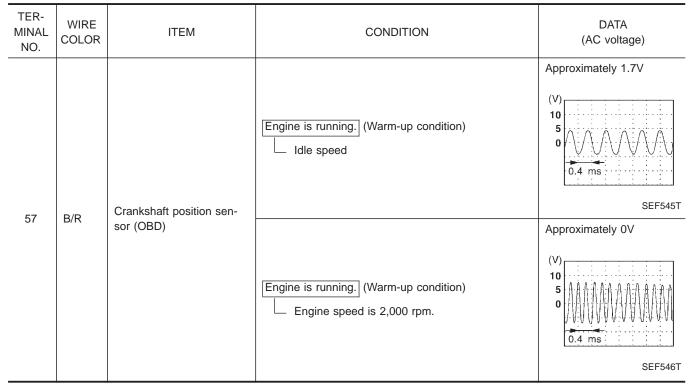
The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.


When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

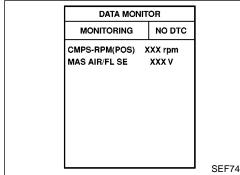
Due to the changing magnetic field, the voltage from the sensor changes.


The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system. It is used only for the on board diagnosis of misfire.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).



Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	- @1
P0335 0802	• The proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed.	 Harness or connectors (The crankshaft position sensor (OBD) circuit is open.) Crankshaft position sensor (OBD) Dead (Weak) battery 	- GI Ma
			EM

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-EC DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test. FE 1) Turn ignition switch "ON" and select "DATA MONITOR"

SEF741X

- mode with CONSULT-II. 2) Start engine and run it for at least 15 seconds at idle AT speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-277. PD - OR

Follow the procedure "With CONSULT-II" above.

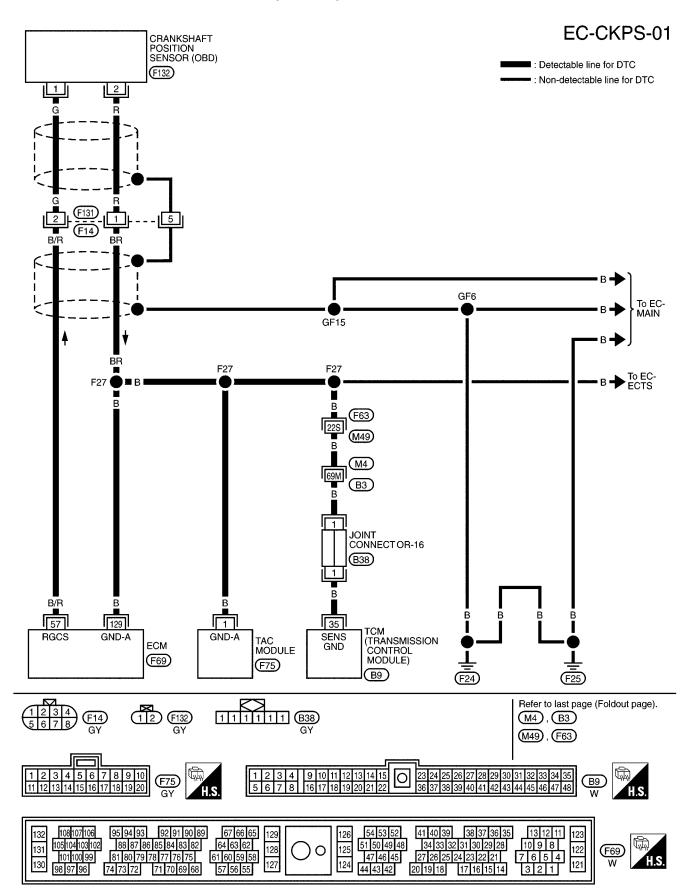
FA

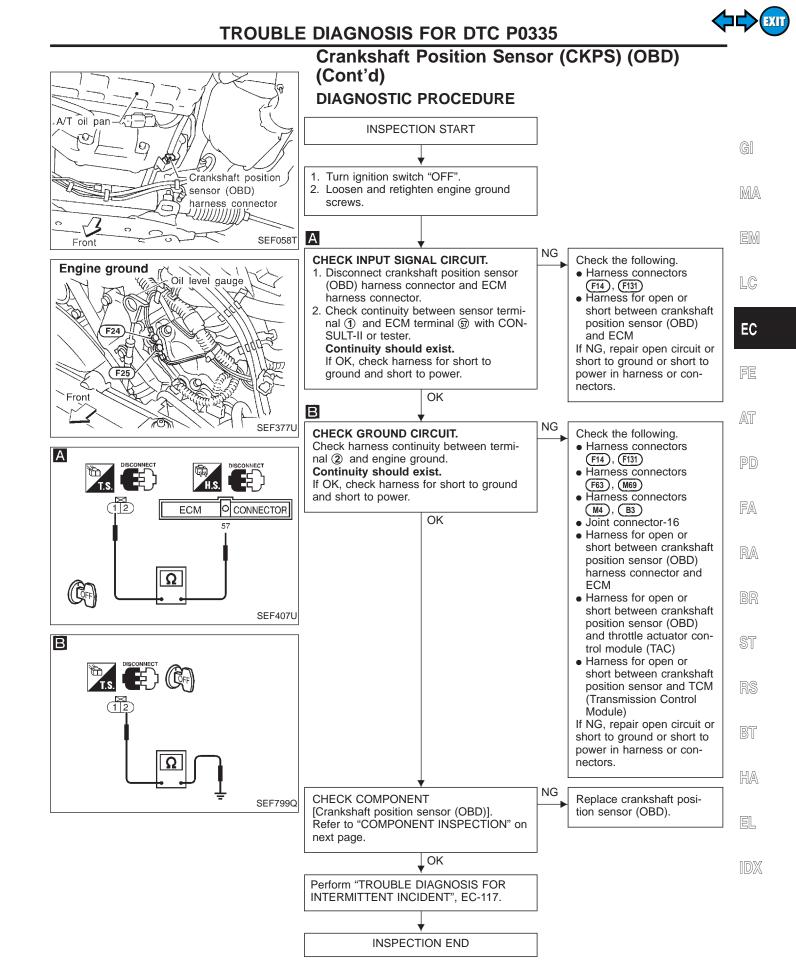
RA

BR

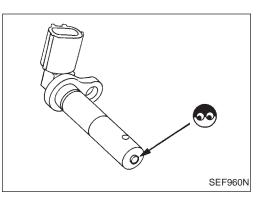
ST

RS


BT

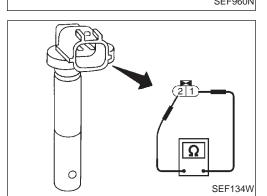

HA

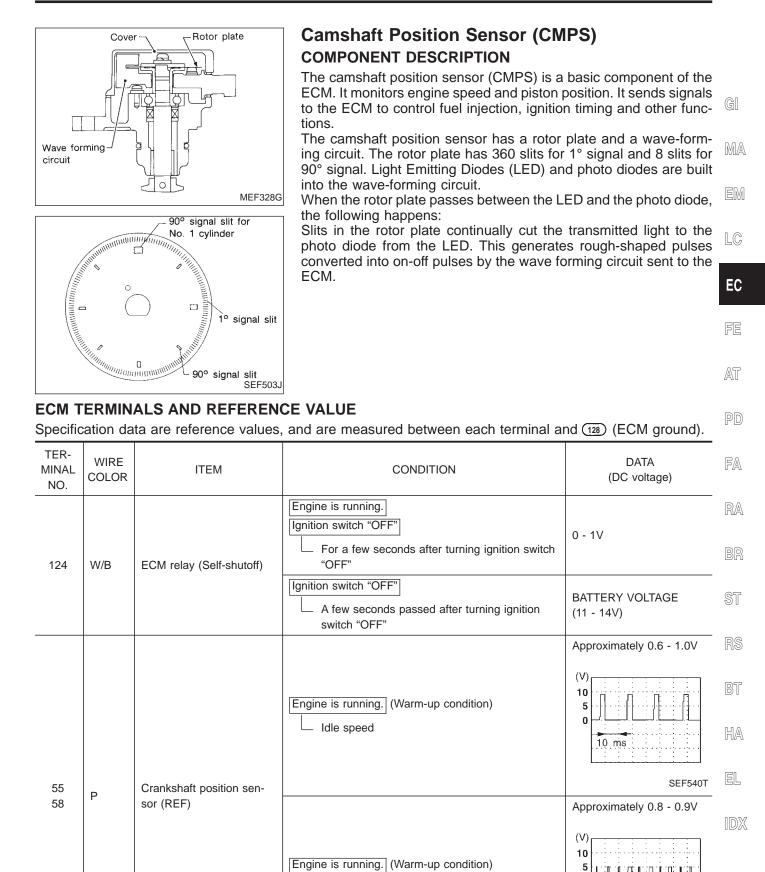
EL


LC

Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)

EC-271




Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)

COMPONENT INSPECTION

Crankshaft position sensor (OBD)

- 1. Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.
- Check resistance as shown in the figure.
 Resistance: Approximately 166.5 - 203.5Ω [at 20°C (68°F)]

Engine speed is 2,000 rpm.

n

. 10 ms

SEE544T

Camshaft Position Sensor (CMPS) (Cont'd)

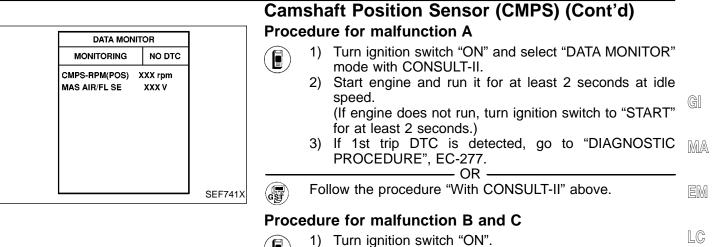
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
		Camshaft position sensor	Engine is running. (Warm-up condition)	Approximately 2.5V
59 L	L			SEF547T
		(POS)	Engine is running. (Warm-up condition)	Approximately 2.4V (V) 10 5 0 0 0.4 ms SEF548T
130 131	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0340 0101	A) Either 1° or 90° signal is not sent to ECM for the first few seconds during engine cranking.	 Harness or connectors (The camshaft position sensor circuit is open or shorted.)
	B) Either 1° or 90° signal is not sent to ECM during engine running.	 Camshaft position sensor Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.) Dead (Weak) battery
	C) Either 1° or 90° signal is not in the normal pattern during engine running.	

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B and C".


NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

1) Turn ignition switch ON .
2) Select "DATA MONITOR" mode with CONSULT-II.
3) Start engine and run it for at least 2 seconds at idle speed.
4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-277.

Follow the procedure "With CONSULT-II" above.

AT

EC

FE

PD

FA

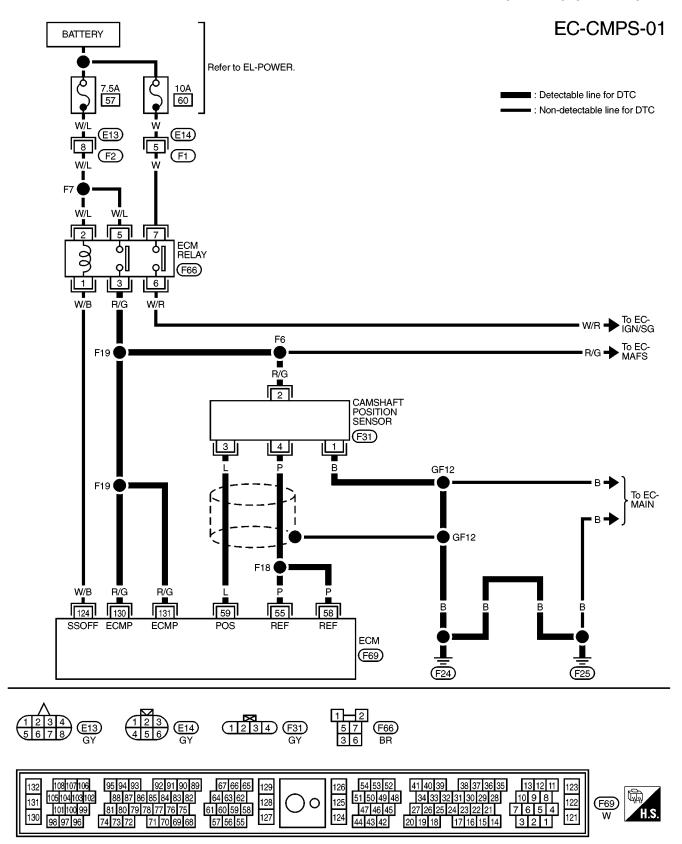
RA

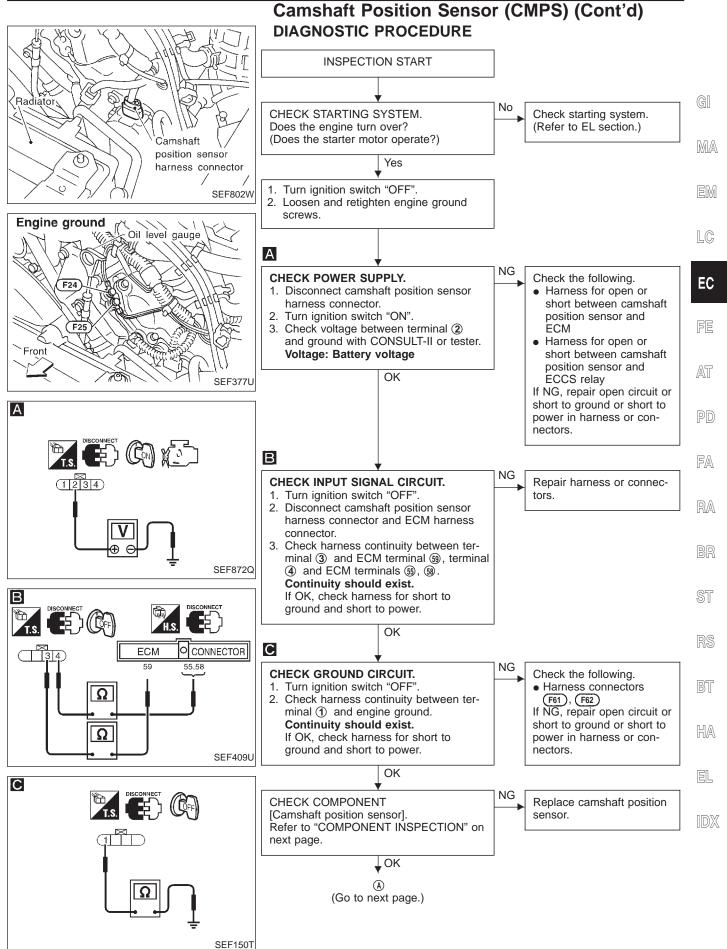
BR

ST

RS

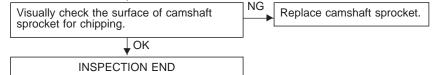
BT


HA

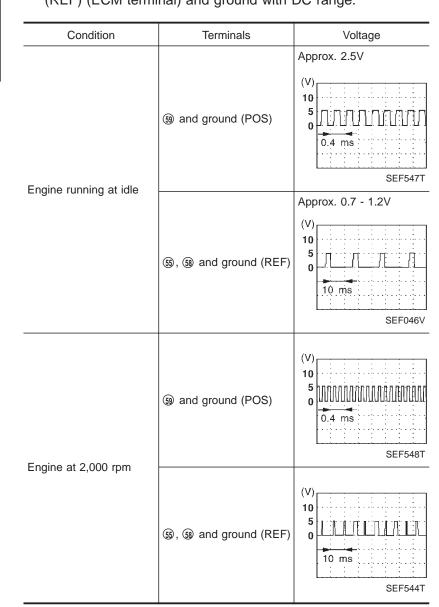

EL

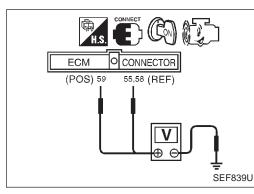
1D)%

Camshaft Position Sensor (CMPS) (Cont'd)



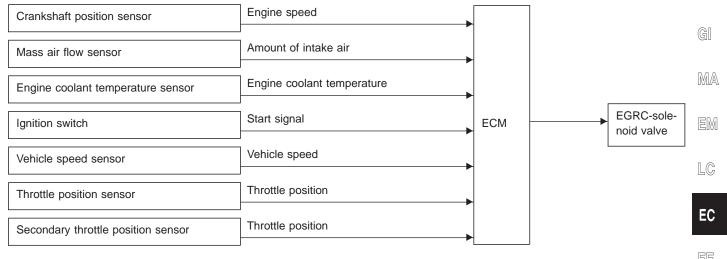
EC-277


Camshaft Position Sensor (CMPS) (Cont'd)

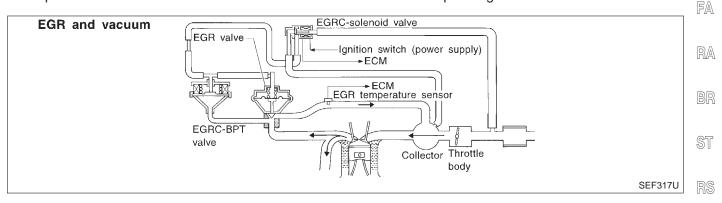


Camshaft position sensor

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Check voltage between ECM terminals (9) (POS) or (5), (8) (REF) (ECM terminal) and ground with DC range.


If NG, replace camshaft position sensor.

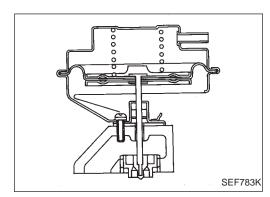
EGR Function (Close)


SYSTEM DESCRIPTION

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current does not flow through the solenoid valve. This causes the port vacuum to be discharged into the atmosphere. The EGR valve remain closed.

•	Low engine coolant temperature	

- Engine starting
- Engine stopped
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low vehicle speed or high vehicle speed
- TCS is operating

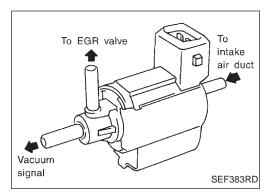


AT

PD

HA

EL



COMPONENT DESCRIPTION

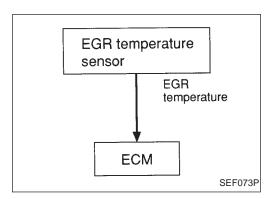
Exhaust gas recirculation (EGR) valve

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

EGR Function (Close) (Cont'd) EGRC-solenoid valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The signal reaches to the EGR valve. When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold collector to the EGR valve.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Lift up drive wheelsEngine: After warming up	Idle	OFF
EGRC SOL/V	 Air conditioner switch: "OFF" Shift lever: "D" No-load 	Revving engine up from idle to 3,000 rpm	ON

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

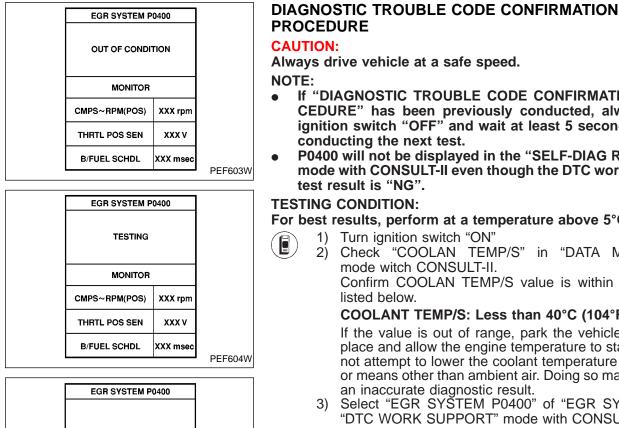
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
75	w	EGR temperature sensor	Engine is running. (Warm-up condition)	Less than 4.5V
			Engine is running. (Warm-up condition)	0 - 1.0V
10	LY	L/Y EGRC-solenoid valve	Engine is running. (Warm-up condition) Lift up drive wheels and rev engine up from idle to 3,000 rpm in "D" position.	0 - 0.7V
			Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

LC

EC


AT

EL

TROUBLE DIAGNOSIS FOR DTC P0400

EGR Function (Close) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0400 0302	 No EGR flow is detected under conditions that call for EGR. 	 EGR valve stuck closed EGRC-BPT valve Vacuum hose EGRC-solenoid valve EGR passage EGR temperature sensor 	GI MA
		• Exhaust gas leaks	UVUZA

COMPLETED

CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test. P0400 will not be displayed in the "SELF-DIAG RESULTS" mode with CONSULT-II even though the DTC work support test result is "NG". **TESTING CONDITION:** 1) Turn ignition switch "ON" 2) mode witch CONSULT-II. listed below. an inaccurate diagnostic result. Touch "START". 4) immediately go to the next step.

PEF785U

PD For best results, perform at a temperature above 5°C (41°F). FA Check "COOLAN TEMP/S" in "DATA MONITOR" Confirm COOLAN TEMP/S value is within the range RA

COOLANT TEMP/S: Less than 40°C (104°F)

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce

- 3) Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Start engine (TCS switch "OFF") and let it idle. When the engine coolant temperature reaches 70°C (158°F),
- 6) Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle.

HA If "COMPLETED" with "OK" appears on CONSULT-II screen, go to step 9).

- If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Check the output voltage of "THRTL POS SEN" at closed throttle position.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds or more.) CMPS·RPM (POS): 1,200 - 2,000 rpm Vehicle speed: 10 km/h (6 MPH) or more B/FUEL SCHDL: 3.3 - 4.5 msec

EGR Function (Close) (Cont'd)

THRTL POS SEN: X – (X + 0.53) V

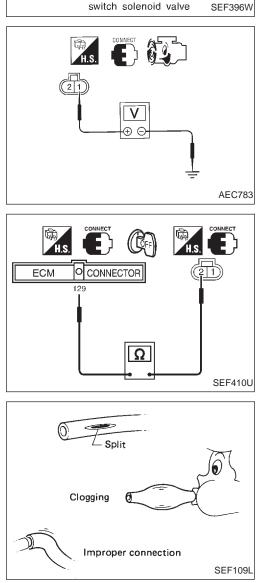
X = Voltage value measured at step 7)

Selector lever: Suitable position TESTING" is not displayed after 5 minutes

- If "TESTING" is not displayed after 5 minutes, retry from step 2).
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-284.

OVERALL FUNCTION CHECK

Use this procedure to check the overall EGR function. During this check, a 1st trip DTC might not be confirmed.


1) Lift up drive wheels.

R

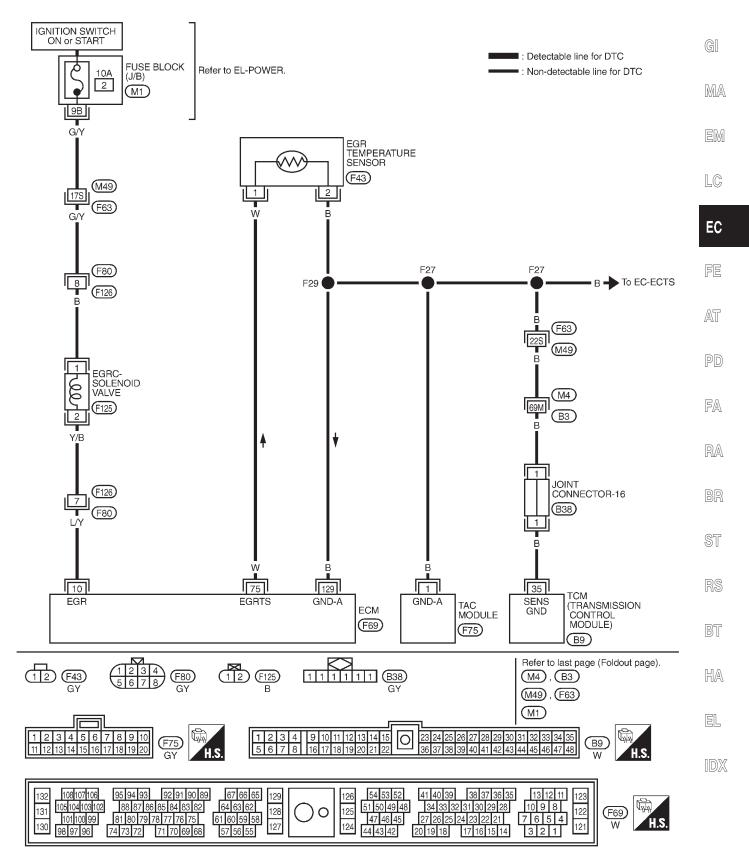
- Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 2) Shift to "D" position.
- 3) Check the EGR valve lifting when revving engine from idle up to 3,000 rpm.

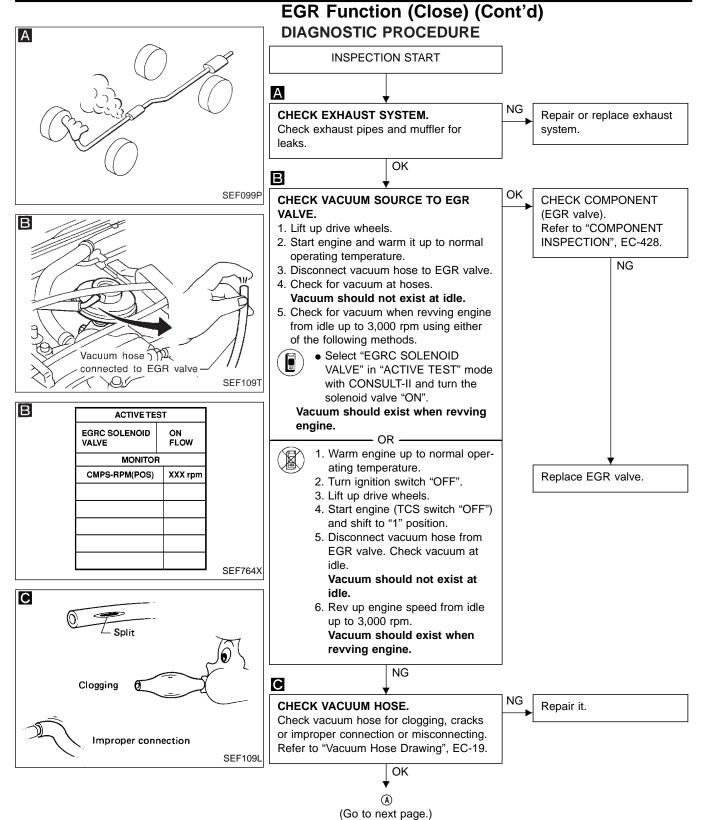
EGR valve should lift up and down without sticking.

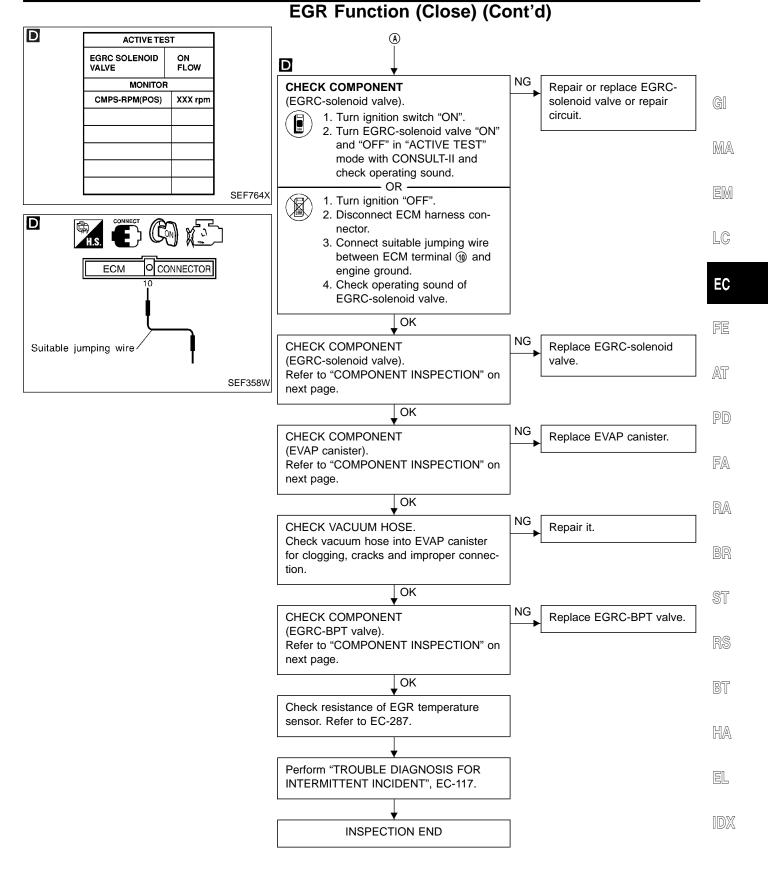
- 4) Check voltage between EGR temperature sensor harness connector terminal ① and ground at idle speed.
- **Less than 4.5V should exist.** 5) Turn ignition switch "OFF".
- 5) Turn ignition switch "OFF".
 6) Check harness continuity between EGR temperature sensor harness connector terminal (2) and ECM terminal (129). Continuity should exist.
- 7) Perform "COMPONENTS INSPECTION", "EGR temperature sensor". Refer to EC-287.
- 8) If NG, go to "DIAGNOSTIC PROCEDURE", EC-284.

EGR valve

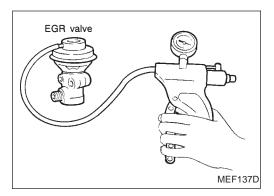
EGRC-solenoid valve & MAP/BARO

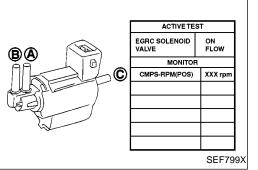

Overall function check Check the EGR valve lifting when revving engine from 2,000 rpm up to 4,000 rpm. SEF642Q


EC-282


EGR Function (Close) (Cont'd)

EC-EGRC1-01




EGR Function (Close) (Cont'd) COMPONENT INSPECTION

EGR valve

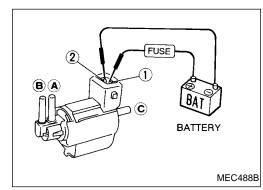
• Apply vacuum to EGR valve vacuum port with a hand vacuum pump.

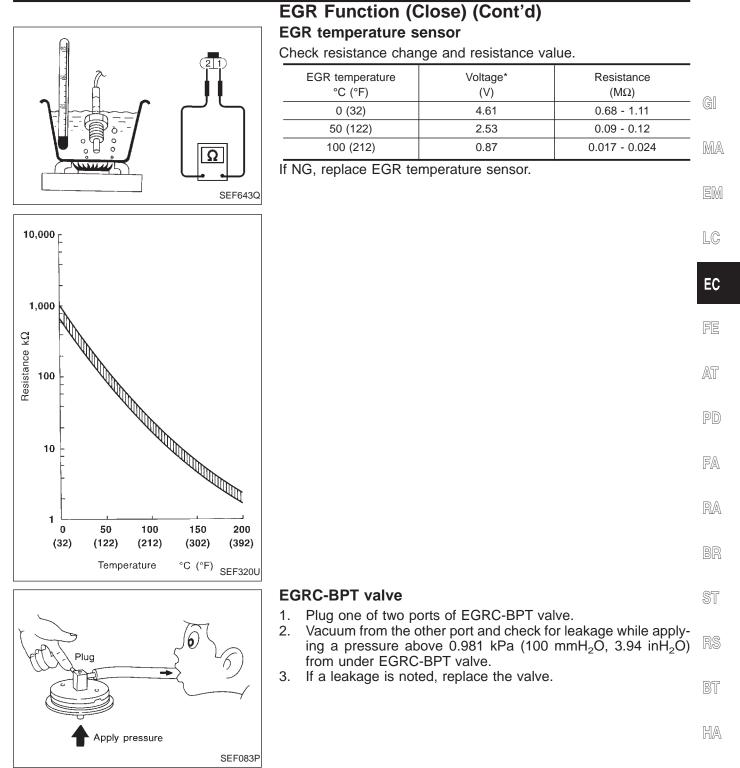
EGR valve spring should lift.

• Check for sticking. If NG, repair or replace EGR valve.

EGRC-solenoid valve Check air passage continuity.

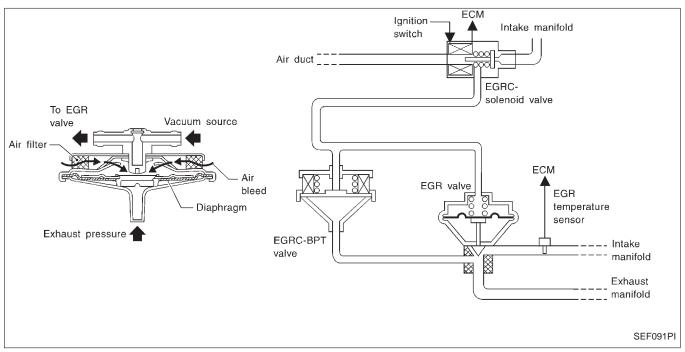
Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.


Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)	
ON	Yes	No	
OFF	No	Yes	
OR			


Check solenoid valve, following the table as shown below:

Conditions	Air passage continuity between (A) and (B)	Air passage continuity between
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace the solenoid valve.

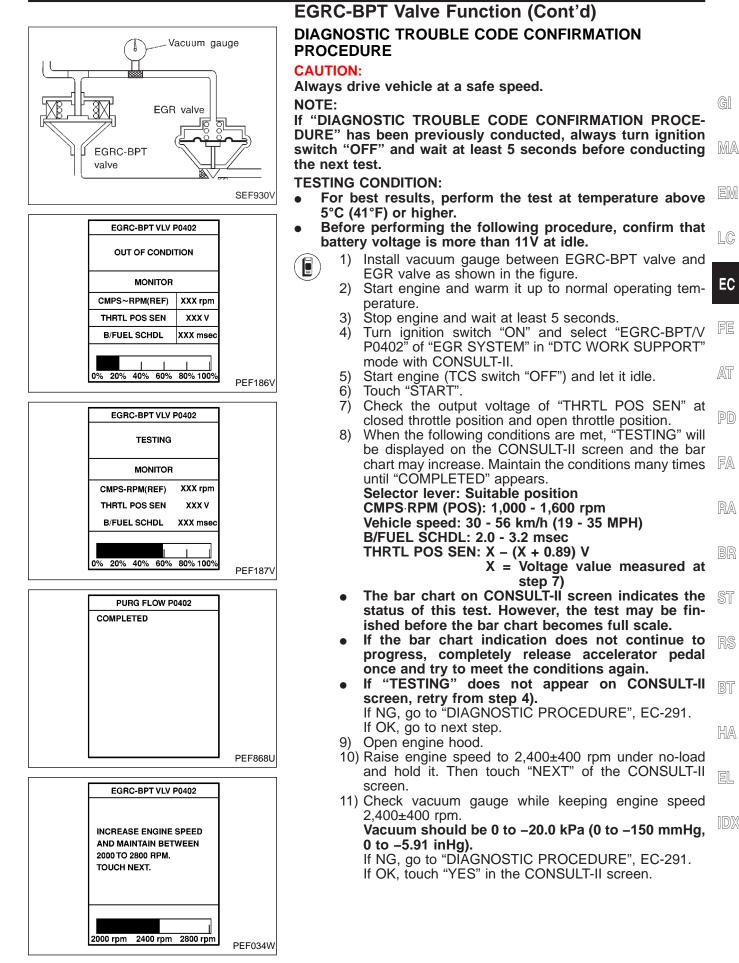


EL

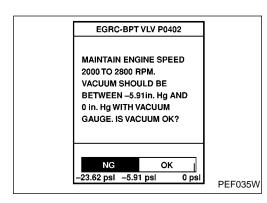
IDX

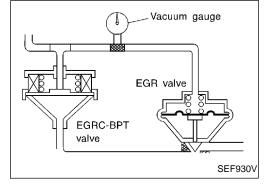
EGRC-BPT Valve Function

SYSTEM DESCRIPTION


The EGRC-BPT valve monitors exhaust pressure to activate the diaphragm, controlling throttle body vacuum applied to the EGR valve. In other words, recirculated exhaust gas is controlled in response to positioning of the EGR valve or to engine operation.

ON BOARD DIAGNOSIS LOGIC


If too much EGR flow exists due to an EGRC-BPT valve malfunction, off idle engine roughness will increase. If the roughness is excessive, then the vacuum to the EGR valve is interrupted through the EGRC-solenoid valve. If the engine roughness is reduced at that time, the EGRC-BPT valve malfunction is indicated.


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0402 0306	• The EGRC-BPT valve does not operate properly.	 EGRC-BPT valve EGR valve Loose or disconnected rubber tube Blocked rubber tube Camshaft position sensor Blocked exhaust system Orifice Mass air flow sensor EGRC-solenoid valve

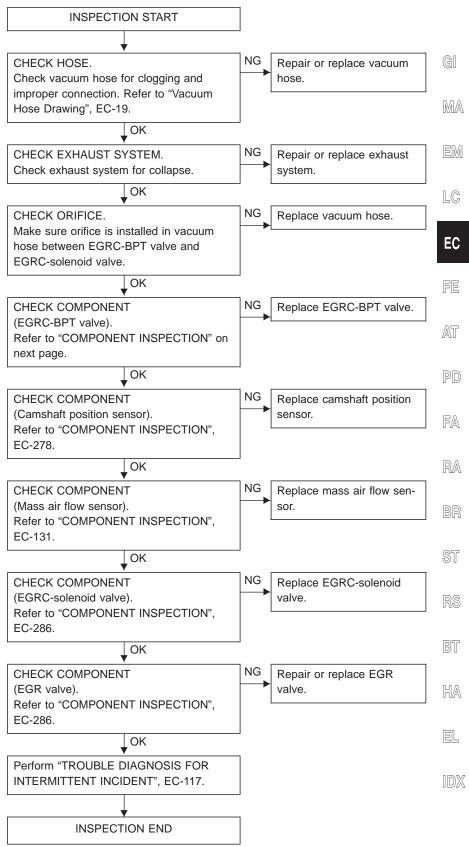
EGRC-BPT Valve Function (Cont'd)

- 12) Check the rubber tube between intake manifold collector, EGR valve and EGRC-BPT valve for misconnection, cracks, blockages or twisting. If NG, repair.
 - If OK, touch "YES" in the CONSULT-II screen.
- 13) If CONSULT-II instructs to carry out "OVERALL FUNC-TION CHECK", go to next step. If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-291.

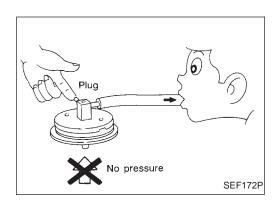
OR OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the EGRC-BPT valve. During the check, a 1st trip DTC might not be confirmed.

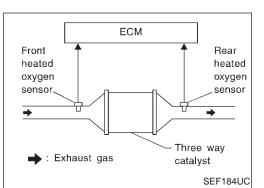
- 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the figure.
- 2) Lift up vehicle.
- Connect the intake manifold collector and the EGRC-BPT valve with a rubber tube that has 0.5 mm (0.020 in) dia. orifice. (The intake manifold vacuum will be directly applied to the EGRC-BPT valve.)
- 4) Start engine and shift to 1st position.
- 5) Check vacuum gauge while keeping engine speed 2,400±400 rpm.


Vacuum should be 0 to -20.0 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

If NG, go to "DIAGNOSTIC PROCEDURE", EC-291. If OK, go to next step.


- 6) Check rubber tube between the intake manifold collector, EGRC-solenoid valve and EGRC-BPT valve for misconnection, cracks, blockages or twisting.
- 7) If NG, repair or replace.

EGRC-BPT Valve Function (Cont'd) DIAGNOSTIC PROCEDURE



EGRC-BPT Valve Function (Cont'd) **COMPONENT INSPECTION**

EGRC-BPT valve

- Plug one of two ports of EGRC-BPT valve.
 Vacuum from the other port and check leakage without applying any pressure from under EGRC-BPT valve. Leakage should exist.

Three Way Catalyst Function (P0420: Left bank), (P0430: Right bank)

ON BOARD DIAGNOSIS LOGIC

ECM monitors the switching frequency ratio of front and rear $_{\mbox{\scriptsize GI}}$ heated oxygen sensors.

A three way catalyst with high oxygen storage capacity will indicate a low switching frequency of rear heated oxygen sensor. As oxygen storage capacity decreases, the rear heated oxygen sensor switching frequency will increase.

When the frequency ratio of front and rear heated oxygen sensors approaches a specified limit value, the three way catalyst malfunction is diagnosed.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items	LG
P0420	Three way catalyst does not operate properly.	(Possible Cause) • Three way catalyst	EC
0702	• Three way catalyst does not have enough oxygen storage	Exhaust tube	EU
(Left bank)	capacity.	Intake air leaks	
P0430	-	Injectors	FE
0703		 Injector leaks 	
(Right bank)		 Spark plug 	
		 Improper ignition timing 	AT

	DATA MONITOR		
FR O2 SEN-B1 XXX V RR O2 SEN-B1 XXX V FR O2 MNTR-B1 RICH	MONITORING	NO DTC	
RR O2 SEN-B1 XXX V FR O2 MNTR-B1 RICH	CMPS-RPM(POS)	XXX rpm	
FR O2 MNTR-B1 RICH	FR O2 SEN-B1	XXX V	
	RR O2 SEN-B1	XXX V	
RR 02 MNTR-B1 RICH	FR O2 MNTR-B1	RICH	
	RR O2 MNTR-B1	RICH	

SRT STATUS		
CATALYST EVAP SYSTEM O2 SENSOR O2 SEN HEATER EGR SYSTEM	CMPLT INCMP CMPLT CMPLT INCMP	PEF215U

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

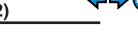
CAUTION:

Always drive vehicle at a safe speed. NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting RA the next test.

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - 2) Stop vehicle with engine running.
 - 3) Set "MANU TRIG" and "HI SPEED", then select "FR O2 SEN-B1 (-B2)", "RR O2 SEN-B1 (-B2)", "FR O2 SI MNTR-B1 (-B2)", "RR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode with CONSULT-II.
 - 4) Touch "RECORD" on CONSULT-II screen with engine Respect held at 2,000 rpm constantly under no load.
 - 5) Make sure that the switching frequency between "RICH" and "LEAN" of "RR O2 MNTR-B1 (-B2)" is much less than that of "FR O2 MNTR-B1 (-B2)" as shown below. Switching frequency ratio =

Rear heated oxygen sensor switching frequency


Front heated oxygen sensor switching frequency This ratio should be less than 0.75.

If the ratio is greater than above, the three way catalyst is not operating properly.

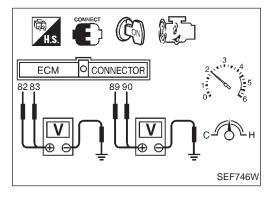
If the "FR O2 MNTR-B1 (-B2)" does not indicate "RICH" and "LEAN" periodically more than 5 times within 10 seconds at step 4), perform TROUBLE DIAGNOSES FOR DTC P0133 first.

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-295.

If the result is OK, go to following step.

PD

FA


EL

Three Way Catalyst Function (P0420: Left bank), (P0430: Right bank) (Cont'd)

- 6) Select "AUTO TRIG" in "DATA MONITOR" mode with CONSULT-II.
- 7) Drive vehicle at a speed of approximately 84 to 96 km/h (52 to 60 MPH) with D position ("OD" ON) for at least 10 consecutive minutes.
 (Drive the vehicle in an area where vehicle speed and approximately and constant)

accelerator pressure can be held steady and constant.) If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-295.

- 8) Select "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.
- 9) Verify that "CATALYST" is "CMPLT".
- If not "CMPLT", repeat the test from step 3). 10) If 1st trip DTC is detected, go to "DIAGNOSTIC
- PROCEDURE", EC-295.

OR OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the three way catalyst.

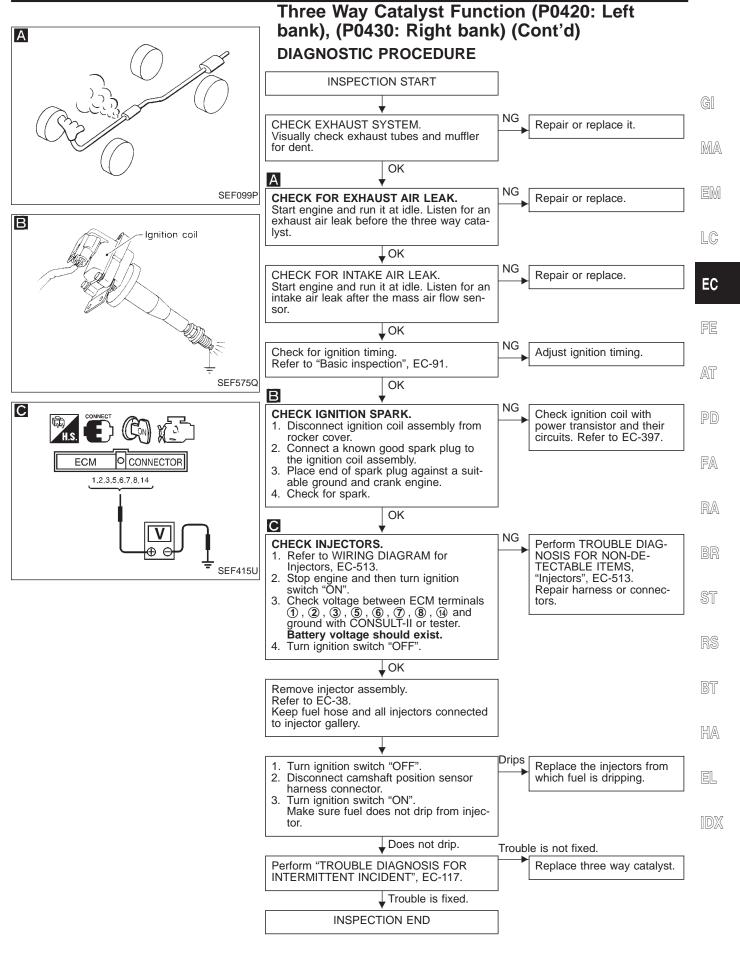
During this check, a DTC might not be confirmed.

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
 - 2) Stop vehicle with engine running.
 - 3) Set voltmeters probes between ECM terminals (2) RH,
 (3) LH (sensor signal front) and ground. (3) RH, (3) LH (sensor signal rear) and ground.
 - 4) Keep engine speed at 2,000 rpm constant under no load.
 - 5) Make sure that the voltage switching frequency (high & low) between ECM terminals (a) and ground is much less than that of ECM terminals (a) and ground (right bank). Or (a) and ground is much less than that of the terminals (b) and ground (left bank).
 Switching frequency ratio =

Rear heated oxygen sensor voltage switching frequency

Front heated oxygen sensor voltage switching frequency

This ratio should be less than 0.75.


If the ratio is greater than above, it means three way catalyst does not operate properly.

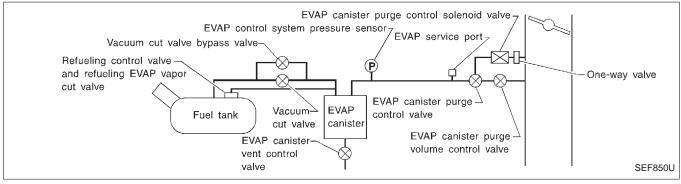
NOTE:

If the voltage at terminal (2) or (3) does not switch periodically more than 5 times within 10 seconds at step 4, perform TROUBLE DIAGNOSIS FOR DTC P0130 or P0150 first, EC-166.

6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-295.

TROUBLE DIAGNOSIS FOR DTC P0420 (-B1), P0430 (-B2)

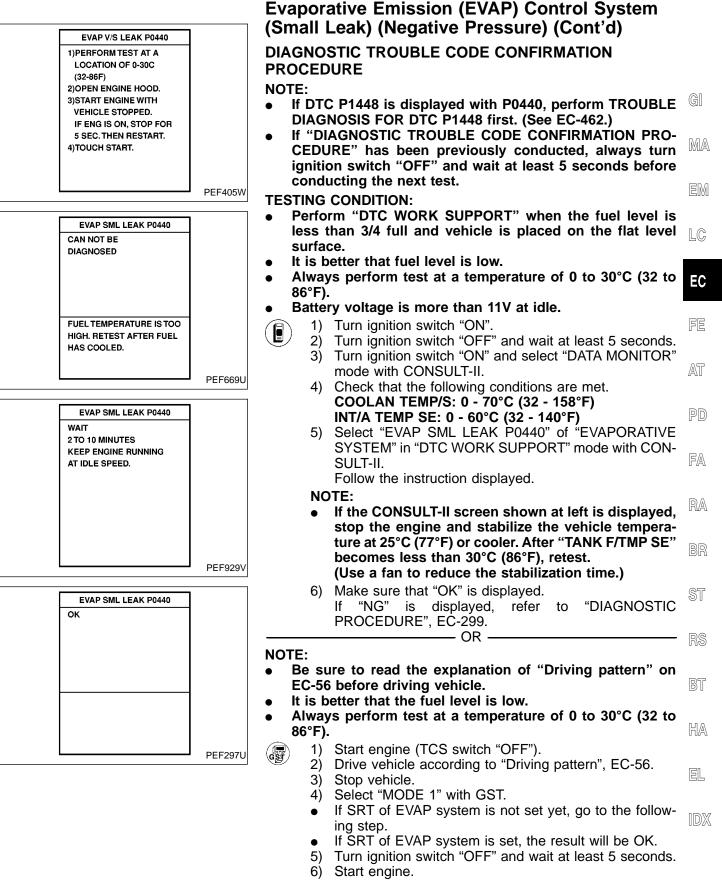
Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure)


Note: If DTC P1448 is displayed with P0440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (See EC-462.)

ON BOARD DIAGNOSIS LOGIC

This diagnosis detects leaks in the EVAP purge line using of engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge control valve, under the following "Vacuum test" conditions.


The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge control valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control valve and EVAP canister purge control valve are opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control valve will be closed.

Diagnostic Trouble Code No. Malfunction is detected when	Check Items (Possible Cause)
 P0440 O705 EVAP control system has a leak. EVAP control system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge control valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister purge control valve EVAP canister purge control valve and the circuit EVAP canister purge control valve and the circuit EVAP canister purge control solenoid valve Absolute pressure sensor Fuel tank temperature sensor MAP/BARO switch solenoid valve and the circuit Blocked or bent rubber tube to MAP/BARO switch solenoid valve O-ring of EVAP canister vent control valve is missing or damaged. Water separator EVAP control system pressure sensor Refueling control system pressure sensor Refueling control valve

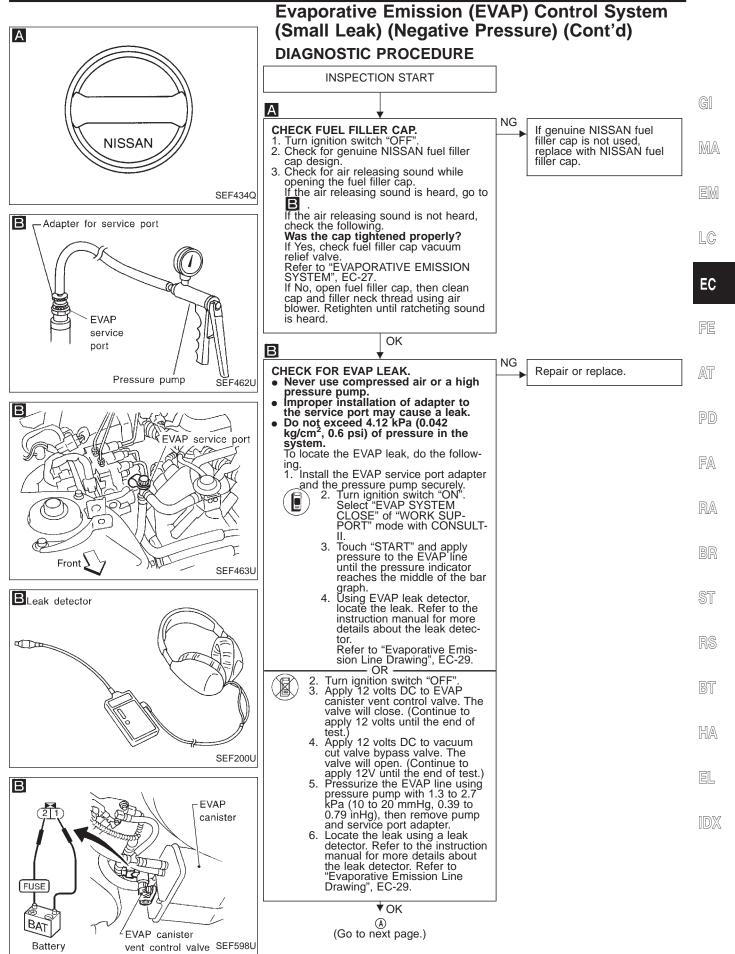
CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

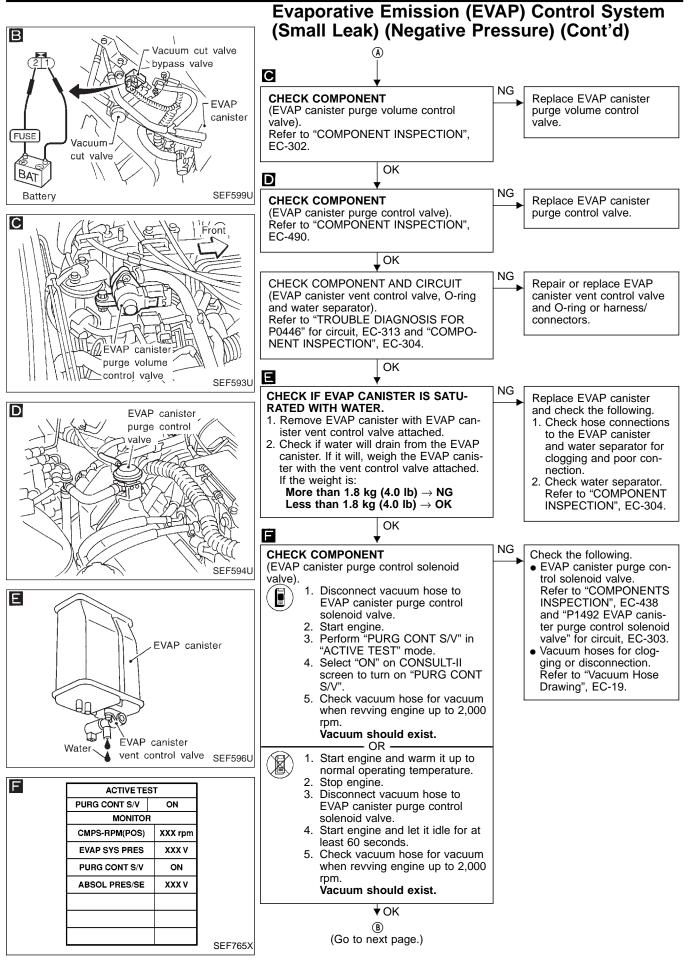
It is not necessary to cool engine down before the driving.

- 7) Drive vehicle again according to the "Driving pattern", EC-56.
- 8) Stop vehicle.

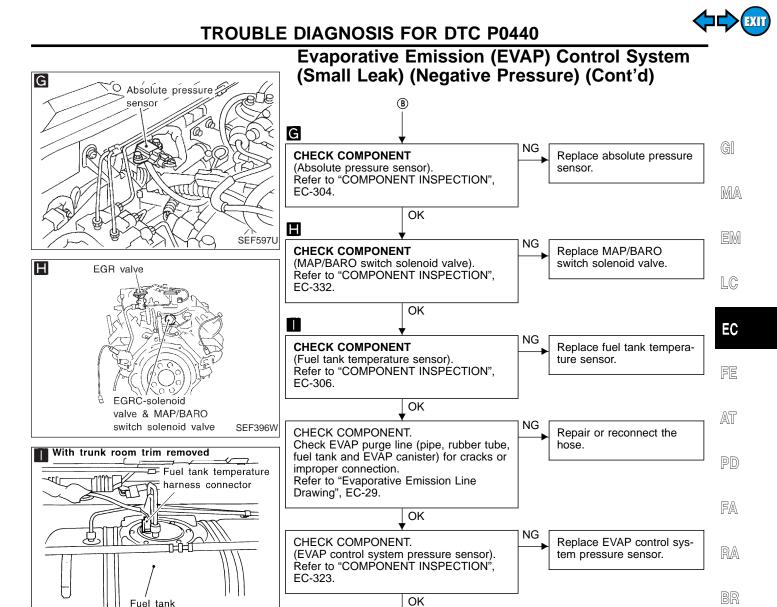
EC-297


440 VAP) Control System

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)


- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447", EC-455.
- If P0440 is displayed on the screen, go to "DIAGNOS-TIC PROCEDURE", EC-299.
- If P1440 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1440", EC-430.
- If P0440 and P1440 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6).
 OR

NOTE:


- Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.
- It is better that the fuel level is low.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- (NO TOOLS 1) Start engine (TCS switch "OFF").
 - 2) Drive vehicle according to "Driving pattern", EC-56.
 - 3) Stop vehicle.
 - 4) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 5) Turn ignition switch "ON" and perform "Diagnostic Test Mode (Self-diagnostic results)" with ECM.
 - 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-299.

EC-299

EC-300

Clean EVAP purge line (pipe and rubber

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

INSPECTION END

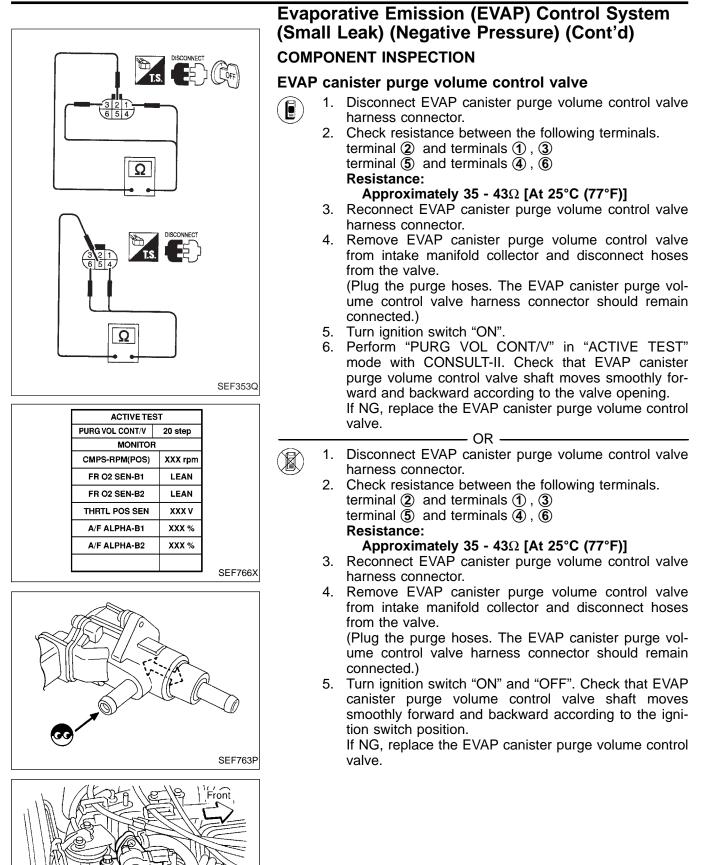
tube) using air blower.

Fuel tank

SEF394WA

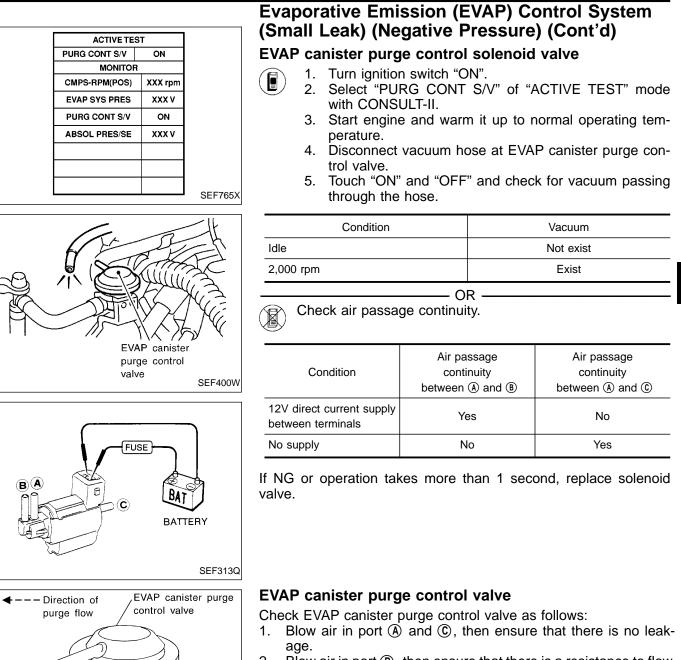
EC-301

IDX


ST

RS

BT


HA

EL

EVAP canister purge volume

SEF593U

- 2. Blow air in port (B), then ensure that there is a resistance to flow out of port (C).
- 3. Apply vacuum to port ⓐ. [Approximately −13.3 to −20.0 kPa (−100 to −150 mmHg, −3.94 to −5.91 inHg)] Blow air in port ⓒ and ensure free flow out of port ⓑ.

GI

MA

EM

LC

EC

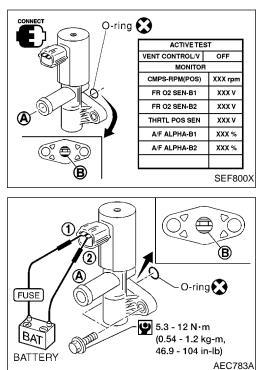
FE

AT

PD

FA

RA


ST

RS

EL

1DX

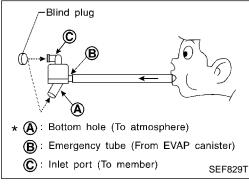
/`**(B)** SEF809W

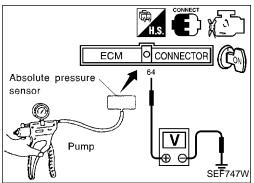
Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.


Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes
(DR


Condition	Air passage continuity between (A) and (B)			
12V direct current supply between ter- minals ① and ②	No			
No supply	Yes			

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace control valve.

Make sure new O-ring is installed properly.

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that (A) and (C) are not clogged by blowing air into (B) with (A), and then (C) plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.

Absolute pressure sensor

- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- Turn ignition switch "ON" and check output voltage between terminal @ and ground.
 The voltage should be 3.2 to 4.8V.

EC-304

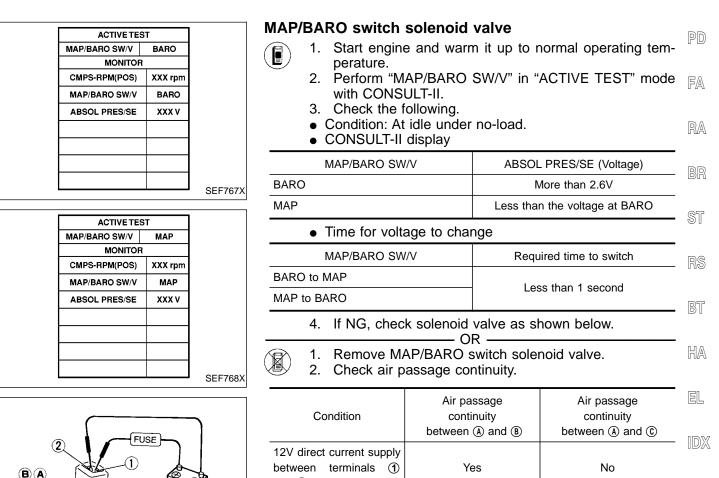
Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.
 The voltage should be 1.0 to 1.4 V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it. MA
- Do not apply below –93.3 kPa (–700 mmHg, –27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure. Doing so will damage the absolute pressure sensor.
- 5. If NG, replace absolute pressure sensor.

LC


GI

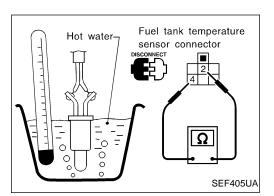
EC

FE

3. If NG or operation takes more than 1 second, replace solenoid valve.

Yes

No


EC-305

and ② No supply

BATTERY

MFC488B

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

₽XſT

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

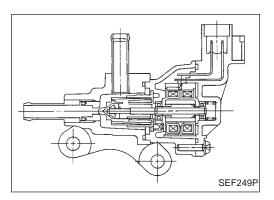
Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit)

SYSTEM DESCRIPTION

Camshaft position sensor	Engine speed				GI
Mass air flow sensor	Amount of intake air				MA
Engine coolant temperature sen-	」]Engine coolant temperature				EM
sor					LC
Ignition switch	Start signal			EVAP canister	EC
Throttle position sensor	Throttle position	 ECM	•	purge volume control valve	FE
Front heated oxygen sensor	Density of oxygen in exhaust gas (Mixture ratio feedback signal)				AT
Fuel tank temperature sensor	Fuel temperature in fuel tank				PD
					FA
Vehicle speed sensor	Vehicle speed				RA


This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

- RS
- л©

D ||

HA

EL

COMPONENT DESCRIPTION

The EVAP canister purge volume control valve uses a step motor to control the flow rate of fuel vapor from the EVAP canister. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
	 Engine: After warming up 	Idle	0 step
PURG VOL C/V	Air conditioner switch "OFF"	Vehicle running (Shift lever "1")	_

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
124	W/B	ECCS relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V	
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	
130	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE	
131	100			(11 - 14V)	
123	W/L	Current return	Engine is running.	BATTERY VOLTAGE (11 - 14V)	
28	BR/Y	EVAP canister purge vol-	Engine is running.	0 - 0.4V or	
29	G	ume control valve	L Idle speed	BATTERY VOLTAGE (11 - 14V)	
35	G/OR	EVAP canister purge vol-	Engine is running.	0 - 0.4V or BATTERY VOLTAGE	
36	L/B	ume control valve	L Idle speed	(11 - 14V)	

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0443	 An improper voltage signal is sent to ECM through	 Harness or connectors
1008	the valve.	(The valve circuit is open or shorted.) EVAP canister purge volume control valve

TROUBLE

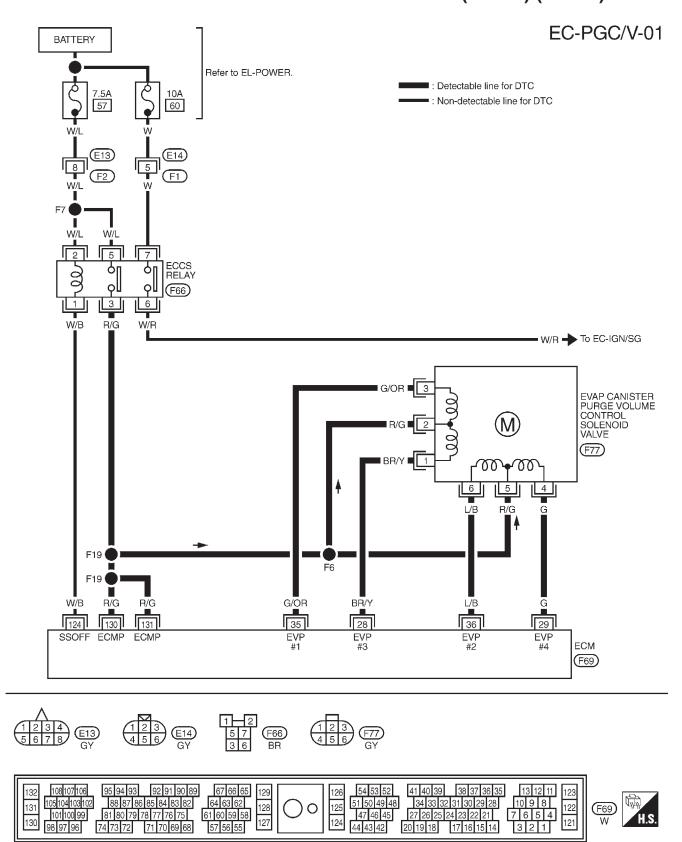
ST

RS

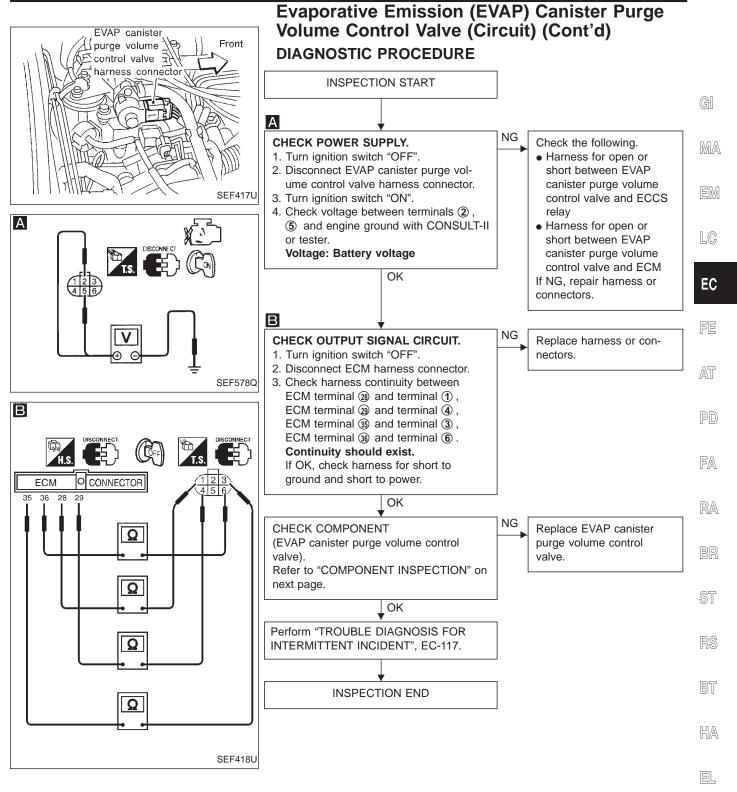
BT

HA

EL

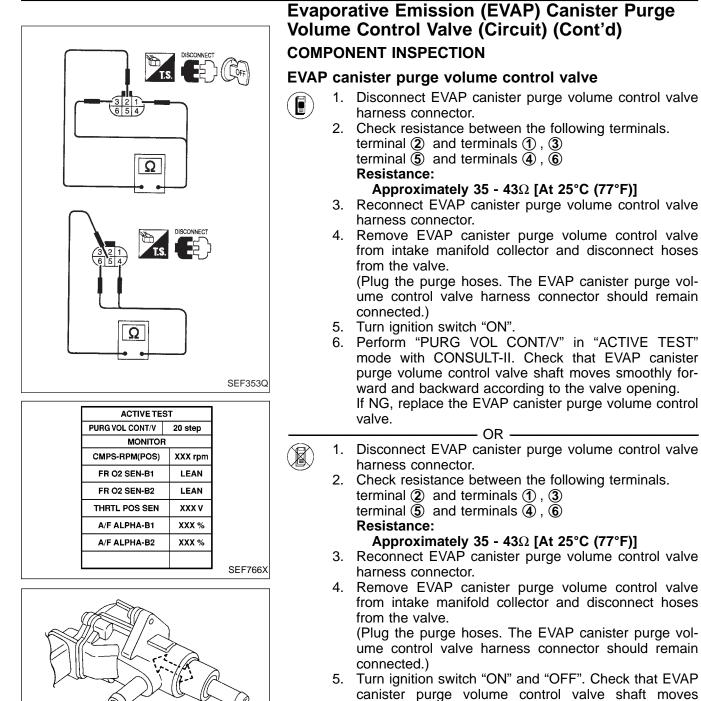

IDX

DATA MO	DNITOR		Eva Volu
MONITORING CMPS-RPM(POS			DIAG PRO
COOLAN TEMP/ PRUG VOL C/V			NOTE If "D DURE switc the n
		SEF749X	TEST Befor terv N


DIAGNOSIS FOR DTC P0443	
Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd)	
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE	
NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE- DURE" has been previously conducted, always turn ignition	GI
switch "OFF" and wait at least 5 seconds before conducting the next test.	MA
TESTING CONDITION: Before performing the following procedure, confirm that bat- tery voltage is more than 11V at ignition switch "ON".	EM
 Turn ignition switch "ON". Select "DATA MONITOR" mode with CONSULT-II. Wait at least 5 seconds. 	LC
4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-311.	EC
Follow the procedure "With CONSULT-II" above.	FE
	AT
	PD
	FA
	RA
	BR

EC-309

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd)

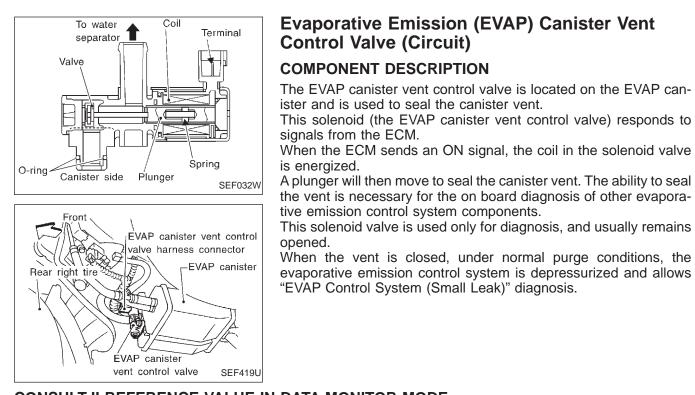


>(EXIT)

 \mathbb{D}

smoothly forward and backward according to the ignition switch position. If NG, replace the EVAP canister purge volume control

If NG, replace the EVAP canister purge volume control valve.


SEF763P

Front

SEF417U

EVAP canister

purge volume 19 control valve 11 harness connector

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	ea
VENT CONT/V	Ignition switch: ON	OFF	17/A)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	BR
20	P/B	EVAP canister vent con- trol valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	ST

ON BOARD DIAGNOSIS LOGIC

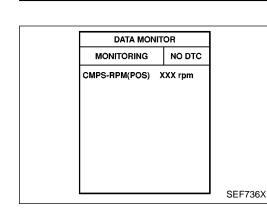
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	BT
P0446 0903	 An improper voltage signal is sent to ECM through EVAP canister vent control valve. 	 Harness or connectors (EVAP canister vent control valve circuit is open or shorted.) EVAP canister vent control valve 	HA

1D)X

MA

EM

LC


EC

AT

PD

RA

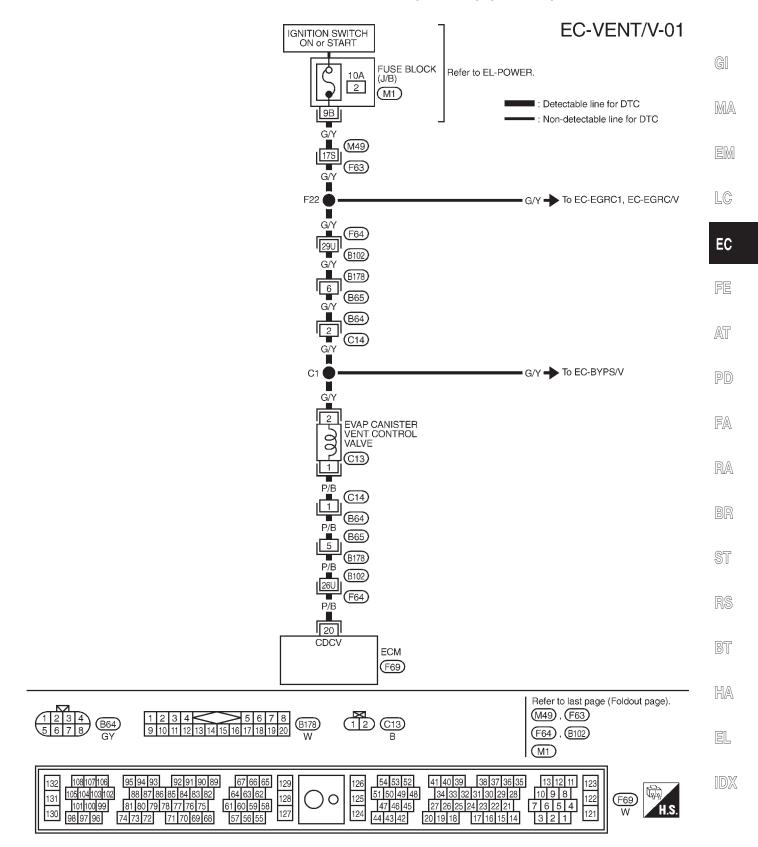
Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION

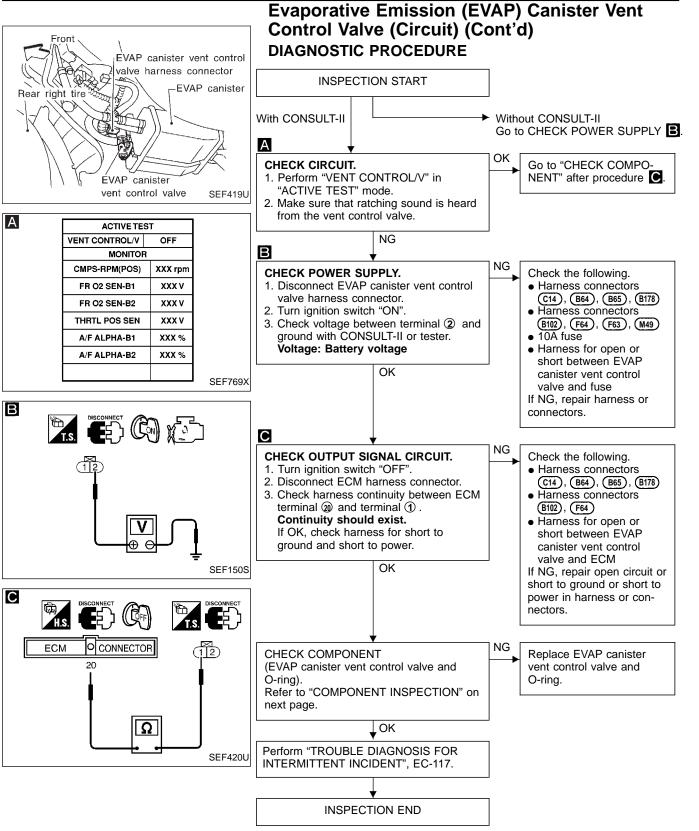
PROCEDURE NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has just been completed, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

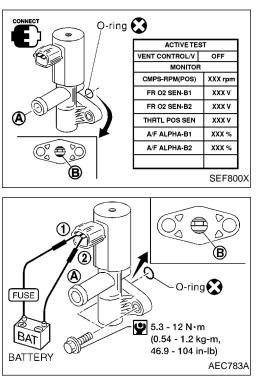
TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.


- 1) Turn ignition switch "ON".
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Start engine and wait at least 8 seconds.4) If 1st trip DTC is detected, go to "DIAGNOSTIC" PROCEDURE", EC-316. - OR -



Follow the procedure "With CONSULT-II" above.



Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd)

Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd) COMPONENT INSPECTION

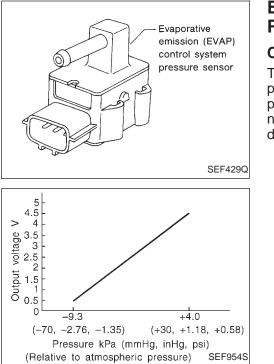
EVAP canister vent control valve Check air passage continuity. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)	
ON	No	EM
OFF	Yes	-
(DR	LC
	I	EC

Condition	Air passage continuity between (A) and (B)	
12V direct current supply between ter- minals ① and ②	No	FE
No supply	Yes	AT

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If portion (B) is rusted, replace EVAP canister vent control valve.


Make sure new O-ring is installed properly.

RA

FA

- BR
- ST
- RS
- NØ
- BT
- HA
- EL
- IDX

Evaporative Emission (EVAP) Control System Pressure Sensor

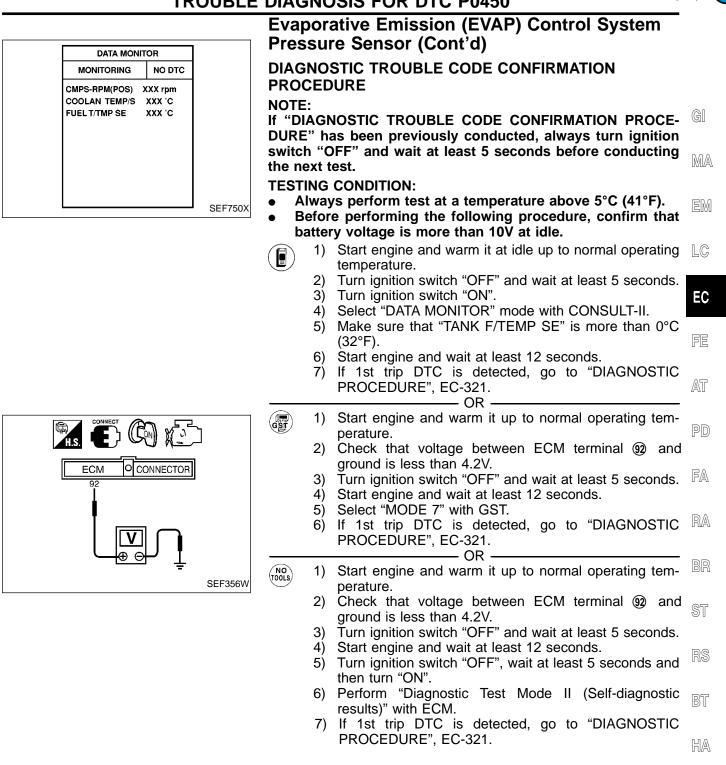
COMPONENT DESCRIPTION

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V

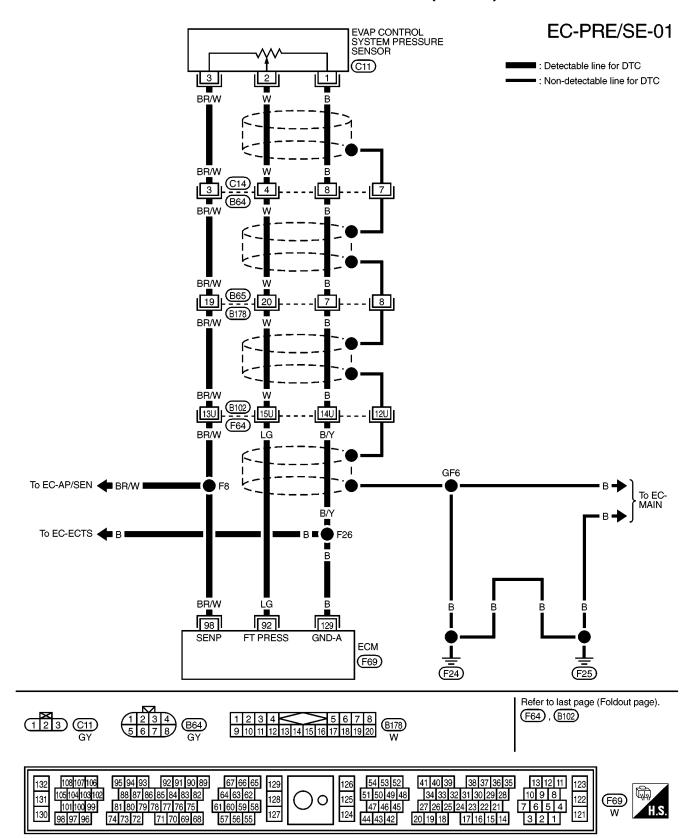
ECM TERMINALS AND REFERENCE VALUE

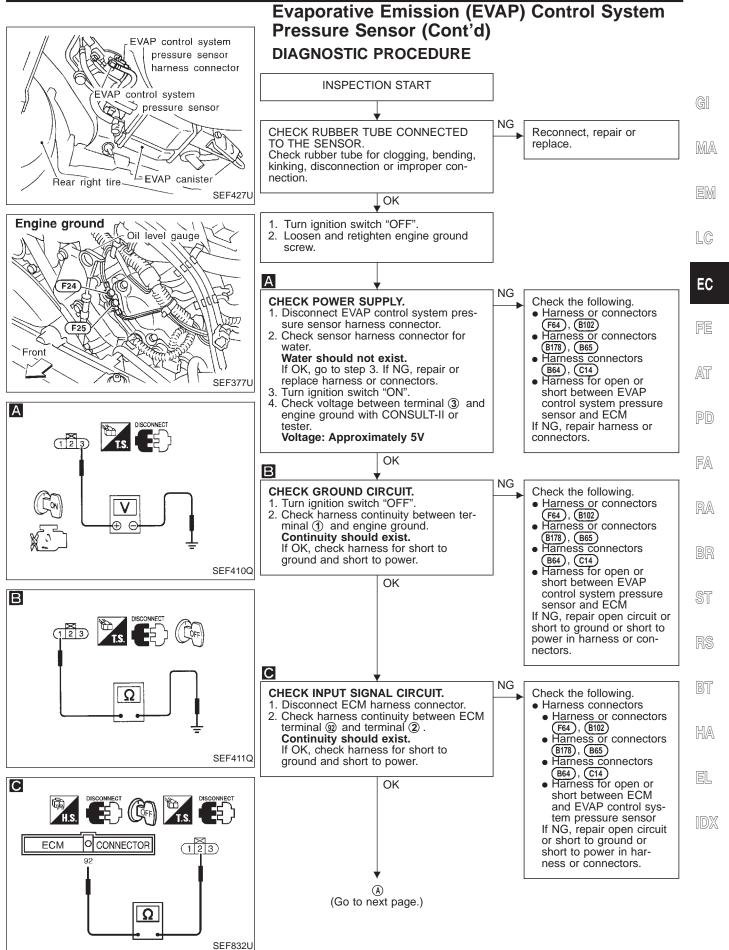

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
98	BR/W	Sensors' power supply	Ignition switch "ON"	Approximately 5V
92	W/R	EVAP control system pressure sensor	Ignition switch "ON"	Approximately 3.4V

ON BOARD DIAGNOSIS LOGIC

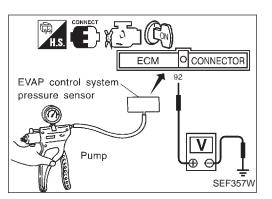
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0450 0704	 An improper voltage signal from EVAP control system pressure sensor is sent to ECM. 	 Harness or connectors (The EVAP control system pressure sensor circuit is open or shorted.) Rubber hose to EVAP control system pressure sensor is clogged, bent, kinked, disconnected or not corrected properly. EVAP control system pressure sensor EVAP canister vent control valve (The valve is stuck open.) EVAP canister purge volume control valve EVAP canister Rubber hose from EVAP canister vent control valve to water separator

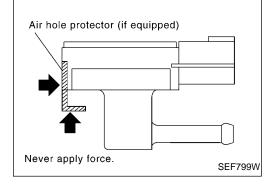



EL

IDX




Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)



EC-321

Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd) **COMPONENT INSPECTION**

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its har-1. GI ness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- MA 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal (9) and ground. EM

Pressure (Relative to atmospheric pressure)	Voltage (V)	
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6	LC
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6	

CAUTION:

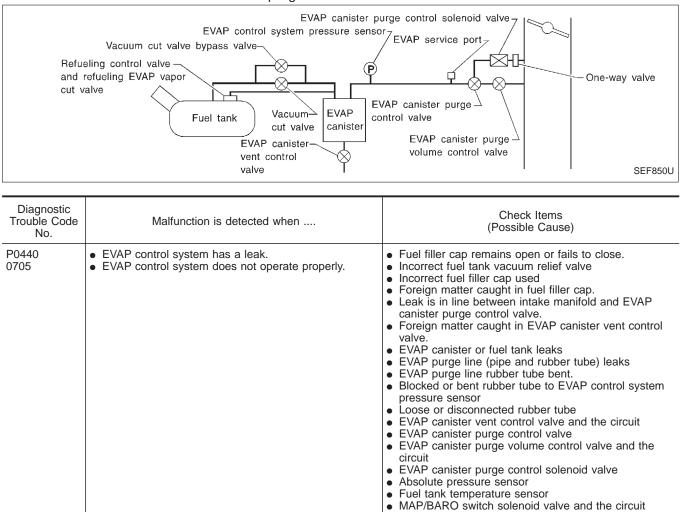
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- AT Never apply force to the air hole protector of the sensor, • if equipped.
- Discard any EVAP control system pressure sensor which PD has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
 - FA

EC

RA

BR

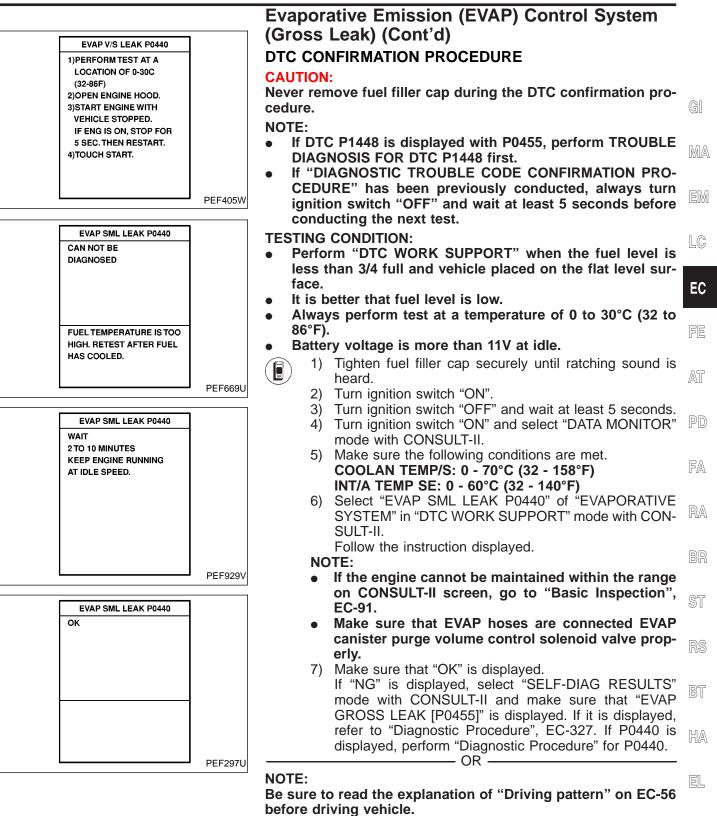
HA


EL

Evaporative Emission (EVAP) Control System (Gross Leak)

ON BOARD DIAGNOSTIC LOGIC

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge control valve.



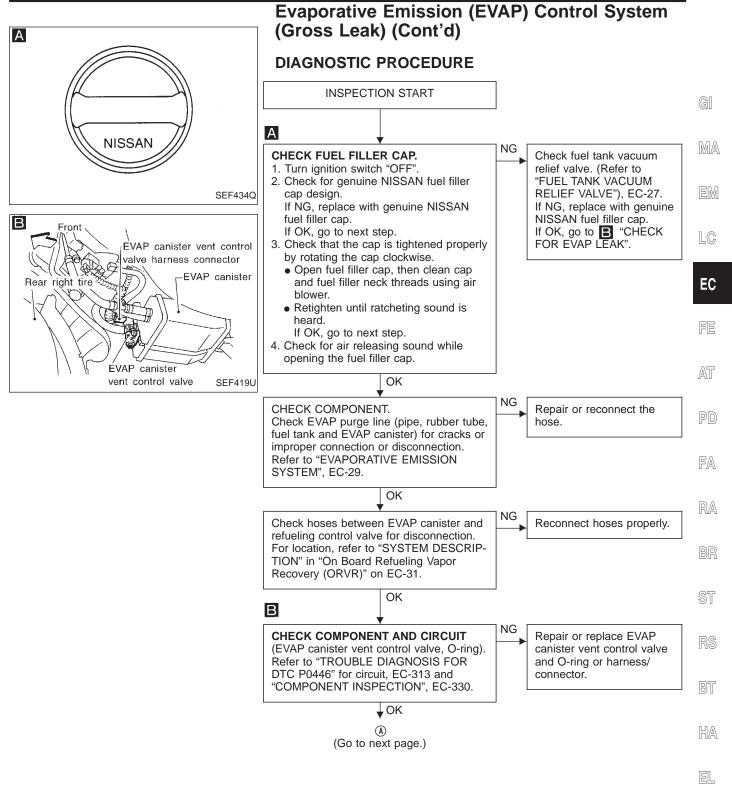
Blocked or bent rubber tube to MAP/BARO switch solenoid valve

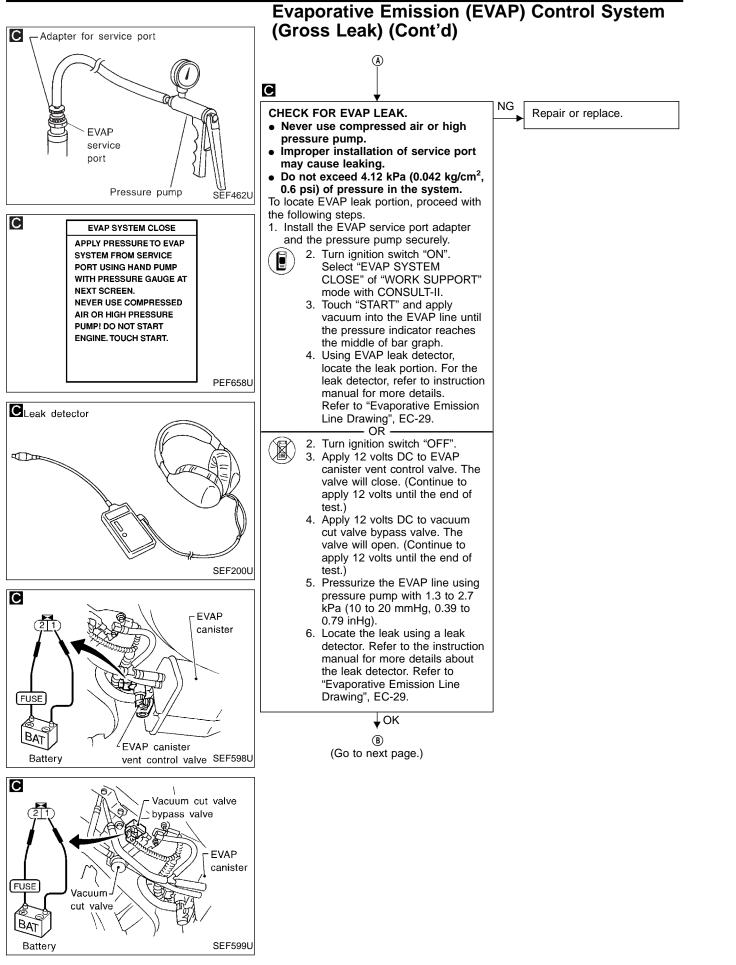
- O-ring of EVAP canister vent control valve is missing or damaged.
- EVAP control system pressure sensor
- Refueling control valve
- ORVR system leaks

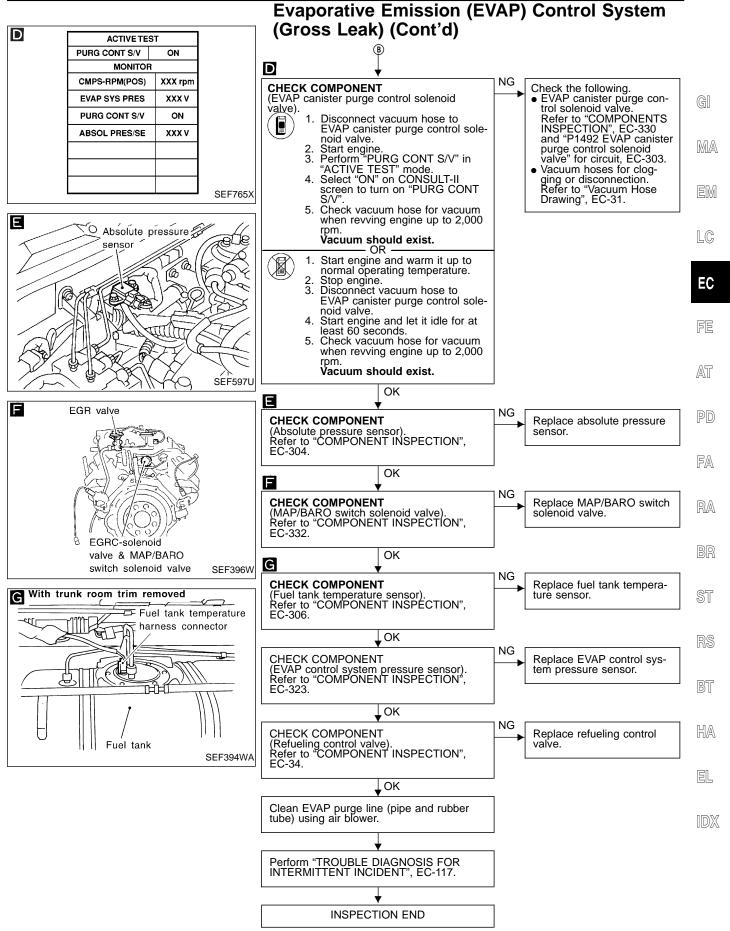
CAUTION:

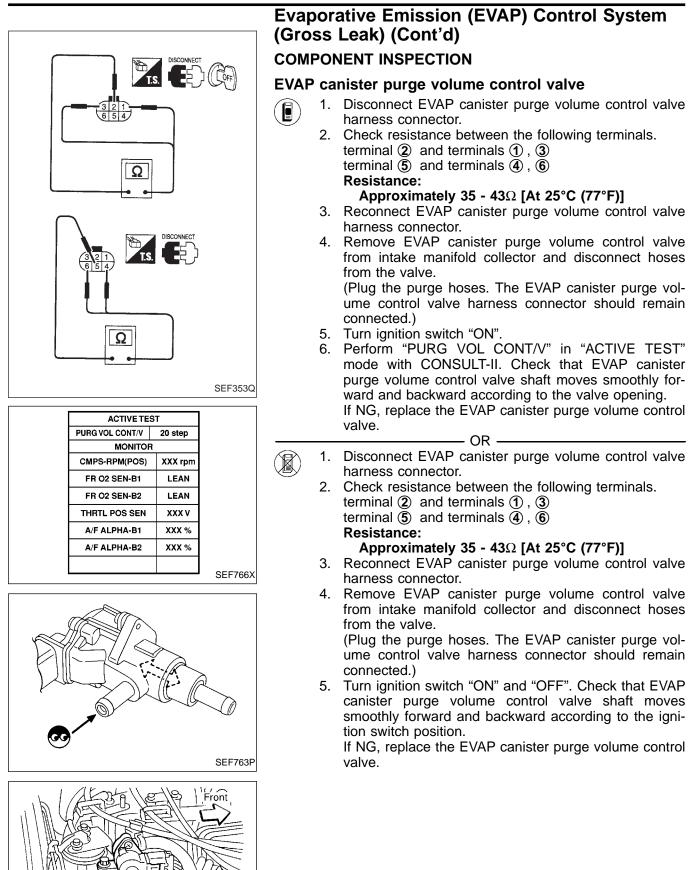
- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

- 1) Start engine. (TCS switch "OFF")
- GST 2) Drive vehicle according to "Driving pattern", EC-56.
 - 3) Stop vehicle.
 - 4) Select "MODE 1" with GST.
 - If SRT of EVAP system is not set yet, go to the following step.
 - If SRT of EVAP system is set, the result will be OK.
 - 5) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 6) Start engine.

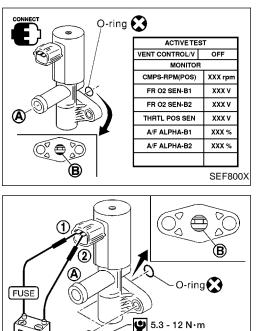

EC-325


Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)


It is not necessary to cool engine down before driving.


- 7) Drive vehicle again according to the "Driving pattern".
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447", EC-455.
- If P0440 is displayed on the screen, go to "DIAGNOS-TIC PROCEDURE", EC-299.
- If P1440 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1440", EC-430.
- If P0440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 5).

 \mathbb{D}



EVAP canister purge volume

SEF593U

-\/

(0.54 - 1.2 kg-m,

46.9 - 104 in-lb)

AEC783A

BAT

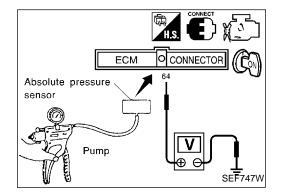
BATTERY

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

or vont oontr

		GI
Condition	Air passage continuity between (A) and (B)	M/
ON	No	
OFF	Yes	EM
OR -		
Condition	Air passage continuity between (A) and (B)	
12V direct current supply between ter- minals ① and ②	No	EC
No supply	Yes	FE

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion (B) is rusted, replace control valve.

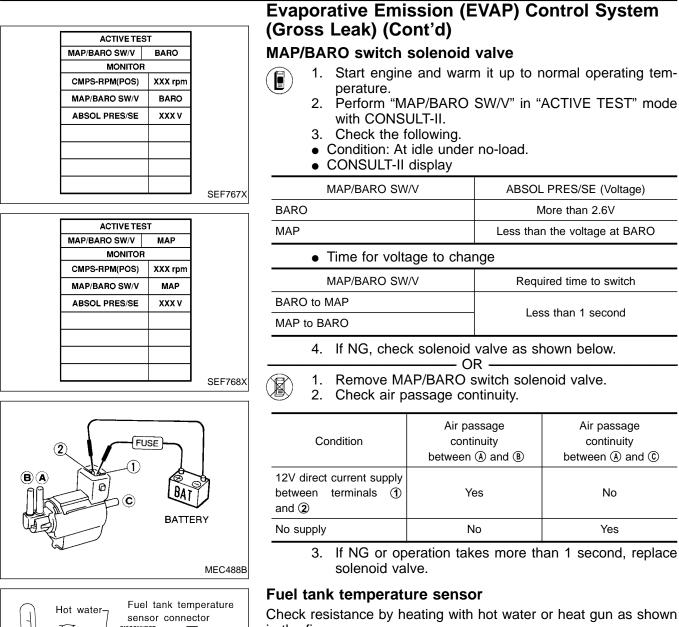

Make sure new O-ring is installed properly.

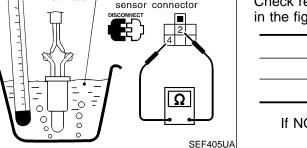
PD

AT

FA

RA

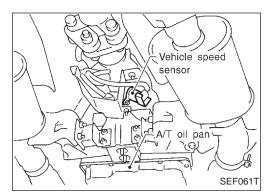

Absolute pressure sensor


- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- Turn ignition switch "ON" and check output voltage between 3. ECM terminal (64) and engine ground. The voltage should be 3.2 to 4.8V.
- Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 4. inHg) to absolute pressure sensor as shown in figure and HA check the output voltage. The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

EL

BT

- CAUTION:
- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 5. If NG, replace absolute pressure sensor.



Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

Vehicle Speed Sensor (VSS)

COMPONENT DESCRIPTION

The vehicle speed sensor is installed in the transmission. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM. $\hfill \ensuremath{\mathbb{Gl}}$

MA

EM

RS

BT

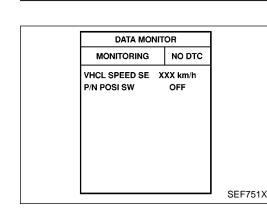
HA

EL

IDX

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and 128 (ECM ground).


TER- MINAL	WIRE	ITEM	CONDITION	DATA (DC voltage)	EC
NO.				Approximately 5.2V	FE
68	P/L	Vehicle speed sensor	Engine is running.	(V) 10 5 0	AT
			"D" position.	100 ms SEF542T	PD
			1	1	FA

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	RA
P0500 0104	• The almost 0 km/h (0 MPH) signal from the vehicle speed sensor is sent to ECM even when the vehicle is driving.	 Harness or connector (The vehicle speed sensor circuit is open or shorted.) 	BR
		Vehicle speed sensor	ST

EC-333

Vehicle Speed Sensor (VSS) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

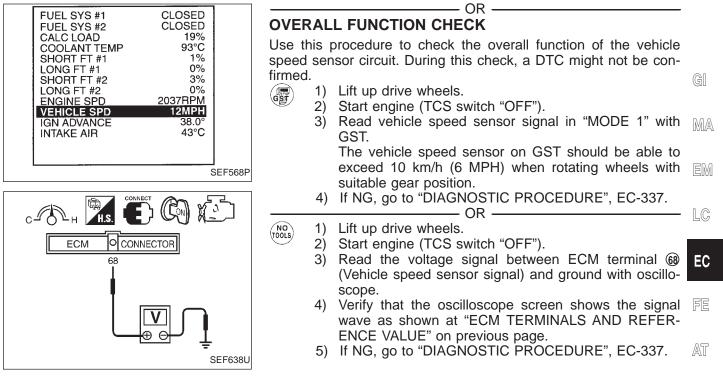
Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Step 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.


- 1) Start engine.
 - Read vehicle speed sensor signal in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CON-SULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

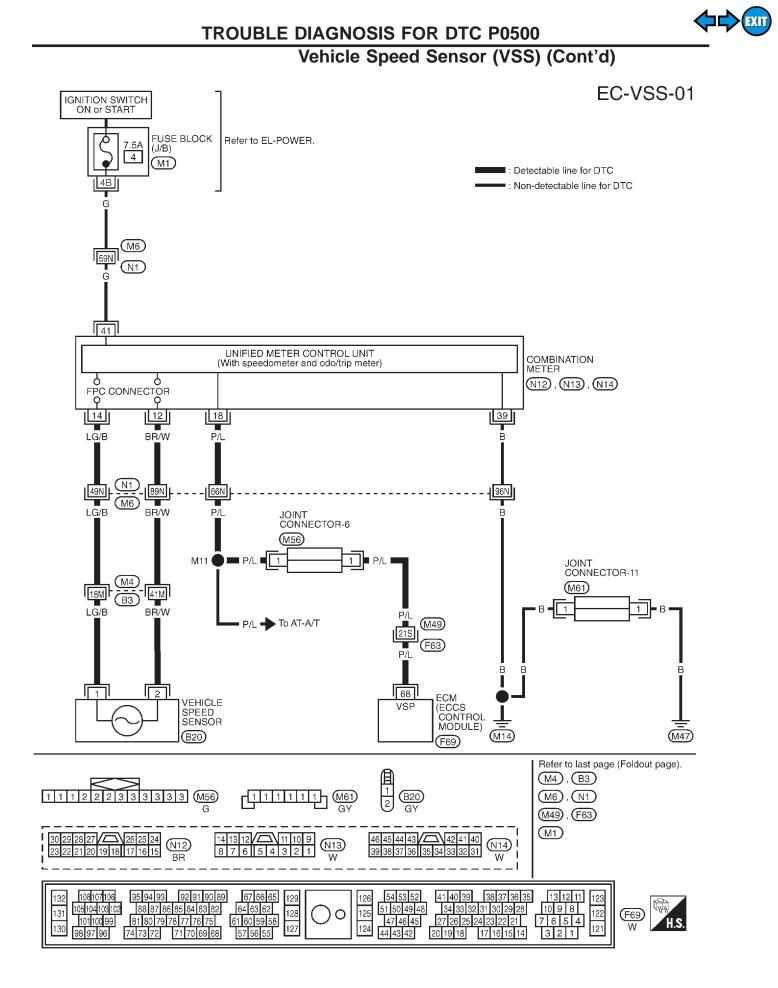
If NG, go to "DIAGNOSTIC PROCEDURE", EC-337. If OK, go to following step.

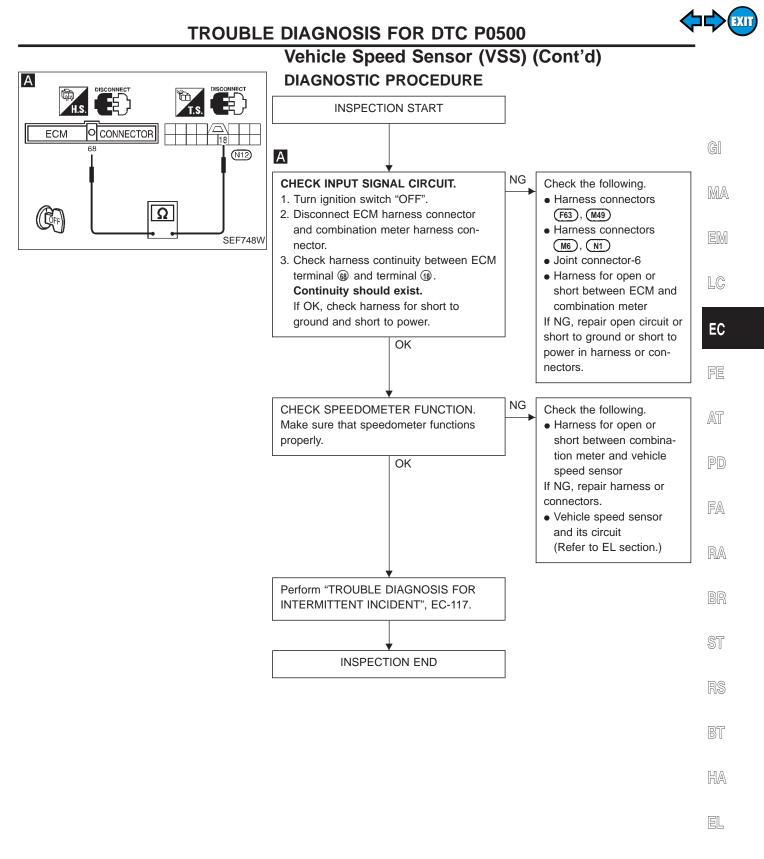
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Warm engine up to normal operating temperature.
- 5) Maintain the following conditions for at least 10 consecutive seconds with TCS switch "OFF".
 CMPS RPM (POS): 1,300 2,250 rpm
 COOLAN TEMP/S: More than 70°C (158°F)
 B/FUEL SCHDL: 2.0 3.5 msec
 Selector lever: Suitable position
 PW/ST SIGNAL: OFF
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-337.

Vehicle Speed Sensor (VSS) (Cont'd)

PD

FA

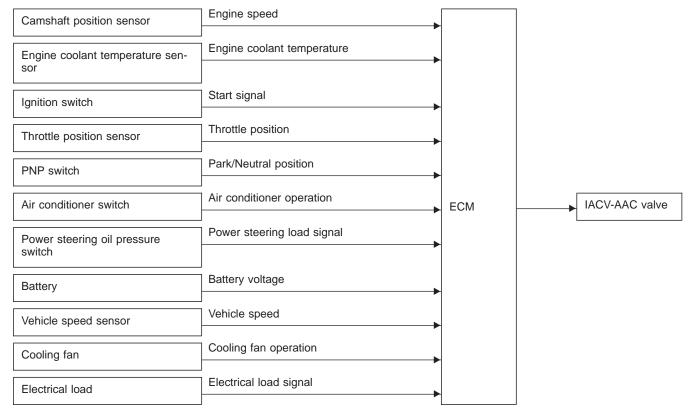

RA


BT

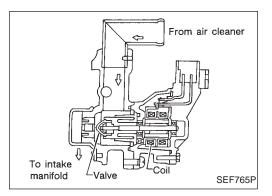
HA

EL

EC-335



1DX



Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve

SYSTEM DESCRIPTION

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via IACV-AAC valve. The IACV-AAC valve changes the opening of the air by-pass passage to control the amount of auxiliary air. This valve is actuated by a step motor built into the valve, which moves the valve in the axial direction in steps corresponding to the ECM output signals. One step of IACV-AAC valve movement causes the respective opening of the air by-pass passage. (i.e. when the step advances, the opening is enlarged.) The opening of the valve is varied to allow for optimum control of the engine idling speed. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the step position of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering and cooling fan operation).

COMPONENT DESCRIPTION

The IACV-AAC valve is operated by a step motor for centralized control of auxiliary air supply. This motor has four winding phases and is actuated by the output signals of ECM which turns ON and OFF two windings each in sequence. Each time the IACV-AAC valve opens or closes to change the auxiliary air quantity, the ECM sends a pulse signal to the step motor. When no change in the auxiliary air quantity is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

EM

ST

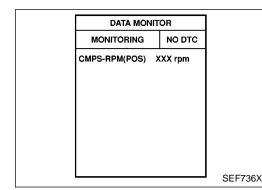
TROUBLE DIAGNOSIS FOR DTC P0505

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	GI
Air co	Engine: After warming upAir conditioner switch: "OFF"	Idle	20 - 10 step	
IACV-AAC/V	Shift lever: "N"No-load	2,000 rpm	-	MA


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL	WIRE	ITEM	CONDITION	DATA (DC voltage)	LC
NO.					EO
13	Y	IACV-AAC valve	Engine is running.	0.1 - 14V	EC
8	GY/L		L Idle speed		
11	PU	IACV-AAC valve	Engine is running.	0.4 441/	FE
12	G/Y	ACV-AAC Valve	L Idle speed	0.1 - 14V	
		I			AT

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	PD
P0505 0205	A) The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is open.) IACV-AAC valve 	FA
	B) The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is shorted.) IACV-AAC valve 	RA BR

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

- RS If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before BT conducting the next test.
- Perform "Procedure for malfunction A" first. If a 1st trip DTC cannot be confirmed, perform "Procedure for mal-HA function B".

TESTING CONDITION:

Before performing the following procedure, confirm that bat-EL tery voltage is more than 11V at idle.

Procedure for malfunction A

- Turn ignition switch "ON". 1)
 - Select "DATA MONITOR" mode with CONSULT-II. 2)
 - Start engine and let it idle. 3)
 - 4) Keep engine speed at 2,500 rpm for 3 seconds, then let it idle for 3 seconds.

Do not rev engine up to speeds more than 3,000 rpm.

- Perform step 4 once more.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-342.

EC-339

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

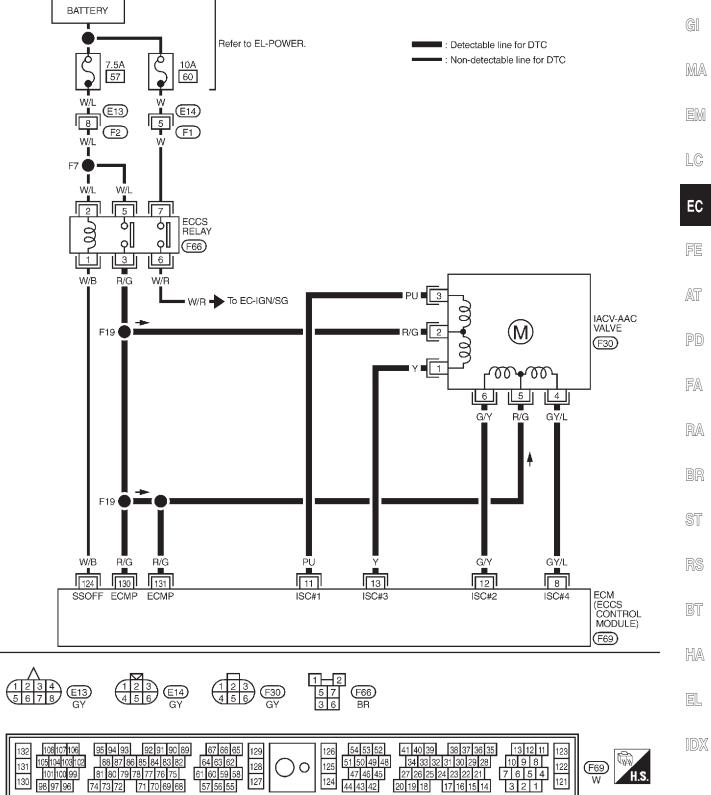
Follow the procedure "With CONSULT-II" above.

- OR -

DATA MON	IITOR
MONITORING	NO DTC
CMPS-RPM(POS)	XXX rpm
COOLAN TEMP/S	XXX °C

Procedure for malfunction B

- Open engine hood.
 Start engine and w
 - Start engine and warm it up to normal operating temperature.
 - 3) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 4) Turn ignition switch "ON" again and select "DATA MONI-TOR" mode with CONSULT-II.
 - 5) Start engine and run it for at least 1 minute at idle speed. (Headlamp switch, rear defogger switch: OFF)

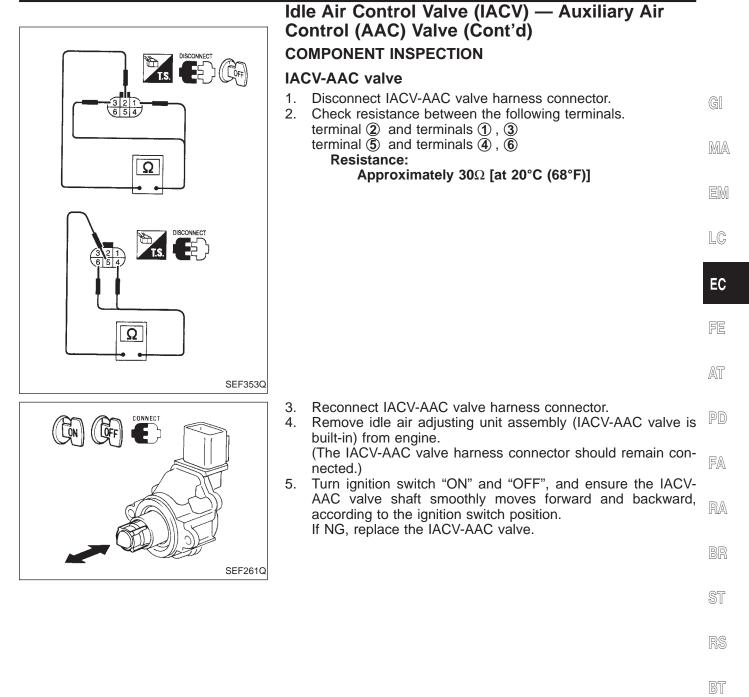


Follow the procedure "With CONSULT-II" above.

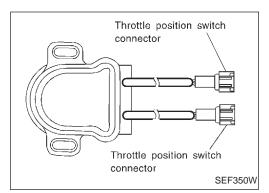
Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

EC-AAC/V-01

TROUBLE DIAGNOSIS FOR DTC P0505 Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd) **DIAGNOSTIC PROCEDURE** ACV-AAC valve harness connector INSPECTION START Α NG CHECK POWER SUPPLY. Repair harness or connec-1. Turn ignition switch "OFF". tors. 2. Disconnect IACV-AAC valve harness connector. SEF062T 3. Turn ignition switch "ON". 4. Check voltage between terminals (2), (5) and ground with CONSULT-II or tester. Α Voltage: Battery voltage OK В NG CHECK OUTPUT SIGNAL CIRCUIT. Repair harness or connec-1. Turn ignition switch "OFF". tors. 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminal (1) and terminal (3), ECM terminal (1) and terminal (6), ECM terminal (1) and terminal (1), SEF143T ECM terminal (8) and terminal (4). Continuity should exist. В If OK, check harness for short to ground and short to power. T.S. OK O CONNECTOR ECM NG CHECK COMPONENT Replace IACV-AAC valve. (IACV-AAC valve). 12 13 Refer to "COMPONENT INSPECTION" on next page. ОК Ω Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117. Ω INSPECTION END Ω Ω SEF423U



HA


EL

IDX

TROUBLE DIAGNOSIS FOR DTC P0505

Closed Throttle Position Switch

COMPONENT DESCRIPTION

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

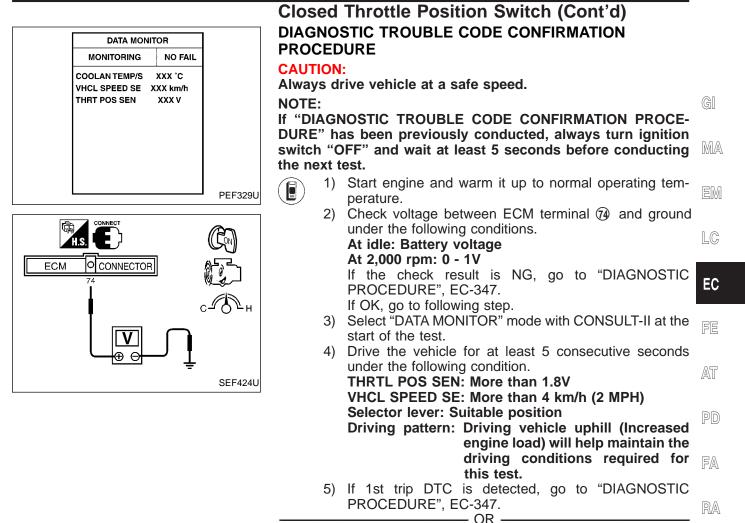
When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge control valve when the throttle position sensor is malfunctioning.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
CLSD THL POS	 Engine: After warming up Ignition switch: ON (Engine stopped) More then 40.0 kPe (200) 	Throttle valve: Idle position	ON
	• More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve: Slightly open	OFF

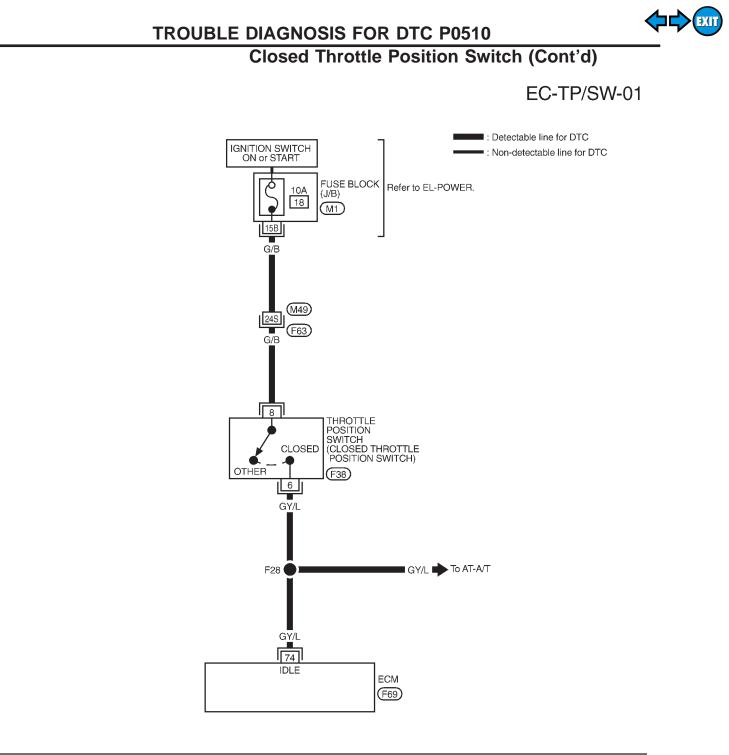
ECM TERMINALS AND REFERENCE VALUE

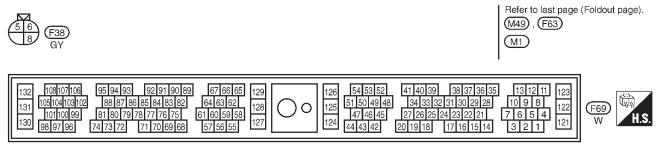

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

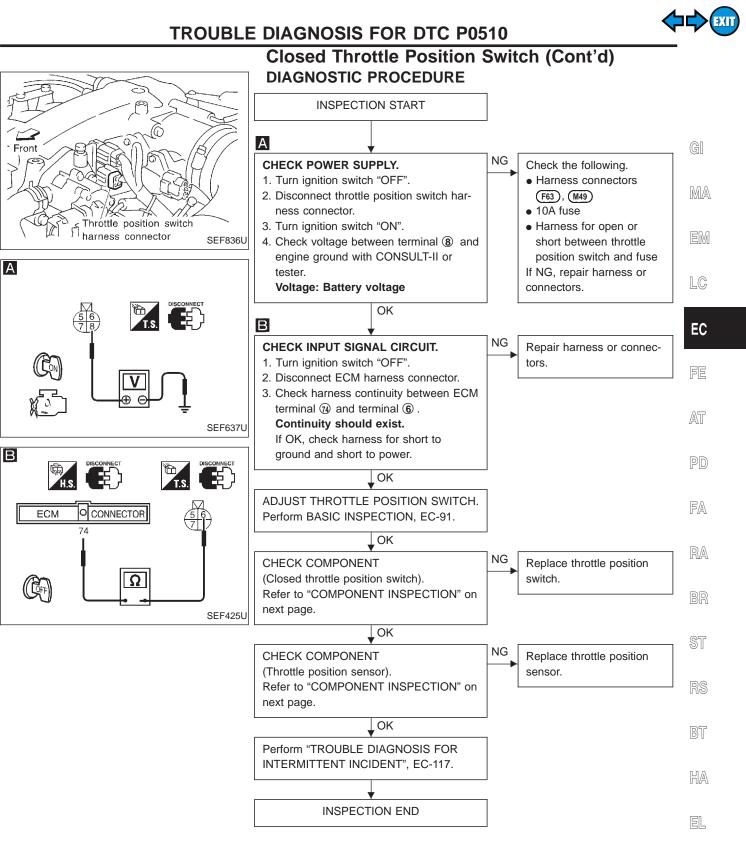
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	GY/L	Throttle position switch (Closed position)	 Engine is running (Warm-up condition) Accelerator pedal fully released More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump. 	BATTERY VOLTAGE (11 - 14V)
			Ignition switch "ON" Accelerator pedal fully depressed	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

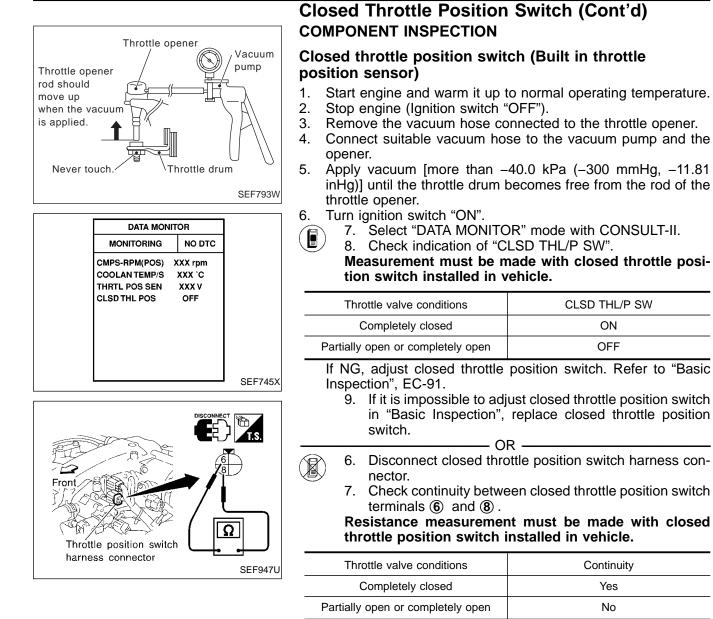
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0510 0203	 Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened. 	 Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor

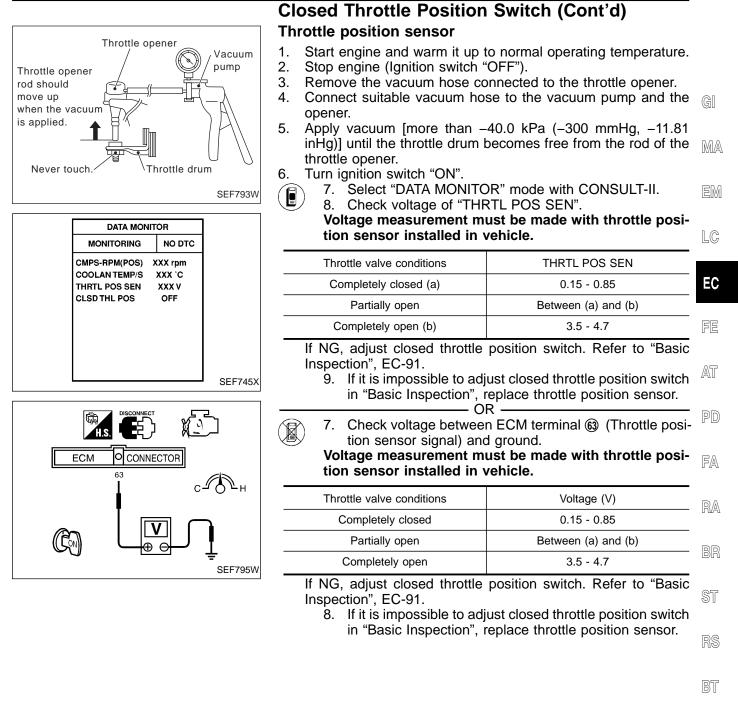

OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the closed BR throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.


- Start engine and warm it up to normal operating temperature.
 - 2) Check the voltage between ECM terminal (2) and ground under the following conditions.
 At idle: Battery voltage
 At 2,000 rpm: Approximately 0V
 - 3) If NG, go to "DIAGNOSTIC PROCEDURE", EC-347.
 - HA

EL


1DX



IDX

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

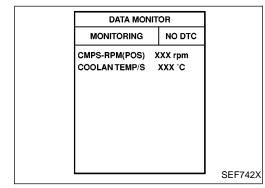
8. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

HA

EL

1DX

A/T Communication Line (P0600) and A/T Diagnostic Communication Line (P1605)


This circuit line (LAN) controls the smooth shifting up and down of A/T during the hard acceleration/deceleration. Pulse signals are exchanged between ECM and TCM (P0600).

This circuit line is also used to communicate malfunction information related to A/T (Automatic Transmission) is transferred through the line (LAN circuit) from TCM to ECM (P1605).

Be sure to erase the malfunction information such as DTC not only in TCM but also ECM after the A/T related repair.

ON BOARD DIAGNOSIS LOGIC

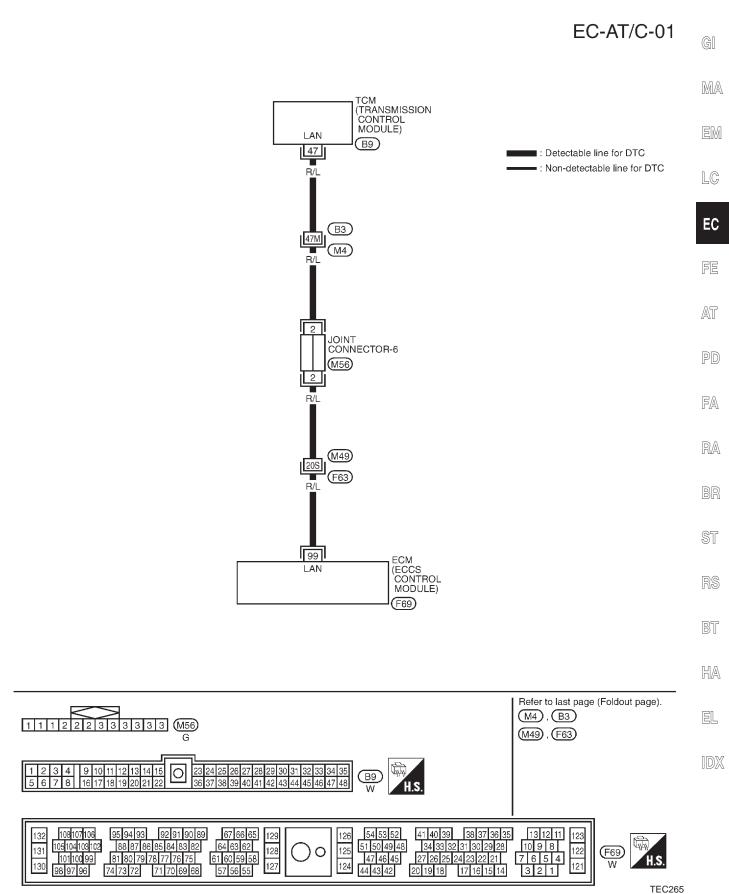
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0600 0504	 ECM receives incorrect voltage from TCM continu- ously. 	Harness or connectors (The communication line circuit between ECM and TCM is open or shorted.)
P1605 0804	 Signal from TCM is not sent to ECM. 	TCM is open or shorted.)TCMDead (Weak) battery

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

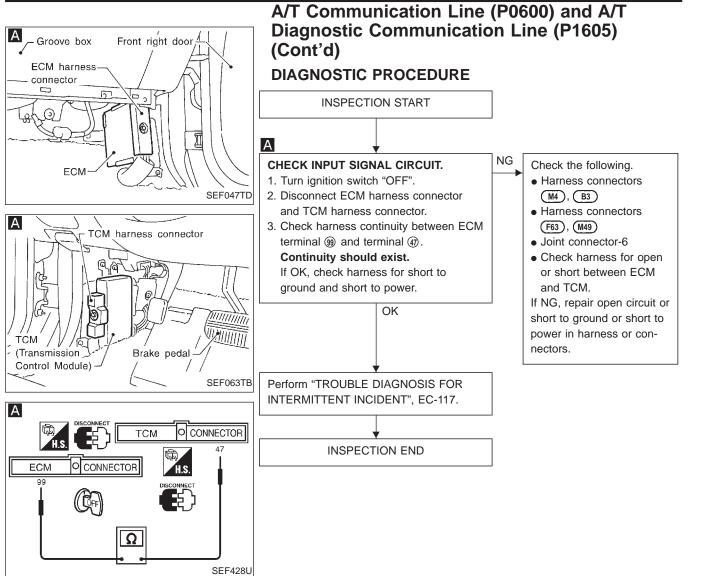
NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10.5V.

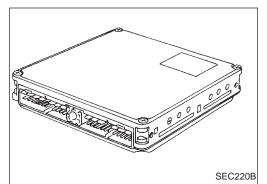
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 2 seconds (P0600) and 40 seconds (P1605).



Follow the procedure "With CONSULT-II" above.

A/T Communication Line (P0600) and A/T Diagnostic Communication Line (P1605) (Cont'd) €XII

TROUBLE DIAGNOSIS FOR DTC P0600, P1605



GI

MA

EM

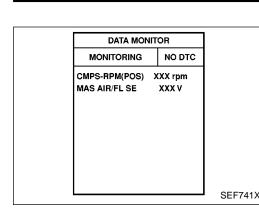
Engine Control Module (ECM)

The ECM consists of a microcomputer, diagnostic test mode selector, and connectors for signal input and output and for power supply. The unit controls the engine.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Item (Possible Cause)	LC
P0605 0301	• ECM calculation function is malfunctioning.	• ECM	EC

DTC No.			
CONSULT-II GST ECM*	Detected items	Engir	ne operating condition in fail-safe mode
Unable to access ECM access Diag- nostic Test Mode II	ECM	When the fail-safe sy condition in the CPU the instrument panel	ting condition on of the ECM was judged to be malfunctioning. stem activates, i.e. if the ECM detects a malfunction of ECM, the MALFUNCTION INDICATOR LAMP on lights to warn the driver. ssible to access ECM and DTC cannot be confirmed.
		Engine control with	
			stem is operating, fuel injection, ignition timing, fuel V-AAC valve operation and cooling fan operation are ain limitations.
			ECM fail-safe operation
		Engine speed	ECM fail-safe operation Engine speed will not rise more than 3,000 rpm.
		Engine speed	
			Engine speed will not rise more than 3,000 rpm.
		Fuel injection	Engine speed will not rise more than 3,000 rpm. Simultaneous multiport fuel injection system


*: In Diagnostic Test Mode II (Self-diagnostic results)

EL

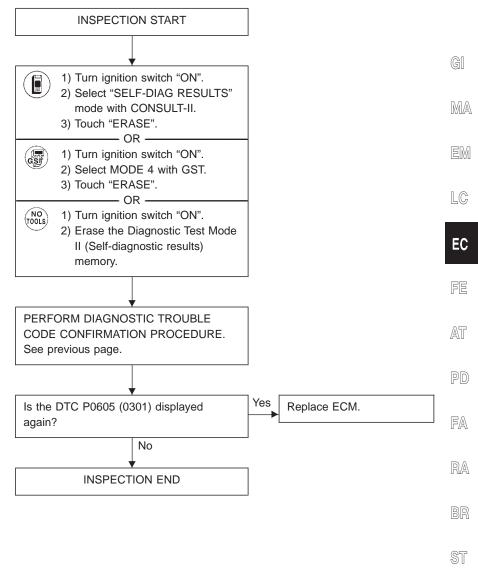
HA

IDX

Engine Control Module (ECM) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


- 1) Turn ignition switch "ON".
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Start engine and run it for at least 2 seconds at idle speed.

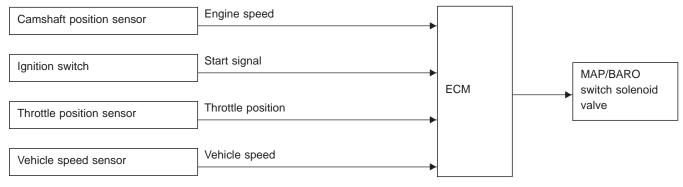
Follow the procedure "With CONSULT-II" above.

Engine Control Module (ECM) (Cont'd) DIAGNOSTIC PROCEDURE

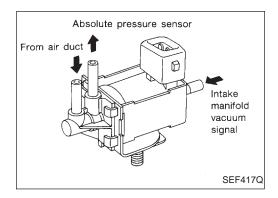
IDX

RS

BT


HA

EL


Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve

SYSTEM DESCRIPTION

This system allows the absolute pressure sensor to monitor either ambient barometric pressure or intake manifold pressure. The MAP/BARO switch solenoid valve switches between two passages by ON-OFF pulse signals from the ECM. (One passage is from the intake air duct, the other is from the intake manifold.) Either ambient barometric pressure or intake manifold pressure is applied to the absolute pressure sensor.

Solenoid	Conditions	
	 For 5 seconds after turning ignition switch "ON" 	
	OR	
	 For 5 seconds after starting engine 	
	OR	
	• More than 5 minutes after the solenoid valve	
ON	shuts OFF.	
	and	
	• Throttle valve is shut or almost fully shut for	
	more than 5 seconds	
	and	
	 Vehicle speed is less than 100 km/h (62 	
	MPH).	

COMPONENT DESCRIPTION

The MAP/BARO switch solenoid valve switches its air flow passage according to the voltage signal sent from the ECM. When voltage is supplied from the ECM, the MAP/BARO switch solenoid turns "ON". Then, the absolute pressure sensor can monitor the ambient barometric pressure. When voltage is not supplied from the ECM, the MAP/BARO switch solenoid valve turns "OFF". Then, the sensor monitors intake manifold pressure.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	For 5 seconds after turning ignition switch "ON"For 5 seconds after starting engine	BARO
	More than 5 seconds after starting engine	МАР

രി

TROUBLE DIAGNOSIS FOR DTC P1105

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	gi MA
		Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running	Approximately 0V	EM LC	
41	w	MAP/BARO switch sole- noid valve	For 5 seconds after starting engine. Ignition switch "ON" More than 5 seconds after turning ignition switch "ON" Engine is running More than 5 seconds after starting engine	BATTERY VOLTAGE (11 - 14V)	EC

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	PD
P1105 1302	 A) MAP/BARO switch solenoid valve receives the voltage supplied though ECM does not supply the voltage to the valve. 	 Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.) MAP/BARO switch solenoid valve 	FA
	B) There is little difference between MAP/BARO switch solenoid valve input voltage at ambient barometric pressure and voltage at intake mani- fold pressure.	 Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.) Hoses 	RA
		 (Hoses are clogged, bent, kinked, disconnected, not connected properly.) Absolute pressure sensor MAP/BARO switch solenoid valve 	BR
			ST

AT

RS

BT

HA

EL

DATA MONITOR MONITORING NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX 'C

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

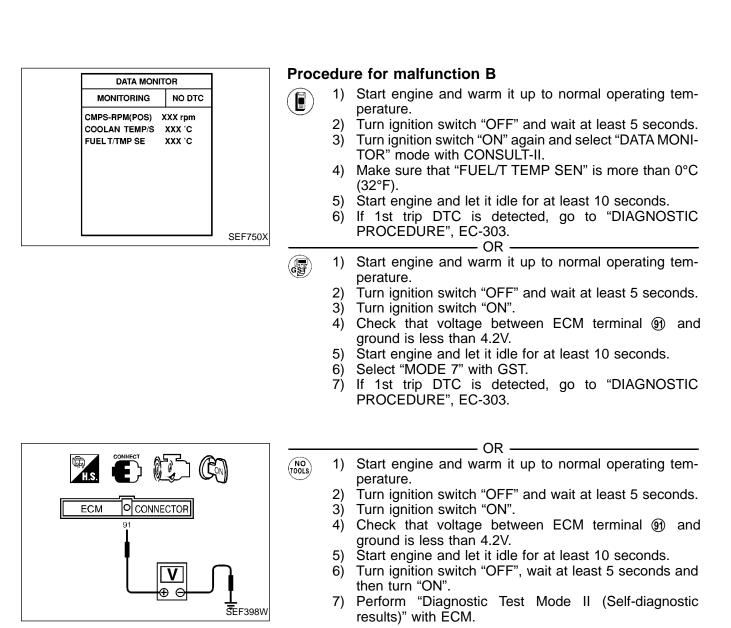
Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

EC-357

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

Procedure for malfunction A


TESTING CONDITION:

(GST)

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Turn ignition switch "ON" and select "DATA MONITOR"
 - mode with CONSULT-II.
 - 2) Start engine and let it idle.
 - 3) Wait at least 10 seconds.
 - If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-362.

Follow the procedure "With CONSULT-II" above.

EC-358

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

8) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-303.

MA

GI

EM

LC

EC

FE

AT

PD

FA

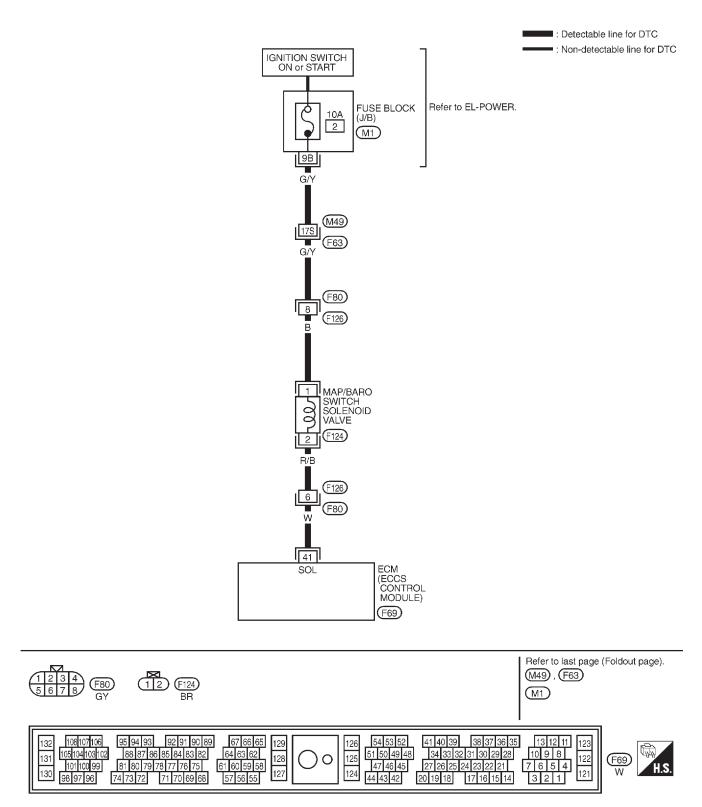
RA

BR

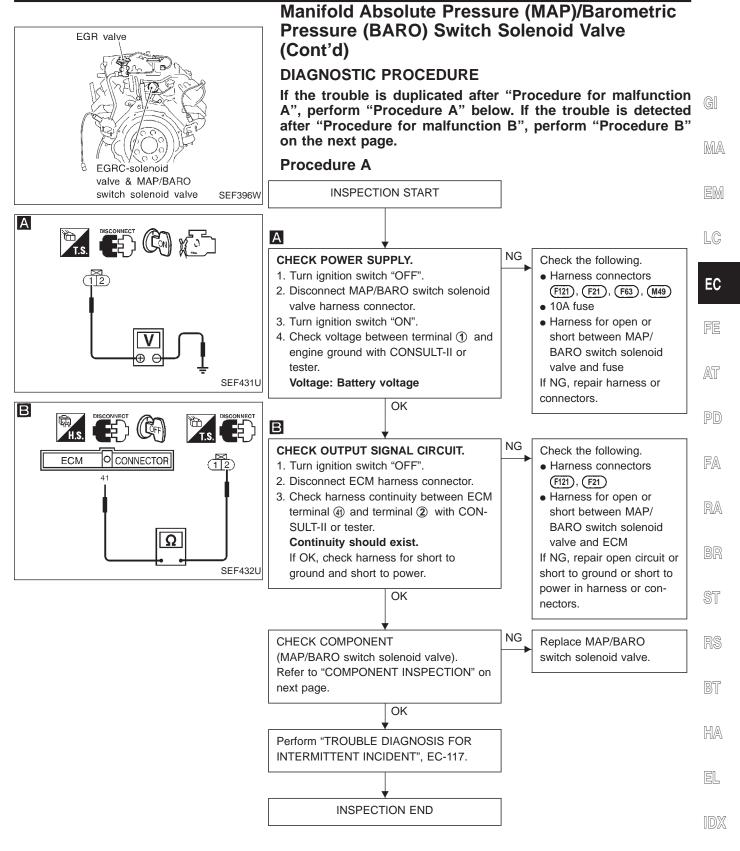
ST

RS

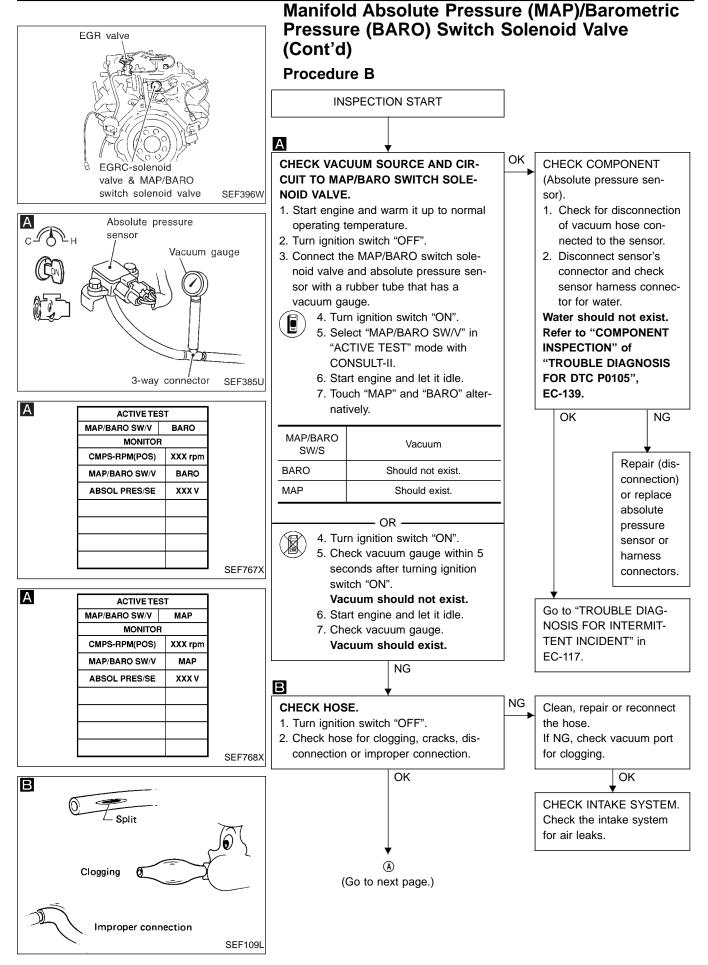
BT

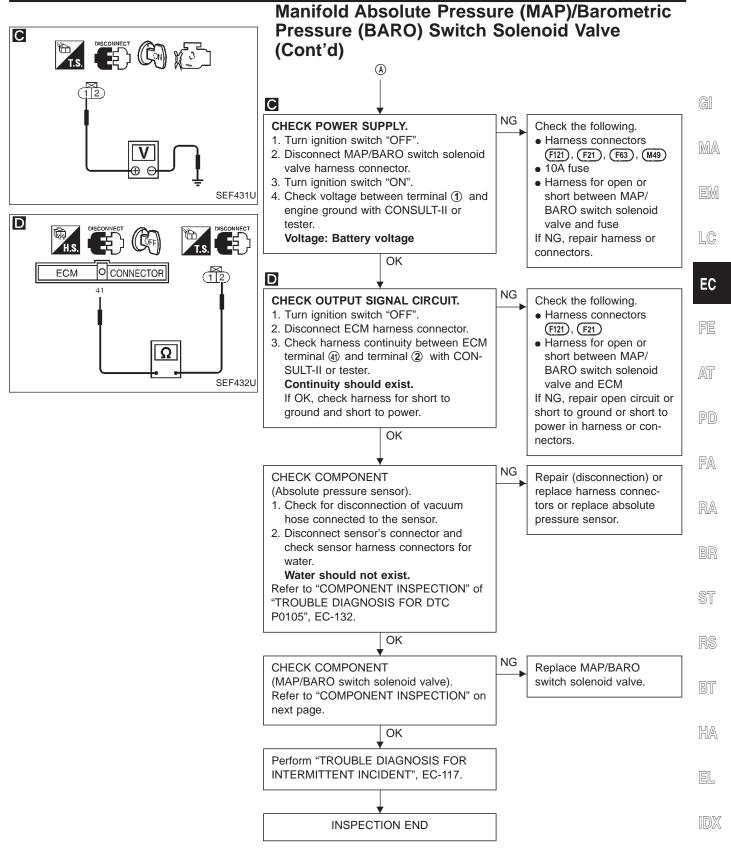

HA

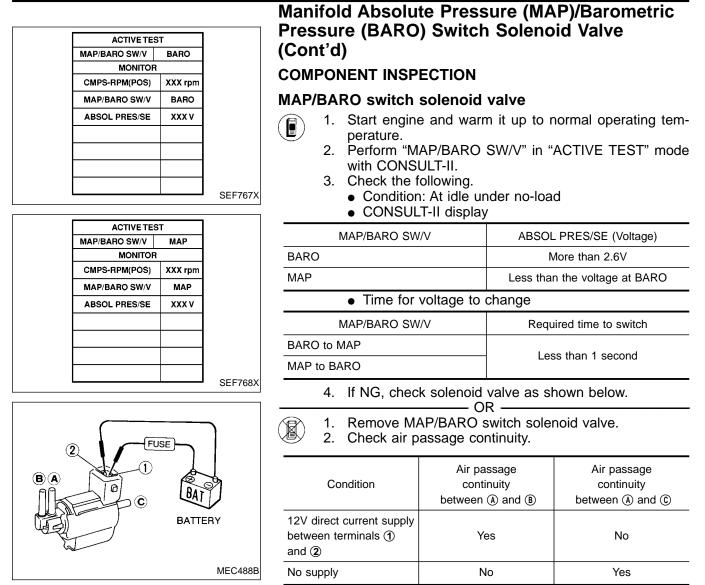
EL


IDX

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)


EC-SW/V-01



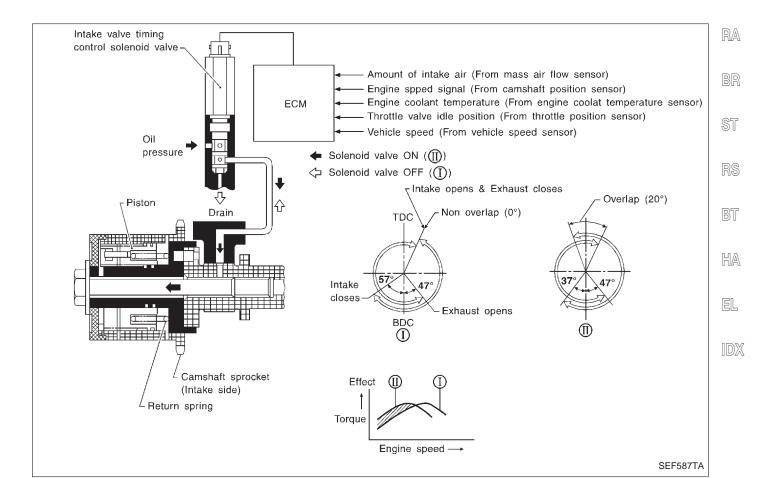


- 3. Check the time required for the solenoid valve to switch. It should be less than 1 second.
- 4. If NG, replace solenoid valve.
- 5. If OK, check "Absolute pressure sensor". Refer to "COMPONENT INSPECTION", EC-139.

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank)

SYSTEM DESCRIPTION

Camshaft position sensor	Engine speed	-		GI
Mass air flow sensor	Amount of intake air	_		MA
Engine coolant temperature sensor	Engine coolant temperature	ECM	 Intake valve tim- ing control solenoid	EM
Throttle position sensor	Throttle position	_	valve	LC
Vehicle speed sensor	Vehicle speed	-		EC


The intake valve timing control system is utilized to control intake valve opening and closing timing. Engine coolant temperature signals, engine speed, amount of intake air, vehicle speed and throttle position are used to determine intake valve timing.

The intake camshaft sprocket position is regulated by oil pressure controlled by the intake valve timing control. When ECM sends ON signal to intake valve timing control solenoid valve, oil pressure is transmitted to camshaft sprocket. Then, intake side camshaft is advanced.

FA

FE

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

OPERATION

Engine operating condition	Intake valve timing control solenoid valve	Intake valve opening and closing time	Valve overlap	Engine valve timing
 Engine coolant temperature is between 15°C (59°F) to 110°C (230°F) and engine speed is between 1,100 rpm and 4,600 rpm. During high load condition Vehicle speed is more than 4 km/h (2 MPH). 	ON	Advance	Increased	1
Those other than above	OFF	Normal	Normal	0

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
INT/V SOL-B2	Engine speed is more than 2,000 rpm. Ouickly depressed accelerator pedal	OFF \rightarrow ON (Using "INT/V TIM-B1 (-B2)" in "DATA MONITOR", the difference of degree between "OFF" and "ON" is approximately 20 deg.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and 128 (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
24 (RH)	BR/Y	Intake valve timing control	Engine is running. Intake valve timing control solenoid is operat- ing.	Approximately 0V
25 (LH)	BR	solenoid valves	Engine is running. Intake valve timing control solenoid is not operating.	Battery voltage
70 (RH)	R/L	Intake valve timing control	Engine is running.	Approximately 0V
71 (LH)	L/W	position sensors	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V (V) 4 2 0 20 ms SEF552T

LC

EC

FA

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P1110 0805 (Left bank) P1135 1301 (Right bank)	Comparing the intake valve timing position when the intake valve timing solenoid is ON with that when the solenoid is OFF, the difference does not exceed a certain limit.	 Harness or connectors (The left bank intake valve timing control position sensor circuit is open.) Intake valve timing control position sensor Accumulation of debris to the signal pick-up portion of the camshaft 	GI MA

MONITORING NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX 'C VHCL SPEED SE XXX km/h INT/V SOL-B1 OFF INT/V TIM-B1 XXX deg	CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX 'C VHCL SPEED SE XXX km/h INT/V SOL-B1 OFF
COOLAN TEMP/S XXX C VHCL SPEED SE XXX km/h INT/V SOL-B1 OFF	COOLAN TEMP/S XXX C VHCL SPEED SE XXX km/h INT/V SOL-B1 OFF

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE CAUTION:

Always drive at safe speed.

NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

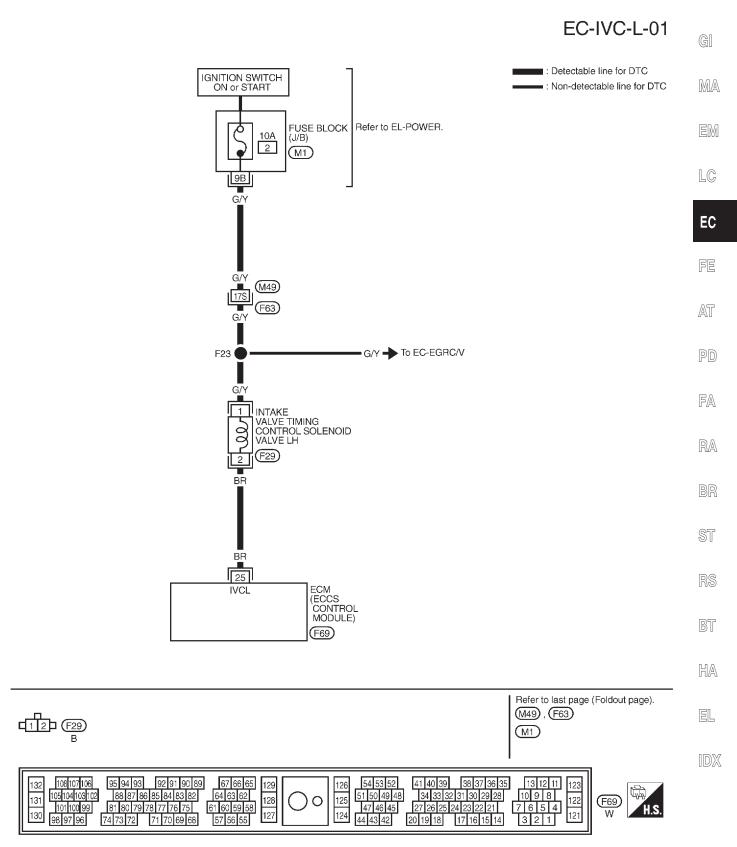
- Warm up engine to normal operating temperature [more AT than 82°C (180°F)].
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" PD mode with CONSULT-II.
- 4) Restart engine and wait at least 30 seconds.
- 5) Turn TCS switch "OFF".
- 6) Shift A/T selector lever to "2nd" position.
- 7) Gradually raise engine speed and keep it between 1,100 rpm and 1,500 rpm for at least 20 seconds. (Test is completed when "INT/V SOL B1 in "DATA MONI-TOR" with CONSULT-II remains "OFF". If indication is "ON", repeat 7.
- 8) Quickly raise engine speed to more than 2,500 rpm and keep it there for at least 6 seconds. (Test is completed when "INT/V SOL B1 in "DATA MONITOR" with CON-SULT-II remains "ON". If indication is "OFF", repeat 8.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC RS PROCEDURE", EC-371.

		OR	
	1)	Warm up engine to normal operating temperature.	BT
GSI	2)	Turn ignition switch "OFF" and wait at least 5 seconds.	
	3)	Restart engine and wait at least 30 second.	
	4)	Turn TCS switch "OFF".	HA
	5)	Shift A/T selector lever to "2nd" positions.	
	6)	Gradually raise engine speed and keep it between	EL
		1,000 rpm and 1,500 rpm for at least 12 seconds.	۶Ľ
	7)	Quickly raise engine speed to more than 2,500 rpm and	
		keep it there for at least 6 seconds.	1DX
	8)	Select "MODE 7" with GST.	
	9)	If 1st trip DTC is detected, go to "DIAGNOSTIC	
		PROCEDURE", EC-371.	
		OR	

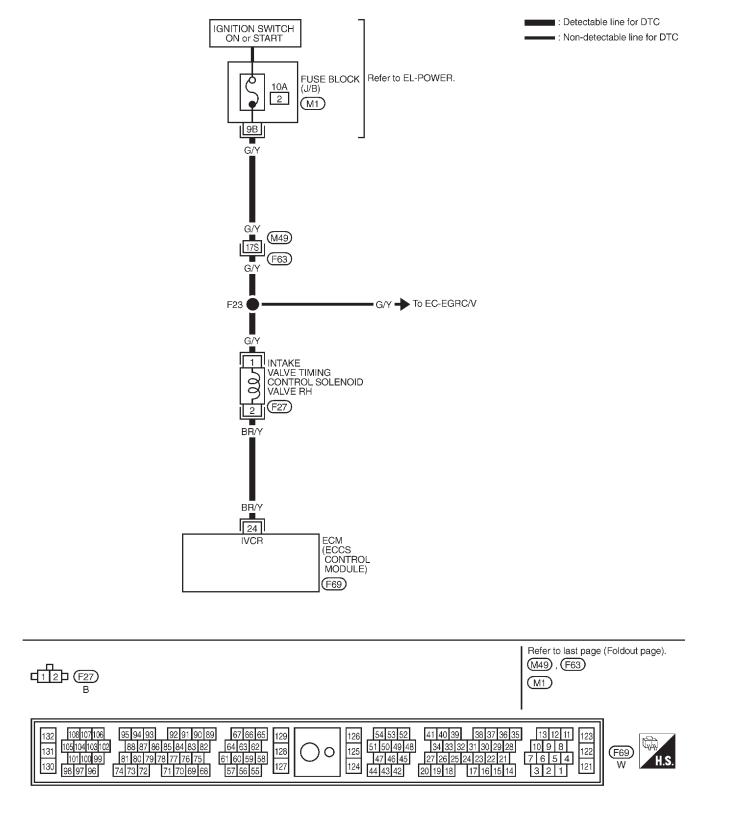
- 1) Warm up engine to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 3) Restart engine and wait at least 30 seconds.
 - 4) Turn TCS switch "OFF".
 - 5) Shift A/T selector lever to "D" position.

EC-367

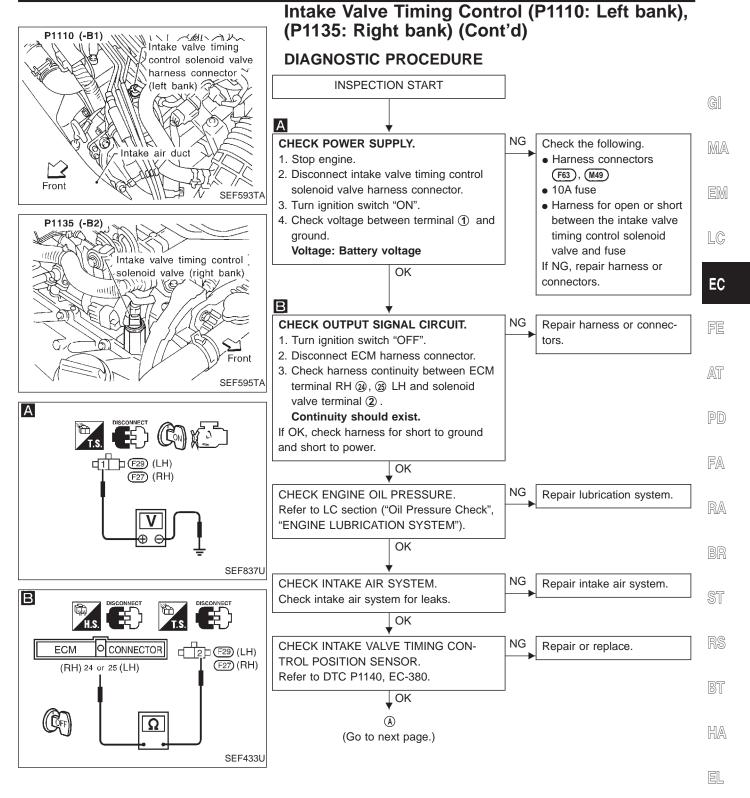
TOOLS


Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

- 6) Gradually raise engine speed and keep it between 1,000 rpm and 1,500 rpm for at least 12 seconds.
- 7) Quickly raise engine speed to more than 2,500 rpm and keep it there for at least 6 seconds.
- 8) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 9) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 10) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-371.

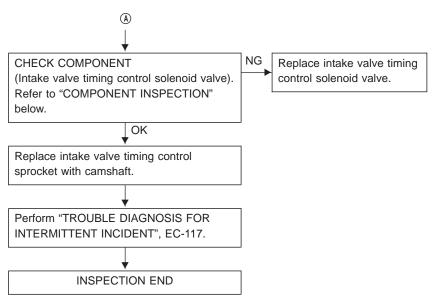

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

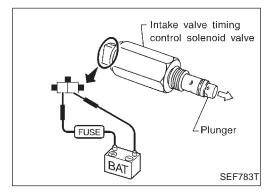
LEFT BANK



Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

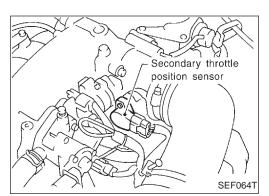
RIGHT BANK


EC-IVC-R-01



[D))/

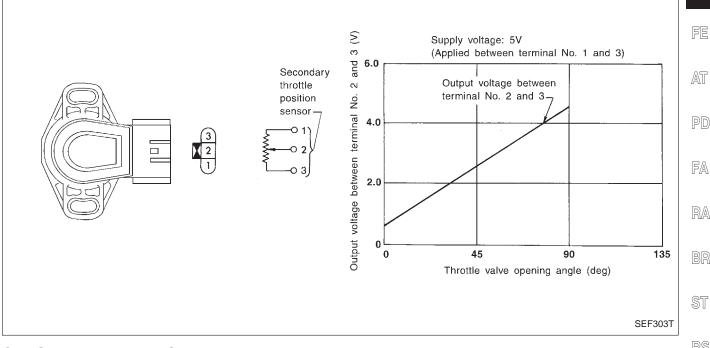
Intake Valve Timing Control (P1110: Left bank) (P1135: Right bank) (Cont'd)


COMPONENT INSPECTION

Intake valve timing control solenoid valve

- 1. Check oil passage visually for any metal debris.
- 2. Supply intake valve timing control solenoid valve terminals with battery voltage.
- Make sure that inside plunger protrudes. If NG, replace intake valve timing control solenoid valve.

MA



Secondary Throttle Position Sensor (STPS)

COMPONENT DESCRIPTION

The secondary throttle position sensor responds to the movement of the throttle motor which is controlled by the TAC module. This sensor is a kind of potentiometer which transforms the secondary throttle position into output voltage, and emits the voltage signal to the TAC module. In addition, the sensor detects the opening and closing speed and position of the secondary throttle valve and feeds the voltage signal to the TAC module.

Another case is when the secondary throttle valve opening becomes smaller than the ordinary throttle valve opening due to TCS operation. In this case, the signal from the secondary throttle valve is used for engine control. This replaces the signal from the ordinary throttle position sensor. The signal of the secondary throttle valve first enters the TAC module, from where it is sent to the ECM.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	BT
THRTL/P SEN2	Ignition switch: ON	Throttle valve: fully closed	0.60 - 1.15V	
INRIL/P SENZ	(Engine stopped)	Throttle valve: fully open	4.3 - 4.7V	HA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and 1280 (ECM ground).

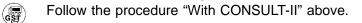
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	IDX
66		Secondary throttle position	Ignition switch "ON" Approximately 3 seconds after ignition switch "ON" and thereafter	Approximately 3.4V	
00		sensor	Ignition switch "ON" Disconnect throttle motor harness connector. Fully close secondary throttle valve by hand.	Approximately 0.4V	

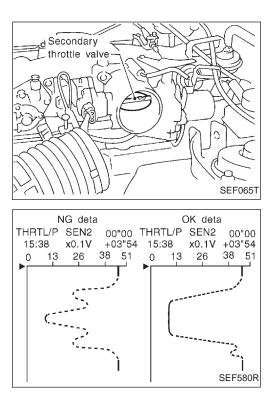
Secondary Throttle Position Sensor (STPS) (Cont'd)

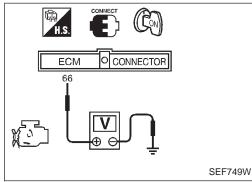
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1120 0406	 A) An excessively low or high voltage from the sensor is sent to ECM. 	Harness or connectors (The sensor circuit is open or shorted.)
	B) Rationally incorrect voltage is sent to ECM com- pared with the signals from mass air flow sensor, camshaft position sensor and IACV-AAC valve.	Harness or connectorsSecondary throttle position sensorTCM

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE


Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B". NOTE:


If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


DATA MO	NITOR
MONITORING	NO DT
CMPS-RPM(POS)	XXX rpm
COOLAN TEMP/S	XXX _. C

Procedure for malfunction A

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and wait at least 5 seconds.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-377.

Secondary Throttle Position Sensor (STPS) (Cont'd)

Procedure for malfunction B.

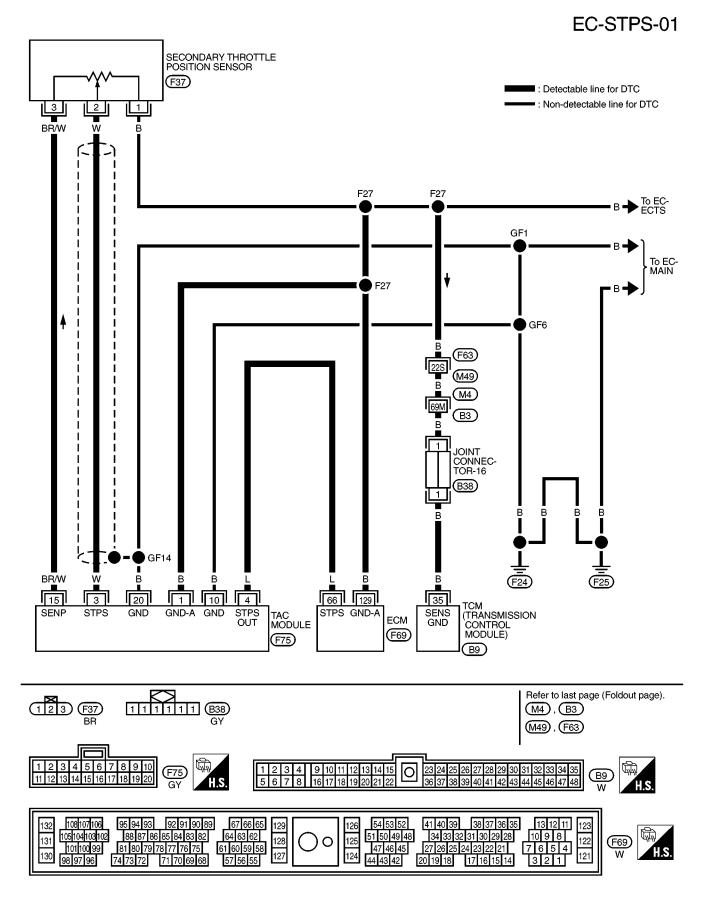
OVERALL FUNCTION CHECK

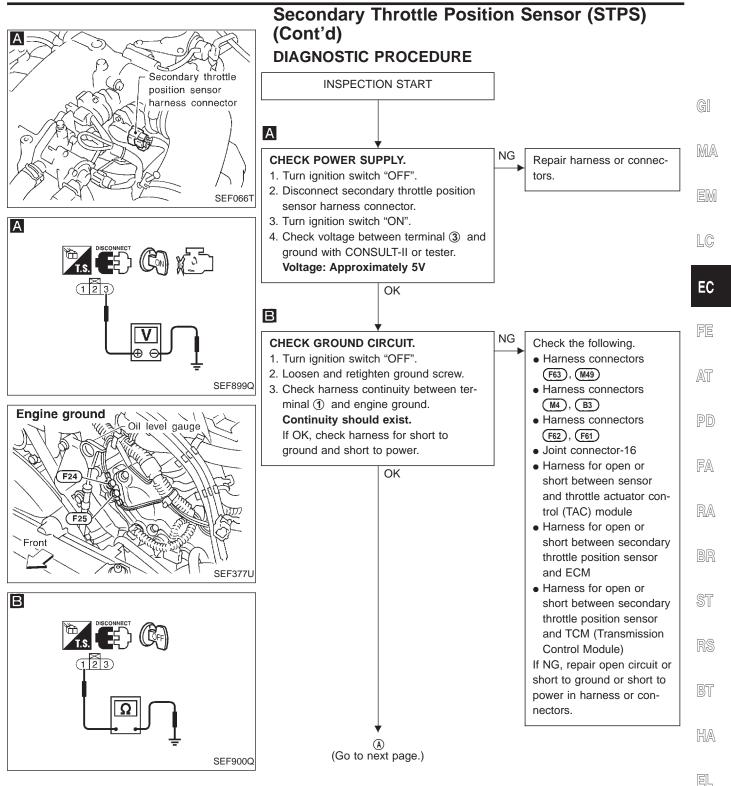
Use this procedure to check the overall function of the secondary (throttle position sensor circuit. During this check, a DTC might not be confirmed.

WARNING:

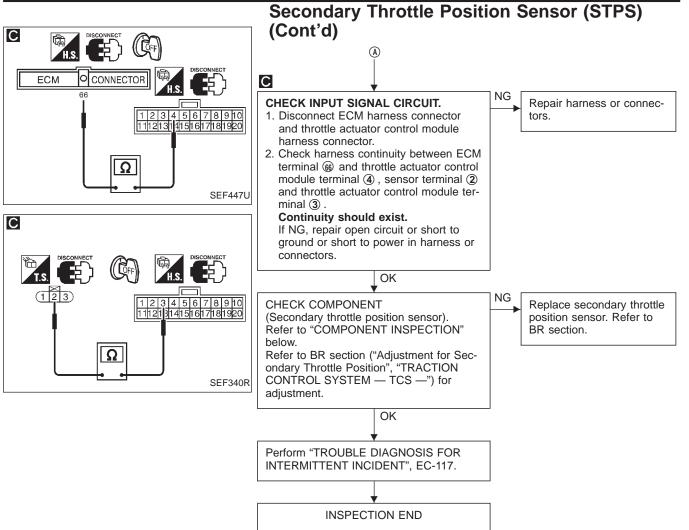
Before touching the secondary throttle valve, be sure to disconnect the throttle motor harness connector. Failure to do so may cause injury due to accidental actuation of the valve.

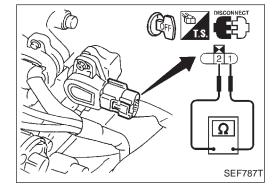
- 1) Start engine and warm it up to normal operating temperature.
 - 2) Turn ignition switch "OFF" and disconnect throttle motor harness connector.
 - 3) Remove intake air duct.
 - 4) Turn ignition switch "ON".
 - 5) Select "MANUAL TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II.
 - 6) Select "THRTL/P SEN2" in "DATA MONITOR" mode with CONSULT-II.
 - 7) Press RECORD on CONSULT-II SCREEN at the same time close the secondary throttle valve by hand.
 - 8) Print out the recorded data and check the following:
 - The voltage when secondary throttle valve is closed by hand is approximately 0.60 1.15V.
 - The voltage decrease is linear in response to secondary throttle valve closing.
 - The voltage when secondary throttle valve is fully opened is approximately 4.3 4.7V.
 - 9) If NG, go to "DIAGNOSTIC PROCEDURE", EC-377.
 - 1) Start engine and warm it up to normal operating temperature.
 - 2) Turn ignition switch "OFF" and disconnect throttle motor harness connector.
 - 3) Remove intake air duct.
 - 4) Turn ignition switch "ON".
 - 5) Check the voltage between ECM terminal 66 and ground, then check the following:
 - The voltage when secondary throttle valve is closed by hand is approximately 0.4 0.86V.
 - The voltage decrease is linear in response to secondary throttle valve closing.
 - The voltage when secondary throttle valve is fully opened is approximately 3.3 3.5V.
 - 6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-377.
- EL


HA


MA

EC


IDX


Secondary Throttle Position Sensor (STPS) (Cont'd)

IDX

COMPONENT INSPECTION

Secondary throttle position sensor WARNING:

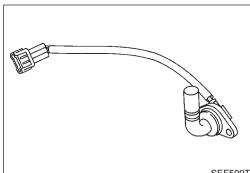
Before touching the secondary throttle valve, be sure to disconnect the throttle motor harness connector. Failure to do so may cause injury due to accidental actuation of the valve.

- 1. Turn ignition switch "OFF".
- 2. Disconnect secondary throttle position sensor harness connector.
- 3. Disconnect throttle motor harness connector.
- 4. Remove intake air duct.
- 5. Make sure that resistance between terminals (2) and (1) changes when opening secondary throttle valve manually.

Throttle valve conditions	Resistance at 25°C (77°F)
Completely closed	Approximately 0.6 kΩ
Partially open	0.6 - 4.0 kΩ
Completely open	Approximately 5 k Ω

GI

Tandem Throttle Position Sensor


This diagnosis is for tandem throttles (main throttle and secondary throttle). The quantity of intake air is determined by these two throttle valves. A rationality check is then carried out by ECM after monitoring the signals of these two throttle position sensors.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	MA
P1125 1502	 Rationally incorrect voltage is entered to ECM cor pared with the signals from mass air flow sensor, 	 Harness or connectors (The sensor circuits are open or shorted.) 	EM
	camshaft position sensor and IACV-AAC valve.	 Throttle position sensor or secondary throttle position sensor Throttle actuator control (TAC) module 	LC
	DIAGNOSTIC PROCEDURE	TROUBLE CODE CONFIRMATION	EC
		C TROUBLE CODE CONFIRMATION PROCE- on previously conducted, always turn ignition	FE
		nd wait at least 5 seconds before conducting	AT
	perat	engine and warm it up to normal operating tem- ure. engine and wait at least 5 seconds.	PD
	3) Turn 4) Selec	ignition switch "ON". t "DATA MONITOR" mode with CONSULT-II. engine and run it for 15 seconds.	FA
	(G) 1) Start	engine and warm it up to normal operating tem-	RA
	3) Start	engine and wait at least 5 seconds. engine and run it for 15 seconds. t "MODE 7" with GST. ————————————————————————————————————	BR
	(NO) (TOOLS) 1) Start perati	engine and warm it up to normal operating tem-	ST
	3) Start 4) Turn	engine and wait at least 5 seconds. engine and run it for 15 seconds. gnition switch "OFF", wait at least 5 seconds and rurn "ON".	RS
	5) Perfo	rm ON. rm "Diagnostic Test Mode II (Self-diagnostic s)" with ECM.	BT
	DIAGNOSTIC	PROCEDURE	HA
		LE DIAGNOSIS FOR DTC P0120, EC-150 OR LE DIAGNOSIS FOR DTC P1120, EC-373.	EL

IDX

Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank)

COMPONENT DESCRIPTION

The intake valve timing control position sensor is located rearmost of the left-bank cylinder head. This sensor detects a signal (intake valve position) generated by the cutout portion of camshaft and sends it to the ECM. This sensor is not used to control the engine system. It is used only for the on board diagnosis of intake valve timing control.

SEF599T

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
INT/V TIM-B1 INT/V TIM-B2	Engine is running.	Advanced angle (degree) of the intake camshaft should be displayed.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
70 (RH)	R/L		Engine is running.	Approximately 0V
		Intake valve timing con-		SEF551T
71 (LH)	L/W	trol position sensors	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1140 1303 (Left bank) P1145 1304 (Right bank)	The proper pulse signal from the intake valve timing control position sensors is not sent to ECM while the engine is running at the specified engine speed.	 Harness or connectors (The left bank intake valve timing control position sensor circuit is open.) Intake valve timing control position sensor Accumulation of debris to the signal pick-up portion of the camshaft

DATA MON	NITOR		
MONITORING	N	O DTC	
CMPS-RPM(POS)	xxx	rpm	
MAS AIR/FL SE	XX	хv	
B/FUEL SCHDL	ххх	msec	
INT/V SOL-B1	0	FF	
INT/V TIM-B1	ХХХ	deg	
			SEF7

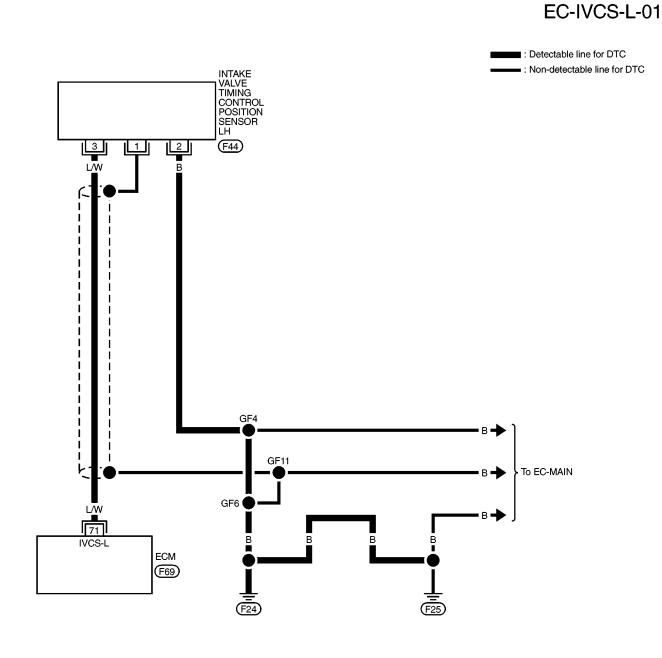
Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE NOTE: GI If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting MA the next test. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II. Start engine and keep the engine speed at 2,000 rpm 2) and wait at least 15 seconds. If 1st trip DTC is detected, go to "DIAGNOSTIC LC PROCEDURE", EC-384. - OR 1) Start engine and keep the engine speed at 2,000 rpm (GST EC and wait at least 15 seconds. 2) Select "MODE 7" with GST. 3) If 1st trip DTC is detected, go to "DIAGNOSTIC FE PROCEDURE", EC-384. - OR -1) Start engine and keep the engine speed at 2,000 rpm (NO AT and wait at least 15 seconds. Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON". PD

- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC FA PROCEDURE", EC-384.

RA

ST

BT

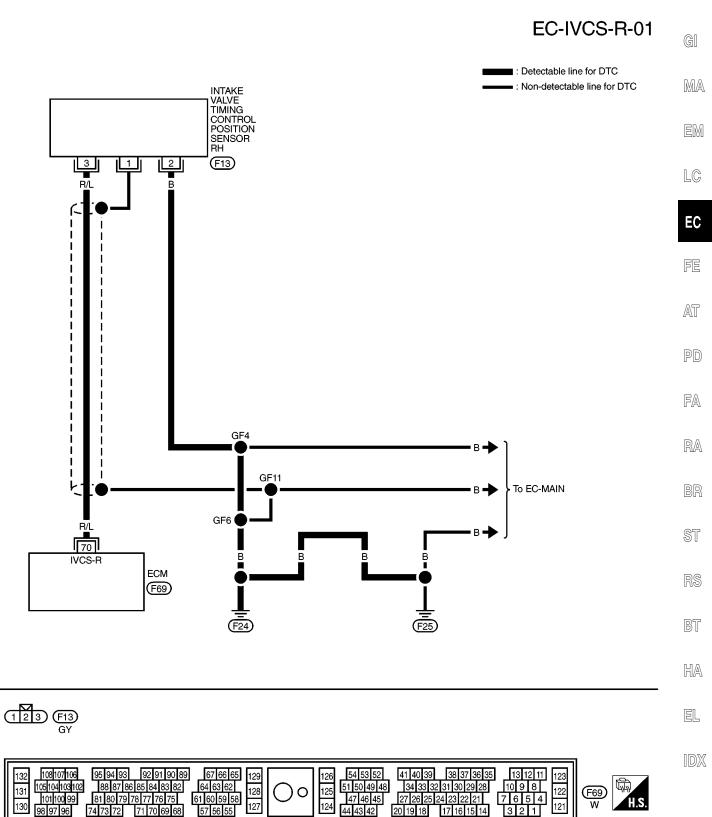

HA

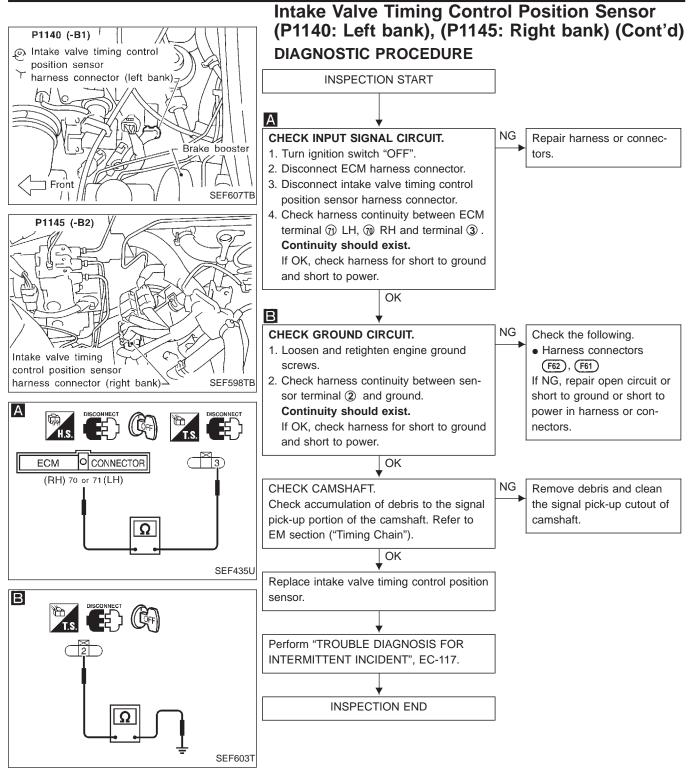
EL

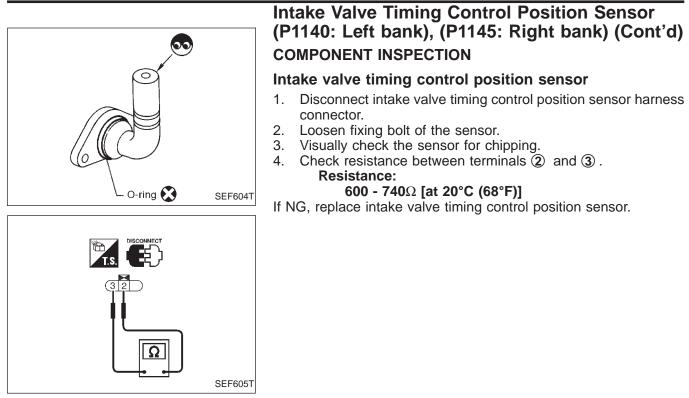
IDX

Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd)

LEFT BANK


123 F44 GY


$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F69 W H.S.
---	---------------



Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd)

RIGHT BANK

EC

FE

LC

GI

MA

EM

FA

RA

AT

BR

n®

BT

HA

EL

IDX

Closed Loop Control (P1148: Left bank), (P1168: Right bank)

\star The closed loop control has the one trip detection logic.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1148 0307 (Left bank)	• The closed loop control function for left bank does not operate even when vehicle is driving in the specified condition.	 The front heated oxygen sensor circuit is open or shorted. Front heated oxygen sensor
P1168 0308 (Right bank)		 Front heated oxygen sensor heater

DATA MONITOR	
MONITORING	NO DTC
CMPS-RPM(POS)	XXX rpm
MAS AIR/FL SE	XXX V
FR O2 SEN-B1	XXX V
FR O2 SEN-B2	XXX V
FR O2 MNTR-B1	RICH
FR O2 MNTR-B2	RICH

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

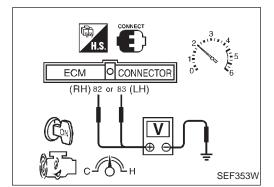
TESTING CONDITION:

- Never raise engine speed above 3,200 rpm during the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE". If the engine speed limit is exceeded, retry the procedure from step 2).
- Before performing the following procedure, confirm that battery voltage is more than 11V.
 - 1) Start engine and warm it up to normal operating temperature.
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Hold engine speed at 2,000 rpm and check the following.
 - "FR O2 SENSOR" voltage should go above 0.70V at least once.
 - OR _______
 "FR O2 SENSOR" voltage should go below 0.21V at least once.
 If the check result is NG, perform "DIAGNOSIS PROCEDURE", EC-191.
 - If the check result is OK, perform the following step.
 - 4) Let engine idle at least 3 minutes.

Closed Loop Control (P1148: Left bank), (P1168: Right bank) (Cont'd)

5) Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL: 2.5 ms or more CMPS RPM (POS): 2,000 - 3,000 rpm Selector lever: Suitable position VHCL SPEED SE: More than 70 km/h (43 MPH) During this test P0130 may be displayed on the CONSULT-II screen.


6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-186.

EM

LC

MA

GI

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the closed loop control. During this check, a 1st trip DTC might not be confirmed.

- OR

- Start engine and warm it up to normal operating temperature.
 - 2) Set voltmeter probes between ECM terminals (2) RH, (3) LH (sensor) and ground.
 - 3) Check the following with engine speed held at 2,000 rpm constant under no-load.
 - The voltage should go above 0.70V at least once.
 OR
 - The voltage should go below 0.21V at least once.
 - 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-186. PD

DIAGNOSTIC PROCEDURE

Refer to TROUBLE DIAGNOSIS FOR DTC P0133 (-B1), P0153 (-B2), EC-186.

RA

BR

\$T

RS

BT

HA

EL

Traction Control System (TCS) Signal Circuit

The ECM uses this circuit line for checking the TCS operation. Voltage signals are sent and received between the ECM and the throttle actuator control module.

★ Freeze frame data is not stored in the ECM for the TCS signal circuit. The MIL will not light for TCS signal circuit malfunction.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1210 0106	• An excessively low or high voltage from the throttle actuator control (TAC) module is sent to	 Harness or connectors (The circuit is open or shorted.)
0100	ECM.	Throttle actuator control (TAC) module

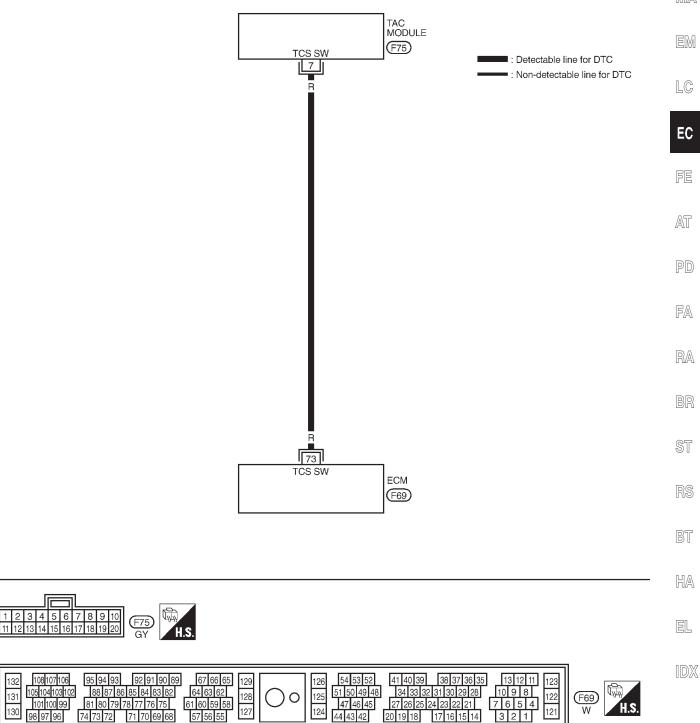
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Turn ignition switch "ON" and TCS switch "ON", then start engine.
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Run engine for at least 3 seconds.

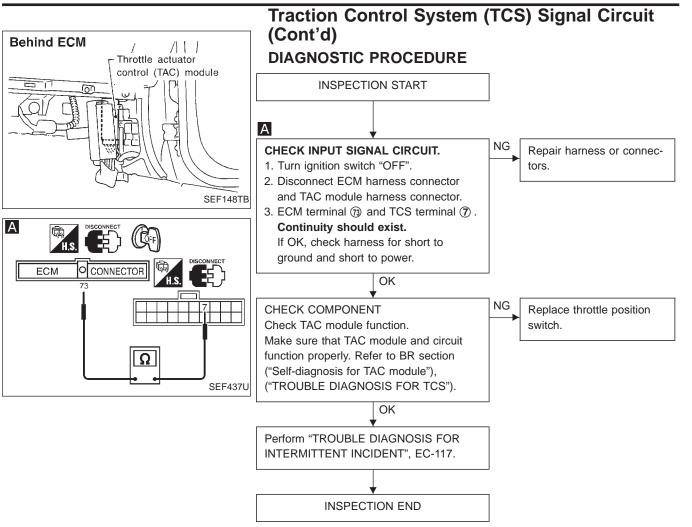
- 1) Turn ignition switch "ON" and TCS switch "ON", then start engine.
- 2) Run engine for at least 3 seconds at idle speed.
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-390.


GI

TROUBLE DIAGNOSIS FOR DTC P1210

Traction Control System (TCS) Signal Circuit (Cont'd)

EC-TCS/SW-01



32

131

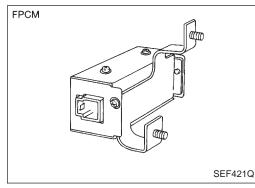
130

Engine coolant temperature

SYSTEM DESCRIPTION

Camshaft position sensor

Mass air flow sensor


sensor

Ignition switch

This system controls the fuel pump operation. The amount of fuel flow delivered from the fuel pump altered between two flow rates by the FPCM opertion. The FPCM determines the voltage supplied the fuel pump (and therefore fuel flow) according the following conditions.

Engine speed

					<u>م</u> ا
Amount of intake air					GI
Engine coolant temperature	ECM		► FPCM		MA
					EM
Start signal					LC
el pump operation. The		-	Amount		EC
d from the fuel pump is es by the FPCM opera- the voltage supplied to	Conc	ditions	of fuel flow	Supplied voltage	FE
e fuel flow) according to	 Engine cran Within 16 se starting eng 100°C (212' 	econds after ine [above	high	Battery voltage (11 - 14V)	AT
	 Engine is ru heavy load speed cond 	and high		(11 - 14V)	PD
	Except the abo	ove	low	Approximately 7V	FA

COMPONENT DESCRIPTION

RA The FPCM adjusts the voltage supplied to the fuel pump to control the amount of fuel flow. When the FPCM increases the voltage supplied to the fuel pump, the fuel flow is increased. When the FPCM decreases the voltage, the fuel flow is decreased.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	HA
FPCM	 Within 16 seconds after starting the engine, when engine coolant temperature is more than 100°C (212°F) 	$HIGH \to LOW$	R
FPCM D/R VOLT	 Within 16 seconds after starting the engine, when engine coolant temperature is more than 100°C (212°F) 	Approx. 5.0V \rightarrow Approx. 0.4V	EL

Fuel Pump Control Module (FPCM) (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (18) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			Engine is cranking.	Approximately 0.4V
15	R/L	Fuel pump control module	Engine is running.	Approximately 10V
93	G/R	Fuel pump control module	When cranking the engine	Approximately 0V
93	G/K	(FPCM) check	After starting the engine	Approximately 5V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1220 1305	• An improper voltage signal from the FPCM, which is supplied to a point between the fuel pump and the dropping resistor, is detected by ECM.	 Harness or connectors (FPCM circuit is open or shorted.) Dropping resistor FPCM

DATA MONITOR	
MONITORING	NO DT
CMPS-RPM(POS)	XXX rpm
COOLAN TEMP/S	XXX °C
VHCL SPEED SE	XXX km/ł
FPCM DR VOLT	XXX V
FPCM	LOW

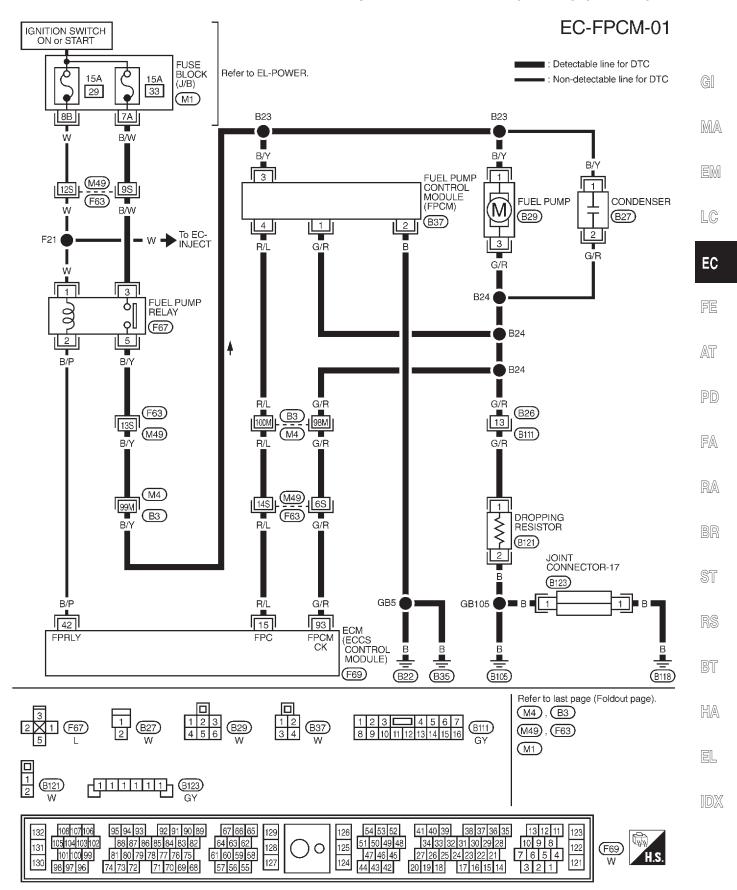
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


- 1) Lift up vehicle.
- 2) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 3)
- Start engine (TCS switch "OFF"). Shift A/T selector lever to "D" position. 4)
- 5) Hold vehicle speed at 70 to 100 km/h (43 to 62 MPH) for 12 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-394. - OR

Follow the procedure "With CONSULT-II" above.

Fuel Pump Control Module (FPCM) (Cont'd)

TROUBLE DIAGNOSIS FOR DTC P1220 Fuel Pump Control Module (FPCM) (Cont'd) DIAGNOSTIC PROCEDURE Left side trunk room Fuel pumpcontrol module INSPECTION START 1 Α NG CHECK POWER SUPPLY. Check the following. Fuel pump (à 1. Turn ignition switch "OFF". • Harness connectors control module 0 2. Disconnect FPCM harness connector. (F63), (M49) harness connector 3. Turn ignition switch "ON". • Harness for open or 4. Check voltage between terminal (3) and short between FPCM SEF067T ground with CONSULT-II or tester. and fuel pump relay Voltage: Battery voltage If NG, repair harness or А connectors. OK в NG CHECK GROUND CIRCUIT-I. Check the following. 1. Turn ignition switch "OFF". • Harness connector (B123) 2. Disconnect dropping resistor harness If NG, repair open circuit or short to ground or short to connector. 3. Check harness continuity between power in harness or con-FPCM and dropping resistor terminal 2 nectors. and engine ground. SEF005R Continuity should exist. If OK, check harness for short to В ground and short to power. OK С 2 NG CHECK GROUND CIRCUIT-II. Repair harness or connec-Ω 1. Disconnect fuel pump harness connectors. tor. Ω 2. Check harness continuity between fuel pump terminal (3) and dropping resistor terminal 1, resistor terminal 1 and SEF152T FPCM terminal (1). Continuity should exist. In the trunk room C 3. Check harness continuity between FPCM terminal ① and engine ground, terminal (3) and engine ground. Fuel pump Continuity should not exist.

terminal (1) and terminal (2). Continuity should exist. If OK, check harness for short to ground and short to power. OK (Go to next page.)

Harness connectors Harness for open or short between ECM and FPCM If NG, repair open circuit or short to ground or short to

Check the following.

• Harness connectors (F63), (M49)

NG

short to ground or short to power in harness or connectors.

EC-394

If OK, check harness for short to

CHECK OUTPUT SIGNAL CIRCUIT.

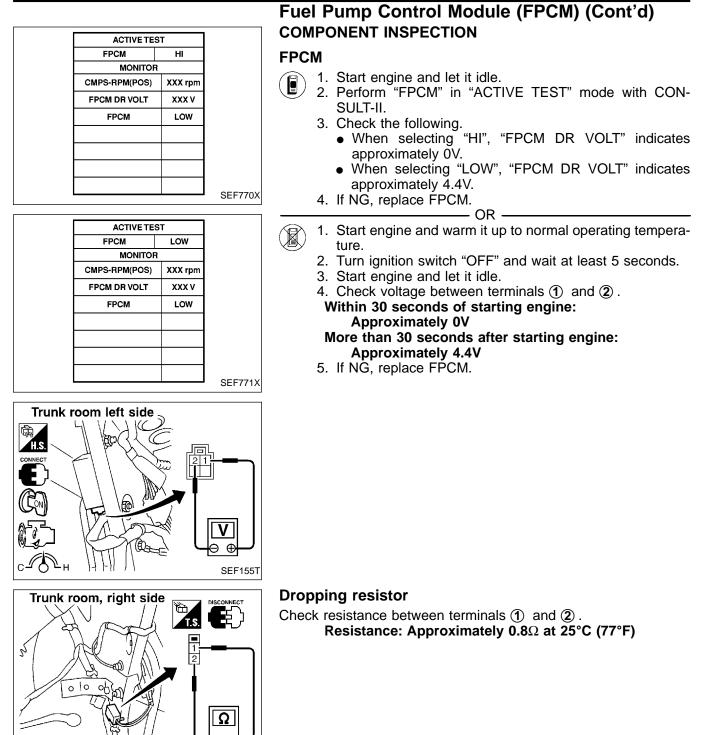
1. Disconnect ECM harness connector.

2. Check harness continuity between ECM

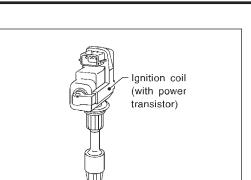
OK

ground and short to power.

harness


connector

D


SEF068T

Fuel Pump Control Module (FPCM) (Cont'd) С A T.S. Ε NG GI CHECK INPUT SIGNAL CIRCUIT. Check the following. □ 1 1 3 1. Check harness continuity between ECM Harness connectors (F63), (M49) terminal (1) and terminal (1) (or fuel Harness connectors MA pump terminal (3). (M4), (B3) Continuity should exist. Harness for open or 2. Check harness continuity between ECM Ω short between ECM and EM terminal (9) and engine ground. FPCM (or fuel pump) If NG, repair open circuit or Continuity should not exist. short to ground or short to If OK, check harness for short to power in harness or con-LC ground and short to power. nectors. OK EC NG CHECK COMPONENT Replace dropping resistor. (Dropping resistor). Refer to "COMPONENT INSPECTION" on FE ΰ next page. OK AT SEF153T NG Replace FPCM. CHECK COMPONENT D (FPCM). DISCONNEC[®] DISCONNEC PD Refer to "COMPONENT INSPECTION" on next page. 12 34 ECM O CONNECTOR OK FA Perform "TROUBLE DIAGNOSIS FOR RA INTERMITTENT INCIDENT", EC-117. Ω OFF BR INSPECTION END SEF426Q Ε H.S. Ξĵ O CONNECTOR ECM 93 BT 3 HA Ω EL IDX O CONNECTOR ECM Ω SEF438U

SEF156T

Ignition Signal

COMPONENT DESCRIPTION

Ignition coil & power transistor

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

EM

LC

EL

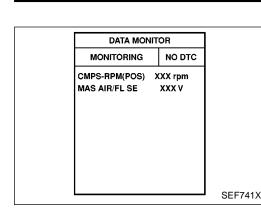
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

SEF304T

Specification data are reference values.

MONITOR ITEM CONDIT	DITION	SPECIFICATION		
	Engine: After warming upAir conditioner switch: "OFF"	Idle	15° BTDC	EC
IGN TIMING	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC	FE

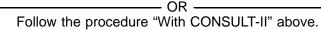
ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	PD
				Approximately 0.38V	FA
				(V)	
			Engine is running. (Warm-up condition)	4 2 0	RA
43 44	Y/R G/R	Ignition signal (No. 1) Ignition signal (No. 8)		50 ms	BR
46 47	L/R GY	Ignition signal (No. 7) Ignition signal (No. 3)		SEF538T	ST
50 51	PU/W GY/R	Ignition signal (No. 6)		Approximately 0.55V	01
53 54	W/R R/L	Ignition signal (No. 5) Ignition signal (No. 4) Ignition signal (No. 2)		(V) 4	RS
			Engine is running. (Warm-up condition)	2 0	BT
				50 ms	HA
				SEF539T	

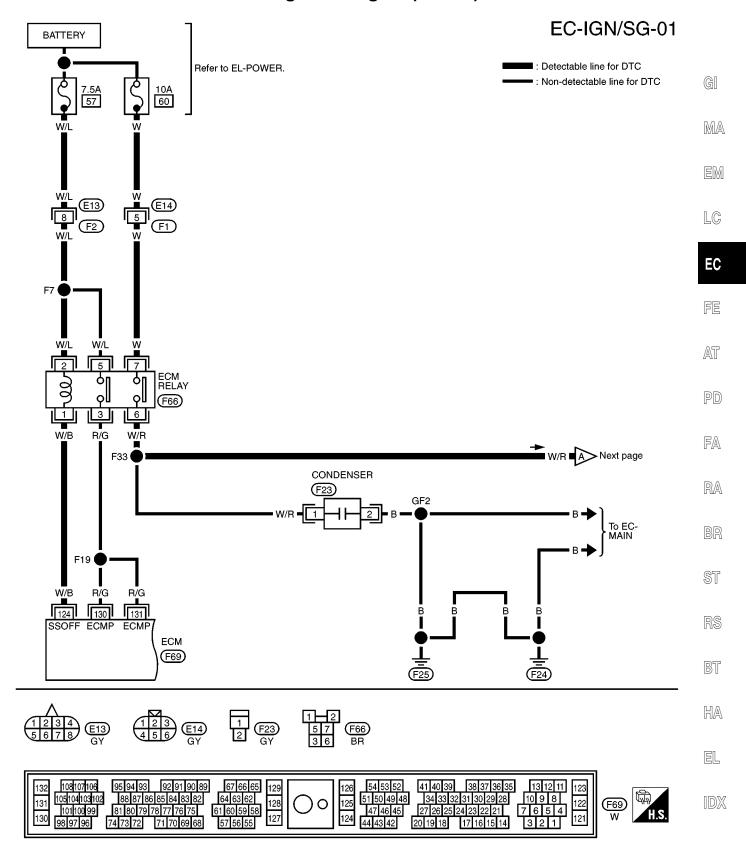
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	IDX
P1320	 The ignition signal in the primary circuit is not sent	 Harness or connectors	_
0201	during engine cranking or running.	(The ignition primary circuit is open or shorted.) Power transistor unit built into ignition coil Camshaft position sensor Camshaft position sensor circuit	

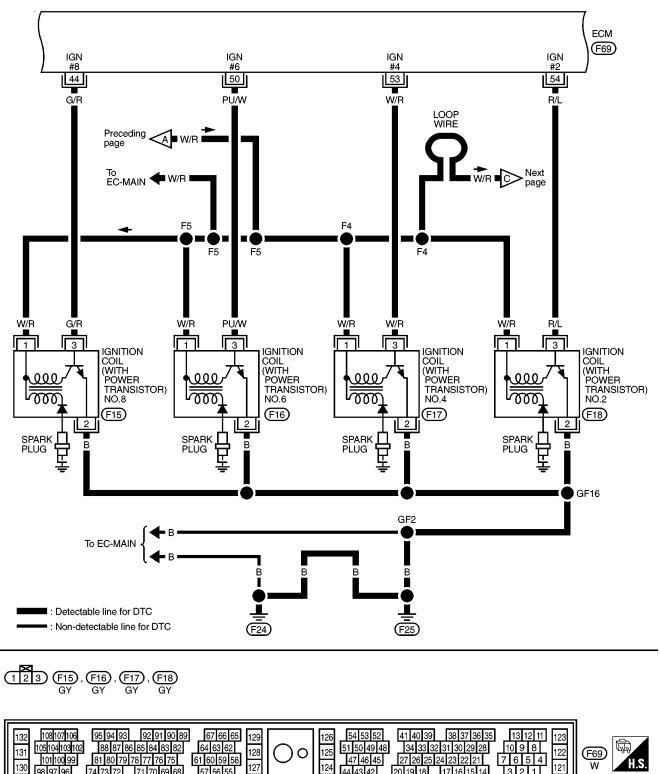


Ignition Signal (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:


(GST

- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- If both DTC P1320 (0201) and DTC P0340 (0101), P0335 (0802) or P1336 (0905) are displayed, perform TROUBLE DIAGNOSIS FOR DTC P0340, P0335 or P1336 first. (See EC-268, 273 or 405.)
 - 1) Turn ignition switch "ON".
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Start engine and wait at least 4 seconds. (If engine does not run, turn ignition switch to "START" for at least 5 seconds.)
 - 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-402.


Ignition Signal (Cont'd)

TROUBLE DIAGNOSIS FOR DTC P1320 Ignition Signal (Cont'd)

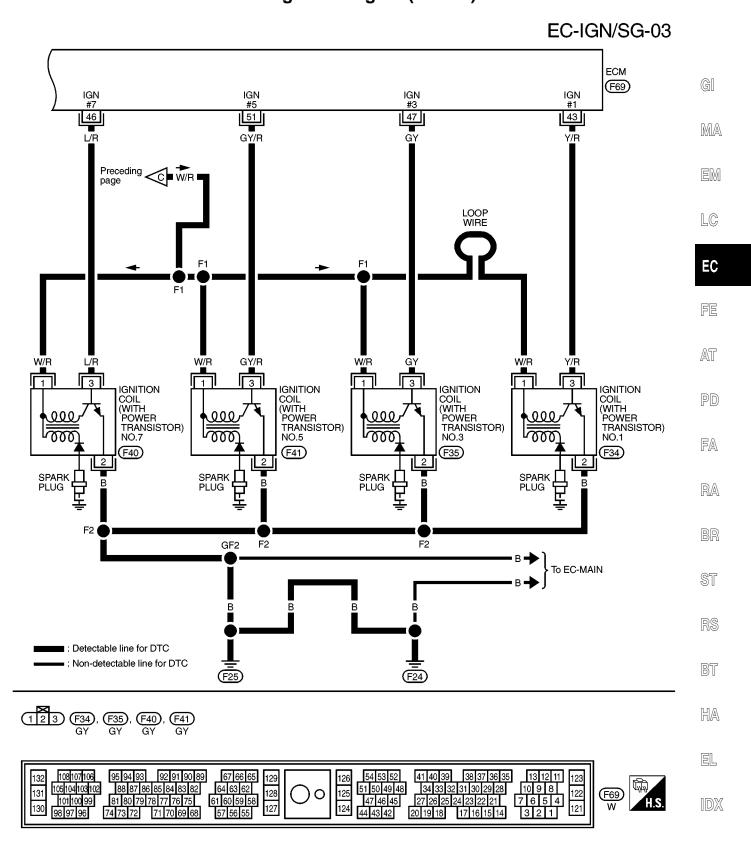
EC-IGN/SG-02

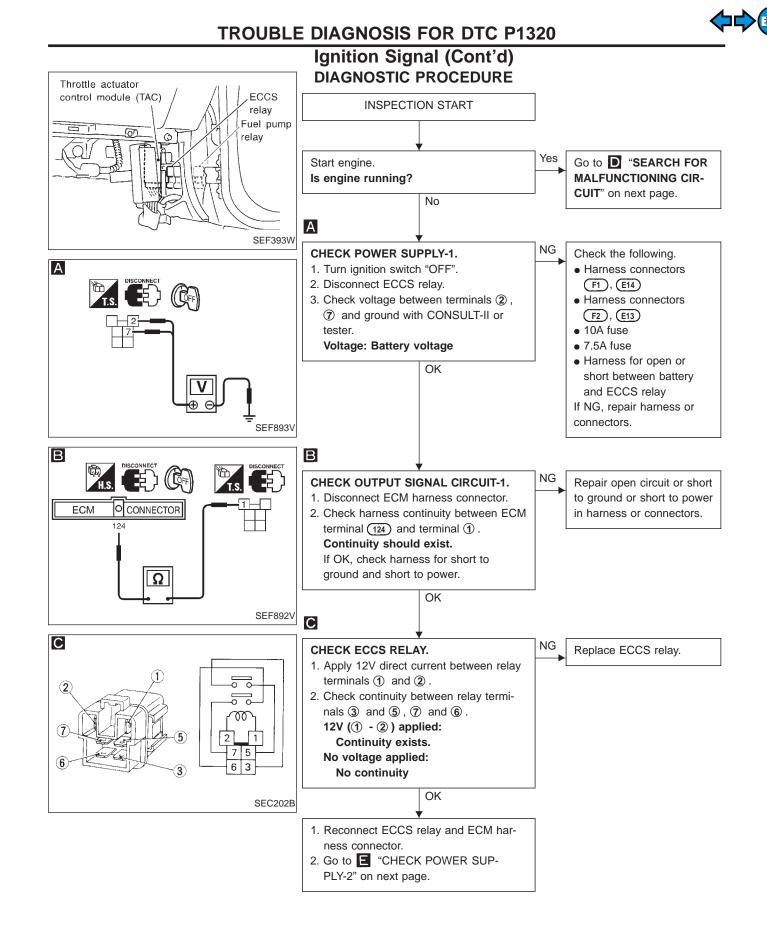
44 43 42

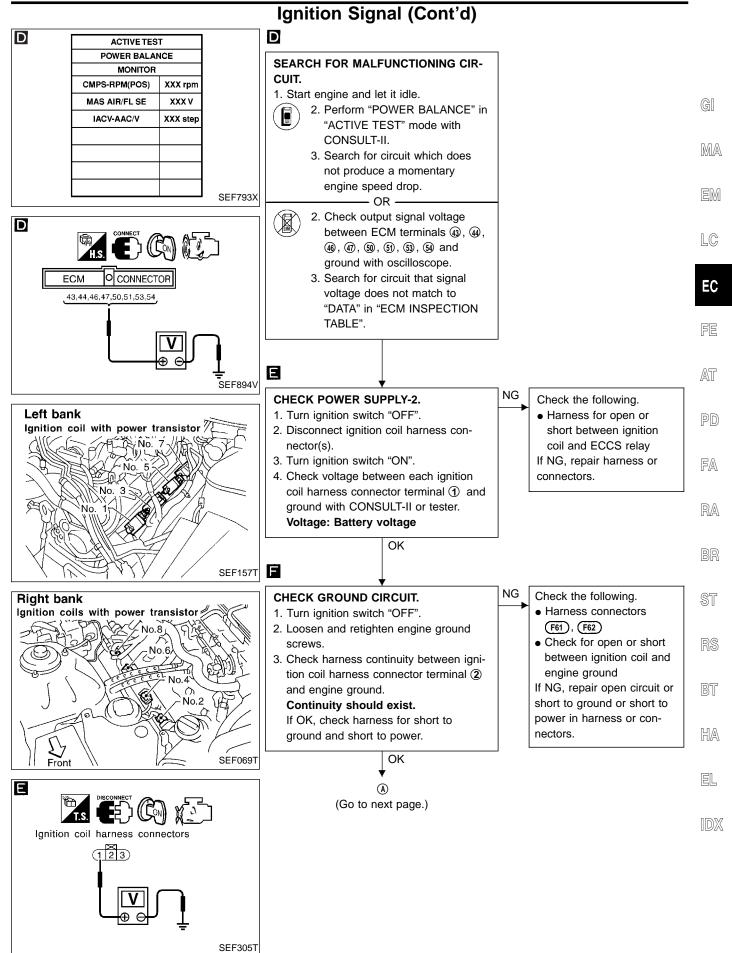
20 19 18

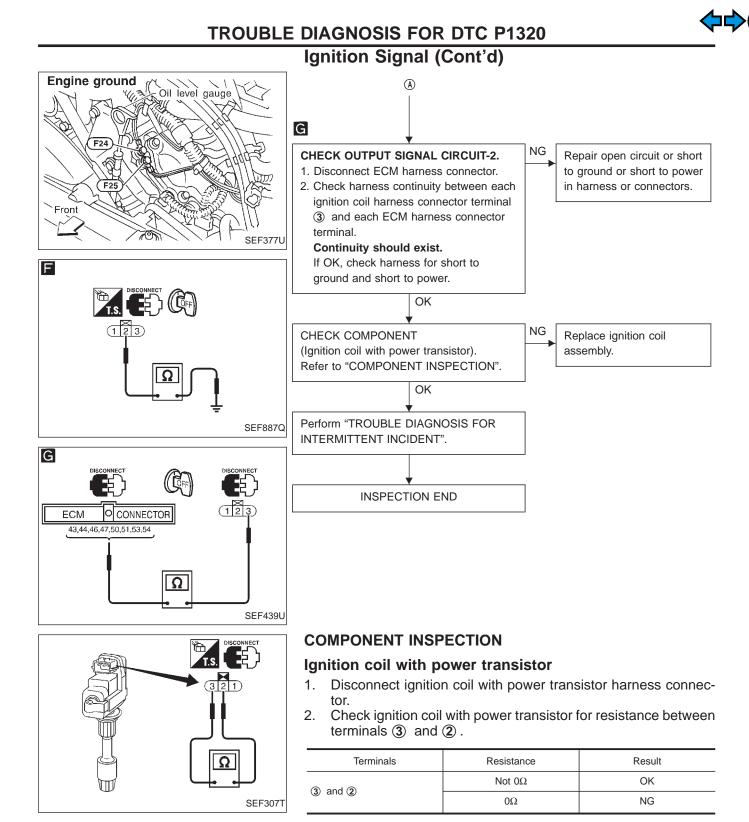
17 16 15 14

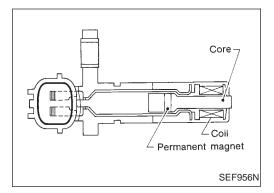
321


98 97 96


74 73 72 71 70 69 68


57 56 55


TROUBLE DIAGNOSIS FOR DTC P1320 Ignition Signal (Cont'd)



EC-403

If NG, replace ignition coil with power transistor assembly.

Crankshaft Position Sensor (CKPS) (OBD) (COG)

COMPONENT DESCRIPTION

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil. MA When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

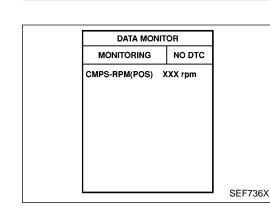
The changing gap causes the magnetic field near the sensor to $\operatorname{\underline{EM}}$ change.

Due to the changing magnetic field, the voltage from the sensor changes. $\hfill\square C$

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis of misfire.

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC voltage)	AT
				Approximately 1.7V	PD
			Engine is running. (Warm-up condition)	(V) 10	FA
			L Idle speed	0.4 ms	RA
					BR
57	B/R	Crankshaft position sen-		SEF545T	
		sor (OBD)		Approximately 0V	ST
			Engine is running. (Warm-up condition)	(V) 10 5 A A A A A A A A A A A A A A A A A A A	RS
				0.4 ms	BT
				SEF546T	HA

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	EL
P1336 0905	 Chipping of the signal plate (on drive plate) gear teeth (cogs) is detected by the ECM. 	 Harness or connectors Crankshaft position sensor (POS) Signal plate (drive plate) Dead (Weak) battery 	IDX

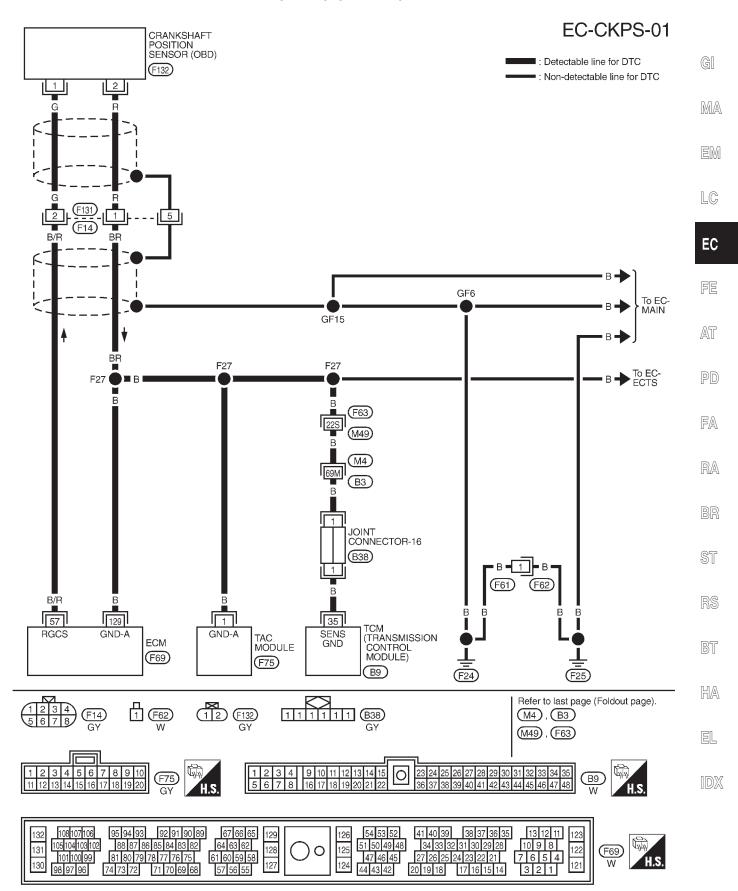
Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

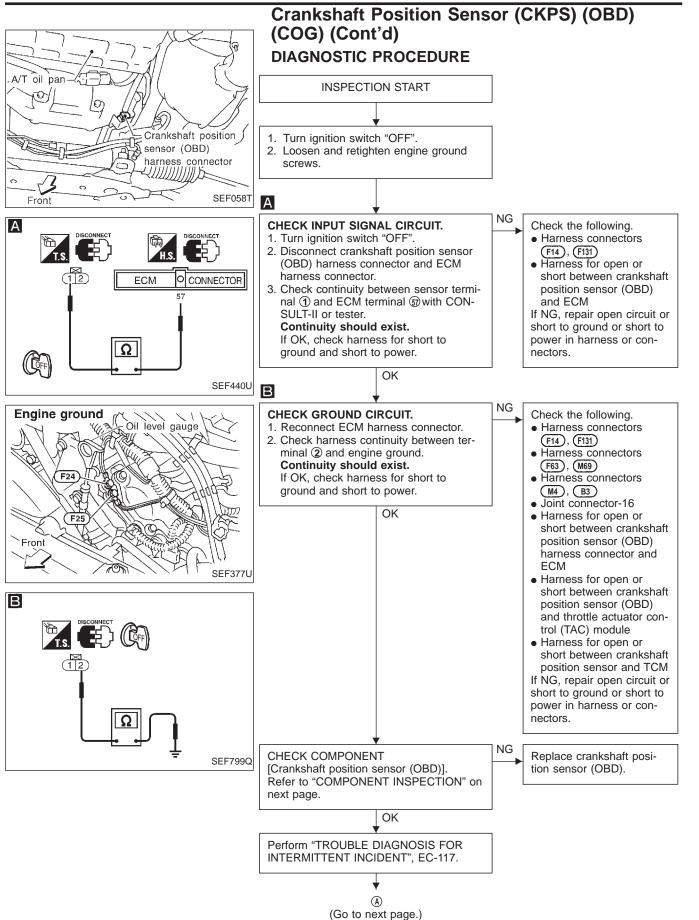
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

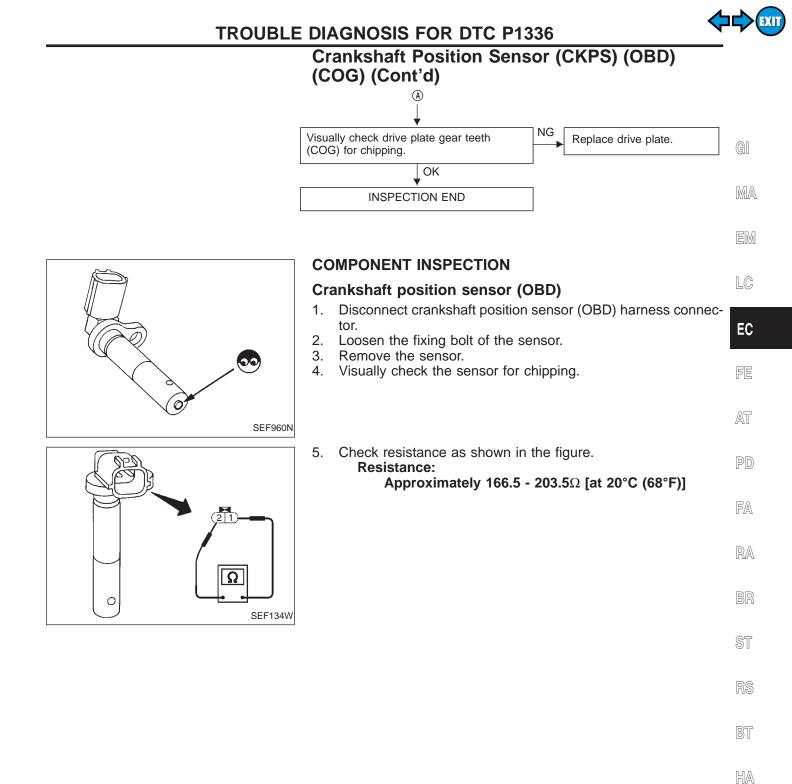
TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

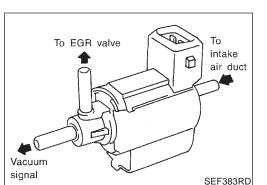
- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
 - 2) Start engine and run it for at least 3 minutes at idle speed.
 - If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-408.
 OR


GST

Follow the procedure "With CONSULT-II" above.


Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

EXIT



EC-408

EL

IDX

EGRC-solenoid Valve

COMPONENT DESCRIPTION

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. A plunger will then move to flow the vacuum signal (from the intake manifold collector to the EGR valve.)

The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve. When the ECM sends an OFF signal, the plunger is returned by the spring and cut the vacuum signal.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

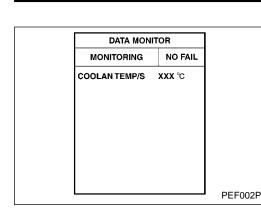
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MONITOR ITEM	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	OFF
EGRC SOL/V	 Air conductorier switch. OFF Shift lever: "D" No-load 	Revving engine up from idle to 3,000 rpm	ON

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
10 L/Y	L/Y	EGRC-solenoid valve	Engine is running. (Warm-up condition) Lift up drive wheels and rev engine up from idle to 3,000 rpm in "1st" position.	0 - 0.7V
			Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V)

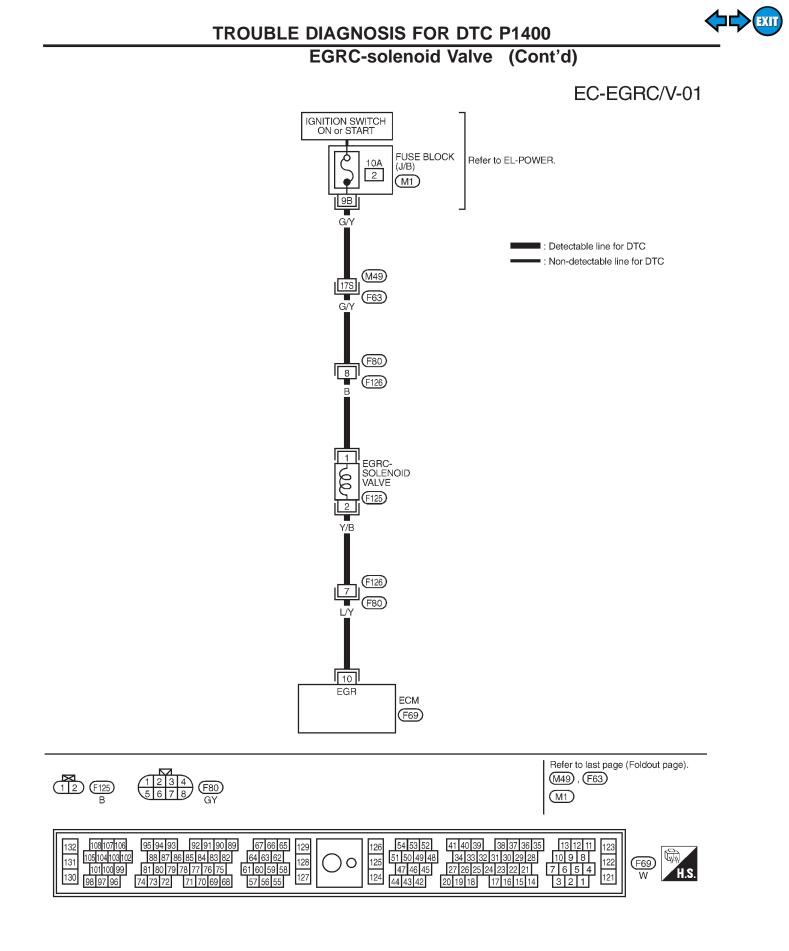

ON BOARD DIAGNOSIS LOGIC

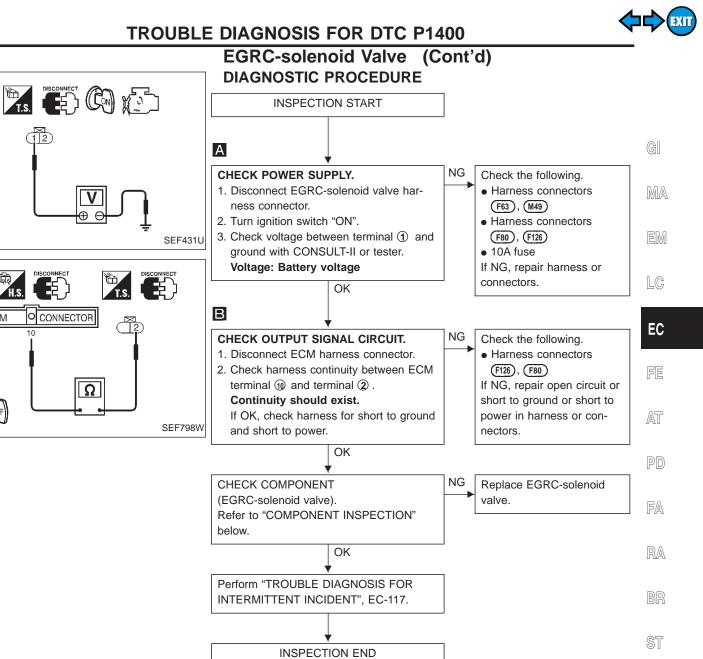
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1400 1005	 The improper voltage signal is sent to ECM through EGRC-solenoid valve. 	 Harness or connectors (The EGRC-solenoid valve circuit is open or shorted.) EGRC-solenoid valve

MA

TROUBLE DIAGNOSIS FOR DTC P1400

EGRC-solenoid Valve (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE


TESTING CONDITION:


If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-• CEDURE" has been previously conducted, always turn G ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II and wait at least 5 seconds. .
 - 3) If 1st trip DTC PROCEDURE

3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-413.	EM
Follow the procedure "With CONSULT-II" above.	LC
	EC
	FE
	AT
	PD
	FA
	RA
	BR
	ST
	RS
	BT
	HA
	EL
	IDX

BT

HA

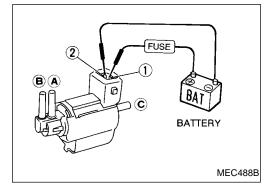
EL

А

В

ECM

EC-413

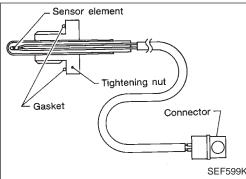

EGRC-solenoid valve Check air passage continuity.

EGRC-solenoid Valve (Cont'd)

Image: state stat

Perform "EGRC So mode.	OLENOID VALVE"	in "ACTIVE TEST"
Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (Å) and ©
ON	Yes	No
OFF	No	Yes

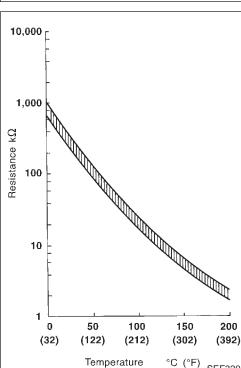
- OR -


Check solenoid valve, following the table as shown below:

Conditions	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace the solenoid valve.

EC-414


EGR Temperature Sensor

COMPONENT DESCRIPTION

The EGR temperature sensor detects temperature changes in the EGR passage way. When the EGR valve opens, hot exhaust gases GI flow, and the temperature in the passage way changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM MA as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not directly used to control the engine system. It is EM used only for the on board diagnosis.

	1		-		
10,000 _{[-}		EGR temperatu °C (°F)	re Voltage* (V)	Resistance (MΩ)	L(
- -		0 (32)	4.61	0.68 - 1.11	
_		50 (122)	2.53	0.092 - 0.12	Ε
1,000 k		100 (212)	0.87	0.017 - 0.024	
		(EGR temperature When EGR sys	eference values and measured e sensor) and ECM terminal (1 stem is operating:		F
Besistance kD		Voltage: 0 - 7	1.50		A
10 -					P
					F
1					R
(32) (122 Ter	2) (212) (302) (392) mperature °C (°F) SEF320U				B
ON BOARD D	DIAGNOSIS LOGIC				S
Diagnostic Trouble Code No.	Malfunction is detect	ed when	Check Ite (Possible C		R
P1401 0305	A) An excessively low voltage perature sensor is sent to	ECM, even when	Harness or connectors (The EGR temperature senso	r circuit is shorted.)	
	engine coolant temperatur		 EGR temperature sensor Malfunction of EGR function, I EGRC-solenoid valve 	EGRC-BPT valve or	B
	B) An excessively high voltag	ge from the EGR	 Harness or connectors 		H
	temperature sensor is sen when engine coolant temp	t to ECM, even perature is high.	(The EGR temperature senso)EGR temperature sensorMalfunction of EGR function, I	. ,	
			EGRC-solenoid valve		10

DATA MON	ITOR	
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
EGR TEMP SEN	XXX V	
INT/A TEMP SE	XXX °C	
		SEF753X

EGR Temperature Sensor (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Verify that engine coolant temperature is less than 40°C (104°F).

If the engine coolant temperature is above the range, cool the engine down.

- 4) Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-419.

SEF736X

Follow the procedure "With CONSULT-II" above.

Procedure for malfunction B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at temperature above -10°C (14°F).

- 1) Start engine and warm it up to normal operating temperature.
 - 2) Run engine at idle for at least 2 minutes.
 - Confirm that EGR valve is not lifting. If the check result is NG, go to "TROUBLE DIAG-NOSES FOR DTC P0400, P0402 and P1402". (See pages EC-279, 288 and 421.)
 - 4) Select "DATA MONITOR" mode with CONSULT-II.
 - 5) Read "EGR TEMP SEN" at about 1,500 rpm while holding the EGR valve in full open position by hand. **Voltage should decrease to less than 1.0V.**

If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-419.

If the check result is OK, go to following step.

- 6) Turn ignition switch "OFF" and wait at least 5 seconds.
- 7) Turn ignition switch "ON".
- Check the output voltage of "THRTL POS SEN" at closed throttle position and note it.
- 9) Start engine (TCS switch "OFF").
- 10) Maintain the following conditions for at least 5 consecutive seconds.

CMPS RPM (POS): 1,200 - 2,200 rpm VHCL SPEED SE: 10 km/h (6 MPH) or more B/FUEL SCHDL: 2.3 - 4.5 msec

- THRTL POS SEN: X (X + 0.52) V
 - X = Voltage value measured at
 - step 7)
- Selector lever: Suitable position
- 11) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-419.

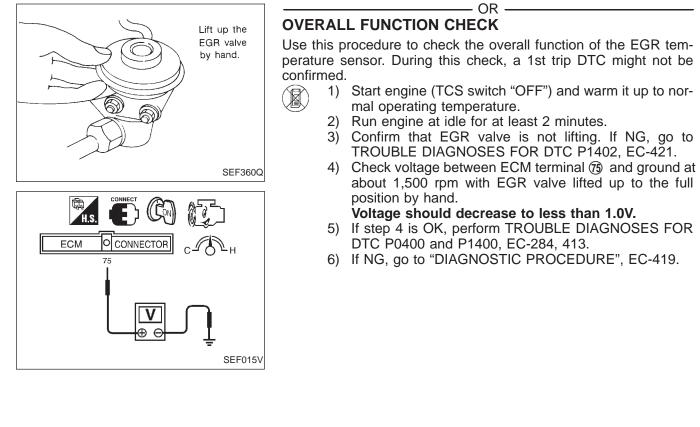
GI

MA

EM

LC

EC


FE

AT

PD

TROUBLE DIAGNOSIS FOR DTC P1401

EGR Temperature Sensor (Cont'd)

FA

RA

BR

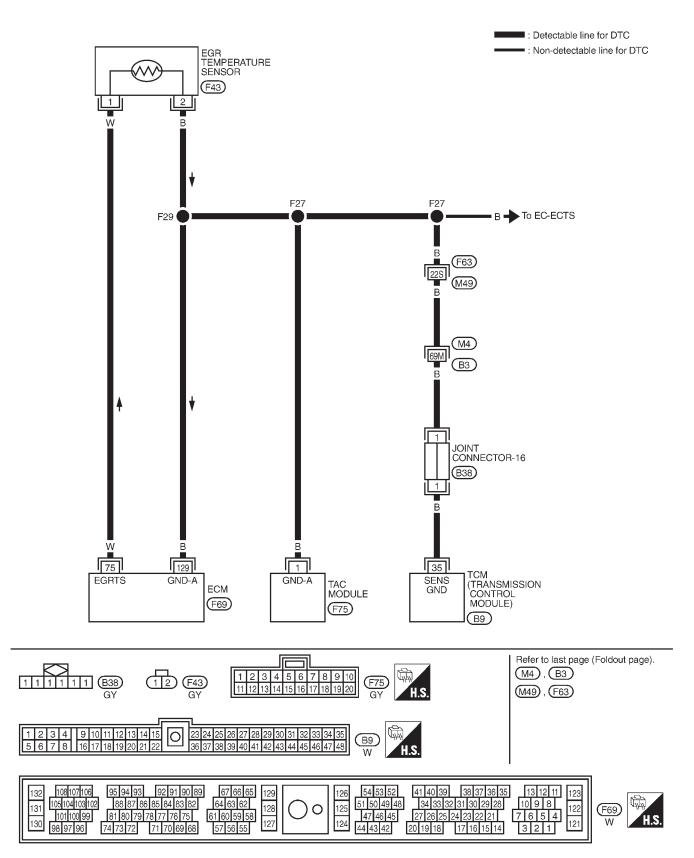
SI

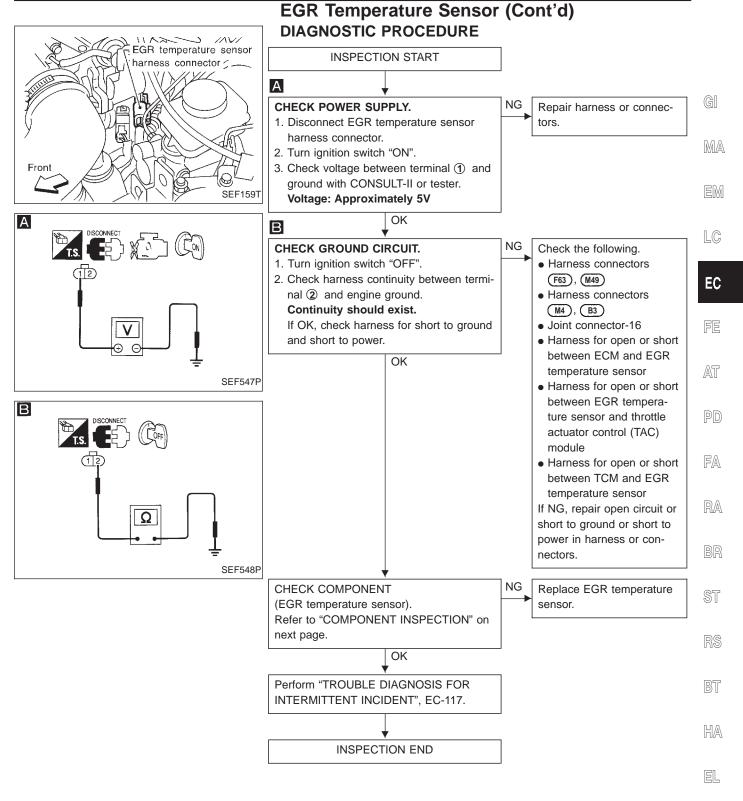
RS

BT

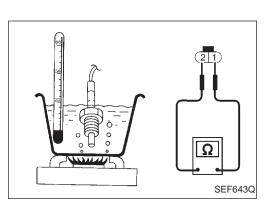
HA

- -- -

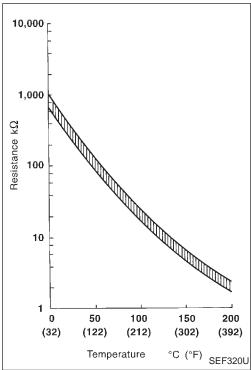

EL


IDX

EGR Temperature Sensor (Cont'd)



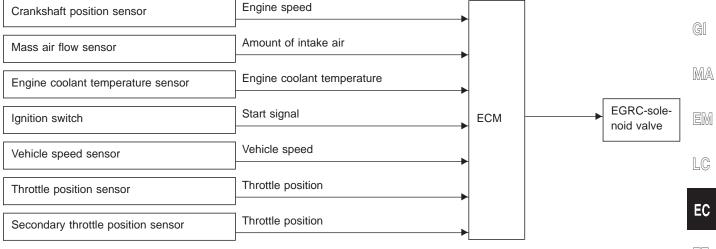
1DX



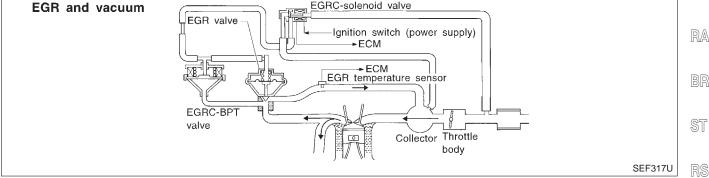
EGR Temperature Sensor (Cont'd) COMPONENT INSPECTION

EGR temperature sensor

Check resistance change and resistance value.

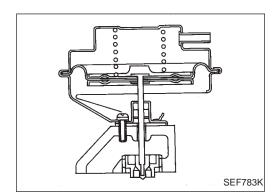

EGR temperature °C (°F)	Voltage* (V)	Resistance (MΩ)
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.092 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.


EGR Function (Open)

SYSTEM DESCRIPTION

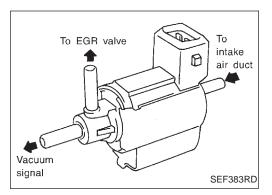
This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current flows through the solenoid valve. This causes the port vacuum to be discharged into the atmosphere. The EGR valve remain closed.


► ECM noid valve	LEIM
	LC
	EC
● Low engine coolant temperature	FE
 Engine starting Engine stopped Engine idling 	AT
 Excessively high engine coolant temperature Mass air flow sensor malfunction Low vehicle speed 	PD
TCS is operating	FA
GRC-solenoid valve —Ignition switch (power supply) →ECM	RA

B1

HA

EL



COMPONENT DESCRIPTION

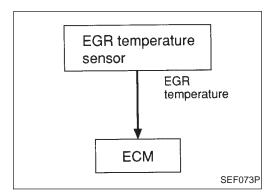
Exhaust gas recirculation (EGR) valve

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

EGR Function (Open) (Cont'd) EGRC-solenoid valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The signal reaches to the EGR valve. When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold collector to the EGR valve.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
EGRC SOL/V	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	OFF
	 Air conditioner switch. OFF Shift lever: "N" No-load 	Revving engine up from idle to 3,000 rpm	ON

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
75	w	EGR temperature sensor	Engine is running. (Warm-up condition)	Less than 4.5V
	Engine is running. (Warm-up condition)	0 - 1.0V		
10	L/Y	EGRC-solenoid valve	Engine is running. (Warm-up condition) Lift up drive wheels and rev engine up from idle to 3,000 rpm in "D" position.	0 - 0.7V
		Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V)	

ON BOARD DIAGNOSIS LOGIC

If EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed. **NOTE:**

Diagnosis for this DTC will end when engine coolant temperature is approx. 50 to 60° C (122 to 140° F). Ignition switch must be turned "ON" (engine start) with engine coolant temperature below 40° C (104° F) when starting DTC confirmation procedure.

EGR Function (Open) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P1402 0514	call for EGR.	 EGRC-solenoid valve EGR valve leaking or stuck open EGR temperature sensor EGRC-BPT valve 	GI

MA

EM

LC

EGR SYSTEM P1402 CHECK ENGINE COOLANT TEMP WITH DATA MONITOR. IS COOLANT TEMP BETWEEN -10 TO 40 °C.(14 TO 104 °F) MONITOR COOLAN TEMP/S XXX °C SEF808X DATA MONITOR MONITORING NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX °C EGR TEMP SEN XXX V INT/A TEMP SE XXX °C SEF753X EGR SYSTEM P1402 OUT OF CONDITION MONITOR CMPS-RPM(REF) XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec PEF245V EGR SYSTEM P1402 TESTING MONITOR

CMPS-RPM(REF)

THRTL POS SEN

B/FUEL SCHDL

XXX rpm

XXX V

XXX msec

PEF246V

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

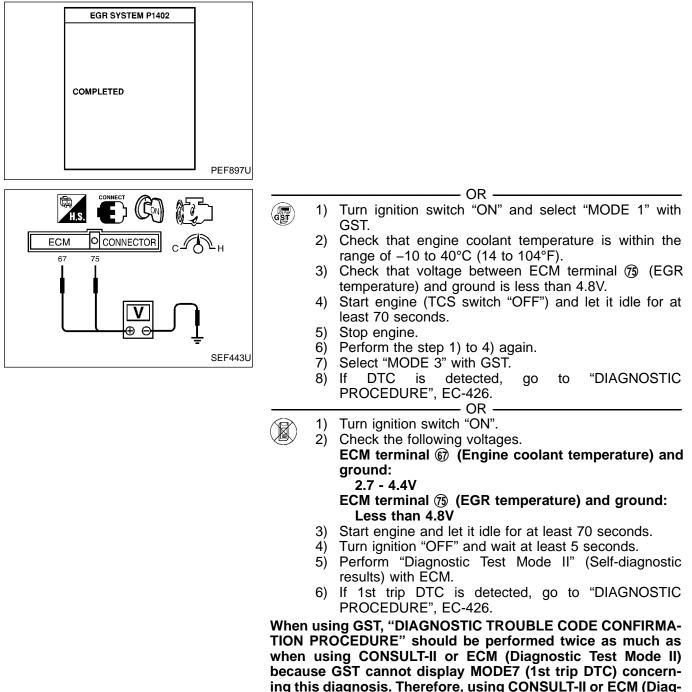
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

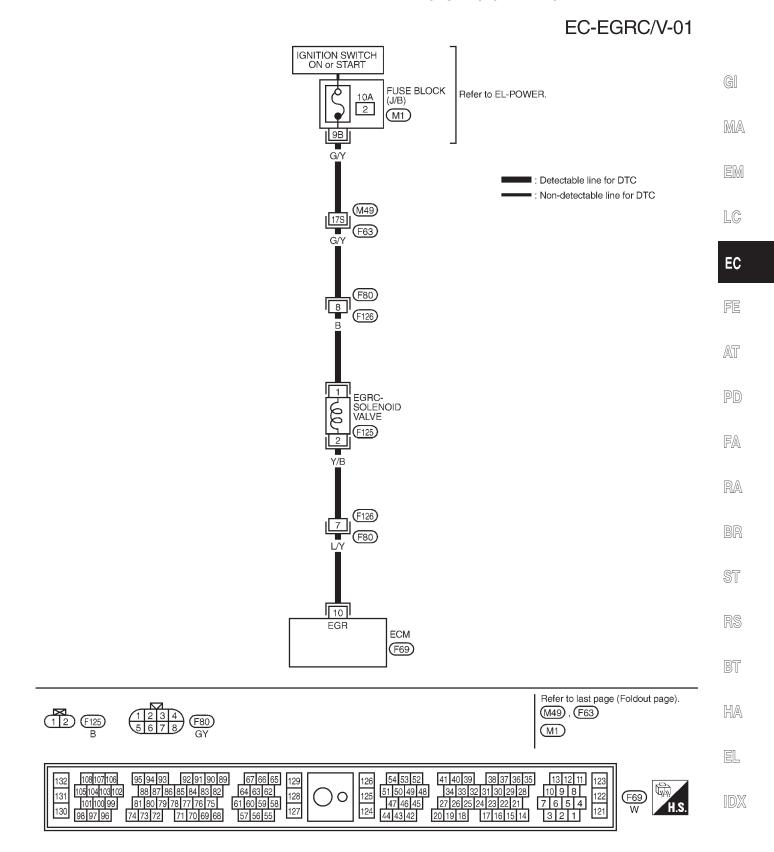
- Always perform the test at temperature above -10°C (14°F).
 - (14°F). Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted. COOLAN TEMP/S: -10 to 40°C (14 to 104°F) EGR TEMP SEN: Less than 4.8V If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the coolant or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.
 - 1) Turn ignition switch "OFF" and wait at least 5 seconds. BR Then turn ignition switch "ON".
 - 2) Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - 3) Follow instruction of CONSULT-II.
 - 4) Start engine and let it idle until "TESTING" on CON-SULT-II screen is turned to "COMPLETED". (It will take 70 seconds or more.)

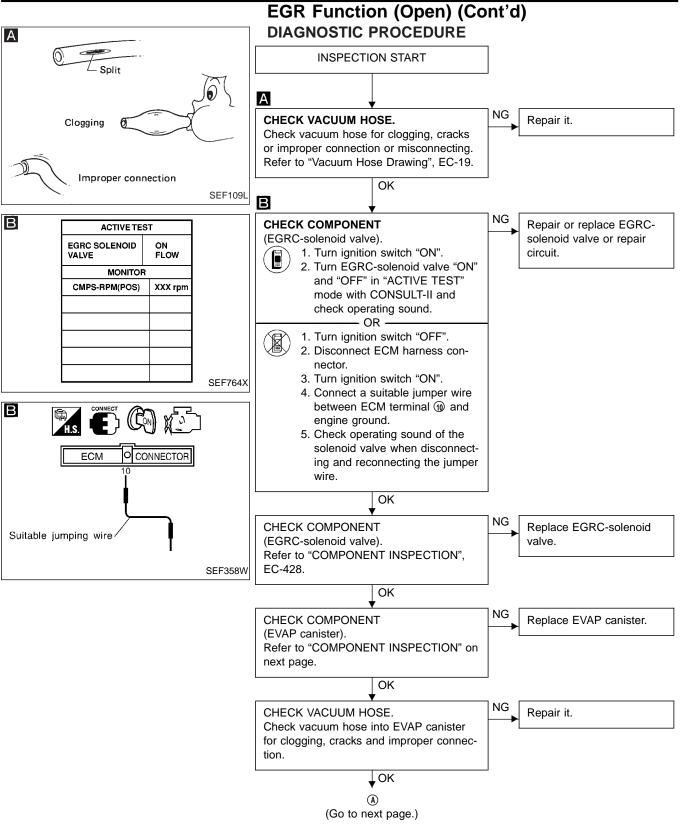
If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of –10 to 40°C (14 to 104°F). Retry from step 1).


 5) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-426.

EL

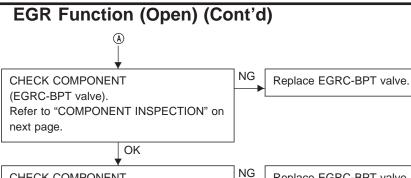
IDX

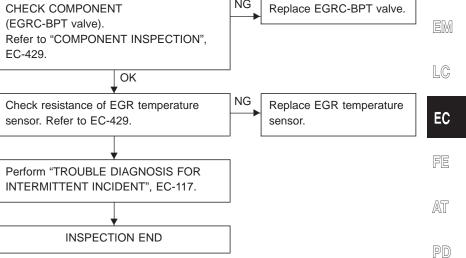

EGR Function (Open) (Cont'd)



nostic Test Mode II) is recommended.

EGR Function (Open) (Cont'd)





GI

MA

TROUBLE DIAGNOSIS FOR DTC P1402

FA

RA

BR

ST

RS

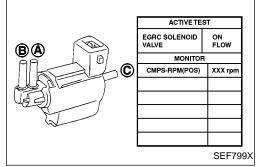
BT

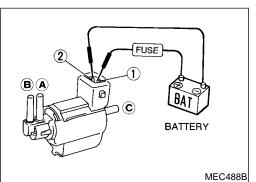
HA

EL

IDX

EGR Function (Open) (Cont'd) COMPONENT INSPECTION


EGR valve


- Apply vacuum to EGR valve vacuum port with a hand vacuum pump.
- EGR valve spring should lift.
- Check for sticking.

If NG, repair or replace EGR valve.

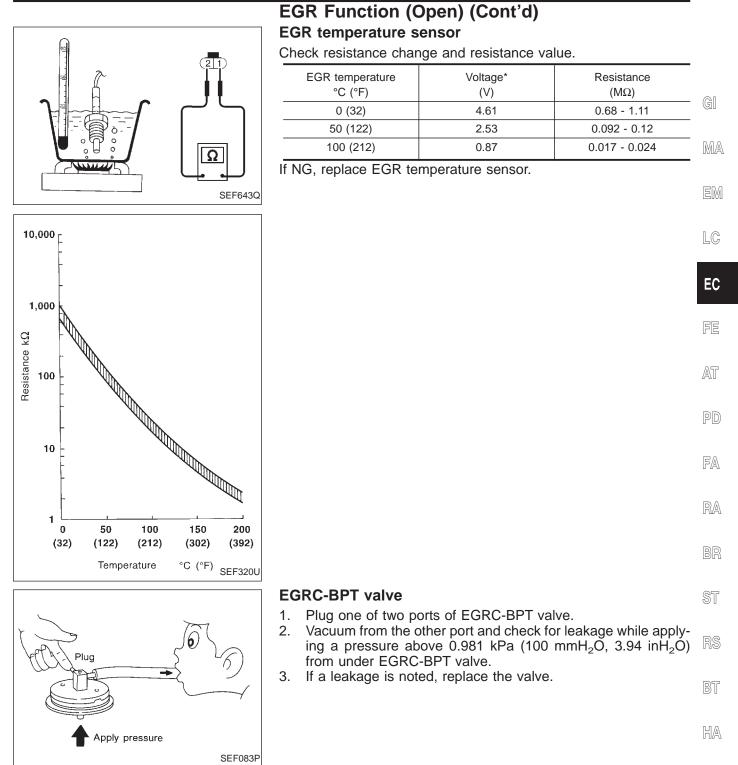
EGRC-solenoid valve

Check air passage continuity.

mode.				
Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and ©		
ON	Yes	No		
OFF	No	Yes		

OR

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST"



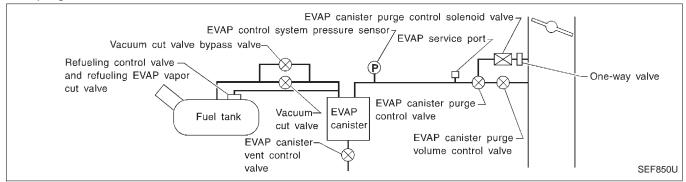
Check solenoid valve, following the table as shown below:

Conditions	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)	
12V direct current supply between terminals ① and ②	Yes	No	
No supply	No	Yes	

If NG or operation takes more than 1 second, replace the solenoid valve.

EL

IDX

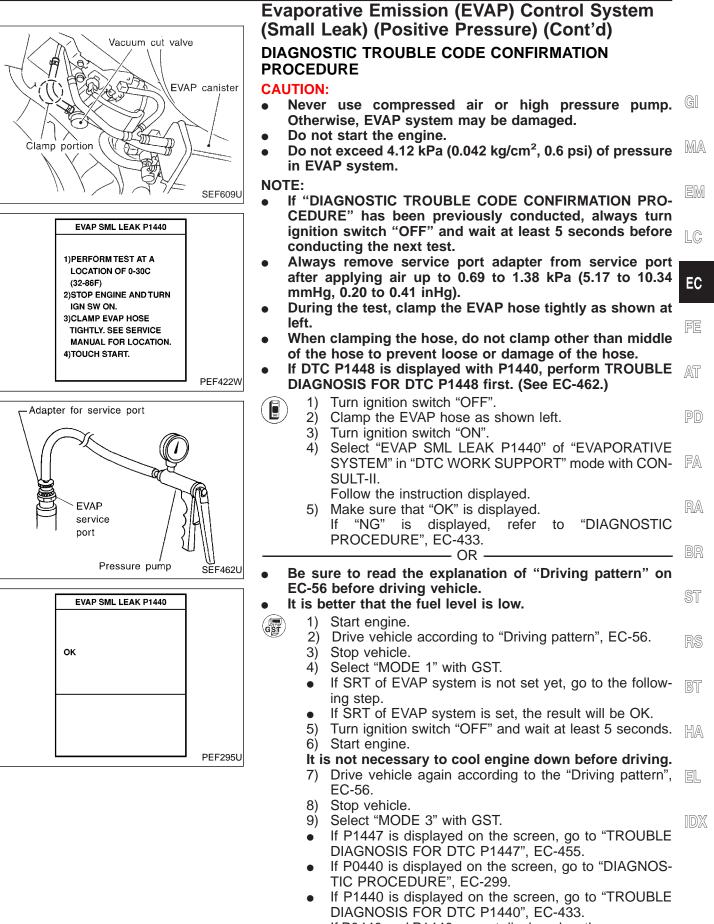


Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure)

Note: If DTC P1448 is displayed with P1440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (See EC-462.)

ON BOARD DIAGNOSIS LOGIC

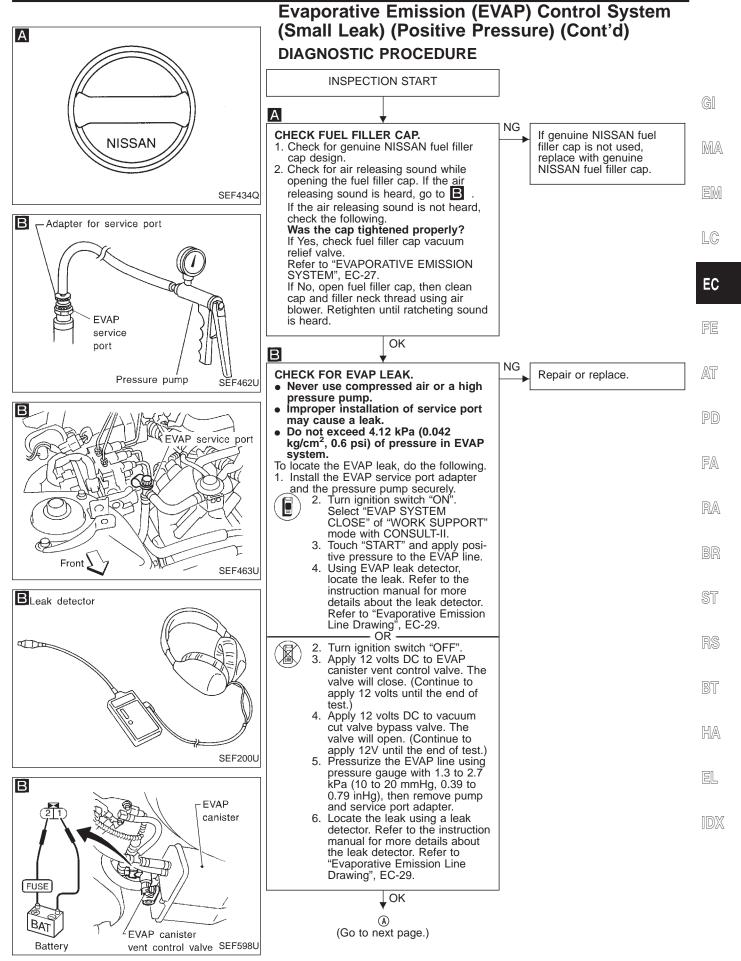
This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank. The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge control valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank. If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge control valve.

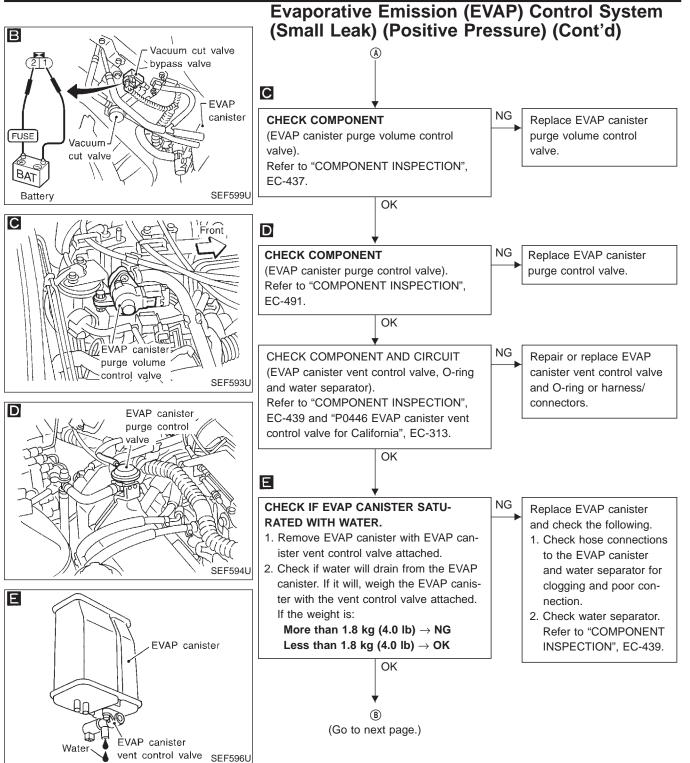

ON BOARD DIAGNOSIS LOGIC

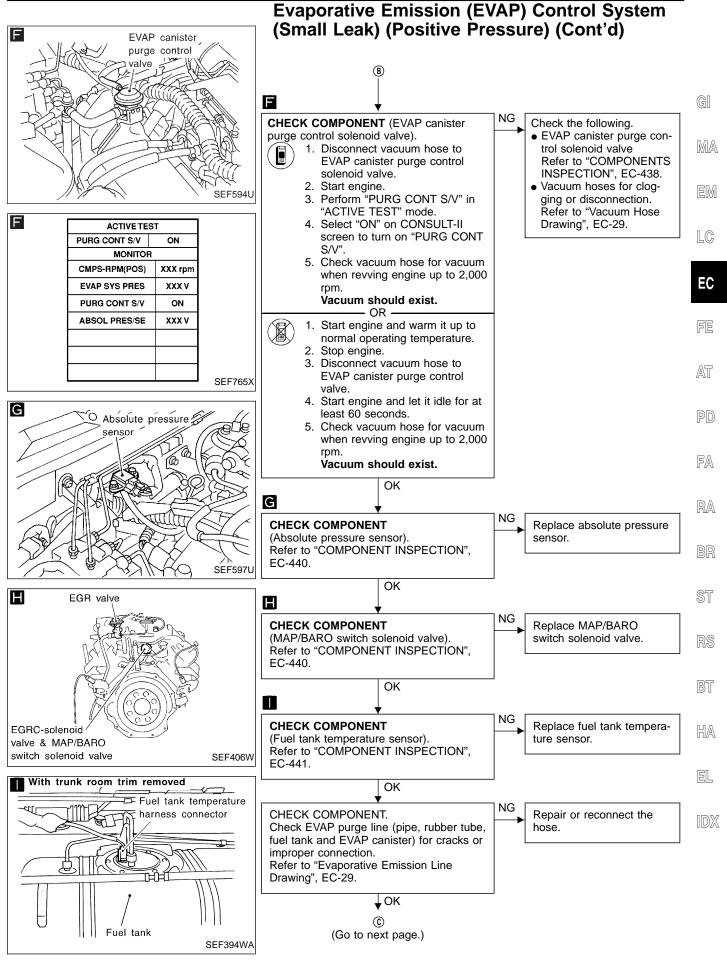
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1440 0213	 EVAP control system has a leak. EVAP control system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge control valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor EVAP canister vent control valve and the circuit EVAP canister purge control valve EVAP canister purge control solenoid valve Absolute pressure sensor Fuel tank temperature sensor MAP/BARO switch solenoid valve Blocked or bent rubber tube to MAP/BARO switch solenoid valve O-ring of EVAP canister vent control valve is missing or damaged. Water separator EVAP canister is saturated with water.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

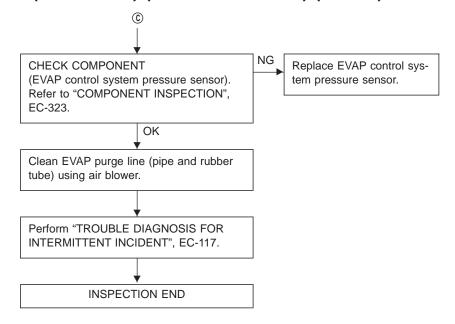

• If P0440 and P1440 are not displayed on the screen, go to the following step.

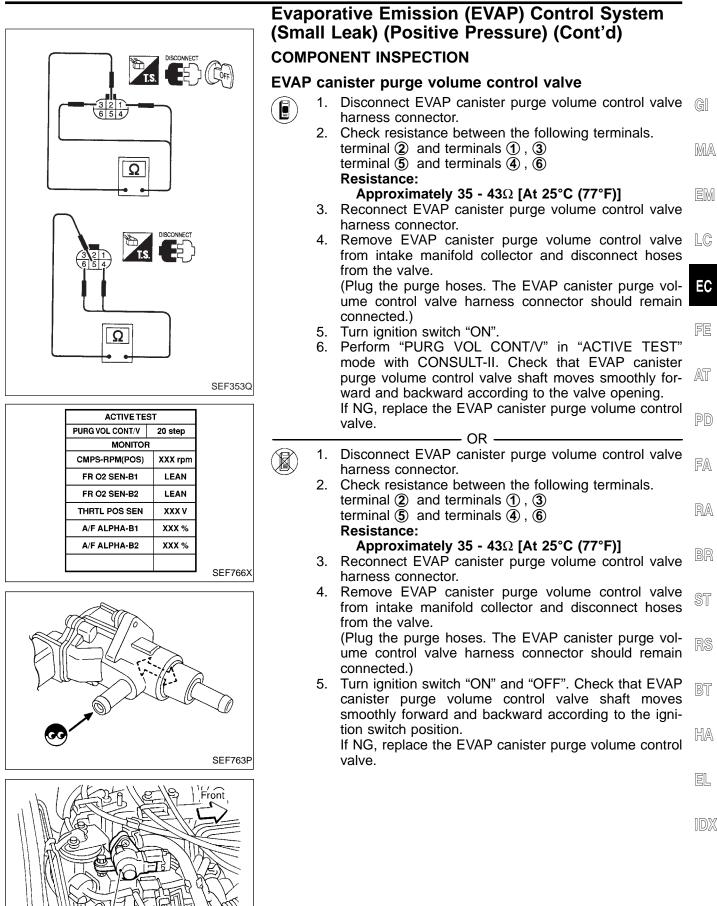

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)


10) Select "MODE 1" with GST.

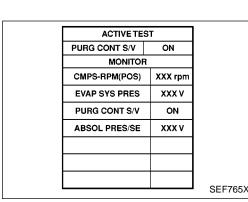
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6).
 OR
- Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.
- It is better that the fuel level is low.
- (NO 1) Start engine.
 - 2) Drive vehicle according to "Driving pattern", EC-56.
 - 3) Stop vehicle.
 - 4) Turn ignition switch "OFF" and wait at least 5 seconds.
 - 5) Turn ignition switch "ON" and perform "Diagnostic Test Mode (Self-diagnostic results)" with ECM.
 - 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-433.

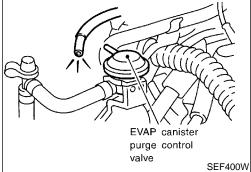
EC-433

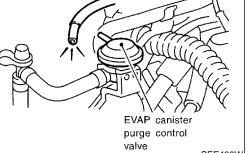


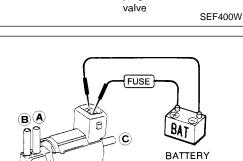


EC-435


Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)






EVAP canister purge volume control valve

SEF593U

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

EVAP canister purge control solenoid valve

- 1. Turn ignition switch "ON".
- 2. Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Disconnect vacuum hose at EVAP canister purge control valve.
- 5. Touch "ON" and "OFF" and check for vacuum passing through the hose.

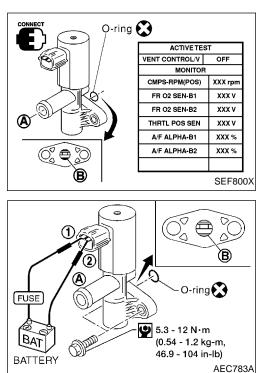
Condition	Vacuum
ldle	Not exist
2,000 rpm	Exist
0	R

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and ©
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace solenoid valve.

EVAP canister purge - Direction of control valve purge flow (\mathbf{B}) SEF809W


SEF313Q

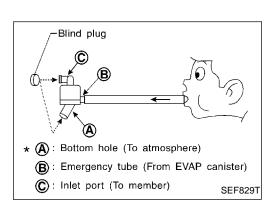
EVAP canister purge control valve

Check EVAP canister purge control valve as follows:

- Blow air in port (A) and (C), then ensure that there is no leak-1. age.
- Blow air in port (B), then ensure that there is a resistance to flow 2. out of port (C).
- 3. Apply vacuum to port (A). [Approximately -13.3 to -20.0 kPa (-100 to -150 mmHg, -3.94 to -5.91 inHg)]

Blow air in port (C) and ensure free flow out of port (B).

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

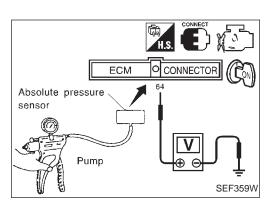

EVAP canister vent control valve

Check air passage continuity.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)	M
ON	No	
OFF	Yes	E
0)R	-
	Air passage continuity	
Condition	1	
	Air passage continuity between (A) and (B)	

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.


Water separator	ST
 Check visually for insect nests in the water separator air inlet. Check visually for cracks or flaws in the appearance. Check visually for cracks or flaws in the hose. Check that (A) and (C) are not clogged by blowing air into (B) with 	RS
 (A), and then (C) plugged. 5. In case of NG in items 2 - 4, replace the parts. 	BT
NOTE: Do not disassemble water separator.	HA
	EL

PD

FA

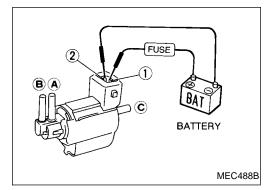
RA

BR

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

Absolute pressure sensor

- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch "ON" and check output voltage between terminal @ and ground.
 - The voltage should be 3.2 to 4.8V.
- 4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.


The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.
- 5. If NG, replace absolute pressure sensor.

ACTIVE TES	бт	
MAP/BARO SW/V	BARO	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
MAP/BARO SW/V	BARO	
ABSOL PRES/SE	XXX V	
		SEF767X
ACTIVE TES	ST	
MAP/BARO SW/V	MAP	

MAP/BARO switch solenoid valve

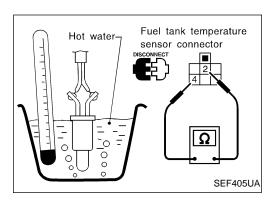
- 1. Start engine and warm it up sufficiently.
- Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
 - 3. Check the following.
 - Condition: At idle under no-load
 - CONSULT-II display

MAP/BARO SW/V	ABSOL PRES/SE (Voltage)
ARO More than 2.6V	
MAP	Less than the voltage at BARO
Time for voltage to change	
MAP/BARO SW/V	Required time to switch

	-
BARO to MAP	Less than 1 second
MAP to BARO	Less than I second

- 4. If NG, check solenoid valve as shown below.
- Remove MAP/BARO switch solenoid valve.
 Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and ©
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes


3. If NG or operation takes more than 1 second, replace solenoid valve.

EC-440

_

_

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

The lighte.		GI
Temperature °C (°F)	Resistance k Ω	0.5
20 (68)	2.3 - 2.7	MA
50 (122)	0.79 - 0.90	0002-0

If NG, replace fuel tank temperature sensor.

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

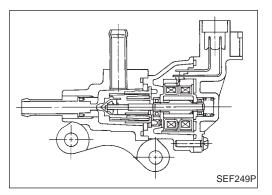
BT

HA

EL

IDX

EM



Evaporative Emission (EVAP) Canister Purge Volume Control Valve

SYSTEM DESCRIPTION

Camshaft position sensor	Engine speed	-	
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sen- sor	Engine coolant temperature	-	
Ignition switch	Start signal	-	EVAP canister
Throttle position sensor	Throttle position	ECM	control valve
Front heated oxygen sensor	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank	-	
Vehicle speed sensor	Vehicle speed	-	

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control valve uses a step motor to control the flow rate of fuel vapor from the EVAP canister. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

EM

TROUBLE DIAGNOSIS FOR DTC P1444

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

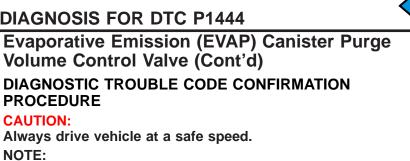
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	GI
		Idle	0 step	-
PURG VOL C/V	 Engine: After warming up Air conditioner switch "OFF" 	Vehicle running (Shift lever "1")	_	MA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and (128) (ECM ground).


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	LC
124	W/B	ECCS relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V	FE
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	- AT PD
130 131	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	FA
123	W/L	Current return	Engine is running.	BATTERY VOLTAGE (11 - 14V)	RA
28	BR/Y	EVAP canister purge vol-	Engine is running.	0 - 0.4V or	- BR
29	G	ume control valve	L Idle speed	BATTERY VOLTAGE (11 - 14V)	חש
35 36	G/OR L/B	EVAP canister purge vol- ume control valve	Engine is running.	0 - 0.4V or BATTERY VOLTAGE (11 - 14V)	- ST
				(11 177)	R

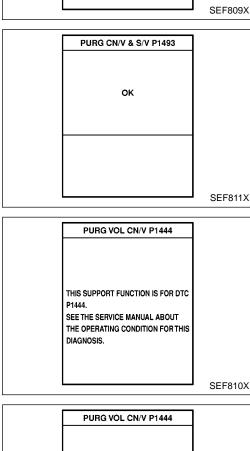
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	BT
P1444 0214	• The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control valve is completely	 EVAP control system pressure sensor EVAP canister purge volume control valve (The valve is stuck open.) 	HA
	closed.	EVAP canister purge control valveHoses	EL
		(Hoses are connected incorrectly or clogged.)EVAP canister vent control valve	IDX

PROCEDURE CAUTION:

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

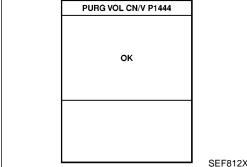

TESTING CONDITION:

Always perform test at temperature above 0°C (32°F).

- 1) Start engine and warm it up to normal operating temperature.
 - Turn ignition switch "OFF" and wait at least 5 seconds. 2) 3) Turn ignition switch "ON".
 - 4) Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
 - 5) Touch "START".
 - 6) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
 - 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take for at least 30 seconds.) Selector lever: Suitable position Vehicle speed: 36 - 120 km/h (23 - 75 MPH) CMPS RPM (POS): 900 - 6,300 rpm B/FUEL SCHDL: 2 - 4.8 msec
 - 8) Stop vehicle with engine running.
 - 9) Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
 - 10) Touch "START".
 - If "COMPLETED" is displayed, go to step 12).
 - 11) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take for at least 20 seconds.) Selector lever: Suitable position Vehicle speed: 36 - 120 km/h (23 - 75 MPH) CMPS RPM (POS): 900 - 6.300 rpm B/FUEL SCHDL: 2 - 4.8 msec

If "TESTING" is not displayed after 5 minutes, retry from step 2).

12) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-446.

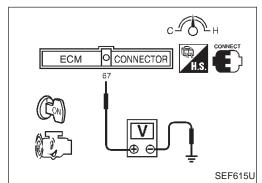

PURG CN/V&S/V P1493

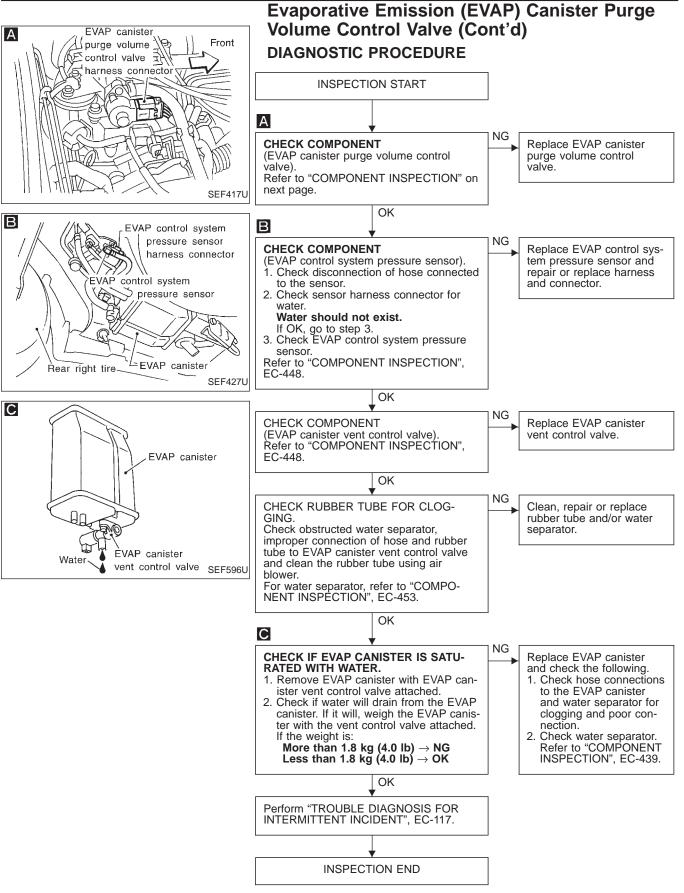
THIS SUPPORT FUNCTION IS FOR DTC

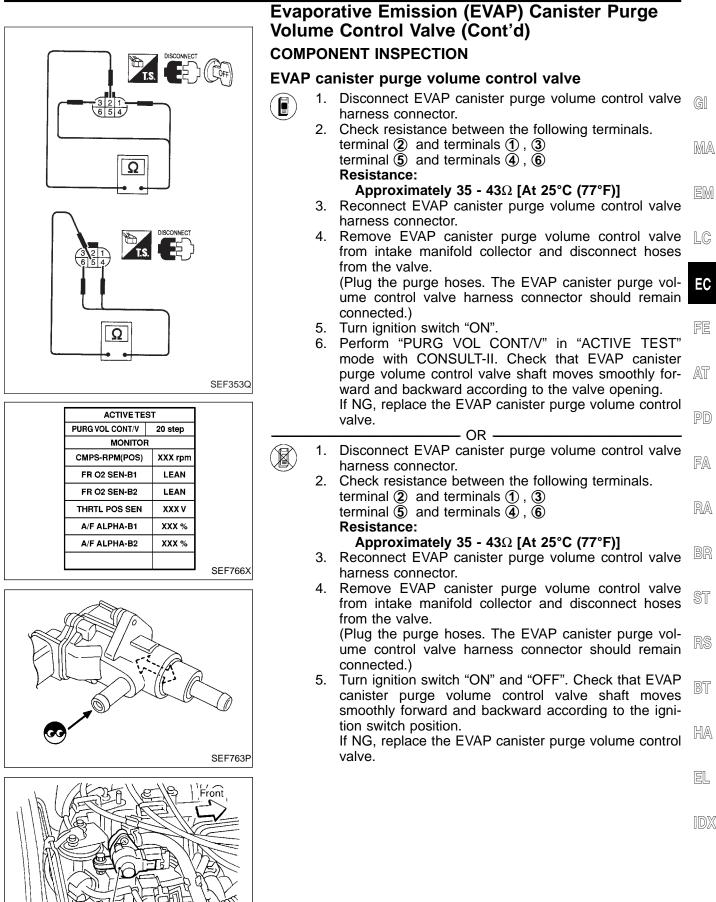
SEE THE SERVICE MANUAL ABOUT THE OPERATING CONDITION FOR THIS

P1493.

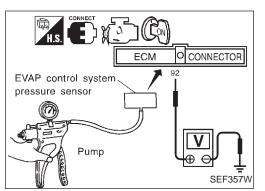
DIAGNOSIS.

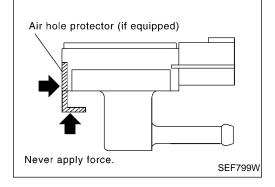



		1
	ENGINE SPD 825RPM	
	COOLANT TEMP 69°C	
	VEHICLE SPD 0MPH	
	IGN ADVANCE 8.0°	
	CALC LOAD 28.2%	
	MAP 36KPaA	
	THROTTLE POS 0.0%	
	INTAKE AIR 27°C	
L	025 B1 52 0.010V	SEF519R
	MAP	SEF519


Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

1) 2) 3)	mal operating temperature. Select "MODE 1" with GST.	GI MA
3)	Select "MODE 1" with GST. Check coolant temperature. Coolant temperature: 40 - 100°C (104 - 212°F) Be sure that water temperature does not exceed 100°C (212°F). If it becomes higher than 100°C (212°F), cool down the engine and perform the procedure again from	-
,	Coolant temperature: 40 - 100°C (104 - 212°F) Be sure that water temperature does not exceed 100°C (212°F). If it becomes higher than 100°C (212°F), cool down the engine and perform the procedure again from	MA
4)	Be sure that water temperature does not exceed 100°C (212°F). If it becomes higher than 100°C (212°F), cool down the engine and perform the procedure again from	MA
4)	(212°F). If it becomes higher than 100°C (212°F), cool down the engine and perform the procedure again from	
4)	down the engine and perform the procedure again from	
4)		eM
4)		EM
E)	Turn ignition switch "OFF" and wait at least 5 seconds.	
5) 6)	Turn ignition switch "ON" and wait at least 15 seconds. Restart engine and let it idle for at least 80 seconds.	LC
7)	Maintain the following conditions for at least 80 sec-	
	onds.	EC
	Gear position : Suitable gear position Vehicle speed: 36 - 120 km/h (23 - 75 MPH)	
	Engine speed: 900 - 6,300 rpm	FE
	Coolant temperature: 40 - 100°C (104 - 212°F)	٢G
8)		
9)	If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-446.	AT
OTE:		
Hold	the accelerator pedal as steady as possible during	PD
	ig in steps 7.	
	driving conditions are not satisfied in steps 7, restart rocedure.	FA
	better that the fuel level is low.	U <i>L</i> ~
→ 1)	Start engine (TCS switch "OFF") and warm it up to nor-	RA
ํ	mal operating temperature.	
2)		
		BR
	down the engine and perform the entire procedure all	ST
3)		
4)		RS
5)	Restart engine and let it idle for at least 80 seconds.	110
6)	Maintain the following conditions for at least 80 sec- onds.	65
	Gear position : Suitable gear position	BT
	Vehicle speed: 36 - 120 km/h (23 - 75 MPH)	
	Engine speed: 900 - 6,300 rpm Check voltage between ECM terminal @ and	HA
	ground: 0.8 - 1.5V	
7)	Turn ignition switch "OFF", wait at least 5 seconds, and	FI
,	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON".	EL
,	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON". Perform "Diagnostic Test Mode II (Self-diagnostic	EL
8)	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON".	EL IDX
8) 9) OTE:	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON". Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-446.	
8) 9) OTE: Hold	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON". Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-446. the accelerator pedal as steady as possible during	
8) 9) IOTE: Hold drivin	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON". Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-446.	
8) 9) OTE: Hold drivin If the the p	Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON". Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-446. the accelerator pedal as steady as possible during ig in steps 6.	
3) 4)	Check voltage between ECM terminal (7) and ground Voltage: 0.8 - 1.5V Perform the following procedure before the voltage drops below 0.8V. If the voltage drops below 0.8V, cool down the engine and perform the entire procedure all over again. Turn ignition switch "OFF" and wait at least 5 seconds. Turn ignition switch "ON" and wait at least 15 seconds.	BF ST Rf


EC-445



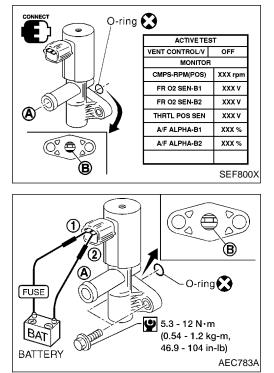
EVAP canister purge volume

SEE593U

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

COMPONENT INSPECTION

EVAP control system pressure sensor


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.

5. Check output voltage between ECM terminal (9) and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)		
ON	No		
OFF	Yes		
OR			

Condition	Air passage continuity between (A) and (B)
12V direct current supply between ter- minals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

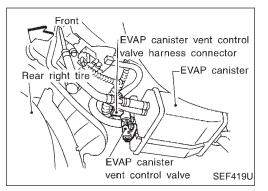
GI

MA

TROUBLE DIAGNOSIS FOR DTC P1444

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

If the portion $\ensuremath{\mathbb{B}}$ is rusted, replace EVAP canister vent control valve.


Make sure new O-ring is installed properly.

EM LC EC FE AT PD FA RA BR ST RS BT HA

EL

IDX

Evaporative Emission (EVAP) Canister Vent Control Valve (Close)

COMPONENT DESCRIPTION

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	P/B	EVAP canister vent con- trol valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1446 0215	 EVAP canister vent control valve remains closed under specified driving conditions. 	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water.

DATA MOI	ΠI	OR	
MONITORING		NO DTC	
CMPS-RPM(POS)	х	XX rpm	
COOLAN TEMP/S			
VHCL SPEED SE			
THRTL POS SEN B/FUEL SCHDL		XXX V	
B/I OLL SCIIDL	^.	AA IIISec	
			SEF823X

DIAGNOSIS FOR DTC P1446	
Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)	
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE	
CAUTION: Always drive vehicle at a safe speed.	GI
NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE- DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.	MA
(\Box) 1) Turn ignition switch "ON".	EM
 2) Select "DATA MONITOR" mode with CONSULT-II. 3) Start engine (TCS switch "OFF"). 4) Drive vehicle at a speed of approximately 80 km/h (50 	LC
MPH) for a maximum of 15 minutes.5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-452.	EC
NOTE: If a malfunction exists, NG result may be displayed quicker.	FE

Follow the procedure "With CONSULT-II" above.

PD

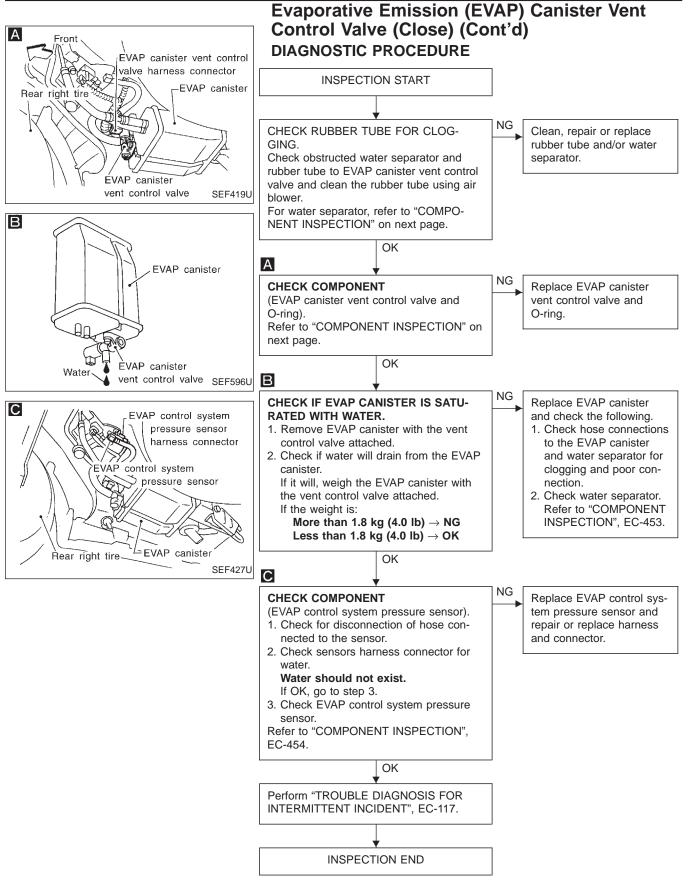
AT

FA

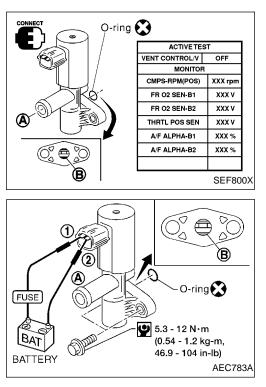
*u и "*Ц

- BR
- ST

RS


-0

BT


HA

EL

IDX

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)

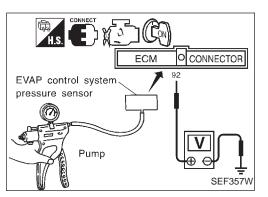
COMPONENT INSPECTION

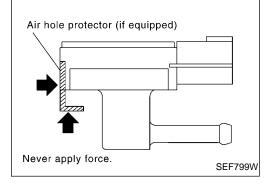
EVAP canister vent control valve

Check air passage continuity. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.			
Condition VENT CONTROL/V	Air passage continuity between (A) and (B)	MA	
ON	No	EM	
OFF	Yes		
OR			
Condition	Air passage continuity between (A) and (B)	EC	
12V direct current supply between ter- minals ① and ②	No	FE	
No supply	Yes	AT	

If NG, clean valve using air blower or replace as necessary. If the portion (B) is rusted, replace EVAP canister vent control pp valve.

Make sure new O-ring is installed properly.


Blind plug
 Bettom hole (To atmosphere)
 B: Emergency tube (From EVAP canister)
 C: Inlet port (To member)
 SEF829T


Water separator	ST
 Check visually for insect nests in the water separator air inlet. Check visually for cracks or flaws in the appearance. Check visually for cracks or flaws in the hose. Check that (A) and (C) are not clogged by blowing air into (B) with 	RS
 (A), and then (C) plugged. 5. In case of NG in items 2 - 4, replace the parts. 	BT
NOTE: Do not disassemble water separator.	HA
	FI

FA

RA

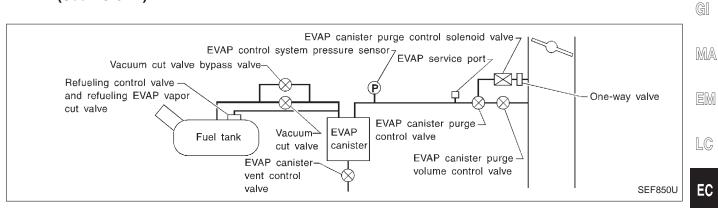
BR

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)

EVAP control system pressure sensor

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal 😰 and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6


CAUTION:

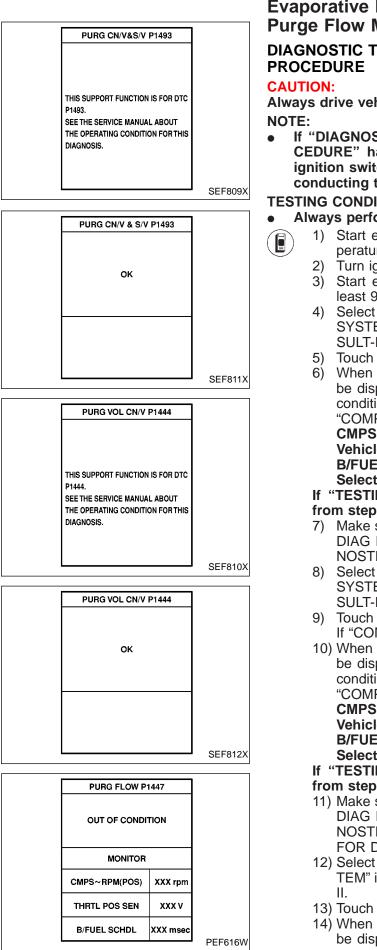
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Evaporative Emission (EVAP) Control System Purge Flow Monitoring

NOTE: If DTC P1447 is displayed with P0510, perform TROUBLE DIAGNOSIS FOR DTC P0510 first. (See EC-344.)

SYSTEM DESCRIPTION

FE In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control valve and EVAP canister purge control valve are open. Purge flow exposes the AT EVAP control system pressure sensor to intake manifold vacuum.


ON BOARD DIAGNOSIS LOGIC

PD Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

			FA
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	RA
P1447 0111	 EVAP control system does not operate properly. EVAP control system has a leak between intake mani- 		0 00 0
	fold and EVAP control system pressure sensor.	 EVAP canister purge control valve stuck closed EVAP control system pressure sensor Loose, disconnected or improper connection of rubber tube 	BR
		 Blocked rubber tube EVAP canister purge control solenoid valve Blocked or bent rubber tube to MAP/BARO switch solenoid valve 	ST
		 Cracked EVAP canister EVAP canister purge volume control valve Closed throttle position switch 	RS
		 Improper connection of one-way valve Blocked purge port EVAP canister vent control valve 	BT

HA

EL

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION

Always drive vehicle at a safe speed.

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at temperature above 0°C (32°F).

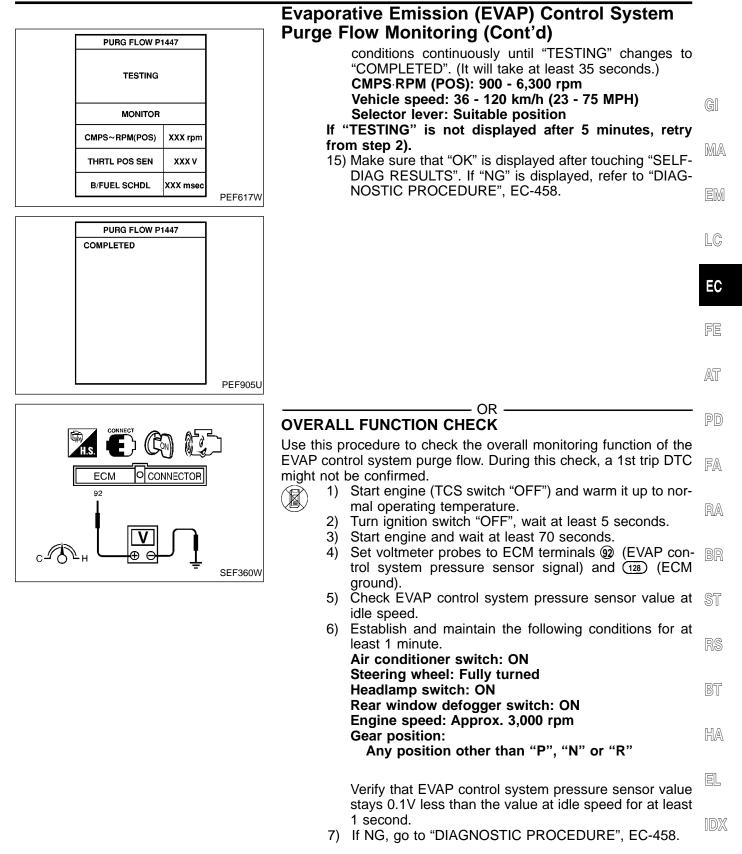
- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
- 4) Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 5) Touch "START".
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

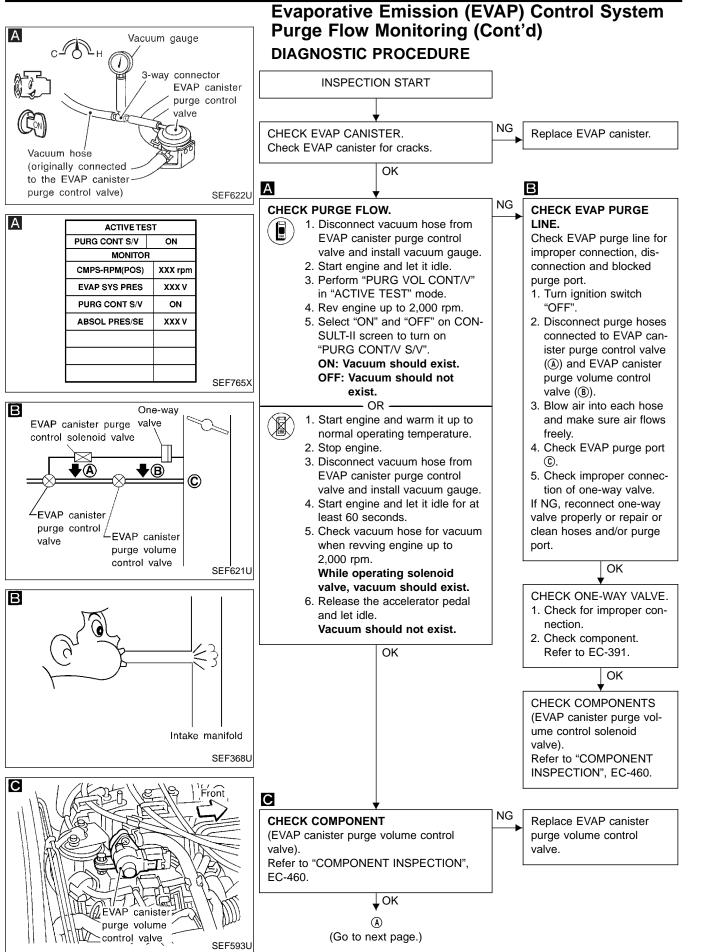
CMPS RPM (POS): 900 - 6,300 rpm Vehicle speed: 36 - 120 km/h (23 - 75 MPH) B/FUEL SCHDL: 2 - 4.8 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

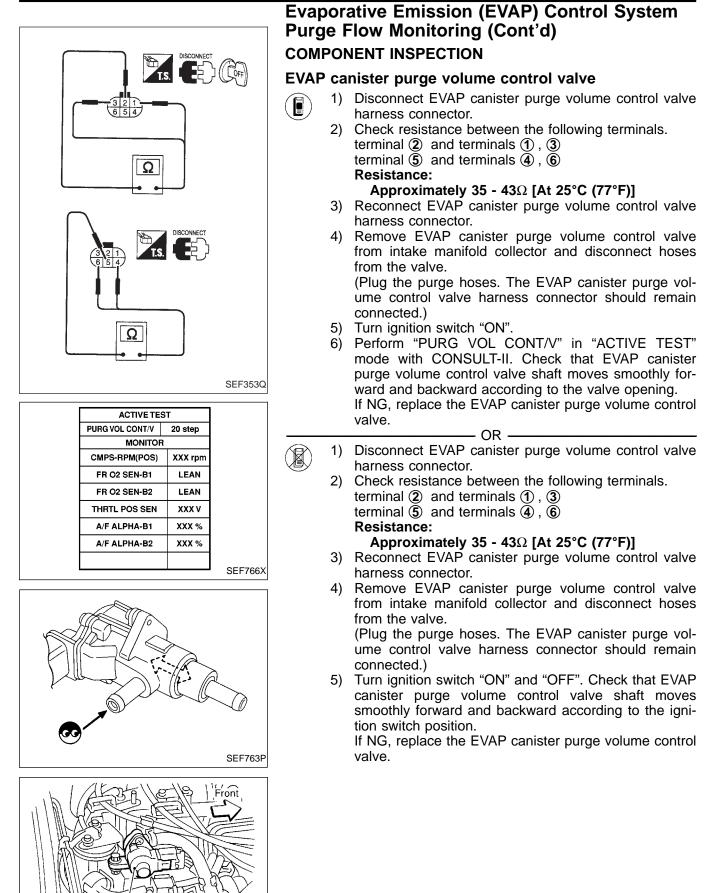
- 7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-489.
- 8) Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 9) Touch "START".

If "COMPLETED" is displayed, go to 11).

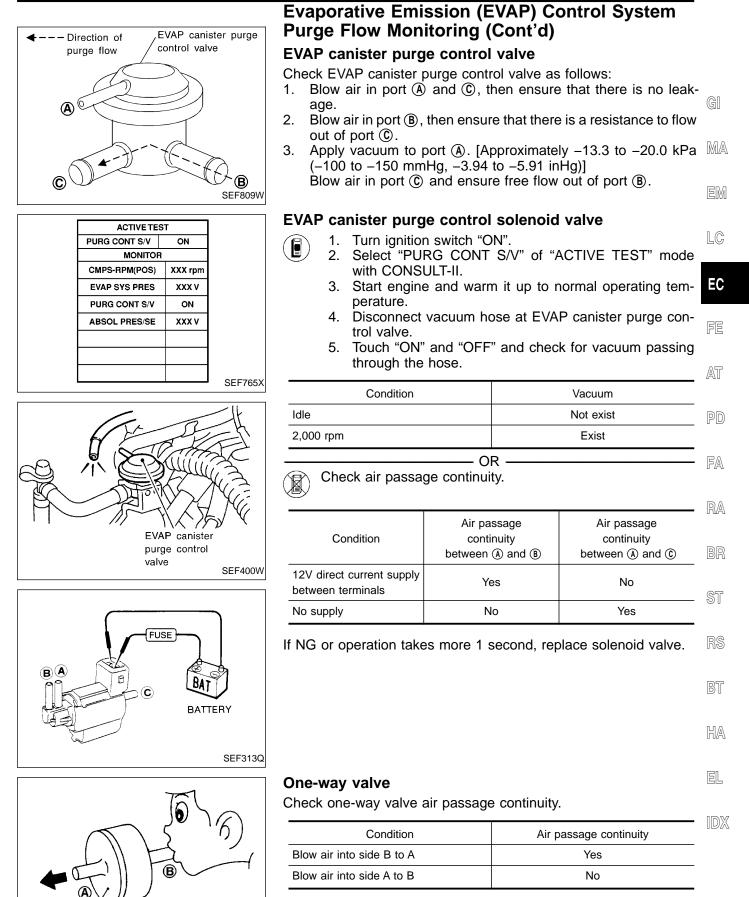

- 10) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 20 seconds.)
 - CMPS-RPM (POS): 900 6,300 rpm
 - Vehicle speed: 36 120 km/h (23 75 MPH) B/FUEL SCHDL: 2 - 4.8 msec
 - Selector lever: Suitable position


If "TESTING" is not displayed after 5 minutes, retry from step 2).

- 11) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE" of "TROUBLE DIAGNOSIS FOR DTC P1444", EC-446.
- 12) Select "PURG FLOW P1447" of "EVAPORATIVE SYS-TEM" in "DTC CONFIRMATION" mode with CONSULT-
- 13) Touch "START".
- 14) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the

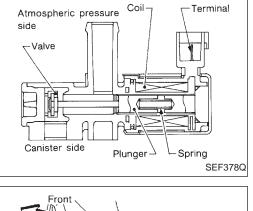


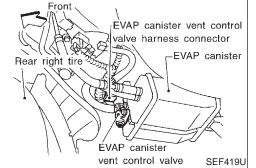
EC-458


EC-459

EVAP canister purge volume control valve

SEF593U


If NG, replace one-way valve.


Make sure to install one-way valve with the colored side facing the vacuum.

Colored side

AEC140A

Evaporative Emission (EVAP) Canister Vent Control Valve (Open)

COMPONENT DESCRIPTION

NOTE:

If DTC P1448 is displayed with P0440, P1440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

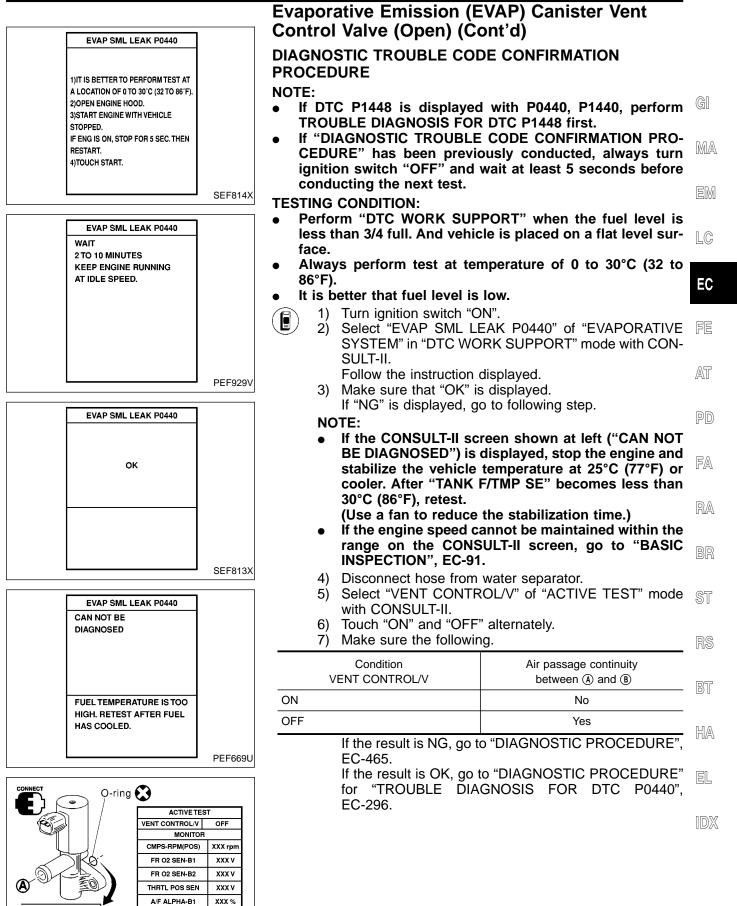
When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

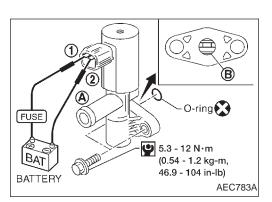
ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	P/B	EVAP canister vent con- trol valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1448 0309	 EVAP canister vent control valve remains opened under specified driving conditions. 	 EVAP canister vent control valve EVAP control system pressure sensor Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve



A/F ALPHA-B2

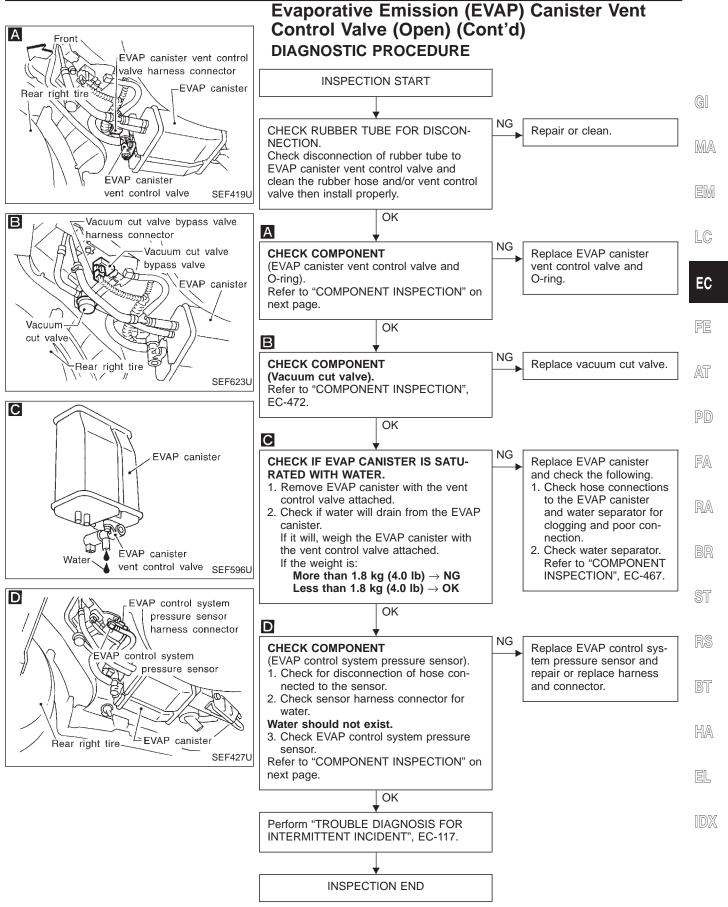
XXX %

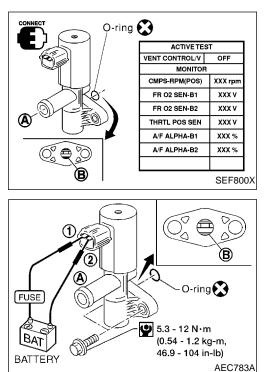
SEF800X

R

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.


- \uparrow 1) Disconnect hose from water separator.
 - 2) Disconnect EVAP canister vent control valve harness connector.
 - 3) Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals ① and ②	No
No supply	Yes

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-465.

If the result is OK, go to "TROUBLE DIAGNOSIS FOR DTC P0440", EC-296.

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

COMPONENT INSPECTION

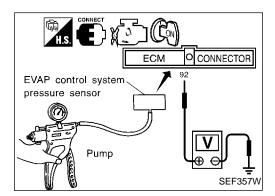
EVAP canister vent control valve

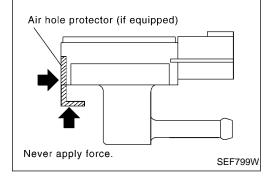
Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes

OR


/			


Condition	Air passage continuity between (A) and (B)
12V direct current supply between ter- minals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion $\ensuremath{\textcircled{B}}$ is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

EVAP control system pressure sensor

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal 1 and ground.


Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
–9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- Check visually for cracks or flaws in the hose.
 Check that (A) and (C) are not clogged by blowing

NO		
5.	In case of NG in items 2 - 4, replace the parts.	MA
	(A), and then (C) plugged.	
4.	Check that (A) and (C) are not clogged by blowing air into (B) with	

NOTE:

Do not disassemble water separator.

LC

FE

AT

PD

FA

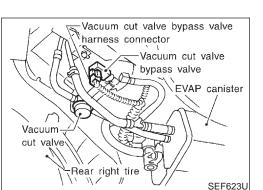
RA

BR

ST

RS

BT


HA

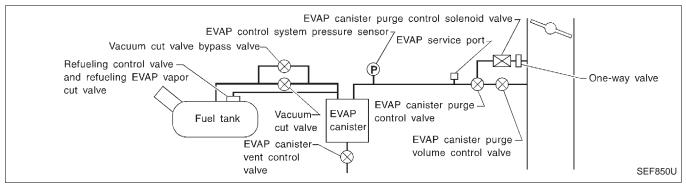
EL

IDX

EM

GI

Vacuum Cut Valve Bypass Valve (Circuit) COMPONENT DESCRIPTION


The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

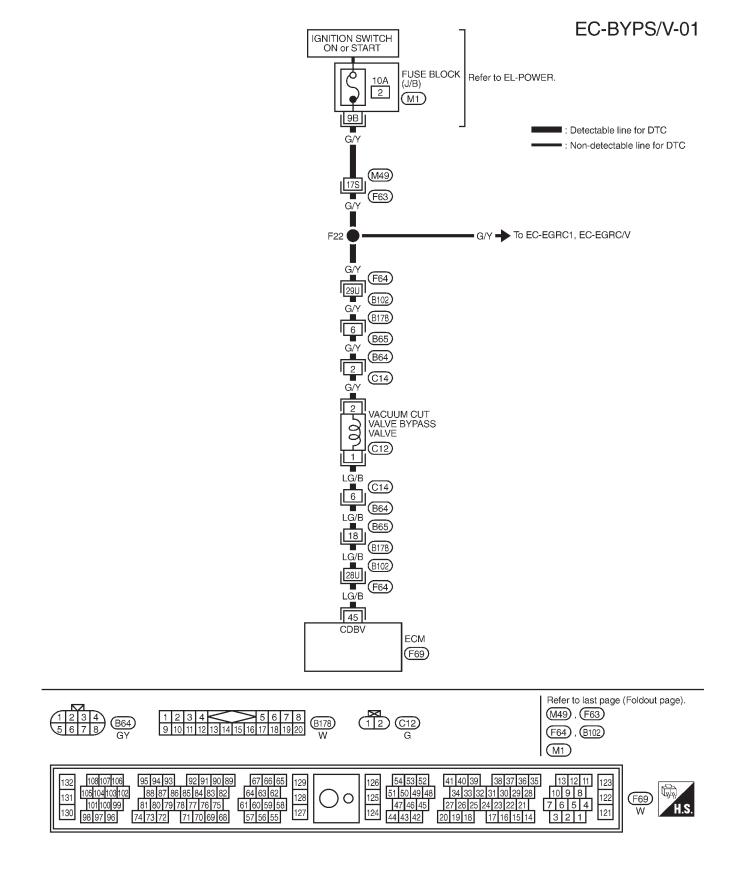
ECM TERMINALS AND REFERENCE VALUE

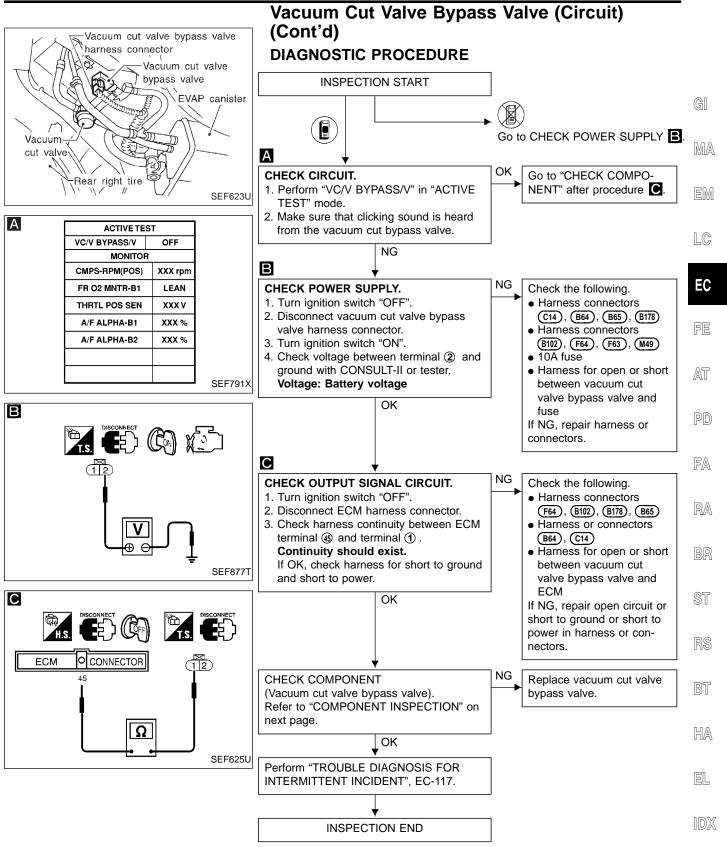
Specification data are reference values and are measured between each terminal and (128) (ECM ground).

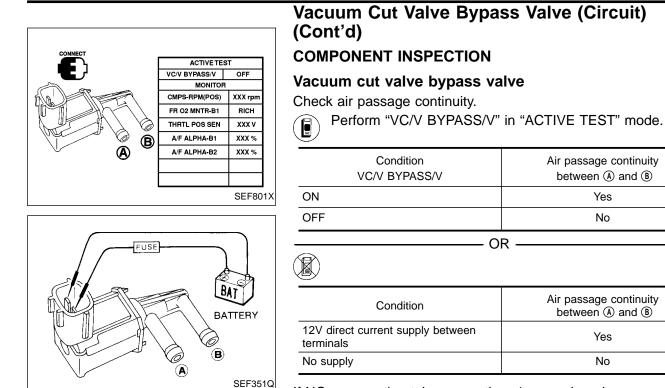
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	LG/B	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

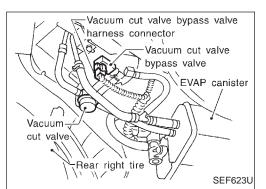
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1490 0801	 An improper voltage signal is sent to ECM through vacuum cut valve bypass valve. 	 Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.) Vacuum cut valve bypass valve


	Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)	
DATA MONITOR MONITORING NO DTC	DIAGNOSTIC TROUBLE CODE CONFIRMATION	
CMPS-RPM(POS) XXX rpm	PROCEDURE NOTE:	
	If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-	G]
	DURE" has been previously conducted, always turn the igni- tion switch "OFF" and wait at least 5 seconds before conduct-	DЛА
		MA
;	Select "DATA MONITOR" mode with CONSULT.	EM
		LC
	Follow the procedure "With CONSULT-II" above.	
		EC
		FE
		AT
		PD
		re
		FA
		RA
		BR
		ST
		RS
		BT
		HÆ


EL


IDX

Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)


If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

Yes

No

Yes

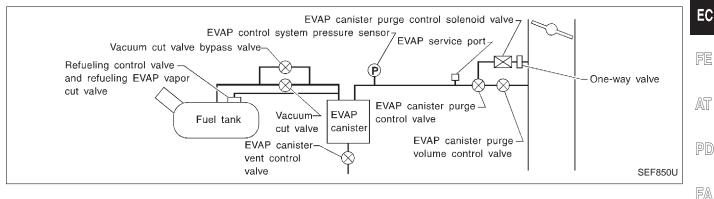
No

Vacuum Cut Valve Bypass Valve

COMPONENT DESCRIPTION

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.


The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis. The vacuum cut valve bypass valve responds to signals from the

ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

GI

山瓜

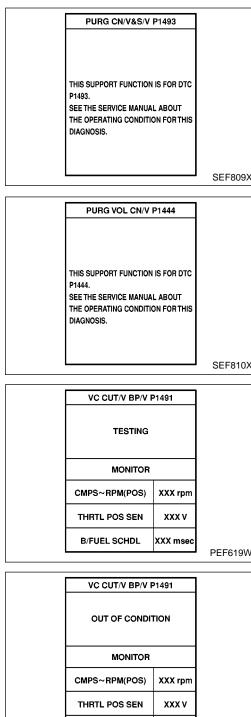
EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

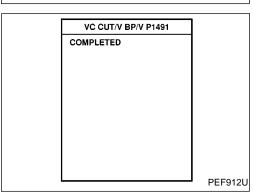
Specification ua			RA	
MONITOR ITEM	CONDITION	SPECIFICATION		
VC/V BYPASS/V	Ignition switch: ON	OFF	RD	

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	RS
45	LG/B	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	BT

ON BOARD DIAGNOSIS LOGIC


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P1491 0311	Vacuum cut valve bypass valve does not operate properly.	 Vacuum cut valve bypass valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged EVAP canister EVAP canister EVAP purge port of fuel tank for clogging 	EL

PEF	619V
-----	------

VC CUT/V BP/V	P1491	
OUT OF CONDI		
MONITOR		
CMPS~RPM(POS) XXX rpm		
THRTL POS SEN XXX V		
B/FUEL SCHDL	XXX msec	
		PEF618V

Vacuum Cut Valve Bypass Valve (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

IF "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform test at temperature of 0 to 30°C (32 to 86°F).
 - 1) Turn ignition switch "ON".
 - 2) Start engine and warm it up to normal operating temperature.
 - Turn ignition switch "OFF" and wait at least 5 seconds. 3)
 - 4) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
 - 5) Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
 - 6) Touch "START".
 - 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.) CMPS-RPM (POS): 900 - 6,300 rpm
 - Vehicle speed: 36 120 km/h (23 75 MPH) B/FUEL SCHDL: 2 - 4.8 msec
 - Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 3).

- 8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "TROUBLE DIAGNOSIS FOR DTC P1493", EC-486.
- 9) Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 10) Touch "START".

If "COMPLETED" is displayed on CONSULT-II screen, go to step 12).

11) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 20 seconds.)

CMPS-RPM (POS): 900 - 6,300 rpm Vehicle speed: 36 - 120 km/h (23 - 75 MPH) B/FUEL SCHDL: 2 - 4.8 msec

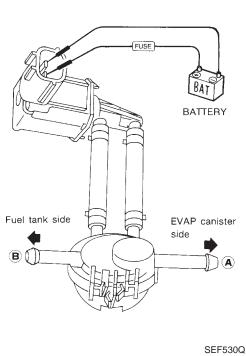
Selector lever: Suitable position

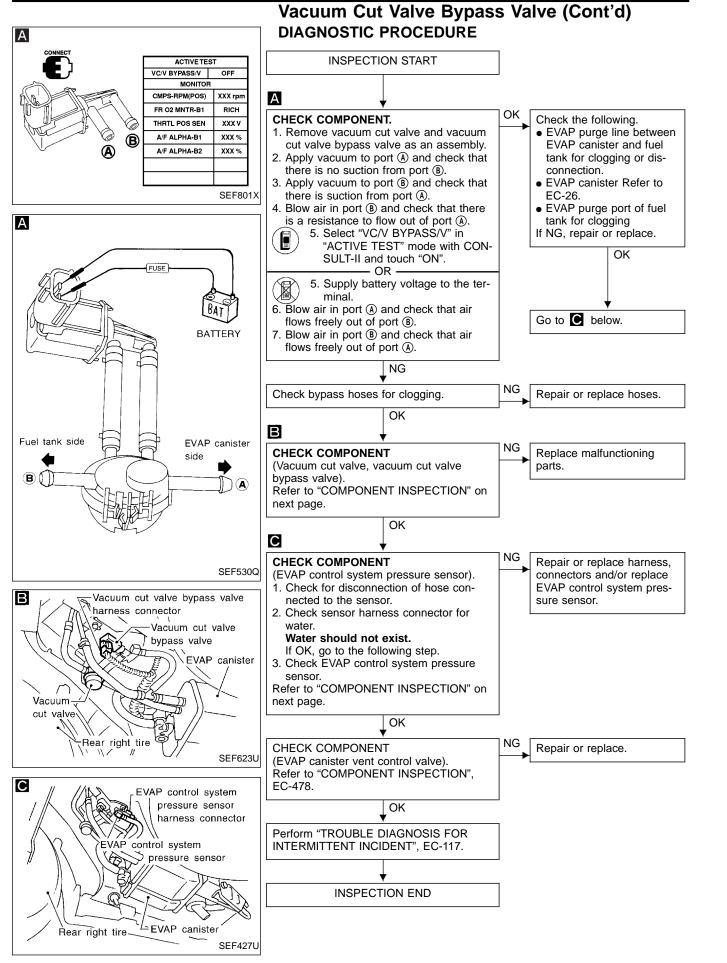
If "TESTING" is not displayed after 5 minutes, retry from step 3).

- 12) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "TROUBLE DIAGNOSIS FOR DTC P1444", EC-442.
- 13) Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 14) Touch "START".
- 15) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the

EC-474

RA

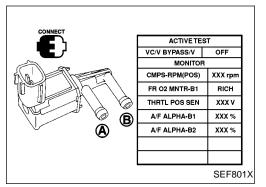

BR

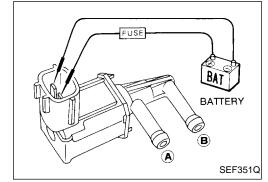

HA

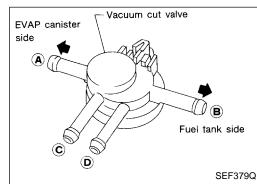
EL

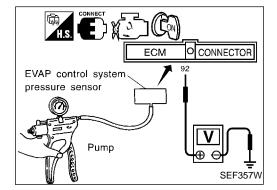
Vacuum Cut Valve Bypass Valve (Cont'd)

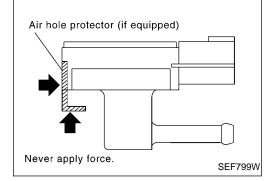
conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.) CMPS RPM (POS): 900 - 6,300 rpm Vehicle speed: 36 - 120 km/h (23 - 75 MPH) B/FUEL SCHDL: 0.5 - 4.5 msec GI Selector lever: Suitable position If "TESTING" is not displayed after 5 minutes, retry from step 3). MA 16) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-476. EM - OR **OVERALL FUNCTION CHECK** LC 1) Remove vacuum cut valve and vacuum cut valve R bypass valve as an assembly. EC 2) Apply vacuum to port (A) and check that there is no suction from port (B). 3) Apply vacuum to port (B) and check that there is suction FE from port (A). 4) Blow air in port (B) and check that there is a resistance to flow out of port (A). AT Supply battery voltage to the terminal. 5) 6) Blow air in port (A) and check that air flows freely out of port (B). PD 7) Blow air in port (B) and check that air flows freely out of port (A). 8) If NG, go to "DIAGNOSTIC PROCEDURE", EC-476. FA


\Rightarrow


LC


AT


PD


TROUBLE DIAGNOSIS FOR DTC P1491

Vacuum Cut Valve Bypass Valve (Cont'd) COMPONENT INSPECTION

Vacuum cut valve bypass valve

Check air passage continuity.

Perform VC/V BYPASS/V In AC	TIVE TEST mode.	G]
Condition VC/V BYPASS/V	Air passage continuity between (Å) and (B)	- Ma
ON	Yes	
OFF	No	- EM

OR —

Condition	Air passage continuity between (A) and (B)	EC
12V direct current supply between terminals	Yes	
No supply	No	_ FE

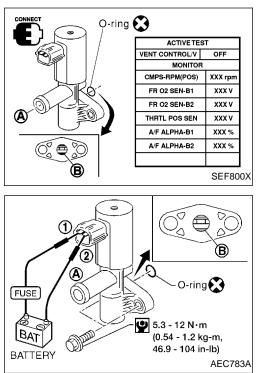
If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

Vacuum cut valve

Check vacuum cut valve as follows:

- 1. Plug port (C) and (D) with fingers.
- Apply vacuum to port (A) and check that there is no suction from port (B).
- 3. Apply vacuum to port (B) and check that there is suction from port (A).
- 4. Blow air in port (B) and check that there is a resistance to flow RA out of port (A).
- 5. Open port C and D.
- 6. Blow air in port (a) check that air flows freely out of port (c).
- 7. Blow air in port $\overline{\mathbb{B}}$ check that air flows freely out of port $\overline{\mathbb{D}}$.

EVAP control system pressure sensor


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- Remove hose from EVAP control system pressure sensor.
 Turn ignition switch "ON".
- Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal (9) and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)	HA
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6	0 02-2
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6	
		EL

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

R

Vacuum Cut Valve Bypass Valve (Cont'd)

EVAP canister vent control valve

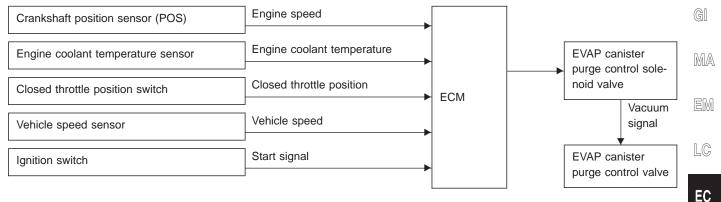
Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)		
ON	No		
OFF	Yes		

— OR —

Condition	Air passage continuity between (A) and (B)
12V direct current supply between ter- minals ① and ②	No
No supply	Yes

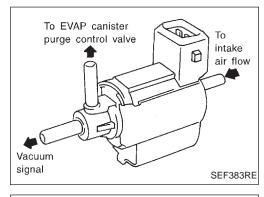

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

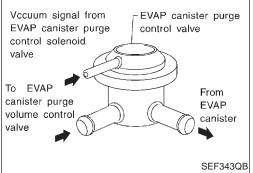
If the portion $\ensuremath{\textcircled{B}}$ is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit)

SYSTEM DESCRIPTION


•


•

This system controls the vacuum signal applied to the EVAP canister purge control valve.

When the ECM detects any of the following conditions, current does not flow through the EVAP canister purge control solenoid valve.

The solenoid valve cuts the vacuum signal so that the EVAP canister purge control valve remains closed. Start switch "ON" Closed throttle position Low or high engine coolant temperature During deceleration Engine stopped For 60 seconds after starting engine (After warming up to normal operating temperature)

COMPONENT DESCRIPTION

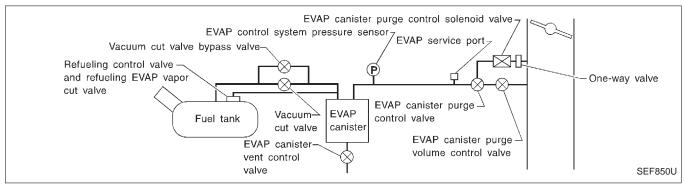
EVAP canister purge control solenoid valve

The EVAP canister purge control solenoid valve responds to signals from the ECM. When the ECM sends an OFF signal, the vacuum signal (from the intake manifold to the EVAP canister purge control valve) is cut. When the ECM sends an ON (ground) signal, the vacuum signal passes through the EVAP canister purge control solenoid valve. The signal then reaches the EVAP canister purge control valve.

EVAP canister purge control valve

EL

FA


RA

When the vacuum signal is cut by EVAP canister purge control solenoid valve, EVAP canister purge control valve shuts off the DX EVAP purge line.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd)

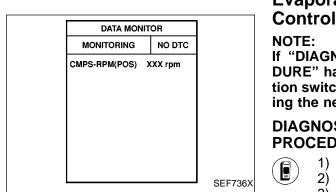
EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG CONT S/V • Engine: After warming up	- Engine: After worming up	Idle	OFF
		2,000 rpm	ON

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22	Y	EVAP canister purge con-	Engine is running.	BATTERY VOLTAGE (11 - 14V)
		trol solenoid valve	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1492 0807	 The improper voltage signal is sent to ECM through EVAP canister purge control solenoid valve. 	 Harness or connectors (The EVAP canister purge control solenoid valve cir- cuit is open or shorted.) EVAP canister purge control solenoid valve

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd) If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn the ignition switch "OFF" and wait at least 5 seconds before conducting the next test. DIAGNOSTIC TROUBLE CODE CONFIRMATION MA PROCEDURE 1) Turn ignition switch "ON". 2) Select "DATA MONITOR" mode with CONSULT-II. EM 3) Wait at least 5 seconds. 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-483. LC

Follow the procedure "With CONSULT-II" above.

FE

EC

AT

PD

FA

RA

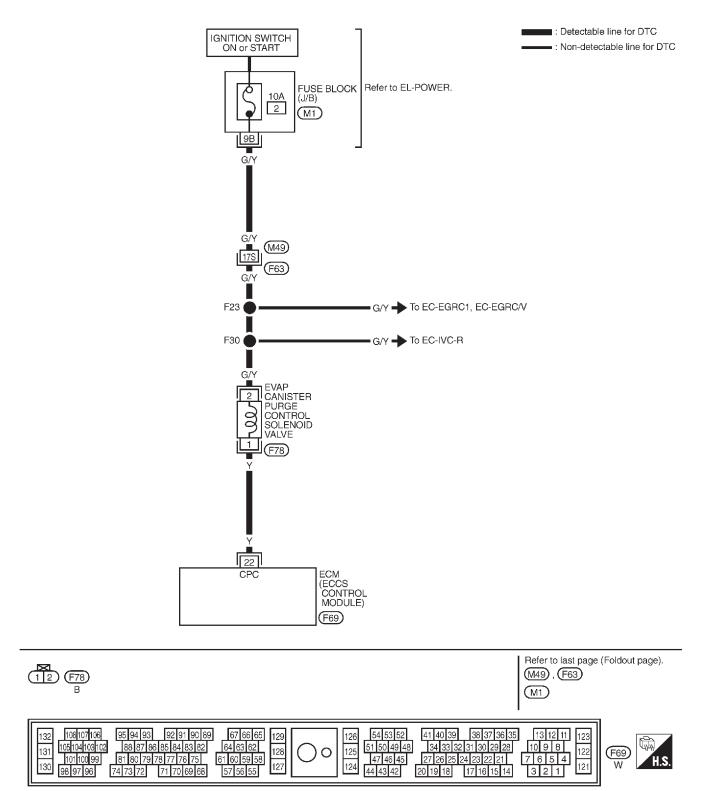
BR

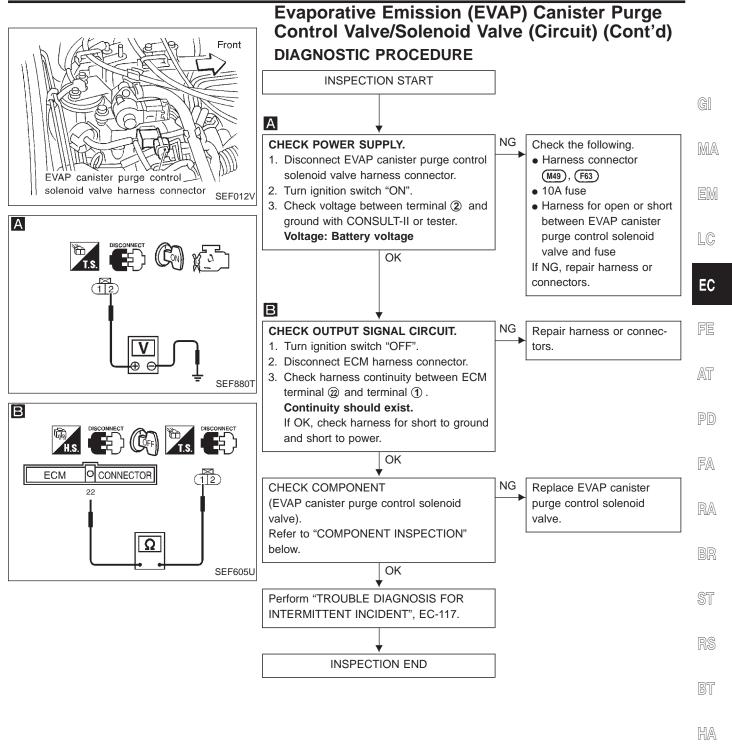
ST

RS

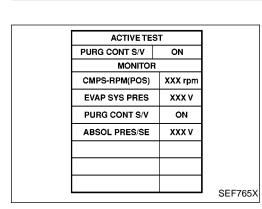
BT

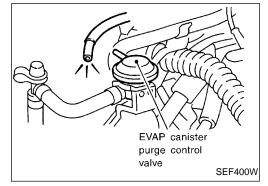
HA

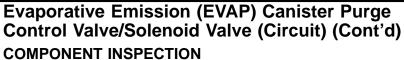

EL


IDX

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd)

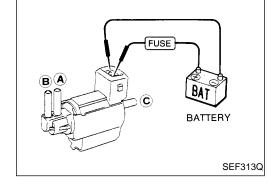





EL

[D]X

EVAP canister purge control solenoid valve


- 1. Turn ignition switch "ON".
- Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.
 - 3. Start engine and warm it up to normal operating temperature.
 - 4. Disconnect vacuum hose at EVAP canister purge control valve.
 - 5. Touch "ON" and "OFF" and check for vacuum passing through the hose.

Condition	Vacuum
Idle	Not exist
2,000 rpm	Exist
0	R

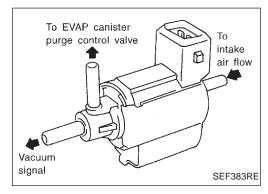
Check air passage continuity.

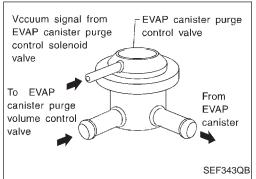
Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace solenoid valve.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve

SYSTEM DESCRIPTION


Crankshaft position sensor (POS)	Engine speed	-		G]
Engine coolant temperature sensor	Engine coolant temperature		EVAP canister	MA
Closed throttle position switch	Closed throttle position	ECM	noid valve	EM
Vehicle speed sensor	Vehicle speed		Vacuum signal	GIMI
Ignition switch	Start signal		EVAP canister purge control valve	LC


This system controls the vacuum signal applied to the EVAP canister purge control valve.

When the ECM detects any of the following conditions, current does not flow through the EVAP canister purge control solenoid valve.

The solenoid valve cuts the vacuum signal so that the EVAP canister purge control valve remains closed.

Start switch "ON"	FE
Closed throttle position	٢G
Low or high engine coolant temperature	
During deceleration	AT
Engine stopped	5 66
For 60 seconds after starting engine	
(After warming up to normal operating tempera-	PD

COMPONENT DESCRIPTION

ture)

EVAP canister purge control solenoid valve

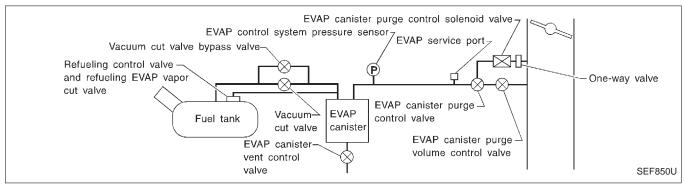
The EVAP canister purge control solenoid valve responds to signals from the ECM. When the ECM sends an OFF signal, the vacuum signal (from the intake manifold to the EVAP canister purge control valve) is cut. When the ECM sends an ON (ground) signal, the vacuum signal passes through the EVAP canister purge control solenoid valve.

The signal then reaches the EVAP canister purge control valve. \mathbb{HA}

EVAP canister purge control valve

EL

FA


RA

When the vacuum signal is cut by EVAP canister purge control solenoid valve, EVAP canister purge control valve shuts off the EVAP purge line.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG CONT S/V	- Engine: After worming up	Idle	OFF
	Engine: After warming up	2,000 rpm	ON

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22	Y	EVAP canister purge con-	Engine is running.	BATTERY VOLTAGE (11 - 14V)
		trol solenoid valve	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1493 0312	 EVAP canister purge control valve does not operate properly (stuck open). 	 EVAP canister purge control valve EVAP canister purge control solenoid valve Vacuum hoses for clogging or disconnection EVAP control system pressure sensor EVAP canister vent control valve Water separator EVAP canister saturated with water

PURG CN/V&S/V P1493	Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)	
	DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE	
THIS SUPPORT FUNCTION IS FOR DTC P1493. SEE THE SERVICE MANUAL ABOUT	CAUTION: Always drive vehicle at a safe speed. NOTE:	GI
THE OPERATING CONDITION FOR THIS DIAGNOSIS.	 If DTC P1492 is displayed with P1493, first perform "TROUBLE DIAGNOSIS FOR DTC P1492". Refer to EC-480. 	M
SEF809X	If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-	EN
PURG CN/V & S/V P1493	conducting the next test.	LC
ок	 Start engine and warm it up to normal operating temperature. Turn ignition switch "OFF" and wait at least 5 seconds. Turn ignition switch "ON". 	EC
	4) Select "PURG CN/V & S/V P1493" of "EVAPORATIVE	FE
SEF811X	least 90 seconds.	At
	7) When the following conditions are met, "TESTING" will	

ENGINE SPD		
	69°C	
VEHICLE SPD	0MPH	
IGN ADVANCE	8.0°	
CALC LOAD		
MAP	36KPaA	
MAF	5.20gm/s	
THROTTLE POS		
INTAKE AIR	27°C	
FUEL SYS #1	OLDRIVE	
FUEL SYS #2		
SHORT FT #1	0.8%	
LONG FT #1	0.0%	
	0.200V	
O2FT B1 S1		

	OR	EL
1)	Start engine (TCS switch "OFF") and warm it up to nor-	
	mal operating temperature.	IBW
2)	Select "MODE 1" with GST.	IDX
3)	Check coolant temperature.	
,	Coolant temperature: 30 - 100°C (86 - 212°F)	
	Be sure that water temperature does not exceed 100°C.	
	If it becomes higher than 100°C, cool down the engine	
	and perform the procedure again from the beginning.	
4)	Turn ignition switch "OFF" and wait at least 5 seconds.	
5)	Turn ignition switch "ON" and wait at least 15 seconds.	
5)		

be displayed on the CONSULT-II screen. Maintain the

conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds.)

Vehicle speed: 36 - 120 km/h (23 - 75 MPH)

If "TESTING" is not displayed after 5 minutes, retry

8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-

CMPS RPM (POS): 900 - 6,300 rpm B/FUEL SCHDL: 2 - 4.8 msec

Selector lever: Suitable position

NOSTIC PROCEDURE", EC-489.

from step 2).

MA

LC

EC

FE

PD

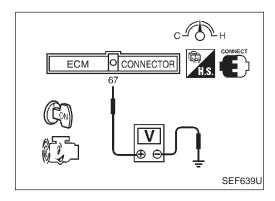
FA

RA

HA

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

- 6) Restart engine and let it idle for at least 90 seconds.
- Maintain the following conditions for at least 30 seconds.
 Vehicle speed: 36 120 km/h (23 75 MPH)


Engine speed: 900 - 6,300 rpm Gear position: Suitable gear position Coolant temperature: 30 - 100°C (86 - 212°F)

- 8) Select "MODE 7" with GST.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-489.

NOTE:

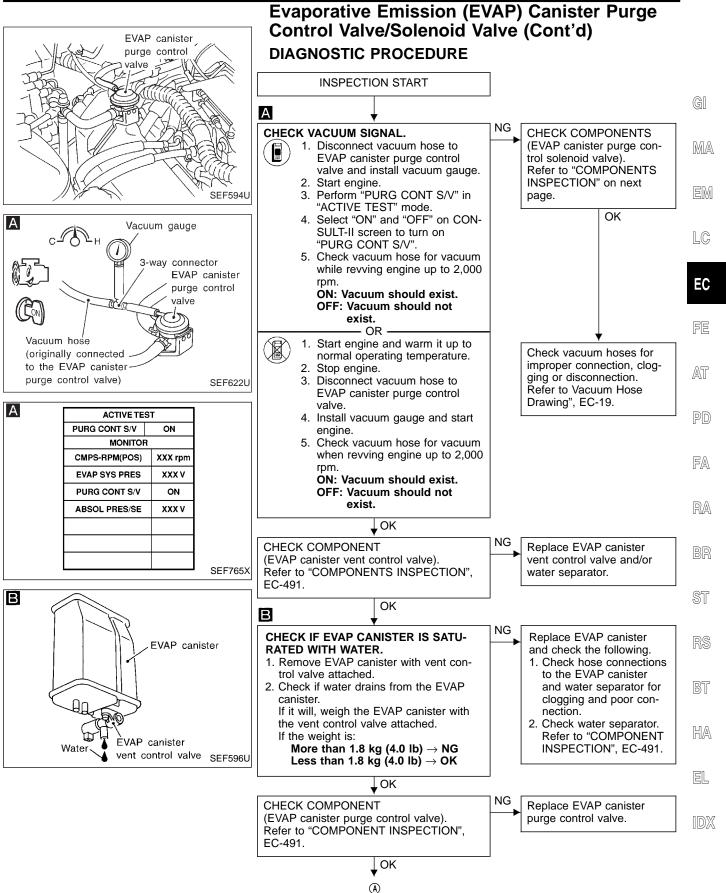
TOOLS

- Hold the accelerator pedal as steady as possible during driving in steps 7.
- If the driving conditions are not satisfied in steps 7, restart the procedure.
- It is better that the fuel level is low.

- OR -

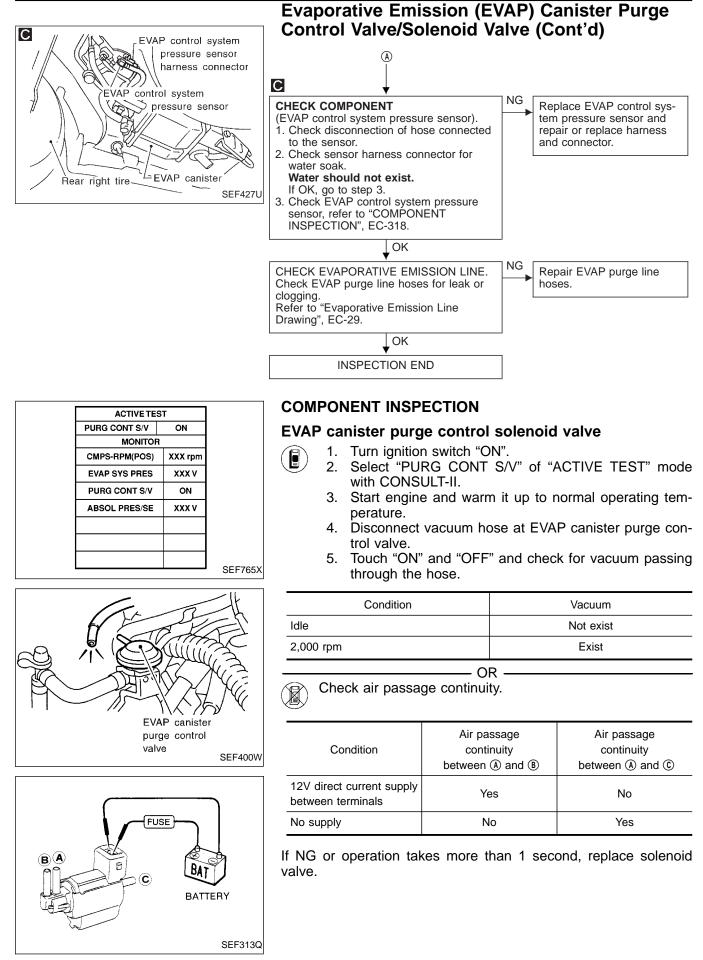
- Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
 - 2) Check voltage between ECM terminal @ and ground Voltage: 3.12 0.8V

Perform the following procedure before the voltage drops below 0.8V. If the voltage drops below 0.8V, cool down the engine and perform the entire procedure all over again.


- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON" and wait at least 15 seconds.
- 5) Restart engine and let it idle for at least 90 seconds.
- 6) Maintain the following conditions for at least 30 seconds.

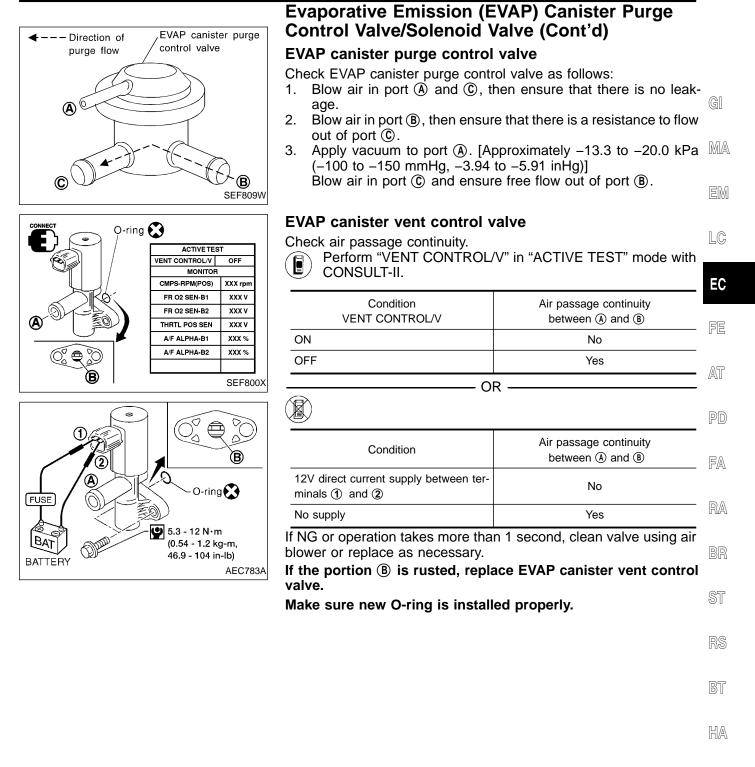
Vehicle speed: 40 - 120 km/h (25 - 75 MPH) Engine speed: 1,000 - 2,100 rpm Gear position: Suitable gear position Check voltage between ECM terminal @ and ground: 3.12 - 0.8V

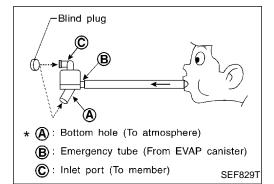
- 7) Stop the vehicle, turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON".
- 8) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-489.


NOTE:

- Hold the accelerator pedal as steady as possible during driving in steps 6.
- If the driving conditions are not satisfied in steps 6, restart the procedure.
- It is better that the fuel level is low.

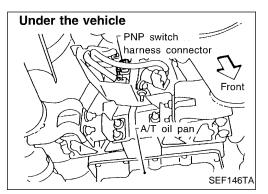
(Go to next page.)


EC-489



EL

TROUBLE DIAGNOSIS FOR DTC P1493


Water separator

- 1. Check visually for insect's nest in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that (A) and (C) are not clogged by blowing air into (B) with (A), and then (C) plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.

Park/Neutral Position (PNP) Switch

COMPONENT DESCRIPTION

When the gear position is in "P" or "N", park/neutral position (PNP) switch is "ON". ECM detects the position because the continuity of the line (the "ON" signal) exists.

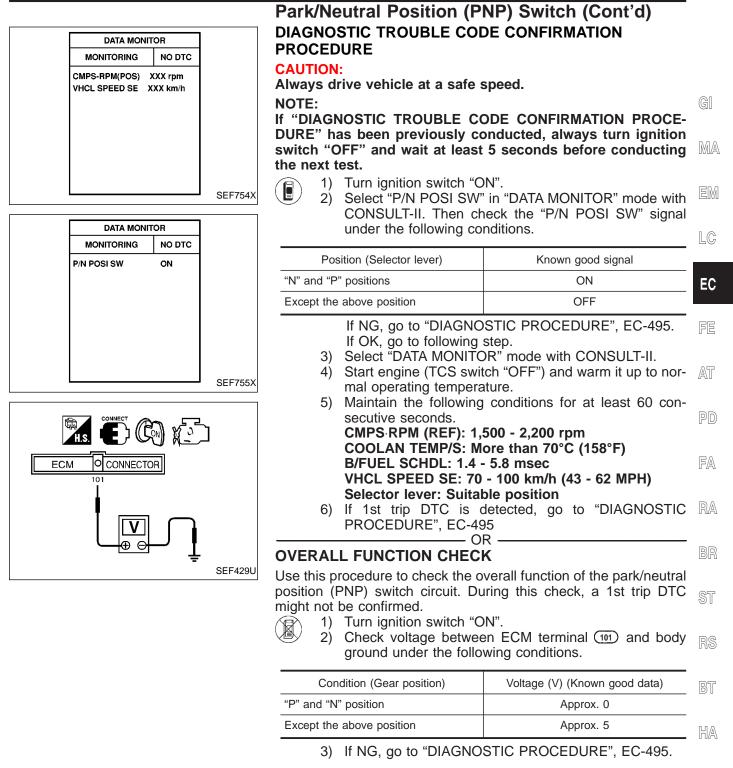
The PNP switch assembly also includes a transmission range switch to detect the selector lever position.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

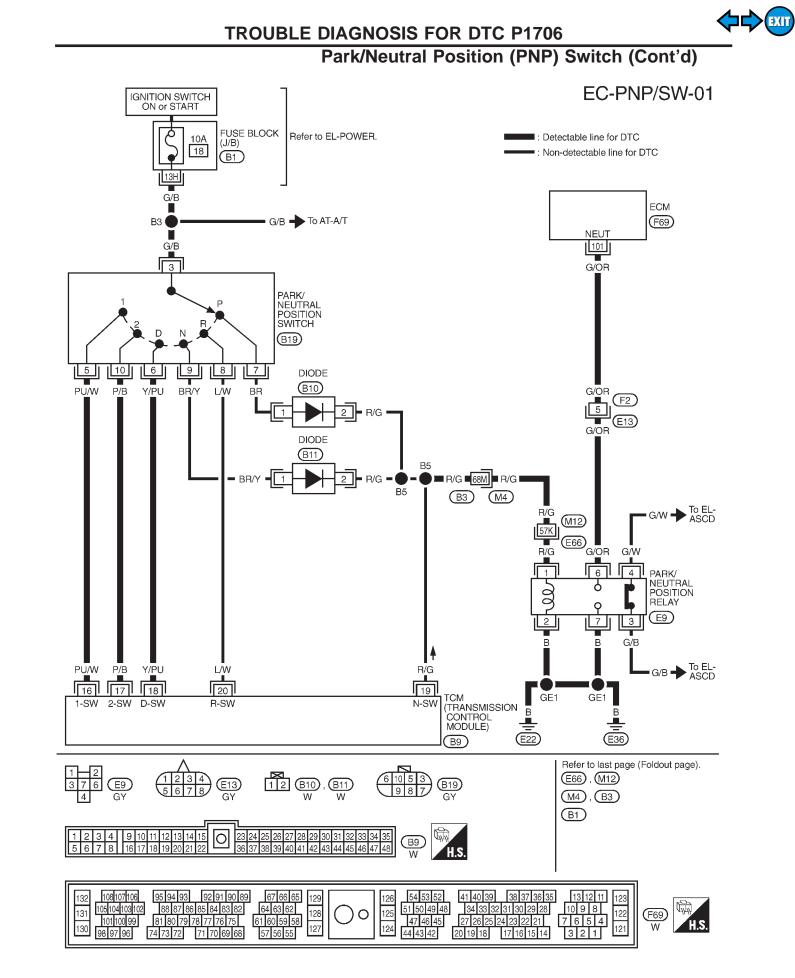
MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON
		Except above	OFF

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
404 0/05		Ignition switch "ON" Gear position is "N" or "P".	Approximately 0V	
101	101 G/OR PNP switch	Ignition switch "ON" Except the above gear position	Approximately 5V	

ON BOARD DIAGNOSIS LOGIC


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1706 1003	 The signal of the park/neutral position switch is not changed in the process of engine starting and driv- ing. 	 Harness or connectors (The PNP switch circuit is open or shorted.) Harness or connectors (The park/neutral position relay circuit is open or shorted.) PNP switch Park/neutral position relay

EL

1DX

TROUBLE DIAGNOSIS FOR DTC P1706 Park/Neutral Position (PNP) Switch (Cont'd) **DIAGNOSTIC PROCEDURE** Under the vehicle PNP switch INSPECTION START harness connector А GI Front CHECK POWER SUPPLY. NG Check the following. 1. Disconnect PNP switch harness con-• 10A fuse R A/T oil pan/ nector. • Harness for open or short MA between PNP switch and 2. Turn ignition switch "ON". 3. Check voltage between terminal (3) and fuse ground with CONSULT-II or tester. If NG, repair harness or EM SEF146TA Voltage: Battery voltage connectors. 1111 OK Park/Neutral position relay LC В NG CHECK OUTPUT SIGNAL CIRCUIT-I. Check the following. • Harness connectors EC 1. Turn ignition switch "OFF". 2. Disconnect park/neutral position relay (E66), (M12) harness connector. • Harness connectors FE 3. Check harness continuity between relay (M4), (B3) terminal ① and PNP switch terminals • Harness connectors (7), (9). (diodes) (B10), (B11) AT Continuity should exist. • Harness for open or short SEF147T If OK, check harness for short to ground between PNP switch and and short to power. relay Ма Т.S. PD If NG, repair open circuit or OK short to ground or short to power in harness or con-FA nectors. С V

NG

NG

tors.

Repair harness or connec-

Check the following.

(E13), (F2)

nectors.

• Harness connectors

• Harness for open or short

between ECM and relay

If NG, repair open circuit or

short to ground or short to power in harness or con-

А

В

С

e

Ω

θΘ

1 2 3 7 6

SEF796W

SEF797W

SEF814Q

D

CHECK GROUND CIRCUIT.

Continuity should exist.

and short to power.

1. Check harness continuity between relay

terminals (2), (7) and engine ground.

CHECK OUTPUT SIGNAL CIRCUIT-II.

1. Disconnect ECM harness connector.

Continuity should exist.

and short to power.

2. Check harness continuity between ECM

terminal (101) and relay terminal (6).

If OK, check harness for short to ground

A

(Go to next page.)

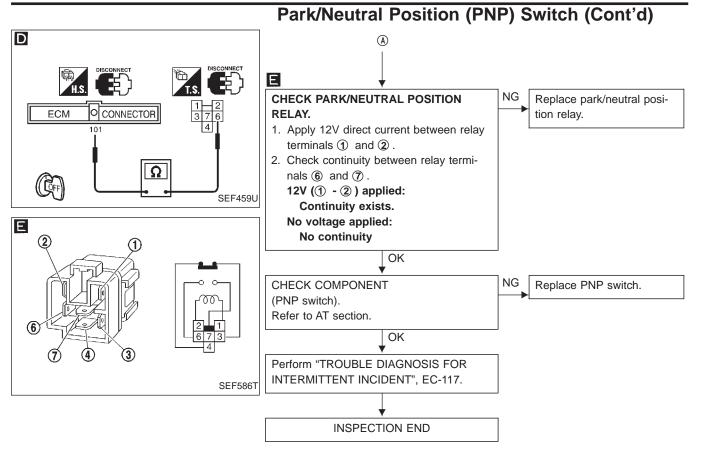
OK

If OK, check harness for short to ground

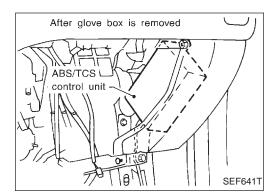
OK

IDX

RA


ST

BT


HA

EL

EXIT

ABS/TCS Control Unit

The malfunction information related to ABS/TCS control unit is transferred through the line (LAN) from ABS/TCS control unit to ECM.

Be sure to erase the malfunction information such as DTC not Only for ABS/TCS control unit but also for ECM after the ABS/TCS related repair.

MA

EM

LC

PD

FA

HA

Freeze frame data is not stored in the ECM for the ABS/TCS control unit. The MIL will not light up for ABS/TCS control unit.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	EC
* 0107	 ECM receives incorrect voltage from ABS/TCS con- trol unit continuously. 	Harness or connectors (The circuit between ECM and ABS/TCS control unit	FE
		is open or shorted.) • ABS/TCS control unit	AT

*: SAE J2012 number is not applicable

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

- 1) Turn ignition switch "ON".
 2) Select "DATA MONITOR" mode with CONSULT-II.
 3) Start engine and let it idle for at least 40 seconds.
 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-500.
 - Start engine and let it idle for at least 40 seconds.
 Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
 Perform "Diagnostic Test Mode II (Self-diagnostic
 - results)" with ECM.
 - If 1st trip DTC is detected, go to "DIAGNOSTIC BT PROCEDURE", EC-500.

DTC erasing procedure for ABS/TCS related repair

- Erase DTC code by following procedure:
 - 1) Turn ignition switch "OFF" and then turn it "ON".
 - 2) Connect CONSULT-II and select "ABS".
 3) Insert LIE990 card and install it
 - 3) Insert UE990 card and install it.
 - 4) Select "ABS" and touch "SELF-DIAG RESULTS".
 - 5) Touch "ERASE".
 - Touch "BACK" then erase malfunction code which has been stored in the TCM or ECM.

DIAGNOSTIC PROCEDURE

Refer to "DIAGNOSTIC PROCEDURE", EC-500.

ABS/TCS Communication Line

This circuit line is used to control the smooth engine operation of ABS/TCS during the TCS operation. Pulse signals are exchanged between ECM and ABS/TCS control unit.

Be sure to erase the malfunction information such as DTC not only in ABS/TCS control unit but also ECM after the ABS/TCS related repair. Refer to BR section (Self-diagnosis for ABS/ TCS control unit, "HOW TO ERASE SELF DIAGNOSTIC RESULTS").

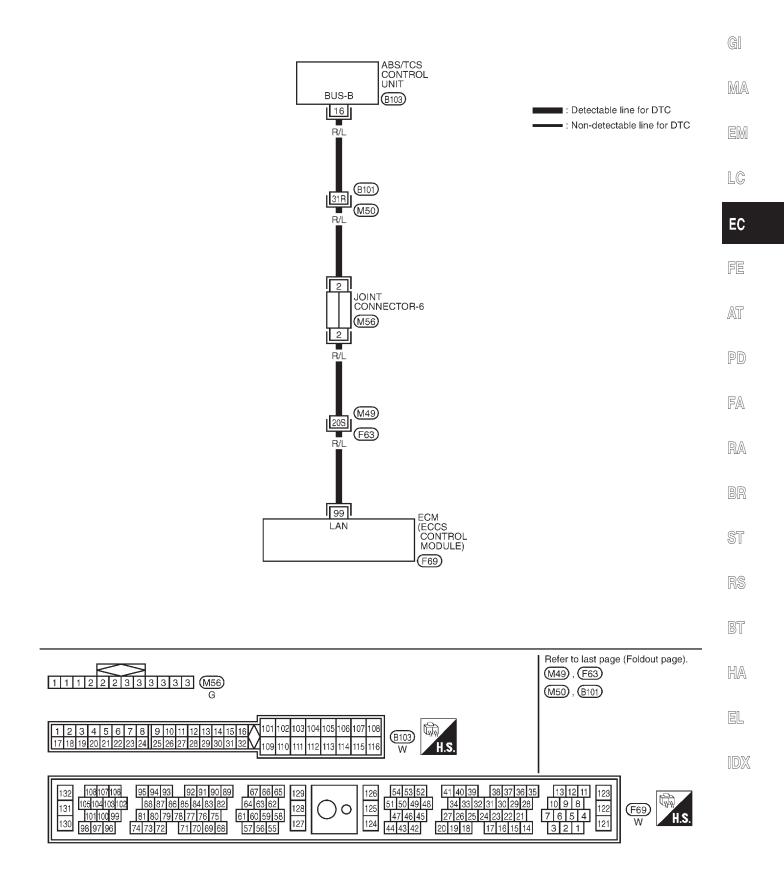
Freeze frame data is not stored in the ECM for the ABS/TCS communication line. The MIL will not light up for the ABS/TCS communication line.

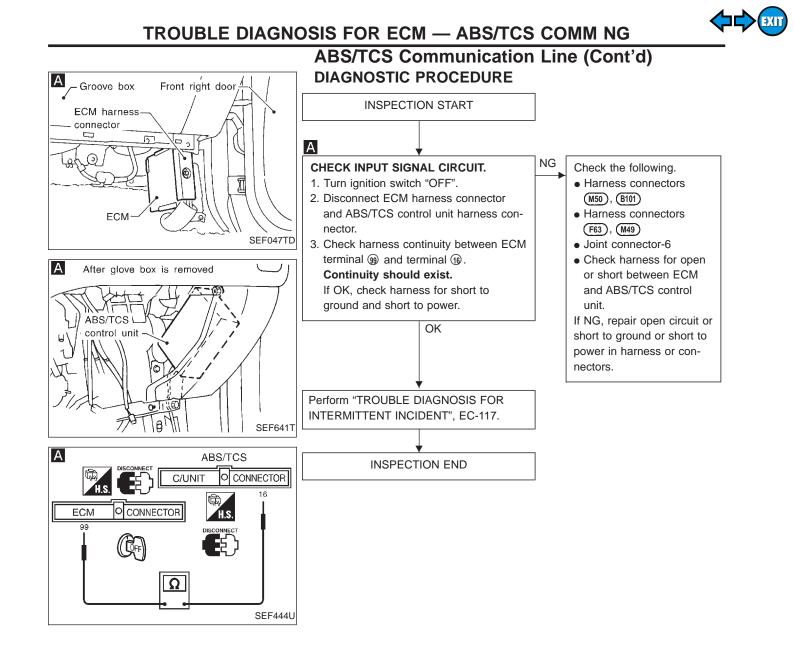
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
* 0404	 ECM receives incorrect voltage from ABS/TCS control unit continuously. 	 Harness or connectors (The communication line circuit between ECM and ABS/TCS control unit is open or shorted.) ABS/TCS control unit Dead (Weak) battery

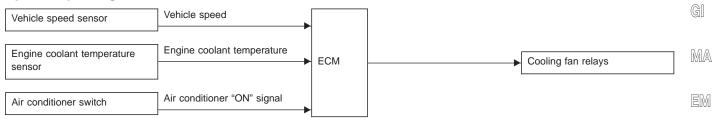
*: SAE J2012 number is not applicable.

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

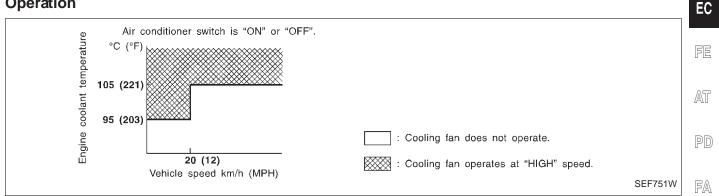

Before performing the following procedure, confirm that battery voltage is more than 10.5V.


- 1) Turn ignition switch "ON".
 - 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Start engine and let it idle for at least 3 seconds.
 - 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-500.
 OR
 - 1) Start engine and let it idle for at least 3 seconds.
 - 2) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
 - 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
 - 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-500.

ABS/TCS Communication Line (Cont'd)



Overheat


SYSTEM DESCRIPTION

Input/output signal line

The ECM controls the cooling fan corresponding to vehicle speed, engine coolant temperature and air condi-LC; tioner ON signal.

Operation

- The cooling fan operates at HIGH if diagnostic test mode II (self-diagnostic results) for engine coolant temperature sensor is "NG" or when the ECM fail-safe is activating.
- RA When A/C line pressure reaches the specified value, the triple-pressure switch turns on to operate cooling fans at low speed.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	ST
COOLING FAN	engine. • Air conditioner switch: "OFF"	Engine coolant temperature is 94°C (201°F) or less	OFF	RS
		Engine coolant temperature is between 95°C (203°F) and 104°C (219°F) at vehicle speeds less than 80 km/h	HIGH	BT
		Engine coolant temperature is 105°C (221°F) or more	HIGH	
				HA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and 💷 (ECM ground). EL

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	IDX
34	LG	Cooling fan relay-1 (High)	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)	
27	LG/R	Cooling fan relay-2 (High)	Engine is running. Cooling fan is operating.	0 - 1V	

TROUBLE DIAGNOSIS FOR OVERHEAT

Overheat (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	• Engine: After warming up, idle the engine	Air conditioner switch: "OFF"	OFF
AIR COND SIG		Air conditioner switch: "ON" (Compressor operates.)	ON
COOLING FAN	 After warming up engine, idle the engine. Air conditioner switch: "OFF" 	Engine coolant temperature is 94°C (201°F) or less	OFF
		Engine coolant temperature is between 95°C (203°F) and 104°C (219°F) at vehicle speed less than 20 km/h (12 MPH)	HIGH
		Engine coolant temperature is 105°C (221°F) or more	

ON BOARD DIAGNOSIS LOGIC

This diagnosis continuously monitors the engine coolant temperature.

If the cooling fan or another component in the cooling system malfunctions, the engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Diagnostic trouble code No.	Malfunction is detected when	Check Items (Possible Cause)
OVERHEAT	 Engine coolant reaches an abnormally high tempera-	 Harness or connectors.
0208	ture.	(The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", (EC-511).

CAUTION:

When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA section ("Changing Engine Coolant", "ENGINE MAINTENANCE"). Also, replace the engine oil.

- a. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA section ("Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS").
- b. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

TROUBLE DIAGNOSIS FOR OVERHEAT

GI

MA

EM

LC

EC

FE

AT

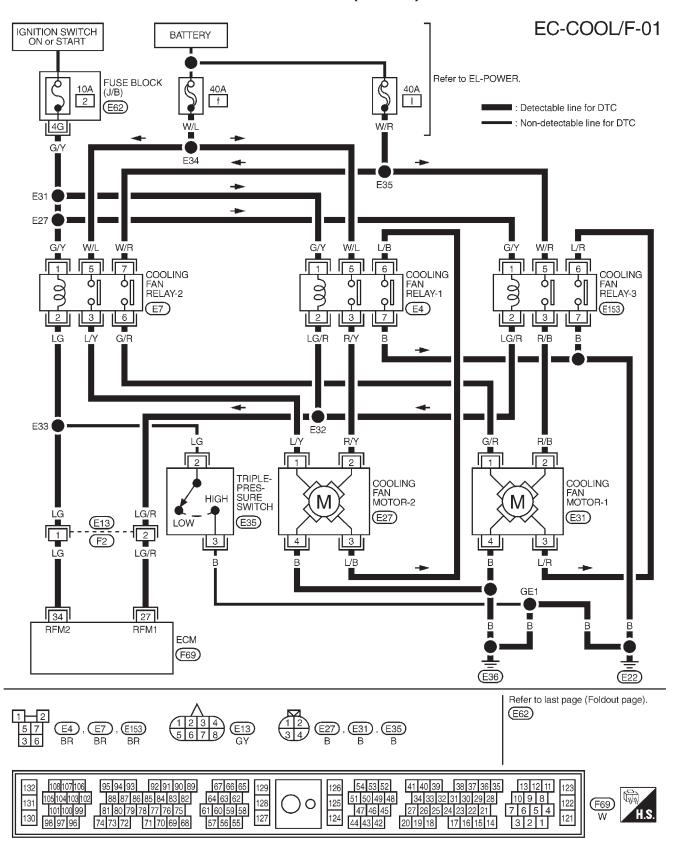
PD

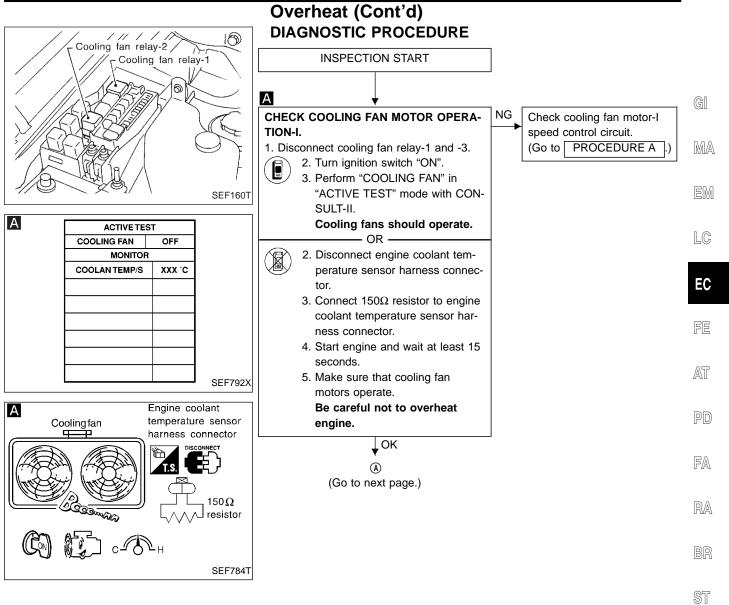
FA

RA

BT

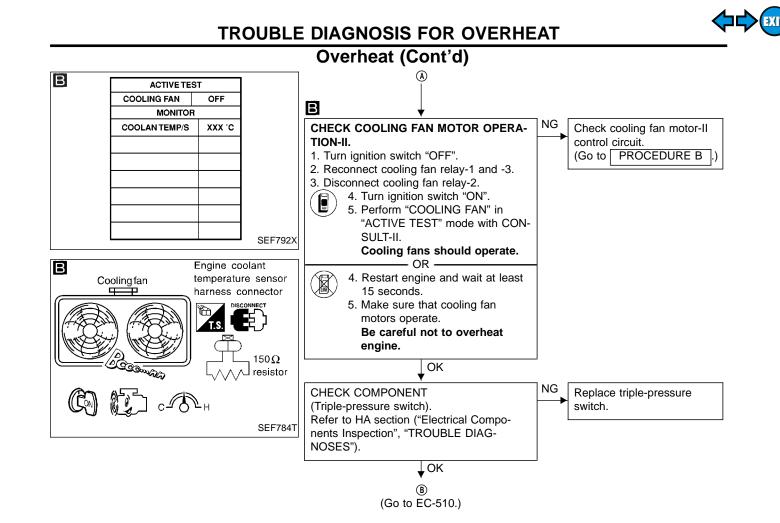
HA

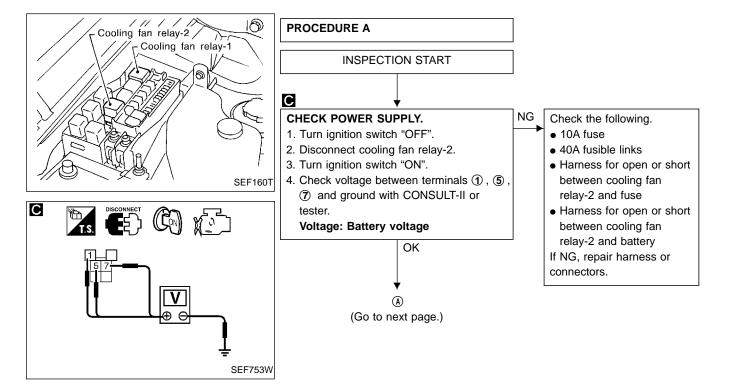

EL


[] []

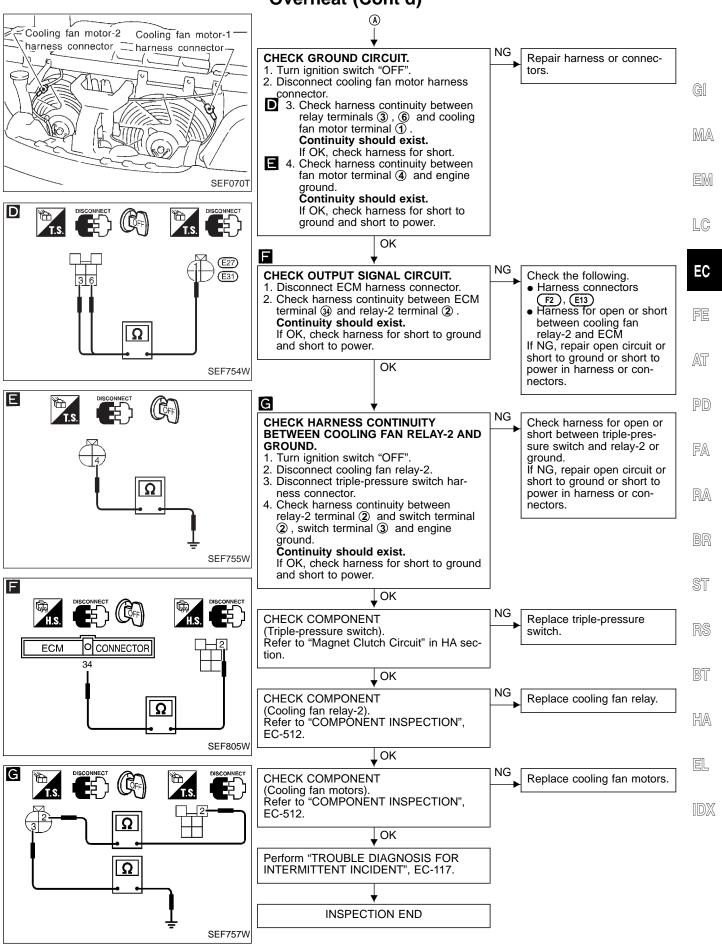
TROUBLE DIAGNOSIS FOR OVERHEAT

Overheat (Cont'd)

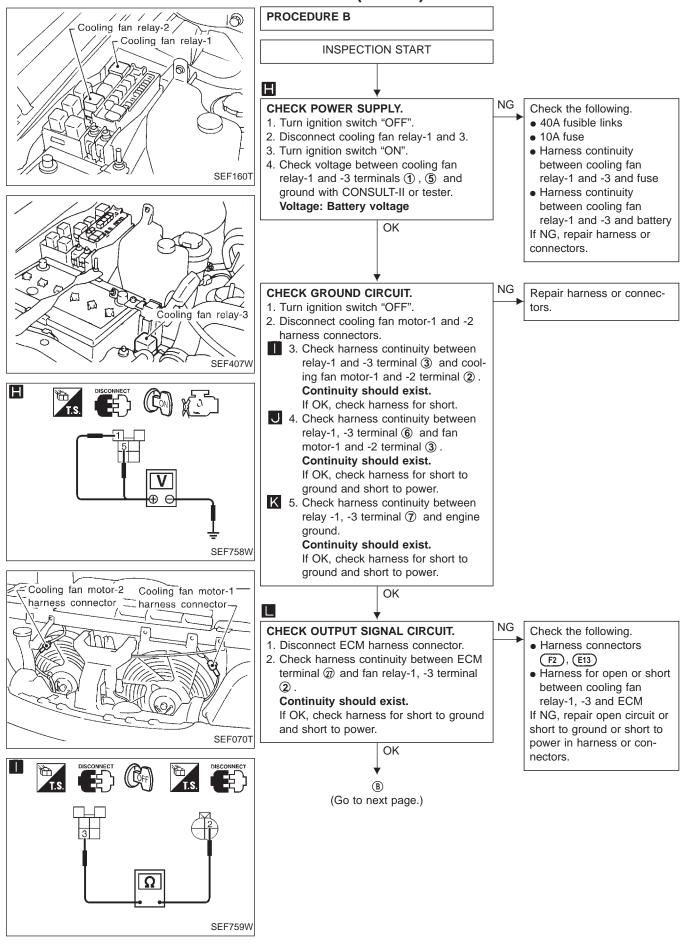

RS

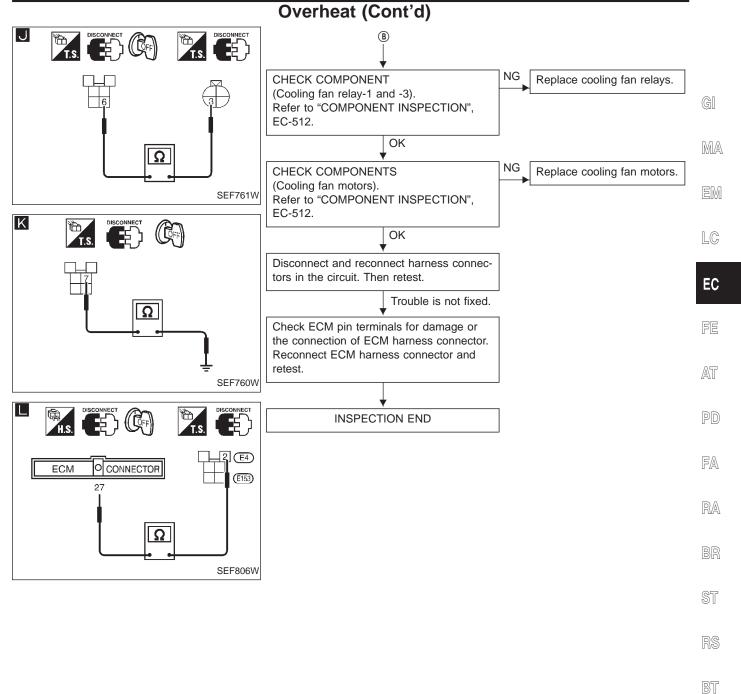

BT

HA

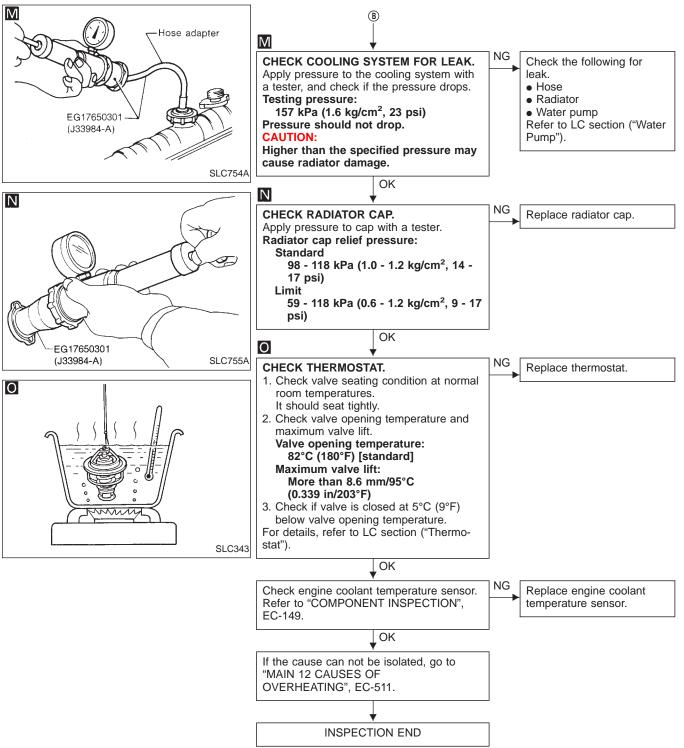

EL

IDX





Overheat (Cont'd)


HA

EL

IDX

Overheat (Cont'd)

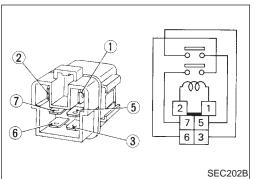
Perform FINAL CHECK by the following procedure after repair is completed.

- 1. Warn up engine. Run the vehicle for at least 20 minutes. Pay attention to engine coolant temperature gauge on the instrument panel. If the reading shows an abnormally high temperature, another part may be malfunctioning.
- 2. Stop vehicle and let engine idle. Check the intake and exhaust systems for leaks by listening for noise or visually inspecting the components.
- 3. Allow engine to cool and visually check for oil and coolant leaks. Then, perform "OVERALL FUNCTION CHECK".

Overheat (Cont'd)

Engine	Step	Inspection item	Equipment	Standard	Reference page	
OFF	1	 Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper 	Visual	No blocking	_	GI
-	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS" in MA section	MA
-	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAIN- TENANCE" in MA section	EM
-	4	Radiator cap	Pressure tester	98 - 118 kPa (1.0 - 1.2 kg/cm ² , 14 - 17 psi) 59 - 118 kPa (0.6 - 1.2 kg/cm ² , 9 - 17 psi) (Limit)	See "System Check" "ENGINE COOLING SYS- TEM" in LC section	LC EC
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check" "ENGINE COOLING SYS- TEM" in LC section	FE
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in LC section	AT
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAGNO- SIS FOR OVERHEAT" (EC-501)	PD
OFF	8	Combustion gas leak	 Color checker chemical tester 4 Gas analyzer 	Negative	_	FA
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_	RA
		Coolant overflow to res- ervoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAIN- TENANCE" in MA section	BR
OFF*4	10	Coolant return from res- ervoir tank to radiator	• Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in MA section	ST
OFF	11	Cylinder head	 Straight gauge feeler gauge 	0.1 mm (0.004 in) Maxi- mum distortion (warping)	See "Inspection", "CYLIN- DER HEAD" in EM sec- tion	RS
	12	Cylinder block and pis- tons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYLIN- DER BLOCK" in EM sec- tion	BT

*1: Turn the ignition switch ON.
*2: Engine running at 3,000 rpm for 10 minutes.
*3: Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.


*4: After 60 minutes of cool down time.

For more information, refer to "OVERHEATING CAUSE ANALYSIS" in LC section.

EL

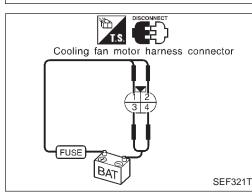
HA

IDX

Overheat (Cont'd) COMPONENT INSPECTION

Cooling fan relays-1 and -2, -3

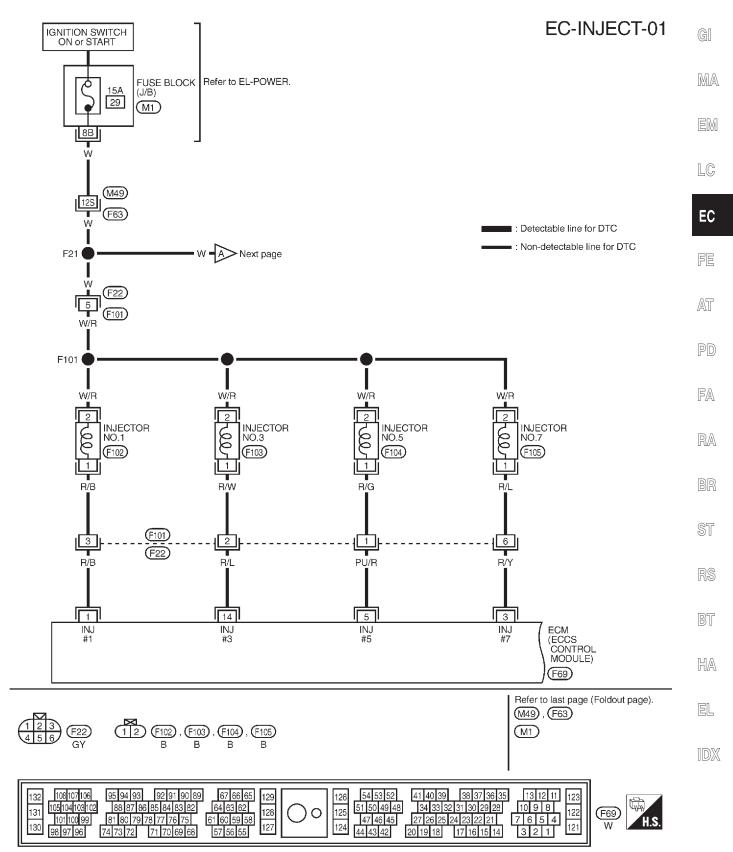
Check continuity between terminals 3 and 5, 6 and 7.


Conditions	Continuity
12V direct current supply between terminals (1) and (2)	Yes
No current supply	No

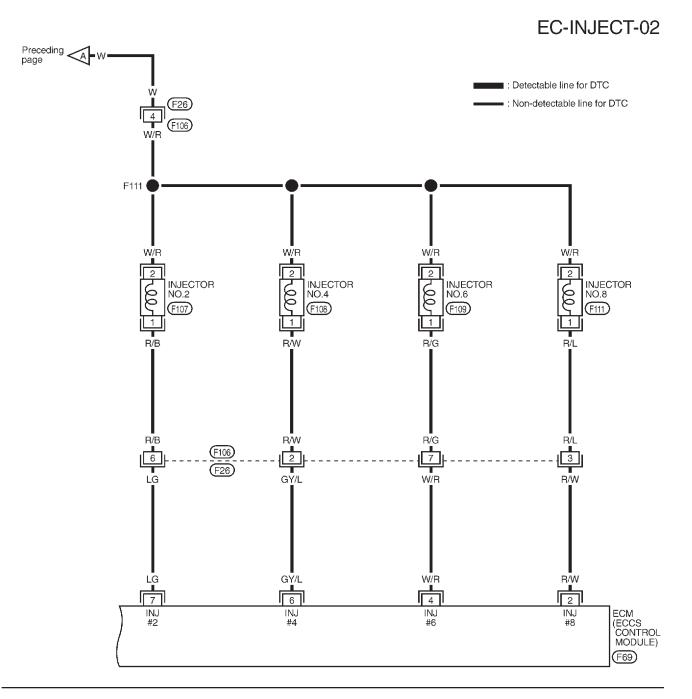
Cooling fan motor

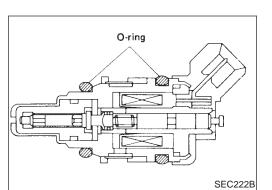
- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation as shown in the figure.

Conditions	Cooling fan motor
12V direct current supply between terminal ①, ② and ③, ④ (Ground)	Cooling fan operates at high speed


If NG, replace cooling fan motor.

Injector


LEFT BANK


Injector (Cont'd)

RIGHT BANK

$ \begin{bmatrix} 132 & 106 107 106 & 95 94 93 & 92 91 90 89 & 67 66 66 & 129 \\ 131 & 105 104 103 102 & 88 87 86 85 84 83 82 & 64 63 62 \\ 130 & 98 97 96 & 74 73 72 & 71 70 69 68 & 57 56 55 \\ \hline 120 & 121 & 121 \\ 130 & 98 97 96 & 74 73 72 & 71 70 69 68 & 57 56 55 \\ \hline 120 & 121 & 121 \\ \hline 121 & 121 & 123 \\ \hline 122 & 121 & 121 & 123 \\ \hline 124 & 44 342 & 20 19 18 & 17 16 15 14 & 3 2 1 \\ \hline 124 & 44 342 & 20 19 18 & 17 16 15 14 & 3 2 1 \\ \hline 124 & 44 342 & 20 19 18 & 17 16 15 14 & 3 2 1 \\ \hline 121 & 121 & 123 \\ \hline 122 & 121 & 121 & 123 \\ \hline 123 & 121 & 121 & 123 \\ \hline 124 & 44 342 & 20 19 18 & 17 16 15 14 & 3 2 1 \\ \hline 124 & 44 342 & 20 19 18 & 17 16 15 14 & 3 2 1 \\ \hline 124 & 44 342 & 20 19 18 & 17 16 15 14 & 3 2 1 \\ \hline 124 & 121 & 123 \\ \hline 124 & 121 & 124 \\ \hline 124 & 121 & 124 \\ \hline 124 & 124 & 124$	(F69) W H.S.
---	-----------------

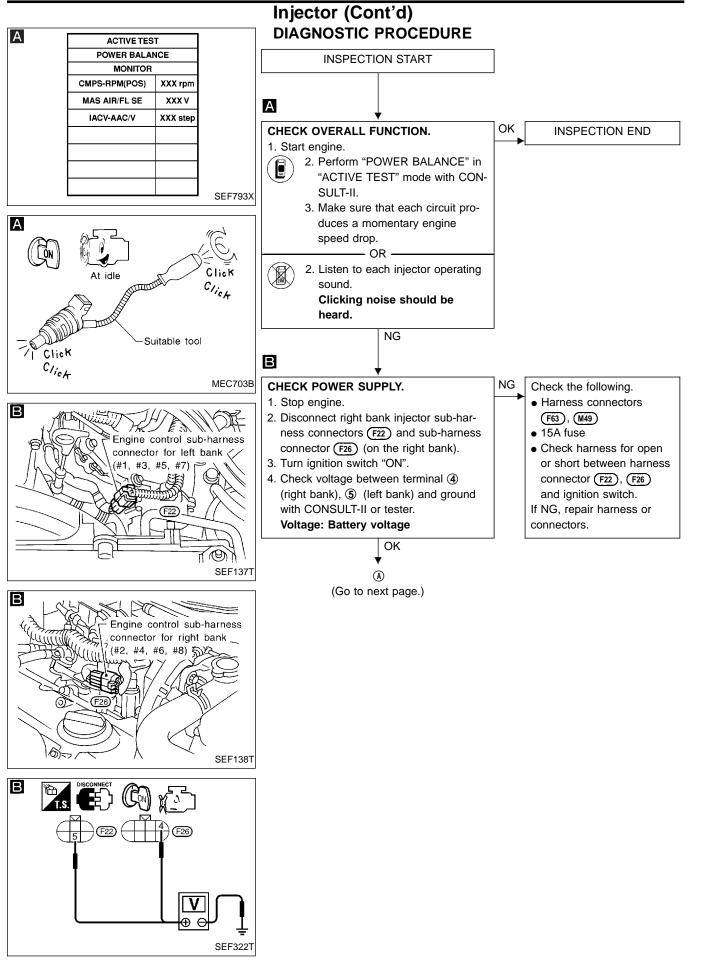
Injector (Cont'd) COMPONENT DESCRIPTION

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel meeds.

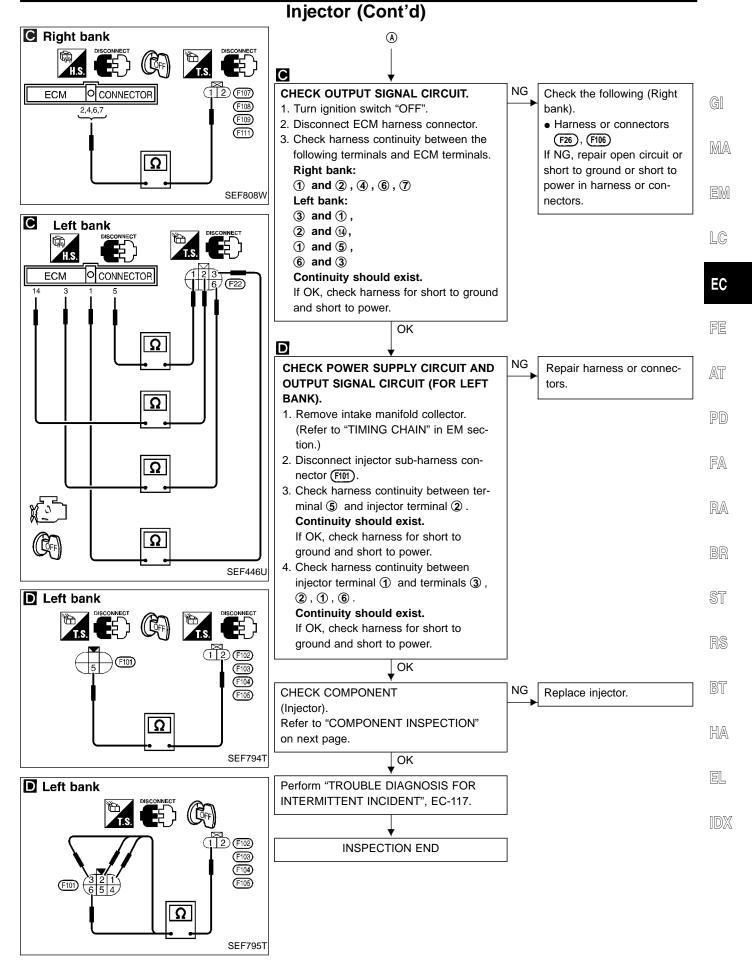
EM

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and 128 (ECM ground).

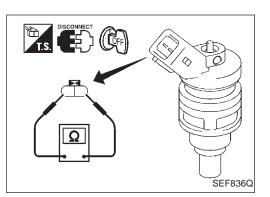

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	EC
1	R/B	Injector No. 1		BATTERY VOLTAGE (11 - 14V)	FE
2	R/W	Injector No. 8	Engine is running. (Warm-up condition)	(V) 20 10	AT
3	R/Y	Injector No. 7	L Idle speed	0 20 ms	PD
14	R/L	Injector No. 3		SEF549T	FA
4	W/R	Injector No. 6		BATTERY VOLTAGE (11 - 14V)	RA
5	PU/R	Injector No. 5	Engine is running.	(V) 20	BR
6	GY/L	Injector No. 4	Engine speed is 2,000 rpm.	0 20 ms	ST
7	L/G	Injector No. 2		SEF550T	RS

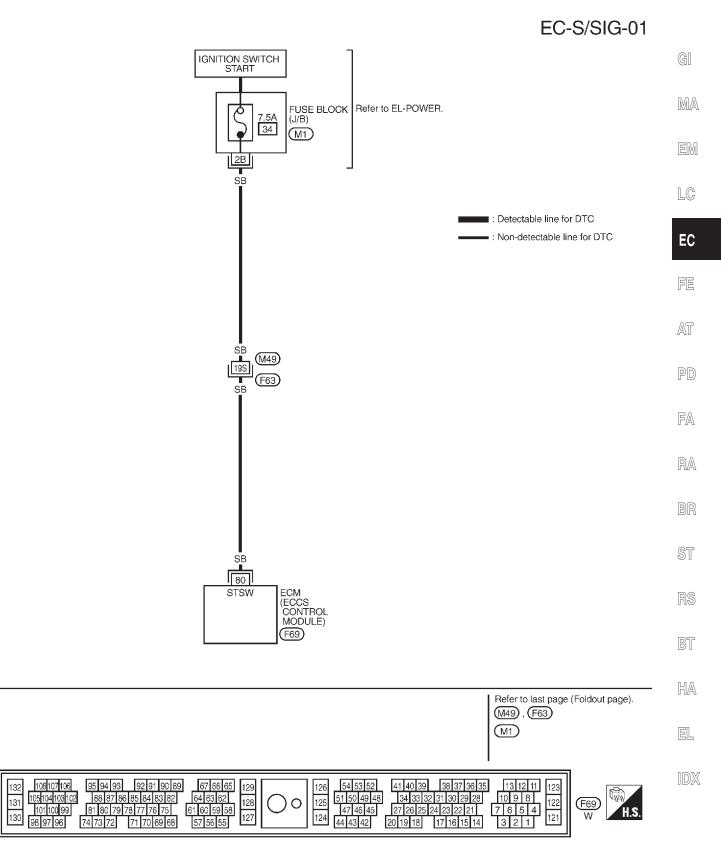
BT

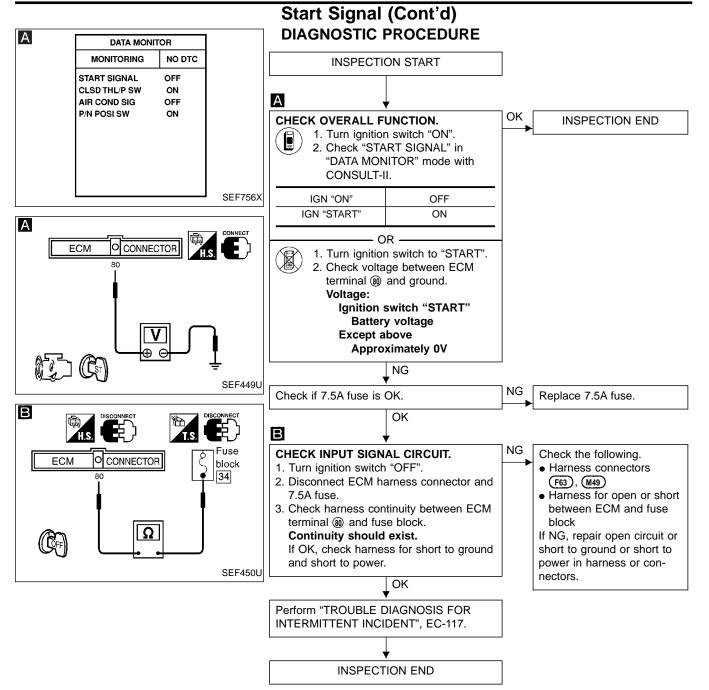

HA

EL

IDX

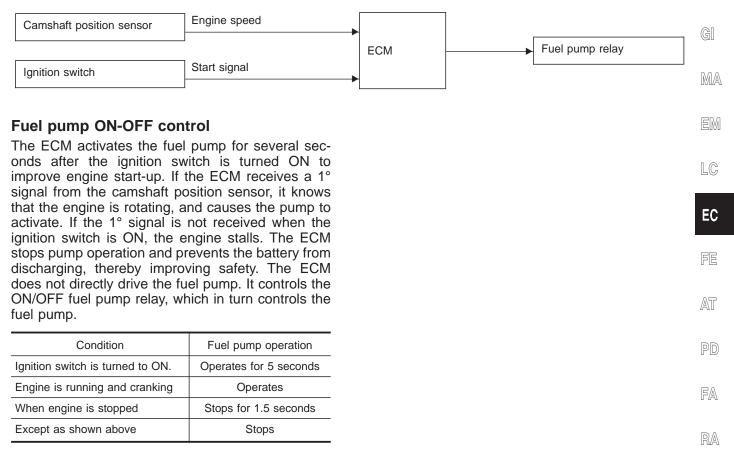



Injector (Cont'd) COMPONENT INSPECTION


Injector

- Disconnect injector harness connector.
 Check resistance between terminals as shown in the figure. Resistance: 10 - 14 Ω at 25°C (77°F)
 - If NG, replace injector.

Start Signal



BR

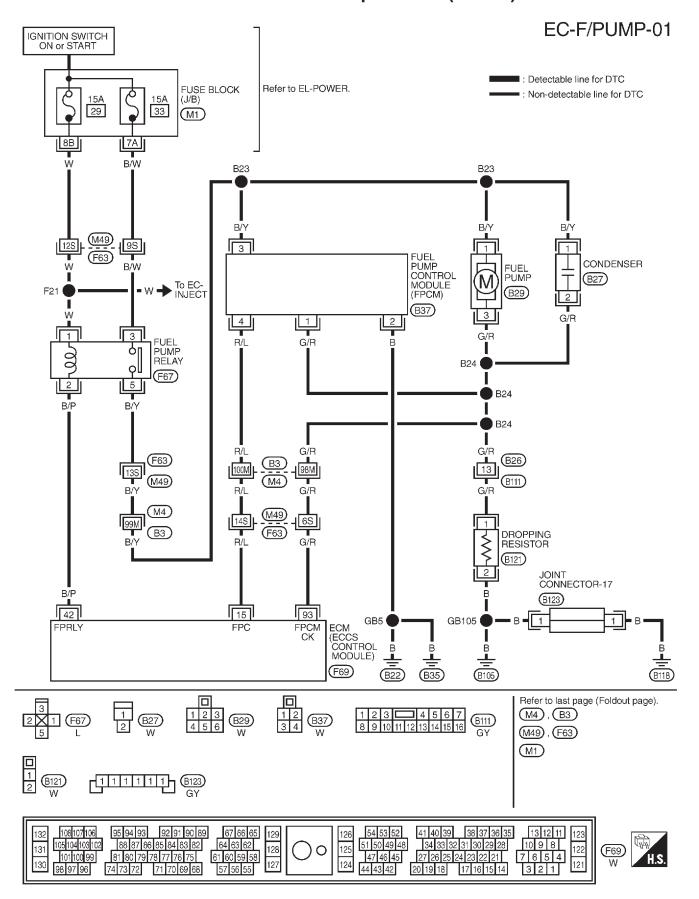
Fuel Pump Control

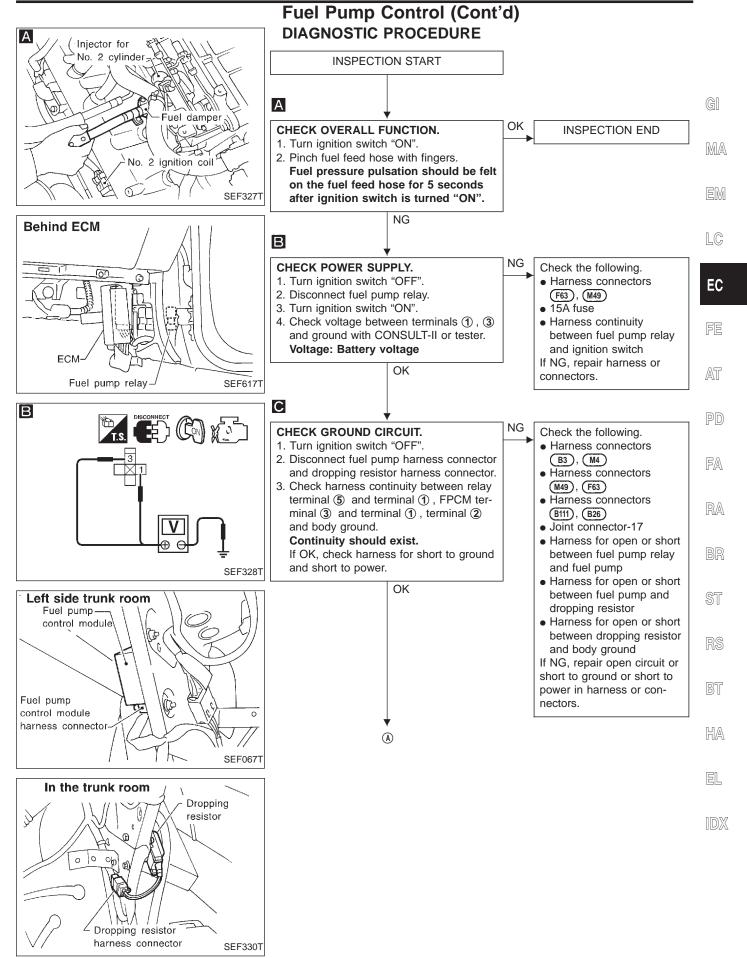
SYSTEM DESCRIPTION

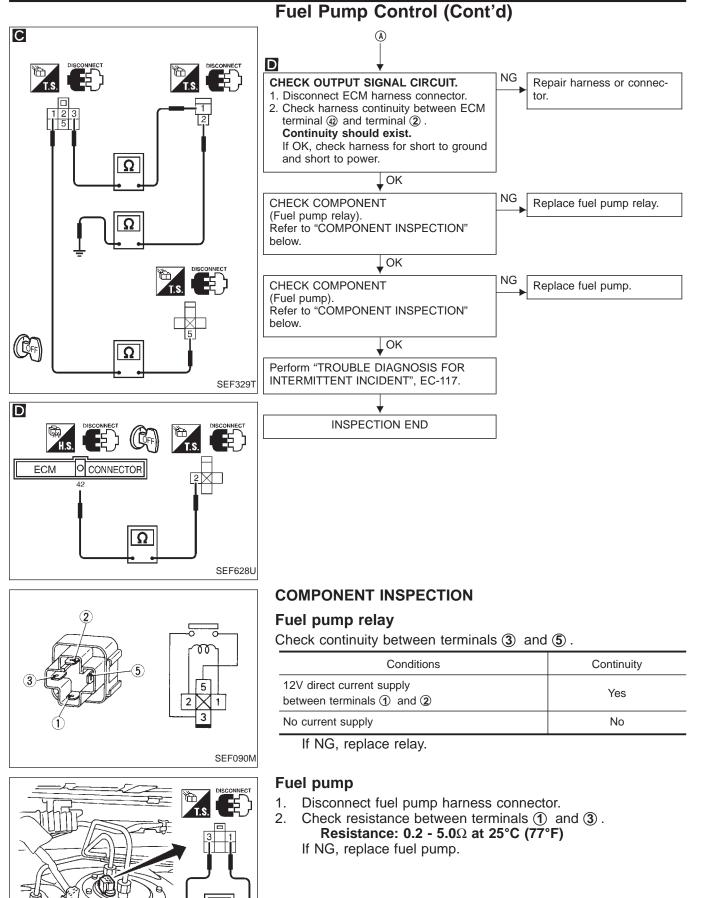
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

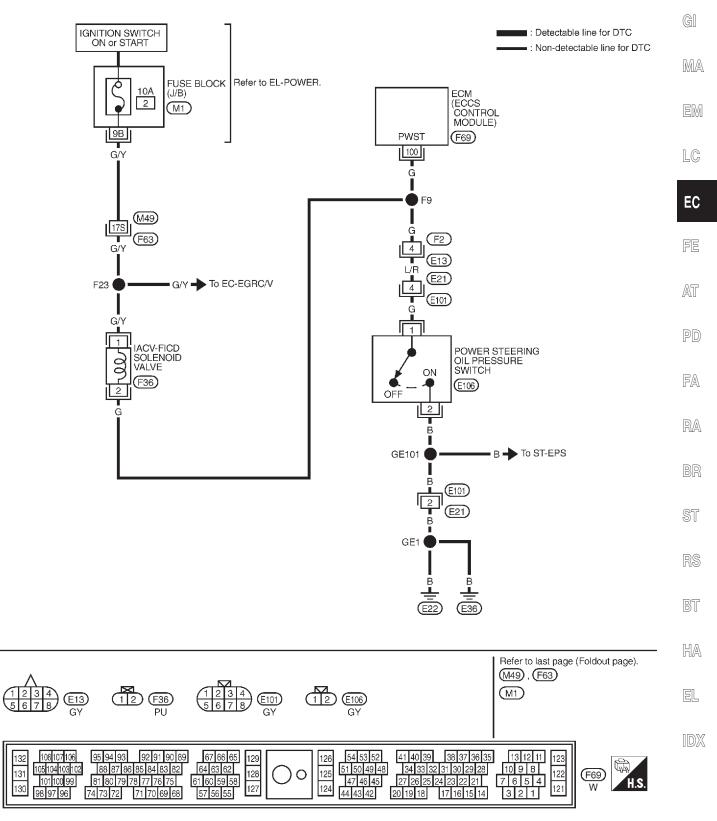
MONITOR ITEM	CONDITION	SPECIFICATION	ST
FUEL PUMP RLY	 Ignition switch is turned to ON (Operates for 1 second) Engine running and cranking 	ON	
	Except as shown above	OFF	RS


ECM TERMINALS AND REFERENCE VALUE

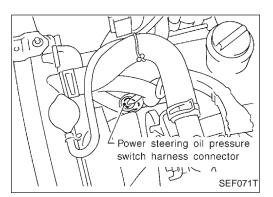

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	HA
11	PU	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running.	0 - 1V	EL
			Ignition switch "ON" 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	

Fuel Pump Control (Cont'd)


EC-524

SEF161T



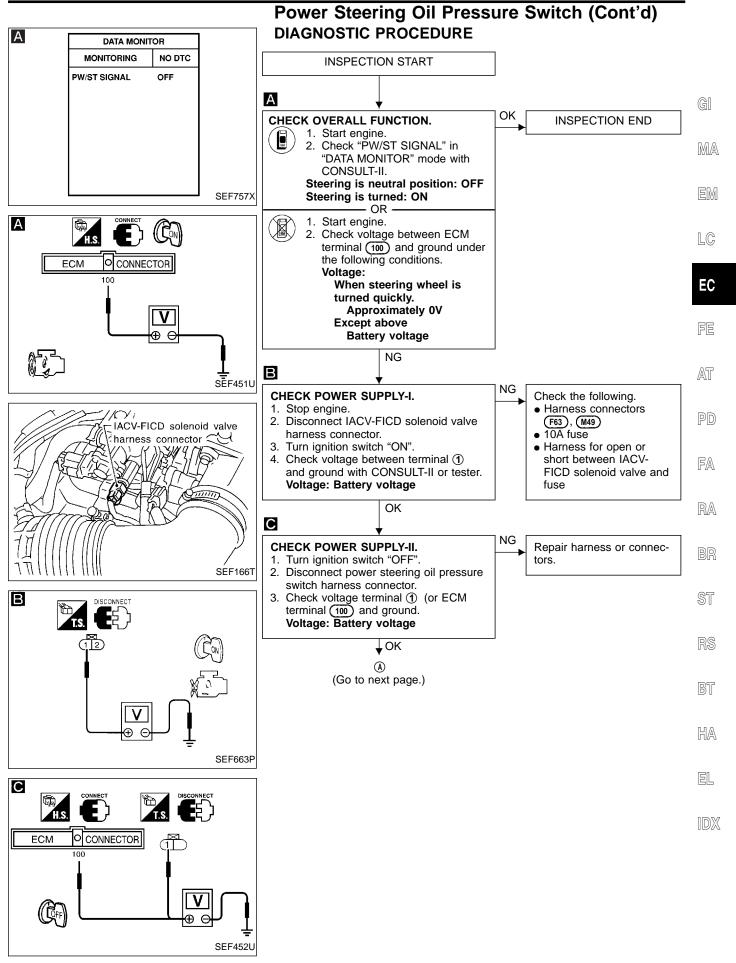
Power Steering Oil Pressure Switch

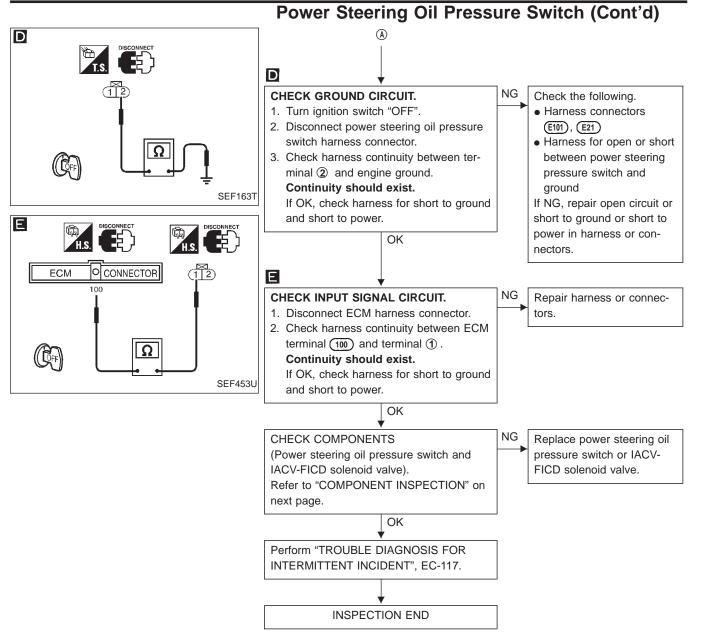
EC-PST/SW-01

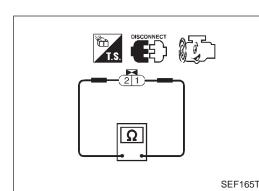
Power Steering Oil Pressure Switch (Cont'd) COMPONENT DESCRIPTION

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-FICD solenoid valve to increase the idle speed and adjust for the increased load.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE


Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	 Engine: After warming up, idle the engine 	Steering wheel in neutral position (forward direction)	OFF
		The steering wheel is turned	ON

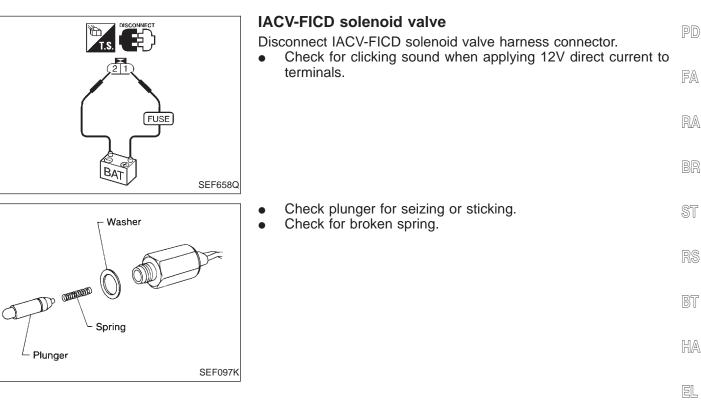

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and (128) (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
100	G	G Power steering oil pres- sure switch	Engine is running.	0 - 1.5V
100	9		Engine is running. Steering wheel is not being turned.	BATTERY VOLTAGE (11 - 14V)

Power Steering Oil Pressure Switch (Cont'd) **COMPONENT INSPECTION**

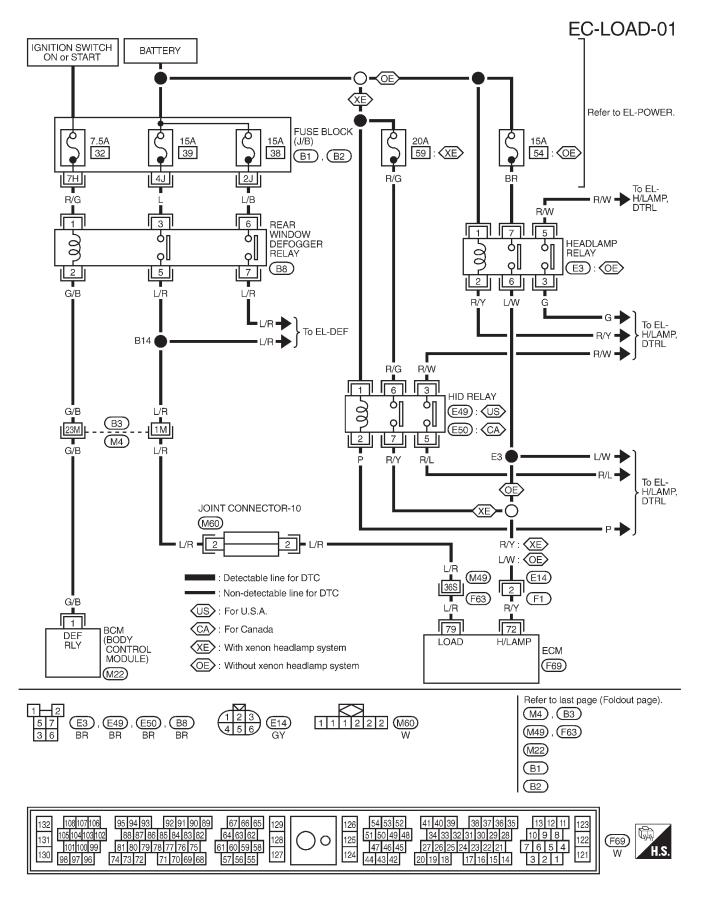
Power steering oil pressure switch

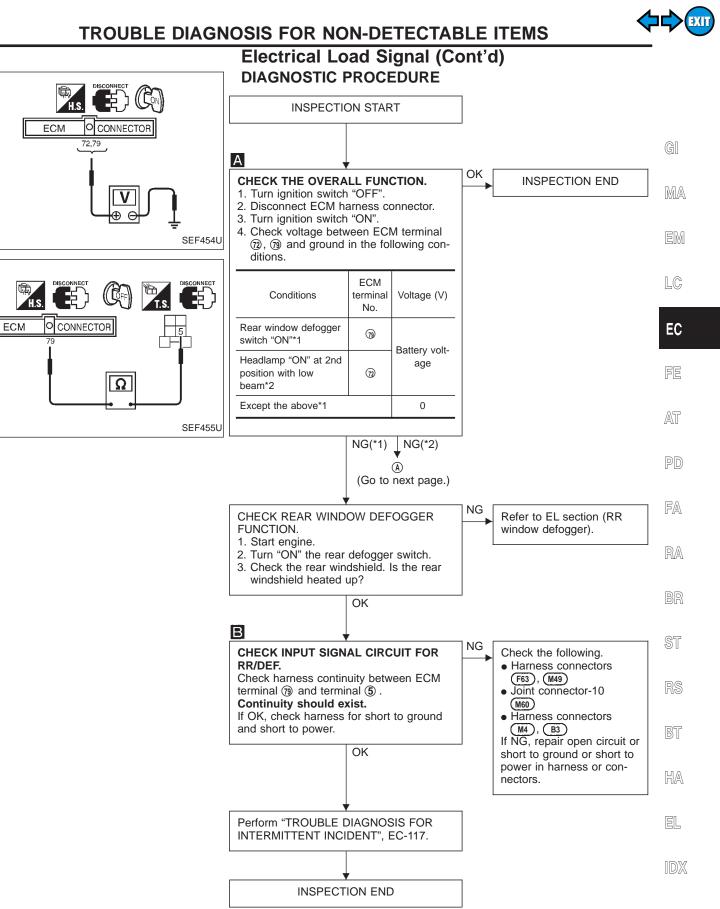

- 1. Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals (1) and (2).

Conditions	Continuity	MA
Steering wheel is being turned	Yes	
Steering wheel is not being turned	No	EM

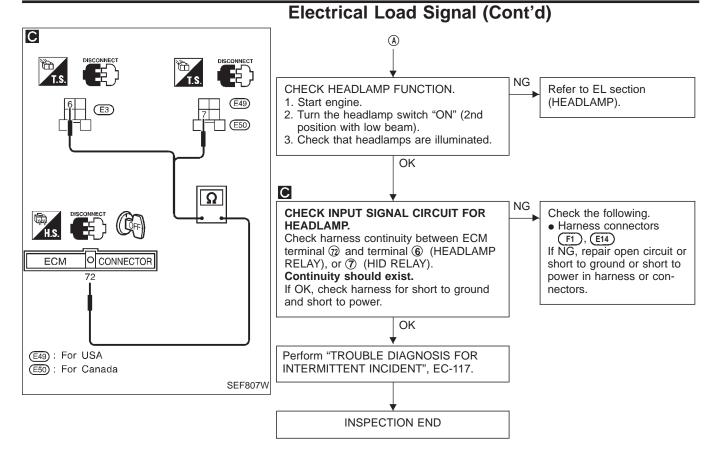
If NG, replace power steering oil pressure switch.

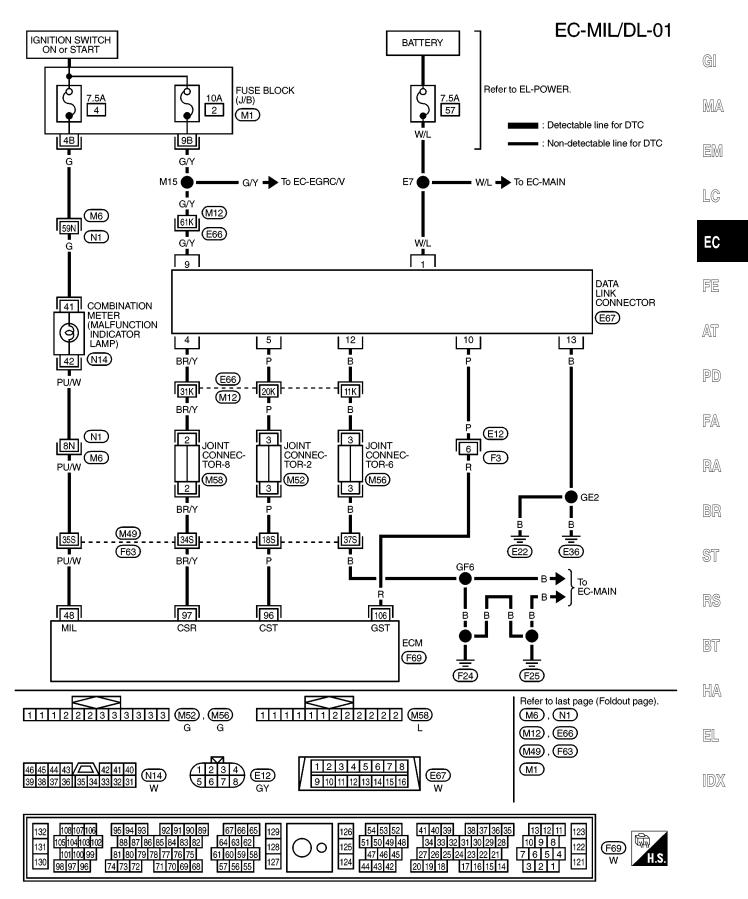
LC EC FE AT PD FA RA BR


GI



1DX


Electrical Load Signal


А

В

MIL & Data Link Connectors

General Specifications

PRESSURE REGULATOR

Fuel pressure	kPa (kg/cm², psi)	
At idle		Approximately 235 (2.4, 34)
	ls after ignition ed OFF to ON	Approximately 294 (3.0, 43)

Inspection and Adjustment

Target idle speed*1	rpm	
No-load*3		650±50 (in "P" or "N" position)
Base idle speed*2	rpm	
No-load*3		600±50 (in "P" or "N" position)
Air conditioner: ON (in "N" position)		More than 700 rpm
Ignition timing		15°±2° BTDC

*1: TPS harness connector connected.

*2: Using CONSULT-II "WORK SUPPORT" or TPS harness connector disconnected.

*3: Under the following conditions:

Air conditioner switch: OFF •

Electric load: OFF (Lights, heater, fan & rear defogger) •

MASS AIR FLOW SENSOR

Supply voltage	Battery voltage (11 - 14)	
Output voltage	1.0 - 1.7 at idle* Approximately 2.1 at 2,500	
Mass air flow (Using CONSULT-II or GST) g·m/sec	3.0 - 6.0 at idle* 12.9 - 25.3 at 2,500 rpm*	

*: Engine is warmed up sufficiently and idling under no-load.

ENGINE COOLANT TEMPERATURE SENSOR

Temperature °C (°F)	Resistance (kΩ)	
20 (68)	2.1 - 2.9	
50 (122)	0.68 - 1.00	
90 (194)	0.236 - 0.260	

EGR TEMPERATURE SENSOR

EGR temperature °C (°F)	Voltage (V)	Resistance (MΩ)
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

FRONT HEATED OXYGEN SENSOR **HEATER**

Resistance [at 25°C (77°F)] Ω

REAR HEATED OXYGEN SENSOR HEATER

Ω Resistance [at 25°C (77°F)]

2.3 - 4.3

FUEL PUMP

Resistance [at 25°C (77°F)]

0.2 - 5.0

Approximately 30

2.3 - 4.3

IACV-AAC VALVE (Step motor type)

Ω

Resistance [at 25°C (77°F)] Ω

INJECTOR

Resistance [at 25°C (77°F)] Ω	10 - 14
--------------------------------------	---------

THROTTLE POSITION SENSOR

Accelerator pedal conditions	Voltage*	
Completely released (a)	0.15 - 0.85	
Partially released	Between (a) and (b)	
Completely depressed (b)	3.5 - 4.7	

*: Measured with vacuum applied to the throttle opener using a vacuum pump.

CALCULATED LOAD VALUE

	Calculated load value % (Using CONSULT-II or GST)
At idle	13.0 - 32
At 2,500 rpm	13.0 - 25.5

INTAKE AIR TEMPERATURE SENSOR

Temperature °C (°F)	Resistance	
20 (68)	2.1 - 2.9 kΩ	
80 (176)	0.68 - 1.00 kΩ	

SERVICE DATA AND SPECIFICATIONS (SDS)

DROPPING RESISTOR

Ω

Resistance [at 25°C (77°F)]

Approximately 0.8

Inspection and Adjustment (Cont'd) **CRANKSHAFT POSITION SENSOR (OBD)**

Ω 166.5 - 203.5 [at 25°C (77°F)] Resistance

EVAP CANISTER PURGE VOLUME CONTROL VALVE

Resistance [at 25°C (77°F)]	Ω	35 - 43

INTAKE VALVE TIMING CONTROL POSITION SENSOR		
Ω	600 - 740	MA
		EM
		LC
		EC
		FE
		AT
		PD
		FA
		RA
		BR
		ST
	2	8

IDX

EL

RS

BT

HA

NOTES