ENGINE CONTROL SYSTEM

SECTION EC

GI

MA

EM

CONTENTS

-	7/	"
	-	-

·	
	42
PRECAUTIONS AND PREPARATION8 ON BOARD DIAGNOSTI	SYSTEM
Special Service Tool8 DESCRIPTION	49
Commercial Service Tools8 Introduction	49
Supplemental Restraint System (SRS) "AIR Two Trip Detection Log	:49 AT
BAG" and "SEAT BELT PRE-TENSIONER"10 Emission-related Diagr	stic Information50
Precautions for On Board Diagnostic (OBD) Malfunction Indicator L	mp (MIL)65
System of Engine and A/T10 OBD System Operatio	Chart69
Engine Fuel & Emission Control System11 CONSULT-II	74
	·)85 厚魚
ENGINE AND EMISSION CONTROL OVERALL TROUBLE DIAGNOSIS	ntroduction87
SYSTEM14 Introduction	87
Circuit Diagram	87 RA
System Diagram	Vork Flow89
	89
Vacuum Hose Drawing19 Description for Work F	w90 PM
System Chart TROUBLE DIAGNOSIS -	Basic Inspection91
	91 ST
0101EW DE00th 1101421	General Description97
Multiport Fuel Injection (MFI) System21 Diagnostic Trouble Co	
LIECTIONIC IGNITION (LI) 3/3(EI)23	97 RS
AII CONOMONINO CHI CONTO	98
speed)25	value in Data Monitor
EVAPORATIVE EMISSION SYSTEM 76	Cranb in Data Manitor
Description	Graph in Data Monitor
Increation	erence Value107
Evaporative Emission Line Drawing29 TROUBLE DIAGNOSIS	
On Poord Potualing Vanor Possyary (ORVP) 21	117
DOCITIVE OD ANIZOA CE VENTU ATIONI	117
D 1.0	ations117
·	117
	OR POWER SUPPLY118
	Ground Circuit118
	OR DTC P0100124
Injector Removal and Installation38 Mass Air Flow Sensor	//AFS)124
Throttle Opener	OR DTC P0105132
	or132
Direct Ignition System - How to Check Idle TROUBLE DIAGNOSIS	OR DTC P0110140
Speed and Ignition Timing40 Intake Air Temperature	Sensor140

CONTENTS (Cont'd)

TROUBLE DIAGNOSIS FOR DTC P0115145	Fuel Injection System Function (Lean side)	
Engine Coolant Temperature Sensor (ECTS)145	(P0171: Bank 1), (P0174: Bank 2)	245
TROUBLE DIAGNOSIS FOR DTC P0120150	TROUBLE DIAGNOSIS FOR DTC P0172 (B1),	
Throttle Position Sensor150	P0175 (B2)	251
TROUBLE DIAGNOSIS FOR DTC P0125161	Fuel Injection System Function (Rich side)	
Engine Coolant Temperature (ECT) Sensor161	(P0172: Left bank), (P0175: Right bank)	251
TROUBLE DIAGNOSIS FOR DTC P0130 (B1),	TROUBLE DIAGNOSIS FOR DTC P0180	257
P0150 (B2) 166	Fuel Tank Temperature Sensor	257
Heated Oxygen Sensor 1 (Front) (P0130: Bank	TROUBLE DIAGNOSIS FOR DTC P0300 - P0308.	262
1), (P0150: Bank 2) (Circuit)166	No. 1 - 8 Cylinder Misfire, Multiple Cylinder	
TROUBLE DIAGNOSIS FOR DTC P0131 (B1),	Misfire	262
P0151 (B2) 174	TROUBLE DIAGNOSIS FOR DTC P0325 (B1),	
Heated Oxygen Sensor 1 (Front) (P0131: Bank	P0330 (B2)	267
1), (P0151: Bank 2) (Lean shift monitoring)174	Knock Sensor (KS) (P0325: Left bank), (P0330:	
TROUBLE DIAGNOSIS FOR DTC P0132 (B1),	Right bank)	267
P0152 (B2) 180	TROUBLE DIAGNOSIS FOR DTC P0335	270
Heated Oxygen Sensor 1 (Front) (P0132: Bank	Crankshaft Position Sensor (CKPS) (OBD)	270
1), (P0152: Bank 2) (Rich Shift Monitoring)180	TROUBLE DIAGNOSIS FOR DTC P0340	275
TROUBLE DIAGNOSIS FOR DTC P0133 (B1),	Camshaft Position Sensor (CMPS)	275
P0153 (B2) 187	TROUBLE DIAGNOSIS FOR DTC P0400	281
Heated Oxygen Sensor 1 (Front) (P0133: Bank	EGR Function (Close)	
1), (P0153: Bank 2) (Response monitoring)187	TROUBLE DIAGNOSIS FOR DTC P0402	
TROUBLE DIAGNOSIS FOR DTC P0134 (B1),	EGRC-BPT Valve Function	290
P0154 (B2) 196	TROUBLE DIAGNOSIS FOR DTC P0420 (B1),	
Heated Oxygen Sensor 1 (Front) (P0134: Bank	P0430 (B2)	
1), (P0154: Bank 2)196	Three Way Catalyst Function (P0420: Left bank),	
TROUBLE DIAGNOSIS FOR DTC P0135 (B1),	(P0430: Right bank)	
P0155 (B2)	TROUBLE DIAGNOSIS FOR DTC P0440	298
Heated Oxygen Sensor 1 Heater (Front) (P0135:	Evaporative Emission (EVAP) Control System	000
Bank 1), (P0155: Bank 2)204	(Small Leak) (Negative Pressure)	
TROUBLE DIAGNOSIS FOR DTC P0137 (B1), P0157 (B2)210	TROUBLE DIAGNOSIS FOR DTC P0443	309
Heated Oxygen Sensor 2 (Rear) (P0137: Bank	Evaporative Emission (EVAP) Canister Purge	300
1), (P0157: Bank 2) (Min. Voltage Monitoring)210	Volume Control Valve (Circuit) TROUBLE DIAGNOSIS FOR DTC P0446	
TROUBLE DIAGNOSIS FOR DTC P0138 (B1),	Evaporative Emission (EVAP) Canister Vent	
P0158 (B2) 218	Control Valve (Circuit)	315
Heated Oxygen Sensor 2 (Rear) (P0138: Bank	TROUBLE DIAGNOSIS FOR DTC P0450	
1), (P0158: Bank 2) (Max. Voltage Monitoring)218	Evaporative Emission (EVAP) Control System	
TROUBLE DIAGNOSIS FOR DTC P0139 (B1),	Pressure Sensor	320
P0159 (B2) 226	TROUBLE DIAGNOSIS FOR DTC P0455	
Heated Oxygen Sensor 2 (Rear) (P0139: Bank	Evaporative Emission (EVAP) Control System	
1), (P0159: Bank 2) (Response Monitoring)226	(Gross Leak)	326
TROUBLE DIAGNOSIS FOR DTC P0140 (B1),	TROUBLE DIAGNOSIS FOR DTC P0500	
P0160 (B2) 233	Vehicle Speed Sensor (VSS)	335
Heated Oxygen Sensor 2 (Rear) (P0140: Bank	TROUBLE DIAGNOSIS FOR DTC P0505	340
1), (P0160: Bank 2) (High voltage)233	Idle Air Control Valve (IACV) - Auxiliary Air	
TROUBLE DIAGNOSIS FOR DTC P0141 (B1),	Control (AAC) Valve	
P0161 (B2) 239	TROUBLE DIAGNOSIS FOR DTC P0510	
Heated Oxygen Sensor 2 Heaters (Rear)	Closed Throttle Position Switch	
(P0141: Bank 1), (P0161: Bank 2)239	TROUBLE DIAGNOSIS FOR DTC P0600, P1605	352
TROUBLE DIAGNOSIS FOR DTC P0171 (B1),	A/T Communication Line (P0600) and A/T	
P0174 (B2) 245	Diagnostic Communication Line (P1605)	352

CONTENTS (Cont'd)

TROUBLE DIAGNOSIS FOR DTC P0605355	TROUBLE DIAGNOSIS FOR DTC P1446452
Engine Control Module (ECM)355	Evaporative Emission (EVAP) Canister Vent
TROUBLE DIAGNOSIS FOR DTC P1105358	Control Value (Class)
Manifold Absolute Pressure (MAP)/Barometric	TROUBLE DIAGNOSIS FOR DTC P1447457
Pressure (BARO) Switch Solenoid Valve358	Evaporative Emission (EVAP) Control System
TROUBLE DIAGNOSIS FOR DTC P1110 (B1),	Purge Flow Monitoring457
P1135 (B2)367	TROUBLE DIAGNOSIS FOR DTC P1448464
Intake Valve Timing Control (P1110: Left bank),	Evaporative Emission (EVAP) Canister Vent
(P1135: Right bank)367	Control Valve (Open)464
TROUBLE DIAGNOSIS FOR DTC P1120375	TROUBLE DIAGNOSIS FOR DTC P1490470
Secondary Throttle Position Sensor (STPS)375	
TROUBLE DIAGNOSIS FOR DTC P1125381	Vacuum Cut Valve Bypass Valve (Circuit)470 TROUBLE DIAGNOSIS FOR DTC P1491475
Tandem Throttle Position Sensor381	
TROUBLE DIAGNOSIS FOR DTC P1140 (B1),	Vacuum Cut Valve Bypass Valve475 TROUBLE DIAGNOSIS FOR DTC P1492 481
P1145 (B2) 382	
Intake Valve Timing Control Position Sensor	Evaporative Emission (EVAP) Canister Purge
(P1140: Left bank), (P1145: Right bank)382	Control Valve/Solenoid Valve (Circuit)481
TROUBLE DIAGNOSIS FOR DTC P1148 (B1),	TROUBLE DIAGNOSIS FOR DTC P1493487
P1168 (B2)	Evaporative Emission (EVAP) Canister Purge
Closed Loop Control (P1148: Left bank), (P1168:	Control Valve/Solenoid Valve487
Right bank)388	TROUBLE DIAGNOSIS FOR DTC P1706494
TROUBLE DIAGNOSIS FOR DTC P1210390	Park/Neutral Position (PNP) Switch
Traction Control System (TCS) Signal Circuit390	TROUBLE DIAGNOSIS FOR ABS/TCS C/U
TROUBLE DIAGNOSIS FOR DTC P1220393	SIGNAL 499
Fuel Pump Control Module (FPCM)393	ABS/TCS Control Unit499
TROUBLE DIAGNOSIS FOR DTC P1320399	TROUBLE DIAGNOSIS FOR ECM - ABS/TCS
Ignition Signal399	COMM NG500
TROUBLE DIAGNOSIS FOR DTC P1336407	ABS/TCS Communication Line500
Crankshaft Position Sensor (CKPS) (OBD)	TROUBLE DIAGNOSIS FOR OVERHEAT503
(COG)407	Overheat503
TROUBLE DIAGNOSIS FOR DTC P1400412	TROUBLE DIAGNOSIS FOR NON-DETECTABLE
EGRC-solenoid Valve412	ITEMS515
TROUBLE DIAGNOSIS FOR DTC P1401417	Injector515
EGR Temperature Sensor417	Start Signal521
TROUBLE DIAGNOSIS FOR DTC P1402423	Fuel Pump Control523
EGR Function (Open)423	Power Steering Oil Pressure Switch527
TROUBLE DIAGNOSIS FOR DTC P1440432	Electrical Load Signal532
Evaporative Emission (EVAP) Control System	MIL & Data Link Connectors535
(Small Leak) (Positive Pressure)432	SERVICE DATA AND SPECIFICATIONS (SDS)536
TROUBLE DIAGNOSIS FOR DTC P1444444	General Specifications536
Evaporative Emission (EVAP) Canister Purge	Inspection and Adjustment536
Volume Control Valve444	inspection and Adjustinent
When you read wiring diagrams:	

• Read GI section, "HOW TO READ WIRING DIAGRAMS".

• See EL section, "POWER SUPPLY ROUTING" for power distribution circuit.

When you perform trouble diagnoses, read GI section, "HOW TO FOLLOW FLOW CHART IN TROUBLE DIAGNOSES" and "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

Items	DTO	C*6	Reference	Items			Reference
(CONSULT-II screen terms)	OONOOLI-II FOMALA DAde	(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	page		
COOLAN T SEN/CIRC	P0125	0908	EC-161	FPCM/CIRCUIT	P1220	1305	EC-393
A/T 1ST GR FNCTN	P0731	1103	AT-95	FUEL SYS LEAN/BK1	P0171	0115	EC-245
A/T 2ND GR FNCTN	P0732	1104	AT-100	FUEL SYS LEAN/BK2	P0174	0210	EC-245
A/T 3RD GR FNCTN	P0733	1105	AT-104	FUEL SYS RICH/BK1	P0172	0114	EC-251
A/T 4TH GR FNCTN	P0734	1106	AT-108	FUEL SYS RICH/BK2	P0175	0209	EC-251
A/T COMM LINE	P0600	0504	EC-352	FUEL TEMP SEN/CIRC	P0180	0402	EC-257
A/T DIAG COMM LINE	P1605	0804	EC-352	HO2S1 (B1)	P0130	0303	EC-166
A/T TCC S/V FNCTN	P0744	1107	AT-118	HO2S1 (B1)	P0133	0409	EC-187
ABS-TCS C/U SIGNAL	_	0107	EC-500	HO2S1 (B1)	P0132	0410	EC-180
ABSL PRES SEN/CIRC	P0105	0803	EC-132	HO2S1 (B1)	P0131	0411	EC-174
AIR TEMP SEN/CIRC	P0110	0401	EC-140	HO2S1 (B1)	P0134	0412	EC-196
ATF TEMP SEN/CIRC	P0710	1208	AT-85	HO2S1 (B2)	P0153	0413	EC-187
CAM POS SEN/CIR	P0340	0101	EC-275	HO2S1 (B2)	P0152	0414	EC-180
CLOSED LOOP-B1	P1148	0307	EC-388	HO2S1 (B2)	P0151	0415	EC-174
CLOSED LOOP-B2	P1168	0308	EC-388	HO2S1 (B2)	P0150	0503	EC-166
CLOSED TP SW/CIRC	P0510	0203	EC-346	HO2S1 (B2)	P0154	0509	EC-196
COOLANT T SEN/CIRC	P0115	0103	EC-145	HO2S1 HTR (B1)	P0135	0901	EC-204
CPS/CIRC (OBD) COG	P1336	0905	EC-407	HO2S1 HTR (B2)	P0155	1001	EC-204
CPS/CIRCUIT (OBD)	P0335	0802	EC-270	HO2S2 (B1)	P0137	0511	EC-210
CYL 1 MISFIRE	P0301	0608	EC-262	HO2S2 (B1)	P0140	0512	EC-233
CYL 2 MISFIRE	P0302	0607	EC-262	HO2S2 (B1)	P0139	0707	EC-226
CYL 3 MISFIRE	P0303	0606	EC-262	HO2S2 (B1)	P0138	0510	EC-218
CYL 4 MISFIRE	P0304	0605	EC-262	HO2S2 (B2)	P0158	0313	EC-218
CYL 5 MISFIRE	P0305	0604	EC-262	HO2S2 (B2)	P0157	0314	EC-210
CYL 6 MISFIRE	P0306	0603	EC-262	HO2S2 (B2)	P0160	0315	EC-233
CYL 7 MISFIRE	P0307	0602	EC-262	HO2S2 (B2)	P0159	0708	EC-226
CYL 8 MISFIRE	P0308	0601	EC-262	HO2S2 HTR (B1)	P0141	0902	EC-239
ECM	P0605	0301	EC-355	HO2S2 HTR (B2)	P0161	1002	EC-239
ECM-ABSTCS COMM		0404	EC-500	IACV/AAC VLV/CIRC	P0505	0205	EC-340
NG		0404	EC-300	IGN SIGNAL-PRIMARY	P1320	0201	EC-399
EGR SYSTEM	P0400	0302	EC-281	INT/V TIM CONT-B1	P1110	0805	EC-367
EGR SYSTEM	P1402	0514	EC-423	INT/V TIM CONT-B2	P1135	1301	EC-367
EGR TEMP SEN/CIRC	P1401	0305	EC-417	INTK TIM S/CIRC-B1	P1140	1303	EC-382
EGRC SOLENOID/V	P1400	1005	EC-412	INTK TIM S/CIRC-B2	P1145	1304	EC-382
EGRC-BPT VALVE	P0402	0306	EC-290	KNOCK SEN/CIRC-B1	P0325	0304	EC-267
ENGINE SPEED SIG	P0725	1207	AT-92	KNOCK SEN/CIRC-B2	P0330	0212	EC-267
EVAP PURG FLOW/	P1447	0111	EC-457	L/PRESS SOL/CIRC	P0745	1205	AT-125
MON	D4.440	0040		MAF SEN/CIRCUIT*3	P0100	0102	EC-124
EVAP SMALL LEAK	P1440	0213	EC-432	MAP/BAR SW SOL/CIR	P1105	1302	EC-358
EVAP SMALL LEAK	P0440	0705	EC-298	MULTI CYL MISFIRE	P0300	0701	EC-262
EVAP SYS PRES SEN	P0450	0704	EC-320	NATS MALFUNCTION			EC-69

Alphabetical & P No. Index for DTC (Cont'd)

			,p	
Items	DT	C*6	D-f	
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	Reference page	
NO DTC IS DETECTED, FURTHER TESTING MAY BE REQUIRED.	P0000	0505	_	
NO DTC IS DETECTED, FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing*5	EC-65	
O/R CLTCH SOL/CIRC	P1760	1203	AT-143	
OVER HEAT	_	0208	EC-503	
P-N POS SW/CIRCUIT	P1706	1003	EC-494	
PNP SW/CIRC	P0705	1101	AT-81	
PURG CONT/V & S/V	P1493	0312	EC-487	
PURG CONT/V S/V	P1492	0807	EC-481	
PURG VOLUME CONT/V	P1444	0214	EC-444	
PURG VOLUME CONT/V	P0443	1008	EC-309	
SFT SOL A/CIRC*3	P0750	1108	AT-129	
SFT SOL B/CIRC*3	P0755	1201	AT-133	
TACM SW SIGNALS	P1210	0106	EC-390	
TANDEM TP SEN/CIRC	P1125	0110	EC-381	
TCC SOLENOID/CIRC	P0740	1204	AT-114	
THRTL POS SEN/ CIRC*3	P0120	0403	EC-150	
TP SEN/CIRC A/T*3	P1705	1206	AT-137	
TP SEN2/CIRCUIT	P1120	0406	EC-375	
TW CATALYST SYS-B1	P0420	0702	EC-295	
TW CATALYST SYS-B2	P0430	0703	EC-295	
Unable to access ECM	_	_	EC-98	
VC CUT/V BYPASS/V	P1491	0311	EC-475	
VC/V BYPASS/V	P1490	0801	EC-470	
VEH SPD SEN/CIR AT*4	P0720	1102	AT-89	
VEH SPEED SEN/ CIRC*4	P0500	0104	EC-335	
VENT CONTROL VALVE	P1446	0215	EC-452	
VENT CONTROL VALVE	P1448	0309	EC-464	
VENT CONTROL VALVE	P0446	0903	EC-315	

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the failsafe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

NOTE: Regarding Y33 models, "B1" and "BK1" indicates left bank and "B2" and "BK2" indicates right bank.

Alphabetical & P No. Index for DTC (Cont'd)

P NO. INDEX FOR DTC

DT	C*6	Items	. .	DTC	C*6	Items	D (
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page	CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page
_	_	Unable to access ECM	EC-98	P0175	0209	FUEL SYS RICH/BK2	EC-251
_	0107	ABS-TCS C/U SIGNAL	EC-500	P0180	0402	FUEL TEMP SEN/CIRC	EC-257
_	0208	OVER HEAT	EC-503	P0300	0701	MULTI CYL MISFIRE	EC-262
_	0404	ECM-ABSTCS COMM	EC-500	P0301	0608	CYL 1 MISFIRE	EC-262
	0.01	NG		P0302	0607	CYL 2 MISFIRE	EC-262
_	_	NATS MALFUNC	EC-69	P0303	0606	CYL 3 MISFIRE	EC-262
No DTC	Flashing*5	NO DTC IS DETECTED, FURTHER TESTING MAY BE REQUIRED.	EC-65	P0304	0605	CYL 4 MISFIRE	EC-262
				P0305	0604	CYL 5 MISFIRE	EC-262
P0000	0505	NO DTC IS DETECTED, FURTHER TESTING	_	P0306	0603	CYL 6 MISFIRE	EC-262
		MAY BE REQUIRED.		P0307	0602	CYL 7 MISFIRE	EC-262
P0100	0102	MAF SEN/CIRCUIT*3	EC-124	P0308	0601	CYL 8 MISFIRE	EC-262
P0105	0803	ABSL PRES SEN/CIRC	EC-132	P0325	0304	KNOCK SEN/CIRC-B1	EC-267
P0110	0401	AIR TEMP SEN/CIRC	EC-140	P0330	0212	KNOCK SEN/CIRC-B2	EC-267
P0115	0103	COOLANT T SEN/CIRC	EC-145	P0335	0802	CPS/CIRCUIT (OBD)	EC-270
P0120	0403	THRTL POS SEN/	EC-150	P0340	0101	CAM POS SEN/CIR	EC-275
D0405	0000	CIRC*3	FC 464	P0400	0302	EGR SYSTEM	EC-281
P0125	0908	*COOLAN T SEN/CIRC	EC-161	P0402	0306	EGRC-BPT VALVE	EC-290
P0130	0303	HO2S1 (B1)	EC-166	P0420	0702	TW CATALYST SYS-B1	EC-295
P0131	0411	HO2S1 (B1)	EC-174	P0430	0703	TW CATALYST SYS-B2	EC-295
P0132	0410	HO2S1 (B1)	EC-180	P0440	0705	EVAP SMALL LEAK	EC-298
P0133 P0134	0409 0412	HO2S1 (B1) HO2S1 (B1)	EC-187 EC-196	P0443	1008	PURG VOLUME CONT/V	EC-309
P0135	0901	HO2S1 HTR (B1)	EC-204	P0446	0903	VENT CONTROL VALVE	EC-315
P0137	0511	HO2S2 (B1)	EC-210	P0450	0704	EVAPO SYS PRES SEN	EC-320
P0138	0510	HO2S2 (B1)	EC-218	P0455	0715	EVAP GROSS LEAK	EC-326
P0139	0707	HO2S2 (B1)	EC-226	Basas	0404	VEH SPEED SEN/	F0 005
P0139	0512	HO2S2 (B1)	EC-233	P0500	0104	CIRC*4	EC-335
P0140	0902	HO2S2 HTR (B1)	EC-239	P0505	0205	IACV/AAC VLV/CIRC	EC-340
P0141	0502	HO2S1 (B2)	EC-239 EC-166	P0510	0203	CLOSED TP SW/CIRC	EC-346
P0151	0303	HO2S1 (B2)	EC-174	P0600	0504	A/T COMM LINE	EC-352
P0152	0414	HO2S1 (B2)	EC-180	P0605	0301	ECM	EC-355
P0152	0414	HO2S1 (B2)	EC-187	P0705	1101	PNP SW/CIRC	AT-81
P0153	0509	HO2S1 (B2)	EC-196	P0710	1208	ATF TEMP SEN/CIRC	AT-85
P0154	1001	HO2S1 (B2)	EC-190 EC-204	P0720	1102	VEH SPD SEN/CIR AT*4	AT-89
		` '		P0725	1207	ENGINE SPEED SIG	AT-92
P0157	0314	HO2S2 (B2)	EC-210	P0731	1103	A/T 1ST GR FNCTN	AT-95
P0158	0313	HO2S2 (B2)	EC-218	P0732	1104	A/T 2ND GR FNCTN	AT-100
P0159	0708	HO2S2 (B2)	EC-226	P0733	1105	A/T 3RD GR FNCTN	AT-104
P0160	0315	HO2S2 (B2)	EC-233	P0734	1106	A/T 4TH GR FNCTN	AT-108
P0161	1002	HO2S2 HTR (B2)	EC-239	P0740	1204	TCC SOLENOID/CIRC	AT-114
P0171	0115	FUEL SYS LEAN/BK1	EC-245	P0744	1107	A/T TCC S/V FNCTN	AT-118
P0172	0114	FUEL SYS RICH/BK1	EC-251	P0745	1205	L/PRESS SOL/CIRC	AT-125
P0174	0210	FUEL SYS LEAN/BK2	EC-245	P0750	1108	SFT SOL A/CIRC*3	AT-129

Alphabetical & P No. Index for DTC (Cont'd)

DTC*6		Items (CONSULT-II screen	Reference
CONSULT-II GST*2	ECM*1	terms)	page
P0755	1201	SFT SOL B/CIRC*3	AT-133
P1105	1302	MAP/BAR SW SOL/CIR	EC-358
P1110	0805	INT/V TIM CONT-B1	EC-367
P1120	0406	TP SEN2/CIRCUIT	EC-375
P1125	0110	TANDEM TP SEN/CIRC	EC-381
P1135	1301	INT/V TIM CONT-B2	EC-367
P1140	1303	INTK TIM S/CIRC-B1	EC-382
P1145	1304	INTK TIM S/CIRC-B2	EC-382
P1148	0307	CLOSED LOOP-B1	EC-388
P1168	0308	CLOSED LOOP-B2	EC-388
P1210	0106	TACM SW SIGNALS	EC-390
P1220	1305	FPCM/CIRCUIT	EC-393
P1320	0201	IGN SIGNAL-PRIMARY	EC-399
P1336	0905	CPS/CIRC (OBD) COG	EC-407
P1400	1005	EGRC SOLENOID/V	EC-412
P1401	0305	EGR TEMP SEN/CIRC	EC-417
P1402	0514	EGR SYSTEM	EC-423
P1440	0213	EVAP SMALL LEAK	EC-432
P1444	0214	PURG VOLUME CONT/V	EC-444
P1446	0215	VENT CONTROL VALVE	EC-452
P1447	0111	EVAP PURG FLOW/ MON	EC-457
P1448	0309	VENT CONTROL VALVE	EC-464
P1490	0801	VC/V BYPASS/V	EC-470
P1491	0311	VC CUT/V BYPASS/V	EC-475
P1492	0807	PURG CONT/V S/V	EC-481
P1493	0312	PURG CONT/V & S/V	EC-487
P1605	0804	A/T DIAG COMM LINE	EC-352
P1705	1206	TP SEN/CIRC A/T*3	AT-137
P1706	1003	P-N POS SW/CIRCUIT	EC-494
P1760	1203	O/R CLTCH SOL/CIRC	AT-143

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

NOTE: Regarding Y33 models, "B1" and "BK1" indicates left bank and "B2" and "BK2" indicates right bank.

PRECAUTIONS AND PREPARATION

Special Service Tool

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number (Kent-Moore No.) Tool name	Description	
(J38365-A) Heated oxygen sensor wrench		Loosening or tightening heated oxygen sensor
	NT636	3/8 drive a: 22 mm (0.87 in)

Commercial Service Tools

	Commercial	Service loois
Tool name (Kent-Moore No.)	Description	
Leak detector (J41416)	NT703	Locating the EVAP leak
EVAP service port adapter (J41413-OBD)		Applying positive pressure through EVAP service port
	NT704	
Hose clipper		Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [(EVAP small leak positive pressure)].
	NT720 Approx. 20 mm (0.79	in)
Fuel filler cap adapter		Checking fuel tank vacuum relief valve open- ing pressure
	NT653	
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor

PRECAUTIONS AND PREPARATION

		Commercial Se	ervice Tools (Cont'd)	
Tool name (Kent-Moore No.)	Description			
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)		a Mating b surface shave	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown below.	GI
(0 10007 12)	NT778	cylinder	a: J-43897-18 18 mm dia. for Zirconia Oxygen Sensorb: J-43897-12 12 mm dia. for Titania Oxygen Sensor	MA
Anti-seize lubricant (Permatex TM 133AR or		_	Lubricating oxygen sensor thread cleaning	
equivalent meeting MIL specification MIL-A-907)			tool when reconditioning exhaust system threads.	LC
				EC
	NT779	<u> </u>		FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to INFINITI Q45 is as follows:

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.
- For a side collision
 - The Supplemental Restraint System consists of front side air bag module (located in the outer side of front seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses (except satellite sensor and side air bag module) covered with yellow insulation tape either just before the harness connectors or for the complete harness are related to the SRS.

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

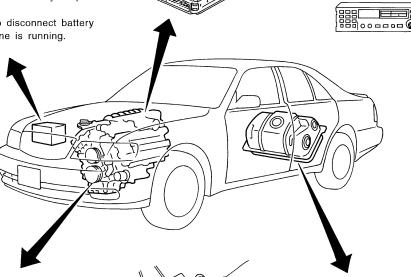
- Be sure to turn the ignition switch "OFF" and disconnect the negative battery terminal before the repair or inspection work. The open/short circuit of the related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after the work. The loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure to connect the connector without water, grease, dirt, bent terminals, etc. in it.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL section, "Description", "HARNESS CONNECTOR".
- Be sure to route and clamp the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after the work. The misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EGR system or the fuel injection system, etc.
- Be sure to erase the unnecessary (already fixed) malfunction information in the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

ECM

- · Do not disassemble ECM.
- Do not turn diagnosis test mode selector forcibly.
- If a battery terminal is disconnected, the memory will return to the ECM value.

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.


WIRELESS EQUIPMENT

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- 1) Keep the antenna as far away as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- 4) Be sure to ground the radio to vehicle body.

BATTERY

 Always use a 12 volt battery as power source.

ECM PARTS HANDLING

- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor or crankshaft position sensor (OBD).

WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown

FUEL PUMP

- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

ECM HARNESS HANDLING

- Securely connect ECM harness connectors.
 - Poor connection can cause extremely high (surge) voltage in coil and condenser, resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in) from adjacent harness, to prevent ECM system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harness dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

GI

EM

LG

EC

۲Ľ

AT

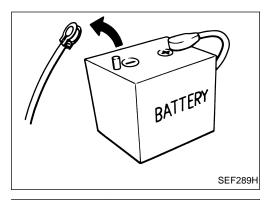
PD

FA

RA

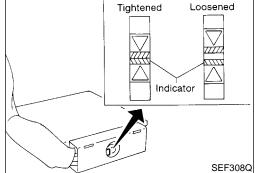
\$T

RS

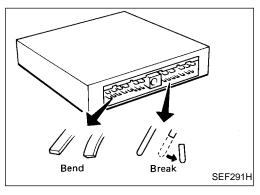

BT

HA

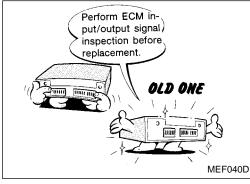
EL


SEF345WA

PRECAUTIONS AND PREPARATION


Precautions

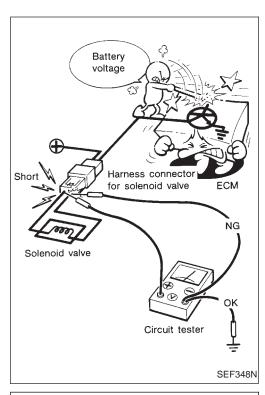
 Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM. Because battery voltage is applied to ECM even if ignition switch is turned off.


 When connecting ECM harness connector, tighten securing bolt until the gap between the orange indicators disappears.

(0.3 - 0.5 kg-m, 26 - 43 in-lb)

 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.



 Before replacing ECM, perform ECM input/output signal inspection and make sure whether ECM functions properly or not. (See page EC-107.)

 After performing each TROUBLE DIAGNOSIS, perform "OVERALL FUNCTION CHECK" or "DTC (Diagnostic Trouble Code) CONFIRMATION PROCEDURE". The DTC should not be displayed in the "DTC CONFIRMA-TION PROCEDURE" if the repair is completed. The "OVERALL FUNCTION CHECK" should be a good result if the repair is completed.

PRECAUTIONS AND PREPARATION

Precautions (Cont'd)

 When measuring ECM signals with a circuit tester, never bring the two tester probes into contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.

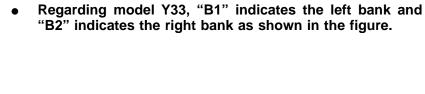
MA

EM

LC

EC

FE


AT

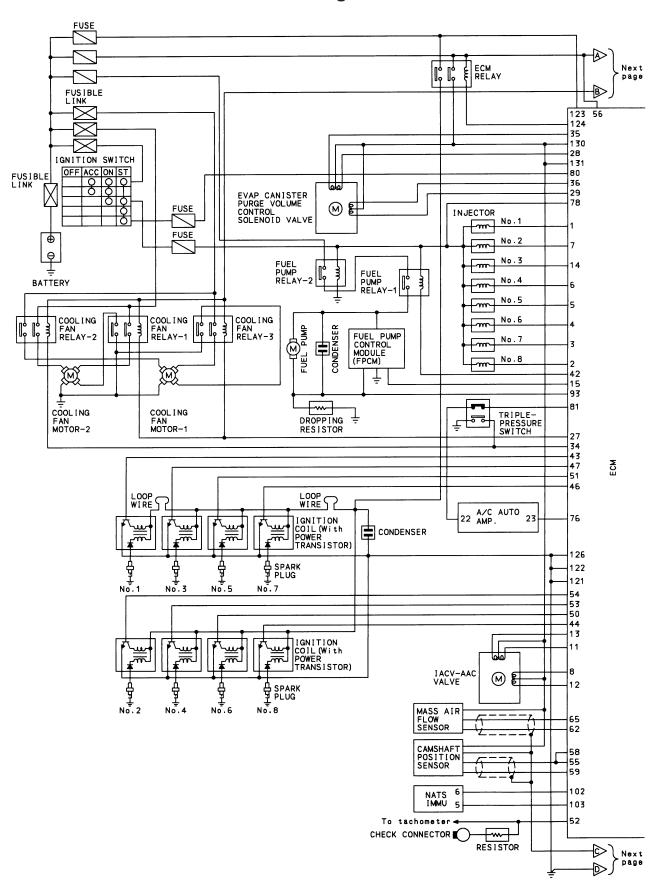
PD

FA

RA

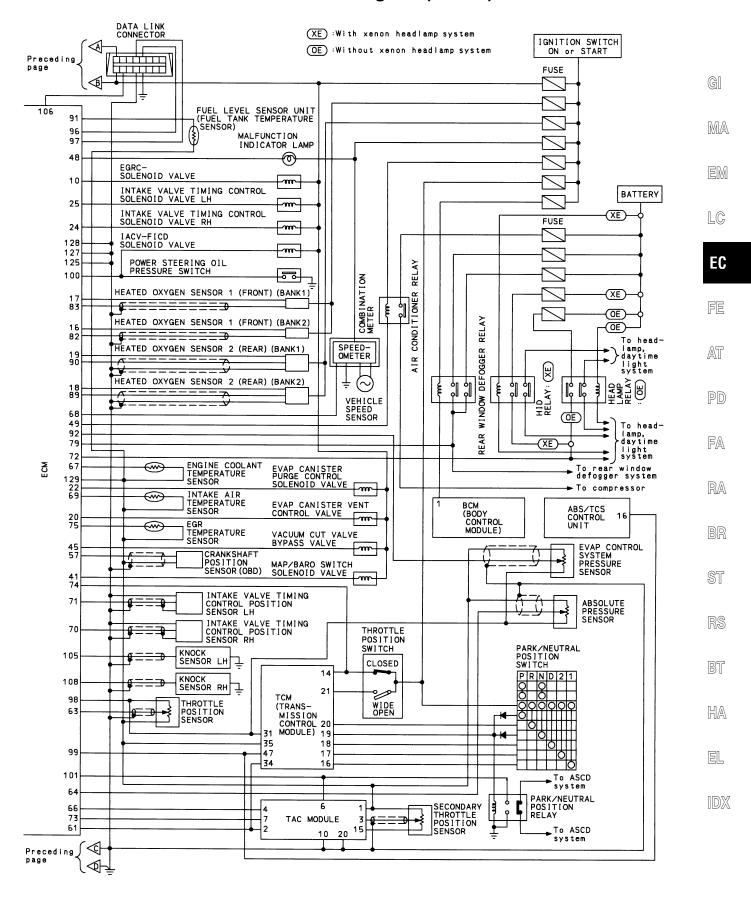
BR

ST

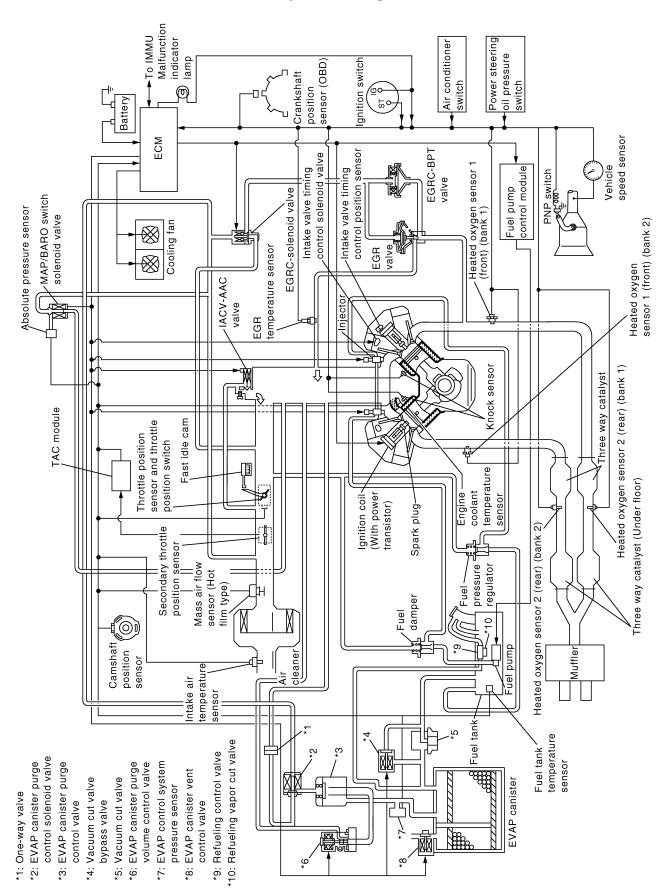

RS

BT

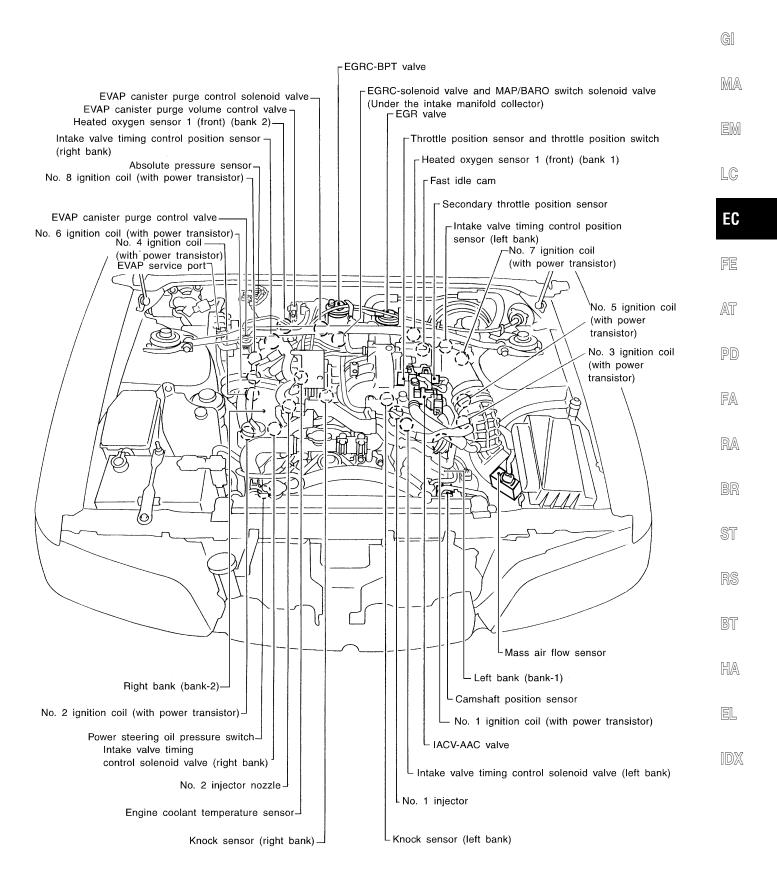
HA


EL

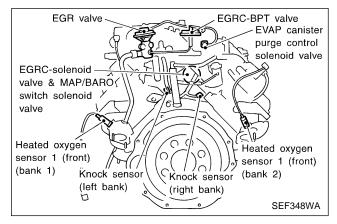
Circuit Diagram

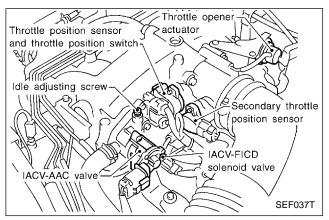


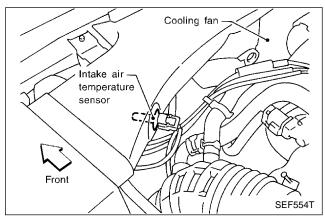
ENGINE AND EMISSION CONTROL OVERALL SYSTEM

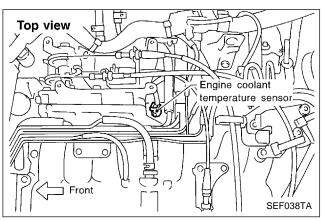

Circuit Diagram (Cont'd)

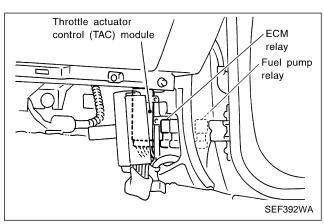
System Diagram

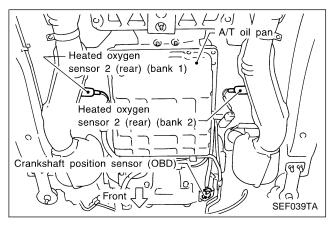


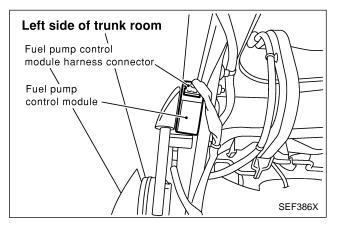

Engine Control Component Parts Location

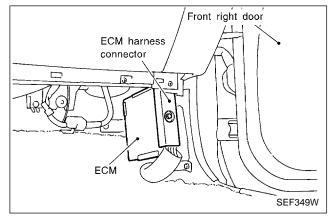


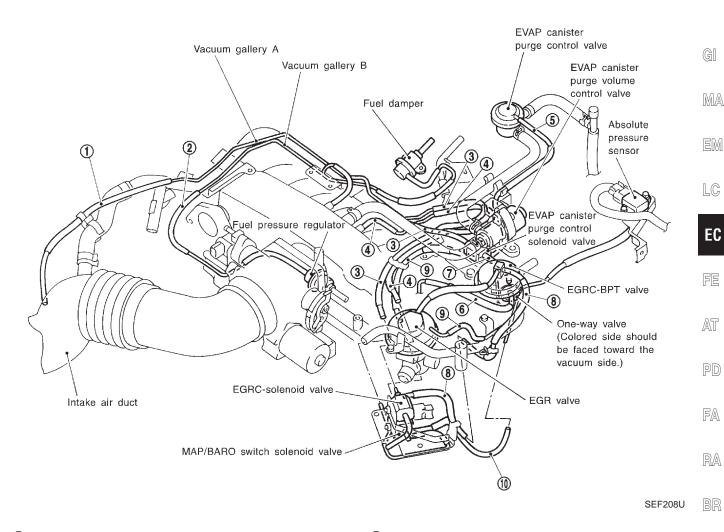

ENGINE AND EMISSION CONTROL OVERALL SYSTEM


Engine Control Component Parts Location (Cont'd)







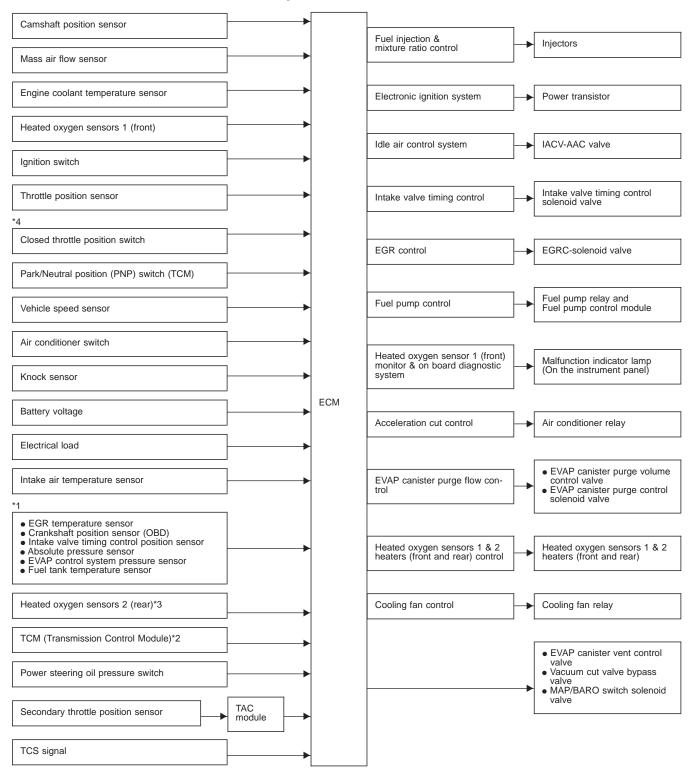


Vacuum Hose Drawing

- 1 Intake air duct to vacuum gallery A
- ② Fuel pressure regulator to vacuum gallery B
- ③ Vacuum gallery A to EGRC-solenoid valve, MAP/BARO switch solenoid valve and EVAP canister purge control solenoid valve
- 4 Intake manifold collector to EGRC-solenoid valve
- ⑤ EVAP canister purge control valve to EVAP canister purge control solenoid valve

- 6 Intake manifold collector to One-way valve
- ⑦ One-way valve to EVAP canister purge control solenoid valve
- 8 EGRC-BPT valve to EGRC-solenoid valve
- Intake manifold collector to MAP/BARO switch solenoid valve
- Absolute pressure sensor to MAP/BARO switch solenoid valve

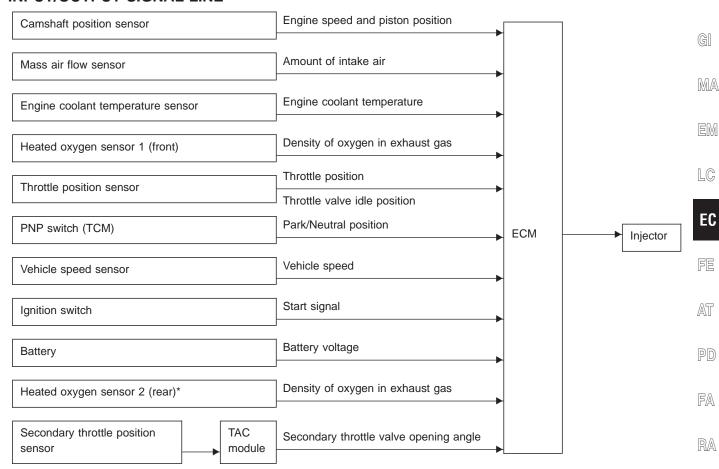
Refer to "System Diagram", EC-16, for vacuum control system.


Note: Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

HA

EL

ENGINE AND EMISSION CONTROL OVERALL SYSTEM


System Chart

- *1: These sensors are not used to control the engine system. They are used only for the on board diagnosis.
- *2: The DTC related to A/T and gear position will be sent to ECM.
- *3: This sensor is not used to control the engine system under normal conditions.
- *4: This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

Multiport Fuel Injection (MFI) System

INPUT/OUTPUT SIGNAL LINE

^{*:} Under normal conditions, this sensor is not used to control the engine system.

BASIC MULTIPORT FUEL INJECTION **SYSTEM**

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

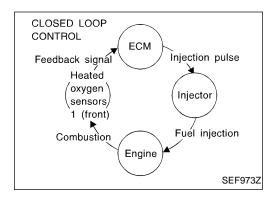
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

The amount of fuel injected is compensated for to improve engine performance. This will be made under various operating conditions as listed below. <Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from "N" to "D"
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high speed operation
- Extremely high engine coolant temperature
- During TCS operation
- During high engine speed operation



ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd) MIXTURE RATIO FEEDBACK CONTROL

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 (front) in the exhaust manifold to monitor if the engine is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about heated oxygen sensors 1 (front), refer to pages EC-166. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition. Heated oxygen sensors 2 (rear) is located downstream of the three way catalyst. Even if the switching characteristics of the heated oxygen sensors 1 (front) shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensors 2 (rear).

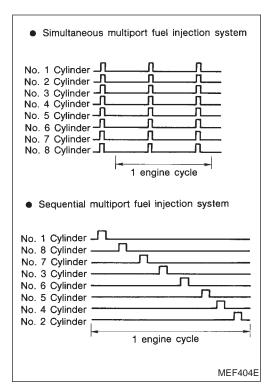
OPEN LOOP CONTROL

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensors 1 (front) or its circuit
- Insufficient activation of heated oxygen sensors 1 (front) at low engine coolant temperature
- High-engine coolant temperature
- During warm-up
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensors 1 (front). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both Manufacturing differences (i.e. mass air flow sensor hot film) and characteristic changes during operation (i.e. injector clogging) directly affect mixture ratio.


Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short-term fuel trim and long-term fuel trim.

"Short-term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 (front) indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long-term fuel trim" is overall fuel compensation carried out longterm to compensate for continual deviation of the short-term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd) FUEL INJECTION SYSTEM

Two types of systems are used.

Sequential multiport fuel injection system

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous multiport fuel injection system

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe mode (CPU) or crankshaft position sensor (REF) is operating.

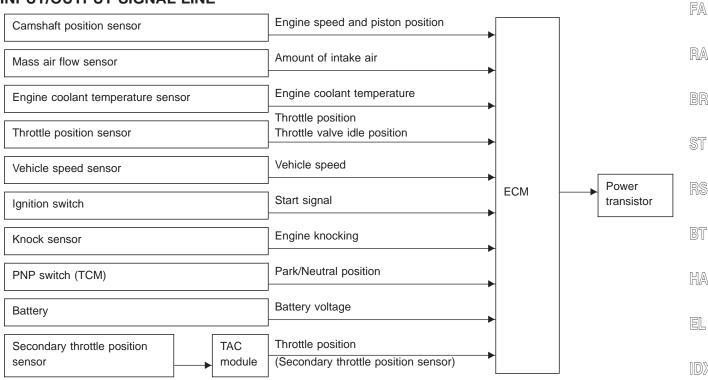
FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

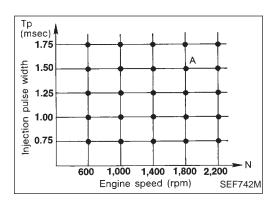
EC

LC

GI


MA

AT


PD

Electronic Ignition (EI) System

INPUT/OUTPUT SIGNAL LINE

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

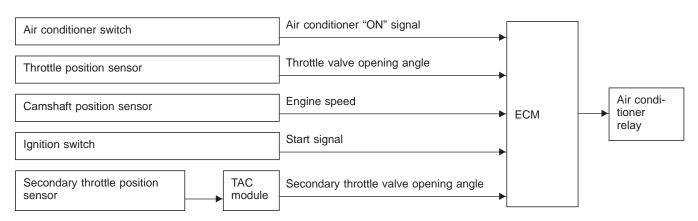
Electronic Ignition (EI) System (Cont'd) SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine.

The ignition timing data is stored in the ECM. This data forms the map shown below.

The ECM detects information such as the injection pulse width and camshaft position sensor signal. Responding to this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.


- 1 At starting
- 2 During warm-up
- 3 At idle
- 4 Hot engine operation
- 5 At acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- After a few seconds when the TCS has started operating.

Fuel Cut Control (at no load & high engine speed)

INPUT/OUTPUT SIGNAL LINE

If the engine speed is above 1,400 rpm with no load (for example, in neutral and engine speed over 1,400 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will operate until the engine speed reaches 1,000 rpm, then fuel cut is cancelled.

NOTE

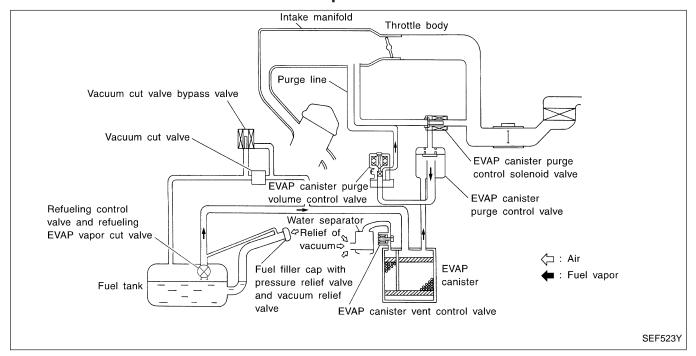
This function is different than deceleration control listed under multiport fuel injection on EC-21.

PD

FA

RA

BR

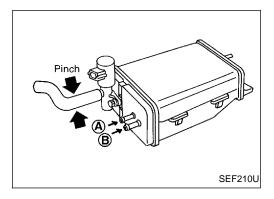

BT

HA

EL

EC-25

Description

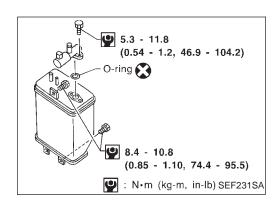


The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon. This is where the vapor is stored when the engine is not operating.

The vapor in the EVAP canister is purged by the air flowing through the EVAP canister purge volume control valve which is controlled by engine control module. When the engine operates, the flow rate of vapor controlled by the EVAP canister purge volume control valve is proportionally regulated as the air flow increases.

The EVAP canister purge control valve shuts off the vapor purge line during decelerating and idling; under normal operating conditions the valve is usually open.

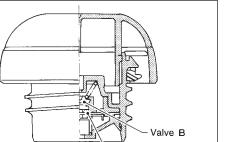

Inspection

EVAP CANISTER

Check EVAP canister as follows:

- 1. Pinch the fresh air hose.
- Blow air into port (A) and check that it flows freely out of port (B).

EVAPORATIVE EMISSION SYSTEM


Inspection (Cont'd) **TIGHTENING TORQUE**

Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP vent control valve.

MA

Vacuum/Pressure gauge

One-way valve

Fuel tank side

Fuel filler сар

Fuel filler cap adapter

Valve A

SEF427N

SEF943S

Vacuum/ Pressure

pump

FUEL TANK VACUUM RELIEF VALVE (Built into fuel filler cap)

LC

Wipe clean valve housing.

Check valve opening pressure and vacuum.

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

EC

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

AT

PD

3. If out of specification, replace fuel filler cap as an assembly.

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

FA

RA

BR

EVAP CANISTER PURGE CONTROL VALVE Refer to EC-488.

VACUUM CUT VALVE AND VACUUM CUT VALVE **BYPASS VALVE**

Refer to EC-475.

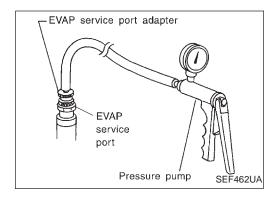
EVAPORATIVE EMISSION (EVAP) CANISTER PURGE VOLUME CONTROL VALVE

HA

Refer to EC-444.

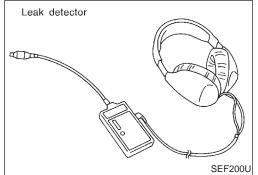
EL

EVAPORATIVE EMISSION (EVAP) CANISTER PURGE CONTROL SOLENOID VALVE


Refer to EC-488.

FUEL TANK TEMPERATURE SENSOR

Refer to EC-257.



EVAPORATIVE EMISSION SYSTEM

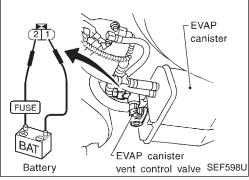
Inspection (Cont'd) **EVAP SERVICE PORT**

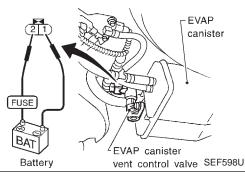
Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

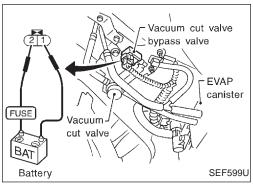
HOW TO DETECT FUEL VAPOR LEAKAGE

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not start engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

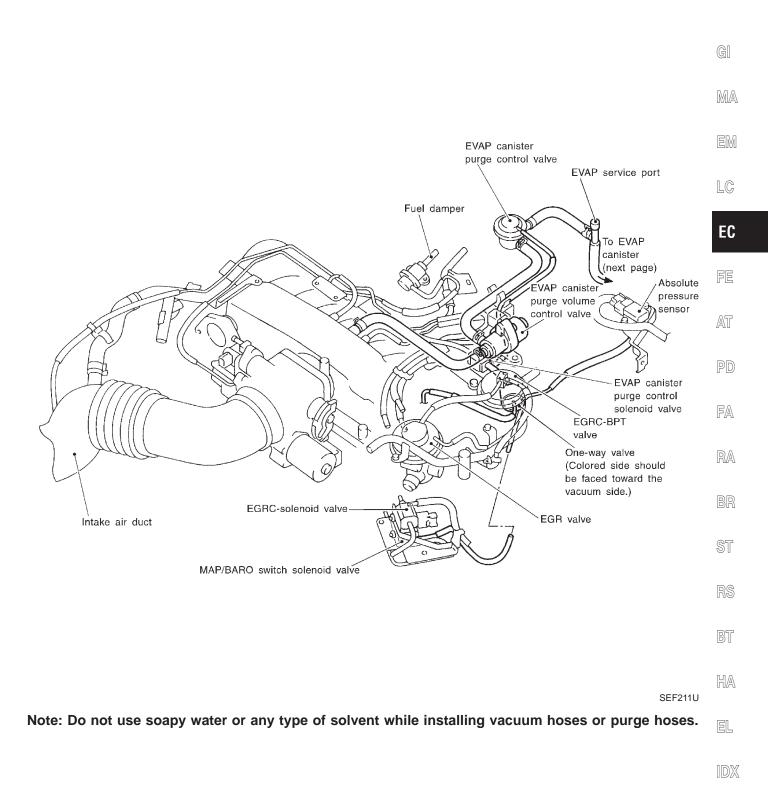

Improper installation of adapter to the service port may cause a leak.

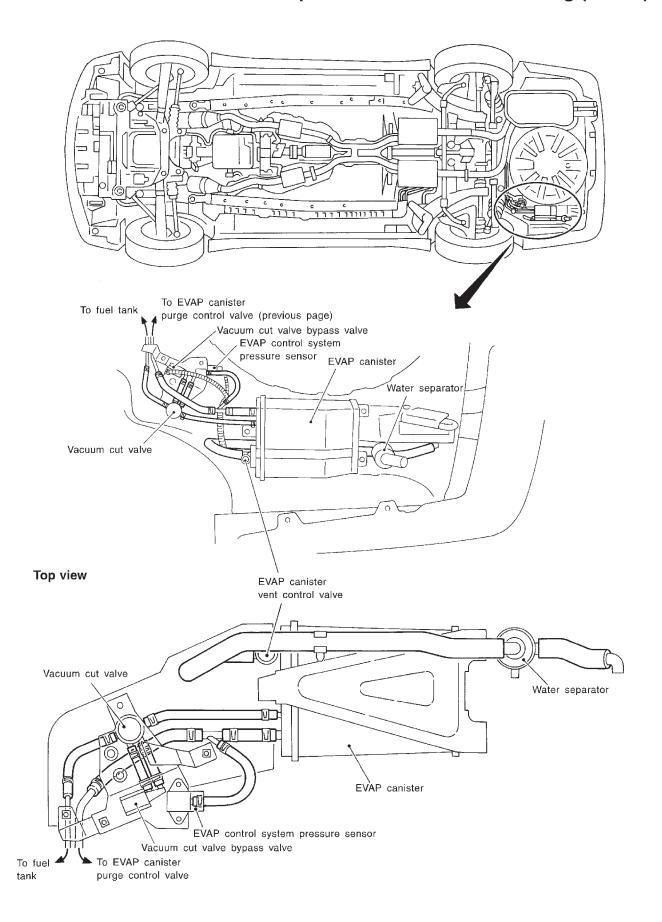



- Attach the EVAP service port adapter securely to the EVAP SERVICE port.
- 2. Also attach the pressure pump and hose.
- 3. Turn ignition switch "ON".
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUP-PORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- Apply positive pressure to the EVAP system until the 6. pressure indicator reaches the middle of the bar graph.
- 7. Remove adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to "Evaporative Emission Line Drawing", EC-29.

EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN **NEVER USE COMPRESSED** AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

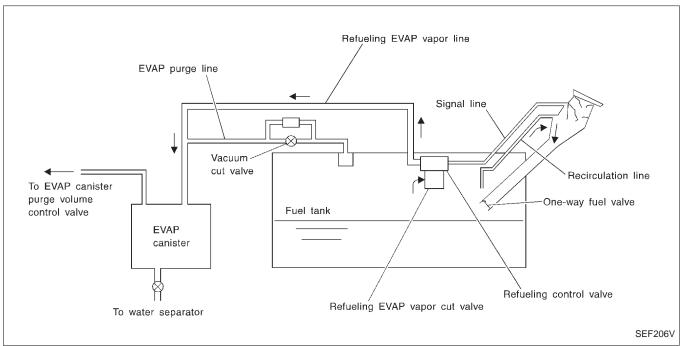
PEF658U




– OR –

- Attach the adapter securely to the EVAP service port 1. and pressure pump with pressure gauge to the EVAP service port.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- Remove adapter and hose with pressure pump. 4.
- Locate the leak using a leak detector. Refer to "Evaporative Emission Line Drawing", EC-29.

Evaporative Emission Line Drawing



Evaporative Emission Line Drawing (Cont'd)

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a. Put drained fuel in an explosion-proof container and put lid on securely.
- b. Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-37.
- c. Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
- Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

G

MA

FM

LC

EC

FE

AT

PD

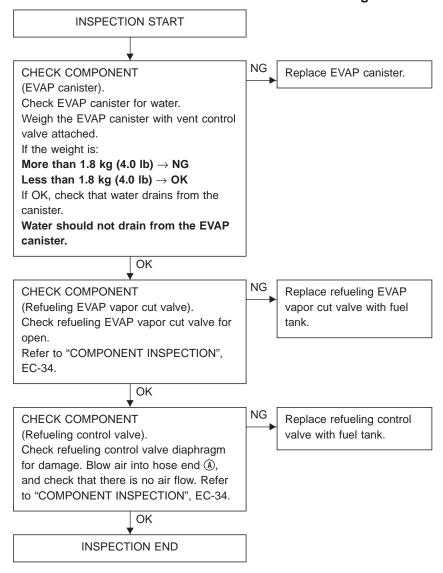
FA

RA

. . .

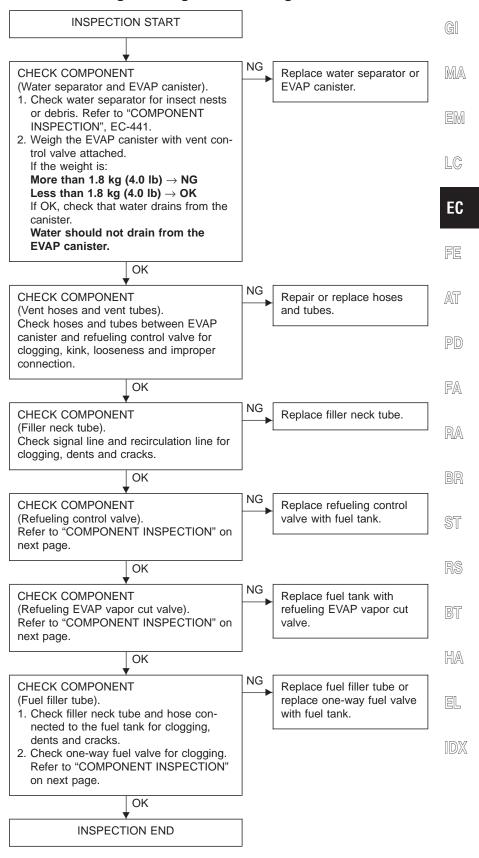
-

RS


HA

EL

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

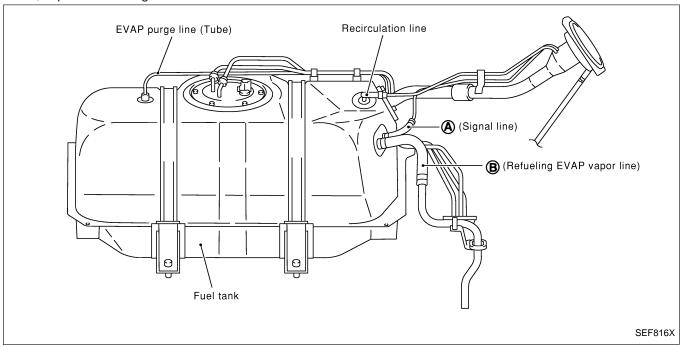

DIAGNOSTIC PROCEDURE

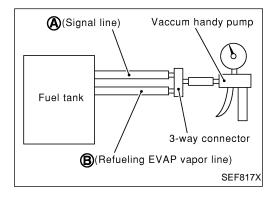
SYMPTOM: Fuel odor from EVAP canister is strong.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

SYMPTOM: Cannot refuel/Fuel odor from the fuel filler opening is strong while refueling.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


COMPONENT INSPECTION


Refueling control valve

Check refueling control valve as follows:

- 1. Remove fuel filler cap.
- 2. Check air continuity between hose ends (A) and (B). Blow air into the hose end (B). Air should flow freely into the fuel tank.
- 3. Blow air into hose end (A) and check there is no leakage.
- 4. Apply pressure to both hose ends (A) and (B) [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. And check there is no leakage.

If NG, replace refueling control valve with fuel tank.

Refueling EVAP vapor cut valve

1. Remove fuel tank. Refer to "FUEL SYSTEM" in FE section. Drain fuel from the tank as follows:

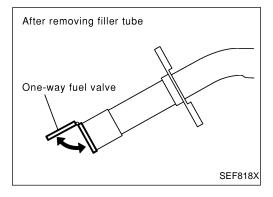
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.

- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end (B)), and check that the air flows freely into the tank.
- 3. Check EVAP vapor cut valve for being stuck to open as following.
- a. Connect vacuum pump to hose ends (A) and (B) using a suitable 3-way connector.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

EVAPORATIVE EMISSION SYSTEM

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends (A) and (B) [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable. If NG, replace refueling EVAP vapor cut valve with fuel tank.

MA

EM

LC

One-way fuel valve

- Drain fuel from the tank.
 Refer to "COMPONENT INSPECTION" of refueling EVAP vapor cut valve on previous page.
- 2. Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When pushing with finger, the valve should open; when finger is released, the valve should shut.

EC

Do not drop any material into the tank.

If NG, replace one-way fuel valve with fuel tank.

AT

PD

FA

RA

BR

ST

RS

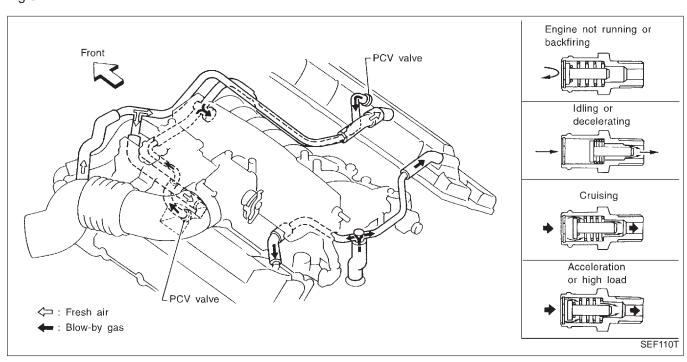
BT

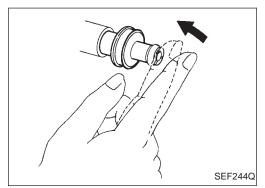
HA

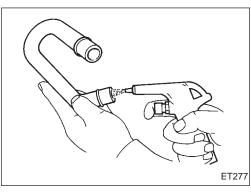
EL

Description

This system returns blow-by gas to both the intake manifold and air cleaner.


The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

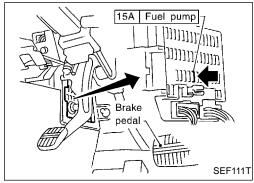

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

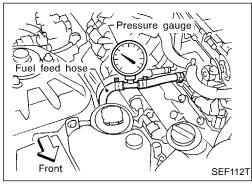

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air cleaner, through the hose connecting air cleaner to rocker cover, into the crankcase.

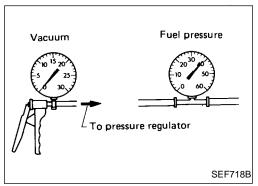
Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve, and its flow goes through the hose connection in the reverse direction.

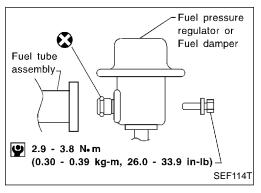
On vehicles with an excessively high blow-by some of the flow will go through the hose connection to the air cleaner under all conditions.

Inspection


PCV (Positive Crankcase Ventilation) VALVE


With engine running at idle, remove ventilation hose from PCV valve; if valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.


PCV HOSE


- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

Fuel Pressure Release

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

- Start engine.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II. (Touch "START" and after engine stalls, crank it two or

3. Turn ignition switch off. MA

EM

LC

OR

three times to release all fuel pressure.)

- Remove fuse for fuel pump. 1.
- 2. Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch off and reconnect fuel pump fuse. 4.

EC

FE

AT

PD

FA

RA

Fuel Pressure Check

- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- 1. Release fuel pressure to zero, refer to previous page.
- Disconnect fuel hose between fuel filter and fuel tube (engine side).
- 3. Install pressure gauge between fuel filter and fuel tube.
- 4. Start engine and check for fuel leakage.
- Read the indication of fuel pressure gauge.

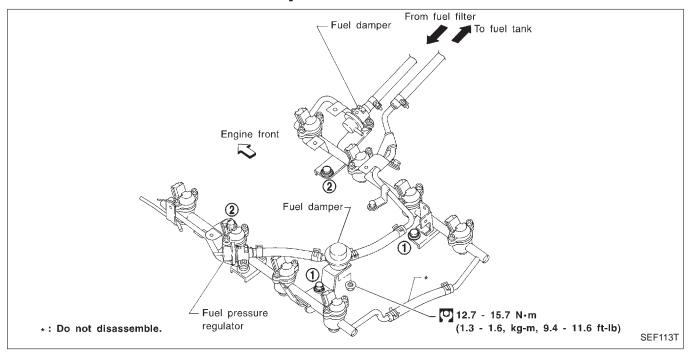
At idling:

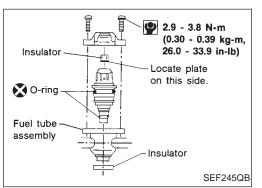
Approximately 235 kPa (2.4 kg/cm², 34 psi) A few seconds after ignition switch is turned OFF to

BT

HA

ST

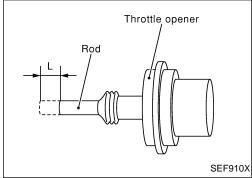

Approximately 294 kPa (3.0 kg/cm², 43 psi)


- Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.
- Plug intake manifold with a rubber cap.
- Connect variable vacuum source to fuel pressure regulator.

Start engine and read indication of fuel pressure gauge as vacuum is changed.

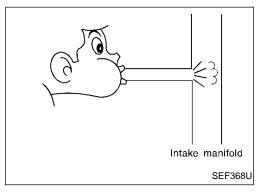
Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

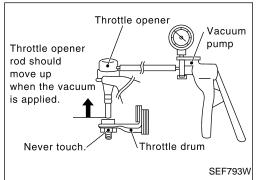
Injector Removal and Installation


- 1. Release fuel pressure to zero, refer to previous page.
- Remove intake manifold collector. Refer to EM section ("TIM-ING CHAIN").
- 3. Disconnect vacuum hose from pressure regulator.
- 4. Disconnect fuel hoses from fuel tube assembly.
- Do not disassemble fuel tube assembly.
- 5. Disconnect injector harness connectors.
- 6. Remove injectors with fuel tube assembly.
- Push injector tail piece.
- Do not pull on the connector.
- 7. Push out any malfunctioning injector from fuel tube assembly.
- 8. Replace or clean injector as necessary.
- Install injector to fuel tube assembly.
- Always replace O-rings with new ones.
- Lubricate O-rings with a smear of engine oil.
- 10. Install injectors with fuel tube assembly to intake manifold.

Tighten in numerical order shown in the figure.

- a) First, tighten all bolts to 9.3 to 10.8 N⋅m (0.95 to 1.1 kg-m, 6.9 to 8.0 ft-lb).
- b) Then, tighten all bolts to 21 to 26 N·m (2.1 to 2.7 kg-m, 15 to 20 ft-lb).
- 11. Install fuel hoses to fuel tube assembly.
- 12. Reinstall any parts removed in reverse order of removal.


CAUTION:


After properly connecting fuel hose to injector and fuel tube assembly, check connection for fuel leakage.

Clogging Improper connection

SEF109L

Throttle Opener

INSPECTION

- Start engine and let it idle.
- Confirm the amount of the rod moves "L" more than 1.65 mm (0.0650 in), the throttle drum becomes free from the rod of the throttle opener.

If NG, go to next step.

If OK, inspection is end.

- Turn ignition switch "OFF".
- Check vacuum source to throttle opener.
- Check vacuum hose for disconnection or improper connection.
- Remove vacuum hose connected to throttle opener.
- Attach a vacuum gauge to vacuum hose, which is disconnected.
- Start engine and let it idle. d.
- Make sure that the vacuum is more than -40.0 kPa (-300 mmHg, -11.81 inHg).
- Remove the vacuum gauge from intake manifold. f. If NG, go to next step. If OK, go to step 7.
- Check vacuum hose for clogging and cracks. If NG, replace or clean vacuum hose.

If OK, go to next step.

Blow air into the intake manifold and make sure air flows freely. If NG, replace or clean intake manifold.

If OK, go to next step.

- Check throttle opener.
- Connect suitable vacuum hose to vacuum pump as shown at
- Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHa)] until the throttle drum becomes free from the rod of the throttle opener.
- Confirm the amount of the rod moves more than 1.65 mm (0.0650 in), and also the throttle drum becomes free from the rod of the throttle opener. If NG, go to next step.

Check visually for cracking and/or distortion of throttle opener and rod.

If NG, replace throttle opener.

If OK, install the vacuum hose and repeat from step 1 to 2.

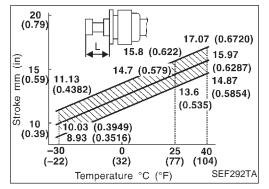
MA EM

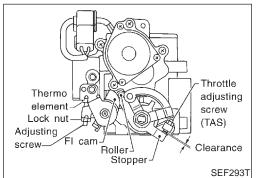
LC

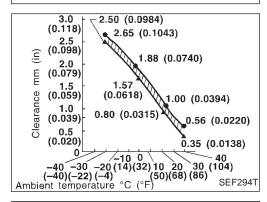
EC

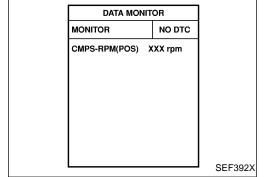
AT

PD


FA


RA


HA


Fast Idle Cam (FIC) Inspection and Adjustment

- 1. Remove throttle body from engine.
- Wait for at least 3 hours.
 (This step is necessary to bring the temperature of the thermoelement to the room temperature

- 3. Measure thermo-element stroke (L) and room temperature.
- 4. Check thermo-element stroke (L) as shown in the figure.

CAUTION:

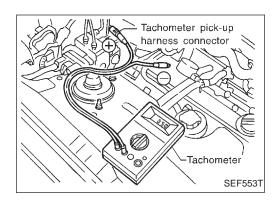
Do not adjust TAS.

L: Thermo-element stroke	Judgement
Within oblique line	Thermo-element is normal → Adjust FI cam (go to step 5).
Out of oblique line	Replace thermo-element → Adjust FI cam (go to step 2).

 Measure clearance between stopper and throttle adjusting screw (TAS) as shown in the figure. If out of specification, adjust the clearance using adjusting screw.

CAUTION:

Do not adjust throttle adjusting screw (TAS).


- 6. After adjustment, tighten lock nut of adjusting screw.
 - **(a)** : 1.5 2.0 N⋅m (0.15 0.2 kg-m, 13.0 17.4 in-lb)
- 7. Reinstall throttle body.
- 8. After warming up engine, check that there is a clearance between FI cam and roller.

Direct Ignition System — How to Check Idle Speed and Ignition Timing

IDLE SPEED

Method A (Using CONSULT-II)

Check idle speed in "DATA MONITOR" mode with CONSULT-II.

Timing light \$

Front

Loop wire

No.

Engine front

1 ignition coi

No. 1 ignition coil

Direct Ignition System — How to Check Idle Speed and Ignition Timing (Cont'd)

Method B (Using check connector)

Check the idle speed using check connector as shown in the figure. (Check connector is located in the harness protector).

GI

MA

IGNITION TIMING

Any of the following two methods may be used.

LC

Method A

1. Attach timing light to loop wire as shown.

Check ignition timing.

EC

AT

Method B

SEF295T

SEF296T

SEF297T

Suitable high-tension

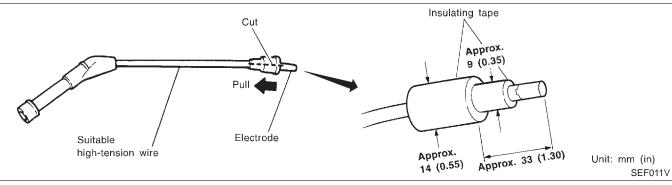
Remove intake air duct. 1.

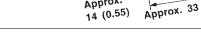
PD

Remove No. 1 ignition coil.

FA

RA

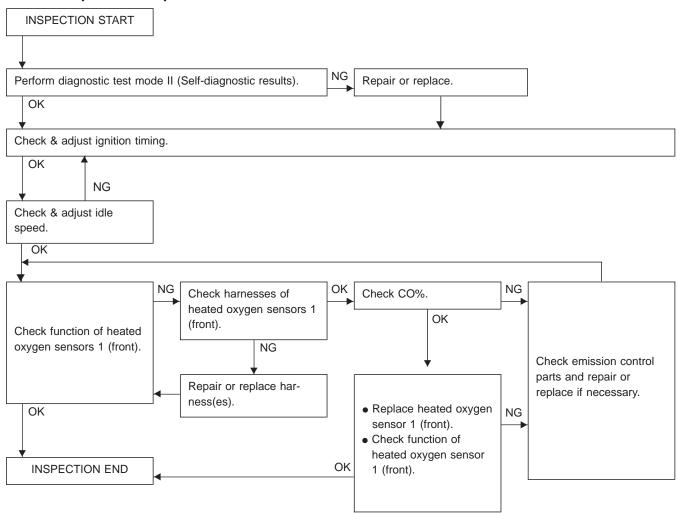

BR

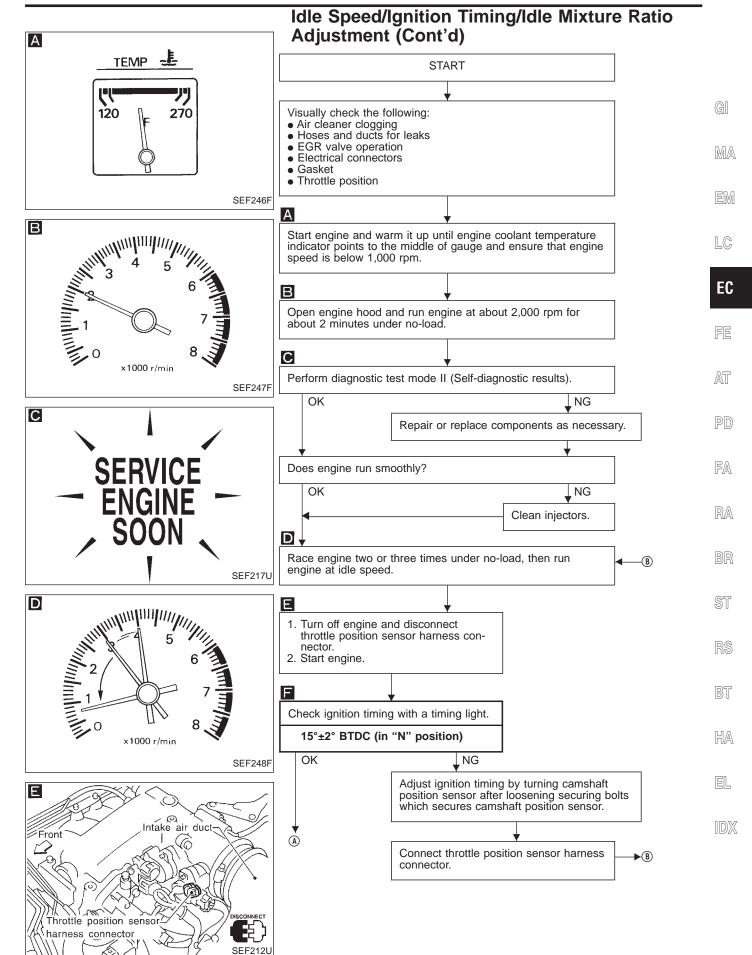

- Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.
 - Install air duct.

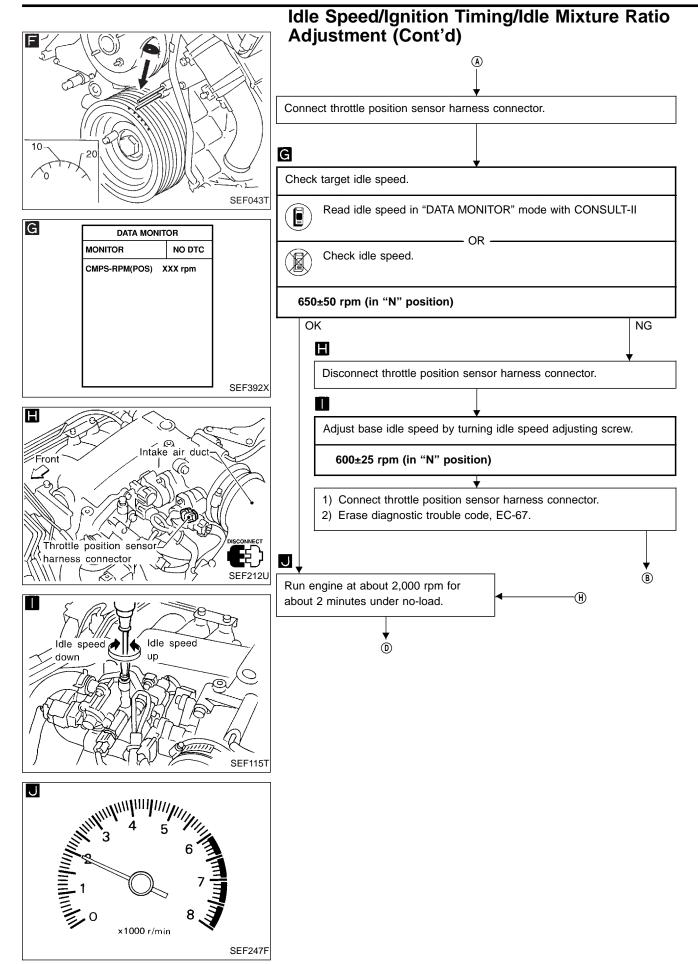
Check ignition timing.

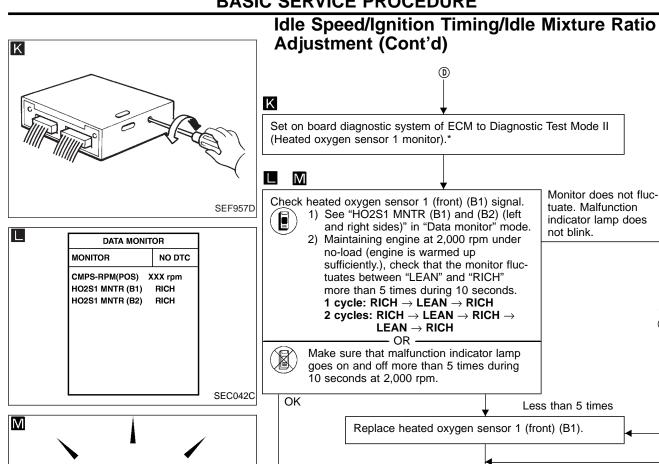
HA

EL

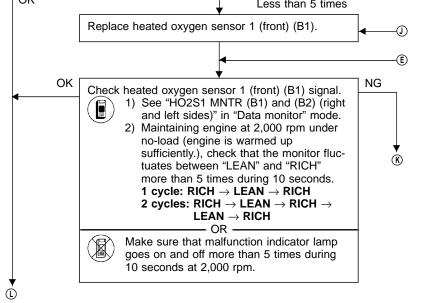

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment


PREPARATION


- Make sure that the following parts are in good order.
- (1) Battery
- (2) Ignition system
- (3) Engine oil and coolant levels
- (4) Fuses
- (5) ECM harness connector
- (6) Vacuum hoses
- (7) Air intake system (Oil filler cap, oil level gauge, etc.)
- (8) Fuel pressure
- (9) Engine compression
- (10) EGR valve operation
- (11) Throttle valve
- (12) EVAP system


- On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- When checking idle speed, ignition timing and mixture ratio of A/T models, shift lever to "N" position.
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear window defogger.
- Keep front wheels pointed straight ahead.
- Make the check after the cooling fan has stopped.

Overall inspection sequence



SEF217U

GI

MA

EM

LC

EC

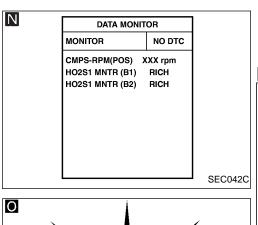
FE

AT

PD

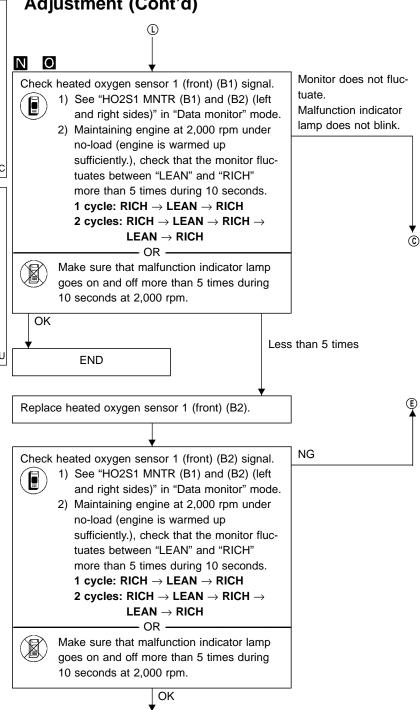
FA

RA

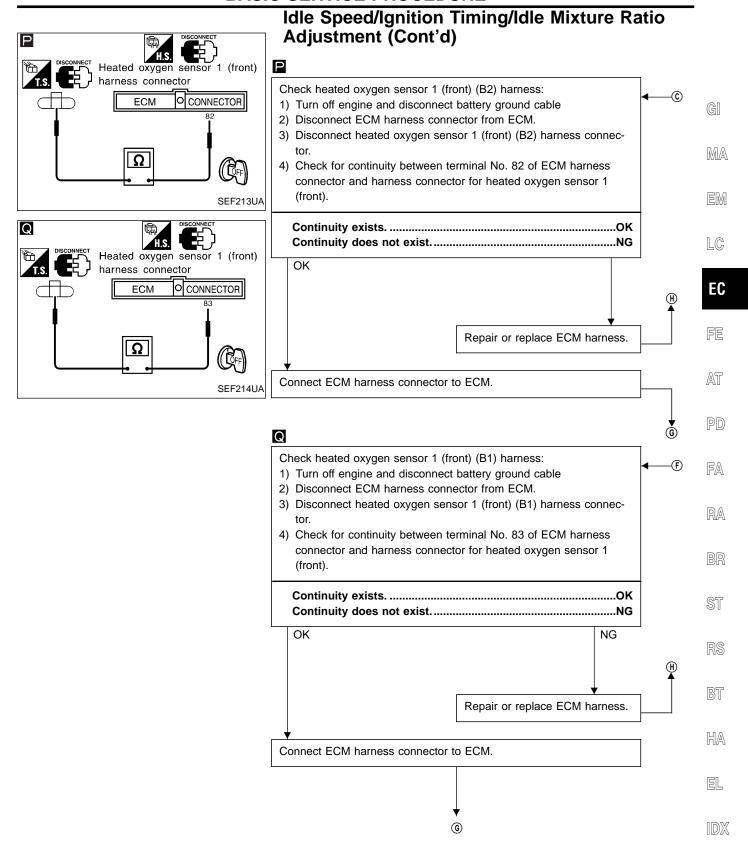

ST

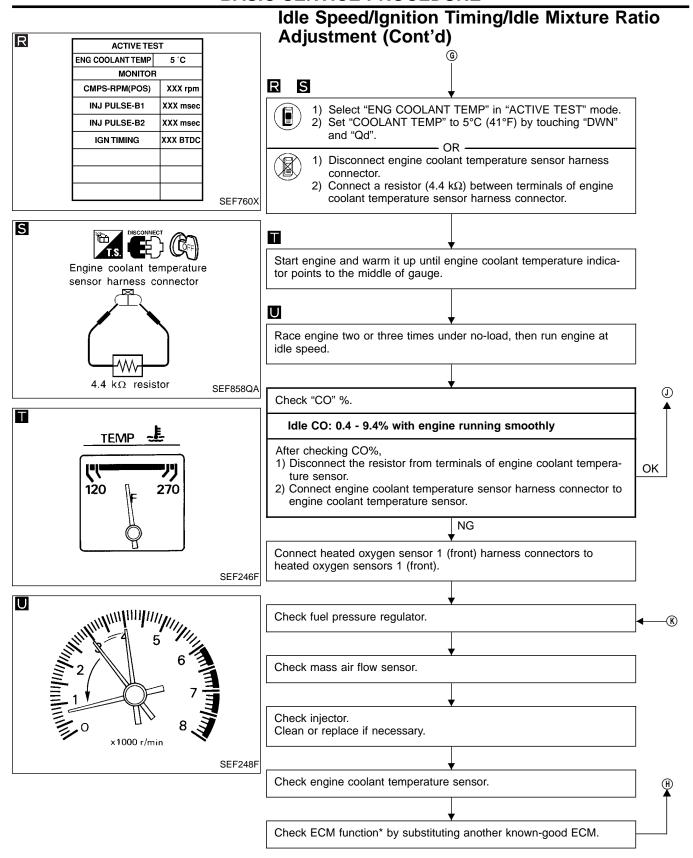
BT

HA


(F)

*: If the battery is weak, heated oxygen sensor 1 monitor may not function properly. Use this function after fully charging battery.





Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

END

^{*:} ECM may be the cause of a problem, but this is rarely the case.

Note: If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

- Diagnostic Trouble Code (DTC)
 Freeze Frame data
 Mode 3 of SAE J1979
 Mode 2 of SAE J1979

- 1st Trip Freeze Frame data

The above information can be checked using procedures listed in the table below.

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
Diagnostic test mode II (Self- diagnostic results)	Х	X*1	_	_	_	_
CONSULT-II	X	Х	X	X	X	_
GST	Х	X*2	X	_	X	X

^{*1:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode (Refer to EC-98.).

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

	MIL			D ⁻	гс	1st trip DTC	
Items	1st	trip	2nd trip	1st trip	2nd trip	1st trip	2nd trip
	Blinking	Lighting up	lighting up	displaying	displaying	displaying	displaying
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 (0701, 0608 - 0601) is being detected	Х	_	_	Х	_	X	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 (0701, 0608 - 0601) has been detected	_	×	_	×	_	×	_
Closed loop control — DTC: P1148 (0307), P1168 (0308)	_	X	_	Х	_	Х	_
Fail-safe items (Refer to EC-98.)	_	Х		X*1	_	X*1	_
Except above	_	_	Х		Х	Х	X

^{*1:} Except "ECM".

MA

LC

EC

AT

PD

FA

RA

מחפ

51

19)

BT

HA

EL

^{*2: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the first trip DTC did not reoccur, the first trip DTC will not be displayed. If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the first trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a first trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-63.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-60. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to page EC-89. Then perform "Diagnostic trouble code confirmation procedure" or "Overall function check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to read DTC and 1st trip DTC

DTC and 1st trip DTC can be read by the following methods.

(NO Trools) 1. The number of blinks of the malfunction indicator lamp in the Diagnostic Test Mode II (Self-Diagnostic Results) Examples: 0101, 0201, 1003, 1104, etc.

2. CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc. These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC is shown at left. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RES	ULTS	SELF DIA	AG RESULTS]
	DTC RESULTS	TIME	DTC RESUL	LTS TIME	
DTC display	IACV-AAC VALVE [P0505]	0	IACV-AAC VA [P0505]		
			DTC display		
					SE

Emission-related Diagnostic Information (Cont'd)

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed and vehicle speed at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and are displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-77.

Only one set of freeze frame data (either 1st trip freeze frame data of freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items				
1	Freeze frame data	Misfire — DTC: P0300 - P0308 (0701, 0608 - 0601) Fuel Injection System Function — DTC: P0171 (0115), P0172 (0114)			
2		Except the above items (Includes A/T related items)			
3	1st trip freeze frame data				

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze frame data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-63.

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

GI

FE

71

ע נוש

91

RS

HA

Emission-related Diagnostic Information (Cont'd)

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Performance Priority*2	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420, P0430
EVAP SYSTEM	2	EVAP control system (small leak) (negative pressure)	P0440
	_	EVAP control system (small leak) (positive pressure)	P1440*1
	3	EVAP control system purge flow monitoring	P1447
		Heated oxygen sensor 1 (front) (circuit)	P0130, P0150
		Heated oxygen sensor 1 (front) (lean shift monitoring)	P0131, P0151
	3	Heated oxygen sensor 1 (front) (rich shift monitoring)	P0132, P0152
		Heated oxygen sensor 1 (front) (response monitoring)	P0133, P0153
O2 SENSOR		Heated oxygen sensor 1 (front) (high voltage)	P0134, P0154
		Heated oxygen sensor 2 (rear) (min. voltage monitoring)	P0137, P0157
		Heated oxygen sensor 2 (rear) (max. voltage monitoring)	P0138, P0158
		Heated oxygen sensor 2 (rear) (response monitoring)	P0139, P0159
		Heated oxygen sensor 2 (rear) (high voltage)	P0140, P0160
O2 SEN HEATER	3	Heated oxygen sensor 1 heater (front)	P0135, P0155
OZ SLIVIILATEK	3	Heated oxygen sensor 2 heater (rear)	P0141, P0161
	3	EGR function (close)	P0400
EGR SYSTEM	3	EGRC-BPT valve function	P0402
	1	EGR function (open)	P1402

^{*1:} P1440 [EVAP control system (small leak) (positive pressure) diagnosis] is one type of SRT related diagnosis. This diagnosis, however, does not contribute to setting the SRT as "CMPLT", when no malfunction exists in the EVAP system. Therefore, P0440 must be used instead of P1440.

^{*2:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

		Example						
Self-diagr	Self-diagnosis result		Ignition cycle					
		Diagnosis	← ON → O	FF ← ON → OI	$FF \leftarrow ON \rightarrow OF$	FF ← ON →		
		P0400	OK (1)	— (1)	OK (2)	— (2)		
	Case 1	P0402	OK (1)	— (1)	— (1)	OK (2)		
	Case 1	P1402	OK (1)	OK (2)	— (2)	— (2)		
All OK		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"		
All OK		P0400	OK (1)	— (1)	— (1)	— (1)		
	Case 2	P0402	— (0)	— (0)	OK (1)	— (1)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"		
		P0400	OK	OK	_	_		
		P0402	_	_	_	_		
						NG		
NG exists	Case 3	P1402	NG	_	NG	(Consecutive		
TTO CAIGIO						NG)		
		(1st trip)	1st trip DTC	_	1st trip DTC	DTC		
		DTC	100 000		13t tilp DTC	(= MIL "ON")		
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"		

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indi-

cate "CMPLT". → Case 3 above
The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

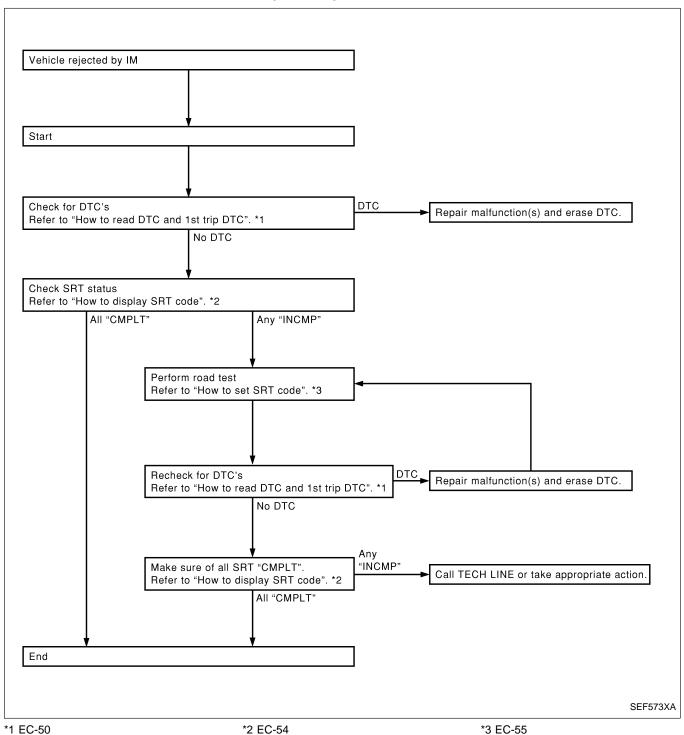
NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

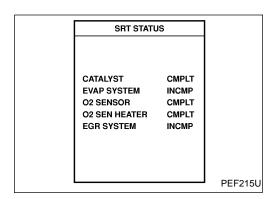
SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

BR



^{—:} Self-diagnosis is not carried out.


Emission-related Diagnostic Information (Cont'd)

How to display SRT code

- Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II
 For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items
 whose SRT codes are not set, "INCMP" is displayed.
- (GSF) 2. Selecting Mode 1 with GST (Generic Scan Tool)

Emission-related Diagnostic Information (Cont'd)

A sample of CONSULT-II display for SRT code is shown at left. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

GI

MA

EM

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

With CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-52.

Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

EC

FE

AT PD

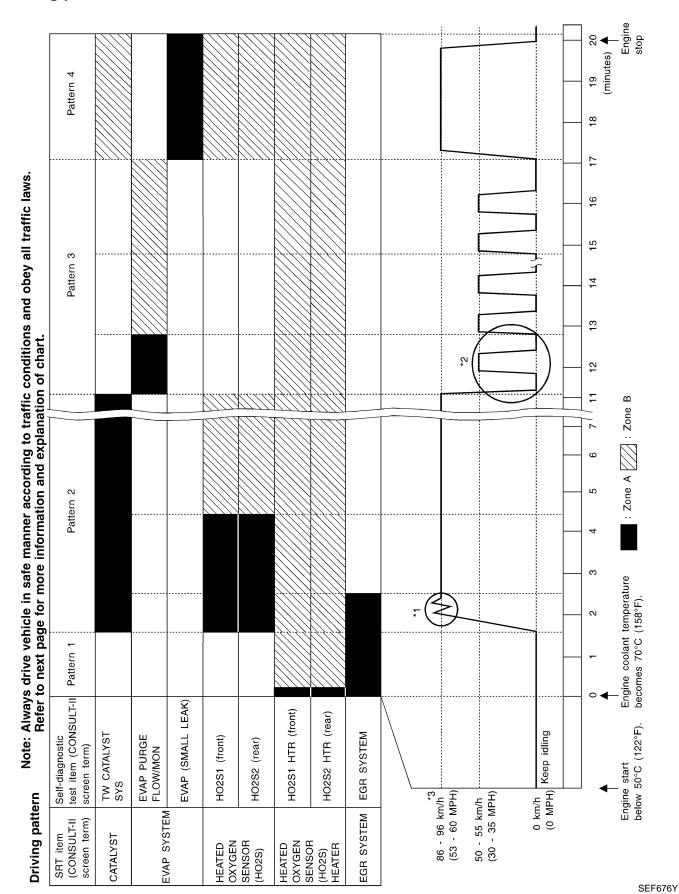
FA

RA

BR

ST

RS


BT

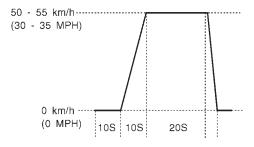
HA

EL

Emission-related Diagnostic Information (Cont'd)

Driving pattern

Emission-related Diagnostic Information (Cont'd)


The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest. Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.

Under different conditions [For example: ambient temperature is other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

- Pattern 1: The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal (a) and ground is 3.0 4.3 V.)
 - The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal @ and ground is lower than 1.4 V.)
 - The engine is started at a fuel tank temperature warmer than 0°C (32°F) (where the voltage between the ECM terminal (9) and ground is less than 4.1V).
- Pattern 2: When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.
- Pattern 3: The driving pattern outlined in *2 must be repeated at least 3 times.
- Pattern 4: Tests are performed after the engine has been operated for at least 17 minutes.
 - The accelerator pedal must be held very steady during steady-state driving.
 - If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
 - 1) Decelerate vehicle to 0 km/h (0 MPH) and let it idle.
 - 2) Repeat driving pattern shown below at least 10 times.
 - During acceleration, hold the accelerator pedal as steady as possible.
 - 3) Repeat steps and 2 until the EGR system SRT is set.

SFF414S

*3: Checking the vehicle speed with GST is advised.

Suggested transmission gear position

Set the selector lever in the "D" position with "OD" ON.

Suggested maximum speed in each gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits, and drive according to the road conditions, which will ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	50 (30)
2nd	95 (60)
3rd	145 (90)
4th	_
5th	_
5th	_

GI

MA

LC

EC

EU

FE

AT

PD

FA

RA

@T

തര

HA

EL

Emission-related Diagnostic Information (Cont'd)

TEST VALUE AND TEST LIMIT (GST only — not applicable to CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (14 test items).

These data (test limit) are specified by Test ID (TID) and Component ID (CID). These data can be displayed on the GST screen.

X: Applicable —: Not applicable

CDT items	Self-diagnostic test	Test	value	To at limit	Application	
SRT item	item	TID	CID	Test limit		
	Three way catalyst function (Left bank)	01H	01H	Max.	Х	
CATALYST	Three way catalyst function (Right bank)	03H	02H	Max.	X	
EVAP SYSTEM	EVAP control system (Small leak)	05H	03H	Max.	Х	
EVAP STSTEM	EVAP control sys- tem purge flow monitoring	06H	83H	Min.	Х	
		09H	04H	Max.	Х	
		0AH	84H	Min.	Х	
	Heated oxygen sen- sor 1 (front) (B1)	0BH	04H	Max.	Х	
		0CH	04H	Max.	Х	
		0DH	04H	Max.	X	
		11H	05H	Max.	X	
		12H	85H	Min.	Х	
	Heated oxygen sen- sor 1 (front) (B2)	13H	05H	Max.	Х	
O2 SENSOR	001 1 (110111) (112)	14H	05H	Max.	Х	
UZ SENSUR		15H	05H	Max.	Х	
		19H	86H	Min.	Х	
	Heated oxygen sen-	1AH	86H	Min.	Х	
	sor 2 (rear) (B1)	1BH	06H	Max.	Х	
		1CH	06H	Max.	Х	
		21H	87H	Min.	Х	
	Heated oxygen sen-	22H	87H	Min.	Х	
	sor 2 (rear) (B2)	23H	07H	Max.	Х	
		24H	07H	Max.	Х	

Emission-related Diagnostic Information (Cont'd)

ODT its	Self-diagnostic test	Test	/alue	To ad lineid	A 1: 4:
SRT item	item	TID	CID	Test limit	Application
	Heated oxygen sen-	29H	08H	Max.	Х
	sor 1 heater (front) (B1)	2AH	88H	Min.	Х
	Heated oxygen sen-	2BH	09H	Max.	Х
O2 SENSOR	sor 1 heater (front) (B2)	2CH	89H	Min.	Х
HEATER	Heated oxygen sen-	2DH	0AH	Max.	Х
	sor 2 heater (rear) (B1)	2EH	8AH	Min.	Х
	Heated oxygen sensor 2 heater (rear) (B2)	2FH	0BH	Max.	Х
		30H	8BH	Min.	Х
		31H	8CH	Min.	Х
		32H	8CH	Min.	Х
	EGR function	33H	8CH	Min.	Х
GR SYSTEM		34H	8CH	Min.	Х
		35H	0CH	Max.	Х
	EGRC-BPT valve	36H	0CH	Max.	Х
	function	37H	8CH	Min.	Х

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

Emission-related Diagnostic Information (Cont'd)

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable

-: Not applicable

Items	DTC	C*4		Test value/	1st trip DTC*4	
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)		Reference page
NO DTC IS DETECTED, FURTHER TESTING MAY BE REQUIRED.	P0000	0505	_	_	_	_
MAF SEN/CIRCUIT	P0100	0102	_	_	Х	EC-124
ABSL PRES SEN/CIRC	P0105	0803	_	_	Х	EC-132
AIR TEMP SEN/CIRC	P0110	0401	_	_	Х	EC-140
COOLANT T SEN/CIRC	P0115	0103	_	_	Х	EC-145
THRTL POS SEN/CIRC	P0120	0403	_	_	Х	EC-150
*COOLAN T SEN/CIRC	P0125	0908	_	_	Х	EC-161
HO2S1 (B1)	P0130	0303	Х	Х	X*3	EC-166
HO2S1 (B1)	P0131	0411	Х	Х	X*3	EC-174
HO2S1 (B1)	P0132	0410	Х	Х	X*3	EC-180
HO2S1 (B1)	P0133	0409	Х	Х	X*3	EC-187
HO2S1 (B1)	P0134	0412	Х	Х	X*3	EC-196
HO2S1 HTR (B1)	P0135	0901	X	Х	X*3	EC-204
HO2S2 (B1)	P0137	0511	X	Х	X*3	EC-210
HO2S2 (B1)	P0138	0510	X	Х	X*3	EC-218
HO2S2 (B1)	P0139	0707	Х	Х	X*3	EC-226
HO2S2 (B1)	P0140	0512	Х	Х	X*3	EC-233
HO2S2 HTR (B1)	P0141	0902	Х	Х	X*3	EC-239
HO2S1 (B2)	P0150	0503	Х	Х	X*3	EC-204
HO2S1 (B2)	P0151	0415	Х	Х	X*3	EC-174
HO2S1 (B2)	P0152	0414	Х	Х	X*3	EC-180
HO2S1 (B2)	P0153	0413	Х	Х	X*3	EC-187
HO2S1 (B2)	P0154	0509	Х	Х	X*3	EC-196
HO2S1 HTR (B2)	P0155	1001	Х	Х	X*3	EC-204
HO2S2 (B2)	P0157	0314	Х	Х	X*3	EC-210
HO2S2 (B2)	P0158	0313	Х	Х	X*3	EC-218
HO2S2 (B2)	P0159	0708	Х	Х	X*3	EC-226
HO2S2 (B2)	P0160	0315	Х	Х	X*3	EC-233
HO2S2 HTR (B2)	P0161	1002	Х	Х	X*3	EC-239
FUEL SYS LEAN/BK1	P0171	0115	_	_	Х	EC-245
FUEL SYS RICH/BK1	P0172	0114	_	_	Х	EC-251
FUEL SYS LEAN/BK2	P0174	0210	_	_	Х	EC-245
FUEL SYS RICH/BK2	P0175	0209	_	_	Х	EC-251
FUEL TEMP SEN/CIRC	P0180	0402	_	_	Х	EC-257
MULTI CYL MISFIRE	P0300	0701	_	_	Х	EC-262
CYL 1 MISFIRE	P0301	0608	_	_	Х	EC-262
CYL 2 MISFIRE	P0302	0607	_	_	X	EC-262

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.
*2: These numbers are prescribed by SAE J2012.
*3: These are not displayed with GST.
*4: 1st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information (Cont'd)

X: Applicable -: Not applicable

						—: Not applicable)
	DT	C*4		Test value/			
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)	1st trip DTC*4	Reference page	GI
CYL 3 MISFIRE	P0303	0606	_	_	Х	EC-262	-
CYL 4 MISFIRE	P0304	0605	_	_	Х	EC-262	· MA
CYL 5 MISFIRE	P0305	0604	_	_	Х	EC-262	-
CYL 6 MISFIRE	P0306	0603	_	_	Х	EC-262	EM
CYL 7 MISFIRE	P0307	0602	_	_	Х	EC-262	-
CYL 8 MISFIRE	P0308	0601	_	_	Х	EC-262	LG
KNOCK SEN/CIRC-B1	P0325	0304	_	_	Х	EC-267	
KNOCK SEN/CIRC-B2	P0330	0212	_	_	Х	EC-267	EC
CKP SEN/CIRCUIT	P0335	0802	_	_	Х	EC-270	EG
CMP SEN/CIRCUIT	P0340	0101	_	_	Х	EC-275	
EGR SYSTEM	P0400	0302	Х	Х	X*3	EC-281	FE
EGRC-BPT VALVE	P0402	0306	Х	Х	X*3	EC-290	-
TW CATALYST SYS-B1	P0420	0702	Х	Х	X*3	EC-295	AT
TW CATALYST SYS-B2	P0430	0703	Х	Х	X*3	EC-295	-
EVAP SMALL LEAK	P0440	0705	Х	Х	X*3	EC-298	PD
PURG VOLUME CONT/V	P0443	1008	_	_	Х	EC-309	
VENT CONTROL VALVE	P0446	0903	_	_	Х	EC-315	-
EVAPO SYS PRES SEN	P0450	0704	_	_	Х	EC-320	- FA
EVAP GROSS LEAK	P0455	0715	_	X	X*3	EC-326	-
VEH SPEED SEN/CIRC	P0500	0104	_	_	Х	EC-335	RA
IACV/AAC VLV/CIRC	P0505	0205	_	_	Х	EC-340	-
CLOSED TP SW/CIRC	P0510	0203	_	_	Х	EC-346	BR
A/T COMM LINE	P0600	0504	_	_	_	EC-352	-
ECM	P0605	0301	_	_	Х	EC-355	- ST
PNP SW/CIRC	P0705	1101	_	_	Х	AT-81	. 0:
ATF TEMP SEN/CIRC	P0710	1208	_	_	Х	AT-85	- D@
VEH SPD SEN/CIR AT	P0720	1102	_	_	Х	AT-89	- RS
ENGINE SPEED SIG	P0725	1207	_	_	Х	AT-92	
A/T 1ST GR FNCTN	P0731	1103	_	_	Х	AT-95	BT
A/T 2ND GR FNCTN	P0732	1104	_	_	Х	AT-100	-
A/T 3RD GR FNCTN	P0733	1105	_	_	Х	AT-104	HA
A/T 4TH GR FNCTN	P0734	1106	_	_	Х	AT-108	-
TCC SOLENOID/CIRC	P0740	1204	_	_	Х	AT-114	EL
A/T TCC S/V FNCTN	P0744	1107	_	_	Х	AT-118	
L/PRESS SOL/CIRC	P0745	1205	_	_	Х	AT-125	
SFT SOL A/CIRC	P0750	1108	_	_	Х	AT-129	- IDX
SFT SOL B/CIRC	P0755	1201	_	_	Х	AT-133	-
MAP/BAR SW SOL/CIR	P1105	1302	_	_	Х	EC-358	-
INT/V TIM CONT-B1	P1110	0805	_	_	Х	EC-367	-

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.
*2: These numbers are prescribed by SAE J2012.
*3: These are not displayed with GST.
*4: 1st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information (Cont'd)

X: Applicable
—: Not applicable

Items (CONSULT-II screen terms)	DTC*4			Test value/		
	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)	1st trip DTC*4	Reference page
TP SEN2/CIRCUIT	P1120	0406	_	_	Х	EC-375
MOT THRT SEN/CT	P1125	0110	_	_	Х	EC-381
INT/V TIM CONT-B2	P1135	1301	_	_	Х	EC-367
INTK TIM S/CIRC-B1	P1140	1303	_	_	Х	EC-382
INTK TIM S/CIRC-B2	P1145	1304	_	_	Х	EC-382
CLOSED LOOP-B1	P1148	0307	_	_	Х	EC-388
CLOSED LOOP-B2	P1168	0308	_	_	Х	EC-388
TACM SW SIGNALS	P1210	0106	_	_	Х	EC-390
FPCM/CIRCUIT	P1220	1305	_	_	Х	EC-393
IGN SIGNAL-PRIMARY	P1320	0201	_	_	Х	EC-399
CKP SENSOR (COG)	P1336	0905	_	_	Х	EC-407
EGRC SOLENOID/V	P1400	1005	_	_	Х	EC-412
EGR TEMP SEN/CIRC	P1401	0305	_	_	Х	EC-417
EGR SYSTEM	P1402	0514	Х	Х	X*3	EC-423
EVAP SMALL LEAK	P1440	0213	Х	Х	Х	EC-432
PURG VOLUME CONT/V	P1444	0214	_	_	Х	EC-444
VENT CONTROL VALVE	P1446	0215	_	_	Х	EC-452
EVAP PURG FLOW/MON	P1447	0111	Х	Х	X*3	EC-457
VENT CONTROL VALVE	P1448	0309	_	_	Х	EC-464
VC/V BYPASS/V	P1490	0801	_	_	Х	EC-470
VC CUT/V BYPASS/V	P1491	0311	_	_	Х	EC-475
PURG CONT S/V	P1492	0807	_	_	Х	EC-481
PURG CONT/V & S/V	P1493	0312	_	_	Х	EC-487
A/T DIAG COMM LINE	P1605	0804	_	_	Х	EC-352
TP SEN/CIRC A/T	P1705	1206	_	_	Х	AT-137
P-N POS SW/CIRCUIT	P1706	1003	_	_	Х	EC-494
O/R CLTCH SOL/CIRC	P1760	1203	_	_	Х	AT-143

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN. *2: These numbers are prescribed by SAE J2012. *3: These are not displayed with GST. *4: 1st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information (Cont'd)

GI

MA

EM

LC

EC

AT

PD

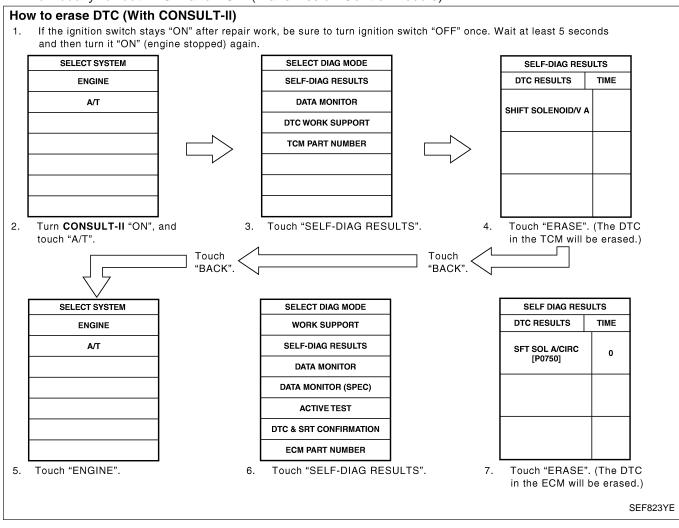
FA

RA

Bī

HA

EL


HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to erase DTC (With CONSULT-II)

Note: If the diagnostic trouble code is not for A/T related items (see EC-4), skip steps 2 through 4.

- . If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission Control Module) will be erased.] And touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission Control Module), they need to be erased
 individually for both ECM and TCM (Transmission Control Module).

The emission-related diagnostic information can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to erase DTC (With GST)

Note: If the diagnostic trouble code is not for A/T related items (see page EC-4), skip step 2.

1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.

Emission-related Diagnostic Information (Cont'd)

- 2. Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

(NO Tools) How to erase DTC (No Tools)

Note: If the diagnostic trouble code is not for A/T related items (see EC-4), skip step 2.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" again.
- 2. Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Change the diagnostic test mode from Mode II to Mode I by turning the mode selector on the ECM. (See EC-66.)

NOTE:

- If the battery terminal is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- Erasing the emission-related diagnostic information, using CONSULT-II or GST is easier and quicker than switching the mode selector on the ECM.

The following data are cleared when the ECM memory is erased.

- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values
- 7. Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL)

The malfunction indicator lamp is located on the instrument panel.

- The malfunction indicator lamp will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the malfunction indicator lamp does not light up, refer to EL section WARNING LAMPS or see EC-535.
- should go off. If the lamp remains on, the on board diagnostic system has

detected an engine system malfunction.

When the engine is started, the malfunction indicator lamp

MA

EM

GI

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions.

LC

Diagnostic Test Mode I

- 1. BULB CHECK : This function checks the bulb for damage (blown, open circuit, etc.) of the malfunction indicator lamp.
 - If the MIL does not come on, check MIL circuit and ECM test mode. (See next page.)
- 2. MALFUNCTION : This is a usual driving condition. When a malfunction is detected twice WARNING in two consecutive driving cycles (2 trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected.

The following malfunctions will light up or blink the MIL in the 1st trip.

- "Misfire (possible three way catalyst damage)"
- "Closed loop control"
- Fail-safe mode

Diagnostic Test Mode II

- 3. SELF-DIAGNOSTIC **RESULTS**
- 4. HEATED OXYGEN SENSORS 1 MONI-TOR (FRONT)

: This function allows DTCs and 1st trip DTCs to be read.

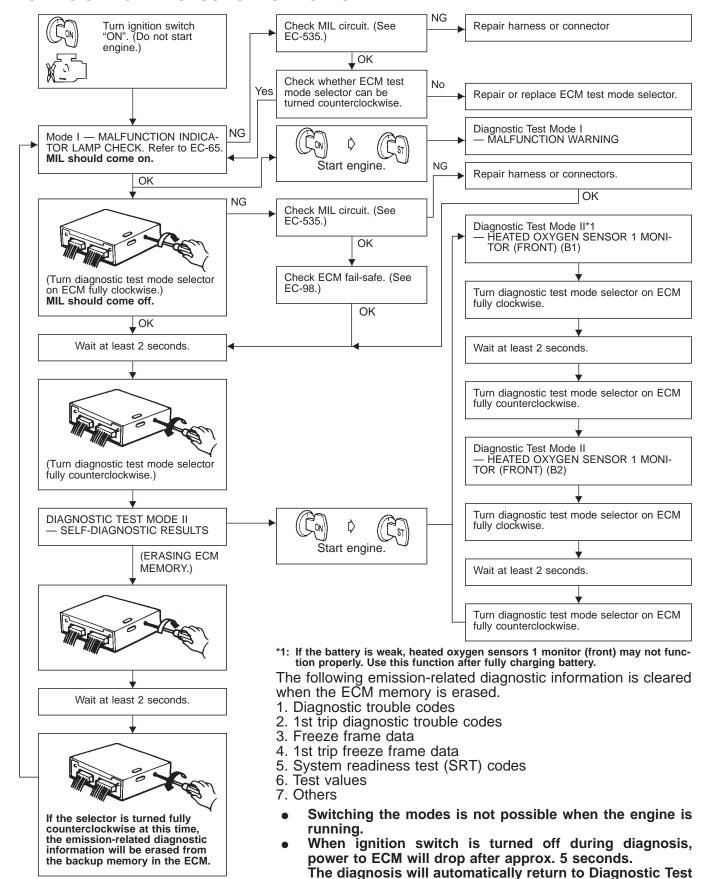
: This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensors 1 monitor (front), to be read.

MIL Flashing without DTC

If the ECM is in Diagnostic Test Mode II, the MIL may flash when the engine is running. In this case, check ECM test mode selector following "HOW TO SWITCH DIAGNOSTIC TEST MODES" on next page. How to switch the diagnostic test (function) modes and details of the above functions are described later. (See page EC-66.)

Condition		Diagnostic Test Mode I	Diagnostic Test Mode II	B
Ignition switch in "ON" position	Engine stopped	BULB CHECK	SELF-DIAGNOSTIC RESULTS	H
	Engine running	MALFUNCTION WARNING	HEATED OXYGEN SENSOR 1 MONI- TOR (FRONT)	

AT


PD

FA

RS

Malfunction Indicator Lamp (MIL) (Cont'd)

HOW TO SWITCH DIAGNOSTIC TEST MODES

Turn back diagnostic test mode selector to the fully coun-

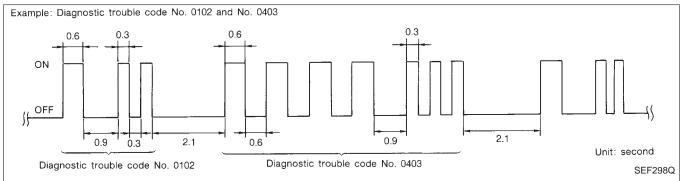
terclockwise position whenever vehicle is in use.

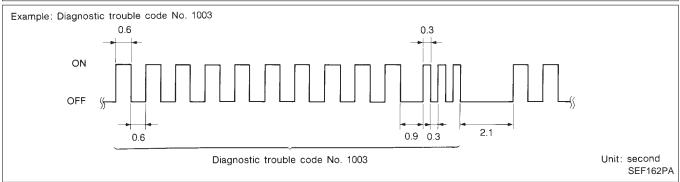
Malfunction Indicator Lamp (MIL) (Cont'd)

DIAGNOSTIC TEST MODE I—BULB CHECK

In this mode, the MALFUNCTION INDICATOR LAMP on the instrument panel should stay ON. If it remains OFF, check the bulb. (See the WARNING LAMPS in the EL section. Or see EC-535.)

DIAGNOSTIC TEST MODE I—MALFUNCTION WARNING


DIAGNOSTIC TE	51 WODE I—WALFUNGTION WARNING	G[
MALFUNCTION INDICATOR LAMP	Condition	
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.	MA
OFF	No malfunction	


 These Diagnostic Trouble Code Numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS).

DIAGNOSTIC TEST MODE II—SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MALFUNCTION INDI-CATOR LAMP as shown below.

The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode 1 (Malfunction warning), all displayed items are 1st trip DTC's. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTC's or 1st trip DTC's. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the consult or GST. A DTC will be used as an example for how to read a code.

Long (0.6 second) blinking indicates the two LH digits of number and short (0.3 second) blinking indicates the two RH digits of number. For example, the malfunction indicator lamp blinks 10 times for 6 seconds (0.6 sec x 10 times) and then it blinks three times for about 1 second (0.3 sec x 3 times). This indicates the DTC "1003" and refers to the malfunction of the park/neutral position switch.

In this way, all the detected malfunctions are classified by their diagnostic trouble code numbers. The DTC "0505" refers to no malfunction. (See DIAGNOSTIC TROUBLE CODE INDEX, refer to page EC-4.)

HOW TO ERASE DIAGNOSTIC TEST MODE II (Self-diagnostic results)

The diagnostic trouble code can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "HOW TO SWITCH DIAGNOSTIC TEST MODES".)

- If the battery terminal is disconnected, the diagnostic trouble code will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

EC

LC

AT

PD FA

RA

ST

RS

BT

HA

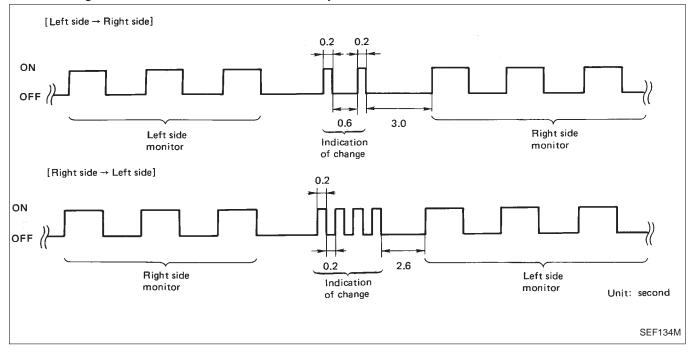
Malfunction Indicator Lamp (MIL) (Cont'd)

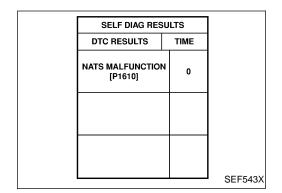
DIAGNOSTIC TEST MODE II—HEATED OXYGEN SENSOR 1 MONITOR (FRONT)

In this mode, the MALFUNCTION INDICATOR LAMP displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensors 1 (front).

MALFUNCTION INDICATOR LAMP	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean	Closed loop control	
OFF	Rich		
*Remains ON or OFF	Any condition	Open loop control	

^{*:} Maintains conditions just before switching to open loop.


To check the heated oxygen sensors 1 (front) function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.


Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MALFUNCTION INDICATOR LAMP comes ON more than 5 times every 10 seconds when measured at 2,000 rpm under no-load.

If the battery is weak, heated oxygen sensors 1 monitor (front) may not function properly. Use this function after fully charging battery.

How to switch monitored sensor from left bank to right bank or vice versa

- The following procedure should be performed while the engine is running.
- 1. Turn diagnostic test mode selector on ECM fully clockwise.
- 2. Wait at least 2 seconds.
- 3. Turn diagnostic test mode selector on ECM fully counterclockwise.

Malfunction Indicator Lamp (MIL) (Cont'd)

IVIS (Infiniti Vehicle Immobilizer System — NATS)

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform selfdiagnostic results mode with CONSULT-II using NATS program card. Refer to "IVIS (Infiniti Vehicle Immobilizer System — NATS" in EL section.
- Confirm no self-diagnostic results of NATS is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NATS system and registration of all NATS ignition key IDs must be carried out with CONSULT-II using NATS program card. Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NATS initialization and NATS ignition key ID registration, refer to CONSULT-II operation manual. NATS.

MA

LC

EC

FE

PD

FA

RA

OBD System Operation Chart

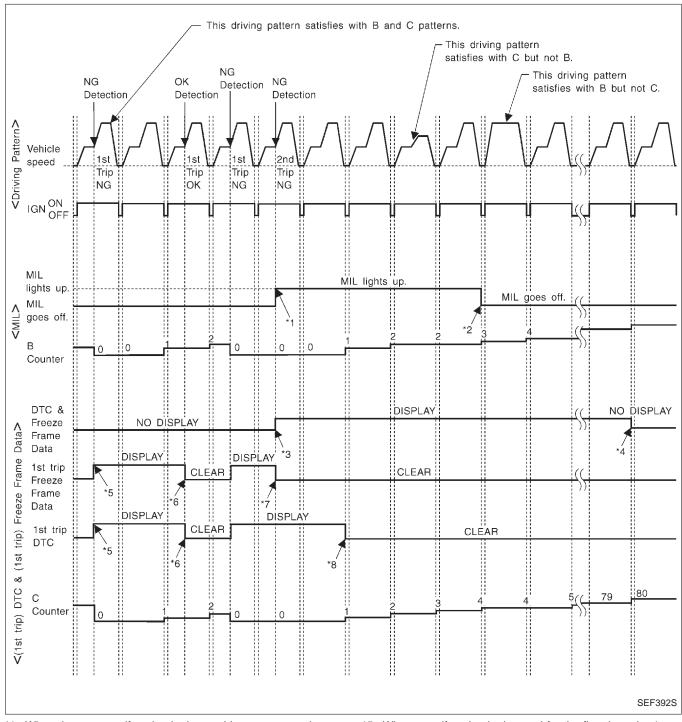
RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-49.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel injection system). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" IN "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other	_
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)	- RS
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)	_
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)	- BT
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)	- HA

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-71.


For details about patterns "A" and "B" under "Other", see EC-71.

*1: Clear timing is at the moment OK is detected.

*2: Clear timing is when the same malfunction is detected in the 2nd trip.

EL

OBD System Operation Chart (Cont'd) RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in FCM
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction.
 - (The DTC and the freeze frame data still remain in ECM.)

- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven a time (pattern C) without the same malfunction after DTC is stored in ECM.

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

G

MA

- The B counter will reset when the malfunction is detected once regardless of the driving pattern.
- The B counter will count up times driving pattern B is satisfied without the malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving pattern C>

Driving pattern C means the vehicle operation as follows:

- (1) The following conditions should be satisfied at the same time:
 - Engine speed: (Engine speed in the freeze frame data) ±375 rpm
 - Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%] Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

If the stored freeze frame data is as follows:

- Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)
- To be satisfied with driving pattern C, the vehicle should run under the following conditions:
 - Engine speed: 475 1,225 rpm, Calculated load value: 27 33%, Engine coolant temperature: more than 70°C (158°F)
- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted a time without the same malfunction after DTC is stored in ECM.

LC

AT

PD

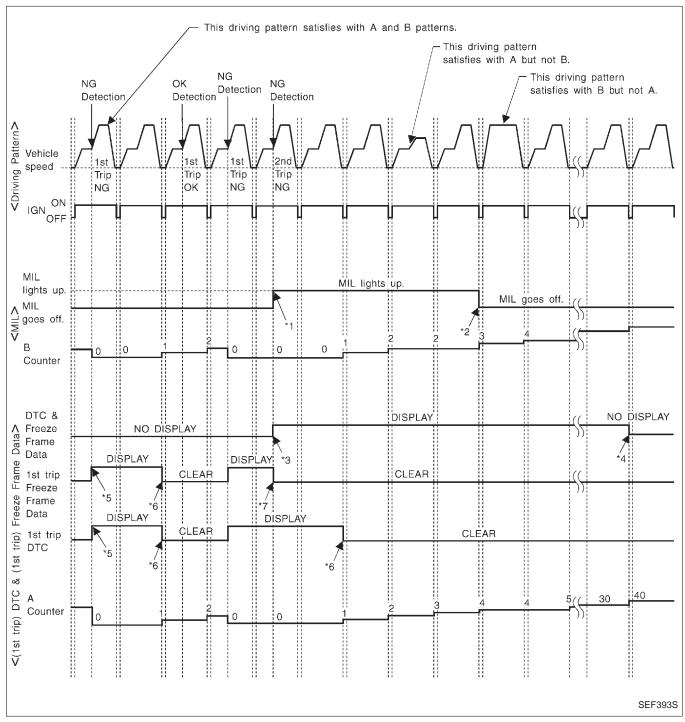
FA

RA

BR

ST

RS

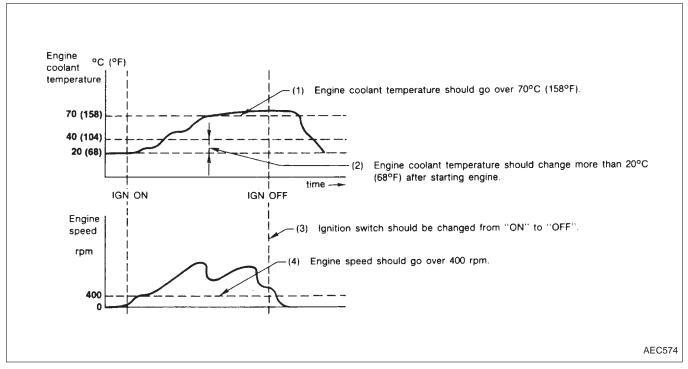

BT

HA

EL

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"


- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.
 - (The DTC and the freeze frame data still remain in ECM.)

- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven a time (pattern A) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

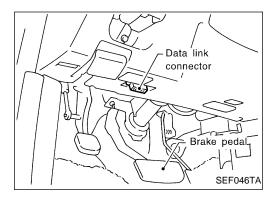
LC

EC

AT

PD

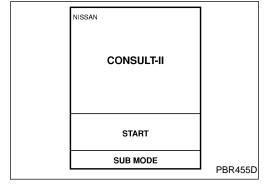
FA


RA

BR

ST

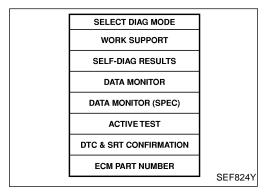
HA


EL

CONSULT-II

CONSULT-II INSPECTION PROCEDURE

- 1. Turn off ignition switch.
- 2. Connect "CONSULT-II" to data link connector which is located beside the hood lock release handle.



3. Turn on ignition switch.

4. Touch "START".

DIAGNOSIS SYSTEM SELECTION	
ENGINE	
	PEF895K

5. Touch "ENGINE".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

			DIAGNOSTIC TEST MODE							
Item				SELF-DI RESU	IAGNOSTIC LTS*1	DATA	ACTIVE	1	& SRT MATION	
iterii			SUP- PORT		FREEZE FRAME DATA*2	MONITOR	TEST	SRT STA- TUS	DTC WORK SUPPORT	
		Camshaft position sensor		Х	Х	Х				
		Mass air flow sensor		Х		Х				
		Engine coolant temperature sensor		Х	Х	Х	Х			
		Heated oxygen sensor 1 (front)		Х		Х		Х	Х	
		Heated oxygen sensor 2 (rear)		Х		Х		Х	Х	
		Vehicle speed sensor		Х	Х	Х				
		Throttle position sensor	Х	Х		Х				
		Fuel tank temperature sensor		Х		Х	Х			
		EVAP control system pressure sensor		Х		Х				
		Absolute pressure sensor		Х		X				
		EGR temperature sensor		Х		Х				
	IDUT	Intake air temperature sensor		X		X				
IN	INPUT	Crankshaft position sensor (OBD)		Х						
_		Knock sensor		Х						
2		Ignition switch (start signal)				Х				
[]		Closed throttle position switch		Х						
Ē		Closed throttle position switch (throttle				.,				
ENGINE CONTROL COMPONENT PARTS		position sensor signal)				X				
[Air conditioner switch				Х				
5		Park/Neutral position switch		Х		Х				
į		Power steering oil pressure switch				Х				
2		Air conditioner switch				Х				
5		Battery voltage				Х				
١		Ambient air temperature switch				Х				
		Injectors				Х	Х			
		Power transistor (Ignition timing)		X (Ignition signal)		Х	Х			
		IACV-AAC valve	Х	Х		Х	Х			
		EVAP canister purge volume control valve		Х		Х	Х		Х	
		Air conditioner relay				Х				
		Fuel pump relay	Х			Х	Х			
Ol	UTPUT	EGRC-solenoid valve		Х		Х	Х			
		Heated oxygen sensor 1 heater (front)		Х		Х		Х		
		Heated oxygen sensor 2 heater (rear)		Х		Х		Х		
		EVAP canister purge control solenoid valve		Х		Х	Х			
		EVAP canister vent control valve		Х		Х	Х			
		Vacuum cut valve bypass valve		Х		Х	Х		Х	
		MAP/BARO switch solenoid valve		Х		Х	Х			
		Calculated load value			Х	Х				

GI

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

X: Applicable *1: This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-51.

CONSULT-II (Cont'd)

FUNCTION

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part numbers	ECM part numbers can be read.

- The following emission-related diagnostic information is cleared when the ECM memory is erased.

 - Diagnostic trouble codes
 1st trip diagnostic trouble codes

 - 3. Freeze frame data4. 1st trip freeze frame data
 - 5. System readiness test (SRT) codes
 - 6. Test values
 - 7. Others

WORK SUPPORT MODE

WORK ITEM	CONDITION	USAGE
TP SW/TP SEN IDLE POSI ADJ	FOLLOW THE BASIC INSPECTION IN THE SERVICE MANUAL.	When adjusting the idle throttle position.
IACV-AAC/V ADJ	SET ENGINE SPEED AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. • ENGINE WARMED UP • NO-LOAD	When adjusting ignition timing and idle speed
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When releasing fuel pressure from fuel line
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE THE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW "ON" ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM FUEL TANK TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system

CONSULT-II (Cont'd)

G

BT

HA

EL

SELF-DIAGNOSTIC MODE

DTC and 1st trip DTC

Regarding items of "DTC and 1st trip DTC", refer to "DIAGNOSTIC TROUBLE CODE INDEX" (See EC-4.).

Freeze frame data and 1st trip freeze frame data

Freeze frame data item*1	Description				
DIAG TROUBLE CODE [PXXXX]	• Engine control component part/control system has a trouble code, it is displayed as "PXXXX". [Refer to "Alphabetical & P No. Index for DTC (EC-4).]				
FUEL SYS-B1*2	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction 	- LC EC			
FUEL SYS-B2*2	"MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using heated oxygen sensor 1 (front) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop				
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.				
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.	AT			
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.	_			
S-FUEL TRM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.	PD			
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.	- FA			
L-FUEL TRM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.	I-147			
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.	- RA			
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.				
ABSOL PRESS [kPa] or [kg/cm ²] or [psi]	The absolute pressure at the moment a malfunction is detected is displayed.				
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.	_ ST			
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.	- RS			

^{*1:} The items are the same as those of 1st trip freeze frame data.

^{*2:} Regarding model Y33, "B1" indicates left bank and "B2" indicates right bank.

CONSULT-II (Cont'd)

DATA MONITOR MODE

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
CMPS·RPM (POS) [rpm]	0	0	Indicates the engine speed computed from the POS signal (1° signal) of the crankshaft position sensor (POS).	
MAS AIR/FL SE [V]	0	0	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		0	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1 [%]			The mean value of the air-fuel ratio feed- back correction factor per cycle is indi-	When the engine is stopped, a certain value is indicated.
A/F ALPHA-B2 [%]		\bigcirc	cated.	 This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	 When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
HO2S1 (B1) [V]	\bigcirc	\bigcirc	The signal voltage of the heated oxygen sensors 1 (front) is displayed.	
HO2S1 (B2) [V]	0	\bigcirc		
HO2S2 (B1) [V]	\bigcirc	\bigcirc	The signal voltage of the heated oxygen sensor 2 (rear) is displayed.	
HO2S2 (B2) [V]	\bigcirc	\bigcirc		
HO2S1 MNTR (B1) [RICH/LEAN]	0	0	Display of heated oxygen sensors 1 (front) signal during air-fuel ratio feedback control: RICH means the mixture became "rich" and control is being effected.	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is
HO2S1 MNTR (B2) [RICH/LEAN]	0	0	"rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	0		Display of heated oxygen sensor 2 (rear) signal during air-fuel ratio feedback control: RICH means the amount of oxygen	When the engine is stopped, a certain value is indicated.
HO2S2 MNTR (B2) [RICH/LEAN]	0	0	after three way catalyst is relatively large. LEAN means the amount of oxygen after three way catalyst is relatively small.	
VHCL SPEED SE [km/h] or [mph]			The vehicle speed computed from the vehicle speed sensor signal is displayed.	
BATTERY VOLT [V]	0	0	The power supply voltage of ECM is displayed.	
THRTL POS SEN [V]	0	\bigcirc	The throttle position sensor signal voltage is displayed.	
THRTL/P SEN2 [V]	0		Secondary throttle position sensor signal voltage is displayed.	
FUEL T/TMP SE [°C] or [°F]	0		The fuel tank temperature judged from the tank fuel temperature sensor signal voltage is displayed.	

NOTE:
Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically. Regarding Y33 model, "B1" indicates left bank and "B2" indicates right bank.

CONSULT-II (Cont'd)

			,		
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks	
EGR TEMP SEN [V]			The signal voltage of the EGR tempera- ture sensor is displayed.		<u>~</u>
INT/A TEMP SE [°C] or [°F]	0	0	 The intake air temperature determined by the signal voltage of the intake air tem- perature sensor is indicated. 		Gl
START SIGNAL [ON/OFF]			 Indicates [ON/OFF] condition from the starter signal. 	After starting the engine, [OFF] is displayed regardless of the starter signal.	M
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 		E
CLSD THL/P SW [ON/OFF]	0		 Indicates mechanical contact [ON/OFF] condition from the closed throttle position switch signal. 		L(
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 		E
P/N POSI SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the park/neutral position switch signal.		FE
PW/ST SIGNAL [ON/OFF]		0	 [ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure signal is indi- cated. 		AT
LOAD SIGNAL [ON/OFF]	0	0	Indicate [ON/OFF] condition from the electrical load signal and/or lighting switch. ON rear defogger is operating. OFF rear defogger is not operating.		P
AMB TEMP SW [ON/OFF]		0	 Indicate [ON/OFF] condition from the ambient temperature signal. ON When the ambient temperature is lower than specified value. OFF When the ambient temperature is higher than specified value. 		F# R/
IGNITION SW [ON/OFF]			 Indicates [ON/OFF] condition from ignition switch. 		B
A/C PRESS SW [ON/OFF]			 Indicate [ON/OFF] condition of air conditioner pressure switch signal. ON A/C pressure is higher than specified value. OFF A/C pressure is lower than specified value. 		ST R(
INJ PULSE-B1 [msec]		0	Indicates the actual fuel injection pulse width compensated by ECM according to the input signals.	When the engine is stopped, a certain computed value is indicated.	Bī
INJ PULSE-B2 [msec]					ا کا
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.	HA
IACV-AAC/V [step]		0	Indicates the IACV-AAC valve control value computed by ECM according to the input signals.		EL
PURG VOL C/V [step]			 Indicates the EVAP canister purge volume control valve computed by the ECM according to the input signals. The opening becomes larger as the value increases. 		
EVAP SYS PRES [V]			The signal voltage of EVAP control system pressure sensor is displayed.		
AIR COND RLY [ON/OFF]			 The air conditioner relay control condition (determined by ECM according to the input signal) is indicated. 		

CONSULT-II (Cont'd)

			CONSCET II (COINTA)	
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
FUEL PUMP RLY [ON/OFF]			Indicates the fuel pump relay control condition determined by ECM according to the input signals.	
INT/V SOL-B1 INT/V SOL-B2 [ON/OFF]			The control condition of the intake valve timing control solenoid valve is indicated. ON Intake valve timing control is operating. OFF Intake valve timing control is not operating.	
INT/V TIM-B1 INT/V TIM-B2 [deg]			Indicate [deg] of intake camshaft advanced angle.	
COOLING FAN [HI/OFF]			The control condition of the cooling fan (determined by ECM according to the input signal) is indicated. HI High speed operation OFF Stop	
EGRC SOL/V [ON/OFF] (flow/cut)			 The control condition of the EGRC-sole- noid valve (determined by ECM accord- ing to the input signal) is indicated. OFF EGR is cut-off ON EGR is operational 	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
HO2S1 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensors 1 (front)'s heater deter-	
HO2S1 HTR (B2) [ON/OFF]			mined by ECM according to the input signals.	
HO2S2 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 2 (rear)'s heater deter- mined by ECM according to the input	
HO2S2 HTR (B2) [ON/OFF]			signals.	
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	
PURG CONT S/V [ON/OFF]			 The control condition of the EVAP canister purge control solenoid valve (computed by the engine control module according to the input signals) is indicated. ON Canister purge is operational OFF Canister purge operation is cutoff 	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
ABSOL TH-P/S [%]			"Absolute throttle position sensor" indi- cates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.	
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass airflow sensor.	
FPCM DR VOLT [V]			The voltage between fuel pump and FPCM is displayed.	

CONSULT-II (Cont'd)

G[

MA

EM

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

IDX

	CONCOLL II (COIN U)				
Monitored item [Unit]	ECM input signals	Main signals	Description Remarks		
FPCM [LOW/HI]			 The control condition of the fuel pump control module (FPCM) (determined by ECM according to the input signal) is indicated. LOW Low amount of fuel flow HI High amount of fuel flow 		
MAP/BARO SW/V [MAP/BARO]			 The control condition of the MAP/BARO switch solenoid valve (determined by ECM according to the input signal) is indicated. MAP Intake manifold absolute pressure BARO Barometric pressure 		
ABSOL PRES/SE [V]			The signal voltage of the absolute pressure sensor is displayed.		
VOLTAGE [V]			Voltage measured by the voltage probe.		
Frequency [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured. 	

CONSULT-II (Cont'd)

ACTIVE TEST MODE

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Fuel injectors Heated oxygen sensor 1 (front)
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Adjust ignition timing (by moving camshaft position sensor)
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening step using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connector IACV-AAC valve
POWER BALANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	Harness and connector Compression Injectors Ignition coil with power transistor Spark plugs
COOLING FAN	 Ignition switch: ON Turn the cooling fan "ON" and "OFF" using CONSULT-II. 	Cooling fan moves and stops.	Harness and connector Cooling fan motor
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay
EGRC SOLENOID VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector EGRC-solenoid valve
VALVE TIMING SOL	Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connector Intake valve timing control solenoid valve
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control valve opening step using CONSULT-II. 	Engine speed changes according to the opening step.	Harness and connector EVAP canister purge volume control valve
FUEL/T TEMP SEN	Change the fuel tank temperature using	CONSULT-II.	
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn the VENT CONT/V "ON and OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness or connector EVAP canister vent control valve
PURG CONT S/V	 Engine: Run engine at 2,000 rpm. Turn the EVAP canister purge control solenoid valve "ON" and "OFF" using CONSULT-II and listen for operating sound. 	EVAP canister purge control solenoid valve makes an operating sound. Check vacuum signal for EVAP canister purge control valve. VC ON Vacuum exists. VC OFF Vacuum does not exist.	Harness and connector EVAP canister purge control solenoid valve Vacuum hose
MAP/BARO SW/V	Ignition switch: ON (Engine stopped) Turn the MAP/BARO switch solenoid valve between "MAP" and "BARO" using CONSULT-II and listen for operating sound.	MAP/BARO switch solenoid valve makes an operating sound.	Harness and connector MAP/BARO switch solenoid valve
FPCM	Ignition switch: ON Select "LOW" and "HI" with CONSULT-II and check that "FPCM D/R VOLT" of CONSULT-II changes.	"FPCM D/R VOLT" of CONSULT-II changes as follows; LOW Approx. 4.7V HI Approx. 0.4V	Harness and connector FPCM
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn the VC/V BYPASS/V "ON and OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness or connector Vacuum cut bypass valve

CONSULT-II (Cont'd)

DTC & SRT CONFIRMATION MODE

SRT STATUS mode

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-51.

SRT WORK SUPPORT mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC WORK SUPPORT mode

Test mode	Test item	Condition	Reference page	
	EVAP SML LEAK P0440		EC-298	
	EVAP SML LEAK P1440		EC-432	
EVAPORATIVE	PURG VOL CN/V P1444		EC-444	
SYSTEM	PURGE FLOW P1447		EC-457	
	VC CUT/V BP/V P1491		EC-475	
	PURG CN/V & S/V P1493		EC-488	
	HO2S1 (B1) P0130		EC-166	
	HO2S1 (B1) P0131		EC-174	
	HO2S1 (B1) P0132			EC-180
HO2S1	HO2S1 (B1) P0133		EC-187	
HO251	HO2S1 (B2) P0150		EC-166	
	HO2S1 (B2) P0151	Refer to corresponding trouble diagnosis for DTC.	EC-174	
	HO2S1 (B2) P0152	101 101 101	EC-180	
	HO2S1 (B2) P0153		EC-187	
	HO2S2 (B1) P0137		EC-210	
	HO2S2 (B1) P0138		EC-218	
110000	HO2S2 (B1) P0139		EC-226	
HO2S2	HO2S2 (B2) P0157		EC-210	
	HO2S2 (B2) P0158		EC-218	
	HO2S2 (B2) P0159		EC-226	
	EGR SYSTEM P0400		EC-281	
EGR SYSTEM	EGRC-BPT/VLV P0402		EC-290	
	EGR SYSTEM P1402		EC-423	

G[

MA

EM

LC

EC

FE

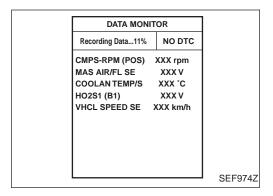
AT

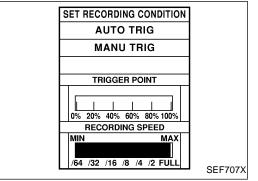
PD

FA

RA

BR


ST


RS

BT

HA

EL

CONSULT-II (Cont'd)

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (Recording Vehicle Data)

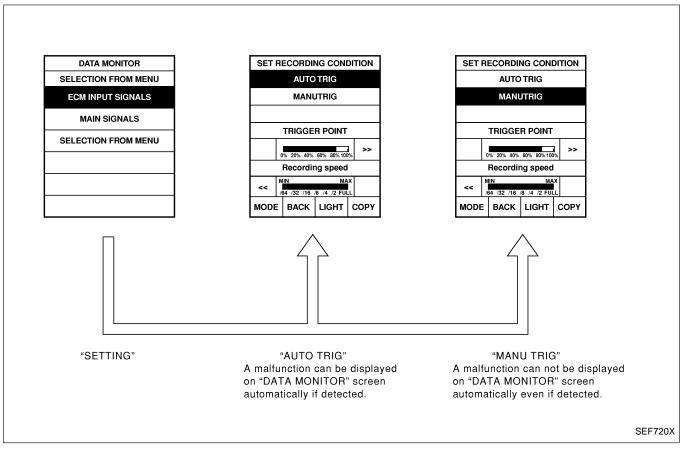
CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

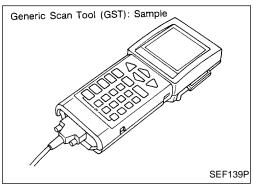
- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen inreal time.

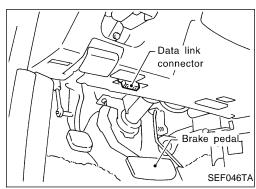
In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ...xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.


- 2) "MANU TRIG" (Manual trigger):
- DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.


Use these triggers as follows:

- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 - When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI Section, "Incident Simulation Tests".)
- "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

CONSULT-II (Cont'd)

Generic Scan Tool (GST)

DESCRIPTION

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained on the next page. ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

GST INSPECTION PROCEDURE

- Turn off ignition switch.
- 2. Connect "GST" to data link connector which is located under LH dash panel near the hood lock release handle.

G[

MA

LC

C

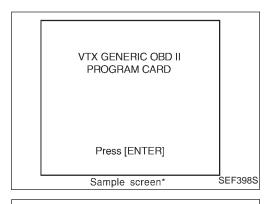
FE

. . .

AT

PD

FA


RA

ST

RS

HA

EL

Generic Scan Tool (GST) (Cont'd)

- Turn ON ignition switch.
- Enter the program according to instruction on the screen or in the operation manual.
- (*: Regarding GST screens in this section, sample screens are shown.)

5. Perform each diagnostic mode according to each service pro-

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST F1: FREEZE DATA

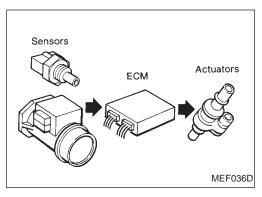
F2: DTCs

F3: SNAPSHOT F4: CLEAR DIAG INFO

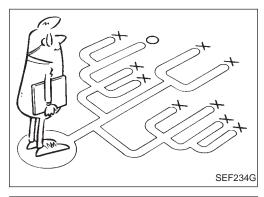
F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS F8: EXPAND DIAG PROT


F9: UNIT CONVERSION

Sample screen*


SEF416S

FUNCTION

	Diagnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-77).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed. EVAP canister vent control open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch "OFF" Low fuel temperature Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies

WHERE..... Road conditions **HOW** Operating conditions,

Weather conditions, Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-89.

Before undertaking actual checks, take just a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example below should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

Diagnostic Worksheet

There are many operating conditions that lead to the malfunctions of engine components. A good knowledge of such conditions can make troubleshooting faster and more accurate.

In general, each customer may feel differently about a given problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one shown below in order to organize all the information for troubleshooting.

Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused engine misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for models with EVAP (SMALL LEAK)] diagnosis.

G[

MA

EM

LC

EC

FE

AT

PD

FA

RA

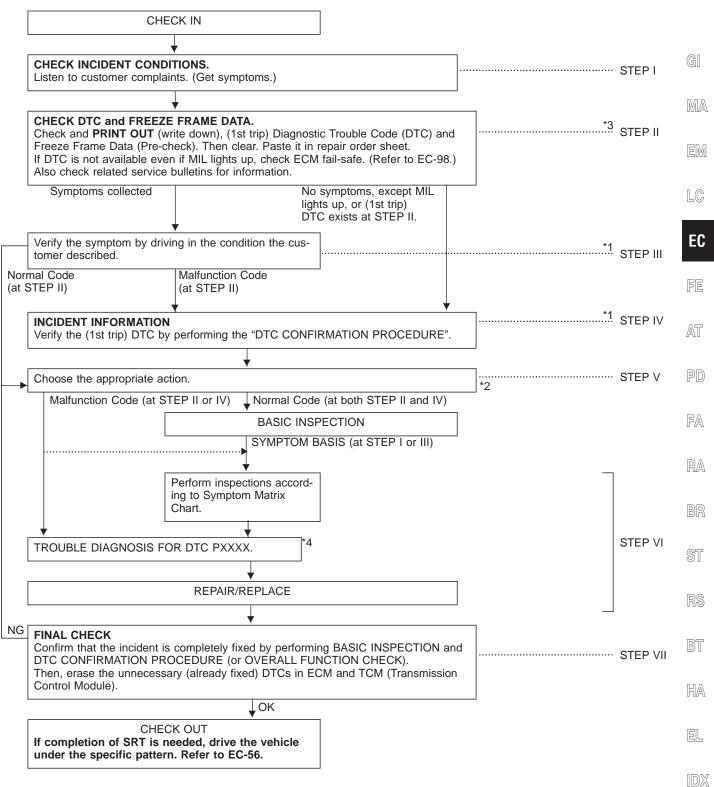
91

D@

BT

HA

EL

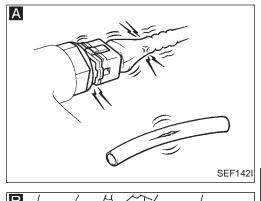

TROUBLE DIAGNOSIS — Introduction

Diagnostic Worksheet (Cont'd)

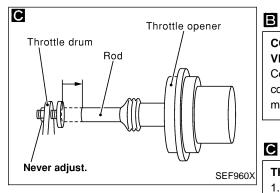
WORKSHEET SAMPLE

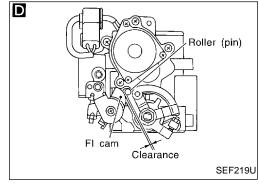
Customer name	e MR/MS	Model & Year VIN								
Engine #		Trans.	Mileage							
Incident Date		Manuf. Date	In Service Date							
Fuel and fuel fil	ler cap	□ Vehicle ran out of fuel causing misfire.□ Fuel filler cap was left off or incorrectly screwed on.								
	□ Startability	□ Impossible to start □ No combustion □ Partial combustion affected by throttle □ Partial combustion NOT affected by th □ Possible but hard to start □ Others [·							
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ High ☐ Others [idle □ Low idle]							
Symptoms	□ Driveability	☐ Stumble ☐ Surge ☐ Knock ☐ Intake backfire ☐ Exhaust backfire ☐ Others [□ Lack of power							
	□ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerat ☐ Just after stopping ☐ While loading	ing							
Incident occurre	ence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In t	the daytime							
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes								
Weather conditi	ons	□ Not affected								
	Weather	☐ Fine ☐ Raining ☐ Snowing	□ Others []							
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐ Co	old □ Humid °F							
Engine conditio	ns	□ Cold □ During warm-up □ After Engine speed □ □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4,000 6,000 8,000 rpm							
Road conditions	S	☐ In town ☐ In suburbs ☐ Highwa	y □ Off road (up/down)							
Driving conditio	ns	□ Not affected □ At starting □ While idling □ At r. □ While accelerating □ While cruising □ While decelerating □ While turning (F.) Vehicle speed □ □ 10 20 30	_							
Malfunction indi	icator lamp	☐ Turned on ☐ Not turned on								

Work Flow



- *1: If the incident cannot be duplicated, see "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.
- *2: If the on board diagnostic system cannot be performed, check main power supply and ground circuit (See TROUBLE DIAGNOSIS FOR POWER SUPPLY, EC-118).
- *3: If time data of "SELF-DIAG RESULTS" is other than "0" or "1t" refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT", EC-117.
- *4: If the malfunction part cannot be found, refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.


TROUBLE DIAGNOSIS — Work Flow


Description for Work Flow

STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-87.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or Generic Scan Tool) the Diagnostic Trouble Code (DTC) and the (1st trip) freeze frame data, then erase the code and the data. (Refer to EC-63.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See page EC-99.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON-SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) Diagnostic Trouble Code by driving in (or performing) the "DTC CONFIRMATION PROCEDURE". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or Generic Scan Tool. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) In case the "DTC CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION on next page. Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-99.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-102. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to GI section ("HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection"). Repair or replace the malfunction parts.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC CONFIRMATION PROCEDURE" and confirm the normal code (Diagnostic trouble code No. P0000 or 0505) is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission Control Module). (Refer to EC-63.)

Data link connector Brake pedal SEF046TA

Basic Inspection

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

GI

MA

LC

FE

AT

PD

FA

RA

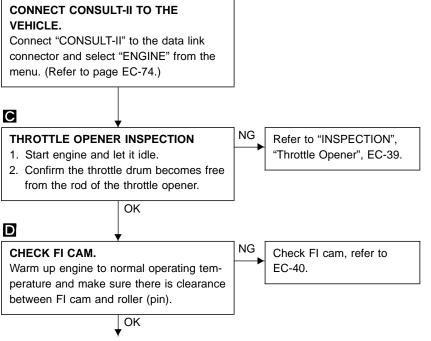
BR

ST

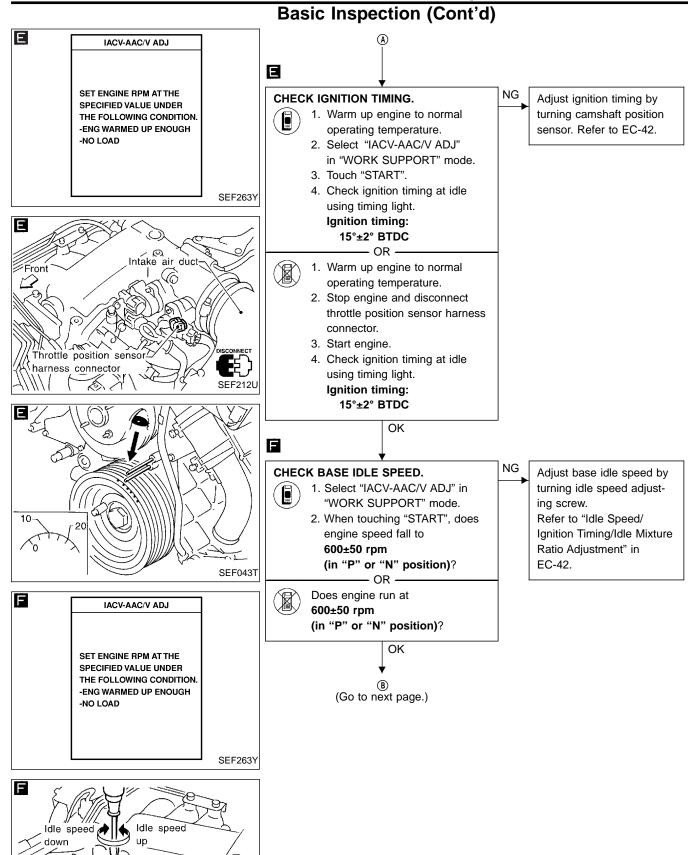
RS

BT

HA

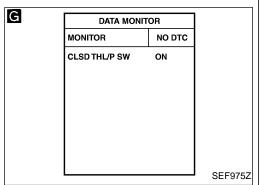

EL

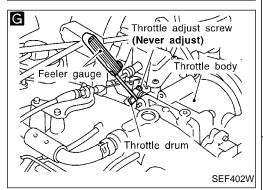
- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

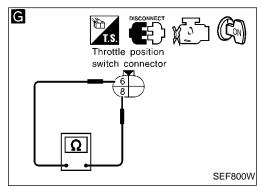

Α

BEFORE STARTING

- Check service records for recent repairs of related problems, or the current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts




(Go to next page.)



SEF115T

Throttle opener rod should move up when the vacuum is applied. Never touch. Throttle opener rod should pump is applied. SEF793W

Basic Inspection (Cont'd)

CHECK CLOSED THROTTLE POSITION
SWITCH IDLE POSITION. (Check throttle position sensor idle position.)

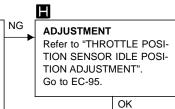
 Always check ignition timing and base idle speed before performing the followings.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam, refer to procedure D
- 3. Stop engine.
- 4. Remove the vacuum hose connected to the throttle opener.
- Connect suitable vacuum hose to the vacuum pump and the throttle opener as shown in the figure.
- Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum become free from the rod of the throttle opener. During the TPS adjustment, the vacuum should be applied (Until step).
 - 7. Turn ignition switch "ON".
 - 8. Select "DATA MONITOR" mode with CONSULT-II.
 - Select "CLSD THL/P SW" from the menu.
 - Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.2 mm (0.008 in) and 0.3 mm (0.012 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure and check the signal.
- "CLSD THL/P SW" signal should remain "ON" while inserting 0.2 mm (0.008 in) feeler gauge.
- "CLSD THL/P SW" signal should remain "OFF" while inserting 0.3 mm (0.012 in) feeler gauge.

- 7. Disconnect closed throttle position switch harness connector.
- Connect the tester probe to closed throttle position switch terminals (6) and (8).
- Check harness continuity under the following conditions.
- Insert the 0.2 mm (0.008 in) and 0.3 mm (0.012 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure and check continuity.

"Continuity should exist" while inserting 0.2 mm (0.008 in) feeler gauge.

"Continuity should not exist" while inserting 0.3 mm (0.012 in) feeler gauge.



 Reconnect throttle position sensor harness connector and closed throttle position switch harness connector.

OK

 Rev engine (2,000 to 3,000 rpm) 2 or 3 times under no-load and then run engine at idle speed.

© (Go to next page.)

GI

MA

LC

EC

FE

AT

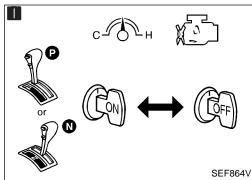
PD

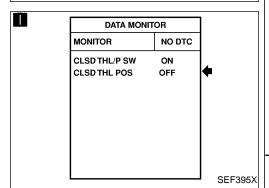
FA

RA

BR

ST


RS


BT

HA

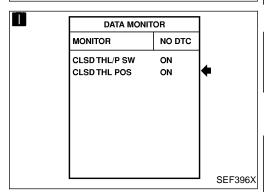
EL

Basic Inspection (Cont'd)

RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.

Note: Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine.
- 2. Warm up engine to normal operating temperature.


- 3. Select "CLSD THL POS" in "DATA MONITOR" mode (Manual trigger) with CONSULT-II.
- 4. Stop engine. (Turn ignition switch "OFF".)
- 5. Turn ignition switch "ON" and wait at least 5
- 6. Turn ignition switch "OFF" and wait at least 5 seconds

7. Repeat steps 5 and 6 until "CLSD THL POS" in "DATA MONITOR" mode with CONSULT-II changes to "ON".

OR 7. Repeat steps 5 and 6, 20 times.

Stop engine, release vacuum then remove the vacuum hose and handy vacuum pump from the throttle opener. Reinstall the original vacuum hose to the throttle opener securely.

CHECK TARGET IDLE SPEED.

Read the engine idle speed in "DATA MONITOR" mode with CONSULT-II. 650±50 rpm (in "P" or "N" position)

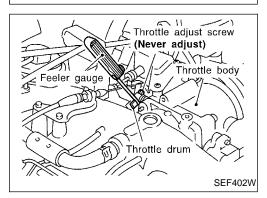
OR

Check target idle speed. 650±50 rpm (in "P" or "N" position)

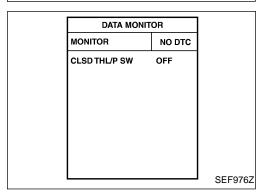
OK

After this inspection, unnecessary diagnostic trouble code No. might be displayed. Erase the stored memory in ECM

- and TCM (Transmission Control Module). Refer to "ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION" (EC-63) and "HOW TO ERASE DTC" in AT section.
- Erase the store memory in ABS/TCS control unit. Refer to "TROUBLE DIAGNOSIS FOR ABS/TCS C/U SIGNAL", EC-499 or refer to ("TROUBLE DIAGNOSIS", HOW TO **ERASE SELF-DIAGNOSTIC** RESULTS") in BR section.


INSPECTION END

Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment" in EC-42.


NG

TEMP 270

Throttle opener Throttle opener rod should move up when the vacuum is applied. Never touch. Throttle drum SEF793W

DATA MON	ITOR						
MONITOR	MONITOR NO DTC						
CLSD THL/P SW	ON						

Basic Inspection (Cont'd)

THROTTLE POSITION SENSOR IDLE POSITION ADJUST-MENT

Note:

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "CLSD THL/P SW" signal or "continuity", doing so may cause an incorrect adjustment.
- Warm engine up to normal operating temperature.
- 2. Check FI cam. Refer to procedure **D**.
- 3. Stop engine.

Note: If handy vacuum pump is a already set, go to step 7.

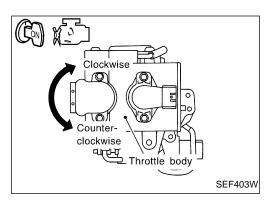
- 4. Remove the vacuum hose connected to the throttle opener.
- 5. Connect suitable vacuum hose to the vacuum pump and the throttle opener as shown in the figure.
- Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum become free from the rod of the throttle opener. During the TPS adjustment the vacuum should be applied.
- 7. Loosen throttle position sensor fixing bolts.
 - 8. Turn ignition switch "ON".
 - 9. Select "DATA MONITOR" mode with CONSULT-II.
 - 10. Select "CLSD THL/P SW" from the menu.
 - 11. Read "CLSD THL/P SW" signal under the following conditions.
 - Insert 0.2 mm (0.008 in) feeler gauge between throttle adjust screw and throttle drum as shown in the figure and check the following.
 - Open throttle valve and then close.
 - "CLSD THL/P SW" signal should remain "OFF" when the throttle valve is closed. (If signal is "ON", turn throttle position sensor body counterclockwise until the signal switches to "OFF".)
 - 12. Temporarily tighten sensor body fixing bolts as follows.
 - Gradually move the sensor body clockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON", then tighten sensor body fixing bolts.
 - 13. Make sure the signal is "ON" when the throttle valve is closed and "OFF" when it is opened. Repeat it 2 or 3 times.
 - 14. Remove 0.2 mm (0.008 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge and check the following. Make sure the signal remains "OFF" when the throttle valve is closed. Repeat it 2 or 3 times.
 - 15. Tighten throttle position sensor. Check that the "CLOSED THL/SW" signal remains "OFF" while closing throttle valve. If NG, repeat from the step 4
 - After this adjustment, go to procedure RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.
 - OR
 Disconnect closed throttle position sensor harness connector.
 - 9. Connect tester prove to the closed throttle position switch terminals **6** and **8** and check continuity under the following conditions.

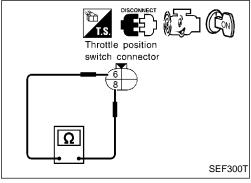
EC

MA

EM

LC


RA


9 11

RS

1110

HA

Basic Inspection (Cont'd)

- Insert the 0.2 mm (0.008 in) feeler gauge between the throttle adjust screw and throttle drum as shown in the figure and check the following.
- Open throttle valve then close.
- The continuity should not exist while closing the throttle valve. If the continuity exists, turn throttle position sensor body counterclockwise until the continuity does not exist.
- 10. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then tighten sensor body fixing bolts.
- 11. Make sure the continuity exists when the throttle valve is closed and continuity does not exist when it is opened. Repeat it 2 or 3 times.
- 12. Remove 0.2 mm (0.008 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge and check the following. Make sure the continuity does not exist when the throttle valve is closed. Repeat it 2 or 3 times.
- 13. Tighten throttle position sensor.
 Check that the continuity does not exist while closing the throttle valve. If NG, repeat from the step 5.
 After this adjustment, go to procedure TRESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.

Diagnostic Trouble Code (DTC) Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority		Detected items (DTC)	
1	• ECM (P0605, 0301)	• Vehicle speed sensor (P0500, 0104)	• Engine coolant temperature sensor (P0115, 0103) (P0125, 0908)
	Mass air flow sensor (P0100, 0102)	 Intake air temperature sensor (P0110, 0401) 	• Ignition signal circuit (P1320, 0201)
	• Throttle position sensor (P0120, 0403)	 Knock sensor (P0325, 0304), (P0330, 0212) 	 Park/Neutral position switch (P1706, 1003)
	• EGRC-solenoid (P1400, 1005)	 Crankshaft position sensor (OBD) circuit (P0335, 0802) (P1336, 0905) 	 Camshaft position sensor (P0340, 0101)
	• A/T communication line (P0600, 0504), (P1605, 0804)	• Fuel tank temperature sensor (P0180, 0402)	
2	EGR temperature sensor (P1401, 0305)	 Heated oxygen sensors 2 (rear) (P0137 - P0140) (0150 - 0152, 0707), (P0157 - P0160) (0313 - 0315, 0708) 	EVAP control system pressure sensor (P0450, 0704)
	 A/T related sensors, solenoid valves and switches (P0705 - P0725, 1101 - 1208) (P0740, 1108 - 1206) 	 Heated oxygen sensors 1 heater (front) (P0135, 0901) (P0155, 1001) 	 Vacuum cut valve bypass valve (P1491, 0311) (P1490, 0807)
	• Absolute pressure sensor (P0105, 0803)	 Closed throttle position switch (P0510, 0203) 	 EVAP canister vent control valve (P0446, 0903) (P1446, 0215) (P1448, 0309)
	MAP/BARO switch solenoid valve (P1105, 1302)	 Intake valve timing control position sensor circuit (P1140, 1303), (P1145, 1304) 	 EVAP canister purge volume con- trol valve (P1444, 0214) (P0443, 1008)
	• Tandem throttle position sensor (P1125, 0110)	 Heated oxygen sensors 1 (front) (P0130 - P0134, 0303, 0409 - 0412) (P0150 - P0154, 0413 - 0415, 0503, 0509) 	 EVAP control system purge flow monitoring (P1447, 0111)
	 Secondary throttle position sensor (P1120, 0406) 	 Heated oxygen sensors 2 heater (rear) (P0141, 0902), (P0161, 1002) 	 EVAP canister purge control valve/ solenoid valve (P1493, 0312), (P1492, 0807)
3	• EGR function (P0400, 0302) (P1402, 0514)	• TCS signal (P1210, 0106)	• Fuel pump control module (FPCM) (P1220, 1305)
	 EVAP control system (SMALL LEAK) (P0440, 0705) (P1440, 0213) (GROSS LEAK) (P0455, 0715) 	• Misfire (P0300 - P0308, 0701 - 0601)	 Fuel injection system function (P0172, 0114), (P0171, 0115), (P0175, 0209), (P0174, 0210)
	• EGRC-BPT valve function (P0402, 0306)	 Closed loop control (P1148, 0307) (P1168, 0308) 	 Three way catalyst function (P0420, 0702) (P0430, 0703)
	• IACV-AAC valve (P0505, 0205)	• A/T function (P0731 - P0734, 1103 - 1106) (P0744, 1107)	 Intake valve timing control function (P1110, 0805), (P1135, 1301)

Fail-Safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions are detected due to the open or short circuit

When the ECM enters the fail-safe mode, the MIL illuminates.

DTC	No.									
CONSULT-II GST	ECM*	Detected items	Engine operating condition in fail-safe mode							
P0100	0102	Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.							
P0115	0103	Engine coolant temperature sensor circuit	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.							
			Condition		Engine coolant temperature decided (CONSULT-II display)					
			Just as ignition switch is turn	ned ON or	40°C (104°F)					
			More than 4 minutes after ig	nition Start	80°C (176°F)					
			Except as shown above		40 - 80°C (104 - 176°F) (Depends on the time)					
P0120	0403	Throttle position sensor circuit	Throttle position will be determined based on the amount of mass air and the engine speed. Therefore, acceleration will be poor.							
					Driving condition					
			When engine is idling		Normal					
			When accelerating		Poor acceleration					
P1210	0106	TCS signal circuit	TCS does not operate. For details, refer to BR sec	tion ("TRO	UBLE DIAGNOSIS FOR TCS").					
Unable to access ECM	Unable to access Diag- nostic Test Mode II	ECM	When the fail-safe system a condition in the CPU of EC the instrument panel lights However, it is not possible Engine control with ECM When the fail-safe system is	the ECM wactivates, i. M, the MAI to warn the to access Efail-safe is operating valve ope	as judged to be malfunctioning. e. if the ECM detects a malfunction LFUNCTION INDICATOR LAMP on e driver. ECM and DTC cannot be confirmed. g, fuel injection, ignition timing, fuel ration and cooling fan operation are					
					ECM fail-safe operation					
			Engine speed	Engine spe	ed will not rise more than 3,000 rpm.					
			Fuel injection	Simultar	neous multiport fuel injection system					
			Ignition timing	Ignition	timing is fixed at the preset value.					
			Fuel pump	Fuel pump re	elay is "ON" when engine is running and "OFF" when engine stalls.					
			Cooling fans		relay "ON" (High speed condition) when unning, and "OFF" when engine stalls.					
			Replace ECM, if ECM fail-s	safe conditi	on is confirmed.					

^{*:} In Diagnostic Test Mode II (Self-diagnostic results)

Symptom Matrix Chart

SYMPTOM																	
SYSTEM — Basic engine control system		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	OVERCOOLS	OVERCHARGING	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty syr	nptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	1P	1X	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		3	3			3				2	EC-523
	Fuel pressure regulator system	2	3	4	4	4	4	4	4	4		4					EC-37
	Injector circuit	1	1	2	2	2	2	2	2			2					EC-515
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4					EC-26
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1				EC-36
	Incorrect idle speed adjustment	3	3				1	1	1	1		1					EC-42
	IACV-AAC valve circuit	1	1	2	2	2	2	2	2	2		2					EC-340
	IACV-FICD solenoid circuit		3				2	3	3	2							EC-527
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1					EC-42
	Ignition circuit	1	1	2	3	2		2	3			2					EC-399
EGR	EGRC-solenoid valve	2	3	3	3	3		3				3					EC-412
EGR system		2	1	2	3	3	3	2	3	3		3					EC-423
Main power supply and ground circuit		2	3	3	3	3		2	2		3	3				3	EC-118
Cooling	Cooling fan circuit	3	3	3	3	3	3	3	3	3	1	2		1		3	EC-503
Air condition	er circuit	3	3	3	3	3	3	3	3	3		3				3	HA section

^{1 - 6:} The numbers refer to the order of inspection.

BR

G[

MA

EM

LC

EC

FE

AT

PD

FA

RA

ST

RS

BT

HA

EL

TROUBLE DIAGNOSIS — General Description Symptom Matrix Chart (Cont'd)

								SY	MPT	OM							
SYSTEM — Engine control system		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	OVERCOOLS	OVERCHARGING	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty sym		AA	AB	_	AD	AE	AF	AG	AH	AJ	AK	AL	AM	1P	1X	НА	50.075
Engine con- trol	Camshaft position sensor circuit	2	2	2	2	2	3	3	3								EC-275
tioi	Mass air flow sensor circuit	1	1	2	3	2	2	2	2	2		2					EC-124
	Heated oxygen sensor 1 circuit (front)	2	1	2	3	2		2	3			2				<u> </u>	EC-196, 166
	Engine coolant temperature sensor circuit	1	1	3	3	3	3	2	3	3	2	3				<u> </u>	EC-145, 161
	Throttle position sensor circuit Incorrect throttle position sensor adjustment		2	3		3	1	3	3	1		3					EC-150 EC-91
	Intake valve timing control system		3	3		3		3				3					EC-367, 382
	Vehicle speed sensor circuit		3	3		3						3					EC-335
	Knock sensor circuit	2	3	2	2	2	3	2				3					EC-267
	ECM	3	3	3	3	3	3	3	3	3	3	3					EC-355, 98
	Start signal circuit	2															EC-521
	Park/Neutral position switch circuit			3		3		3	3			3					EC-494
	FPCM	2	2	2		2		2									EC-393
	Power steering oil pressure switch circuit		2					3	3								EC-527

^{1 - 6:} The numbers refer to the order of inspection.

TROUBLE DIAGNOSIS — General Description Symptom Matrix Chart (Cont'd)

								SY	MPT	ОМ								
SYSTEM — Engine m	echanical & other	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	OVERCOOLS	OVERCHARGING	BATTERY DEAD (UNDER CHARGE)	Reference page	GI MA EM
Warranty syn	mptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	1P	1X	НА		
Fuel	Fuel tank	5															FE section	EC
	Fuel piping	2		5	5	2	1	5	5	1		5	1					
	Vapor lock		5															
	Valve deposit]]			1					FE
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5					_	
Air	Air duct	5																Λ.
All	Air cleaner	٦																AT
	Air leakage from air duct					1		1										
	(Mass air flow sensor — throttle body)		5	5		5		5	5			5						
	Throttle body, Throttle wire	5			5		5			5	5						FE section	PD
	Air leakage from intake manifold/	1																
	Collector/Gasket																_	
Cranking	Battery	1	1	1		1		1	1			1			1	1		FA
	Alternator circuit	<u> </u>	'	<u>'</u>		L'			<u>'</u>							<u>'</u>	EL section	
	Starter circuit	3															LE SCOTION	
	Theft warning circuit																	RA
	PNP switch	4															AT section	
	Drive plate	6															EM section	
Engine	Cylinder head	-																BR
	Cylinder head gasket	-									4							
	Cylinder block	-											6					@F
	Piston Piston	6	6	6	6	6		6	6			6						ST
	Piston ring Connecting rod	-																
	Bearing Tod	-															EM section	D@
	Crankshaft	-											6					RS
Valve	Timing chain	6	6	6	6	6		6	6			6	6					
mechanism	Camshaft	5	5	5	5	5	1	5	5	-		5	<u> </u>	-				BT
	Intake valve						1			1				1				
	Exhaust valve	6	6	6	6	6		6	6			6	6					
Exhaust	Exhaust manifold/Tube/Muffler/Gasket	<u> </u>	_					_									EM section &	HA
	Three way catalytic converter	5	5	5	5	5	5	5			5						FE section	II IIV≃7
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil								1				1					
	gallery	5	5	5	5	5		5			5	5				5		EL
	Oil level (Low)/Filthy oil																	كاكا
Cooling	Radiator/Hose/Radiator filler cap																LC section	
	Thermostat						5			5				2				IDX
	Water pump	5	5	5	5	5					4	5						ששוו
	Water gallery]									*							
	Cooling fan						5			5				2			EC section	
	Coolant level (low)/Contaminated coolant																MA section	
IVIS (Infiniti)	Vehicle Immobilizer System — NATS)	1	1														EC-69 or EL	
											1						section	

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- · Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.
 - i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor (POS) and other ignition timing related sensors.
- If the real-time diagnosis results are NG and the on board diagnostic system results are OK when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

•			
MONITOR ITEM	CONE	DITION	SPECIFICATION
CMPS·RPM (POS)	Tachometer: Connect Run engine and compare tachometer in	ndication with the CONSULT-II value.	Almost the same speed as the CON-SULT-II value.
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" 	Idle	1.0 - 1.7V
IVIAS AIR/FL SE	Shift lever: "N"No-load	2,500 rpm	Approx. 2.1V
COOLAN TEMP/S	Engine: After warming up		More than 82°C (180°F)
HO2S1 (B1) HO2S1 (B2)	- Engine After worming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 fpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.
HO2S2 (B1) HO2S2 (B2)	Familia After Horning Ha	Revving engine from idle to 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	quickly	LEAN ↔ RICH
VHCL SPEED SE	Turn drive wheels and compare speeds value	ometer indication with the CONSULT-II	Almost the same speed as the CONSULT-II value
BATTERY VOLT	Ignition switch: ON (Engine stopped)		11 - 14V
THRTL POS SEN	Engine: After warming up Ignition switch: ON (Engine stooped) More than 100 kPa (200 mmHz)	Throttle valve: fully closed	0.15 - 0.85V
THRIL FOS SEN	(Engine stopped) ■ More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve: fully opened	3.5 - 4.7V
THRTL/P SEN2	Ignition switch: QN	Throttle valve: fully closed	0.60 - 1.15V
THINTE/F SEINZ	(Engine stopped)	Throttle valve: fully open	4.3 - 4.7V
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
START SIGNAL	 Ignition switch: ON → START → ON 		$OFF \to ON \to OFF$
CLSD THL POS	Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHg.)	Throttle valve: Idle position	ON
	More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve: Slightly open	OFF
AID COND CIO	Engine: After warming up, idle the	Air conditioner switch: "OFF"	OFF
AIR COND SIG	engine engine	Air conditioner switch: "ON" (Compressor operates.)	ON
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON
	• Igrittori switch. Ore	Except above	OFF
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel in neutral position (forward direction)	OFF
	, and the second	The steering wheel is turned	ON
AMB TEMP SW	Engine: Running	Ambient air temperature more than 23.5°C (74°F)	ON
		Ambient air temperature less than 20.5°C (69°F)	OFF
LOAD SIGNAL	Engine: Running	Rear window defogger or headlamp "ON"	ON
		Except above	OFF
A/C PRESS SW	Engine: Running	A/C pressure is more than 1,422 - 1,618 kPa (14.5 - 16.5 kg/cm², 206 - 235 psi)	ON
A/C PRESS SW		A/C pressure is less than 1,128 - 1,422 kPa (11.5 - 14.5 kg/cm², 164 - 206 psi)	OFF

Note: B1 indicates Left bank, B2 indicates Right bank.

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONI	DITION	SPECIFICATION	-			
IGNITION SW	 Ignition switch: ON → OFF 		$ON \rightarrow OFF$	_			
NJ PULSE-B1	Engine: After warming up Air conditioner switch: "OFF"	Idle	2.4 - 3.2 msec.	_ (
NJ PULSE-B2	Shift lever: "N" No-load	2,000 rpm	1.9 - 2.8 msec.	_			
3/FUEL SCHDL	ditto	Idle	1.0 - 1.6 msec	_ [
5/1 022 001 152	Gillo	2,000 rpm	2.5 - 3.5 msec				
GN TIMING	ditto	Idle	15° BTDC				
		2,000 rpm	More than 25° BTDC	- [
ACV-AAC/V	ditto	Idle	0 - 10 step				
A/F ALPHA-B1		2,000 rpm		_ [
WE ALPHA-DI	Engine: After warming up	Maintaining engine speed at 2,000 rpm	50 - 159%				
A/F ALPHA-B2				_			
EVAP SYS PRES	Ignition switch: ON		Approx. 3.4V				
AIR COND RLY	Air conditioner switch: OFF → ON		OFF → ON				
FUEL PUMP RLY	Ignition switch is turned to ON (Operation	es for 1 second)	ON				
	Except as shown above		OFF	- /			
INT/V SOL-B1	Engine is running Engine speed is more than 2,000 rpm Quickly depressed accelerator pedal.		OFF → ON (Using "INT/V TIM-B1(-2)", the difference of degree between "OFF" and "ON" is approximately 20 deg.)				
INT/V SOL-B2	Vehicle speed is more than 4 km/h (2 I	MPH)	and ON is approximately 20 deg.)	_ [
INT/V TIM-B1	Engine is running		Advanced angle (degree signal) of the intake camshaft should be displayed.				
INT/V TIM-B2		I=		_ [
		Engine coolant temperature is 94°C (201°F) or less	OFF				
COOLING FAN	After warming up engine, idle the engine. Air conditioner switch: "OFF"	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F) at vehicle speed less than 80 km/h (50 MPH)	HIGH	- - [
		Engine coolant temperature is 105°C (221°F) or more	HIGH	— <u>[</u>			
	Engine: After warming up	Idle	OFF (Cut)	_			
EGRC SOL/V	Air conditioner switch: "OFF"Shift lever: "D"No-load	Revving engine up from idle to 3,000 rpm	ON (Flow)	_			
VENT CONT/V	Ignition switch: ON		OFF	- [
HO2S1 HTR (B1)	Engine speed: Idle		ON	-			
HO2S1 HTR (B2)	Engine speed: Above 3,200 rpm		OFF	- [
HO2S2 HTR (B1)	Engine speed: Idle [after driving 2 minutes]	utes at 70 km/h (43 MPH) or more]	ON	_ "			
HO2S2 HTR (B2)	Engine speed: Above 3,600 rpm Ignition switch: ON (Engine stopped)	· · · · · · · ·	OFF	- [
VC/V BYPASS/V	Ignition switch: ON		OFF	- '			
DUDO CONT CA	Franks Affai	Idle	OFF				
PURG CONT S/V	Engine: After warming up	2,000 rpm	ON	- [
CAL/LD VALUE	Engine: After warming up Air conditioner switch: "OFF"	Idle	13.0 - 32%				
OAL/LD VALUE	Shift lever: "N" No-load	2,500 rpm	13.0 - 25.5%	- [-			
ABSOL TH·P/S	 Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHg, 	Throttle valve fully closed	0.0%	_			
	-11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve fully opened	Approx. 88%				

TROUBLE DIAGNOSIS — General Description CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION		
MASS AIRFLOW	Engine: After warming upAir conditioner switch: "OFF"	Idle	3.0 - 6.0 g·m/s		
IVIAGG AII(I LOW	Shift lever: "N"No-load	2,500 rpm	12.9 - 25.3 g·m/s		
FPCM	Within 16 seconds after starting engine more than 100°C (212°F)	$HIGH \to LOW$			
FPCM D/R VOLT	Within 16 seconds after starting engine more than 100°C (212°F)	, when engine coolant temperature is	Approx. 5V → Approx. 0.4V		
	For 5 seconds after starting engine	BARO			
MAP/BARO SW/V	More than 5 seconds after turning igniti More than 5 seconds after starting engite	MAP			
		For 5 seconds after starting engine	Approx. 4.4V		
ABSOL PRES/SE	Engine: After warming up	More than 5 seconds after starting engine	Approx. 1.2V		

Major Sensor Reference Graph in Data Monitor Mode

GI

MA

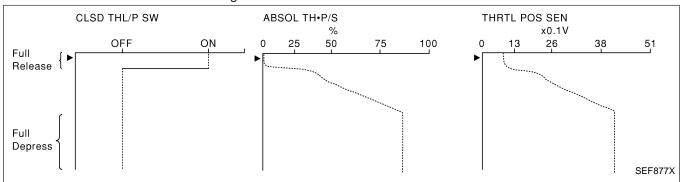
LC

EC

FE

AT

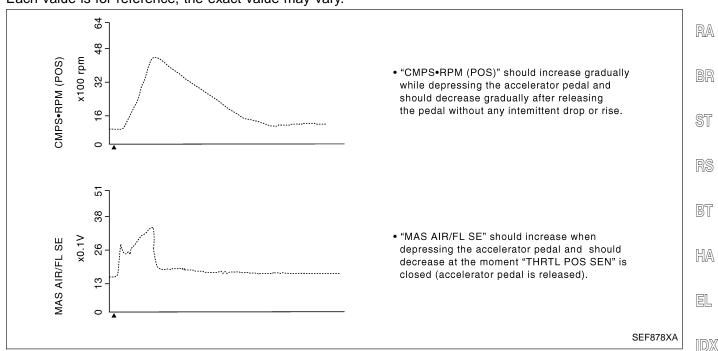
PD

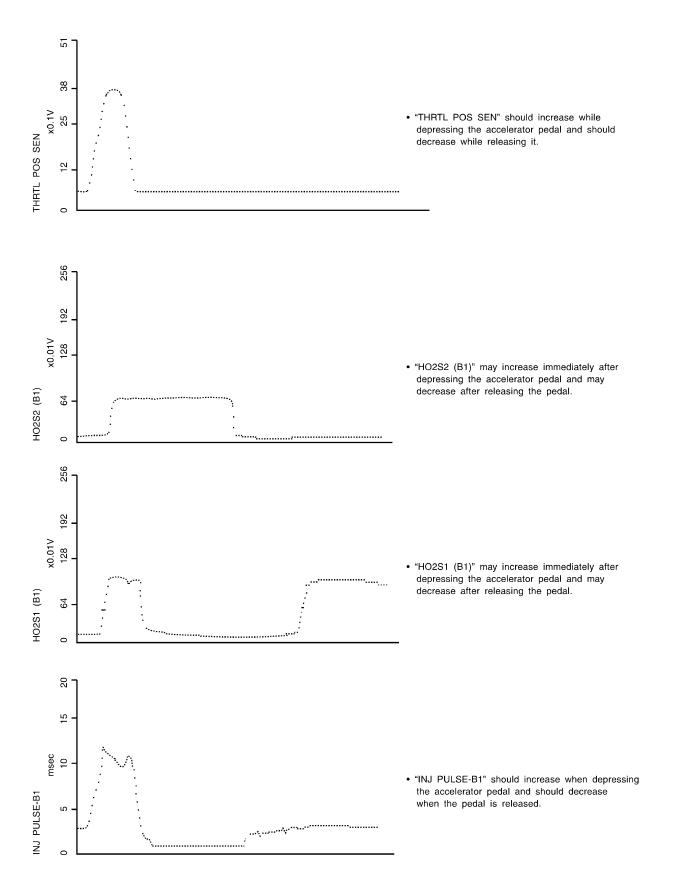

FA

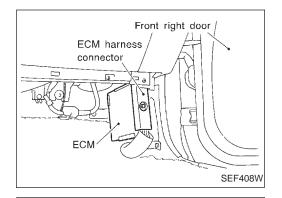
The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "HI SPEED" in "DATA MONITOR" with CONSULT-II.)

THRTL POS SEN, ABSOL TH-P/S, CLSD THL/P SW

Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL/P SW" when depressing the accelerator pedal with the ignition switch "ON".


The signal of "THRTL POS SEN" and "ABSOL TH P/S" should rise gradually without any intermittent drop or rise after "CLSD THL/P SW" is changed from "ON" to "OFF".


CMPS-RPM (POS), MAS AIR/FL SE, THRTL POS SEN, HO2S2 (B1), (B2), HO2S1 (B1), (B2), INJ PULSE


Below is the data for "CMPS·RPM (POS)", "MAS AIR/FL SE", "THRTL POS SEN", "HO2S2 (B1), (B2)", "HO2S1 (B1), (B2)" and "INJ PULSE" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.

Each value is for reference, the exact value may vary.

Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

ECM Terminals and Reference Value PREPARATION

1. ECM is located behind right side front pillar lower garnish. For this inspection, remove the glove box.

G[

MA

2. Remove ECM harness protector.

LC

EC

FE

AT

PD

FA

RA

BR

- Perform all voltage measurements with the connectors connected. Extend tester probe as shown to perform tests easily.
 - Open harness securing clip to make resting easier.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

Thin wire

Tester probe

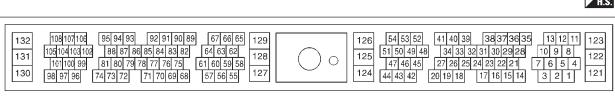
SEF3671

ECM harness protector

AEC913

01

RS


BT

HA

EL

ECM HARNESS CONNECTOR TERMINAL LAYOUT

SEF218U

ECM Terminals and Reference Value (Cont'd)

ECM INSPECTION TABLE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
1 2 3 14 4 5 6 7	R/B R/W R/Y R/L	Injector No. 1 Injector No. 8 Injector No. 7 Injector No. 3	Engine is running. (Warmed-up condition) L Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms SEF388X
	W/R PU/R GY/L LG	Injector No. 6 Injector No. 5 Injector No. 4 Injector No. 2	Engine is running. Engine speed is 2,000 rpm.	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms SEF526Y
10	L/Y	EGRC-solenoid valve	Engine is running. (Warmed-up condition) Lift up drive wheels and rev engine from idle to 3,000 rpm in "D" position. Engine is running. (Warmed-up condition)	0 - 0.7V BATTERY VOLTAGE
8 11 12 13	GY/L PU G/Y Y	IACV-AAC valve	☐ Idle speed Engine is running. ☐ Idle speed	(11 - 14V) 0.1 - 14V
15	R/L	Fuel pump control module	Engine is cranking. Engine is running. Idle speed	Approximately 0.4V Approximately 12V
16 17	L/Y G/W	Heated oxygen sensor 1 heater (front) (bank 2) Heated oxygen sensor 1 heater (front) (bank 1)	Engine is running. Engine speed is below 3,200 rpm. Engine is running. Engine speed is above 3,200 rpm.	0 - 0.5V BATTERY VOLTAGE (11 - 14V)

			Lom reminals and reference		_
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	_
40	V/D	Heated oxygen sensor 2	Engine is running. At idle [after driving 2 minutes at 70 km/h (43 MPH) or more]	0 - 0.5V	— GI — Daa
18 19	Y/R L	heater (rear) (bank 2) Heated oxygen sensor 2 heater (rear) (bank 1)	Ignition switch "ON" Engine stopped Engine is running. Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	— MA EM
20	P/B	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	LG
22	Y	EVAP canister purge con-	Engine is running. Lidle speed	BATTERY VOLTAGE (11 - 14V)	EC
22	'	trol solenoid valve	Engine is running. Engine speed is 2,000 rpm	Approximately 0V	FE
24	BR/Y	Intake valve timing control solenoid valve (right bank)	Engine is running. Intake valve timing control solenoid is operating.	Approximately 0V	AT
25	BR	Intake valve timing control solenoid valve (left bank)	Engine is running. Intake valve timing control solenoid is not operating.	Battery voltage	PD FA
34 27	LG LG/R	Cooling fan relay-2 Cooling fan relay-1 and -3	Engine is running. Cooling fan is not operating. Engine is running.	BATTERY VOLTAGE (11 - 14V)	RA
			Cooling fan is operating.	0 - 1V	BR
28 29 35 36	BR/Y G G/OR L/B	EVAP canister purge vol- ume control valve	Engine is running. Light Idle speed	0 - 0.4V or BATTERY VOLTAGE (11 - 14V)	- ST
41	w	MAP/BARO switch sole- noid valve	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running. For 5 seconds after starting engine	Approximately 0V	RS BT
			Engine is running. — Idle speed (For 5 minutes after starting engine) — More than 5 seconds after starting engine	BATTERY VOLTAGE (11 - 14V)	— HA El
42	B/P	Fuel pump relay	Ignition switch "ON" For 5 second after turning ignition switch "ON" Engine is running.	0 - 1V	
			Ignition switch "ON" 5 second after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	_

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
43 44 46 47	43 Y/R Ignition signal (No. 1) 44 G/R Ignition signal (No. 8)		Engine is running. Idle speed	Approximately 0.38V (V) 4 2 0 50 ms SEF538T
50 51 53 54	GY PU/W GY/R W/R R/L	Ignition signal (No. 3) Ignition signal (No. 6) Ignition signal (No. 5) Ignition signal (No. 4) Ignition signal (No. 2)	Engine is running. Engine speed is 2,000 rpm.	Approximately 0.55V (V) 4 2 50 ms SEF539T
45	LG/B	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
48	PU/W	Malfunction indicator lamp	Ignition switch "ON" Engine is running. Idle speed	Approximately 0.1V BATTERY VOLTAGE (11 - 14V)
49	B/R	Air conditioner relay	Engine is running. Both air conditioner switch and blower switch are "ON". Engine is running. Air conditioner switch is "OFF".	0 - 1V BATTERY VOLTAGE (11 - 14V)
52	W/G	Tachometer	Engine is running. Lidle speed	Approximately 7V (V) 10 5 0 10 ms SEF540T
52	W/G	W/G Tachometer	Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	Approximately 0 - 14V (V) 10 5 0 10 ms SEF541T

				Taras (Serie a)	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	
55			Engine is running. (Warmed-up condition) Idle speed	Approximately 0.6 - 1.0V (V) 10 5 0 10 ms SEF389X	GI MA EM
58	P	Crankshaft position sensor (REF)	Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	Approximately 0.8 - 0.9V (V) 10 5 0 10 ms SEF390X	EC FE
56	W/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	PD
57	B/P	Crankshaft position sen-	Engine is running. (Warmed-up condition) Idle speed	Approximately 1.7V (AC voltage) (V) 10 5 0 0.4 ms SEF391X	FA RA BR
57	B/R	sor (OBD)	Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	Approximately 0V (—) (V) 10 5 0 0.4 ms SEF546T	RS BT HA

TROUBLE DIAGNOSIS — General Description

ECM Terminals and Reference Value (Cont'd)

			varae (Sont a)
WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
	Camshaft position sensor	Engine is running. (Warmed-up condition) L Idle speed	Approximately 2.5V (V) 10 5 0.4 ms SEF547T
L	(POS)	Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	Approximately 2.4V (V) 10 5 0 0.4 ms SEF548T
L/W	Throttle position sensor	Ignition switch "ON" (Warmed-up condition)* Accelerator pedal released [gnition switch "ON"] (Warmed-up condition)*	Approximately 0.5V
	o.g.r.a.	Accelerator pedal fully depressed	Approximately 4.2V
В	Mass air flow sensor ground	Engine is running. (Warmed-up condition) Lidle speed	Approximately 0V
0	Throttle position concer	Ignition switch "ON" (Warmed-up condition)* Accelerator pedal fully released	0.15 - 0.85V
G	Throttle position sensor	Ignition switch "ON" (Warmed-up condition) Accelerator pedal fully depressed	3.5 - 4.7V
W	Absolute pressure sensor	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running. For 5 seconds after starting engine	Approximately 4.4V
		Engine is running. (Warmed-up condition) More than 5 seconds after starting engine	Approximately 1.2V
100	Mara infla	Engine is running. (Warmed-up condition) Idle speed	1.0 - 1.4V
VV	Mass air flow sensor	Engine is running. (Warmed-up condition) Engine speed is 2,500 rpm.	Approximately 2.1V
	L/W B G	COLOR COLOR COLOR ITEM Camshaft position sensor (POS) Throttle position sensor signal B Mass air flow sensor ground G Throttle position sensor Absolute pressure sensor	L. Camshaft position sensor (POS) Engine is running. (Warmed-up condition) Idle speed

^{*:} More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.

			ECIVI Terrifinais and Reference	value (Cont u)	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	
66	L	Secondary throttle position sensor	Ignition switch "ON" Approximately 3 seconds after ignition switch "ON" and thereafter Ignition switch "ON"	Approximately 3.4V	G[
		uon sonsoi	Disconnect throttle motor harness connector. Fully close secondary throttle valve by hand.	Approximately 0.4V	MA EM
67	Y/B	Engine coolant tempera- ture sensor	Engine is running.	0 - 4.8V Output voltage varies with engine coolant tempera- ture.	LC
				Approximately 5.2V	EC
68	P/L	Vehicle speed sensor	Engine is running. Jack up rear wheels and run engine at idle in "D" position.	(V) 10 5 0	FE AT
				SEF542T	
69	W/PU	Intake air temperature sensor	Engine is running.	0 - 4.8V Output voltage varies with intake air temperature.	PD
				Approximately 0V	FA
			Engine is running.	(V) 4 2	RA
		Intake valve timing control	└ Idle speed	20 ms	BR ST
70 71	R/L L/W	position sensor (right bank)		SEF551T Approximately 0V	
		Intake valve timing control position sensor (left bank)	Engine is running. Engine speed is 2,000 rpm.	(V) 4 2 0	RS BT HA
				SEF552T	EL
72	R/Y	Headlamp switch	Engine is running. Headlamp switch is "OFF".	OV	
			Engine is running. Headlamp switch is "ON".	Battery voltage	

TROUBLE DIAGNOSIS — General Description

ECM Terminals and Reference Value (Cont'd)

				· · · · · · · · · · · · · · · · · · ·
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			[Ignition switch "ON"]	Approximately 5V
73	R	TCS signal	Ignition switch "ON" Disconnect throttle motor harness connector. Fully close secondary throttle valve by hand.	Approximately 0V
7.4	CVII	Closed throttle position	Ignition switch "ON" (Warmed-up condition)* Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)
74	GY/L	switch	Ignition switch "ON" (Warmed-up condition) Accelerator pedal depressed	Approximately 0V
75	W	ECD temperature concer	Engine is running. (Warmed-up condition) Idle speed	Less than 4.5V
75	VV	EGR temperature sensor	Engine is running. (Warmed-up condition) EGR system is operating.	0 - 1.0V
		Ambient air temperature	Engine is running. Ambient air temperature is more than 23.5°C (74°C)	Approximately 5V
76	76 L/R	switch	Engine is running. Ambient air temperature is less than 20.5°C (69°F)	OV
			Ignition switch "OFF"	OV
78	W	Ignition switch	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
79	L/R	Electrical load signal	Engine is running. Rear window defogger switch is "OFF". Headlamp switch is "OFF".	0V
79	L/K	Electrical load signal	Engine is running. Rear window defogger switch is "ON". Headlamp switch is "ON".	Battery voltage
			Ignition switch "ON"	Approximately 0V
80	SB	Start signal	Ignition switch "START"	BATTERY VOLTAGE (11 - 14V)
81	G/B	Air conditioner pressure switch	Engine is running. At idle speed	Approximately 5V
82 83	R W	Heated oxygen sensor 1 (front) (bank 2) Heated oxygen sensor 1 (front) (bank 1)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm.	0 - Approximately 1.0V (periodically change)
89 90	W	Heated oxygen sensor 2 (rear) (bank 2) Heated oxygen sensor 2 (rear) (bank 1)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm.	0 - Approximately 1.0V

^{*:} More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
91	R/L	Fuel tank temperature sensor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with fuel temperature.
92	LG	EVAP control system pressure sensor	Ignition switch "ON"	Approximately 3.4V
93	G/R	Fuel pump control module	When cranking the engine	Approximately 0V
93	G/K	(FPCM) check	After starting the engine	Approximately 5V
98	BR/W	Sensor's power supply	Ignition switch "ON"	Approximately 5V
99	R/L	A/T communication line (LAN)	Engine is running. Idle speed	Approximately 2V
100	G	Power steering oil pres-	Engine is running. Steering wheel is being turned.	0 - 1.5V
100	G	sure switch	Engine is running. Steering wheel is not being turned.	BATTERY VOLTAGE (11 - 14V)
404	0/05	DND ovid-b	Ignition switch "ON" Gear position is "N" or "P".	Approximately 0V
101	G/OR	PNP switch	Ignition switch "ON" Except the above gear position	Approximately 5V
105 108	W W	Knock sensor (LH) Knock sensor (RH)	Engine is running. Idle speed	2.0 - 3.0V
106	R	Data link connector	Ignition switch "ON" CONSULT-II or GST is disconnected.	6 - 10V
121 122	B B	ECM ground	Engine is running. Idle speed	Engine ground
123	W	Current return	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
124	W/B	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
125 126	В	ECM ground	Engine is running. Idle speed	Engine ground
127 128	В	ECM ground	Engine is running. Idle speed	Engine ground
129	В	Sensor's ground	Engine is running. (Warmed-up condition) Idle speed	0V

TROUBLE DIAGNOSIS — General Description

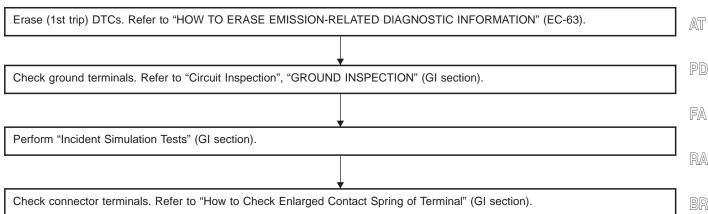
		IIIOODEE D	mente die denoral Becomption	· •
			ECM Terminals and Reference	Value (Cont'd)
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
130 131	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

Description

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

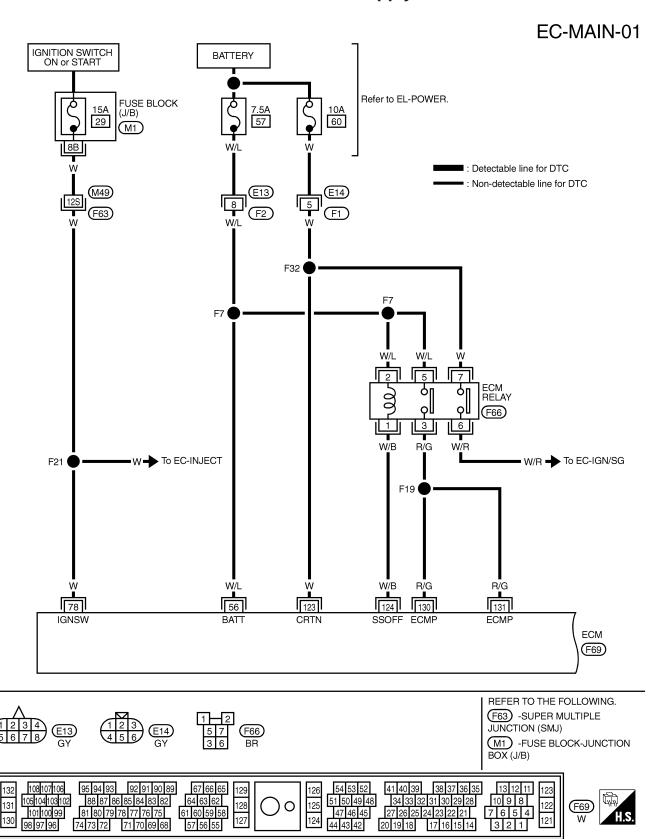
GI


MA

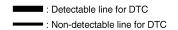
Common I/I Report Situations

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.
VI	The TROUBLE DIAGNOSIS for PXXXX does not indicate the problem area.

EC

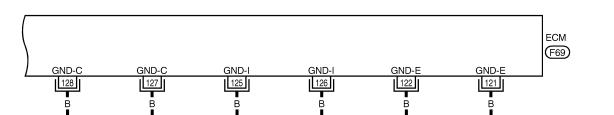

Diagnostic Procedure

HA


EL

Main Power Supply and Ground Circuit

Main Power Supply and Ground Circuit (Cont'd)


EC-MAIN-02

GF9

GF9

GF6

GF1

(F24)

LC

EM

EC

FE

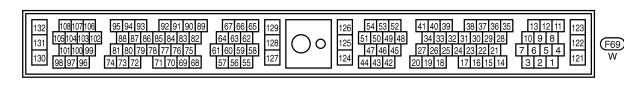
AT

PD

FA

RA

BR


ST

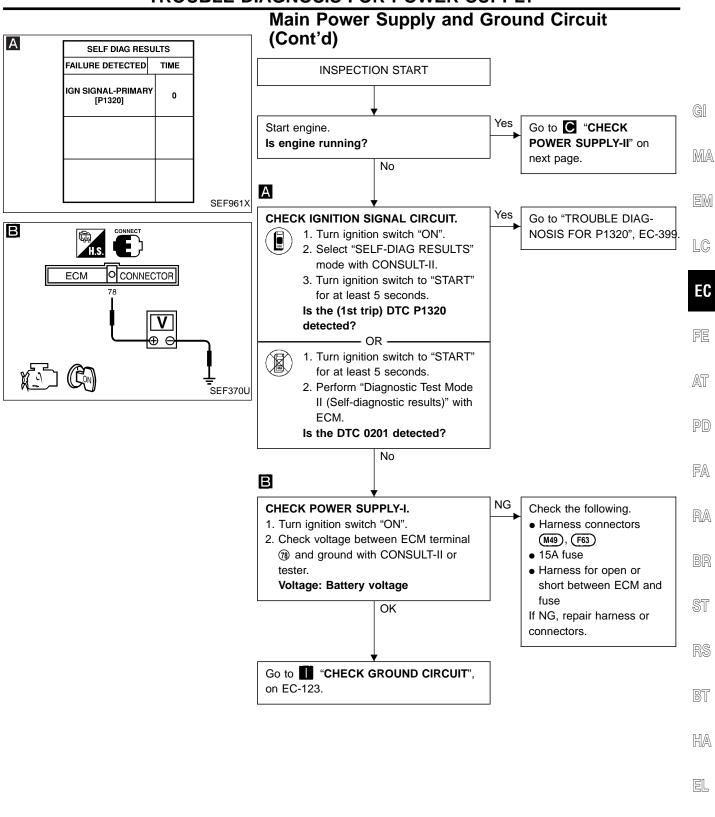
RS

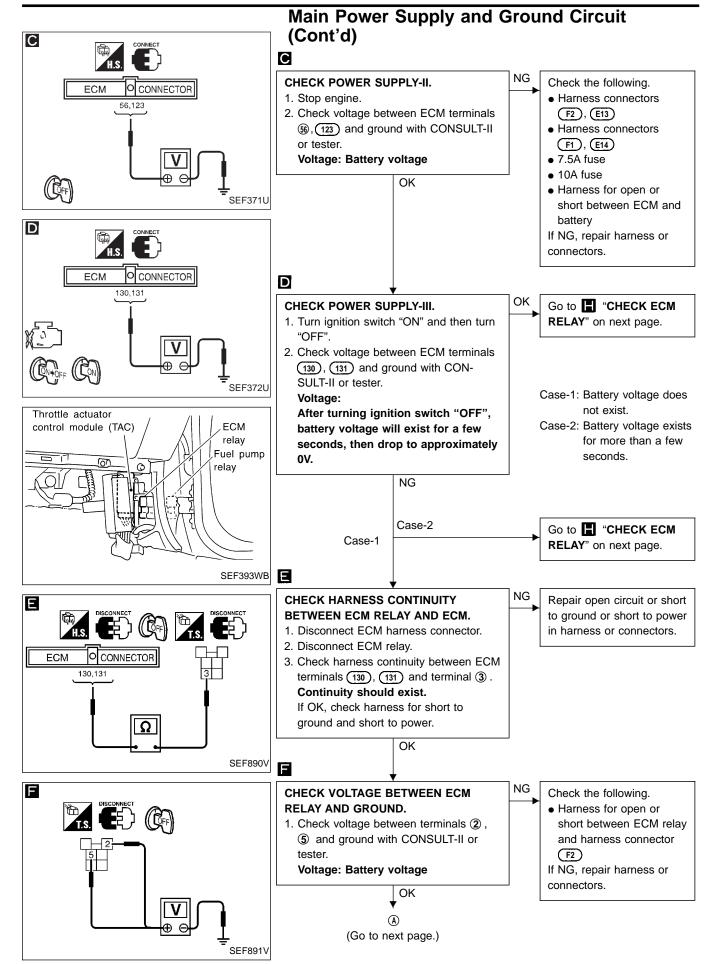
BT

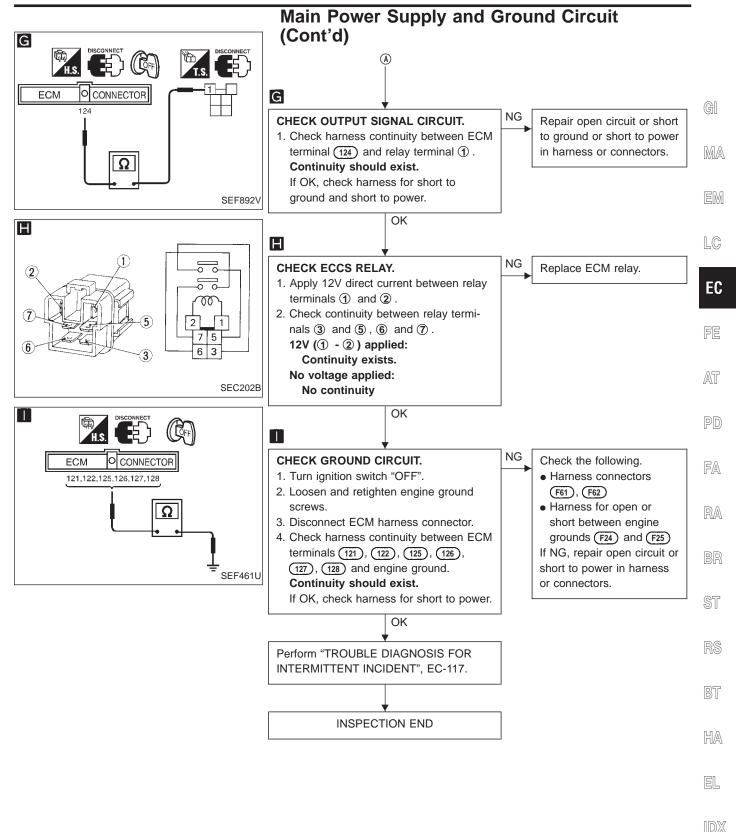
HA

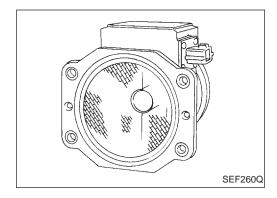
EL

Main Power Supply and Ground Circuit (Cont'd)


ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values, and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
56	W/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
121	В	ECM ground	Engine is running. Idle speed	Engine ground
122	В	ECM ground	Engine is running. Idle speed	Engine ground
123	W	Current return	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
124	W/B	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
125	В	ECM ground	Engine is running. Idle speed	Engine ground
127	В	ECM ground	Engine is running. Idle speed	Engine ground
128	В	ECM ground	Engine is running. Idle speed	Engine ground
130 131	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

Mass Air Flow Sensor (MAFS)

COMPONENT DESCRIPTION

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to the hot film as air flow increases. This maintains the temperature of the hot film. The ECM detects the air flow by means of this current change.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS AIR/FL SE	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.0 - 1.7V
WAO AIRVI E GE	Shift lever: "N"No-load	2,500 rpm	Approximately 2.1V
CAL/LD VALUE	Engine: After warming upAir conditioner switch: "OFF"Shift lever: "N"No-load	Idle	13.0 - 32%
CAL/LD VALUE		2,500 rpm	13.0 - 25.5%
MASS AIRFLOW	Engine: After warming up Air conditioner switch: "OFF"	Idle	3.0 - 6.0 g·m/s
	Shift lever: "N"No-load	2,500 rpm	12.9 - 25.3 g·m/s

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

		<u> </u>		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
65	W	Mass air flow sensor	Engine is running. (Warmed-up condition) Idle speed	1.0 - 1.7V
05	VV	Mass all now sensor	Engine is running. (Warmed-up condition) Engine speed is 2,500 rpm.	Approximately 2.1V
62	В	Mass air flow sensor ground	Engine is running. (Warmed-up condition) Idle speed	Approximately 0V

ON BOARD DIAGNOSTIC LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0100 0102	A) An excessively high voltage from the sensor is sent to ECM when engine is not running.*	Harness or connectors (The sensor circuit is open or shorted.)	
	 C) A high voltage from the sensor is sent to ECM under light load driving conditions. 	Mass air flow sensor	
	B) An excessively low voltage from the sensor is sent to ECM* when engine is running.	Harness or connectors (The sensor circuit is open or shorted.)	
	D) A low voltage from the sensor is sent to ECM under heavy load driving conditions.	Intake air leaks Mass air flow sensor	

^{*:} When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up. (Refer to EC-98.)

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,400 rpm due to the fuel cut.

Mass Air Flow Sensor (MAFS) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

Perform "Procedure for malfunction A" first.

If 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

GI

If there is problem in "Procedure for malfunction B", perform "Procedure for malfunction C". If there is no problem on "Procedure for malfunction C", perform "Procedure for malfunction D".

MA

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

EC

AT

DATA MONITOR MONITOR NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX °C INT/A TEMP SE XXX °C SEF399X

Procedure for malfunction A

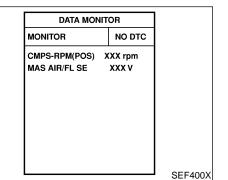
- Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II. 2)
- 3) Wait at least 6 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-129.

RA

FA

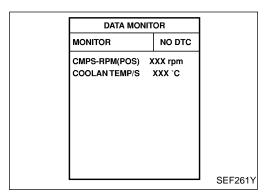
- OR Follow the procedure "With CONSULT-II" above.

Procedure for malfunction B



- Turn ignition switch "ON".
 - Select "DATA MONITOR" mode with CONSULT-II. 2)
 - Start engine and wait 5 seconds at most.
 - If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-129.

BT


HA

EL

Follow the procedure "With CONSULT-II" above.

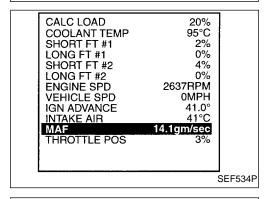
- OR

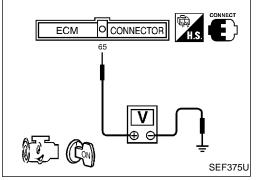
Mass Air Flow Sensor (MAFS) (Cont'd)

Procedure for malfunction C

NOTE:

If the engine will not start or stop soon, wait at least 10 seconds with engine off (ignition switch "ON"), instead of running engine at idle speed.


- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- 4) Wait at least 10 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-130.



Follow the procedure "With CONSULT-II" above.

Mass air flow Engine speed sensor voltage 5 48 32 16 X100rpm 38 20 X0.1V CMPS-RPM(POS) MAS AIR/FL SE 엉 48 32 16 X100rpm 26 13 38 X0.1√ CMPS-RPM(POS) MAS AIR/FL SE SEF697TA

Mass Air Flow Sensor (MAFS) (Cont'd)

Procedure for malfunction D

- 1) Turn ignition switch "ON".
- 2) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

If engine cannot be started, go to "DIAGNOSTIC PROCEDURE, EC-129.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Check the voltage of MAS AIR/FL SE with "DATA MONI-TOR".
- 5) Increases engine speed to about 4,000 rpm.
- 6) Monitor the linear voltage rise in response to engine speed increases. If NG, go to "DIAGNOSTIC PROCEDURE", EC-129.

If OK, go to following step.

 Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (POS): More than 2,000 rpm THRTL POS SEN: More than 3V Selector lever: Suitable position

Driving location: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-130.
 OR

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

Procedure for malfunction D

- 1) Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
- 3) Select "MODE 1" with GST.
- 4) Check the mass air flow with "MODE 1".
- 5) Check for linear mass air flow rise in response to increases to about 4,000 rpm in engine speed.
- 6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-130.

 OR

- 1) Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
- 3) Check the voltage between ECM terminal 65 and ground.
- Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- 5) If NG, go to "DIAGNOSTIC PROCEDURE", EC-130.

HA

EL

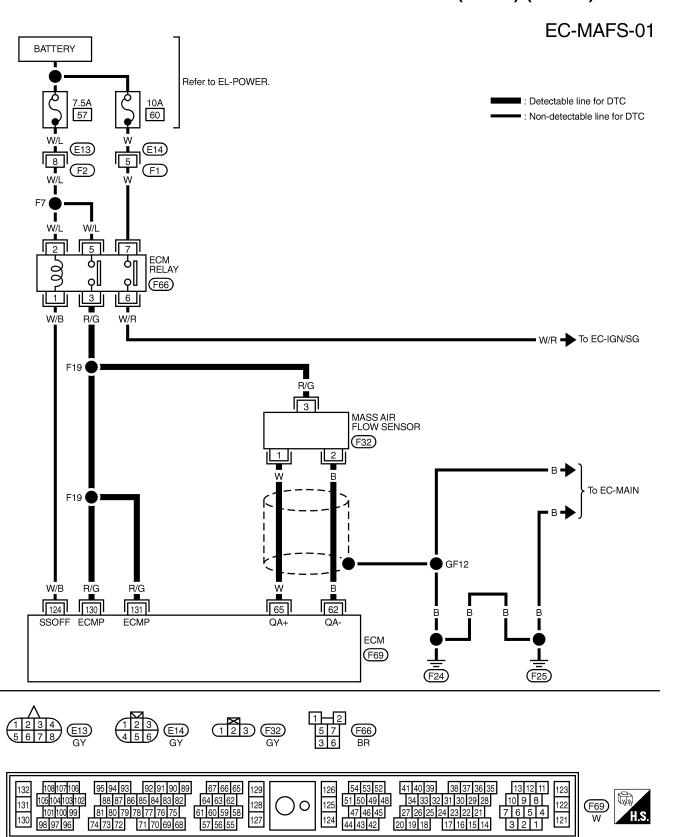
MA

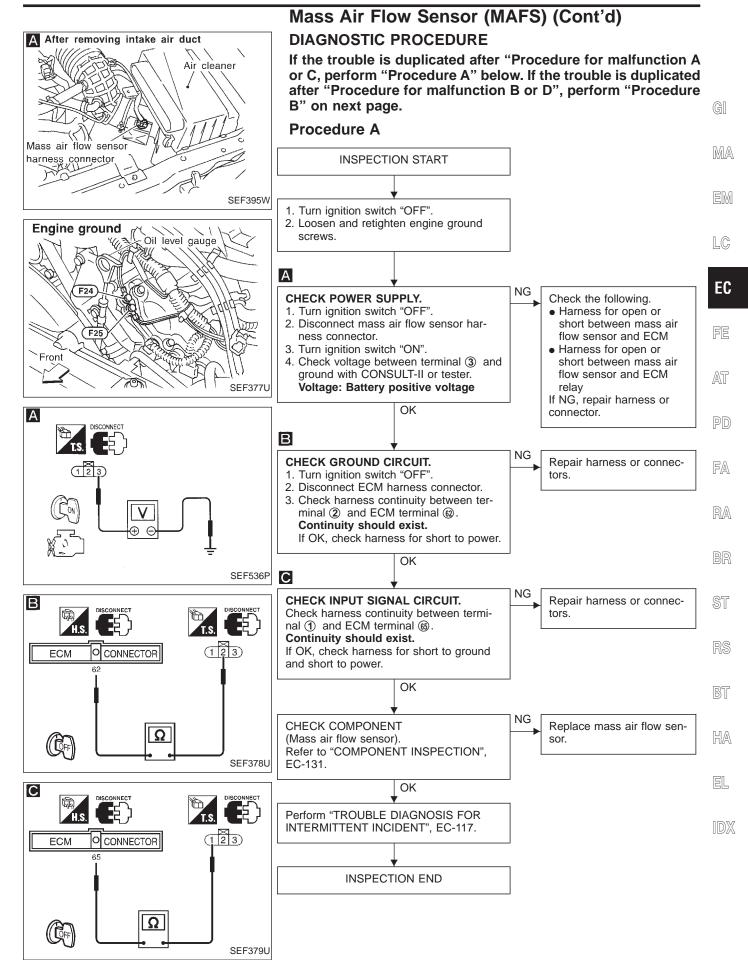
EM

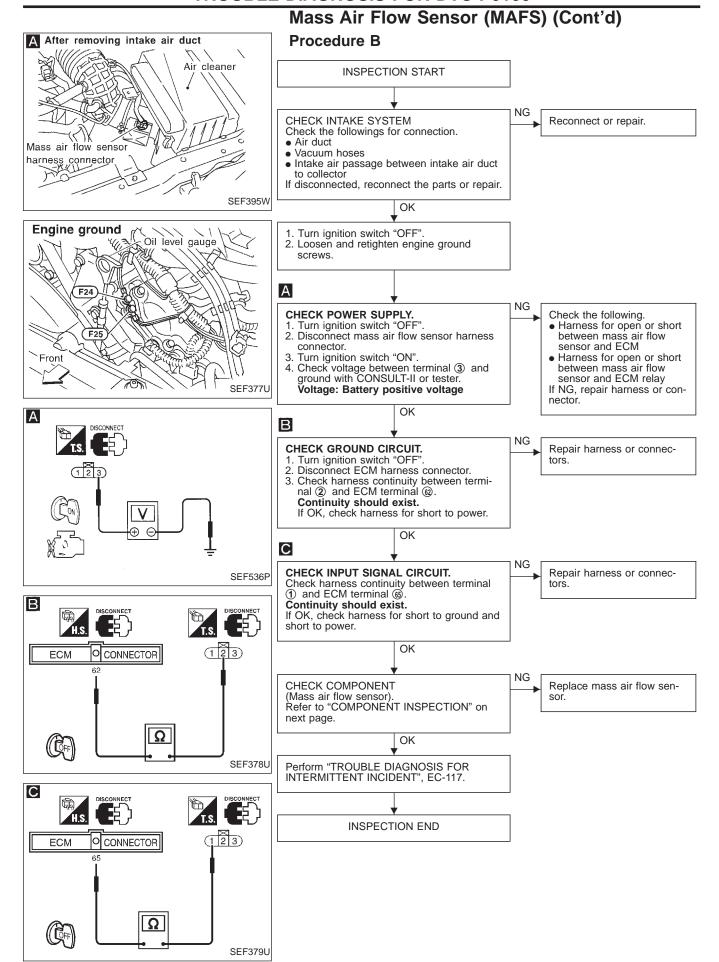
LC

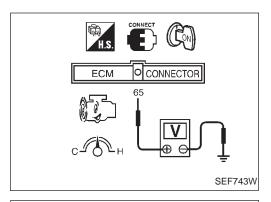
EC

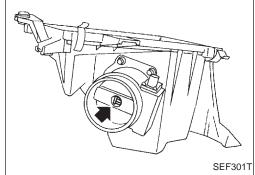
AT


PD


FA


RA


ST


Mass Air Flow Sensor (MAFS) (Cont'd)

Mass Air Flow Sensor (MAFS) (Cont'd) COMPONENT INSPECTION

Mass air flow sensor

- 1. Turn ignition switch "ON".
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal (6) and ground.

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm	Approximately 2.1
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

- *: Check for linear voltage rise in response to increase to about 4,000 rpm in engine speed.
- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.

MA

LC

EC

EG

FE

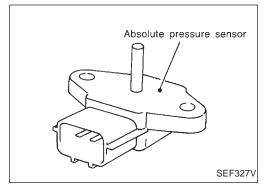
AT

PD

FA

RA

BR


ST

D@

BT

HA

EL

4.5 > 4.5 > 4.5 > 4.5 > 4.5 | Ambient barometic pressure | Vacuum | Va

Absolute Pressure Sensor

COMPONENT DESCRIPTION

The absolute pressure sensor is connected to the MAP/BARO switch solenoid valve by a hose. The sensor detects ambient barometric pressure and intake manifold pressure and sends the voltage signal to the ECM. As the pressure increases, the voltage rises.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0105 0803	A) An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (Absolute pressure sensor circuit is open or shorted.) Absolute pressure sensor
	B) A high voltage from the sensor is sent to ECM under light load driving conditions.	 Hoses (Hoses between the intake manifold and absolute pressure sensor are disconnected or clogged.) Intake air leaks MAP/BARO switch solenoid valve Absolute pressure sensor
	C) A low voltage from the sensor is sent to ECM under heavy load driving conditions.	Absolute pressure sensor

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B". If the 1st trip DTC is not confirmed on "Procedure for malfunction B", perform "Procedure for malfunction C".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

DATA MONITOR NO DTC MONITOR CMPS-RPM(POS) XXX rpm

Absolute Pressure Sensor (Cont'd)

Procedure for malfunction A

- Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II. 2)
- 3) Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-136.

OR Follow the procedure "With CONSULT-II" above.

EM

MA

Procedure for malfunction B

1) Start engine and warm it up to normal operating tem-

EC

- Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
 - Start engine and let it idle.
- 5) Wait at least 15 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-138.

PD

- OR

Follow the procedure "With CONSULT-II" above.

RA

FA

Always drive vehicle at a safe speed.

Procedure for malfunction C

1.74 [V].

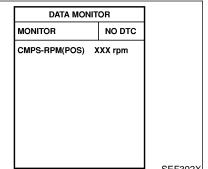
1) Turn ignition switch "ON". Select "DATA MONITOR" mode with CONSULT-II. The voltage of "ABSOL PRES/SE" should be more than

If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-136. If the check result is OK, go to following step.

HA

3) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

Turn ignition switch "OFF" and wait at least 5 seconds.


5) Start engine and let it idle for at least 13 seconds.

6) Select "DATA MONITOR" mode with CONSULT-II. 7) Drive the vehicle at least 3 consecutive seconds under the following conditions,

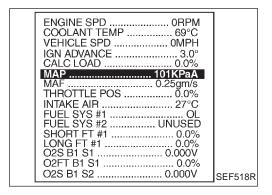
B/FUEL SCHDL: More than 5.6 ms CMPS-RPM (POS): 3,000 - 4,800 rpm Selector lever: Suitable position

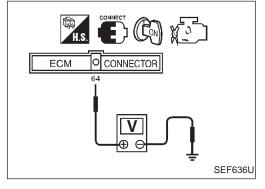
Driving location: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

EC-133

SEF392X

DATA MONITOR MONITOR NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX °C


SEF261Y


DATA MONITOR NO DTC MONITOR CMPS-RPM(POS) XXX rpm VHCL SPEED SE XXX km/h B/FUEL SCHDL XXX msec ABSOL PRES/SE XXX V

SEF262Y

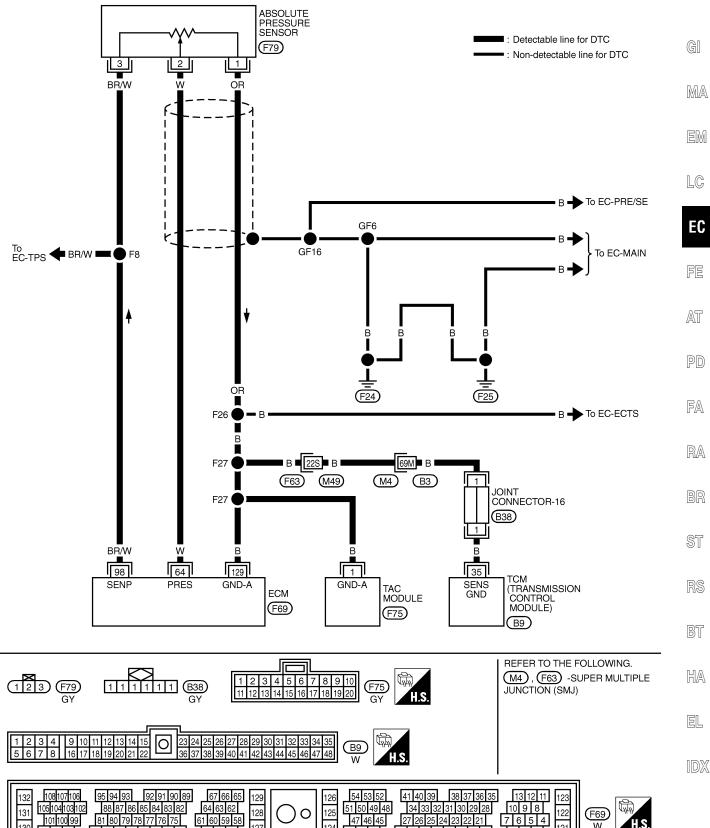
Absolute Pressure Sensor (Cont'd)

8) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-138.

OR -

OVERALL FUNCTION CHECK

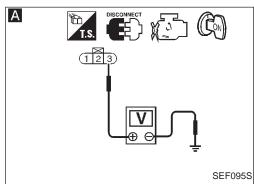
Use this procedure to check the overall function of the absolute pressure sensor circuit. During this check, a 1st trip DTC might not be confirmed.

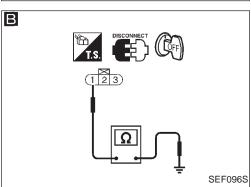

- 1) Turn ignition switch "ON".
- 2) Select "MAP" in "MODE 1" with GST.
- 3) Make sure that the pressure of "MAP" is more than 46 kPa (0.47 kg/cm², 6.7 psi).
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-138.

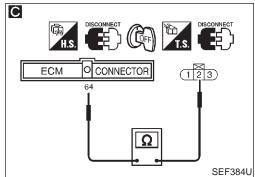
- 1) Turn ignition switch "ON".
- 2) Make sure that the voltage between ECM terminal 64 and engine ground is more than 1.74 [V].
- 3) If NG, go to "DIAGNOSTIC PROCEDURE", EC-138.

Absolute Pressure Sensor (Cont'd)

EC-AP/SEN-01

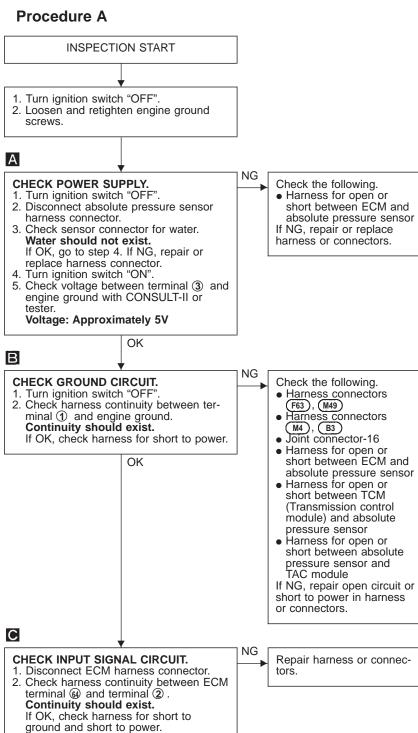

20 19 18


98 97 96


71 70 69 68

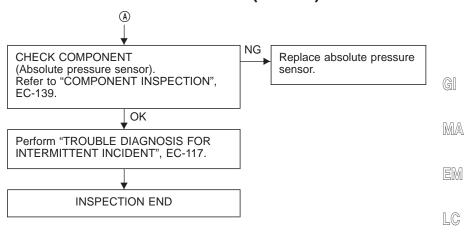
Absolute pressure sensor harness connector

Engine ground Oil level gauge F24 Front SEF377U



Absolute Pressure Sensor (Cont'd) DIAGNOSTIC PROCEDURE

If the trouble is duplicated after "Procedure for malfunction A or C", perform "Procedure A" below. If the trouble is duplicated after "Procedure for malfunction B", perform "Procedure B" on next page.



↓ OK

(A)

(Go to next page.)

Absolute Pressure Sensor (Cont'd)

EC

FE

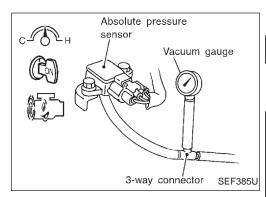
AT

PD

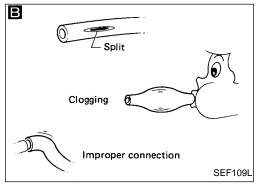
FA

RA

BR


ST

RS


BT

HA

EL

Α ACTIVE TEST MAP/BARO SW/V MAP MONITOR CMPS-RPM(POS) XXX rpm MAP/BARO SW/V MAP ABSOL PRES/SE XXX V SEF761X

Absolute Pressure Sensor (Cont'd) Procedure B

INSPECTION START Α NG **CHECK VACUUM SOURCE TO ABSO-**

LUTE PRESSURE SENSOR.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Connect MAP/BARO switch solenoid valve and absolute pressure sensor with a rubber tube that has vacuum gauge.

- 4. Turn ignition switch "ON".
- 5. Select "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 6. Start engine and let it idle.
- 7. Touch "MAP" and "BARO" alternately and check for vacuum.

MAP/BARO SW/V	Vacuum
BARO	Should not exist.
MAP	Should exist.

В

- OR -4. Turn ignition switch "ON".
- 5. Start engine and check for vacuum.

For 5 seconds after starting engine:

Vacuum should not exist.

6. More than 5 seconds after starting engine.

OK

Vacuum should exist.

CHECK VACUUM HOSE. Check vacuum hose for clogging, cracks, disconnection or improper connection.

If NG, repair or replace the hose.

OK

Check vacuum port for clogging.

If NG, clean it.

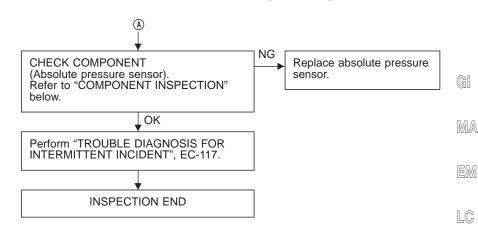
OK

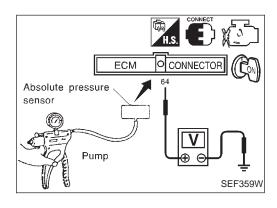
CHECK COMPONENT (MAP/BARO switch solenoid valve). Refer to "COMPONENT INSPECTION" of

"TROUBLE DIAGNOSIS FOR DTC P1105", EC-358.

> OK NG Replace MAP/BARO switch solenoid valve.

CHECK INTAKE SYSTEM. Check intake system for air leaks.


CHECK HOSE BETWEEN ABSOLUTE


PRESSURE SENSOR AND MAP/BARO SWITCH SOLENOID VALVE.

- 1. Turn ignition switch "OFF".
- 2. Check hose for clogging, cracks, disconnection or improper connection.

(Go to next page.)

Absolute Pressure Sensor (Cont'd)

COMPONENT INSPECTION

Absolute pressure sensor

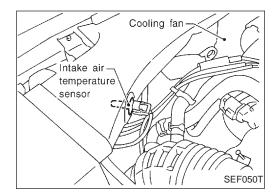
- Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch "ON" and check output voltage between terminal (4) and engine ground.
 - The voltage should be 3.2 to 4.8V.
- Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.
 - The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

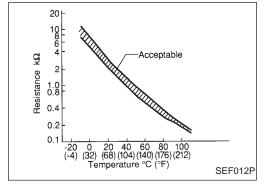
CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.
- 5. If NG, replace absolute pressure sensor.

HA

EC


AT


PD

FA

RA

Intake Air Temperature Sensor COMPONENT DESCRIPTION

The intake air temperature sensor is mounted to the intake air duct. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor, which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* (V)	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

^{*} These data are reference values and are measured between ECM terminal (9) (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0110 0401	A) An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Intake air temperature sensor
	B) Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

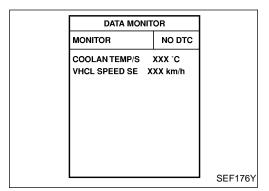
Perform "Procedure for malfunction A" first.

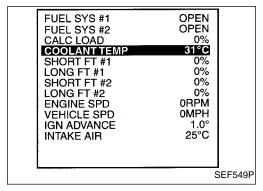
If 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

DATA MONITOR MONITOR NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX °C INT/A TEMP SE XXX °C


Procedure for malfunction A



- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-143.

Follow the procedure "With CONSULT-II" above.

Intake Air Temperature Sensor (Cont'd)

Procedure for malfunction B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(194°F).

1) Wait until engine coolant temperature is less than 90°C

(a) Turn ignition switch "ON".

(b) Select "DATA MONITOR" mode with CONSULT-II.

(c) Check the engine coolant temperature.

(d) If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.

EC

Perform the following steps before engine coolant temperature is above 90°C (194°F).

2) Turn ignition switch "ON".

3) Select "DATA MONITOR" mode with CONSULT-II.

Start engine and turn TCS switch "OFF".

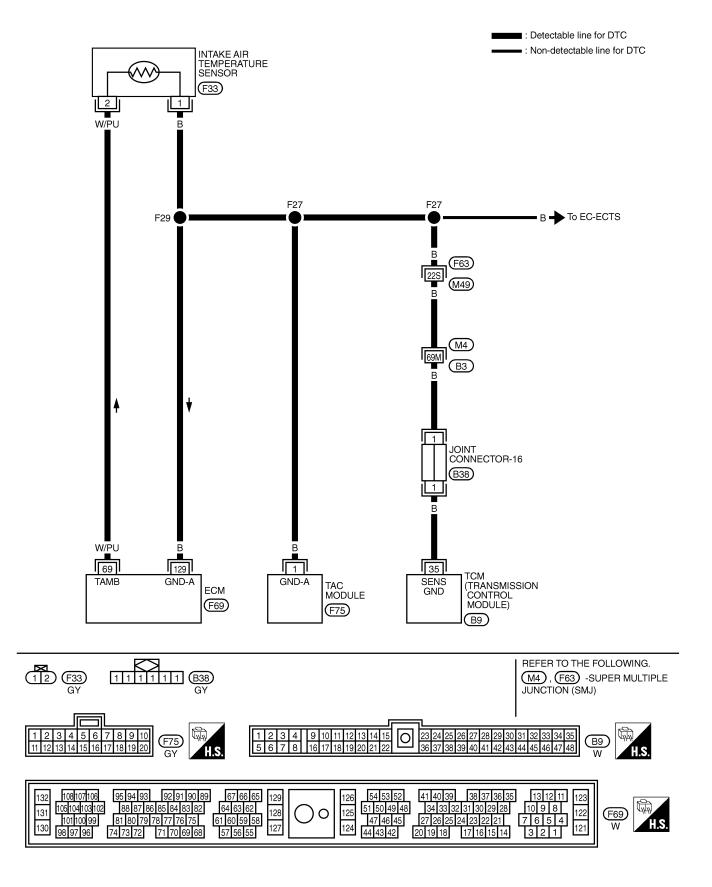
Hold vehicle speed more than 70 km/h (43 MPH) for 100 consecutive seconds.

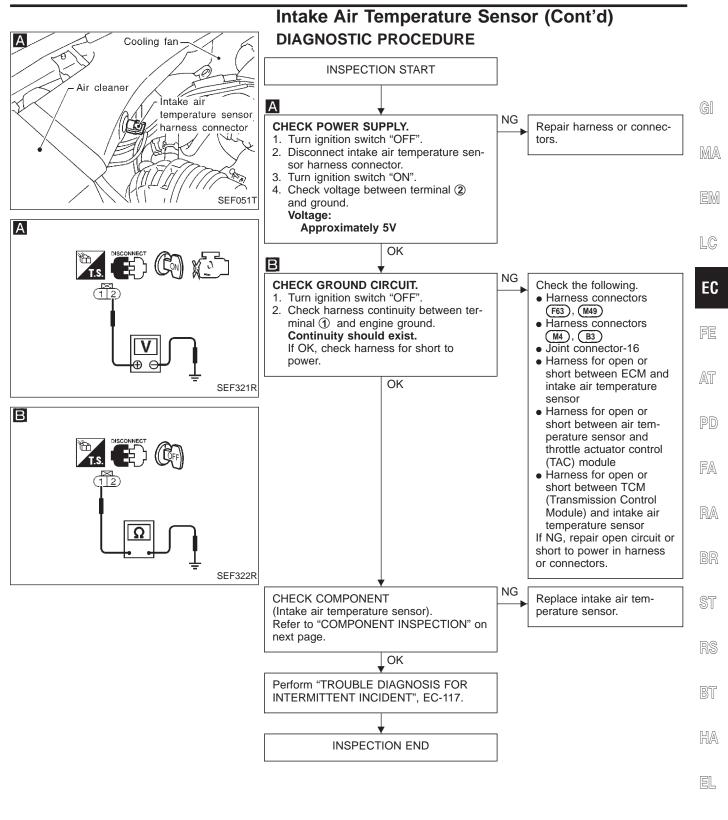
6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-143. - OR -

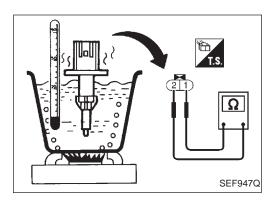
Follow the procedure "With CONSULT-II" above.

FA

PD

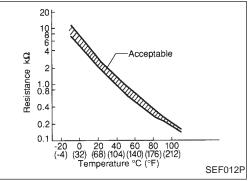

RA


HA


EL

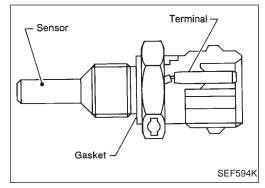
Intake Air Temperature Sensor (Cont'd)

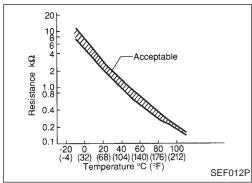
EC-IATS-01



Intake Air Temperature Sensor (Cont'd) COMPONENT INSPECTION

Intake air temperature sensor


Check resistance as shown in the figure.



<Reference data>

Intake air temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38

If NG, replace intake air temperature sensor.

Engine Coolant Temperature Sensor (ECTS) COMPONENT DESCRIPTION

The engine coolant temperature sensor is located near the No. 2 injector. The sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

GI

MA

<Reference data>

Engine coolant tempera- ture °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	1.0	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal (i) (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

PD

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0115 0103	sent to ECM.*	 Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor

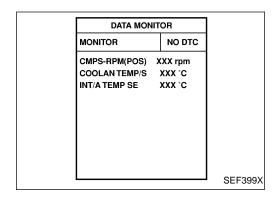
^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode	Condition	Engine coolant temperature decided (CONSULT-II DISPLAY)
Engine coolant temperature will be determined	Just as ignition switch is turned ON or Start	40°C (104°F)
by ECM based on the time after turning ignition switch "ON" or "START".	More than 4 minutes after ignition Start	80°C (176°F)
CONSULT-II displays the engine coolant temperature decided by ECM.	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)

LC

EC

AT


FA

RA

BR

HA

EL

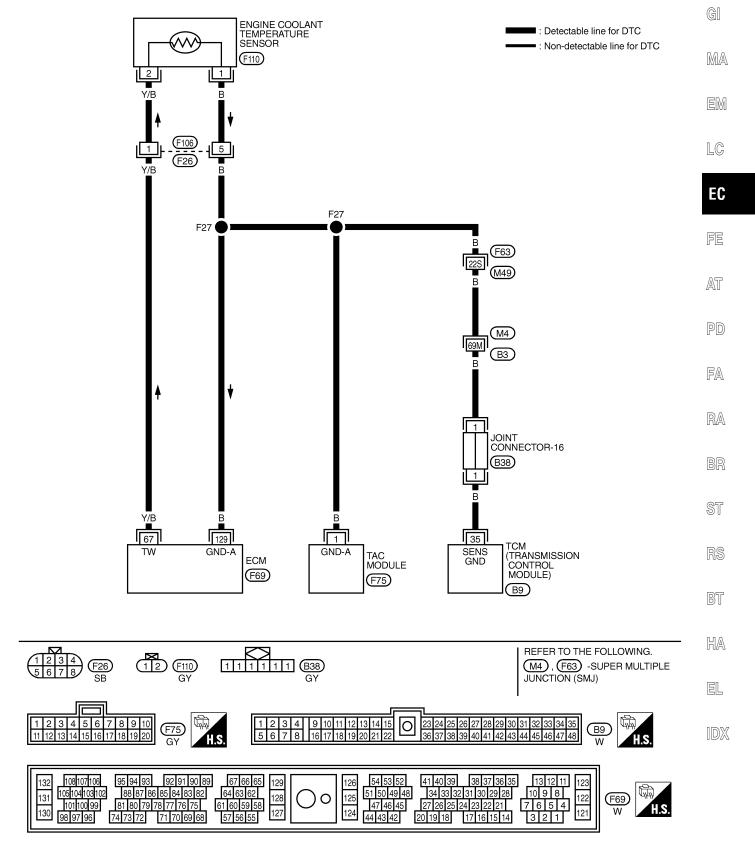
Engine Coolant Temperature Sensor (ECTS) (Cont'd)

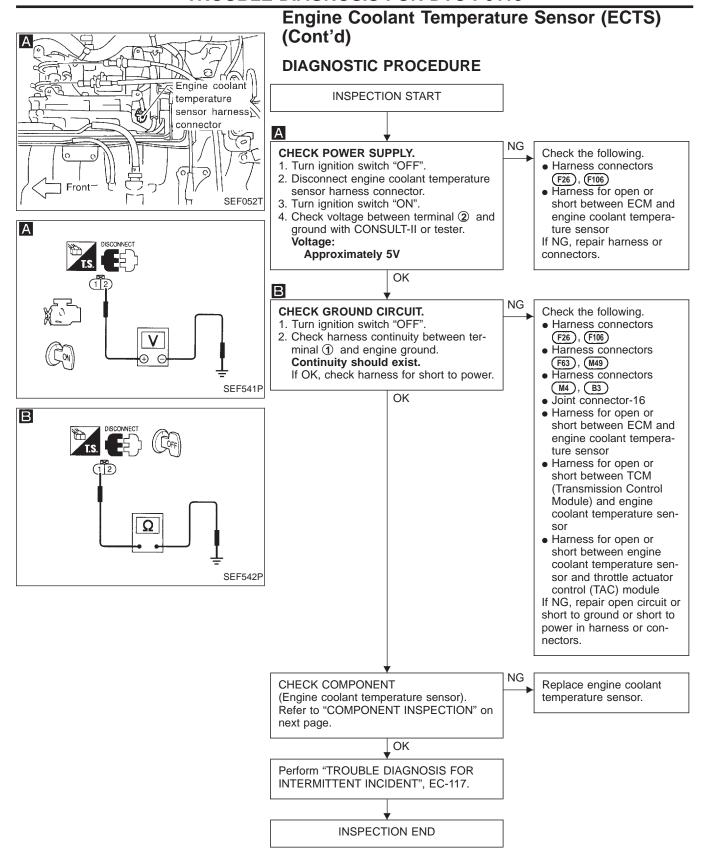
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

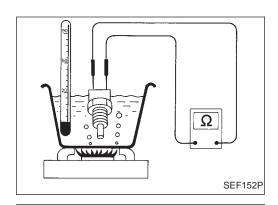
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-148.


– OR -




Follow the procedure "With CONSULT-II" above.

Engine Coolant Temperature Sensor (ECTS) (Cont'd)

EC-ECTS-01

Acceptable

SEF012P

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

Resistance k Ω

1.0 0.8 0.4

0.2

Engine Coolant Temperature Sensor (ECTS) (Cont'd)

COMPONENT INSPECTION

Engine coolant temperature sensor

Check resistance as shown in the figure.

MA

EM

LC

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

EC

AT

FE

PD

FA

RA

BR

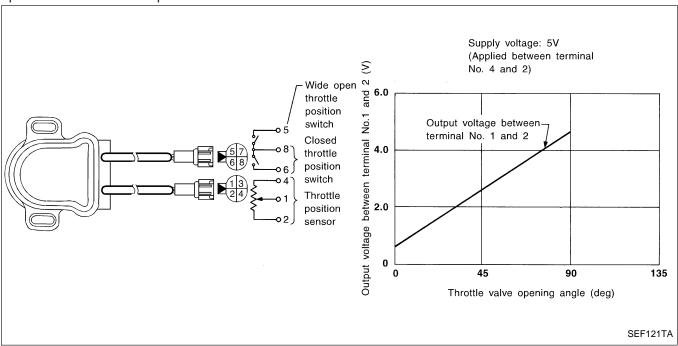
ST

RS

BT

HA

EL


Throttle Position Sensor

NOTE: If DTC P0510 (0203) is displayed with DTC P0120, perform TROUBLE DIAGNOSIS FOR DTC P0510 first (See EC-346.).

COMPONENT DESCRIPTION

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This one controls engine operation such as fuel cut. The throttle position sensor unit has a built-in "Wide open and closed throttle position switch".

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve: fully closed	0.15 - 0.85V	
	Throttle valve: fully opened	3.5 - 4.7V	
Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve fully closed	0.0%	
	Throttle valve fully opened	Approx. 88%	

Throttle Position Sensor (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
63	G	Throttle position sensor	Ignition switch "ON" (Warmed-up condition)* Accelerator pedal fully released	0.15 - 0.85V
03	G	signal	Ignition switch "ON" Accelerator pedal fully depressed	3.5 - 4.7V
98	BR/W	Sensor's power supply	Ignition switch "ON"	Approximately 5V
129	В	Sensor's ground	Engine is running. (Warmed-up condition) L Idle speed	0V

^{*:} More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0120 0403	A) An excessively low or high voltage from the sensor is sent to ECM.*	Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor	
	B) A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor Fuel injector Camshaft position sensor Mass air flow sensor 	
	C) A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Intake air leaks Throttle position sensor 	

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode	Condition	Driving condition	_
Throttle position will be determined based on the	When engine is idling	Normal	_
amount of mass air flow and the engine speed. Therefore, acceleration will be poor.	When accelerating	Poor acceleration	_ [

Perform "Procedure for malfunction A" first. If the DTC cannot be confirmed, perform "Procedure for malfunction B". If there is no problem on "Procedure for malfunction B", perform "Procedure for malfunction C".

HA

GI

MA

LC

EC

AT

PD

FA

RA

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

DATA MONITOR MONITOR NO DTC CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX 'C VHCL SPEED SE XXX km/h THRTL POS SEN XXX V B/FUEL SCHDL XXX msec SEF264Y

Throttle Position Sensor (Cont'd)

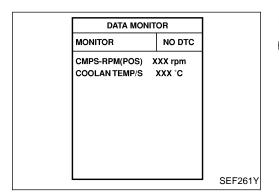
Procedure for malfunction A

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.


- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and maintain the following conditions for at least 5 consecutive seconds.

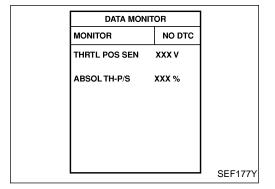
VHCL SPEED SE: More than 4 km/h (2 MPH)
Selector lever: Suitable position except "P" or "N"
position

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-155.

Follow the procedure "With CONSULT-II" above.

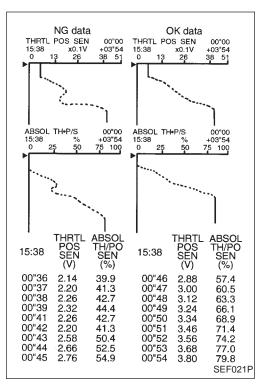
Procedure for malfunction B

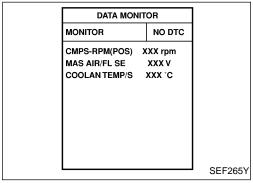
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 10 seconds. If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

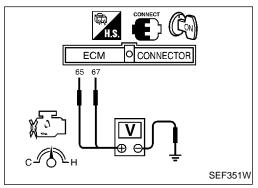

Selector lever: Suitable position except "P" or "N" Brake pedal: depressed

Vehicle speed: 0 km/h (0 MPH)

4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-156.


— OR — Follow the procedure "With CONSULT-II" above.




Procedure for malfunction C

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "MANU TRIG" in "DATA MONITOR" mode with CONSULT-II.
- 5) Select "THRTL POS SEN" and "ABSOL TH-P/S" in "DATA MONITOR" mode with CONSULT-II.

Throttle Position Sensor (Cont'd)

- Press RECORD on CONSULT-II screen at the same time accelerator pedal is depressed.
- 7) Print out the recorded graph and check the following:
- The voltage rise is linear in response to accelerator pedal depression.
- The voltage when accelerator pedal is fully depressed is approximately 4V.

 If NG, go to "DIAGNOSTIC PROCEDURE" EC 155.

 The voltage when accelerator pedal is fully depressed is approximately 4V.

 If NG, go to "DIAGNOSTIC PROCEDURE" EC 155.

If NG, go to "DIAGNOSTIC PROCEDURE", EC-155. If OK, go to following step.

- Select "AUTO TRIG" in "DATA MONITOR" mode with CONSULT-II.
- 9) Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (POS): More than 2,000 rpm MAS AIR/FL SE: More than 3V

COOLAN TEMP/S: More than 70°C (158°F)

Selector lever: Suitable position

Driving location: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

10) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-158.

— OR

1) Maintain the following conditions for at least 10 consecutive seconds.

Gear position: Suitable position Engine speed: More than 2,000 rpm

Voltage between ECM terminal 65 and (128) (ECM ground):

More than 3V

COOLAN TEMP/S: More than 70°C (158°F)

2) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-158.

OR ·

 Maintain the following conditions for at least 10 consecutive seconds.

Gear position: Suitable position Engine speed: More than 2,000 rpm

Voltage between ECM terminal 65 and 128 (ECM ground):

More than 3V

Voltage between ECM terminal 6 and (28) (ECM ground):

Less than 1.5V

- 2) Stop the vehicle, turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- Perform "DIAGNOSTIC TEST MODE (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-158.

EL

GI

MA

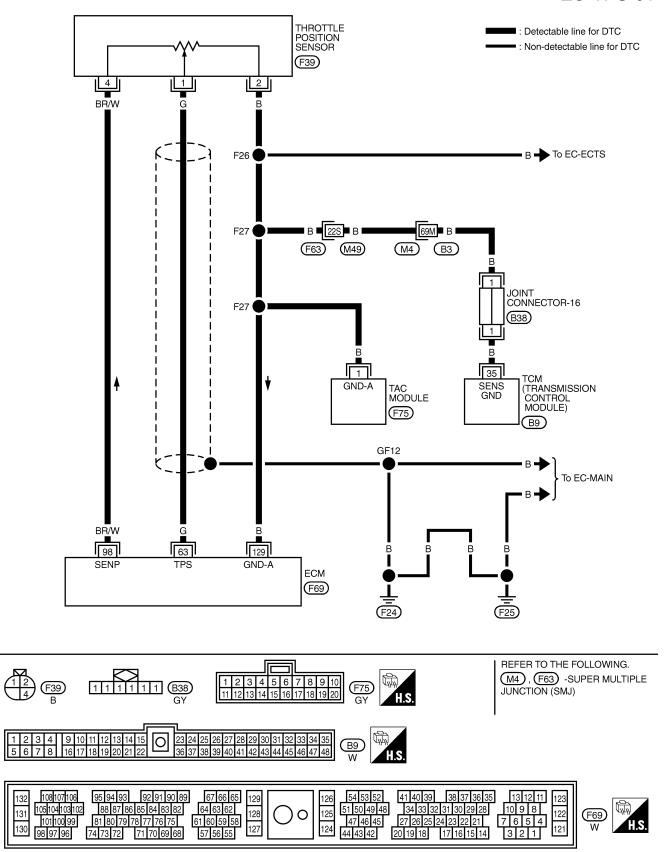
LC

EC

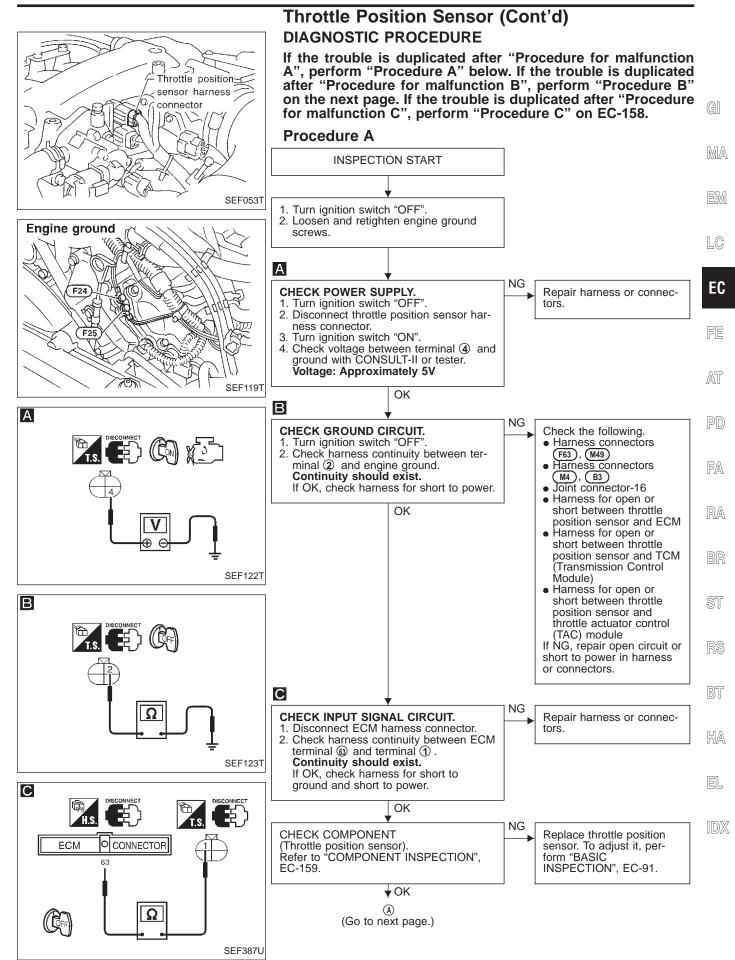
AT

PD

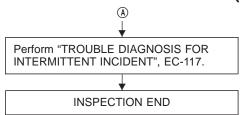
RA

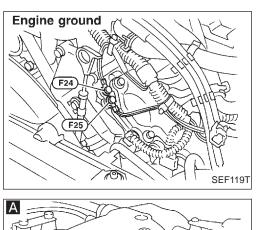

ST

BT

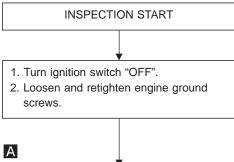

EC-153

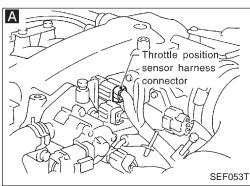
Throttle Position Sensor (Cont'd)


EC-TPS-01



131



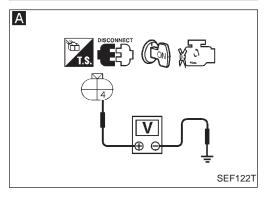

Throttle Position Sensor (Cont'd)

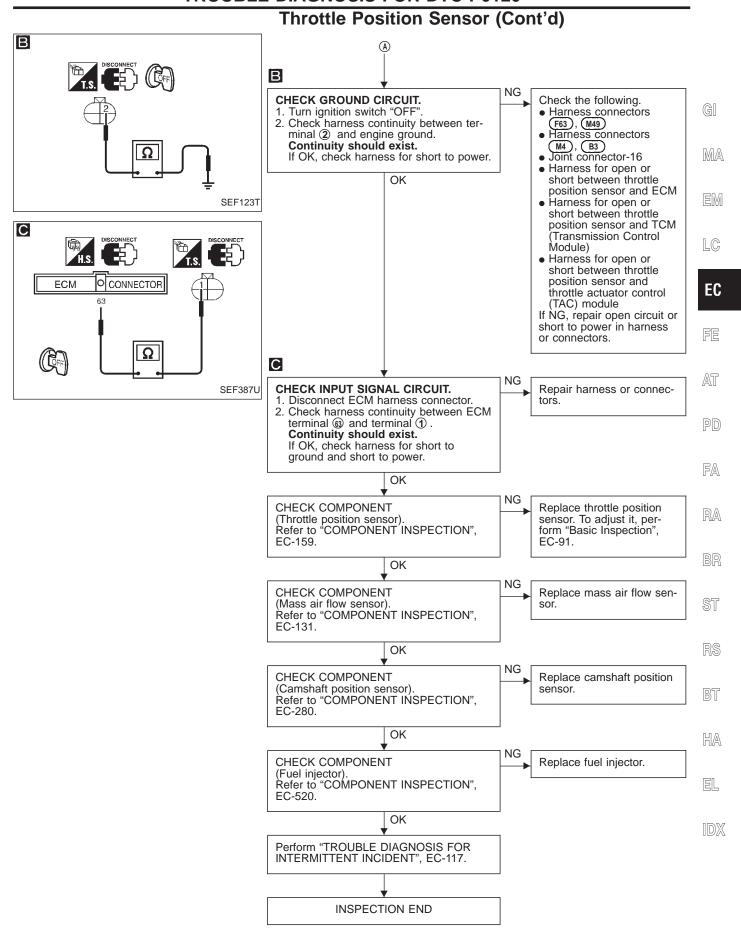
Procedure B

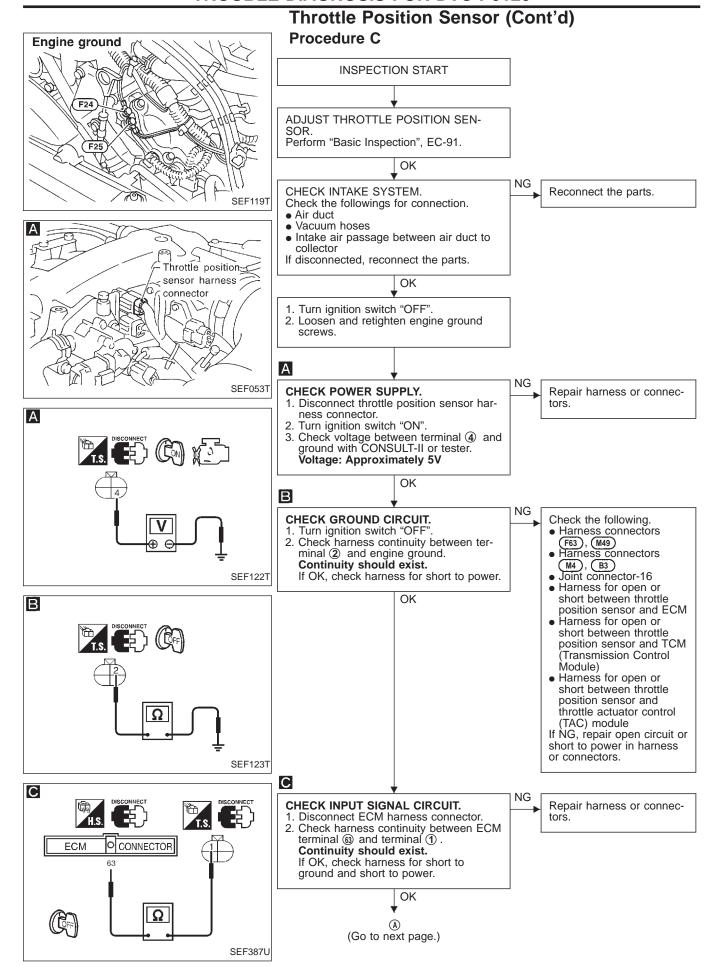
CHECK POWER SUPPLY.

1. Disconnect throttle position sensor harness connector.

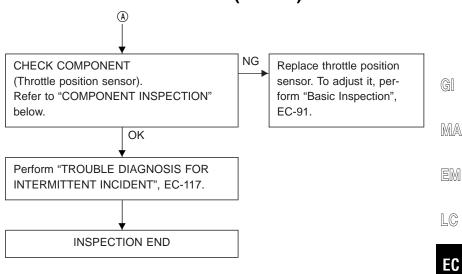
NG

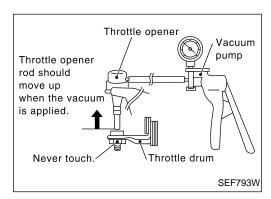

tors.


Repair harness or connec-


- 2. Turn ignition switch "ON".
- 3. Check voltage between terminal **(4)** and ground with CONSULT-II or tester.

Voltage: Approximately 5V





Throttle Position Sensor (Cont'd)

DATA MON	DATA MONITOR	
MONITOR	NO DTC]
CMPS-RPM(POS)	XXX rpm	1
COOLAN TEMP/S	XXX °C	
THRTL POS SEN		1
CLSD THL POS	OFF	
		1
		SEF266Y

COMPONENT INSPECTION

Throttle position sensor

- Start engine and warm it up to normal operating temperature.
- 2. Stop engine (Ignition switch "OFF").
- Remove the vacuum hose connected to the throttle opener.
- Connect suitable vacuum hose to the vacuum pump and the
- Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- Turn ignition switch "ON".
- 7. Select "DATA MONITOR" mode with CONSULT-II. 8. Check voltage of "THRTL POS SEN".
 - Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	THRTL POS SEN	
Completely closed (a)	0.15 - 0.85	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7	

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

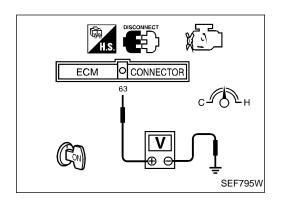
9. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

- OR -

EM

AT

PD


FA

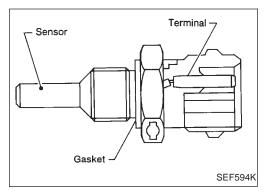
RA

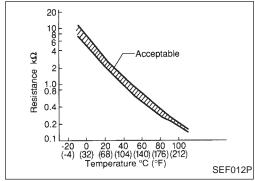
ST

BT

HA

Throttle Position Sensor (Cont'd)


7. Check voltage between ECM terminal (3) (Throttle position sensor signal) and ground.


Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V
Completely closed	0.15 - 0.85
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

8. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

Engine Coolant Temperature (ECT) Sensor COMPONENT DESCRIPTION

The engine coolant temperature sensor is located near the No. 2 injector. The sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

G[

MA

EM

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	1.0	0.236 - 0.260

*: These data are reference values and are measured between ECM terminal (a) (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

PD

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0125 0908	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

пΛ

LC

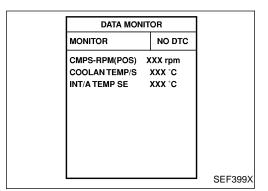
EC

AT

FA

RA

BR


9 1

RS

RT

HA

EL

Engine Coolant Temperature (ECT) Sensor (Cont'd)

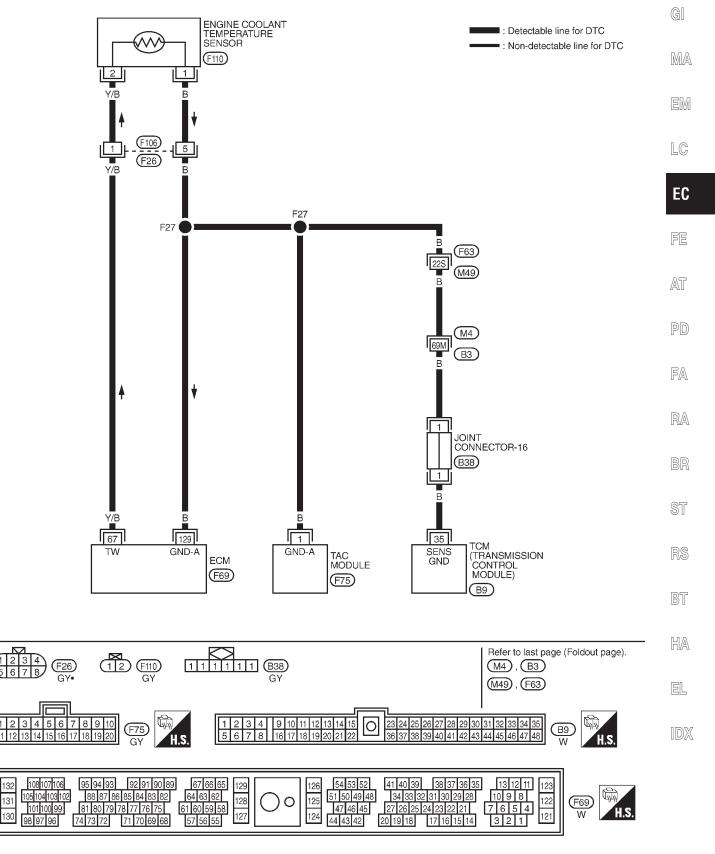
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

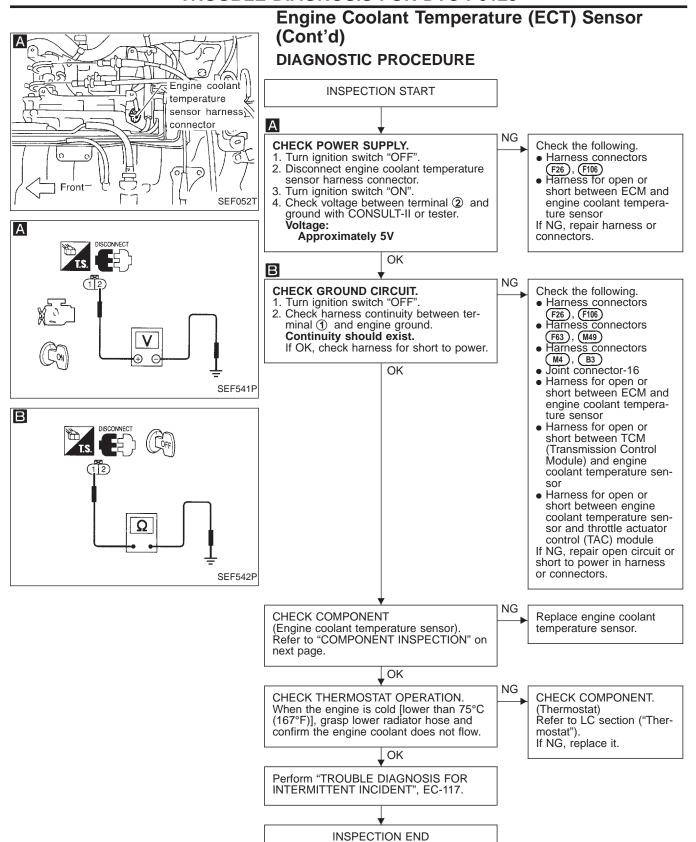
CAUTION:

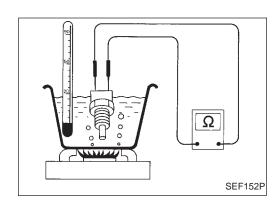
Do not overheat engine.

NOTE:

- If DTC P0115 (0103) is displayed with P0125 (0908), first perform TROUBLE DIAGNOSIS FOR DTC P0115, EC-145.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


- 1) Turn ignition switch "ON".
- 2) Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 3) Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- 4) Start engine and run it for 65 minutes at idle speed.
- If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5) If 1st DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-164.




Follow the procedure "With CONSULT-II" above.

Engine Coolant Temperature (ECT) Sensor (Cont'd)

EC-ECTS-01

Acceptable

SEF012P

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

Resistance k Ω

1.0 0.8 0.4

0.2

Engine Coolant Temperature (ECT) Sensor (Cont'd)

COMPONENT INSPECTION

Engine coolant temperature sensor

Check resistance as shown in the figure.

 $\mathbb{M}\mathbb{A}$

EM

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

LC

EC

If NG, replace engine coolant temperature sensor.

FE

AT

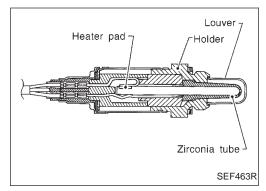
PD

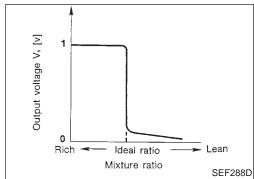
FA

RA

BR

ST


RS


BT

HA

EL

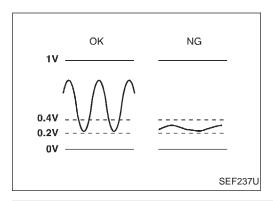
Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	- · · ·		0 - 0.3V ↔ 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (B2)	R	Heated oxygen sensors 1	Engine is running.	0 - Approximately 1.0V
83 (B1)	W	(front)	L After warming up to normal operating temperature and engine speed is 2,000 rpm.	(periodically change)

Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Under the condition in which the heated oxygen sensor 1 (front) signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

Can				

MA

LC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0130, 0303	The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors
(Bank 1)		(The sensor circuit is open or shorted.)
P0150, 0503		Heated oxygen sensor 1 (front)
(Bank 2)		

AT

PD

FA

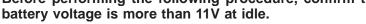
HO2S1 (B1) P0130 **OUT OF CONDITION** MONITOR CMPS-RPM(POS) XXX rpm B/FUEL SCHOL XXX mse THRTL POS SEN XXX V SEF979Z

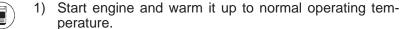
DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

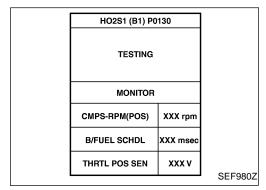
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

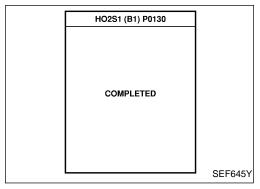

RA


TESTING CONDITION:

- Always drive vehicle at temperature of more than -10°C
- Before performing the following procedure, confirm that

EL

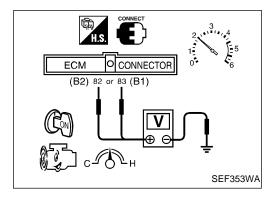

- perature. Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1) P0130, (B2) (P0150)" of "HO2S1" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Touch "START".
- Start engine (TCS switch "OFF") and let it idle for at least 3 minutes.


NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5).

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 sec-

CMPS-RPM (POS): 1,600 - 2,200 rpm Vehicle speed: More than 70 km/h (43 MPH)


Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd)

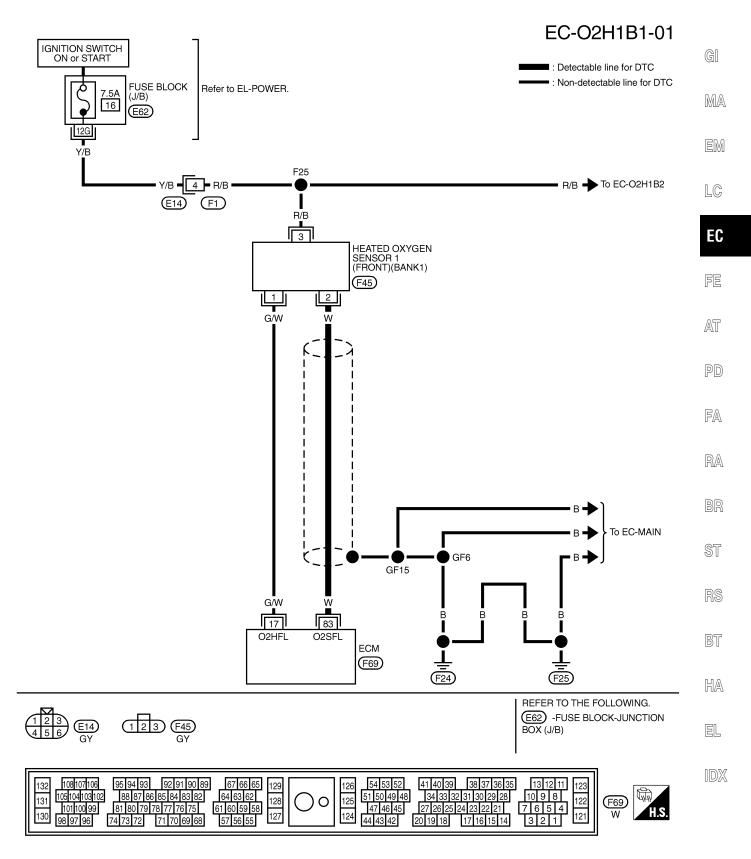
B/FUEL SCHDL: 1.4 - 5 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

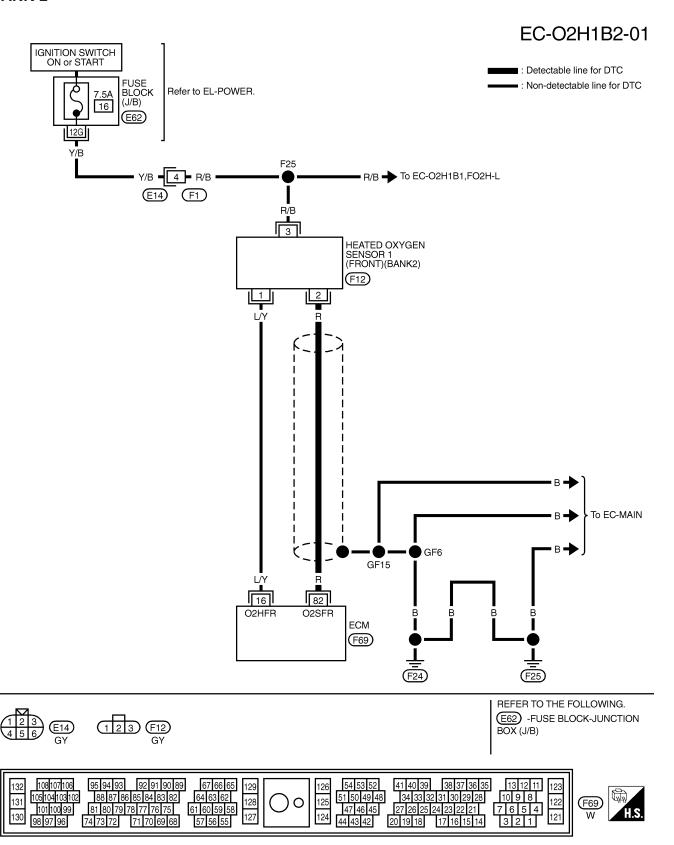
 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-171.

During this test, P1148 and P1168 may be stored in ECM.

OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal (2) (B2), (8) (B1) (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-171.


Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd)

BANK 1

Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd)

BANK 2

Bank 1 Heated oxygen sensor 1 (front) (bank 1) Brake booster SEF054TI

Heated oxygen sensor 1

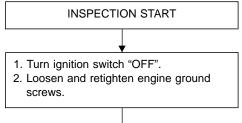
(front) (bank 2)

Oil level gauge

HO2S1 (front) harness

protector

HO2S1 (front) harness protector color: HO2S1 (B1) Left bank: Black


HO2S1 (B2) Right bank: Blue

Engine ground

Front

Α

Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd) DIAGNOSTIC PROCEDURE

MA

LC

SEF056TH

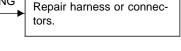
SEF377U

SEF409WA

CHECK INPUT SIGNAL CIRCUIT.

- 1. Turn ignition switch "OFF".
- Disconnect corresponding heated oxygen sensor 1 (front) harness connector and ECM harness connector.
- Check harness continuity between ECM and sensor terminals.

DTC	Term	inals	Bank (Harness
DIC	ECM	Sensor	protector color)
P0130	83	2	Bank 1 (Black)
P0150	82	2	Bank 2 (Blue)


Continuity should exist.

4. Check harness continuity between ECM and sensor or ground.

	Terminals		Bank (Harness	
DTC	ECM or sensor	Ground	protector color)	
P0130	83 or 2	Ground	Bank 1 (Black)	
P0150	82 or 2	Ground	Bank 2 (Blue)	

Continuity should not exist.

If OK, check harness for short to ground and short to power.

REPLACE HO2S1 (front).

1. Check front HO2S har-

ness protector color.

2. Replace malfunctioning HO2S1 (front).

Black: Left bank (B1)

Blue: Right bank (B2)

EC

FE

AT

PD

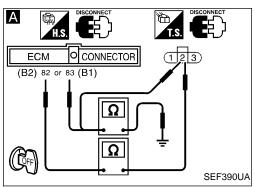
FA

RA

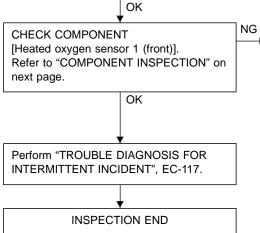
BB

ST

RS


BT

HA


⊐n

EL

IID/V

HO2S1 (front)

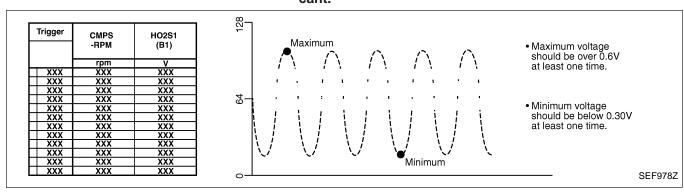
DATA MONI	ror	
MONITOR	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx °C	
HO2S1 (B1)	XXX V	
HO2S1 MNTR (B1)	LEAN	
A/F ALPHA-B1	XXX %	
		SEF977.

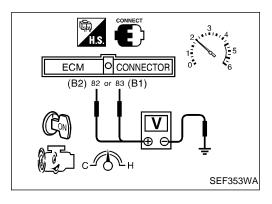
Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 (front)

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1) (B2)" and "HO2S1 MNTR (B1) (B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1) (B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.


5 times (cycles) are counted as shown below:


R = "HO2S1 MNTR (B1) (B2)", "RICH" L = "HO2S1 MNTR (B1) (B2)", "LEAN"

- "HO2S1 (B1) (B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1) (B2)" voltage goes below 0.30V at least once.
- "HO2S1 (B1) (B2)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

1) Start engine and warm it up to normal operating temperature.

- OR -

- Set voltmeter probes between ECM terminal ® (B2), ® (B1) (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II [HEATED OXYGEN SENSOR 1 MONITOR (FRONT), EC-68].
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time.

Heated Oxygen Sensor 1 (Front) (P0130: Bank 1), (P0150: Bank 2) (Circuit) (Cont'd)

• The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubri-

GI

MI/A

EM

LC

EC

FE

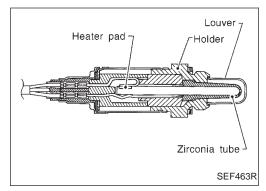
AT

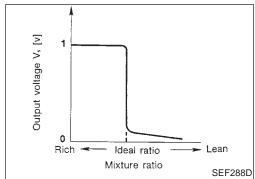
PD

FA

RA

BR


ST


RS

BT

HA

EL

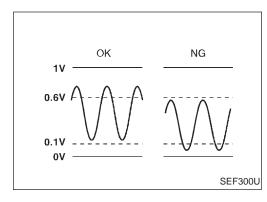
Heated Oxygen Sensor 1 (Front) (P0131: Bank 1), (P0151: Bank 2) (Lean shift monitoring) COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	- · · ·		0 - 0.3V ↔ 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (B2)	R	Heated oxygen sensor 1	Engine is running.	0 - Approximately 1.0V
83 (B1)	W	(front)	Lack After warming up to normal operating temperature and engine speed is 2,000 rpm.	(periodically change)

Heated Oxygen Sensor 1 (Front) (P0131: Bank 1), (P0151: Bank 2) (Lean shift monitoring) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

MA

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0131	The maximum voltage from the sensor is not reached to the	Heated oxygen sensor 1 (front)	
0411	specified voltage.	 Heated oxygen sensor 1 heater (front) 	
(Bank 1)		Fuel pressure	
P0151		• Injectors	
0415		Intake air leaks	
(Bank 2)			

EC

AT

PD

FA

HO2S1 (B1) P0131 OUT OF CONDITION MONITOR CMPS-RPM(POS) XXX rpm B/FUEL SCHDL XXX msed THRTL POS SEN XXX V SEF982Z

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

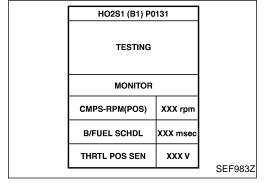
NOTE:

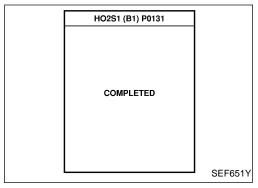
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

NOTE:

- Always perform at a temperature above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

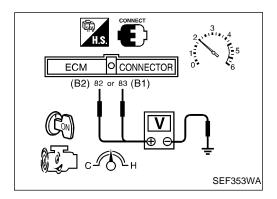

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1) P0131, (B2) P0151" of "HO2S1" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine (TCS switch "OFF") and let it idle for at least 3 minutes.


Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds.)

Vehicle speed: 0 - 100 km/h (0 - 62 MPH) B/FUEL SCHDL: 1.4 - 5.0 ms Selector lever: Suitable position

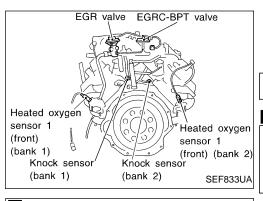
CMPS-RPM (POS): 1,200 - 2,200 rpm



Heated Oxygen Sensor 1 (Front) (P0131: Bank 1), (P0151: Bank 2) (Lean shift monitoring) (Cont'd)

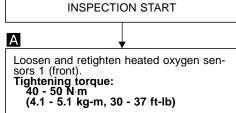
If "TESTING" is not displayed after 5 minutes, retry from step 2).

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-177.



OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.



- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal (3) (B2), (B1) (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.1V at least one time.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-177.

Heated Oxygen Sensor 1 (Front) (P0131: Bank 1), (P0151: Bank 2) (Lean shift monitoring) (Cont'd)

DIAGNOSTIC PROCEDURE

GI

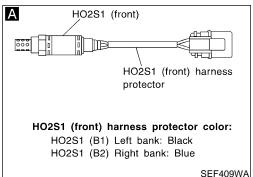
EM

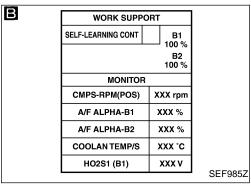
LC

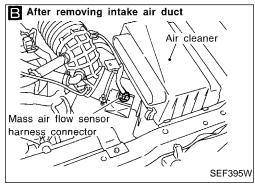
EC

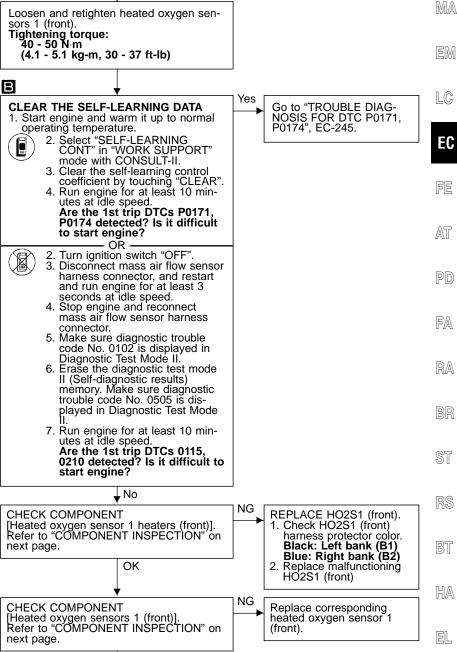
FE

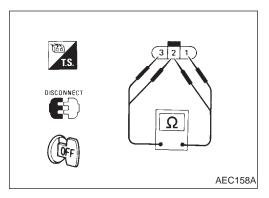
AT


PD


ST


HA


EL

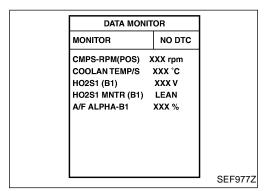

OK Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117. Refer to "TROUBLE DIAGNOSIS FOR DTC P0130 (B1), P0150 (B2)" for circuit, INSPECTION END

Heated Oxygen Sensor 1 (Front) (P0131: Bank 1), (P0151: Bank 2) (Lean shift monitoring) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1. Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


Check continuity between terminals (2) and (1), (3) and (2).

Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

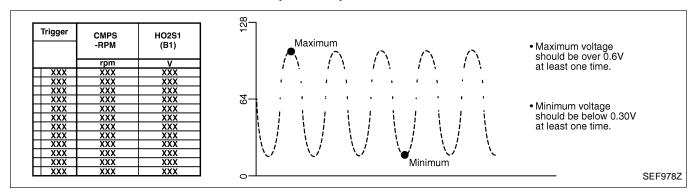
CAUTION:

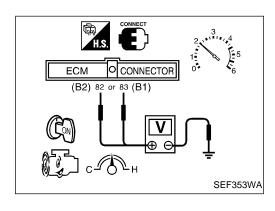
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated oxygen sensor 1 (front)

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1) (B2)" and "HO2S1 MNTR (B1) (B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1) (B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:


R = "HO2S1 MNTR (B1) (B2)", "RICH" L = "HO2S1 MNTR (B1) (B2)", "LEAN"


- "HO2S1 (B1) (B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1) (B2)" voltage goes below 0.30V at least once.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated Oxygen Sensor 1 (Front) (P0131: Bank 1), (P0151: Bank 2) (Lean shift monitoring) (Cont'd)

2)

Start engine and warm it up to normal operating temperature.

- OR -

Set voltmeter probes between ECM terminal (2) (B2), (3)

(B1) (sensor signal) and ground. Check the following with engine speed held at 2,000 rpm constant under no load.

RA

- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II [HEATED OXYGEN SENSOR 1 MONITOR (FRONT)]. See EC-68.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time.

The voltage never exceeds 1.0V.

CAUTION:

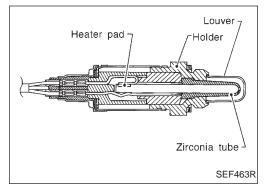
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

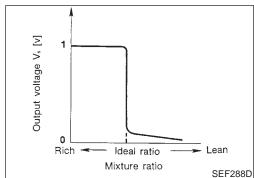
LC

GI

MA

EC


AT


FA

PD

HA

EL

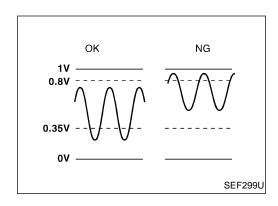
Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)		Maintaining against a consider the constant of	0 - 0.3V ↔ 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up		LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (B2)	R			0 - Approximately 1.0V
83 (B1)	W	(front)	After warming up to normal operating temperature and engine speed is 2,000 rpm.	(periodically change)

Diagnostic Trouble

Code No.

P0132

(Bank 1) P0152

0410

0414 (Bank 2)

Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

MA

Check Items (Possible Cause)	LC
 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure 	EC
• Injectors	

AT

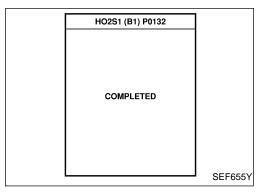
PD

FA

EL

HO2S1 (B1) P0	132	
OUT OF CONDITION		
MONITOR		
CMPS-RPM(POS)	XXX rpm	

XXX msec


XXX V

B/FUEL SCHDL

THRTL POS SEN

SFF9867

HO2S1 (B1) P0	132	
TESTING		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
B/FUEL SCHDL	XXX msec	
THRTL POS SEN	xxx v	
		SEF987Z

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

Malfunction is detected when ...

• The maximum and minimum voltages from the sensor are not

around the specified voltages.

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

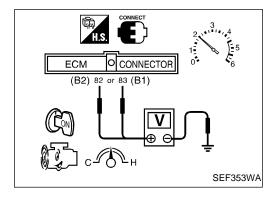
- Always perform at a temperature above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Start engine and warm it up to normal operating tem-
- Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1) P0132, (B2) P0152" of "HO2S1" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Touch "START".
- Start engine (TCS switch "OFF") and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds.)

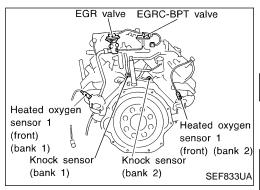

CMPS-RPM (POS): 1,200 - 2,200 rpm Vehicle speed: 0 - 100 km/h (0 - 62 MPH)

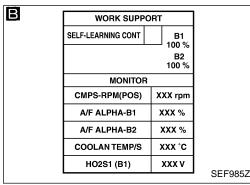
B/FUEL SCHDL: 1.4 - 5.0 ms Selector lever: Suitable position

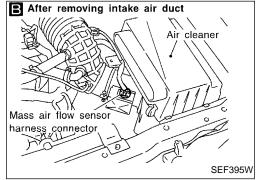
Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2).

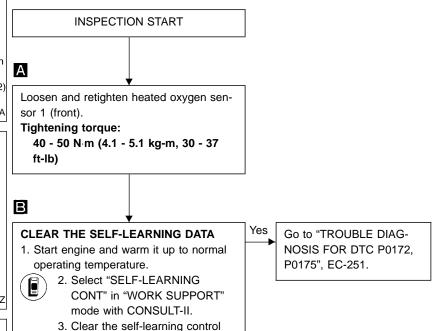
 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-183.




OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal (2) (B2), (8) (B1) (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-183.



Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) (Cont'd)

DIAGNOSTIC PROCEDURE

2. Turn ignition switch "OFF".

utes at idle speed.

to start engine?

Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

coefficient by touching "CLEAR".

4. Run engine for at least 10 min-

Are the 1st trip DTCs P0172, P0175 detected? Is it difficult

- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- Erase the diagnostic test mode II (Self-diagnostic results) memory. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 7. Run engine for at least 10 minutes at idle speed.

Are the 1st trip DTCs 0114, 0209 detected? Is it difficult to start engine?

No

(Go to next page.)

PD

FA

GI

MA

EM

LC

EC

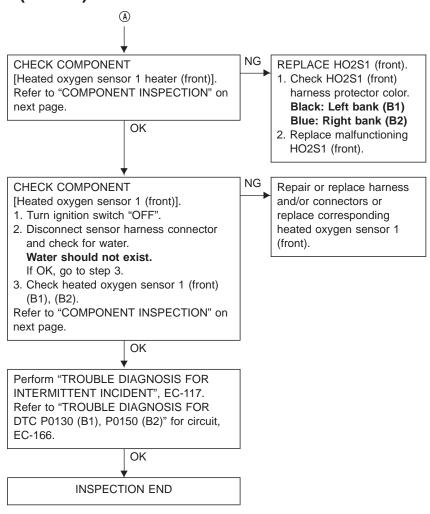
FE

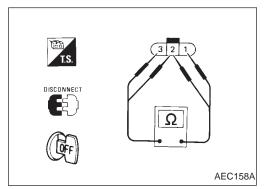
AT

RA

BR

ST


RS


BT

HA

EL

Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1. Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

If NG, replace the heated oxygen sensors 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

DATA MON	ITOR	
MONITOR	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx c	
FR O2 SEN-B1	xxx v	
FR O2 MNTR-B1	LEAN	
A/F ALPHA-B1	XXX %	
	I	

Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) (Cont'd)

Heated oxygen sensor 1 (front)

1) Start engine and warm it up to normal operating temperature.

2) Select "MANU TRIG" and "HI SPEED" in "DATA MONI-TOR" mode with CONSULT-II, and select "HO2S1 (B1) (B2)" and "HO2S1 MNTR (B1) (B2)".

MA

3) Hold engine speed at 2,000 rpm under no load during the following steps.

Touch "RECORD" on CONSULT-II screen.

EM

Check the following.

"HO2S1 MNTR (B1) (B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:

EC

cycle | 1 | 2 | 3 | 4 | 5 HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

FE

R = "HO2S1 MNTR (B1) (B2)", "RICH" L = "HO2S1 MNTR (B1) (B2)", "LEAN"

AT

"HO2S1 (B1) (B2)" voltage goes above 0.6V at least

"HO2S1 (B1) (B2)" voltage goes below 0.30V at least

PD

The voltage never exceeds 1.0V.

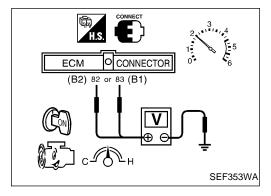
CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

FA

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubri-

Trigger **CMPS** HO2S1 -RPM (B1) XXX XXX XXX XXX XXX XXX XXX



 Maximum voltage should be over 0.6V at least one time.

 Minimum voltage should be below 0.30V at least one time.

BT

HA SEF978Z

Start engine and warm it up to normal operating temperature.

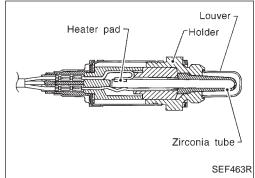
– OR –

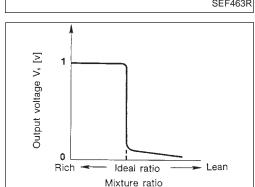
2) Set voltmeter probes between ECM terminal (2) (B2), (3) (B1) (sensor signal) and ground.

3) Check the following with engine speed held at 2,000 rpm constant under no load.

Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II [HEATED] OXYGEN SENSOR 1 MONITOR (FRONT)]. See EC-68.

The maximum voltage is over 0.6V at least one time.


The minimum voltage is below 0.30V at least one time.


Heated Oxygen Sensor 1 (Front) (P0132: Bank 1), (P0152: Bank 2) (Rich Shift Monitoring) (Cont'd)

The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant

Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

LC

__

EC

FE

AT

PD

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

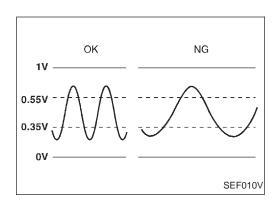
SEF288D

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	r.
HO2S1 (B1) HO2S1 (B2)		Maintaining anning around at 2,000 years	0 - 0.3V ↔ 0.6 - 1.0V	FA
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.	RA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

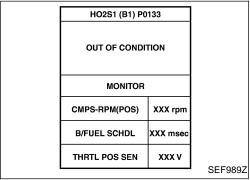

CAUTION:

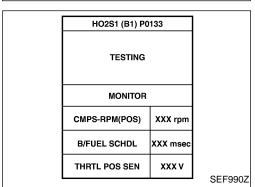
Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

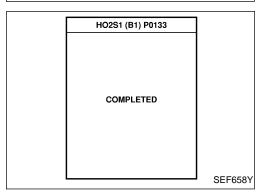
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (B2)	R	Heated oxygen sensor 1	Engine is running.	0 - Approximately 1.0V
83 (B1)	W	(front)	After warming up to normal operating temperature and engine speed is 2,000 rpm.	(periodically change)

EL

HA




Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)


ON BOARD DIAGNOSIS LOGIC

To judge the malfunction of heated oxygen sensor 1 (front), this diagnosis measures response time of the heated oxygen sensor 1 (front) signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 (front) temperature index. Judgment is based on whether the compensated time [heated oxygen sensors 1 (front) cycling time index] is inordinately long or not.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0133 0409 (Bank 1)	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure
P0153 0413 (Bank 2)		 Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature of above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0133, (B2) (P0153)" of "HO2S1" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine (TCS switch "OFF") and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5).

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.)

CMPS-RPM (POS): 1,200 - 2,500 rpm

Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)

Vehicle speed: More than 50 km/h (31 MPH) B/FUEL SCHDL: 1.4 - 5.0 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-192.

GI

LC

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

- Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal (a) (B2), (a) (B1) (sensor signal) and ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II [HEATED OXYGEN SENSOR 1 MONITOR (FRONT)]. See EC-68.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-192.

EC

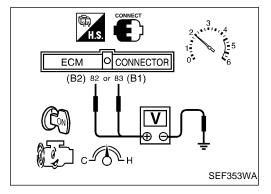
AT

PD

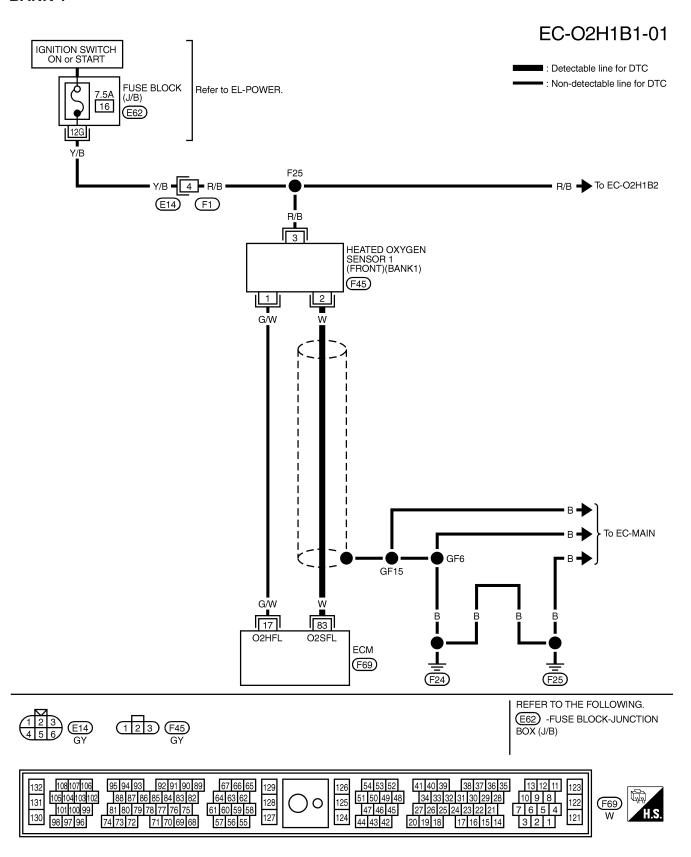
FA

RA

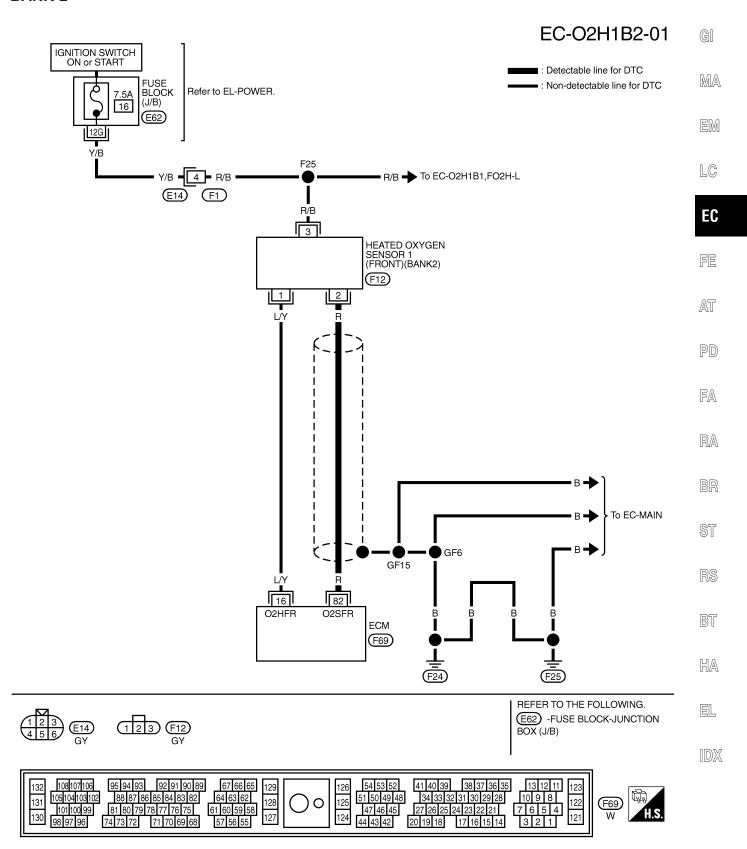
BR

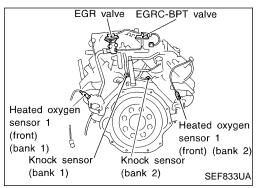

ST

RS

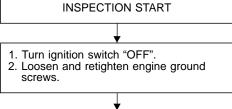

BT

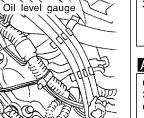
HA


EL



Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)


Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)


Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)

DIAGNOSTIC PROCEDURE

Loosen and retighten heated oxygen sensor 1 (front).

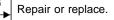
Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

SEF377U

SEF099P

SEF985Z

CHECK EXHAUST AIR LEAK.


Start engine and run it at idle. Listen for an exhaust air leak before three way catalyst.

Repair or replace.

CHECK FOR INTAKE AIR LEAK. Start engine and run it at idle. Listen for an intake air leak between the mass air flow sensor and the intake manifold.

OK

EC-245, 251.

Go to "TROUBLE DIAG-NOSIS FOR DTC P0171, P0172", P0174, P0175,

Yes

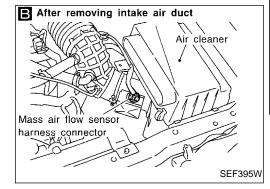
В

Front

Engine ground

CLEAR THE SELF-LEARNING DATA

1. Start engine and warm it up to normal


- operating temperature.

 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control
 - coefficient by touching "CLEAR". 4. Run engine for at least 10 min-
 - utes at idle speed. Are the 1st trip DTCs P0171, P0174 or P0172, P0175 detected? Is it difficult to start engine? OR ·

- 2. Turn ignition switch "OFF". Disconnect mass air flow sensor
- harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode
- 7. Run engine for at least 10 minutes at idle speed.

Are the 1st trip DTCs 0115, 0210 or D114, 0209 detected? Is it difficult to start engine?

WORK SUPPORT

MONITOR

B1 100 %

B2 100 %

XXX rpm

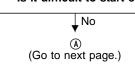
XXX %

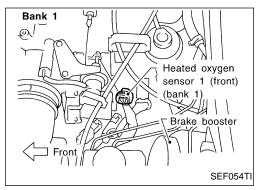
XXX %

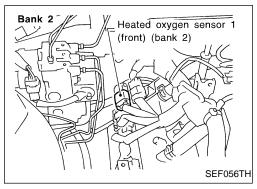
XXX °C

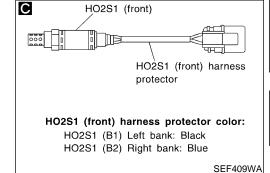
XXX V

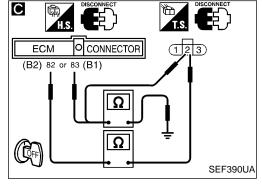
SELF-LEARNING CONT

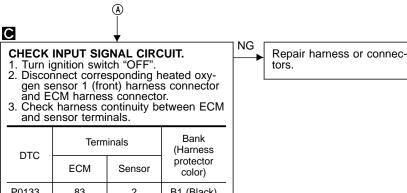

CMPS-RPM(POS)


A/F ALPHA-B1

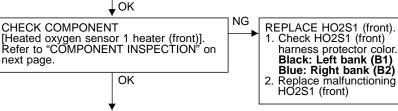

A/F ALPHA-B2


COOL AN TEMP/S

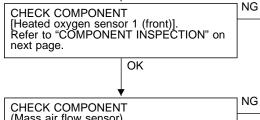

HO2S1 (B1)



Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)

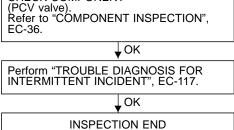


DTC	leiiii	(Harness	
DIC	ECM	Sensor	protector color)
P0133	83	2	B1 (Black)
P0153	82	2	B2 (Blue)
Conti	Continuity should exist		


Continuity should exist.
4. Check harness continuity between ECM and sensor or ground.

	Terminals		Bank (Harness
DTC	ECM or sensor	Ground	protector color)
P0133	83 or 2	Ground	B1 (Black)
P0153	82 or 2	Ground	B2 (Blue)

Continuity should not exist. If OK, check harness for short to ground and short to power.



NG

(Mass air flow sensor) Refer to "COMPONENT INSPECTION". EC-131. **↓**OK

CHECK COMPONENT

REPLACE HO2S1 (front). 1. Check HO2S1 (front) harness protector color. Black: Left bank (B1) Blue: Right bank (B2) Replace malfunctioning HO2S1 (front)

Replace mass air flow sensor.

Repair or replace PCV valve.

BT

HA

EL

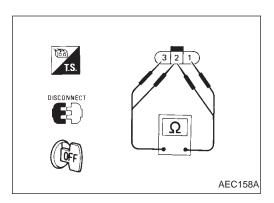
GI

MA

EM

LC

EC


FE

AT

PD

FA

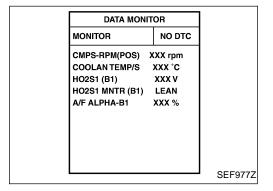
RA

Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1. Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant

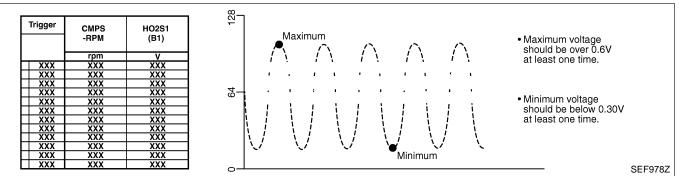
Heated oxygen sensor 1 (front)

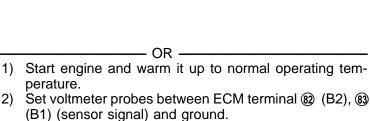
- Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1) (B2)" and "HO2S1 MNTR (B1) (B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1) (B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

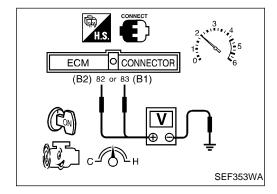
5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R


R = "HO2S1 MNTR (B1) (B2)", "RICH" L = "HO2S1 MNTR (B1) (B2)", "LEAN"


- "HO2S1 (B1) (B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1) (B2)" voltage goes below 0.30V at least once.
- The voltage never exceeds 1.0V.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated Oxygen Sensor 1 (Front) (P0133: Bank 1), (P0153: Bank 2) (Response monitoring) (Cont'd)

Check the following with engine speed held at 2,000 rpm constant under no load.
 Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II [HEATED OXYGEN SENSOR 1 MONITOR (FRONT)]. See EC-68.

The maximum voltage is over 0.6V at least one time.

The minimum voltage is below 0.30V at least one time.
The voltage never exceeds 1.0V.

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

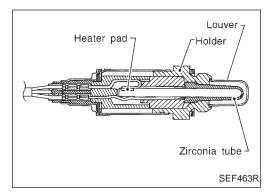
 Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

EC

AT

PD

FA



Nixture ratio Note the second of the second

Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2)

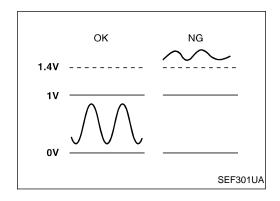
COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Factor Management	Majora initia a consistenti and a consistenti a consistent	0 - 0.3V ↔ 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.

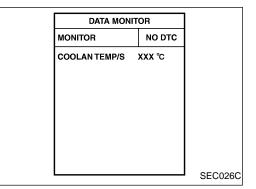

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
82 (B2)	R	Heated oxygen sensor 1	Engine is running.	0 - Approximately 1.0V
83 (B1)	W	(front)	L After warming up to normal operating temperature and engine speed is 2,000 rpm.	(periodically change)



ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 (front) output is not inordinately high.

Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	⊘l
P0134	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors	GI
0142		(The sensor circuit is open or shorted.)	
(Bank 1)		Heated oxygen sensor 1 (front)	плл
P0154			MA
0509			
(Bank 2)			EM

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

FE

AT

PD

LC

With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Restart engine and let it idle for 32 seconds.

– OR -

6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-200.

FA

Wtih GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Restart engine and let it idle for 32 seconds.
- 4) Turn ignition switch "OFF" and wait at least 5 seconds.
- 5) Restart engine and let it idle for 32 seconds.
- 6) Select "MODE 3" with GST.
- 7) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-200.

ST

Not Tools

 Start engine and warm it up to normal operating temperature.

BT vdc

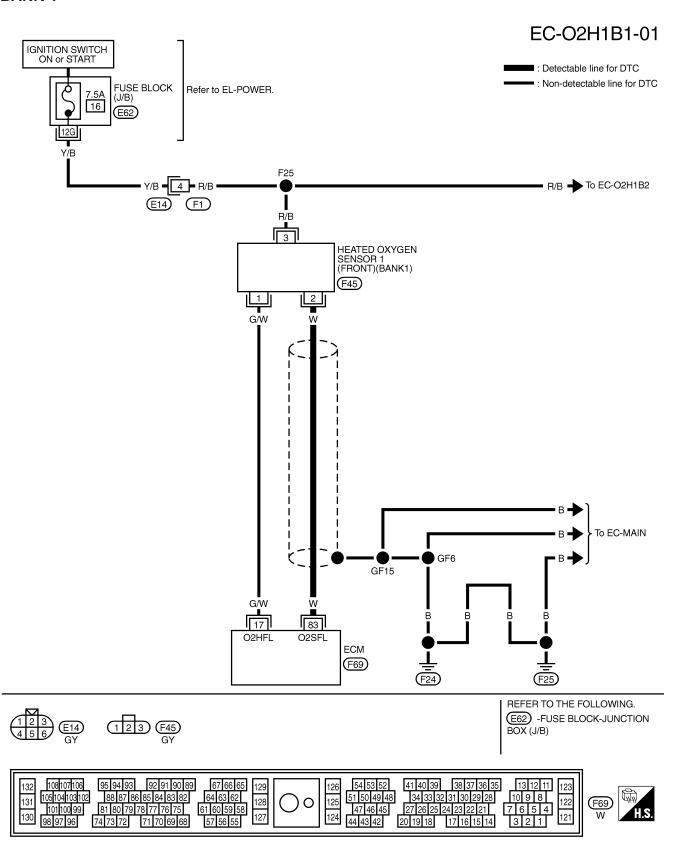
2) Turn ignition switch "OFF" and wait at least 5 seconds.

Restart engine and let it idle for 32 seconds.

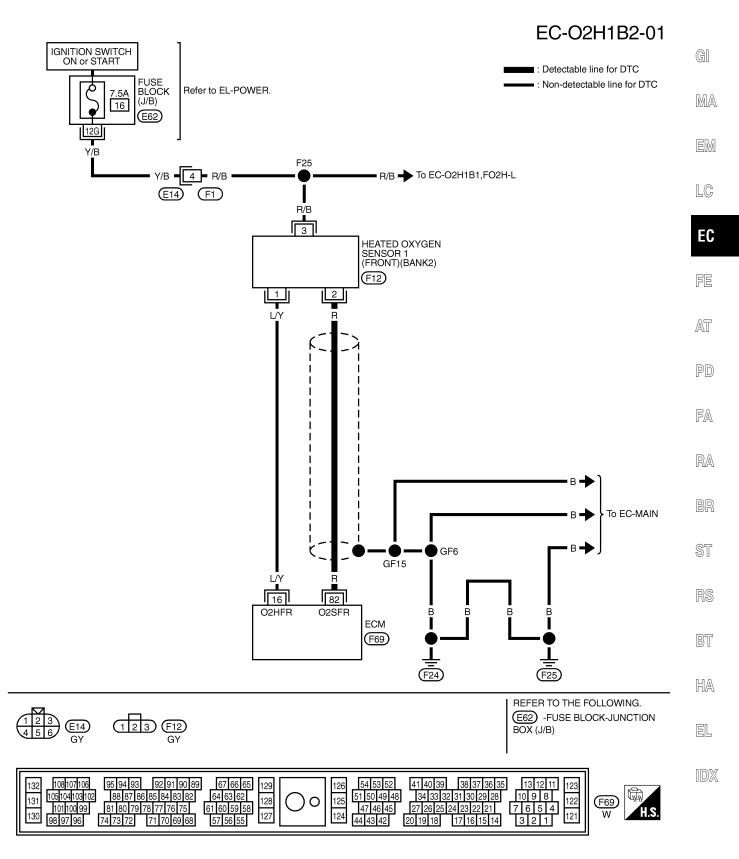
- OR

4) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON"

then turn "ON".

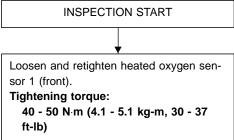

5) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

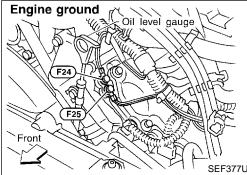
.

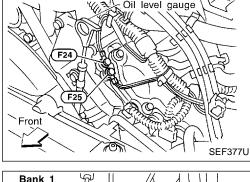

6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-200.

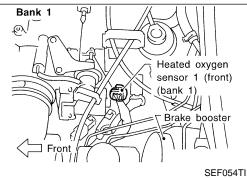
When using GST, "DTC CONFIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

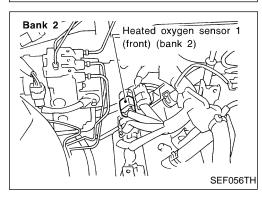
Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd)

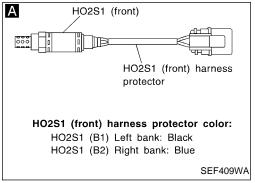



Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd)




EGR valve EGRC-BPT valve Heated oxygen sensor 1 Heated oxygen (front) sensor 1 (bank 1) (front) (bank 2) Knock sensor Knock sensor (bank 2) (bank 1) SEF833UA


Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd) **DIAGNOSTIC PROCEDURE**



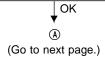
CHECK INPUT SIGNAL CIRCUIT.

1. Turn ignition switch "OFF".

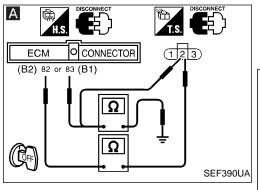
Α

- 2. Disconnect corresponding heated oxygen sensor 1 (front) harness connector and ECM harness connector.
- 3. Check harness continuity between ECM and sensor terminals.

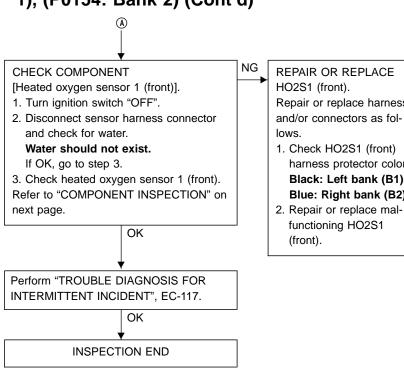
DTC	Term	ninals Bank (Harnes	
ыс	ECM	Sensor	protector color)
P0134	83	2	B1 (Black)
P0154	82	2	B2 (Blue)


Continuity should exist.

4. Check harness continuity between ECM and sensor or ground.


	Term	inals	Bank (Harness	
DTC	ECM or sensor	Ground	protector color)	
P0134	83 or 2	Ground	B1 (Black)	
P0154	82 or 2	Ground	B2 (Blue)	

Continuity should not exist.


If OK, check harness for short to ground and short to power.

Repair harness or connectors.

Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd)

Repair or replace harness and/or connectors as fol-

- harness protector color. Black: Left bank (B1) Blue: Right bank (B2)
- functioning HO2S1

GI

MA

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

[DX

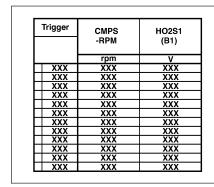
DATA MONI	TOR	
MONITOR	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx °c	
HO2S1 (B1)	xxx v	
HO2S1 MNTR (B1)	LEAN	
A/F ALPHA-B1	XXX %	

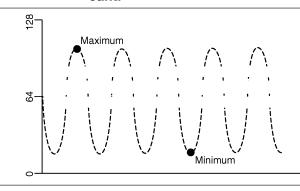
Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 (front)

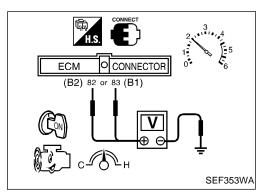
- Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1) (B2)" and "HO2S1 MNTR (B1) (B2)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1) (B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.


5 times (cycles) are counted as shown below:


R = "HO2S1 MNTR (B1) (B2)", "RICH" L = "HO2S1 MNTR (B1) (B2)", "LEAN"

- "HO2S1 (B1) (B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1) (B2)" voltage goes below 0.30V at least once.
- The voltage never exceeds 1.0V.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF978Z

1) Start engine and warm it up to normal operating temperature.

- OR -

- Set voltmeter probes between ECM terminal ® (B2), ® (B1) (sensor signal) and ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than 5 times within 10 seconds in Diagnostic Test Mode II [HEATED OXYGEN SENSOR 1 MONITOR (FRONT)]. See EC-68.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.30V at least one time.

Heated Oxygen Sensor 1 (Front) (P0134: Bank 1), (P0154: Bank 2) (Cont'd)

• The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool MA J-43897-18 or J-43897-12 and approved anti-seize lubri-

LC

EC

FE

AT

PD

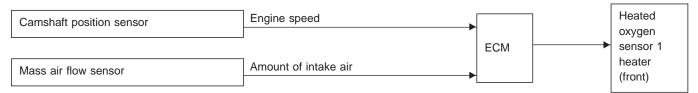
FA

RA

BR

ST

RS


BT

HA

EL

Heated Oxygen Sensor 1 Heater (Front) (P0135: Bank 1), (P0155: Bank 2)

SYSTEM DESCRIPTION

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater (front) corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 1 heater (front)
Above 3,200	OFF
Below 3,200	ON

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1) HO2S1 HTR (B2)	Engine speed: Idle	ON
	Engine speed: Above 3,200	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
17 (B1)	G/W	Heated oxygen sensor 1	Engine is running. Engine speed is below 3,200 rpm.	0 - 0.5V
16 (B2)	L/Y	heater (front)	Engine is running. Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0135 0901 (Bank 1) P0155 1001 (Bank 2)	The current amperage in the heated oxygen sensor 1 heater (front) circuit is out of the normal range. [The improper voltage drop signal is sent to ECM through the heated oxygen sensor 1 heater (front).]	Harness or connectors (The heated oxygen sensor 1 heater (front) circuit is open or shorted.) Heated oxygen sensor 1 heater (front)

	TOR	
MONITOR	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx °c	
HO2S1 (B1)	xxx v	
HO2S1 MNTR (B1)	LEAN	
HO2S1 HTR (B1)	ON	
		SEC0270

Heated Oxygen Sensor 1 Heater (Front) (P0135: Bank 1), (P0155: Bank 2) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5.

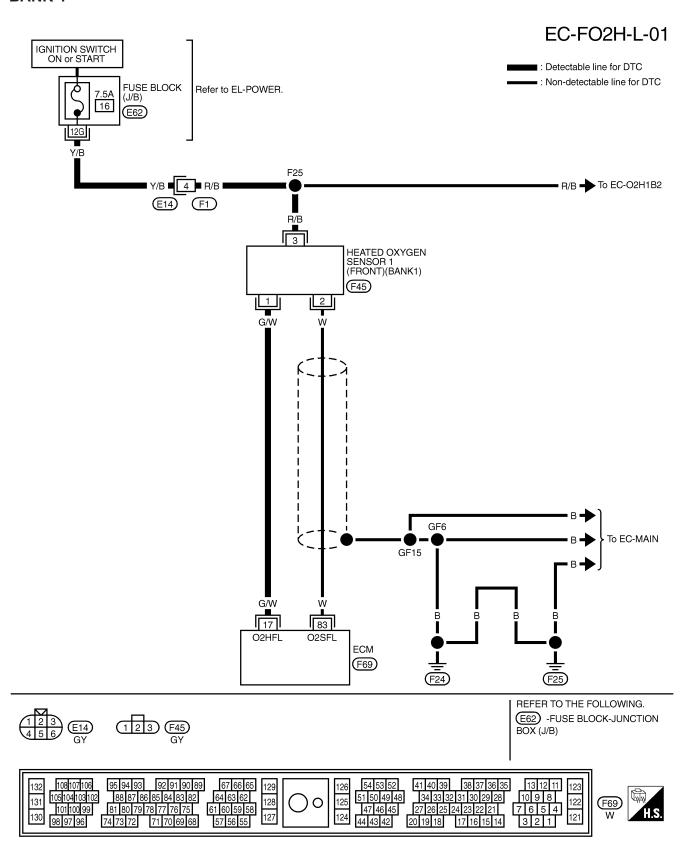
1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

Start engine and run it for at least 6 seconds at idle speed. 3) If 1st trip DTC is detected, go to "DIAGNOSTIC

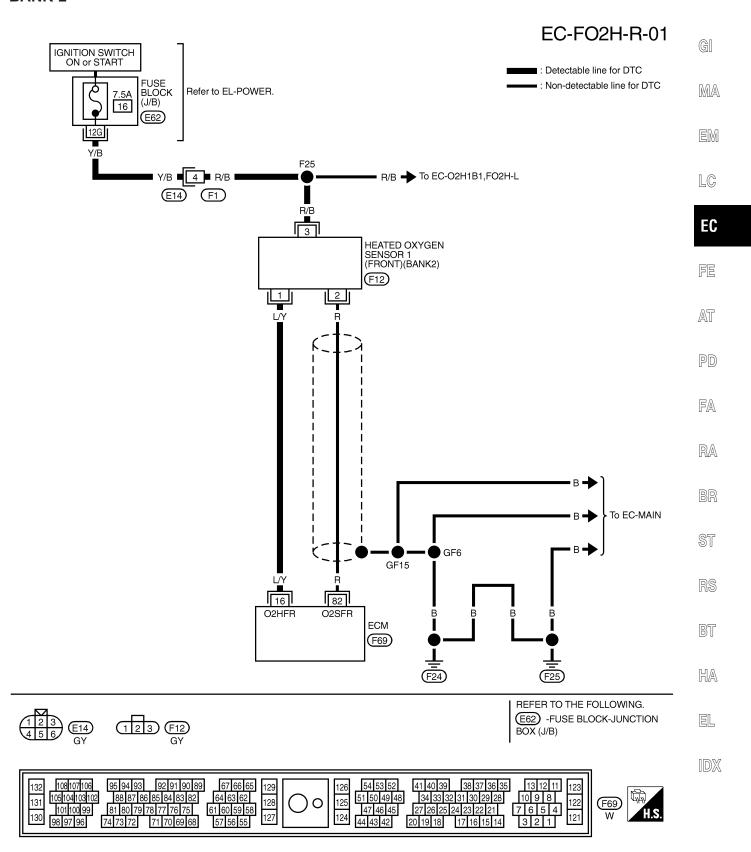
PROCEDURE", EC-208. – OR ·

1) Start engine and run it for at least 6 seconds at idle

- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Restart engine and run it for at least 6 seconds at idle AT
- 4) Select "MODE 3" with GST.
- "DIAGNOSTIC PD 5) If DTC is detected, go to PROCEDURE", EC-208.

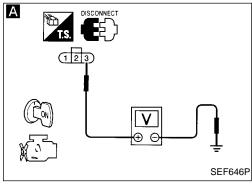

When using GST, "DIAGNOSTIC TROUBLE CODE CON-FIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

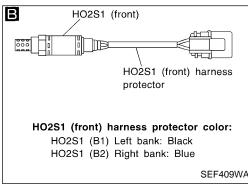
BT

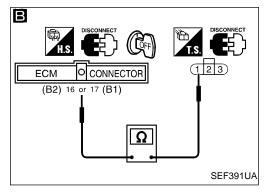

HA

EL

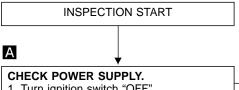
Heated Oxygen Sensor 1 Heater (Front) (P0135: Bank 1), (P0155: Bank 2) (Cont'd)




Heated Oxygen Sensor 1 Heater (Front) (P0135: Bank 1), (P0155: Bank 2) (Cont'd)



Bank 1 وبرا Heated oxygen sensor 1 (front) (bank 1 Brake booster SEF054TI


Heated oxygen sensor 1 (front) (bank 2) SEF056TH

Heated Oxygen Sensor 1 Heater (Front) (P0135: Bank 1), (P0155: Bank 2) (Cont'd) **DIAGNOSTIC PROCEDURE**

- 1. Turn ignition switch "OFF"
- 2. Disconnect corresponding heated oxygen sensor 1 (front) harness connector.
- Turn ignition switch "ON".
- 4. Check voltage between terminal (3) and ground.

OK

Voltage: Battery voltage

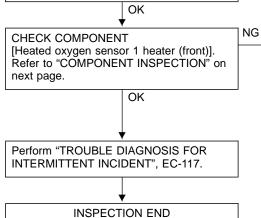
Check the following. Harness connectors

- (F1), (E14)
- 7.5A fuse

tors.

• Harness for open or short between heated oxygen sensor 1 (front) and fuse If NG, repair harness or connectors.

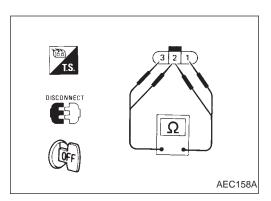
В


CHECK GROUND CIRCUIT.

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between terminal and sensor.

DTC	Term	inals	Bank (Harness
DIC	ECM	Sensor	protector color)
P0135	17	1	B1 (Black)
P0155	16	1	B2 (Blue)

Continuity should exist.


If OK, check harness for short to ground and short to power.

Repair harness or connec-

REPLACE HO2S1 (front).

- 1. Check HO2S1 (front) harness protector color. Black: Left bank (B1) Blue: Right bank (B2)
- 2. Replace malfunctioning HO2S1 (front)

Heated Oxygen Sensor 1 Heater (Front) (P0135: Bank 1), (P0155: Bank 2) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1. Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

MA

GI

EM

LC

EC

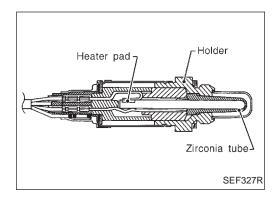
75

. .

AT

PD

FA


RA

BR

__

HA

EL

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring)

COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

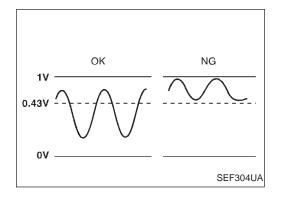
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up	Revving engine from idle up to 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
89 (B2)	W	Heated oxygen sensor 2	Engine is running. After warming up to normal operating tempera-	0 Approximately 1.0V
90 (B1)	Y	(rear)	ture and revving engine from idle up to 2,000 rpm.	0 - Approximately 1.0V

ON BOARD DIAGNOSIS LOGIC

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the minimum voltage of the sensor is sufficiently low during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	— — GI
P0137 0511 (Bank 1)	The minimum voltage from the sensor is not reached to the specified voltage.	Harness or connectors (The sensor circuit is open.) Heated oxygen sensor 2 (rear)	— Gi Ma
P0157 0314 (Bank 2)		Fuel pressureInjectors	

	HO2S2 (B1) P0		
	COND1: OUT OF COM		
	COND2: INCOMPLET		
	COND3: INCOMPLET		
	MONITOR		
	CMPS-RPM(POS)	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	THRTL POS SEN	xxx v	050000
'			SEC028C

		. 1
HO2S2 (B1) P0		
COND1: TESTING		
COND2: INCOMPLET		
COND3: INCOMPLET		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
B/FUEL SCHDL	XXX msec	
THRTL POS SEN	xxx v	050000
		SEC029C

HO2S2 (B1) P0		
COND1: COMPLETED		
COND2: INCOMPLETE		
COND3: INCOMPLET		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
B/FUEL SCHDL	XXXmsec	
THRTL POS SEN	xxx v	050000
		SEC030C

HO2S2 (B1) P0		
COND1: COMPLETED COND2: INCOMPLETE COND3: INCOMPLETE		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
B/FUEL SCHDL	XXX msec	
THRTL POS SEN	xxx v	SEC0246
		SEC031C

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTF:

- "COMPLETED" will appear on CONSULT-II screen when all tests "COND1", "COND2" and "COND3" are completed.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Never stop engine during this test. If the engine is stopped, reperform this test from step 2).

Procedure for COND1

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S2 (B1) P0137, (B2) P0157" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine (TCS switch "OFF") and let it idle for at least 30 seconds.
- 6) Rev engine up to 2,000 rpm 2 or 3 times quickly under no load.
 - If "COMPLETED" appears on CONSULT-II screen, go to step 10).
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 8) When the following conditions are met, "TESTING" will be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED" (It will take approximately 60 seconds.)

CMPS-RPM (POS): 1,200 - 2,500 rpm Vehicle speed: 64 - 100 km/h (40 - 62 MPH)

B/FUEL SCHDL: 0.5 - 5.0 msec Selector lever: Suitable position

NOTE:

- If "TESTING" is not displayed after 5 minutes, retry from step 2).
- If "COMPLETED" already appears at "COND2" on CONSULT-II screen before "Procedure for COND2" is conducted, it is unnecessary to conduct step 9).

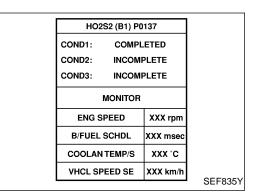
EC

LC

MT

55

FA

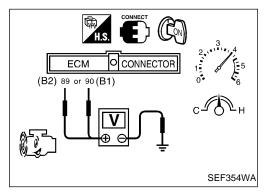

BK

91

RS

HA

EL


Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)

Procedure for COND2

- 9) While driving release accelerator pedal completely with "OD" OFF from the above condition (step 8) until "INCOMPLETE" at "COND2" on CONSULT-II screen has turned to "COMPLETED". (It will take approximately 4 seconds.)
- If "TESTING" is not displayed after 5 minutes, retry from step 2).
- If "COMPLETED" already appears at "COND3" on CONSULT-II screen before "Procedure for COND3" is conducted, it is unnecessary to conduct step 10).

Procedure for COND3

- 10) Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COM-PLETED". (It will take a maximum of approximately 6 minutes.)
- 11) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-215.

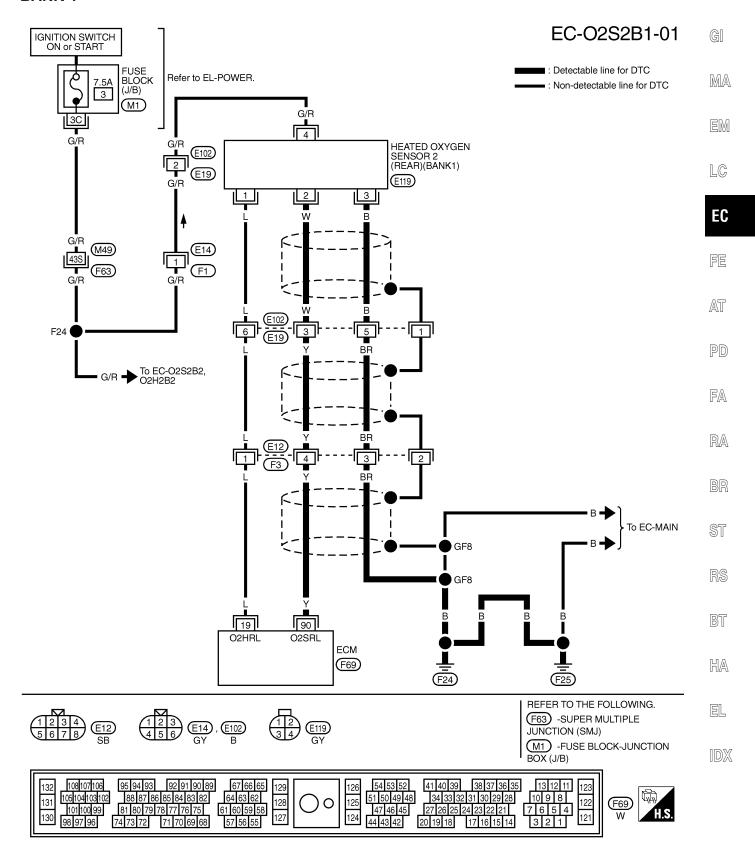
OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

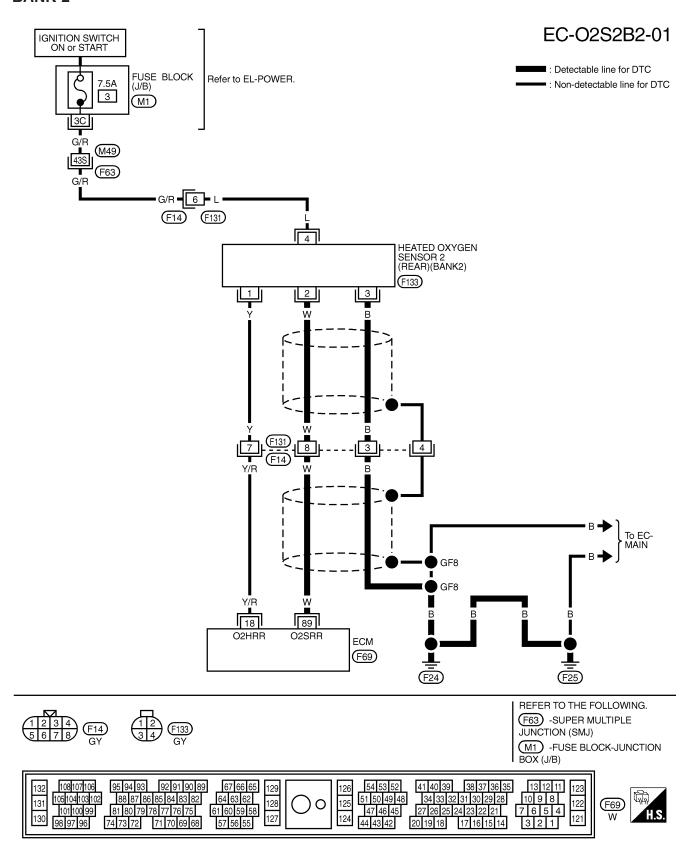
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (89) (B2), (90) (B1) (sensor signal) and ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.

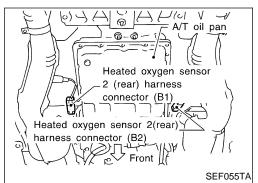
(depress and release accelerator pedal as soon as possible)

The voltage should be below 0.43V at least once during this procedure.


If the voltage can be confirmed in step 4, step 5 is not necessary.

5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

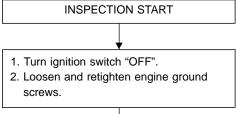

The voltage should be below 0.43V at least once during this procedure.


6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-215.

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)


Yes

Go to "TROUBLE DIAG-

NOSIS FOR DTC P0172.

P0175", EC-251.

DIAGNOSTIC PROCEDURE

G[

MA

LG

EC

FE

AT

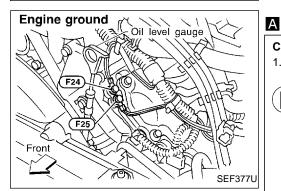
FA

PD

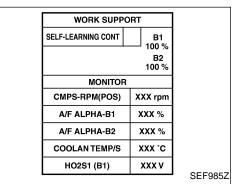
RA

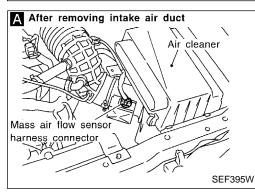
וחופ

ST


BT

HA


EL


↓ No (A)

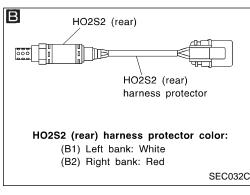
(Go to next page.)

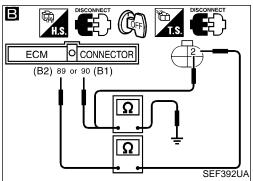
Α

CLEAR THE SELF-LEARNING DATA

1. Start engine and warm it up to normal operating temperature.

- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.


Are the 1st trip DTCs P0172, P0175 detected? Is it difficult to start engine?


OR

- 2. Turn ignition switch "OFF".
- Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- Erase the diagnostic test mode II (Self-diagnostic results) memory. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 7. Run engine for at least 10 minutes at idle speed.

Are the 1st trip DTCs 0114, 0209 detected? Is it difficult to start engine?

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)

CHECK INPUT SIGNAL CIRCUIT.

1. Turn ignition switch "OFF"

В

- 2. Disconnect corresponding heated oxygen sensor 2 (rear) harness connector and ECM harness connector.
- Check harness continuity between ECM terminals and sensor.

DTC -	Terminals		Bank (Harness
	ECM	Sensor	protector color)
P0137	90	2	B1 (White)
P0157	89	2	B2 (Red)

Continuity should exist.

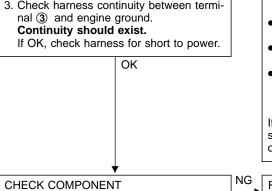
4. Check harness continuity between ECM and sensor or ground terminals.

DTC	Terminals		Bank
	ECM or sensor	Ground	(Harness protector color)
P0137	90 or 2	Ground	B1 (White)
P0157	89 or 2	Ground	B2 (Red)

Continuity should not exist.

If OK, check harness for short to ground or short to power.

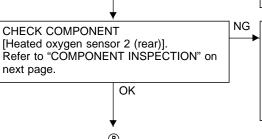
OK


NG Check the following.

- Harness connectors (F3), (E12) (LH) or (F14), (F131) (RH)
- Harness connectors (E19), (E102) (LH)
- If NG, repair open circuit or short to ground or short to power in harness or connectors.

C

CHECK GROUND CIRCUIT.

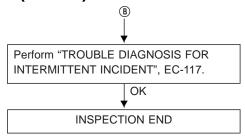

- 1. Turn ignition switch "OFF"
- 2. Loosen and retighten ground screws.
- 3. Check harness continuity between terminal 3 and engine ground.

Check the following.

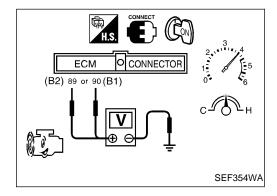
NG

- Harness connectors (F3), (E12) (LH) or (F14), (F131) (RH)
- Harness connectors E19), E102 (LH)
- Harness connectors (F62), (F61)
- Harness for open or short between heated oxygen sensor 2 (rear) and engine ground
- If NG, repair open circuit or short to power in harness or connectors.

(Go to next page.)


REPLACE HO2S2 (rear).

1. Check HO2S2 (rear) harness protector color.


White: Left bank (B1) Red: Right bank (B2)

2. Replace malfunctioning HO2S2 (rear).

Heated Oxygen Sensor 2 (Rear) (P0137: Bank 1), (P0157: Bank 2) (Min. Voltage Monitoring) (Cont'd)

ACTIVE TES	Т	
FUEL INJECTION	25 %	1
MONITOR		1
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx °c	
HO2S2 (B1)	xxx v	1
HO2S2 (B2)	xxx v	1
INJ PULSE-B1	XXX msec	1
IACV-AAC/V	XXX step	1
		1
		ı

COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

Stop vehicle with engine running.

 Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1) (B2)" as the monitor item with CONSULT-II.

 Check "HO2S2 (B1) (B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1) (B2)" should be above 0.48V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1) (B2)" should be below 0.43V at least once when the "FUEL INJECTION" is -25%.

OR

1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

2) Stop vehicle with engine running.

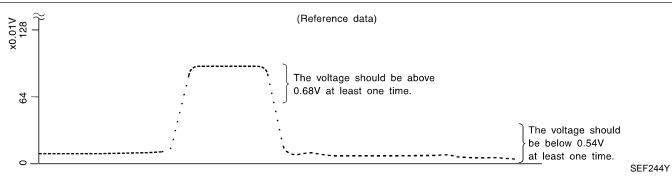
Set voltmeter probes between ECM terminals (9) (B2),
 (9) (B1) (sensor signal) and ground.

Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(depress and release accelerator pedal as soon as pos-

(depress and release accelerator pedal as soon as possible)

The voltage should be above 0.48V at least once. If the voltage is above 0.48V at step 4, step 5 is not necessary.


 Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

The voltage should be below 0.43V at least once.

CAUTION:

 Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

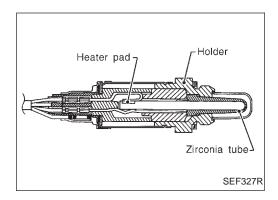
Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

GI

MA

EM

LC



Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring)

COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

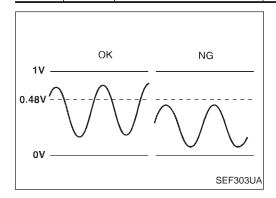
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Revving engine from idle up to 2,000 rpm	0 - 0.3V ↔ 0.6 - 1.0V


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
90 (B1)	Υ	Heated oxygen sensor 2	Engine is running. After warming up to normal operating tempera-	0. Approximately 1.0V
89 (B2)	W	(rear)	ture and revving engine from idle up to 2,000 rpm.	0 - Approximately 1.0V

ON BOARD DIAGNOSIS LOGIC

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	. G[
P0138 (B1) 0510 (Bank 1)	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) 	M/
P0158 (B2) 0313 (Bank 2)		Fuel pressureInjectorsIntake air leaks	EM

HO2S2 (B1) P0		
COND1: OUT OF COM		
COND2: INCOMPLET		
COND3: INCOMPLET	E	
MONITOR		
CMPS-RPM(POS)		
B/FUEL SCHDL		
THRTL POS SEN	0500040	
		SEC034C

HO2S2 (B1) P0		
COND1: TESTING		
COND2: INCOMPLET		
COND3: INCOMPLET		
MONITOR		
CMPS-RPM(POS)		
B/FUEL SCHDL		
THRTL POS SEN	050000	
		SEC035C

	HO2S2 (B1) P0		
	COND1: COMPLETED		
	COND2: INCOMPLET	E	
	COND3: INCOMPLET		
	MONITOR		
	CMPS-RPM(POS)		
	B/FUEL SCHDL		
	THRTL POS SEN	050000	
_			SEC036C

		1
HO2S2 (B1) P0		
COND1: COMPLETED		
COND2: COMPLETED)	
COND3: INCOMPLET	E	
MONITOR		
CMPS-RPM(POS) XXX rpm		
B/FUEL SCHDL		
THRTL POS SEN XXX V		050070
		SEC037C

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTF:

- "COMPLETED" will appear on CONSULT-II screen when all tests "COND1", "COND2" and "COND3" are completed.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Never stop engine during this test. If the engine is stopped, reperform this test from step 2).

Procedure for COND1

- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S2 (B1) P0138, (B2) P0158" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine (TCS switch "OFF") and let it idle for at least 30 seconds.
- 6) Rev engine to 2,000 rpm 2 or 3 times quickly under no load.
 - If "COMPLETED" appears on CONSULT-II screen, go to step 10).
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 8) When the following conditions are met, "TESTING" will be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 60 seconds.)

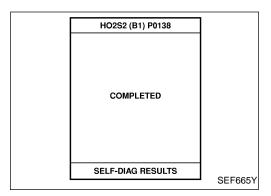
CMPS-RPM (POS): 1,200 - 2,500 rpm Vehicle speed: 64 - 100 km/h (40 - 62 MPH) B/FUEL SCHDL: 0.5 - 5.0 msec

Selector lever: Suitable position

NOTE:

- If "TESTING" is not displayed after 5 minutes, retry from step 2).
- If "COMPLETED" already appears at "COND2" on CONSULT-II screen before "Procedure for COND2" is conducted, it is unnecessary to conduct step 9).

EC


LC

B0

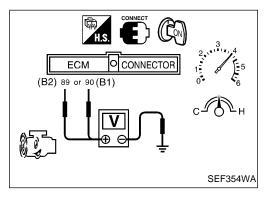
BT

HA

EL

Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)

Procedure for COND2


9) While driving, release accelerator pedal completely with "OD" OFF from the above condition [step 8] until "INCOMPLETE" at "COND2" on CONSULT-II screen is turned to "COMPLETED". (It will take approximately 4 seconds.)

NOTE:

If "COMPLETED" is already appears at "COND3" on CONSULT-II screen before "Procedure for COND3" is conducted, it is unnecessary to conduct step 10).

Procedure for COND3

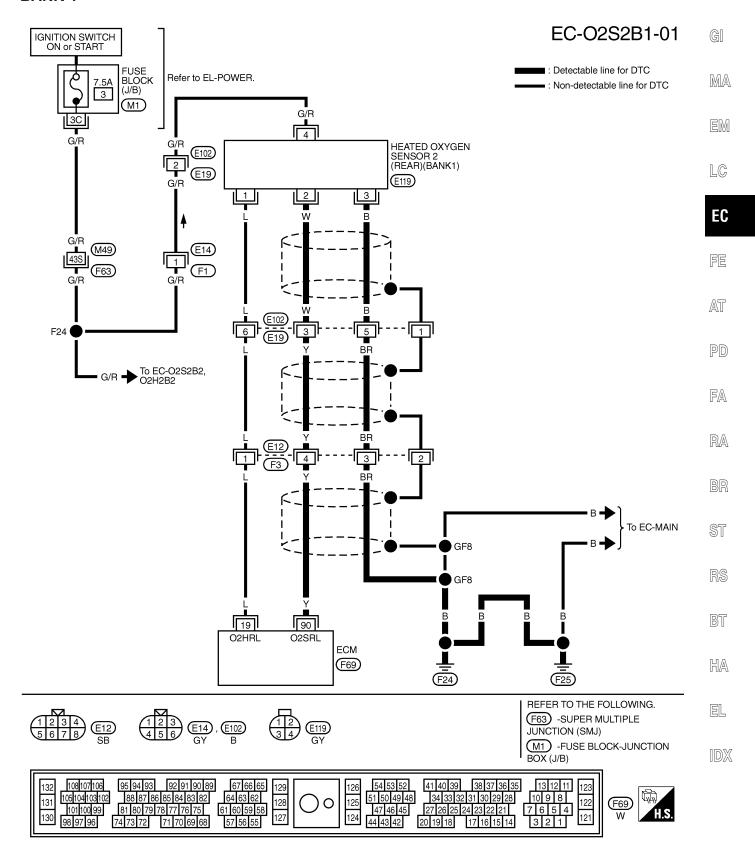
- 10) Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COM-PLETED". (It will take maximum of approximately 6 minutes.)
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-223.

OVERALL FUNCTION CHECK

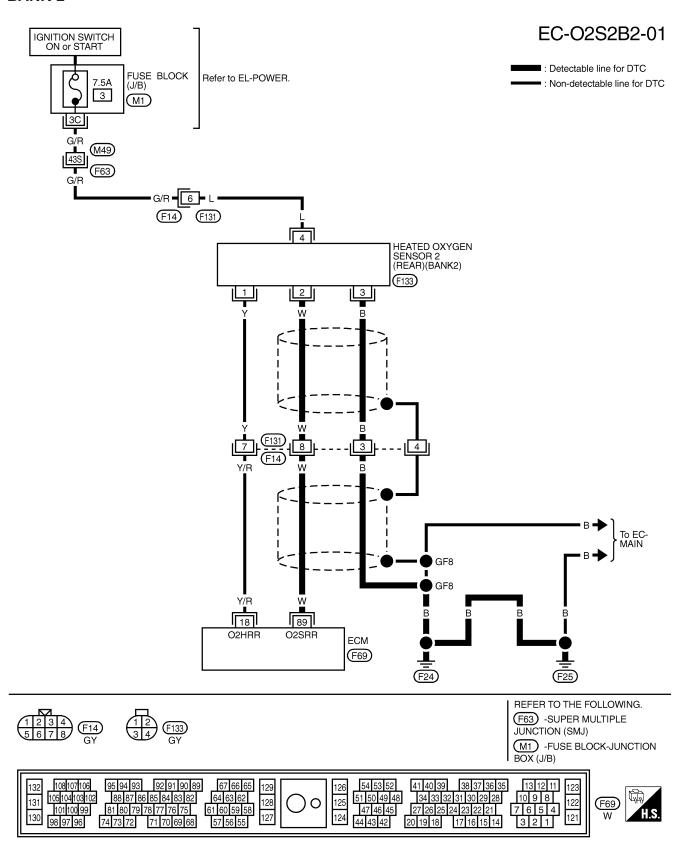
Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (89) (B2), (90) (B1) (sensor signal) and ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.

 (depress and release accelerator pedal as soon as pos-


(depress and release accelerator pedal as soon as possible)

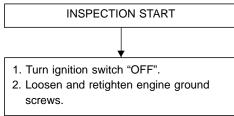
The voltage should be above 0.48V at least once during this procedure.


If the voltage can be confirmed in step 4, step 5 is not necessary.

- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 - The voltage should be above 0.48V at least once during this procedure.
- 6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-223.

Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)

Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)


Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)

Yes

Go to "TROUBLE DIAG-NOSIS FOR DTC P0171,

P0174", EC-245.

DIAGNOSTIC PROCEDURE

GI

MA

EM

LC

EC

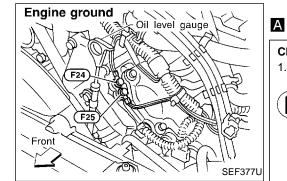
FE

AT

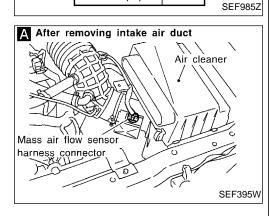
PD

FA

RA


ST

BT


HA

EL

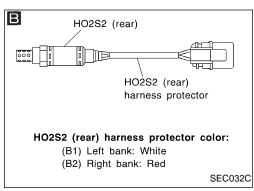
Ą	WORK SUPPO		
	SELF-LEARNING CONT	B1	
		── 100 % B2 100 %	
	MONITOR		
	CMPS-RPM(POS)	XXX rpm	
	A/F ALPHA-B1	XXX %	
	A/F ALPHA-B2	XXX %	
	COOLAN TEMP/S	xxx °c	
	HO2S1 (B1)	xxx v	0550
			SEF98

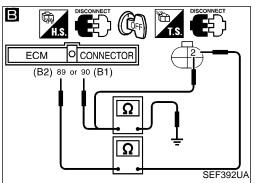
CLEAR THE SELF-LEARNING DATA

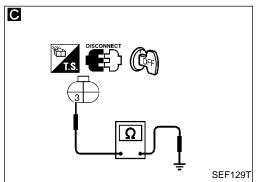
1. Start engine and warm it up to normal operating temperature. 2. Select "SELF-LEARNING

- CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Are the 1st trip DTCs P0171, P0174 detected? Is it difficult to start engine? - OR




- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 7. Run engine for at least 10 minutes at idle speed.


Are the 1st trip DTCs 0115, 0210 detected? Is it difficult to start engine?

(Go to next page.)

Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)

NG

Check the following. Harness connectors

F3), (E12) (LH) or

(F14), (F131) (RH)

Harness connectors

If OK, check harness for short to ground and short to

(E19), (E102) (LH)

power.

CHECK INPUT SIGNAL CIRCUIT.1. Turn ignition switch "OFF".

- Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.
- 3. Check harness continuity between ECM terminals and sensor.

DTC	Terminals		Bank (Harness
DIC	ECM	Sensor	protector color)
P0138	90	2	B1 (White)
P0158	89	2	B2 (Red)

Continuity should exist.

4. Check harness continuity between ECM and sensor or ground terminals.

	Term	Bank	
DTC	ECM or sensor	Ground	(Harness protector color)
P0138	90 or 2	Ground	B1 (White)
P0158	89 or 2	Ground	B2 (Red)

Continuity should not exist.

If OK, check harness for short to ground and short to power.

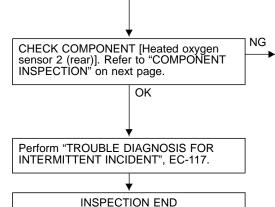
OK

1. Turn ignition switch "OFF"

С

- Loosen and retighten ground screws.
- Check harness continuity between terminal 3 and engine ground.

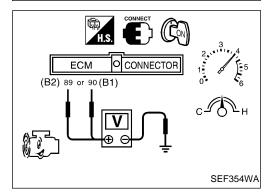
Continuity should exist.


If OK, check harness for short to ground and short to power.

OK

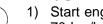
Harness connectors

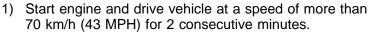
- (F3), (E12) (LH) or (F14), (F131) (RH)
- Harness connectors E19, E102 (LH)
- Harness connectors
- (F62), (F61) • Harness for open or short between heated oxygen sensor 2 (rear) and engine ground


If OK, check harness for short to ground and short to power.

REPLACE HO2S2 (rear). 1. Check HO2S2 (rear) harness protector color. White: Left bank (B1)

Red: Right bank (B2) 2. Replace malfunctioning HO2S2 (rear).


ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx °c	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
INJ PULSE-B1	XXX msec	
IACV-AAC/V	XXX step	
		SEC033C



Heated Oxygen Sensor 2 (Rear) (P0138: Bank 1), (P0158: Bank 2) (Max. Voltage Monitoring) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

Stop vehicle with engine running.

3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1) (B2)" as the monitor item with CONSULT-II.

4) Check "HO2S2 (B1) (B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1) (B2)" should be above 0.48V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1) (B2)" should be below 0.43V at least once when the "FUEL INJECTION" is -25%.

- OR

Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

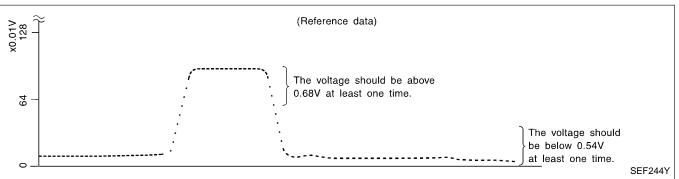
Stop vehicle with engine running.

3) Set voltmeter probes between ECM terminals (9) (B2), (90) (B1) (sensor signal) and ground.

Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(depress and release accelerator pedal as soon as possible)

The voltage should be above 0.48V at least once. If the voltage is above 0.48V at step 4, step 5 is not necessary.


5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

The voltage should be below 0.43V at least once.

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

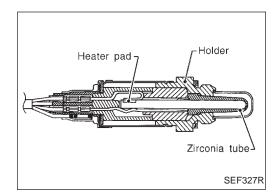
MA

GI

EM

EC

FE


PD

FA

RA

HA

EL

Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring)

COMPONENT DESCRIPTION

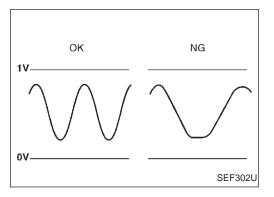
The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on left and right bank. Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the each heated oxygen sensor 2 (rear). This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)		Revving engine from idle up to 2,000	0 - 0.3V ↔ 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	rpm	LEAN ↔ RICH


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
89 (B2)	W	Heated oxygen sensor 2	Engine is running.	0 - Approximately 1.0V
90 (B1)	Υ	(rear)	After warming up to normal operating temperature and revving engine from idle up to 2,000 rpm.	0 - Approximately 1.0V

ON BOARD DIAGNOSIS LOGIC

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0139 0707	 It takes more time for the sensor to respond between rich and lean than the specified time. 	Harness or connectors (The sensor circuit is open or shorted.)	GI
(Bank 1) P0159	-	Heated oxygen sensor 2 (rear)Fuel pressure	D/J (A)
0708 (Bank 2)		InjectorsIntake air leaks	MA

	HO2S2 (B1) P0	139	
	COND1: OUT OF COM		
	COND2: INCOMPLET		
	COND3: INCOMPLET	E	
	MONITOR		
	CMPS-RPM(POS)		
	B/FUEL SCHDL	XXX msec	
	THRTL POS SEN	050000	
'		•	SEC038C

HO2S2 (B1) P0		
COND1: TESTING		
COND2: INCOMPLET		
COND3: INCOMPLET	E	
MONITOR		
CMPS-RPM(POS)		
B/FUEL SCHDL		
THRTL POS SEN	xxx v	050000
		SEC039C

HO2S2 (B1) P0		
COND1: COMPLETED		
COND2: INCOMPLET	E	
COND3: INCOMPLET	E	
MONITOR		
CMPS-RPM(POS)		
B/FUEL SCHDL		
THRTL POS SEN	xxx v	0500400
		SEC040C

HO2S2 (B1) P0	139	
COND1: COMPLETED COND2: COMPLETED COND3: INCOMPLET		
MONITOR		
CMPS-RPM(POS)		
B/FUEL SCHDL	XXX msec	
THRTL POS SEN	xxx v	0500440
		SEC041C

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- "COMPLETED" will appear on CONSULT-II screen when all tests "COND1", "COND2" and "COND3" are completed.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Never stop engine during this test. If the engine is stopped, reperform this test from step 2).

Procedure for COND1

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON" and select "HO2S2 (B1) P0139, (B2) P0159" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine (TCS switch "OFF") and let it idle for at least 30 seconds.
- 6) Rev engine up to 2,000 rpm 2 or 3 times quickly under no load.
 - If "COMPLETED" appears on CONSULT-II screen, go to the following step.
- 7) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 8) When the following conditions are met, "TESTING" will be displayed at "COND1" on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 60 seconds.)

CMPS-RPM (POS): 1,200 - 2,500 rpm Vehicle speed: 64 - 100 km/h (40 - 62 MPH)

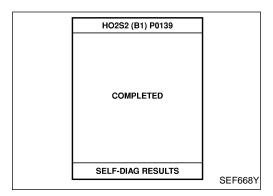
B/FUEL SCHDL: 0.5 - 5.0 msec Selector lever: Suitable position

NOTE:

- If "TESTING" is not displayed after 5 minutes, retry from step 2).
- If "COMPLETED" already appears at "COND2" on CONSULT-II screen before "Procedure for COND2" is conducted, it is unnecessary to conduct step 9).

LC

PD


RA

RS

BT

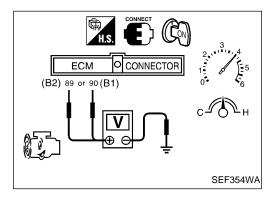
HA

EL

Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring) (Cont'd)

Procedure for COND2

9) While driving, release accelerator pedal completely with "OD" OFF from the above condition [step 8)] until "INCOMPLETE" at "COND2" on CONSULT-II screen has turned to "COMPLETED". (It will take approximately 4 seconds.)


NOTE:

 If "COMPLETED" already appears at "COND3" on CONSULT-II screen before "Procedure for COND3" is conducted, it is unnecessary to conduct step 10).

Procedure for COND3

- 10) Stop vehicle and let it idle until "INCOMPLETE" of "COND3" on CONSULT-II screen has turned to "COM-PLETED". (It will take a maximum of approximately 6 minutes.)
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".

If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-231.

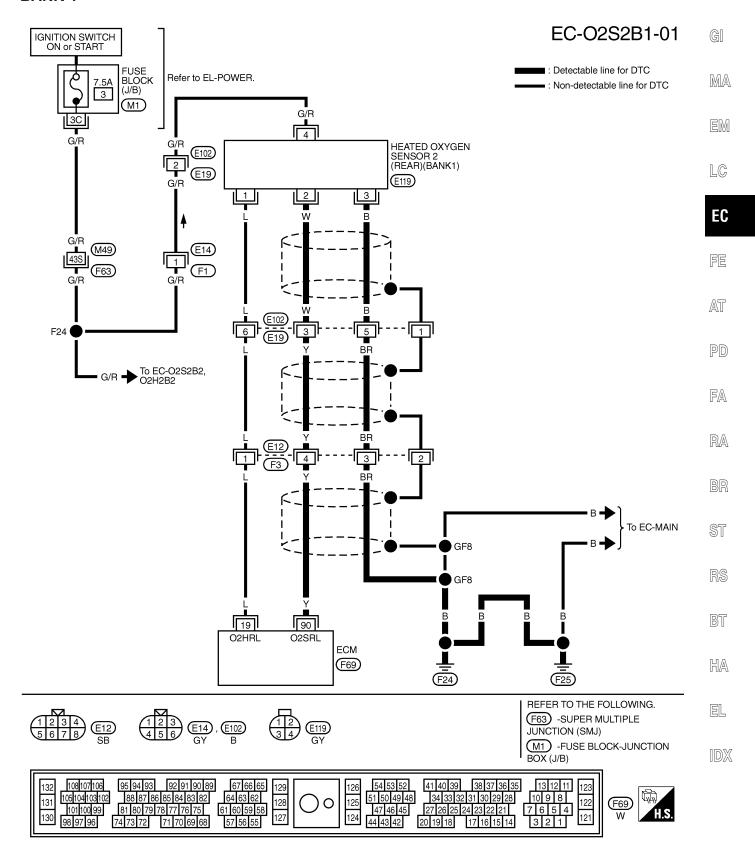
OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

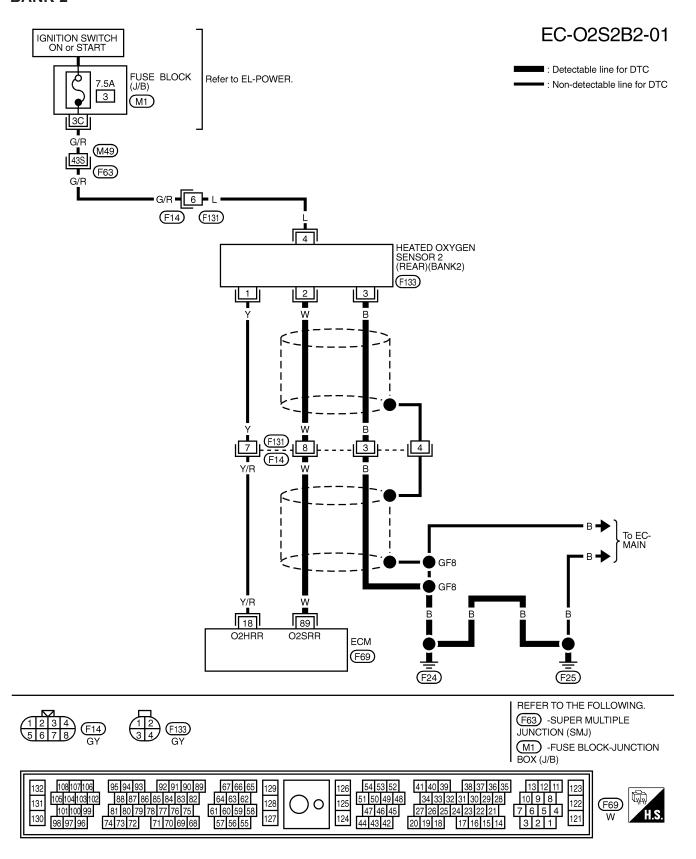
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (89) (B2), (90) (B1) (sensor signal) and ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

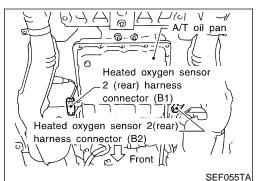
(depress and release accelerator pedal as soon as possible)

The voltage should be changed at more than 0.06V for 1 second during this procedure.

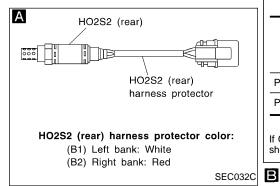

If the voltage can be confirmed in step 4, step 5 is not necessary.

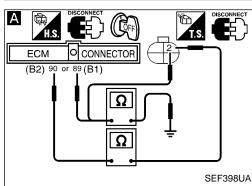
5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

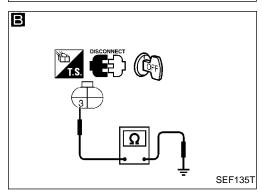

The voltage should be changed at more than 0.06V for 1 second during this procedure.


6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-231.

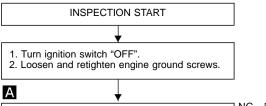
Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring) (Cont'd)




Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring) (Cont'd)



Engine ground Oil level gauge `Front SEF377U



Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring) (Cont'd)

DIAGNOSTIC PROCEDURE

CHECK INPUT SIGNAL CIRCUIT.

- 1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connec-
- 2. Check harness continuity between ECM and sensor terminals.

DTC	Term	Bank (Harness	
DIC	ECM	Sensor	protector color)
P0139	90	2	B1 (White)
P0159	89	2	B2 (Red)

Continuity should exist.

Check harness continuity between ECM sensor or ground terminals.

	Terminals		Bank (Harness	
DTC	ECM or sensor	Ground	protector color)	
P0139	90 or 2	Ground	B1 (White)	
P0159	89 or 2	Ground	B2 (Red)	

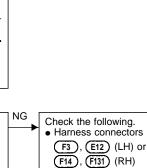
Continuity should not exist.

CHECK GROUND CIRCUIT.

and engine ground.

Continuity should exist.

CHECK COMPONENT


If OK, check harness for short to ground and short to power.

Check harness continuity between terminal 3

If OK, check harness for short to power.

OK

OK

ground

connectors.

NG

Harness connectors

(E19), (E102) (LH) (F62), (F61)

· Harness for open or short between heated oxygen sensor 2 (rear) and engine

If NG, repair open circuit or

short to power in harness or

Check the following. Harness connectors

> F3), (E12) (B1) or F14), (F131) (B2) Harness connectors E19), (E102) (B1)

If NG, repair open circuit or short to ground or short to power in harness or connec-

EM

LC

GI

MA

EC

FE

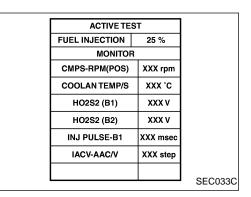
AT

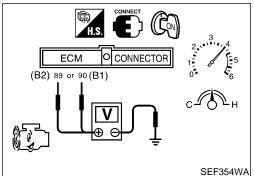
PD FA

RA

HA

EL


White: Left bank (B1) Red: Right bank (B2)


1. Check HO2S2 (rear) harness

2. Replace malfunctioning HO2S2 (rear).

REPLACE HO2S2 (rear).

protector color.

Heated Oxygen Sensor 2 (Rear) (P0139: Bank 1), (P0159: Bank 2) (Response Monitoring) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

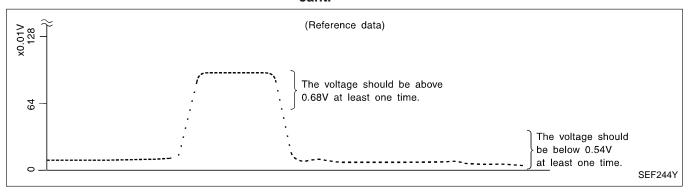
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1) (B2)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1) (B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

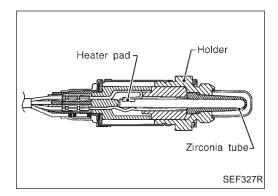
"HO2S2 (B1) (B2)" should be above 0.48V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1) (B2)" should be below 0.43V at least once when the "FUEL INJECTION" is -25%.

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (B) (B2),(B1) (sensor signal) and ground.
- Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(depress and release accelerator pedal as soon as possible)


The voltage should be above 0.48V at least once. If the voltage is above 0.48V at step 4, step 5 is not necessary.


5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.

The voltage should be below 0.43V at least once.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated Oxygen Sensor 2 (Rear) (P0140: Bank 1), (P0160: Bank 2) (High voltage)

COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on left and right bank. Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the each heated oxygen sensor 2 (rear). This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

GI

MA

EM

LC

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Fasings Affas sugaraing up	Revving engine from idle up to 2,000	0 - 0.3V ↔ 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	rpm	LEAN ↔ RICH

EC

AT

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

conditions.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

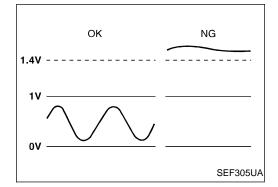
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
89 (B2)	W	Heated oxygen sensor 2	Engine is running. After warming up to permal energing tempore	0 - Approximately 1.0V
90 (B1)	Y	(rear)	 After warming up to normal operating temperature and revving engine from idle up to 2,000 rpm. 	0 - Approximately 1.0V

PD

RA

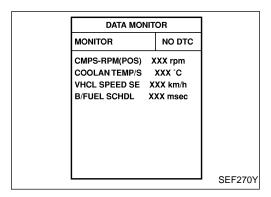
@T

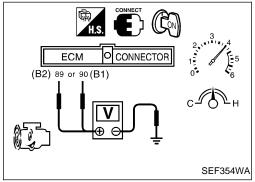
RS


BT

HA

ON BOARD DIAGNOSIS LOGIC


EL


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (P0140: Bank 1), (P0160: Bank 2) (High voltage) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0140 0512 (Bank 1) P0160 0315 (Bank 2)	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open.) Heated oxygen sensor 2 (rear)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Maintain the following conditions for at least 5 consecutive seconds.

CMPS-RPM (POS): 1,200 - 2,500 rpm VHCL SPEED SE: 64 - 100 km/h (40 - 62 MPH) B/FUEL SCHDL: 0.5 - 5.0 msec COOLAN TEMP/S: More than 70°C (158°F)

Selector lever: Suitable position

- 4) Stop vehicle with engine running.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-237.

- OR

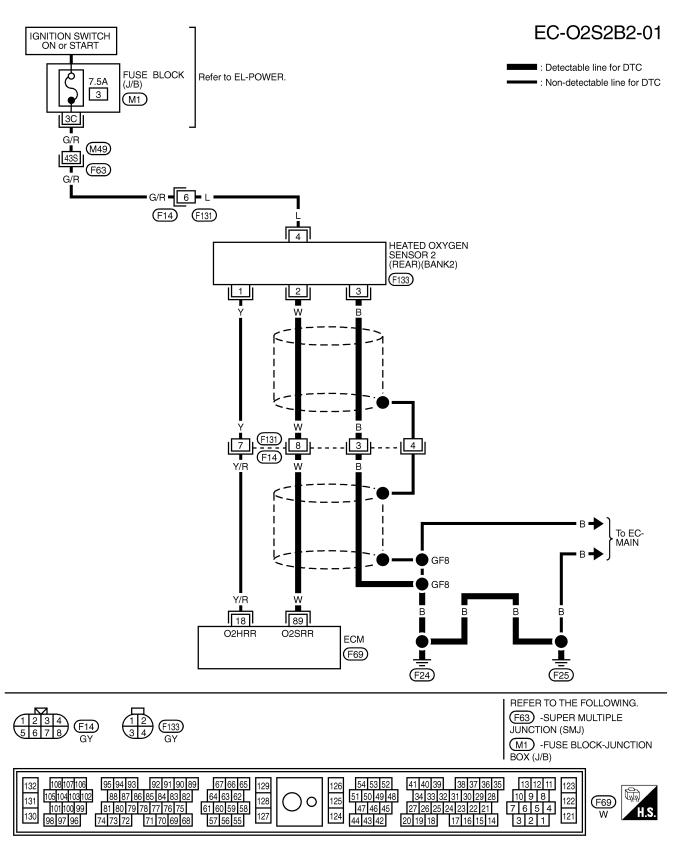
OVERALL FUNCTION CHECK

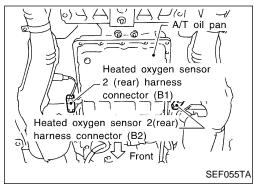
Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

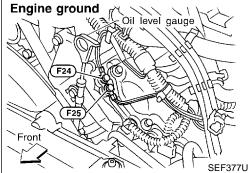
- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminals (B2),
 (B1) (sensor signal) and ground.
- 3) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

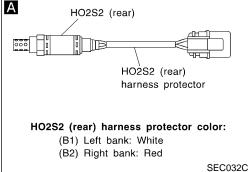
 (depress and release accelerator pedal as soon as pos-

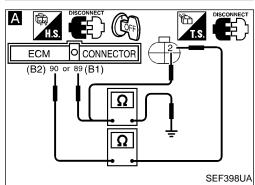
(depress and release accelerator pedal as soon as possible)

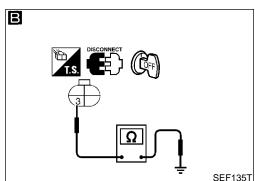

The voltage should be below 1.4V during this procedure.

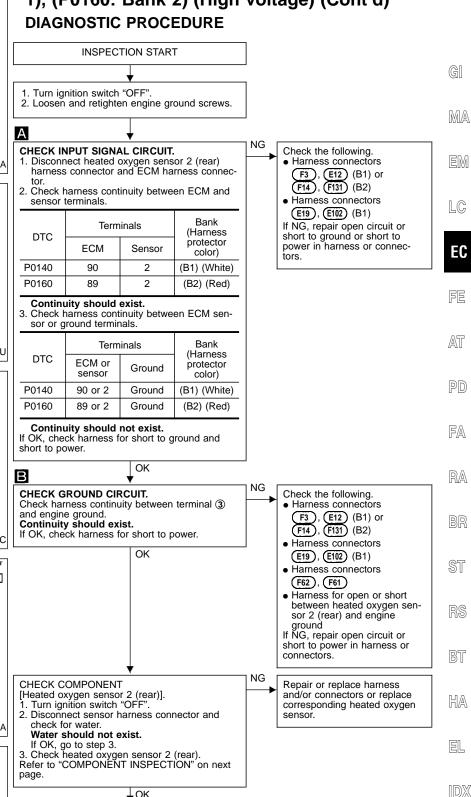

4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-237.

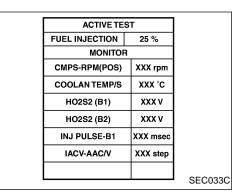

Heated Oxygen Sensor 2 (Rear) (P0140: Bank 1), (P0160: Bank 2) (High voltage) (Cont'd)

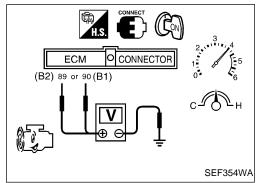



Heated Oxygen Sensor 2 (Rear) (P0140: Bank 1), (P0160: Bank 2) (High voltage) (Cont'd)






Heated Oxygen Sensor 2 (Rear) (P0140: Bank 1), (P0160: Bank 2) (High voltage) (Cont'd)



↓OK

↓OK INSPECTION END

Perform "TROUBLE DIAGNOSIS FOR INTER-MITTENT INCIDENT", EC-117.

Heated Oxygen Sensor 2 (Rear) (P0140: Bank 1), (P0160: Bank 2) (High voltage) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

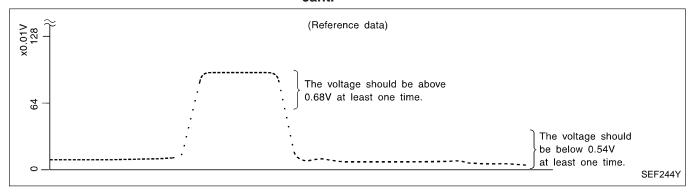
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1) (B2)" as the monitor item with CONSULT-II.
- 4) Check "HO2S2 (B1) (B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1) (B2)" should be above 0.48V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1) (B2)" should be below 0.43V at least once when the "FUEL INJECTION" is -25%.

1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

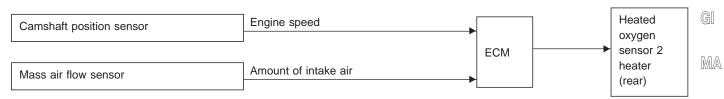
- OR -

- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals (B2),
 (B1) (sensor signal) and ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)


The voltage should be above 0.48V at least once. If the voltage is above 0.48V at step 4, step 5 is not necessary.

5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

The voltage should be below 0.43V at least once.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated Oxygen Sensor 2 Heaters (Rear) (P0141: Bank 1), (P0161: Bank 2)

SYSTEM DESCRIPTION

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater (rear) corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater (rear)
Ignition switch "ON" (Engine stopped)	OFF
At idle [after driving for 2 min- utes at a speed of more than 70 km/h (43 MPH)]	ON

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	PD	
HO2S2 HTR (B1)	Engine speed: At idle [after driving for 2 minutes at a speed of more than 70 km/h (43 MPH)]	ON		
HO2S2 HTR (B2)	Engine speed: Above 3,600 rpm Ignition "ON" with engine stopped	OFF	FA	

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

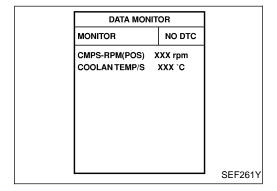
			, 0		• @T
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	· ST · RS
		Heated oxygen sensor 2	Engine is running. At idle [after driving 2 minutes at 70 km/h (43 MPH) or more]	0 - 0.5V	BT
18 19	Y/R L	heater (rear) (B1) Heated oxygen sensor 2 heater (rear) (B2)	Ignition switch "ON" Engine stopped Engine is running.	BATTERY VOLTAGE (11 - 14V)	HA
			Engine speed is above 3,600 rpm.		EL

EM

LC

EC

AT


RA

BR

Heated Oxygen Sensor 2 Heaters (Rear) (P0141: Bank 1), (P0161: Bank 2) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0141 0902 (B1) P0161 1002 (B2)	 The current amperage in the heated oxygen sensor 2 heater (rear) circuit is out of the normal range. [The improper voltage drop signal is sent to ECM through the heated oxygen sensor 2 heater (rear).] 	Harness or connectors [The heated oxygen sensor 2 heater (rear) circuit is open or shorted.] Heated oxygen sensor 2 heater (rear)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

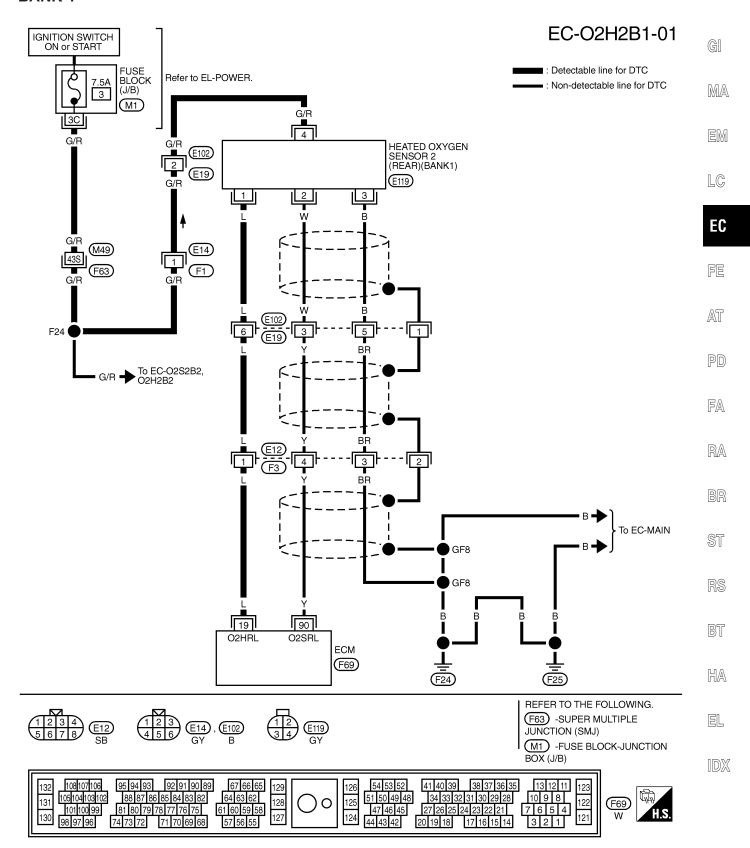
NOTE:

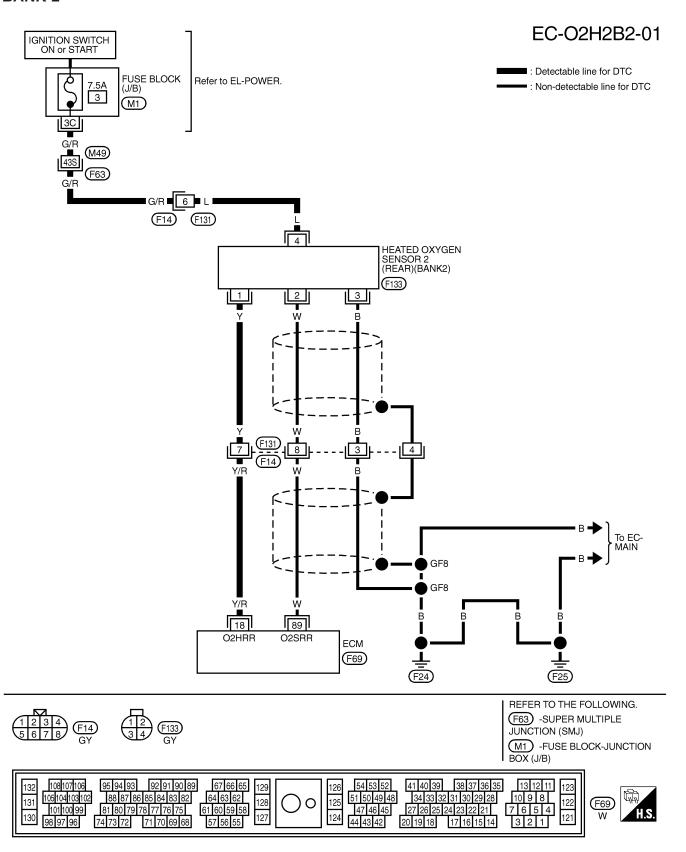
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

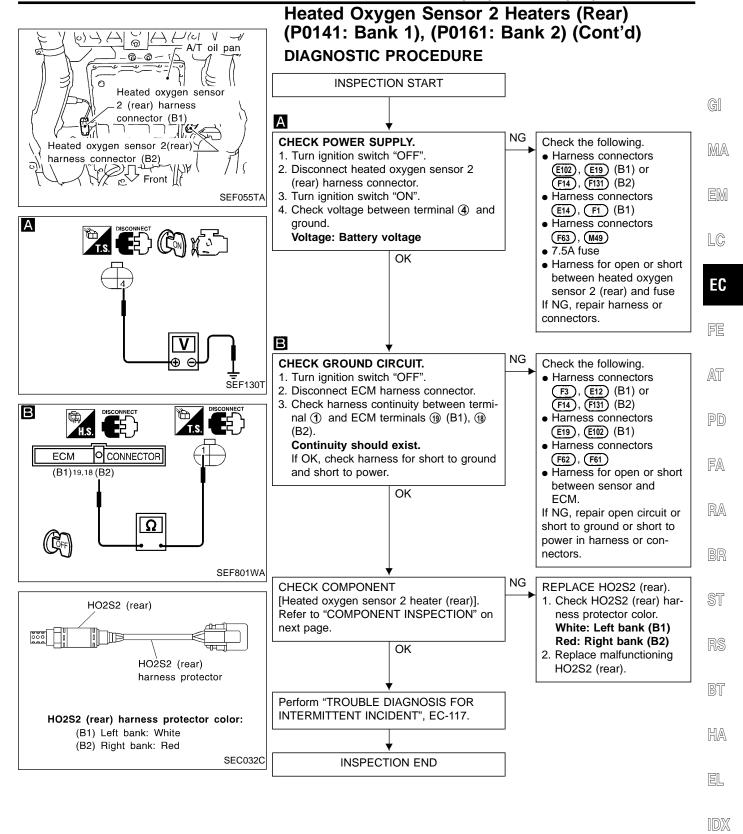
TESTING CONDITION:

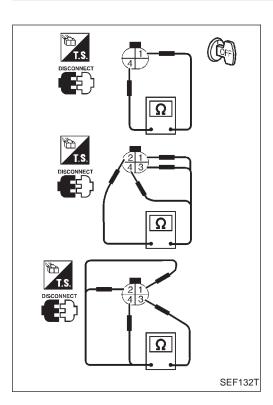
Before performing the following procedure, confirm that battery voltage is more than 10.5V.

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-243.




- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 4) Select "MODE 3" with GST.
- 5) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-243.


When using GST, "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


Heated Oxygen Sensor 2 Heaters (Rear) (P0141: Bank 1), (P0161: Bank 2) (Cont'd)

Heated Oxygen Sensor 2 Heaters (Rear) (P0141: Bank 1), (P0161: Bank 2) (Cont'd)

Heated Oxygen Sensor 2 Heaters (Rear) (P0141: Bank 1), (P0161: Bank 2) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 2 heater (rear)

Check the following.

1. Check resistance between terminals 4 and 1.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

2. Check continuity.

Terminal No.	Continuity
② and ①, ③, ④	No
3 and 1, 2, 4	INO

If NG, replace the heated oxygen sensor 2 (rear).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Fuel Injection System Function (Lean side) (P0171: Bank 1), (P0174: Bank 2)

ON BOARD DIAGNOSIS LOGIC

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

MA

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

EM

Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas	ECM	 	Injectors
,31 11 (1 ,	(Mixture ratio feedback signal)	ECIVI]	,

LC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0171 0115 (Bank 1)	Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)	Intake air leaks Heated oxygen sensor 1 (front) Injectors Tyberet real leaks	_
P0174 0210 (Bank 2)		 Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor 	

EC

DIAGNOSTIC TROUBLE CODE CONFIRMATION

AT

WORK SUPPORT SELF-LEARNING CONT 100 % B2 100 % MONITOR CMPS-RPM(POS) XXX rpm A/F ALPHA-B1 XXX % Δ/Ε ΔΙ ΡΗΔ-Β2 XXX % COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V SEF985Z

PROCEDURE NOTE:

PD FA

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

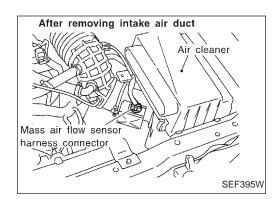
RA

- 1) Start engine and warm it up to normal operating temperature.
 - Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CON-SULT-II.

- Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.

6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-249.

BT


7) If it is difficult to start engine at step 6), the fuel injection system has a malfunction.

HA

8) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE". EC-249. If engine does not start, visually check for exhaust and intake air leak.

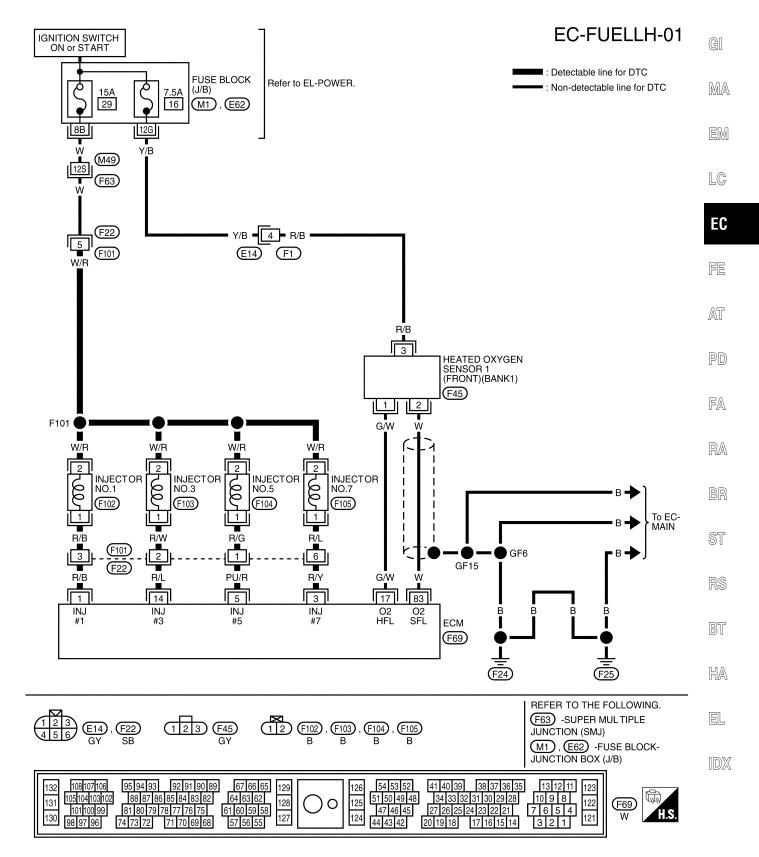
- OR

DATA M	DATA MONITOR		
MONITOR	NO DTC		
CMPS-RPM(POS	S) XXX rpm		
HO2S1 MNTR (B	1) RICH		
HO2S1 MNTR (B	2) RICH		
		SEC04	

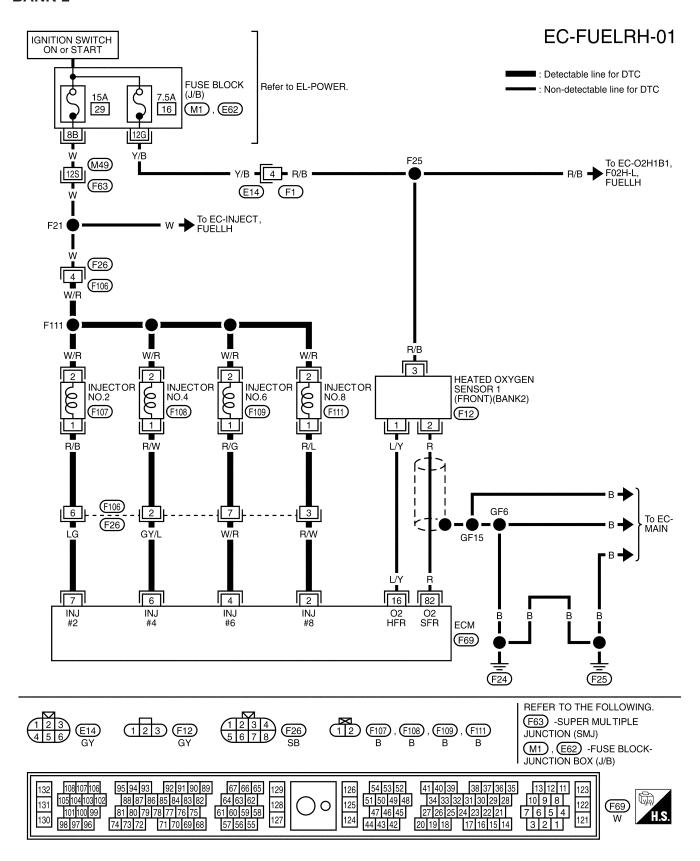
Fuel Injection System Function (Lean side) (P0171: Bank 1), (P0174: Bank 2) (Cont'd)

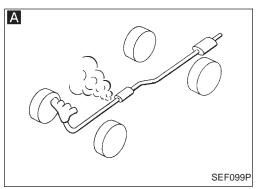
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector.
 Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- Select "MODE 4" with GST and erase the 1st trip DTC P0100.
- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-249.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-249. If the engine does not start, visually check for exhaust

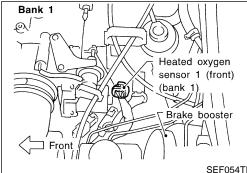
OR -

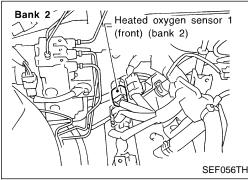


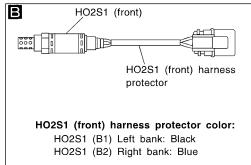
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart engine and run it at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5) Turn ignition switch "ON".

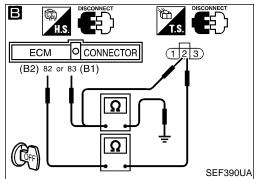

and intake air leak.

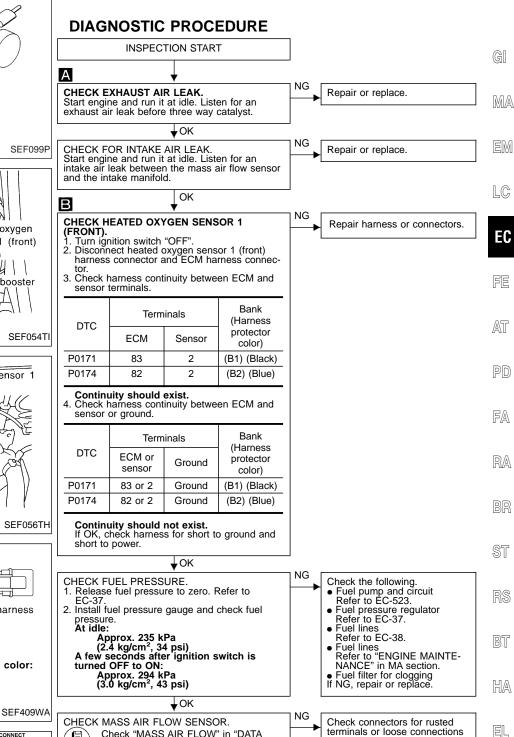

- 6) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0102 is detected.
- 7) Erase the DTC 0102 by changing from Diagnostic Test Mode II to Diagnostic Test Mode I.
- 8) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0505 is detected.
- 9) Start engine again and run it for at least 10 minutes at idle speed.
 - The DTC 0115 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-249.
- 10) If it is difficult to start engine at step 9, the fuel injection system also has a malfunction.
- 11) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-249.
 - If the engine does not start, visually check for exhaust and intake air leak.

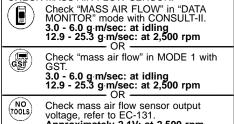

Fuel Injection System Function (Lean side) (P0171: Bank 1), (P0174: Bank 2) (Cont'd)




Fuel Injection System Function (Lean side) (P0171: Bank 1), (P0174: Bank 2) (Cont'd)

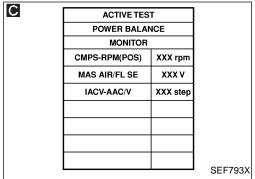


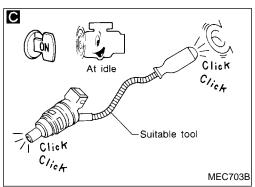


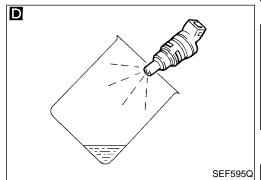


Fuel Injection System Function (Lean side) (P0171: Bank 1), (P0174: Bank 2) (Cont'd)

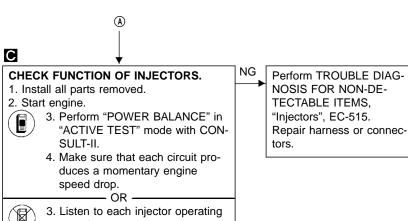
in the mass air flow sensor circuit or engine grounds. Refer to


EC-124.




Check mass air flow sensor output voltage, refer to EC-131.

Approximately 2.1V: at 2,500 rpm


(Go to next page.)

Fuel Injection System Function (Lean side) (P0171: Bank 1), (P0174: Bank 2) (Cont'd)

Confirm that the engine is cooled down and there are no fire hazards near the vehicle.

Clicking noise should be

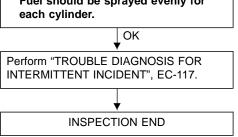
OK

1. Turn ignition switch "OFF".

heard.

2. Remove injector gallery assembly. Refer to EC-38.

Keep fuel hose and all injectors connected to injector gallery.


The injector harness connectors should remain connected.

D 1. Disconnect all ignition coil harness con-

2. Place pans or saucers under each injec-

3. Crank engine for about 3 seconds. Make sure that fuel sprays out vigorously from injectors.

Fuel should be sprayed evenly for each cylinder.

Replace injectors from which fuel does not spray out. Always replace O-ring with new one.

NG

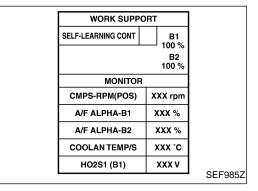
Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank)

ON BOARD DIAGNOSIS LOGIC

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

MA

In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).


EM

Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas	ECM	Injectors
,,,	(Mixture ratio feedback signal)		,

LG

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0172 0114 (Bank 1)	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	Heated oxygen sensor 1 (front)InjectorsExhaust gas leaks	
P0175 0209 (Bank 2)		Incorrect fuel pressureMass air flow sensor	

EC

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

FA

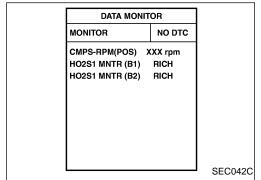
PD

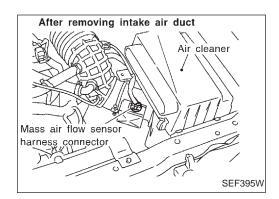
AT

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

RA


- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CON-SULT-II.
 - hina
- Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.


tion system has a malfunction.

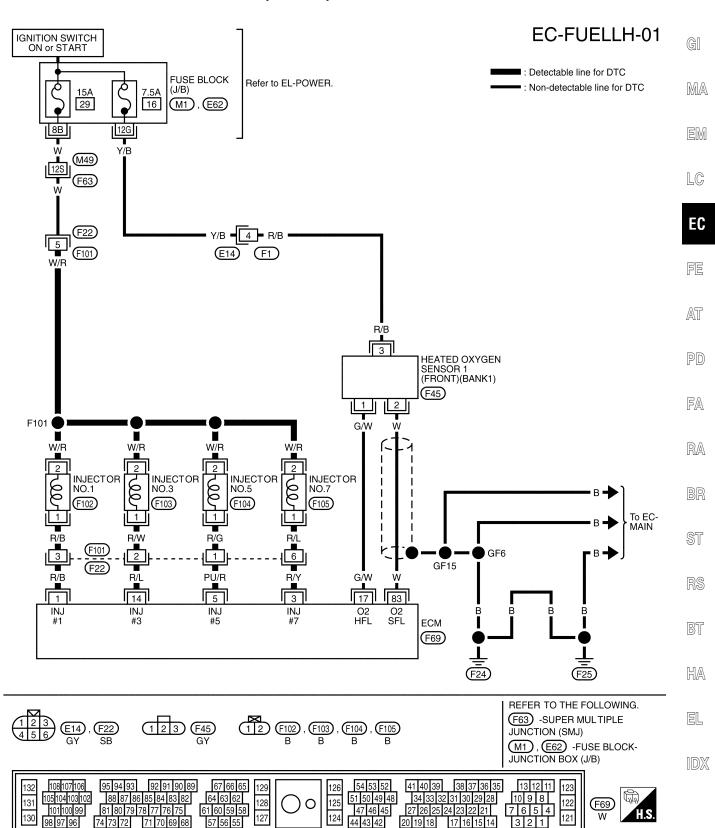
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-255.
- 7) If it is difficult to start engine at step 6), the fuel injection system has a malfunction
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-255. If engine does not start, remove ignition plugs and check for fouling, etc.

BT

OR —

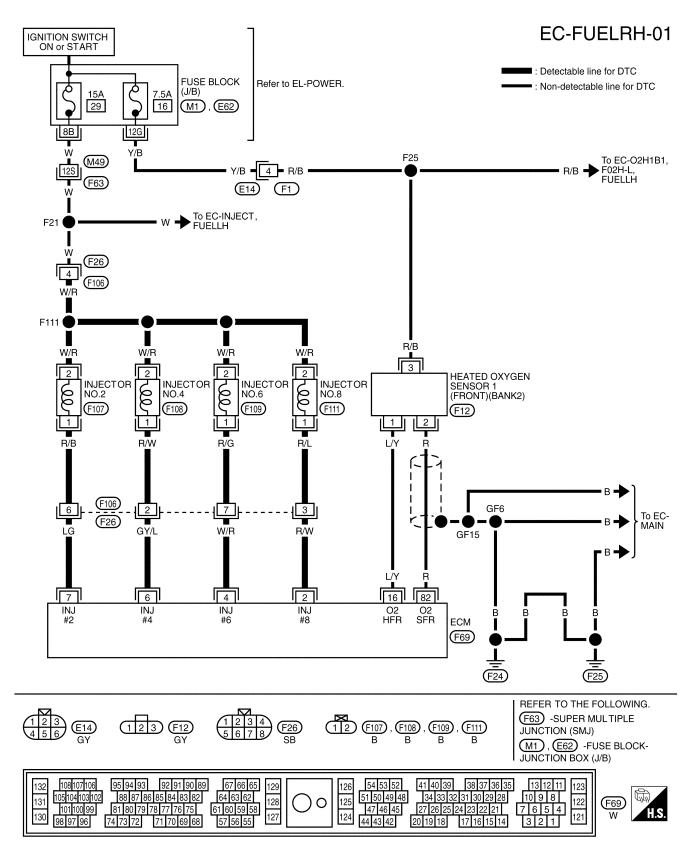
Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank) (Cont'd)

- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector.
 Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- Select "MODE 4" with GST and erase the 1st trip DTC P0100.
- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-255.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-255. If engine does not start, remove ignition plugs and check for fouling, etc.

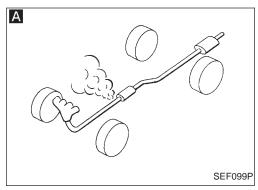


- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector.
- 4) Then restart engine and run it for at least 3 seconds at idle speed.
- 5) Stop engine and reconnect mass air flow sensor harness connector.
- 6) Turn ignition switch "ON".
- 7) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0102 is detected.
- 8) Erase the DTC 0102 by changing from Diagnostic Test Mode II to Diagnostic Test Mode I.
- 9) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM. Make sure DTC 0505 is detected.
- 10) Start engine again and run it for at least 10 minutes at idle speed.
 - The DTC 0114 should be detected at this stage, if a malfunction exists. If so, go to "DIAGNOSTIC PROCEDURE", EC-255.
- 11) If it is difficult to start engine at step 10, the fuel injection system also has a malfunction.
- 12) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-255. If engine does not start, remove ignition plugs and check for fouling, etc.

TROUBLE DIAGNOSIS FOR DTC P0172 (B1), P0175 (B2)

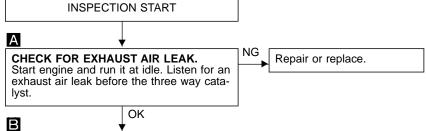

BANK 1

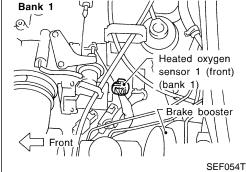
Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank) (Cont'd)

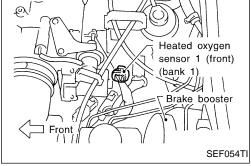


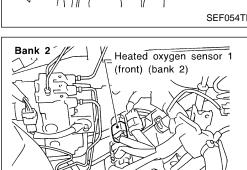
Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank) (Cont'd)

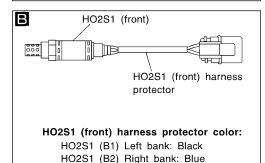
BANK 2

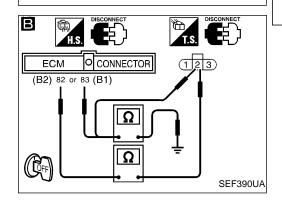



TROUBLE DIAGNOSIS FOR DTC P0172 (B1), P0175 (B2)




Fuel Injection System Function (Rich side) (P0172: Left bank), (P0175: Right bank) (Cont'd)


DIAGNOSTIC PROCEDURE



SEF056TH

SEF409WA

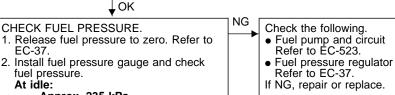
CHECK HEATED OXYGEN SENSOR 1 (FRONT).

1. Turn ignition switch "OFF".

2. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

Check harness continuity between ECM and sensor terminals.

DTC	Terminals		Bank (Harness	
DTC	ECM	Sensor	protector color)	
P0172	83	2	(B1) (Black)	
P0175	82	2	(B2) (Blue)	


Continuity should exist.

Check harness continuity between ECM and sensor or ground.

	Term	Bank (Harness	
DTC	ECM or sensor	Ground	protector color)
P0172	83 or 2	Ground	(B1) (Black)
P0175	82 or 2	Ground	(B2) (Blue)

Continuity should not exist.

If OK, check harness for short to ground and short to power.

Approx. 235 kPa (2.4 kg/cm², 34 psi) A few seconds after ignition switch is turned OFF to ON: Approx. 294 kPa (3.0 kg/cm², 43 psi)

LOK

(A) (Go to next page.) Repair harness or connectors.

LC

EC

GI

MA

EM

FE

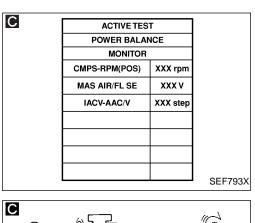
AT

PD

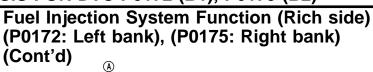
FA

RA

ST


RS


BT


HA

EL

TROUBLE DIAGNOSIS FOR DTC P0172 (B1), P0175 (B2)

NG

Check connectors for

rusted terminals or loose

connections in the mass air

flow sensor circuit or engine

grounds. Refer to EC-124.

Perform TROUBLE DIAG-

Repair harness or connec-

NOSIS FOR NON-DE-

TECTABLE ITEMS,

"Injectors", EC-515.

tors.

CHECK MASS AIR FLOW SENSOR. Check "MASS AIR FLOW" in "DATA

MONITOR" mode with CONSULT-II. 3.0 - 6.0 g·m/sec: at idling 12.9 - 25.3 g·m/sec: at 2,500 rpm - OR

Check "mass air flow" in MODE 1 GST with GST.

3.0 - 6.0 g·m/sec: at idling 12.9 - 25.3 g·m/sec: at 2,500 rpm · OR

NO TOOLS Check mass air flow sensor output voltage, refer to EC-131.

Approximately 2.1V: at 2,500 rpm OK

CHECK FUNCTION OF INJECTORS. 1. Install all parts removed.

2. Start engine.

3. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CON-SULT-II.

4. Make sure that each circuit produces a momentary engine speed drop OR

C

3. Listen to each injector operating sound.

Clicking noise should be heard.

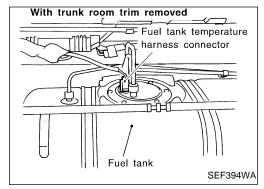
OK

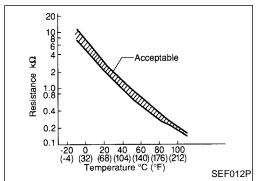
1. Remove injector assembly.

2. Refer to EC-38.

Keep fuel hose, all injectors and injector harness connectors connected to injector gallery.

Confirm that the engine is cooled down and there are no fire hazards near the vehicle.


- 1. Disconnect all injector harness connec-
- 2. Place pans or saucers under each injec-
- 3. Disconnect all ignition coil harness connectors.
- 4. Crank engine for about 3 seconds. Make sure fuel does not drip from injec-


Does not drip.

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

INSPECTION END

Replace the injectors from which fuel is dripping.

Fuel Tank Temperature Sensor

COMPONENT DESCRIPTION

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

<Reference data>

Fluid temperature °C (°F)	Voltage* (V)	Resistance (kΩ)
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

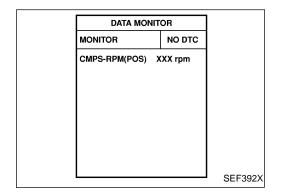
*: These data are reference values and are measured between ECM terminal
(9) (Fuel tank temperature sensor) and ground.

EC

LC

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.


PD

FA

RA

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Causes)	_
P0180 0402	 An excessively high or low voltage is sent to ECM. Rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor. 	Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor	_

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

ST

1) Turn ignition switch "ON".

HA

 Wait at least 10 seconds. If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-260.

If the result is OK, go to following step.

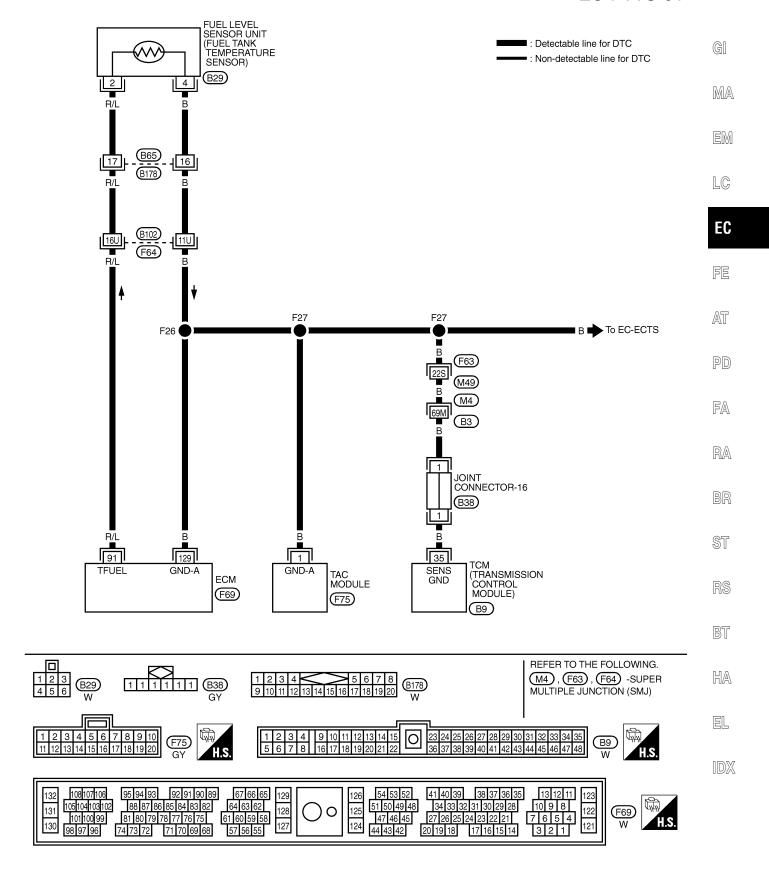
EL

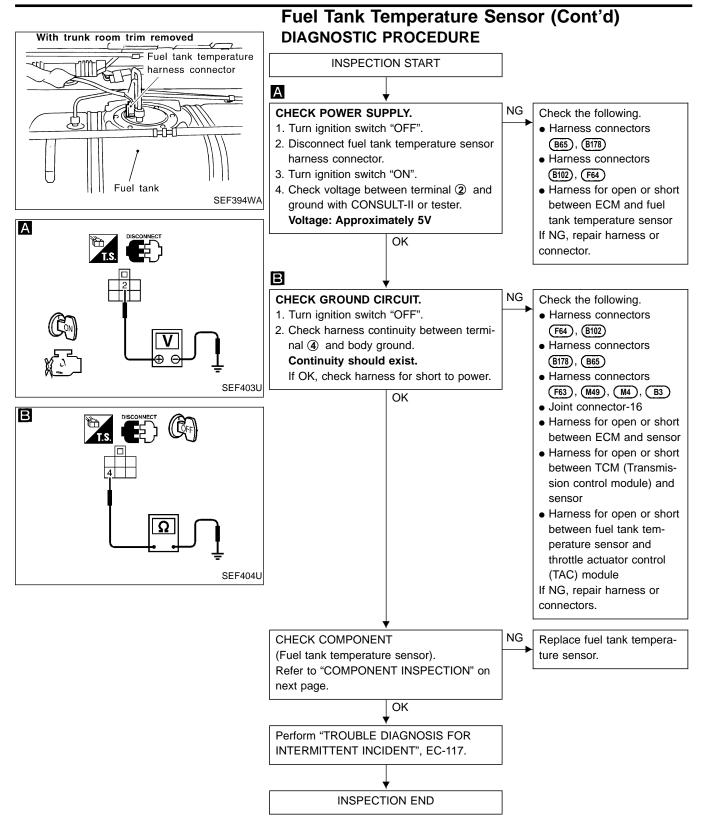
NOTE:

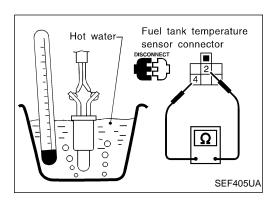
If "COOLAN TEMP/S" is already less than 90°C (194°F) before step 4), the result will be OK.

If "COOLAN TEMP/S" is above 90°C (194°F), go to the following step.

- 4) Cool engine down until "COOLAN TEMP/S" is less than 90°C (194°F).
- 5) Wait at least 10 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-260.


Fuel Tank Temperature Sensor (Cont'd)




Follow the procedure "With CONSULT-II" above.

Fuel Tank Temperature Sensor (Cont'd)

EC-FTTS-01

Fuel Tank Temperature Sensor (Cont'd) COMPONENT INSPECTION

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

 \mathbb{G}

MA

LC

EC

U

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

EL

No. 1 - 8 Cylinder Misfire, Multiple Cylinder Misfire

ON BOARD DIAGNOSIS LOGIC

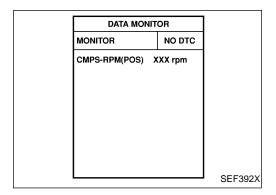
If misfire occurs, the engine speed will fluctuate. If the fluctuation is detected by the crankshaft position sensor (OBD), the misfire is diagnosed.

The misfire detection logic consists of the following two conditions.

Crankshaft position sensor (OBD)	Engine speed	ECM

One Trip Detection Logic (Three Way Catalyst Damage)

When a misfire is detected which will overheat and damage the three way catalyst, the malfunction indicator lamp (MIL) will start blinking; even during the first trip. In this condition, ECM monitors the misfire every 200 engine revolutions.


If the misfire frequency decreases to a level that will not damage the three way catalyst, the MIL will change from blinking to lighting up.

(After the first trip detection, the MIL will light up from engine starting. If a misfire is detected that will cause three way catalyst damage, the MIL will start blinking.)

2. Two Trip Detection Logic (Exhaust quality deterioration)

When a misfire that will not damage the three way catalyst (but will affect exhaust emission) occurs, the malfunction indicator lamp will light up based on the second consecutive trip detection logic. In this condition, ECM monitors the misfire for each 1,000 revolutions of the engine.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0300 (0701)	Multiple cylinders misfire.	Improper spark plug
P0301 (0608)	No. 1 cylinder misfires.	Insufficient compression Insurrect fuel pressure
P0302 (0607)	No. 2 cylinder misfires.	Incorrect fuel pressureEGR valve
P0303 (0606)	No. 3 cylinder misfires.	The injector circuit is open or shorted.
P0304 (0605)	No. 4 cylinder misfires.	Injectors Intake air leaks
P0305 (0604)	No. 5 cylinder misfires.	The ignition secondary circuit is open or
P0306 (0603)	No. 6 cylinder misfires.	shorted.
P0307 (0602)	No. 7 cylinder misfires.	Lack of fuel Magnetized signal plate (drive plate)
P0308 (0601)	No. 8 cylinder misfires.	Heated oxygen sensor 1 (front)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE (Overall)

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

 Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.

No. 1 - 8 Cylinder Misfire, Multiple Cylinder Misfire (Cont'd)

- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Start engine again and drive at 1,500 to 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible during driving.

MA

Refer to the freeze frame data for the test driving conditions.

5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-264.

EM

Follow the procedure "With CONSULT-II" above.

LC

EC

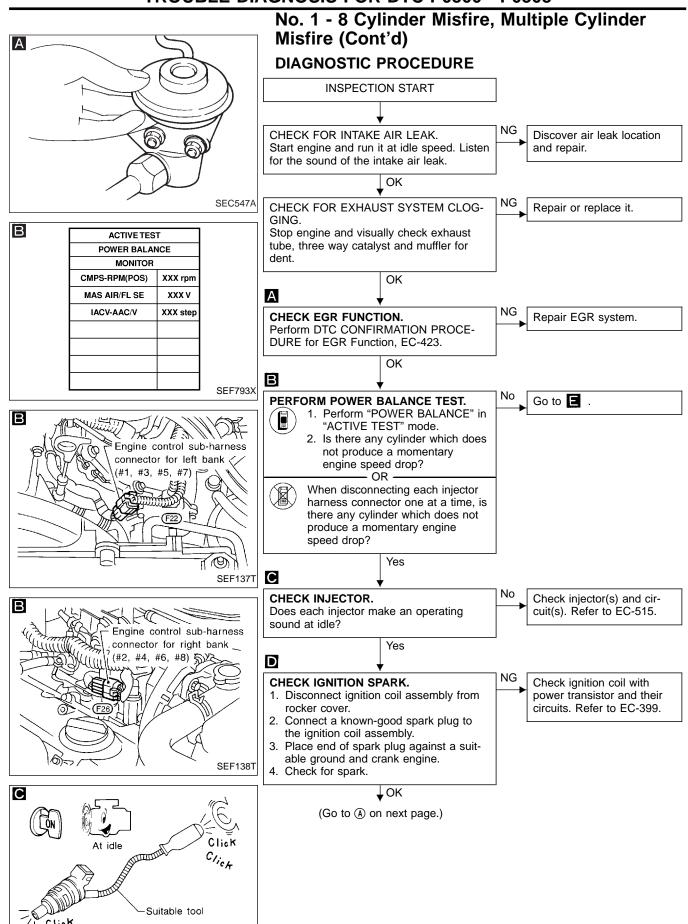
FE

AT PD

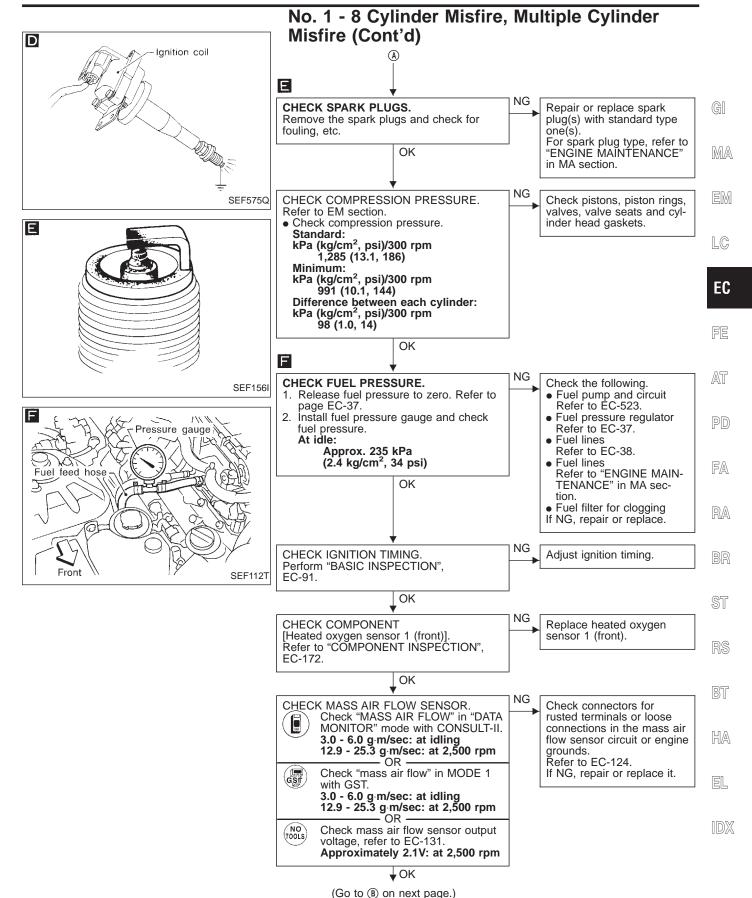
FA

RA

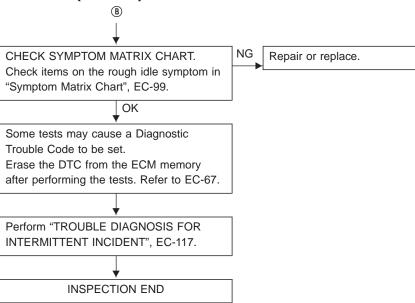
BR

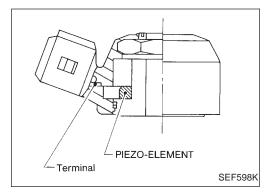

ST

RS


BT

HA


EL


MEC703B

No. 1 - 8 Cylinder Misfire, Multiple Cylinder Misfire (Cont'd)

TROUBLE DIAGNOSIS FOR DTC P0325 (B1), P0330 (B2)

Knock Sensor (KS) (P0325: Left bank), (P0330: Right bank)

COMPONENT DESCRIPTION

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

G[

MA

LC

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

FE

EC

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
105 108	W W	Knock sensor (RH) Knock sensor (LH)	Engine is running. Idle speed	2.0 - 3.0V

AT

PD

ON BOARD DIAGNOSIS LOGIC

/_

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	F
P0325 0304 (Bank 1)	An excessively low or high voltage from the knock sensor is sent to ECM.	Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor	
P0330 0212 (Bank 2)			

RA

ST

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

RS

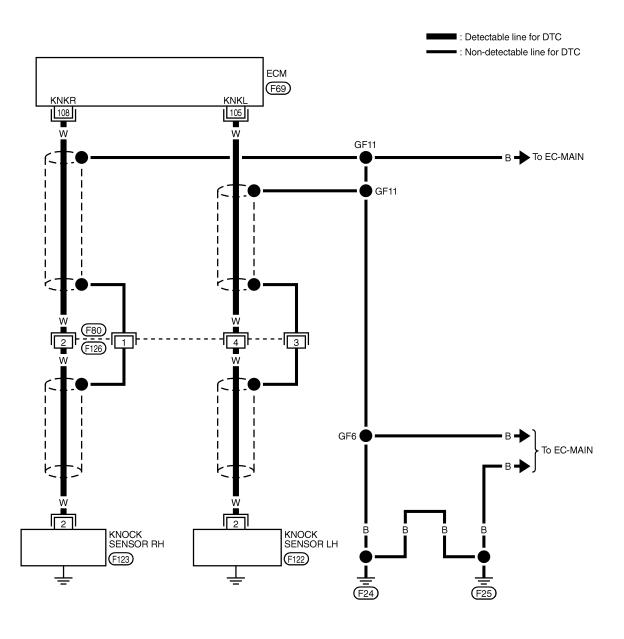
NOTE:

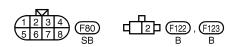
Before performing the following procedure, confirm that battery voltage is more than 10V.

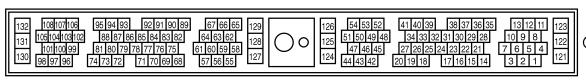
BT

HA

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-269.

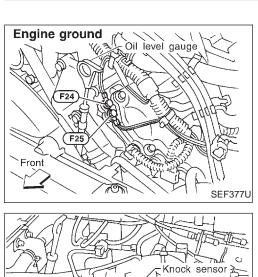

Follow the procedure "With CONSULT-II" above.

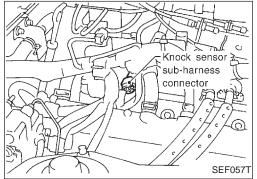

OR

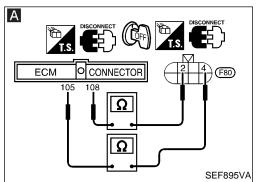

^{*} Freeze frame data is not stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction.

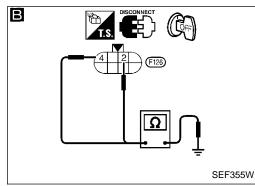
Knock Sensor (KS) (P0325: Left bank), (P0330: Right bank) (Cont'd)

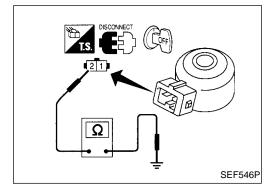
EC-KS-01

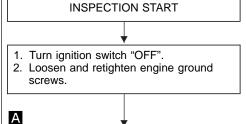









TROUBLE DIAGNOSIS FOR DTC P0325 (B1), P0330 (B2)



Knock Sensor (KS) (P0325: Left bank), (P0330: Right bank) (Cont'd) DIAGNOSTIC PROCEDURE

CHECK INPUT SIGNAL CIRCUIT-1.

- 1. Disconnect ECM harness connector and knock sensor sub-harness connec-
- 2. Check harness continuity between terminal 4 (bank 1), 2 (bank 2) and ECM terminal (105) (bank 1), (108) (bank 2).

Continuity should exist.

If OK, check harness for short to ground and short to power.

OK

tors.

Repair harness or connec-

EC

LC

MA

AT

PD

FA

RA

CHECK INPUT SIGNAL CIRCUIT-2.

Check harness continuity between terminal (4) (bank 1), (2) (bank 2) and engine ground.

Continuity should exist.

В

If OK, check harness for short to ground and short to power.

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

OK

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117. INSPECTION END

Check the following.

- Harness for open or short between knock sensor sub-harness connector-2 and knock sensor
- If NG, repair open circuit or short to ground or short to power in harness or connectors.
- As for knock sensor (COMPONENT INSPECTION), refer to below.

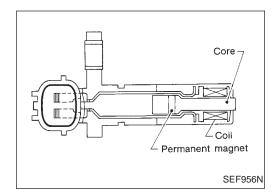
If NG, replace knock sensor.

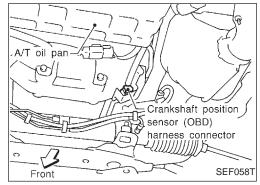
HA

EL

COMPONENT INSPECTION

Knock sensor


- Disconnect knock sensor harness connector.
- Check resistance between terminal 2 and ground.


Approximately 500 - 620 k Ω [at 25°C (77°F)]

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use a new one.

Crankshaft Position Sensor (CKPS) (OBD) COMPONENT DESCRIPTION

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system. It is used only for the on board diagnosis.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC voltage)
57 B/R	Crankshaft position sen-	Engine is running. (Warmed-up condition) L Idle speed	Approximately 1.7V (AC voltage) (V) 10 5 0 0.4 ms SEF391X	
		sor (OBD)	Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	Approximately 0V (V) 10 5 0 0.4 ms SEF546T

Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0335 0802	The proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed.	Harness or connectors (The crankshaft position sensor (OBD) circuit is open.) Crankshaft position sensor (OBD) Dead (Weak) battery	_

GI

DATA MOI	NITOR
MONITOR	NO DTC
CMPS-RPM(POS) MAS AIR/FL SE	
1	

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 15 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-279.

- OR -

Follow the procedure "With CONSULT-II" above.

EC

LC

E

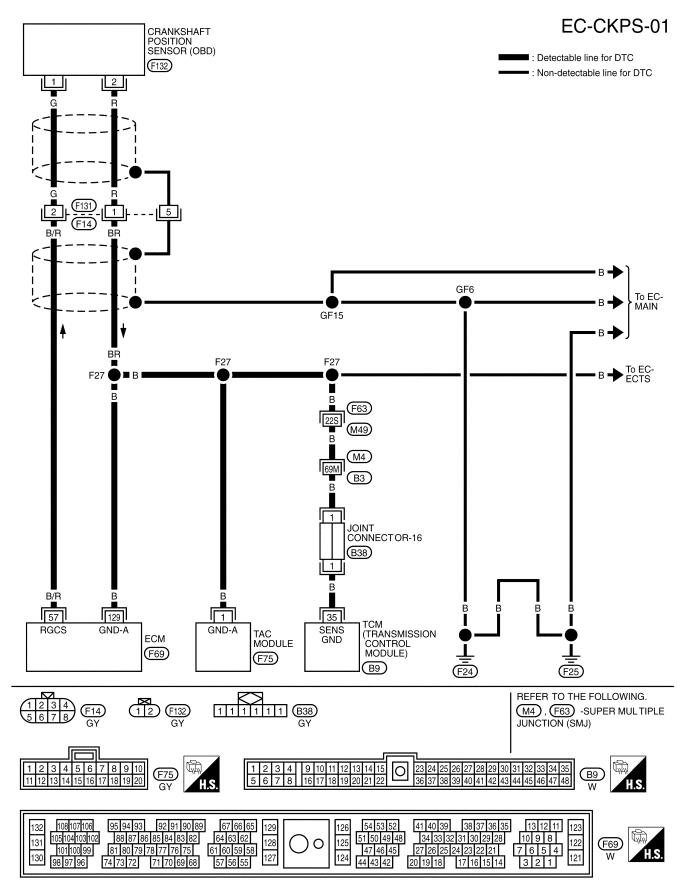
AT

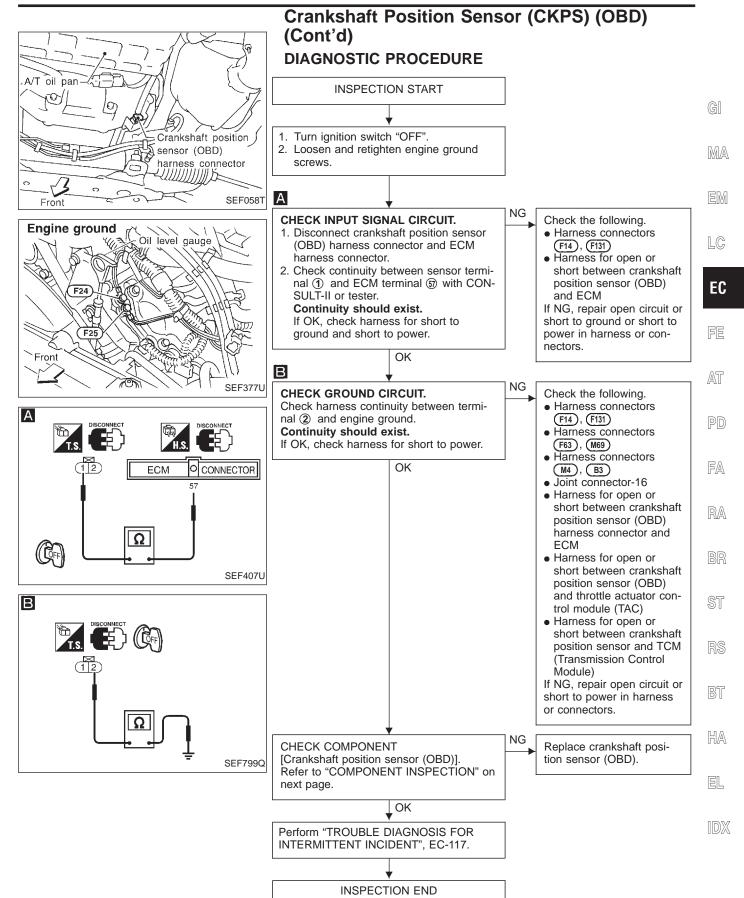
PD

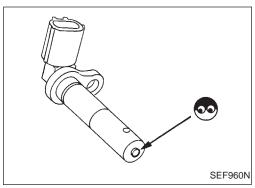
FA

RA

BR


ST


RS


BT

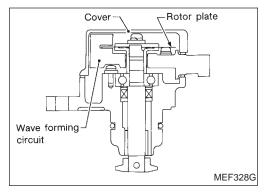
HA

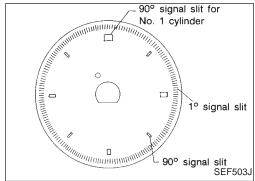
Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)

SEF134W

0

Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)


COMPONENT INSPECTION


Crankshaft position sensor (OBD)

- Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.
- 5. Check resistance as shown in the figure.

Resistance:

Approximately 166.5 - 203.5 Ω [at 20°C (68°F)]

Camshaft Position Sensor (CMPS) COMPONENT DESCRIPTION

The camshaft position sensor (CMPS) is a basic component of the ECM. It monitors engine speed and piston position. It sends signals to the ECM to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for 1° signal and 8 slits for 90° signal. Light Emitting Diodes (LED) and photo diodes are built into the wave-forming circuit.

When the rotor plate passes between the LED and the photo diode, the following happens:

Slits in the rotor plate continually cut the transmitted light to the photo diode from the LED. This generates rough-shaped pulses converted into on-off pulses by the wave forming circuit sent to the ECM.

GI

EM

EC

FE

AT

PD

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	RA
			Engine is running. Ignition switch "OFF"	0.40	BR
124	W/B	ECM relay (Self-shutoff)	For a few seconds after turning ignition switch "OFF"	0 - 1V	ST
			Ignition switch "OFF" A few seconds passed after turning ignition	BATTERY VOLTAGE (11 - 14V)	RS
			switch "OFF"		RT

HA

EL

Camshaft Position Sensor (CMPS) (Cont'd) TER-WIRE DATA MINAL ITEM CONDITION COLOR (DC voltage) NO. Approximately 0.6 - 1.0V 10 Engine is running. (Warmed-up condition) Idle speed 10 ms SEF540T 55 Crankshaft position sen-Р 58 sor (REF) Approximately 0.8 - 0.9V 10 Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm. 10 ms SEF544T Approximately 2.5V 10 Engine is running. (Warmed-up condition) L Idle speed SEF547T Camshaft position sensor 59 (POS) Approximately 2.4V 10 Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm. 0.4 ms SEF548T BATTERY VOLTAGE 130 R/G Ignition switch "ON" Power supply for ECM 131 (11 - 14V)

Camshaft Position Sensor (CMPS) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0340 0101	A) Either 1° or 90° signal is not sent to ECM for the first few seconds during engine cranking.	Harness or connectors (The camshaft position sensor circuit is open or shorted.)	<u> </u>
	B) Either 1° or 90° signal is not sent to ECM during engine running.	 Camshaft position sensor Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.) Dead (Weak) battery 	M
	C) Either 1° or 90° signal is not in the normal pattern during engine running.		

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B and C".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

DATA MONITOR MONITOR NO DTC CMPS-RPM(POS) XXX rpm MAS AIR/FL SE XXX V SEF400X

Procedure for malfunction A

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 2 seconds at idle speed.

(If engine does not run, turn ignition switch to "START" for at least 2 seconds.)

3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-279.

OR

Follow the procedure "With CONSULT-II" above.

Procedure for malfunction B and C

- Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-279.

- OR -Follow the procedure "With CONSULT-II" above.

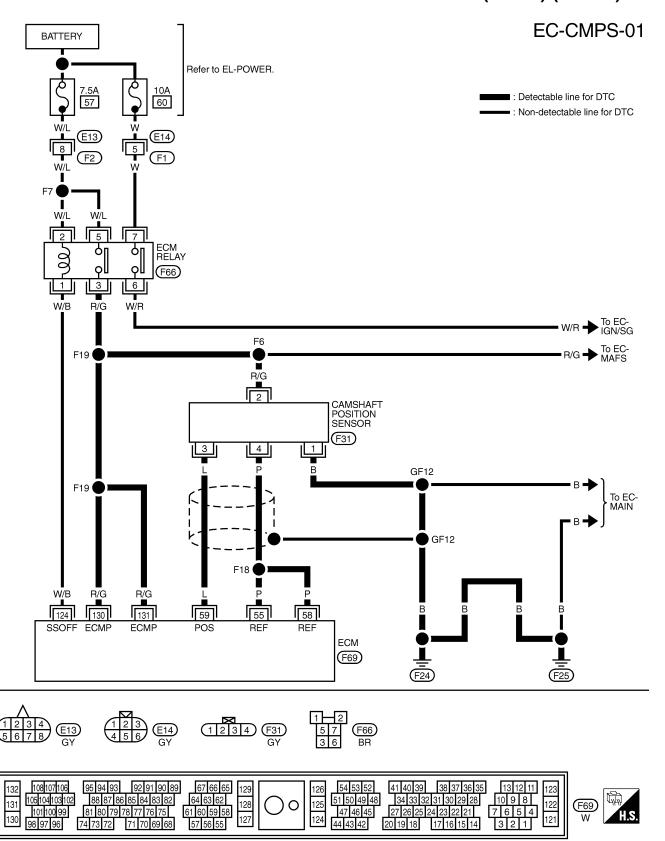
EC-277

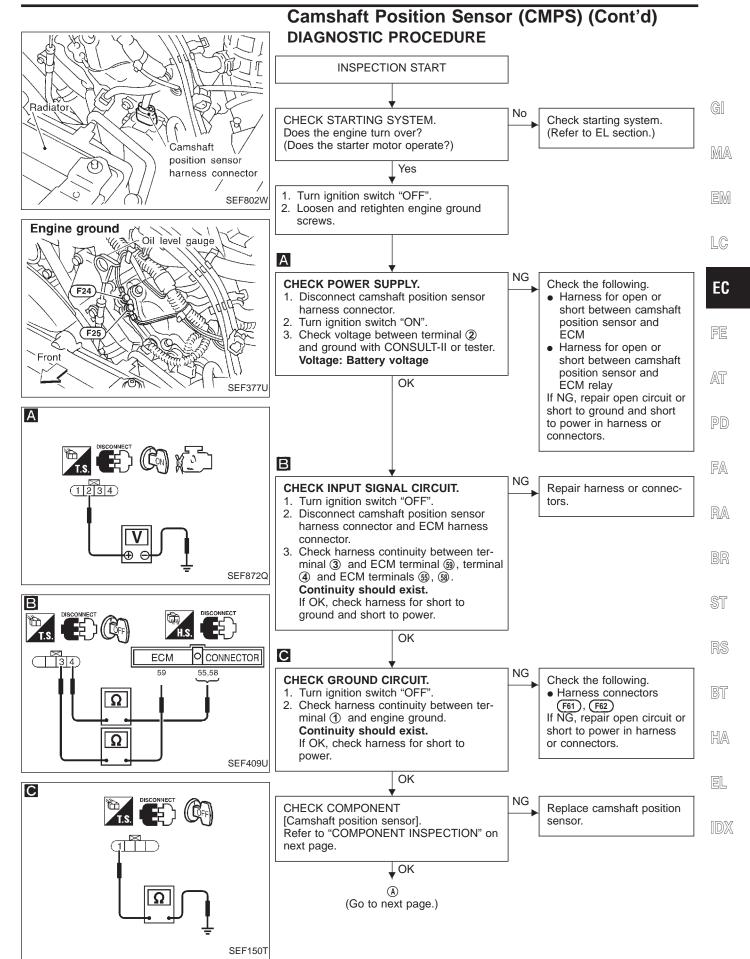
LC

EC

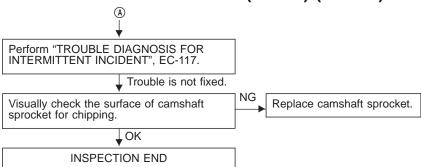
FE

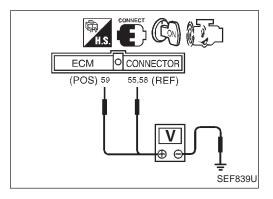
PD


FA


RA

BT


HA


Camshaft Position Sensor (CMPS) (Cont'd)

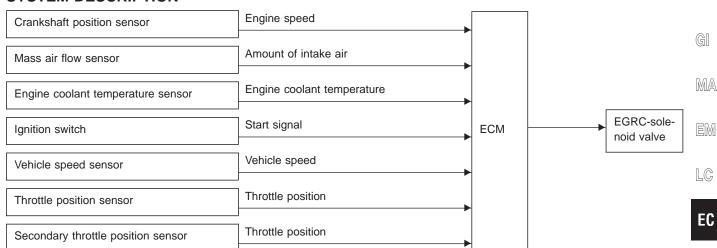
Camshaft Position Sensor (CMPS) (Cont'd)

COMPONENT INSPECTION

Camshaft position sensor

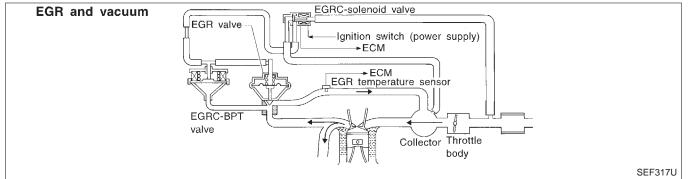
- Start engine and warm it up to the normal operating temperature.
- 2. Check voltage between ECM terminals (59 (POS) or (5), (58 (REF) (ECM terminal) and ground with DC range.

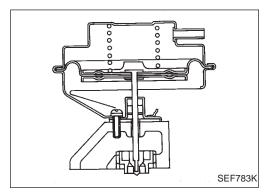
CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

Condition	Terminals	Voltage
	(§) and ground (POS)	Approx. 2.5V (V) 10 5 0 0.4 ms SEF547T
Engine running at idle	(§), (§) and ground (REF)	Approx. 0.7 - 1.2V (V) 10 5 0 10 ms SEF046V
Engine at 2,000 rpm	(§) and ground (POS)	(V) 10 5 0 0.4 ms SEF548T
Engine at 2,000 fpm	⑤, ⑥ and ground (REF)	(V) 10 5 0 10 ms SEF544T

If NG, replace camshaft position sensor.


EGR Function (Close)


SYSTEM DESCRIPTION

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current does not flow through the solenoid valve. This causes the port vacuum to be discharged into the atmosphere. The EGR valve remain closed.

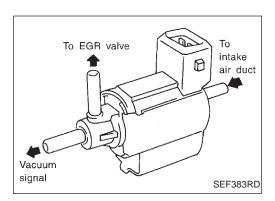
- Low engine coolant temperature
- Engine starting
- Engine stopped
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low vehicle speed or high vehicle speed
- TCS is operating

COMPONENT DESCRIPTION

Exhaust gas recirculation (EGR) valve

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

FA


RA

BK

BT

HA

EL

EGR Function (Close) (Cont'd)

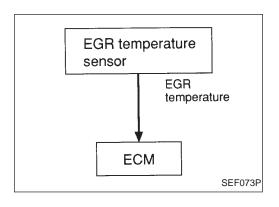
EGRC-solenoid valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The signal reaches to the EGR valve. When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold collector to the EGR valve.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Lift up drive wheelsEngine: After warming up	Idle	OFF (CUT)
EGRC SOL/V	Air conditioner switch: "OFF"Shift lever: "D"No-load	Revving engine up from idle to 3,000 rpm	ON (FLOW)


ECM TERMINALS AND REFERENCE VALUE

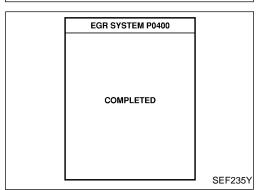
Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
75	W	EGR temperature sensor	Engine is running. (Warmed-up condition) Idle speed	Less than 4.5V
	VV	Lorv temperature sensor	Engine is running. (Warmed-up condition) EGR system is operating.	0 - 1.0V
10	L/Y	EGRC-solenoid valve	Engine is running. (Warmed-up condition) Lift up drive wheels and rev engine up from idle to 3,000 rpm in "D" position.	0 - 0.7V
			Engine is running. (Warmed-up condition) _ Idle speed	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC


If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

EGR Function (Close) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0400 0302	No EGR flow is detected under conditions that call for EGR.	 EGR valve stuck closed EGRC-BPT valve Vacuum hose EGRC-solenoid valve EGR passage EGR temperature sensor Exhaust gas leaks 	GI M

EGR SYSTEM P0400		
OUT OF CONDITION		
MONITOR		
CMPS-RPM(POS) XXX rpm		
B/FUEL SCHDL	XXX msec	
THRTL POS SEN	xxx v	0550007
SEF988Z		

EGR SYSTEM P0400		
TESTING		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
B/FUEL SCHDL	XXX msec	
THRTL POS SEN	xxx v	0500400
		SEC043C

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- P0400 will not be displayed in the "SELF-DIAG RESULTS" mode with CONSULT-II even though the DTC work support test result is "NG".

TESTING CONDITION:

For best results, perform at a temperature above 5°C (41°F).

- 1) Turn ignition switch "ON" Check "COOLAN TEMP/S" in "DATA MONITOR" mode witch CONSULT-II.
 - Confirm COOLAN TEMP/S value is within the range listed below.

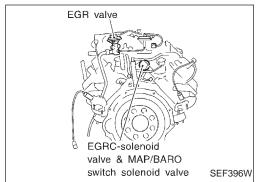
COOLANT TEMP/S: Less than 40°C (104°F)

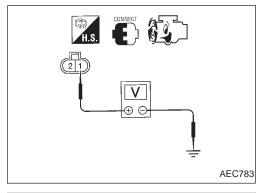
If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

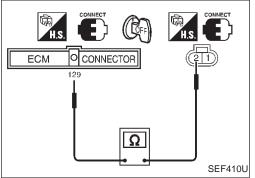
- Select "EGR SYŠTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 5) Start engine (TCS switch "OFF") and let it idle. When the engine coolant temperature reaches 70°C (158°F), immediately go to the next step.
- 6) Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle. If "COMPLETED" with "OK" appears on CONSULT-II screen, go to step 9). If "COMPLETED" does not appear on CONSULT-II
- screen, go to the following step. 7) Check the output voltage of "THRTL POS SEN" at
- closed throttle position. 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds or more.)

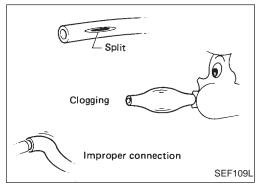
CMPS-RPM (POS): 1,200 - 2,000 rpm Vehicle speed: 10 km/h (6 MPH) or more B/FUEL SCHDL: 3.3 - 4.5 msec

EC


LC


PD


FA


RA

EL

EGR Function (Close) (Cont'd)

THRTL POS SEN: X - (X + 0.53) V

X = Voltage value measured at

step 7)

Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry

from step 2).

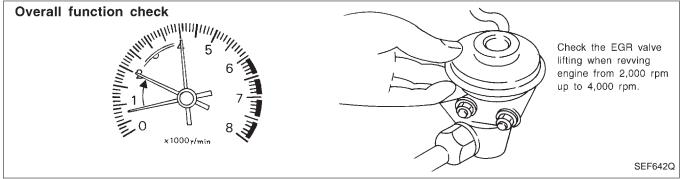
9) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-286.

OVERALL FUNCTION CHECK

Use this procedure to check the overall EGR function. During this check, a 1st trip DTC might not be confirmed.

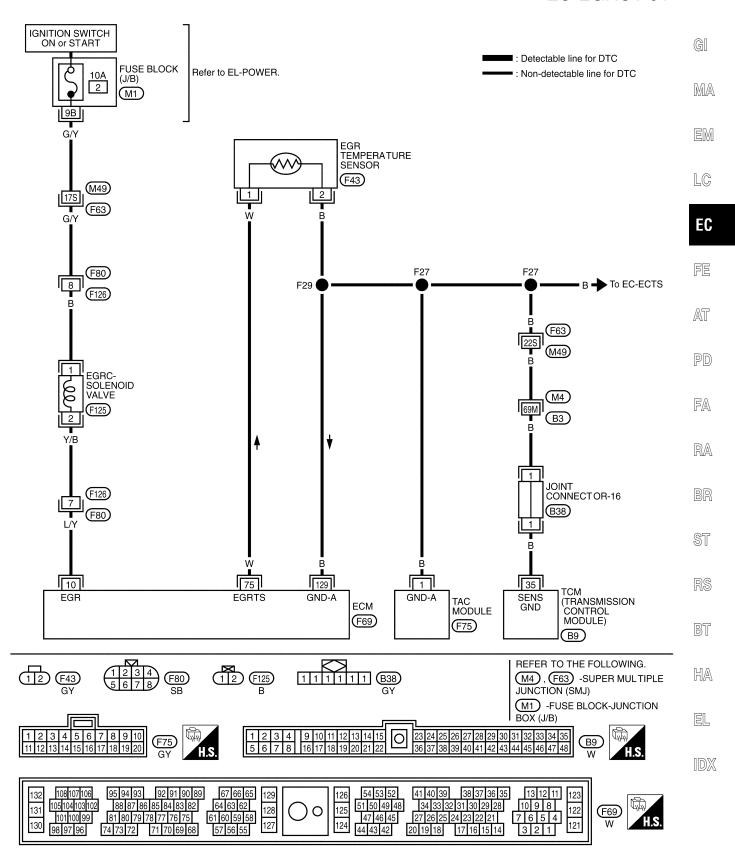
- 1) Lift up drive wheels. Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 2) Shift to "D" position.
- 3) Check the EGR valve lifting when revving engine from idle up to 3,000 rpm.

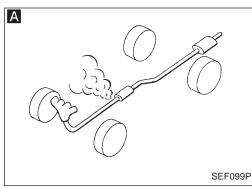
EGR valve should lift up and down without sticking.

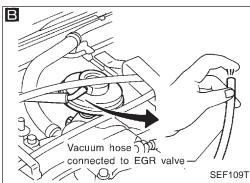

Check voltage between EGR temperature sensor harness connector terminal (1) and ground at idle speed.

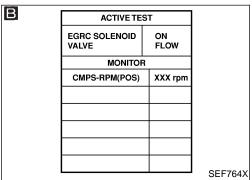
Less than 4.5V should exist.

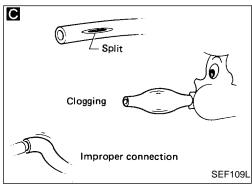
- Turn ignition switch "OFF".
- 6) Check harness continuity between EGR temperature sensor harness connector terminal (2) and ECM terminal (129).

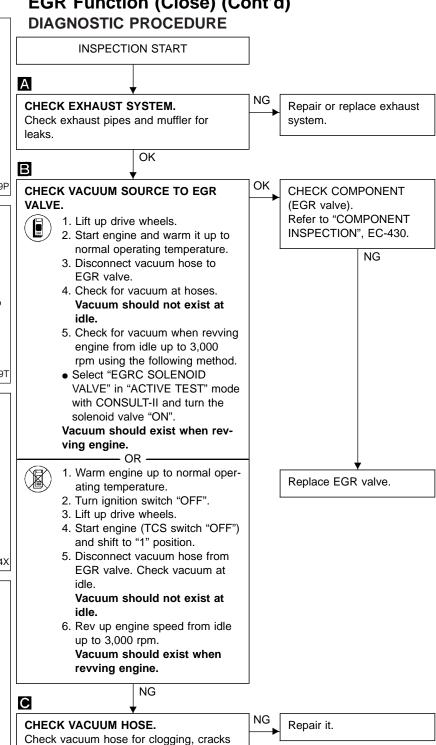

Continuity should exist.

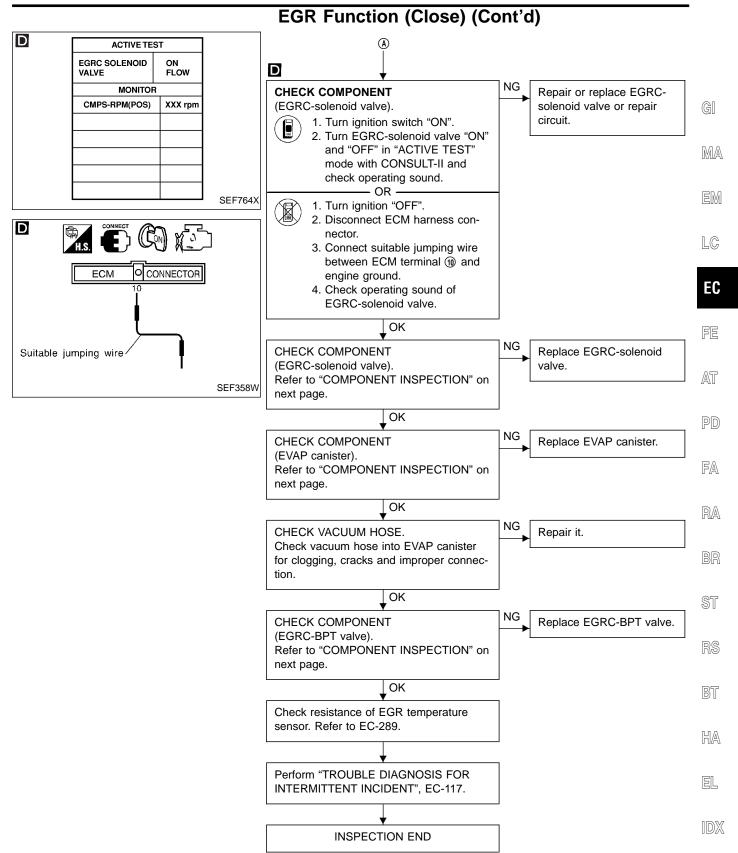

- Perform "COMPONENTS INSPECTION", "EGR temperature sensor". Refer to EC-289.
- If NG, go to "DIAGNOSTIC PROCEDURE", EC-286.

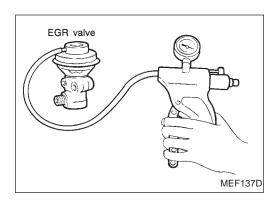



EGR Function (Close) (Cont'd)


EC-EGRC1-01

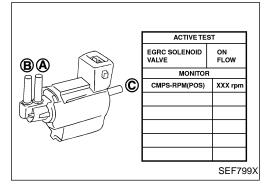





EGR Function (Close) (Cont'd)

or improper connection or misconnecting. Refer to "Vacuum Hose Drawing", EC-19.

(Go to next page.)


EGR Function (Close) (Cont'd) COMPONENT INSPECTION

EGR valve

 Apply vacuum to EGR valve vacuum port with a hand vacuum pump.

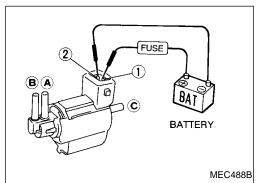
EGR valve spring should lift.

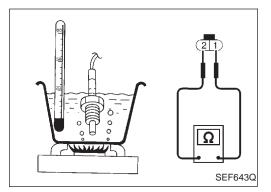
Check for sticking.
 If NG, repair or replace EGR valve.

EGRC-solenoid valve

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.


Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes
OR		



Check solenoid valve, following the table as shown below:

Conditions	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace the solenoid valve.

10,000

1,000

100

10

Resistance

EGR Function (Close) (Cont'd)

EGR temperature sensor

Check resistance change and resistance value.

EGR temperature °C (°F)	Voltage* (V)	Resistance (MΩ)
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.

MA

LC

EC

FE

AT

PD

FA

RA

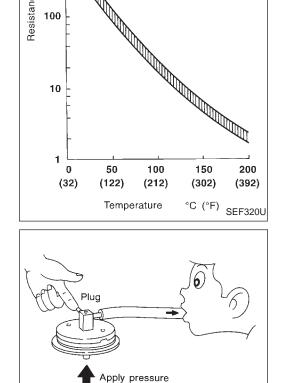
BR

ST

EGRC-BPT valve

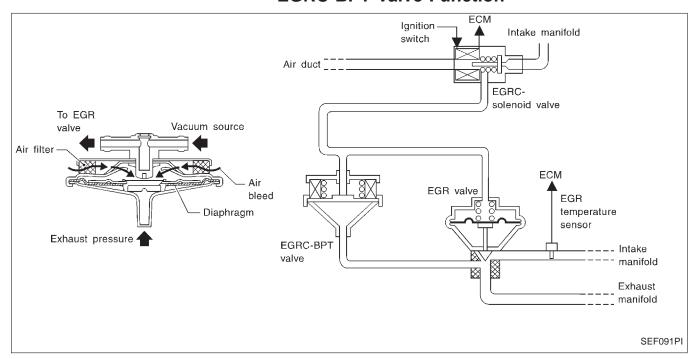
Plug one of two ports of EGRC-BPT valve.

RS


Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mmH₂ \ddot{O} , 3.94 inH₂ \dot{O}) from under EGRC-BPT valve.

If a leakage is noted, replace the valve.

HA


BT

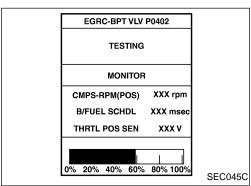
EL

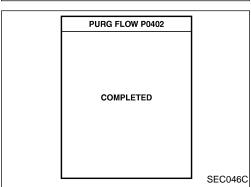
SEF083P

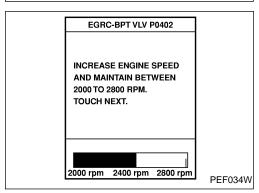
EGRC-BPT Valve Function

SYSTEM DESCRIPTION

The EGRC-BPT valve monitors exhaust pressure to activate the diaphragm, controlling throttle body vacuum applied to the EGR valve. In other words, recirculated exhaust gas is controlled in response to positioning of the EGR valve or to engine operation.


ON BOARD DIAGNOSIS LOGIC


If too much EGR flow exists due to an EGRC-BPT valve malfunction, off idle engine roughness will increase. If the roughness is excessive, then the vacuum to the EGR valve is interrupted through the EGRC-solenoid valve. If the engine roughness is reduced at that time, the EGRC-BPT valve malfunction is indicated.


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0402 0306	The EGRC-BPT valve does not operate properly.	 EGRC-BPT valve EGR valve Loose or disconnected rubber tube Blocked rubber tube Camshaft position sensor Blocked exhaust system Orifice Mass air flow sensor EGRC-solenoid valve

Vacuum gauge EGR valve **EGRC-BPT** valve SEF930V

EGRC-BPT VLV P0402 OUT OF CONDITION MONITOR CMPS-RPM(POS) XXX rpm B/FUEL SCHDL XXX mse THRTL POS SEN XXX V 0% 20% 40% 60% 80% 100% SEC0440

EGRC-BPT Valve Function (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform the test at temperature above 5°C (41°F) or higher.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
 - 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the figure.
 - Start engine and warm it up to normal operating tem-
 - Stop engine and wait at least 5 seconds.
 - Turn ignition switch "ON" and select "EGRC-BPT/V P0402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - Start engine (TCS switch "OFF") and let it idle.
 - Touch "START".
 - Check the output voltage of "THRTL POS SEN" at closed throttle position and open throttle position.
 - When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen and the bar chart may increase. Maintain the conditions many times until "COMPLETED" appears.

Selector lever: Suitable position CMPS-RPM (POS): 1,000 - 1,600 rpm Vehicle speed: 30 - 56 km/h (19 - 35 MPH)

B/FUEL SCHDL: 2.0 - 3.2 msec THRTL POS SEN: X - (X + 0.89) V

X = Voltage value measured at step 7)

- The bar chart on CONSULT-II screen indicates the status of this test. However, the test may be finished before the bar chart becomes full scale.
- If the bar chart indication does not continue to progress, completely release accelerator pedal once and try to meet the conditions again.
- If "TESTING" does not appear on CONSULT-II screen, retry from step 4).

If NG, go to "DIAGNOSTIC PROCEDURE", EC-293. If OK, go to next step.

- 9) Open engine hood.
- 10) Raise engine speed to 2,000 to 2,800 rpm under noload and hold it. Then touch "NEXT" of the CONSULT-II screen.
- 11) Check vacuum gauge while keeping engine speed 2,000 to 2,800 rpm.

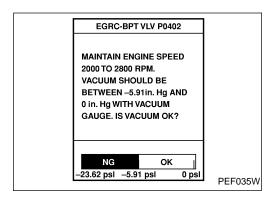
Vacuum should be 0 to -20.0 kPa (0 to -150 mmHg, 0 to -5.91 inHq).

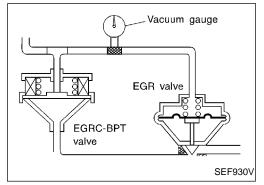
If NG. go to "DIAGNOSTIC PROCEDURE". EC-293. If OK, touch "YES" in the CONSULT-II screen.

LC

GI

MA


EC


AT

PD

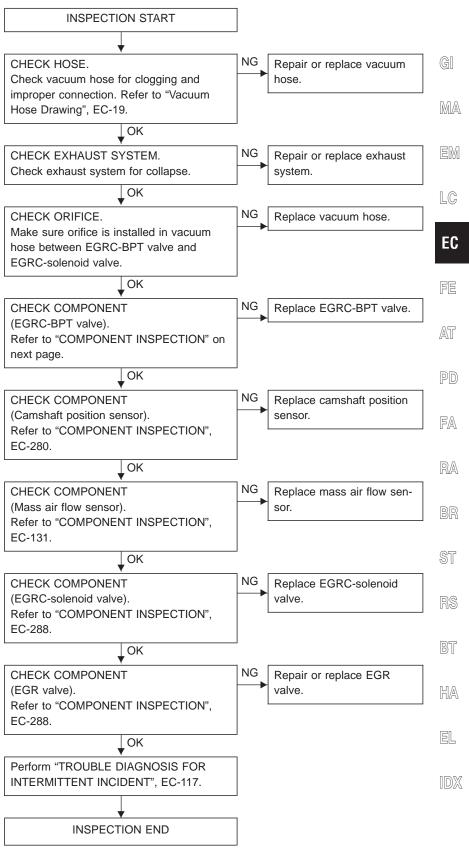
RA

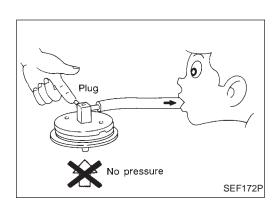
HA

EGRC-BPT Valve Function (Cont'd)

- 12) Check the rubber tube between intake manifold collector, EGR valve and EGRC-BPT valve for misconnection, cracks, blockages or twisting. If NG, repair.
 - If OK, touch "YES" in the CONSULT-II screen.
- 13) If CONSULT-II instructs to carry out "OVERALL FUNC-TION CHECK", go to next step. If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-293.

OVERALL FUNCTION CHECK

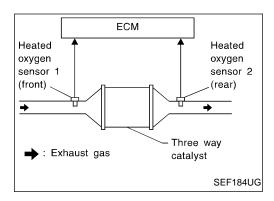

Use this procedure to check the overall function of the EGRC-BPT valve. During the check, a 1st trip DTC might not be confirmed.


- 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the figure.
- 2) Lift up vehicle.
- Connect the intake manifold collector and the EGRC-BPT valve with a rubber tube that has 0.5 mm (0.020 in) dia. orifice. (The intake manifold vacuum will be directly applied to the EGRC-BPT valve.)
- 4) Start engine and shift to 1st position.
- 5) Check vacuum gauge while keeping engine speed 2,400±400 rpm.

Vacuum should be 0 to -20.0 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

- If NG, go to "DIAGNOSTIC PROCEDURE", EC-293. If OK, go to next step.
- 6) Check rubber tube between the intake manifold collector, EGRC-solenoid valve and EGRC-BPT valve for misconnection, cracks, blockages or twisting.
- 7) If NG, repair or replace.

EGRC-BPT Valve Function (Cont'd) DIAGNOSTIC PROCEDURE

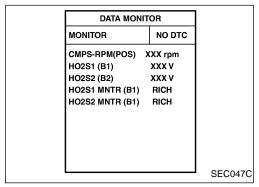


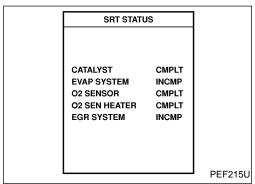
EGRC-BPT Valve Function (Cont'd) **COMPONENT INSPECTION**

EGRC-BPT valve

- Plug one of two ports of EGRC-BPT valve.
 Vacuum from the other port and check leakage without applying any pressure from under EGRC-BPT valve. Leakage should exist.

Three Way Catalyst Function (P0420: Left bank), (P0430: Right bank)


ON BOARD DIAGNOSIS LOGIC


ECM monitors the switching frequency ratio of heated oxygen sensor 1 (front) and 2 (rear).

A three way catalyst with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2 (rear). As oxygen storage capacity decreases, the heated oxygen sensor 2 (rear) switching frequency will increase.

When the frequency ratio of heated oxygen sensor 1 (front) 2 (rear) approaches a specified limit value, the three way catalyst malfunction is diagnosed.

Diagnostic Trouble	Malfunction is detected when	Check Items	- LC
Code No. P0420 0702	Three way catalyst does not operate properly. Three way catalyst does not have enough oxygen storage	(Possible Cause) Three way catalyst Exhaust tube	EC
(Bank 1) P0430 0703	capacity.	Intake air leaksInjectorsInjector leaksSpark plug	FE
(Bank 2)		Improper ignition timing	_ AT

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set "MANU TRIG" and "HI SPEED", then select "HO2S1 (B1) (B2)", "HO2S2 (B1) (B2)", "HO2S1 MNTR (B1) (B2)", "HO2S2 MNTR (B1) (B2)" in "DATA MONI-TOR" mode with CONSULT-II.
- 4) Touch "RECORD" on CONSULT-II screen with engine speed held at 2,000 rpm constantly under no load.
- Make sure that the switching frequency between "RICH" and "LEAN" of "HO2S2 MNTR (B1) (B2)" is much less than that of "HO2S1 MNTR (B1) (B2)" as shown below. Switching frequency ratio =

Heated oxygen sensor 2 (rear) switching freauencv

Heated oxygen sensor 1 (front) switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, the three way catalyst is not operating properly.

If the "HO2S1 MNTR (B1) (B2)" does not indicate "RICH" and "LEAN" periodically more than 5 times within 10 seconds at step 4), perform TROUBLE **DIAGNOSES FOR DTC P0133 first.**

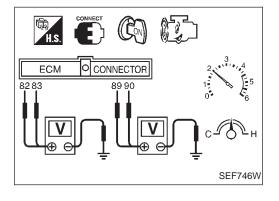
"DIAGNOSTIC lf the result is NG, go to PROCEDURE", EC-297.

If the result is OK, go to following step.

EC-295

MA

PD


FA

RA

HA

Three Way Catalyst Function (P0420: Left bank), (P0430: Right bank) (Cont'd)

- Select "AUTO TRIG" in "DATA MONITOR" mode with CONSULT-II.
- Drive vehicle at a speed more than 84 to 96 km/h (52 to 60 MPH) with D position ("OD" ON) for at least 10 consecutive minutes.
 - (Drive the vehicle in an area where vehicle speed and accelerator pressure can be held steady and constant.) If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-297.
- 8) Select "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.
- Verify that "CATALYST" is "CMPLT".
 If not "CMPLT", repeat the test from step 3).
- 10) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-297.

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the three way catalyst.

During this check, a DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeters probes between ECM terminals (2) (B2),
 (8) (B1) (sensor signal front) and ground. (8) (B2), (9) (B1)

(sensor signal rear) and ground.

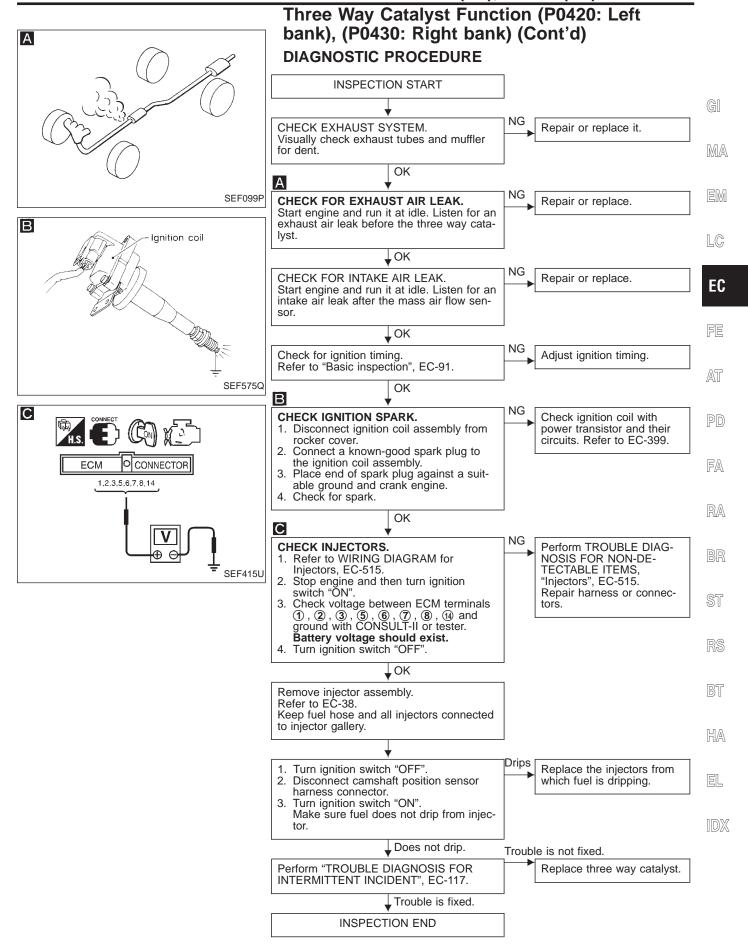
- Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminals (39) and ground is much less than that of ECM terminals (32) and ground (right bank). Or (39) and ground is much less than that of the terminals (33) and ground (left bank).

Switching frequency ratio =

Heated oxygen sensor 2 (rear) voltage switching frequency

Heated oxygen sensor 1 (front) voltage switching frequency

This ratio should be less than 0.75.


If the ratio is greater than above, it means three way catalyst does not operate properly.

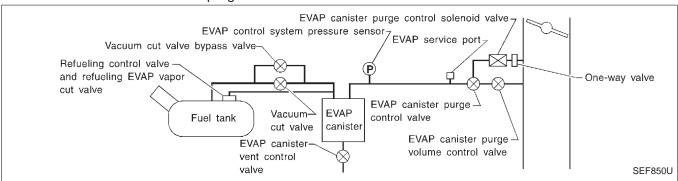
NOTE:

If the voltage at terminal ② or ③ does not switch periodically more than 5 times within 10 seconds at step 4, perform TROUBLE DIAGNOSIS FOR DTC P0130 or P0150 first, EC-166.

6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-297.

TROUBLE DIAGNOSIS FOR DTC P0420 (B1), P0430 (B2)

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure)

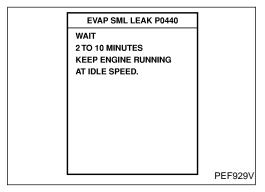

Note: If DTC P1448 is displayed with P0440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (See EC-464.)

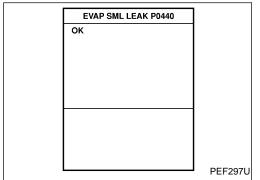
ON BOARD DIAGNOSIS LOGIC

This diagnosis detects leaks in the EVAP purge line using of engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge control valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge control valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control valve and EVAP canister purge control valve are opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control valve and EVAP canister purge control valve will be closed.


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0440 0705	EVAP control system has a leak. EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge control valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge control valve EVAP canister purge volume control valve and the circuit EVAP canister purge control solenoid valve Absolute pressure sensor Fuel tank temperature sensor MAP/BARO switch solenoid valve and the circuit Blocked or bent rubber tube to MAP/BARO switch solenoid valve O-ring of EVAP canister vent control valve is missing or damaged. Water separator EVAP canister is saturated with water. EVAP control system pressure sensor Refueling control valve ORVR system leaks


CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

1) IT IS BETTER TO PERFORM TEST AT A LOCATION OF 0 TO 30°C (32 TO 86°F). 2) OPEN ENGINE HOOD. 3) START ENGINE WITH VEHICLE STOPPED. IIF ENG IS ON, STOP FOR 5 SEC. THEN RESTART. 4) TOUCH START.

EVAP SML LEAK P0440 CAN NOT BE DIAGNOSED FUEL TEMPERATURE IS TOO HIGH. RETEST AFTER FUEL HAS COOLED.

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

- If DTC P1448 is displayed with P0440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (See EC-464.)
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

EM

LC

EC

FE

AT

PD

FA

RA

BT

HA

EL

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full and vehicle is placed on the flat level surface.
- It is better that fuel level is low.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- Battery voltage is more than 11V at idle.

SEC048C

- 1) Turn ignition switch "ON".
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Check that the following conditions are met. COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)
- Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.

Follow the instruction displayed.

NOTE:

- If the CONSULT-II screen shown at left is displayed, stop the engine and stabilize the vehicle temperature at 25°C (77°F) or cooler. After "FUEL T/TMP SE" becomes less than 30°C (86°F), retest. (Use a fan to reduce the stabilization time.)
- Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-301.

NOTE:

 Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.

– OR

- It is better that the fuel level is low.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

- 1) Start engine (TCS switch "OFF").
- Drive vehicle according to "Driving pattern", EC-56.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- Start engine.

It is not necessary to cool engine down before the driving.

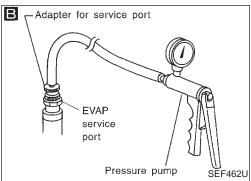
- 7) Drive vehicle again according to the "Driving pattern", EC-56.
- 8) Stop vehicle.

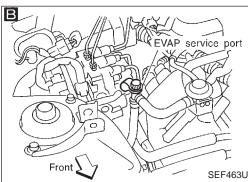
EC-299

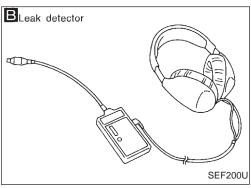
Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

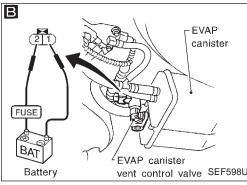
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447", EC-457.
- If P0440 is displayed on the screen, go to "DIAGNOS-TIC PROCEDURE", EC-301.
- If P1440 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1440", EC-432.
- If P0440 and P1440 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6).

— OR –

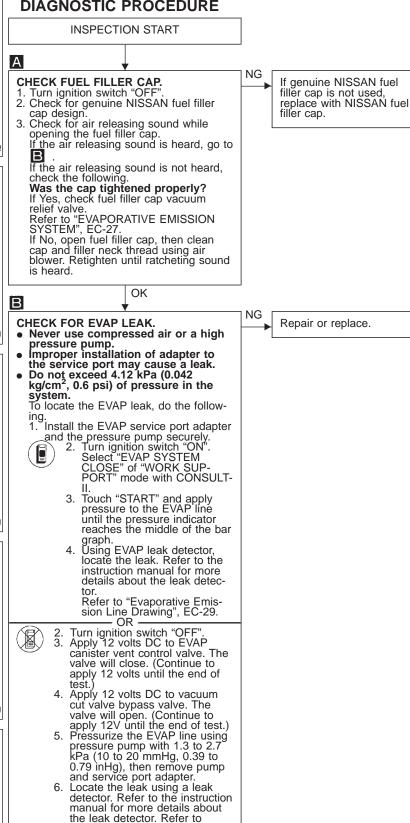

NOTE:


- Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.
- It is better that the fuel level is low.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).




- 1) Start engine (TCS switch "OFF").
- 2) Drive vehicle according to "Driving pattern", EC-56.
- 3) Stop vehicle.
- 4) Turn ignition switch "OFF" and wait at least 5 seconds.
- 5) Turn ignition switch "ON" and perform "Diagnostic Test Mode (Self-diagnostic results)" with ECM.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-301.

NISSAN SEF434Q



Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd) DIAGNOSTIC PROCEDURE

IDX

HA

EL

GI

MA

LC

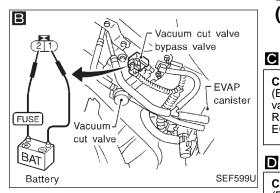
EC

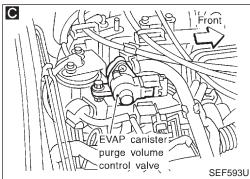
FE

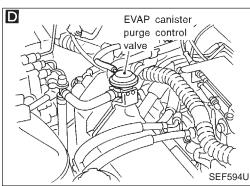
AT

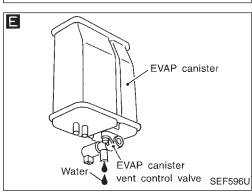
PD

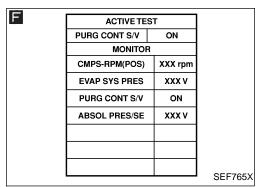
FA


RA


"Evaporative Emission Line Drawing", EC-29.


▼OK


(A)


(Go to next page.)

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

NG

NG

NG

(EVAP canister purge volume control valve).

Refer to "COMPONENT INSPECTION", EC-304.

Replace EVAP canister purge volume control valve.

CHECK COMPONENT

(EVAP canister purge control valve). Refer to "COMPONENT INSPECTION", EC-492.

Replace EVAP canister purge control valve.

OK

OK

CHECK COMPONENT AND CIRCUIT (EVAP canister vent control valve, O-ring and water separator)

Refer to "TROUBLE DIAGNOSIS FOR P0446" for circuit, EC-315 and "COMPO-NENT INSPECTION", EC-306.

Repair or replace EVAP canister vent control valve and O-ring or harness/ connectors.

IΕ

CHECK IF EVAP CANISTER IS SATU-RATED WITH WATER.

- Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister. If it will, weigh the EVAP canister with the vent control valve attached. If the weight is:

More than 1.8 kg (4.0 lb) \rightarrow NG Less than 1.8 kg (4.0 lb) \rightarrow OK

Replace EVAP canister and check the following.

- 1. Check hose connections to the EVAP canister and water separator for clogging and poor connection.
- 2. Check water separator. Refer to "COMPONENT INSPECTION", EC-306.

E

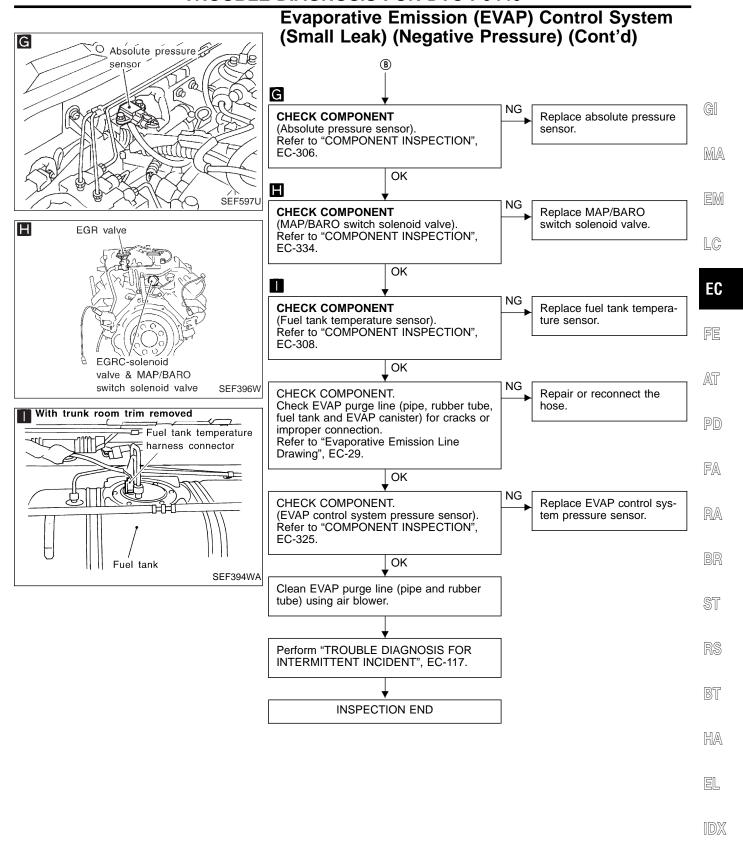
CHECK COMPONENT

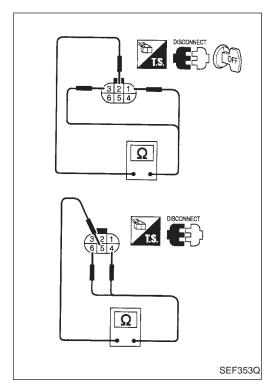
(EVAP canister purge control solenoid valve).

1. Disconnect vacuum hose to EVAP canister purge control solenoid valve.

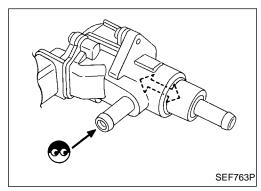
OK

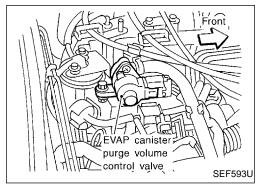
- Start engine.
- 3. Perform "PURG CONT S/V" in "ACTIVE TEST" mode.
- Select "ON" on CONSULT-II screen to turn on "PURG CONT
- Check vacuum hose for vacuum when revving engine up to 2,000


Vacuum should exist. OR


- 1. Start engine and warm it up to normal operating temperature.
- Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge control solenoid valve.
- 4. Start engine and let it idle for at least 60 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000

Vacuum should exist.


♦OK (B) (Go to next page.) Check the following.


- EVAP canister purge control solenoid valve. Refer to "COMPONENTS INSPECTION", EC-440 and "P1492 EVAP canister purge control solenoid valve" for circuit, EC-305.
- · Vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-19.

ACTIVE TEST		
PURG VOL CONT/V	20 step	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
HO2S1 (B1)	LEAN	
HO2S1 (B2)	LEAN	
THRTL POS SEN	XXX V	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
	•	SEC049C

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control valve

- Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals. terminal ② and terminals ①, ③
 - terminal (5) and terminals (4), (6)

Resistance:

Approximately 35 - 43Ω [At 25°C (77°F)]

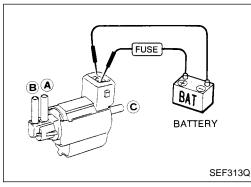
- 3. Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5. Turn ignition switch "ON".
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the valve opening. If NG, replace the EVAP canister purge volume control valve.

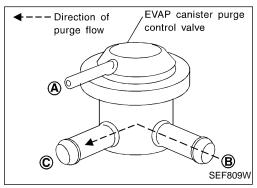
- 1. Disconnect EVAP canister purge volume control valve harness connector.
- Check resistance between the following terminals. terminal ② and terminals ①, ③

- OR -

terminal (5) and terminals (4), (6)

Resistance:


Approximately 35 - 43Ω [At 25°C (77°F)]


- Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5. Turn ignition switch "ON" and "OFF". Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the ignition switch position.
 - If NG, replace the EVAP canister purge volume control valve.

ACTIVE TES	Т	
PURG CONT S/V	ON	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
EVAP SYS PRES	xxx v	
PURG CONT S/V	ON	
ABSOL PRES/SE	xxx v	

EVAP canister purge control

valve

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

EVAP canister purge control solenoid valve

- 1. Turn ignition switch "ON".
- Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Disconnect vacuum hose at EVAP canister purge control valve.
- Touch "ON" and "OFF" and check for vacuum passing through the hose.

Condition	Vacuum
Idle	Not exist
2,000 rpm	Exist

- OR

SEF400W

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace solenoid valve.

EVAP canister purge control valve

Check EVAP canister purge control valve as follows:

- Blow air in port (A) and (C), then ensure that there is no leakage.
- 2. Blow air in port (B), then ensure that there is a resistance to flow out of port (C).
- 3. Apply vacuum to port (a). [Approximately -13.3 to -20.0 kPa (-100 to -150 mmHg, -3.94 to -5.91 inHg)] Blow air in port (c) and ensure free flow out of port (b).

ST

GI

MA

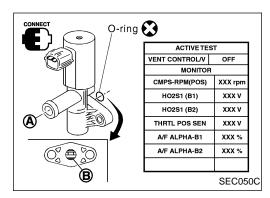
EM

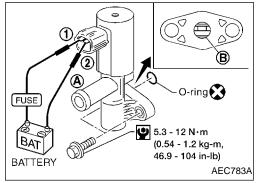
LC

EC

FE

AT


PD


FA

RA

HA

EL

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

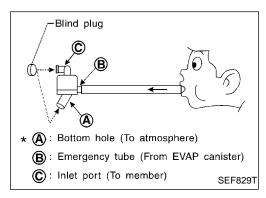
EVAP canister vent control valve

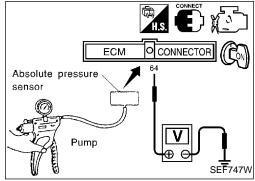
Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with

Condition VENT CONTROL/V	Air passage continuity between (a) and (B)
ON	No
OFF	Yes

OR




Condition	Air passage continuity between (a) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace control valve.

Make sure new O-ring is installed properly.

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that (A) and (C) are not clogged by blowing air into (B) with (A), and then (C) plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE

Do not disassemble water separator.

Absolute pressure sensor

- Remove absolute pressure sensor with its harness connector connected.
- Remove hose from absolute pressure sensor.
- 3. Turn ignition switch "ON" and check output voltage between terminal (4) and ground.

The voltage should be 3.2 to 4.8V.

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure. Doing so will damage the absolute pressure sensor.
- If NG, replace absolute pressure sensor.

MA

LC

EC

AT

PD

FA

RA

BT

HA

EL

ACTIVE TES	ST T	
MAP/BARO SW/V	BARO	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
MAP/BARO SW/V	BARO	
ABSOL PRES/SE	xxx v	
		SEF767X

ACTIVE TES	T	
MAP/BARO SW/V	MAP	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxx v	

MAP/BARO switch solenoid valve

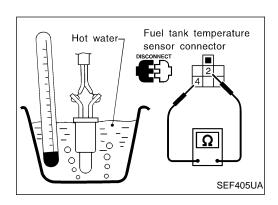
- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- Check the following.
- Condition: At idle under no-load.
- CONSULT-II display

MAP/BARO SW/V	ABSOL PRES/SE (Voltage)
BARO	More than 2.6V
MAP	Less than the voltage at BARO

Time for voltage to change

MAP/BARO SW/V	Required time to switch
BARO to MAP	Less than 1 second
MAP to BARO	Less train i second

If NG, check solenoid valve as shown below.


Remove MAP/BARO switch solenoid valve. Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals ①	Yes	No

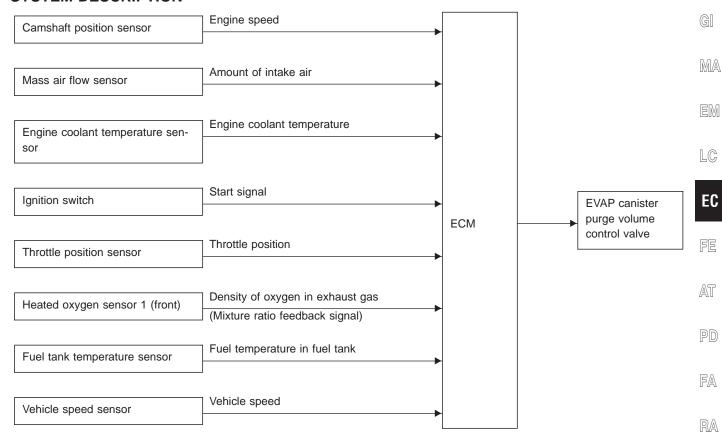
No supply No Yes 3. If NG or operation takes more than 1 second, replace

solenoid valve.

and ②

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

Fuel tank temperature sensor


Check resistance by heating with hot water or heat gun as shown in the figure.

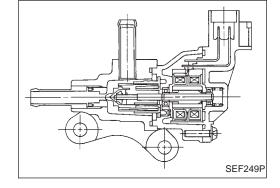
Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit)

SYSTEM DESCRIPTION

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.



EL

COMPONENT DESCRIPTION

The EVAP canister purge volume control valve uses a step motor to control the flow rate of fuel vapor from the EVAP canister. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	- Engine: After warming up	Idle	0 step
PURG VOL C/V	Engine: After warming up Air conditioner switch "OFF"	Vehicle running (Shift lever "1")	_

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

			, ,	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	W/B	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
130	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE
131	N/G	Fower supply for ECIVI	Ignition switch ON	(11 - 14V)
123	W/L	Current return	Engine is running. Lidle speed	BATTERY VOLTAGE (11 - 14V)
28	BR/Y	EVAP canister purge vol-	Engine is running.	0 - 0.4V or
29	G	ume control valve	L Idle speed	BATTERY VOLTAGE (11 - 14V)
35	G/OR	EVAP canister purge vol-	Engine is running.	0 - 0.4V or
36	L/B	ume control valve	Idle speed	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0443 1008	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister purge volume control valve

DATA MON	ITOR
MONITOR	NO DTC
CMPS-RPM(POS)	XXX rpm
COOLAN TEMP/S	XXX °C
PRUG VOL C/V	0 step

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.

- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-313.

 OR

Follow the procedure "With CONSULT-II" above.

FE

AT

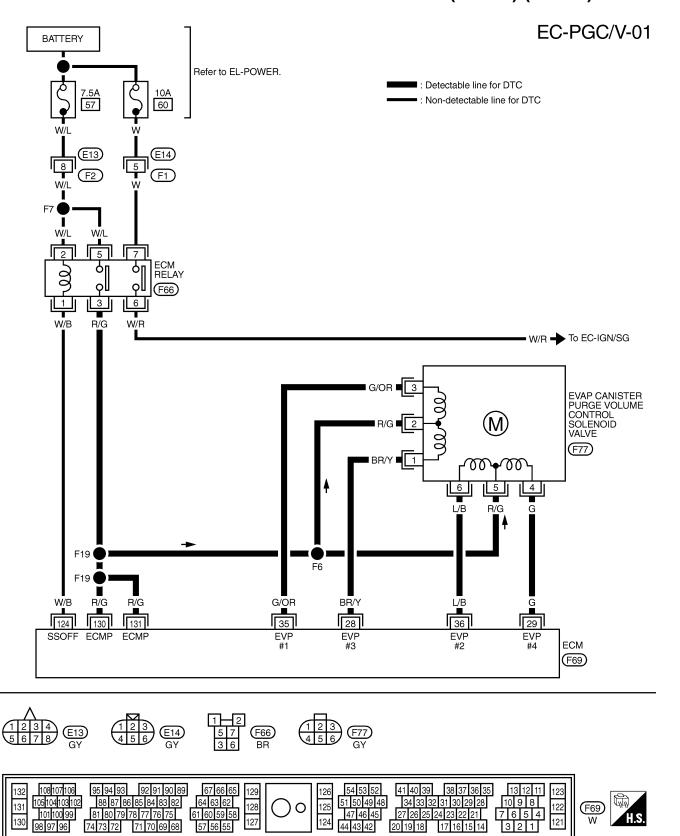
PD

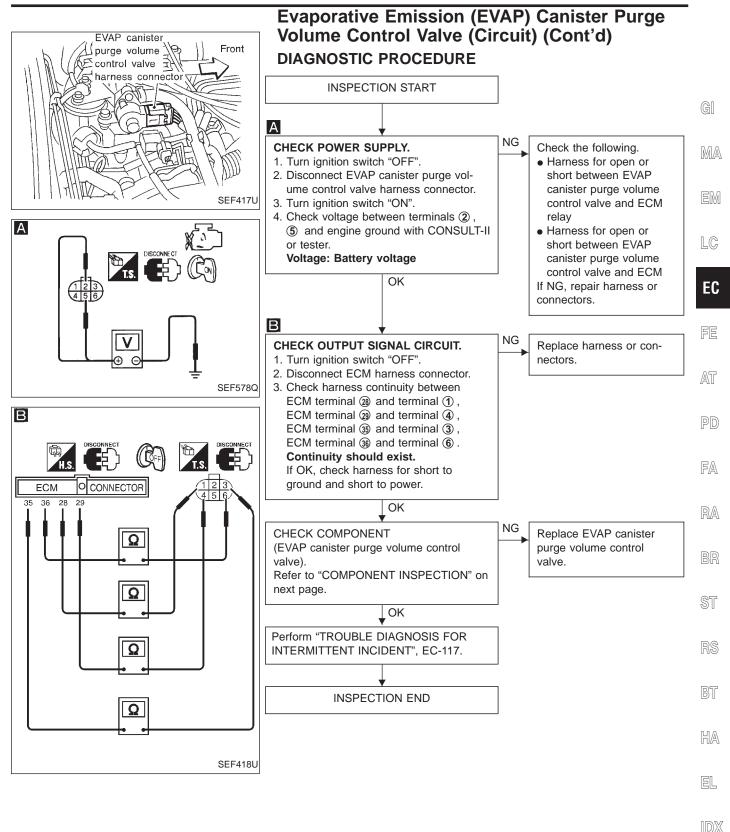
FA

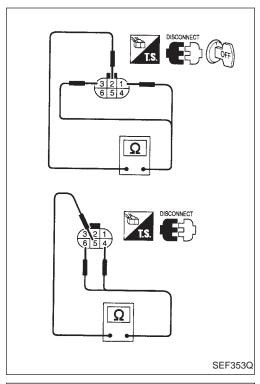
RA

BR

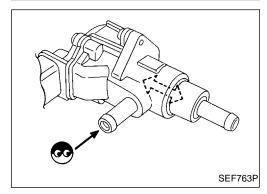
ST

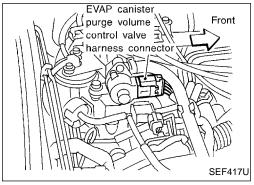

RS


BT


HA

EL


Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd)



ACTIVE TEST PURG VOL CONT/V 20 step MONITOR CMPS-RPM(POS) XXX rpm HO2S1 (B1) LEAN HO2S1 (B2) LEAN THRTL POS SEN XXX V Δ/Ε ΔΙ ΡΗΔ-Β1 XXX % A/F ALPHA-B2 XXX % SEC049C

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Circuit) (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control valve

- Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals. terminal ② and terminals ①, ③ terminal ⑤ and terminals ④, ⑥

Resistance:

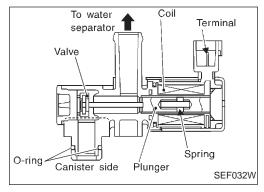
Approximately 35 - 43Ω [At 25°C (77°F)]

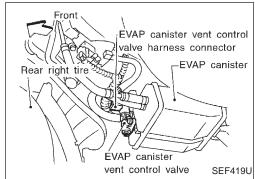
- Reconnect EVAP canister purge volume control valve harness connector.
- Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 (Plug the purge hoses. The EVAP canister purge vol-
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5. Turn ignition switch "ON".
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the valve opening. If NG, replace the EVAP canister purge volume control valve

- Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals.

– OR –

terminal 2 and terminals 1, 3


terminal (5) and terminals (4), (6)


Resistance:

Approximately 35 - 43Ω [At 25°C (77°F)]

- 3. Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- Turn ignition switch "ON" and "OFF". Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

If NG, replace the EVAP canister purge volume control valve.

Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit)

COMPONENT DESCRIPTION

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

MA

EM

LC

EC

AT

PD

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

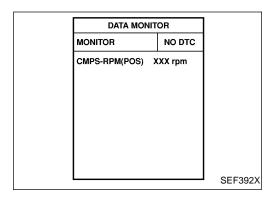
Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
VENT CONT/V	Ignition switch: ON	OFF	ra.

RA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	0
20	P/B	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	HA
P0446	An improper voltage signal is sent to ECM through	Harness or connectors (EVAP canister vent control valve circuit is open or shorted.) EVAP canister vent control valve	EL
0903	EVAP canister vent control valve.		IDX

Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd)

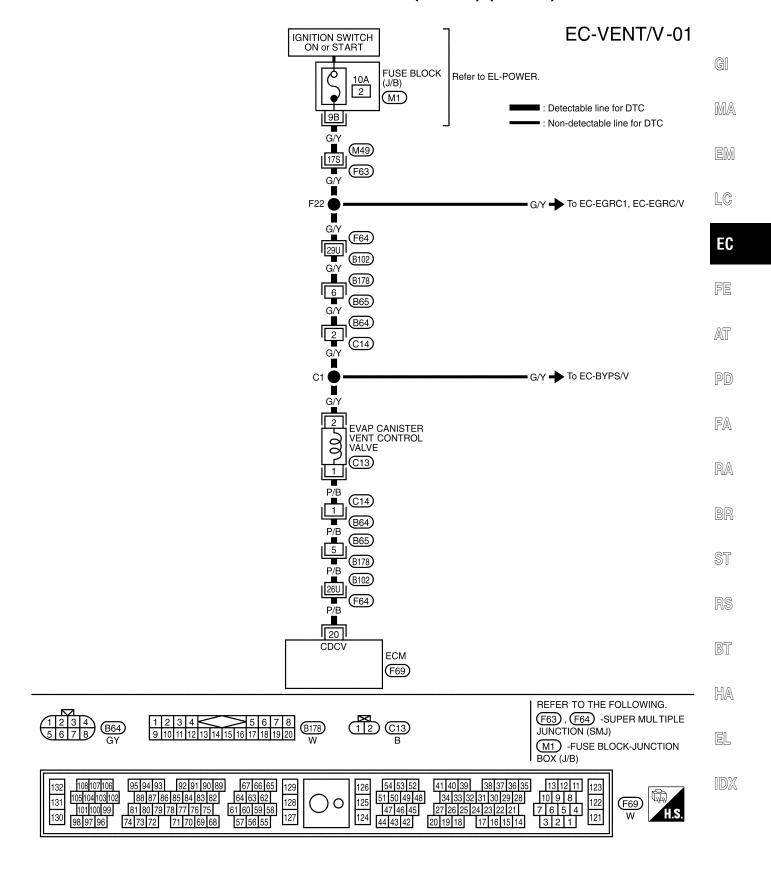
DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

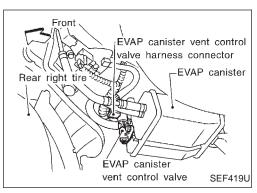
NOTE:

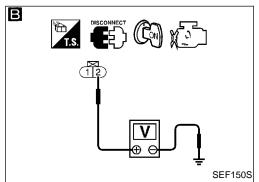
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has just been completed, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next

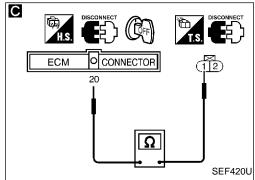
TESTING CONDITION:

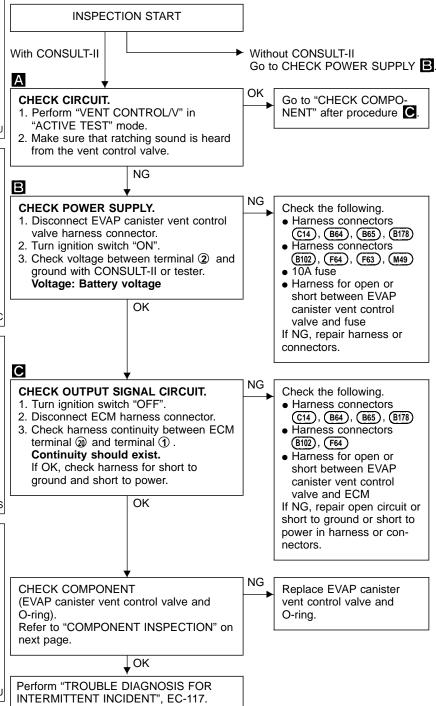
Before performing the following procedure, confirm battery voltage is more than 11V at idle.



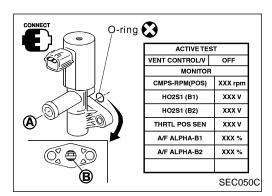

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 8 seconds.4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-318.

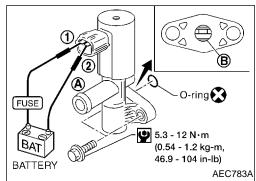

- OR -Follow the procedure "With CONSULT-II" above.


Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd)



Α **ACTIVE TEST** VENT CONTROL/V OFF MONITOR CMPS-RPM(POS) XXX rpm HO2S1 (B1) XXX V HO2S1 (B2) XXX V THRTL POS SEN xxx v A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % SEC052C





Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd) DIAGNOSTIC PROCEDURE

INSPECTION END

Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd) **COMPONENT INSPECTION**

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (a) and (b)
ON	No
OFF	Yes

- OR -

|--|

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

GI

MA

LC

EC

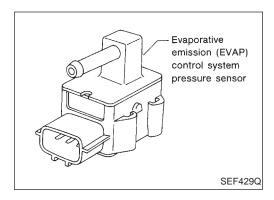
FE

AT

PD

FA

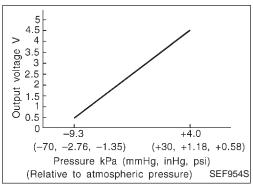
RA


BR

ST

RS

BT


HA

Evaporative Emission (EVAP) Control System Pressure Sensor

COMPONENT DESCRIPTION

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

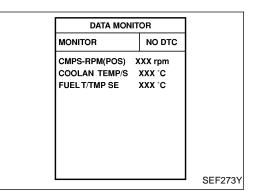
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 3.4V

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
98	BR/W	Sensors' power supply	Ignition switch "ON"	Approximately 5V
92	W/R	EVAP control system pressure sensor	Ignition switch "ON"	Approximately 3.4V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0450 0704	An improper voltage signal from EVAP control system pressure sensor is sent to ECM.	Harness or connectors (The EVAP control system pressure sensor circuit is open or shorted.) Rubber hose to EVAP control system pressure sensor is clogged, bent, kinked, disconnected or not corrected properly. EVAP control system pressure sensor EVAP canister vent control valve (The valve is stuck open.) EVAP canister purge volume control valve EVAP canister Rubber hose from EVAP canister vent control valve to water separator

Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

- Always perform test at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

EC

FE

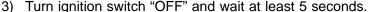
- 1) Start engine and warm it at idle up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "TANK F/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 12 seconds.
- 7) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-323.

- OR

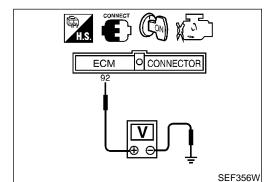
PD

- Start engine and warm it up to normal operating temperature.
- Check that voltage between ECM terminal (92) and ground is less than 4.2V.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Start engine and wait at least 12 seconds.

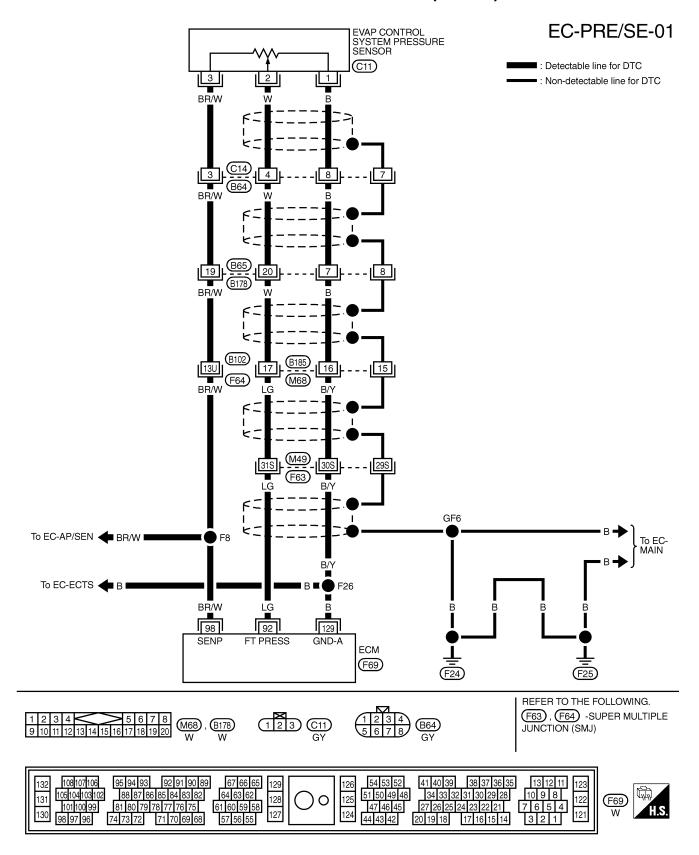
perature.

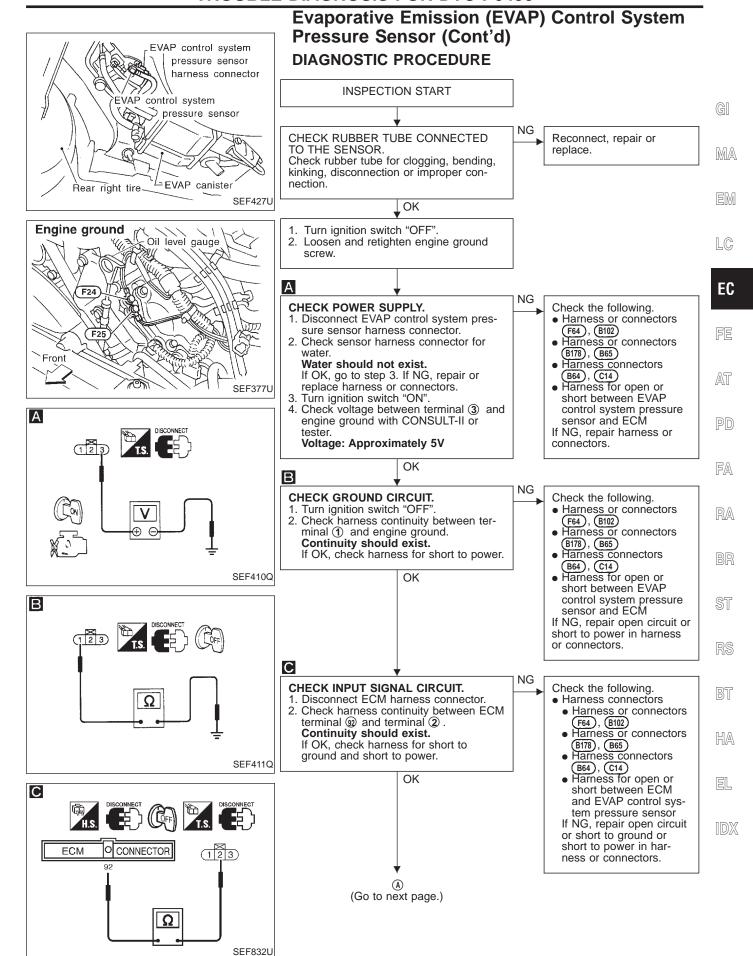

5) Select "MODE 7" with GST.6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-323.

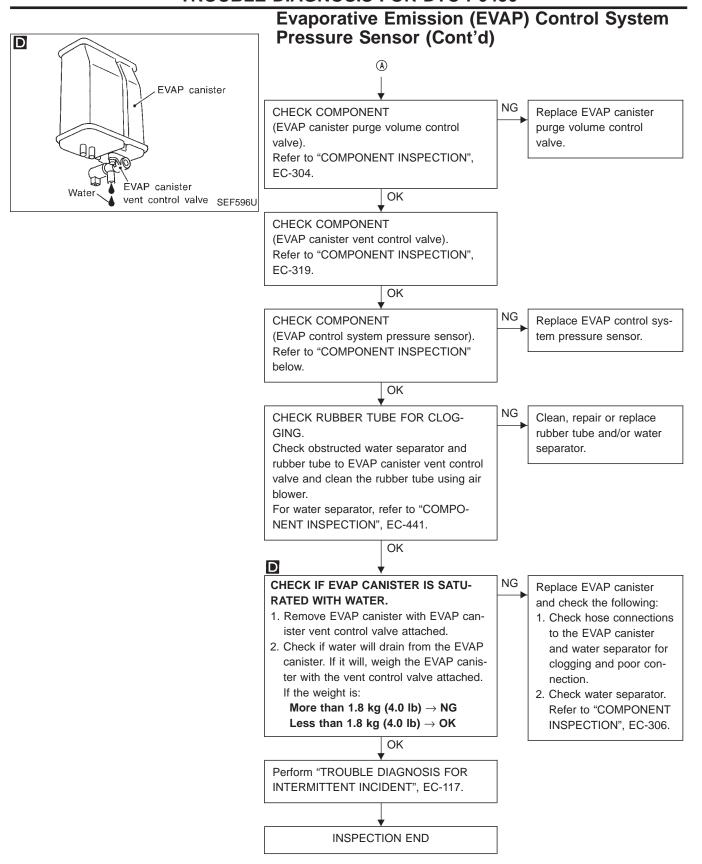
- OR Start engine and warm it up to normal operating tem-
- Check that voltage between ECM terminal (92) and ground is less than 4.2V.

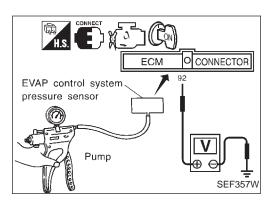


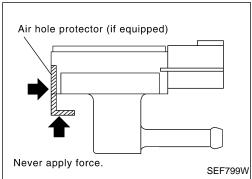
Start engine and wait at least 12 seconds.


- 5) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 6) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 7) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-323.


HA


EL




Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)

Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)

COMPONENT INSPECTION

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- Check output voltage between ECM terminal (2) and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

MA

LC

EC

FE

. _

AT

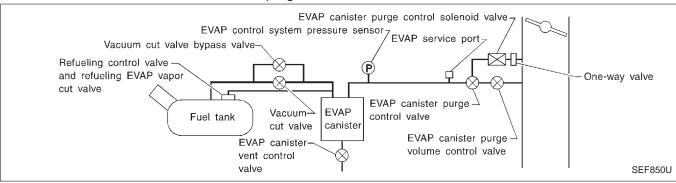
PD

FA

RA

DE

__


HA

EL

Evaporative Emission (EVAP) Control System (Gross Leak)

ON BOARD DIAGNOSTIC LOGIC

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge control valve.

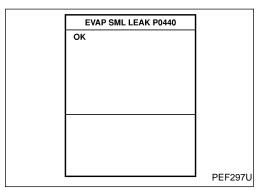
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0440 0705	EVAP control system has a leak. EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge control valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge control valve EVAP canister purge control valve and the circuit EVAP canister purge control solenoid valve Absolute pressure sensor Fuel tank temperature sensor MAP/BARO switch solenoid valve and the circuit Blocked or bent rubber tube to MAP/BARO switch solenoid valve O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling control valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

1) IT IS BETTER TO PERFORM TEST AT A LOCATION OF 0 TO 30°C (32 TO 86°F). 2) OPEN ENGINE HOOD. 3) START ENGINE WITH VEHICLE STOPPED. IF ENG IS ON, STOP FOR 5 SEC. THEN RESTART. 4) TOUCH START.

EVAP SML LEAK P0440


CAN NOT BE
DIAGNOSED

FUEL TEMPERATURE IS TOO
HIGH. RETEST AFTER FUEL
HAS COOLED.

PEF669U

EVAP SML LEAK P0440
WAIT
2 TO 10 MINUTES
KEEP ENGINE RUNNING
AT IDLE SPEED.

PEF929V

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

DTC CONFIRMATION PROCEDURE

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

GI

LC

EC

FE

AT

PD

FA

RA

HA

EL

NOTE:

SEC048C

- If DTC P1448 is displayed with P0455, perform TROUBLE DIAGNOSIS FOR DTC P1448 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full and vehicle placed on the flat level surface.
- It is better that fuel level is low.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- Battery voltage is more than 11V at idle.

- Tighten fuel filler cap securely until ratching sound is heard.
- 2) Turn ignition switch "ON".
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure the following conditions are met. COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)
- 6) Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.

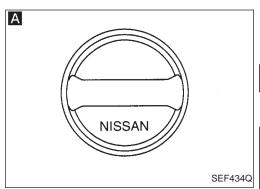
Follow the instruction displayed.

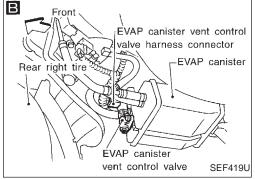
NOTE:

- If the engine cannot be maintained within the range on CONSULT-II screen, go to "Basic Inspection", EC-91.
- Make sure that EVAP hoses are connected EVAP canister purge volume control solenoid valve properly.
- 7) Make sure that "OK" is displayed. If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to "Diagnostic Procedure", EC-329. If P0440 is displayed, perform "Diagnostic Procedure" for P0440.

NOTE:

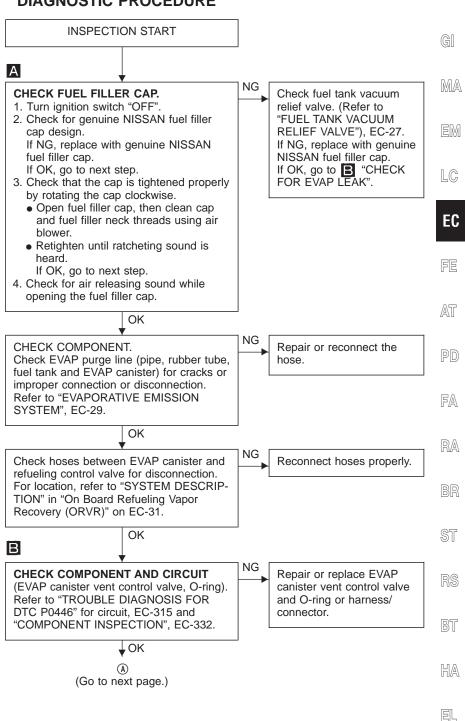
Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.

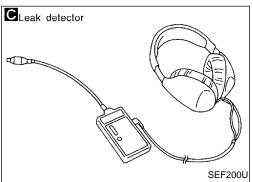

- 1) Start engine. (TCS switch "OFF")
- 2) Drive vehicle according to "Driving pattern", EC-56.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

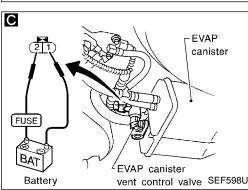

EC-327

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

It is not necessary to cool engine down before driving.


- 7) Drive vehicle again according to the "Driving pattern".
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447", EC-457.
- If P0440 is displayed on the screen, go to "DIAGNOS-TIC PROCEDURE", EC-301.
- If P1440 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1440", EC-432.
- If P0440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 5).


Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)


DIAGNOSTIC PROCEDURE

Adapter for service port EVAP service port Pressure pump SEF462U To

EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

CHECK FOR EVAP LEAK.

 Never use compressed air or high pressure pump.

 Improper installation of service port may cause leaking.

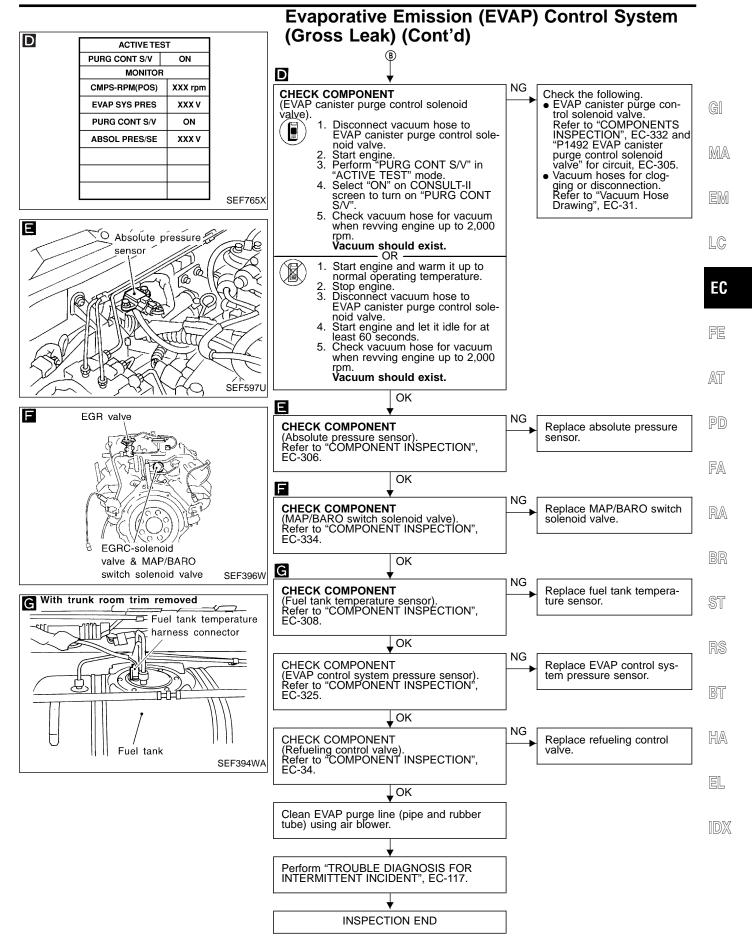
 Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

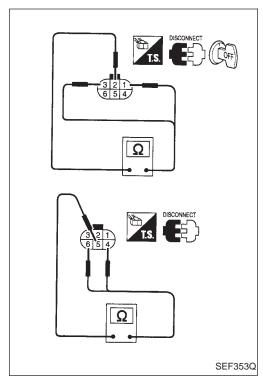
To locate EVAP leak portion, proceed with the following steps.

1. Install the EVAP service port adapter and the pressure pump securely.

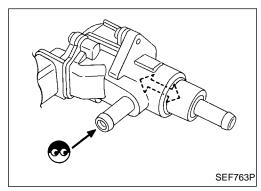
- Turn ignition switch "ON". Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- Touch "START" and apply vacuum into the EVAP line until the pressure indicator reaches the middle of bar graph.
- Using EVAP leak detector, locate the leak portion. For the leak detector, refer to instruction manual for more details. Refer to "Evaporative Emission Line Drawing", EC-29.

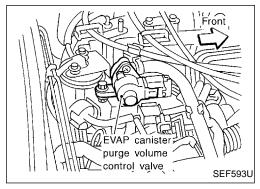
- 2. Turn ignition switch "OFF".
- Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)
- Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg).
- Locate the leak using a leak detector. Refer to the instruction manual for more details about the leak detector. Refer to "Evaporative Emission Line Drawing", EC-29.


↓OK


B

(Go to next page.)


NG F


Repair or replace.

ACTIVE TEST		
PURG VOL CONT/V	20 step	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
HO2S1 (B1)	LEAN	
HO2S1 (B2)	LEAN	
THRTL POS SEN	xxx v	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
	•	SEC049C

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

COMPONENT INSPECTION

EVAP canister purge volume control valve

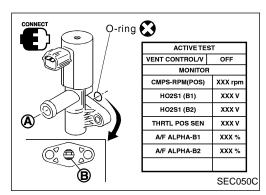
- 1. Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals. terminal ② and terminals ①, ③
 - terminal (5) and terminals (4), (6)

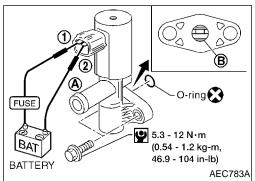
Resistance:

Approximately 35 - 43Ω [At 25°C (77°F)]

- 3. Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5. Turn ignition switch "ON".
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the valve opening. If NG, replace the EVAP canister purge volume control valve.

- 1. Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals. terminal ② and terminals ①, ③


- OR -


terminal (5) and terminals (4), (6)

Resistance:

Approximately 35 - 43 Ω [At 25°C (77°F)]

- Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5. Turn ignition switch "ON" and "OFF". Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the ignition switch position.
 - If NG, replace the EVAP canister purge volume control valve.

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

EVAP canister vent control valve

Check air passage continuity.

Air passage continuity between (A) and (B)
No
Yes

OR

GI

MA

LC

EC

AT

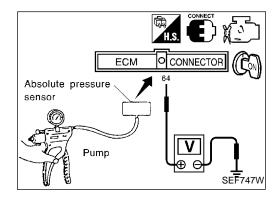
PD

FA

RA

BT

HA


EL

Condition	Air passage continuity between (a) and (b)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If portion (B) is rusted, replace control valve.

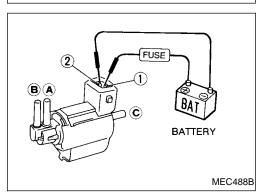
Make sure new O-ring is installed properly.

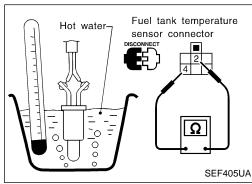
Absolute pressure sensor

- Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch "ON" and check output voltage between ECM terminal (4) and engine ground.

The voltage should be 3.2 to 4.8V.

Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.


The voltage should be 1.0 to 1.4V lower than the value measured in step 3.


CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 5. If NG, replace absolute pressure sensor.

_			
	ACTIVE TES		
	MAP/BARO SW/V		
	MONITOR		
	CMPS-RPM(POS)		
	MAP/BARO SW/V	BARO	
	ABSOL PRES/SE	xxx v	
			SFF767X

ACTIVE TEST				
MAP/BARO SW/V	MAP			
MONITOR				
CMPS-RPM(POS) XXX rpm				
MAP/BARO SW/V	MAP			
ABSOL PRES/SE	xxx v			

Evaporative Emission (EVAP) Control System (Gross Leak) (Cont'd)

MAP/BARO switch solenoid valve

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
- Condition: At idle under no-load.
- CONSULT-II display

MAP/BARO SW/V	ABSOL PRES/SE (Voltage)	
BARO	More than 2.6V	
MAP	Less than the voltage at BARO	
Time for voltage to change		
MAP/BARO SW/V	Required time to switch	

Less than 1 second

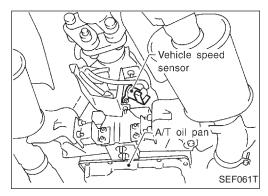
4. If NG, check solenoid valve as shown below.

BARO to MAP

MAP to BARO

- 1. Remove MAP/BARO switch solenoid valve.
- 2. Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes


3. If NG or operation takes more than 1 second, replace solenoid valve.

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

Vehicle Speed Sensor (VSS)

COMPONENT DESCRIPTION

The vehicle speed sensor is installed in the transmission. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

GI

MA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

LC

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

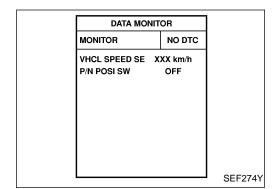
EC

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)	FE
				Approximately 5.2V	AT
68	P/L	Vehicle speed sensor	Engine is running. Lift up drive wheels and run engine at idle in "D" position.	(V) 10 5 0 100 ms	PD FA

RA

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0500 0104	 The almost 0 km/h (0 MPH) signal from the vehicle speed sensor is sent to ECM even when the vehicle is driving. 	Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor


ST

BR

BT

HA

EL

Vehicle Speed Sensor (VSS) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

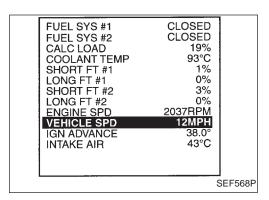
CAUTION:

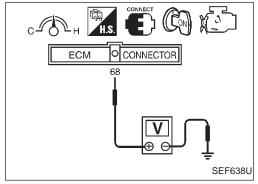
Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:


Step 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.



- 1) Start engine.
- 2) Read vehicle speed sensor signal in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CON-SULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position. If NG, go to "DIAGNOSTIC PROCEDURE", EC-339. If OK, go to following step.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Warm engine up to normal operating temperature.
- 5) Maintain the following conditions for at least 10 consecutive seconds with TCS switch "OFF".

CMPS-RPM (POS): 1,300 - 2,250 rpm COOLAN TEMP/S: More than 70°C (158°F) B/FUEL SCHDL: 2.0 - 3.5 msec Selector lever: Suitable position PW/ST SIGNAL: OFF

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-339.

Vehicle Speed Sensor (VSS) (Cont'd)

OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a DTC might not be confirmed.

- 1) Lift up drive wheels.
- 2) Start engine (TCS switch "OFF").
- Read vehicle speed sensor signal in "MODE 1" with GST.

The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

MA

If NG, go to "DIAGNOSTIC PROCEDURE", EC-339.

- OR –

- 1) Lift up drive wheels.
- Start engine (TCS switch "OFF"). 2)
- Read the voltage signal between ECM terminal 69 (Vehicle speed sensor signal) and ground with oscillo-
- 4) Verify that the oscilloscope screen shows the signal FE wave as shown at "ECM TERMINALS AND REFER-ENCE VALUE" on previous page.
- 5) If NG, go to "DIAGNOSTIC PROCEDURE", EC-339.

GI

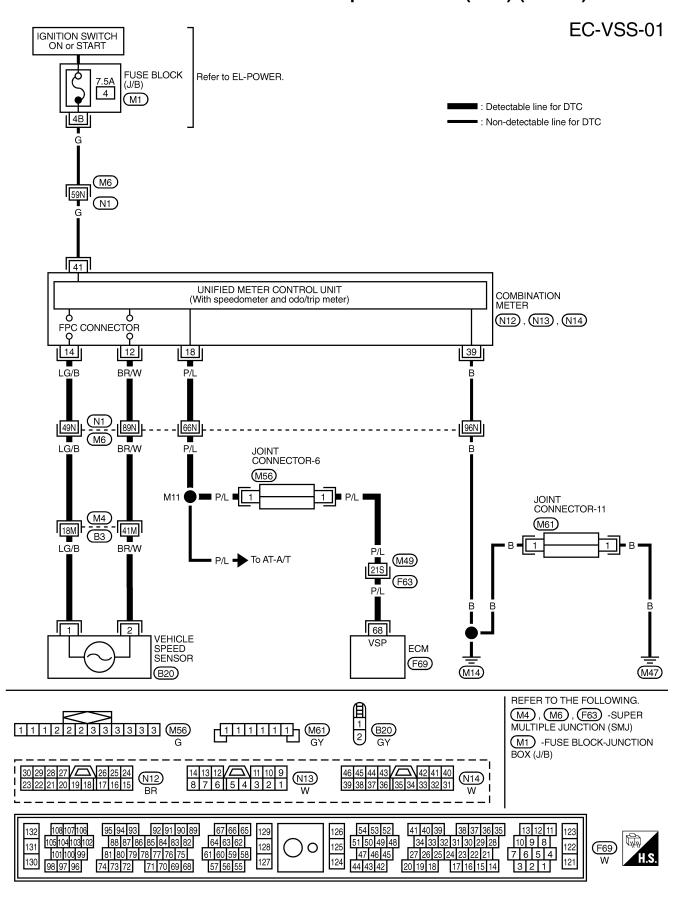
LC

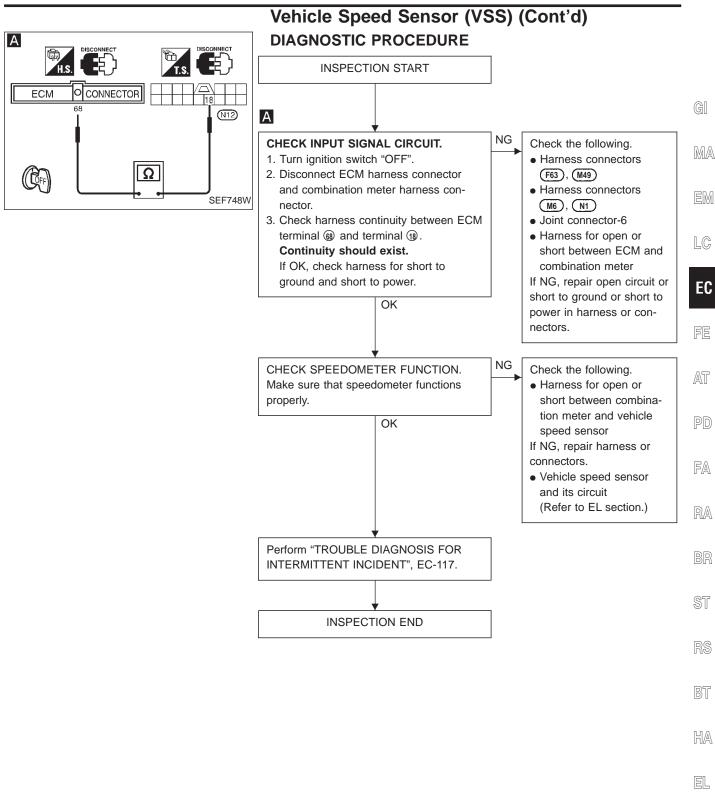
EC

AT

PD

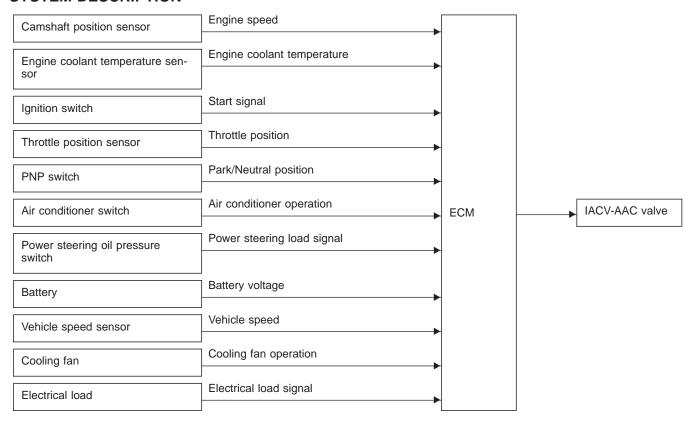
FA

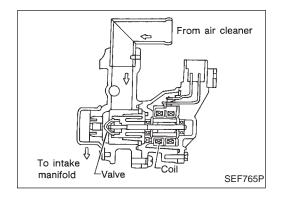

RA


BT

HA

EL


Vehicle Speed Sensor (VSS) (Cont'd)



Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve

SYSTEM DESCRIPTION

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via IACV-AAC valve. The IACV-AAC valve changes the opening of the air by-pass passage to control the amount of auxiliary air. This valve is actuated by a step motor built into the valve, which moves the valve in the axial direction in steps corresponding to the ECM output signals. One step of IACV-AAC valve movement causes the respective opening of the air by-pass passage. (i.e. when the step advances, the opening is enlarged.) The opening of the valve is varied to allow for optimum control of the engine idling speed. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the step position of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering and cooling fan operation).

COMPONENT DESCRIPTION

The IACV-AAC valve is operated by a step motor for centralized control of auxiliary air supply. This motor has four winding phases and is actuated by the output signals of ECM which turns ON and OFF two windings each in sequence. Each time the IACV-AAC valve opens or closes to change the auxiliary air quantity, the ECM sends a pulse signal to the step motor. When no change in the auxiliary air quantity is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONE	DITION	SPECIFICATION	G
IACV-AAC/V	Engine: After warming up Air conditioner switch: "OFF"	Idle	20 - 10 step	Gi
IACV-AAC/V	Shift lever: "N"No-load	2,000 rpm	_	M

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
13	Υ	IACV-AAC valve	Engine is running.	0.1 - 14V
8	GY/L	IACV-AAC valve	L Idle speed	0.1 - 140
11	PU	IACV-AAC valve	Engine is running.	0.1 - 14V
12	G/Y	IACV-AAC Valve	L Idle speed	0.1 - 140

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	FA
P0505 0205	A) The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is open.) IACV-AAC valve 	RA
	B) The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is shorted.) IACV-AAC valve 	BR ST

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

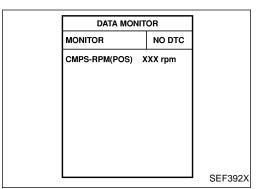
NOTE:

- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- Perform "Procedure for malfunction A" first. If a 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

EL


EM

LC

EC

AT

PD

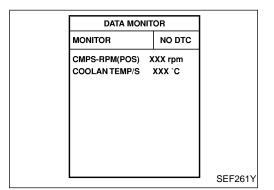
Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.

3) Start engine and let it idle.

 Keep engine speed at 2,500 rpm for 3 seconds, then let it idle for 3 seconds.
 Do not rev engine up to speeds more than 3,000.

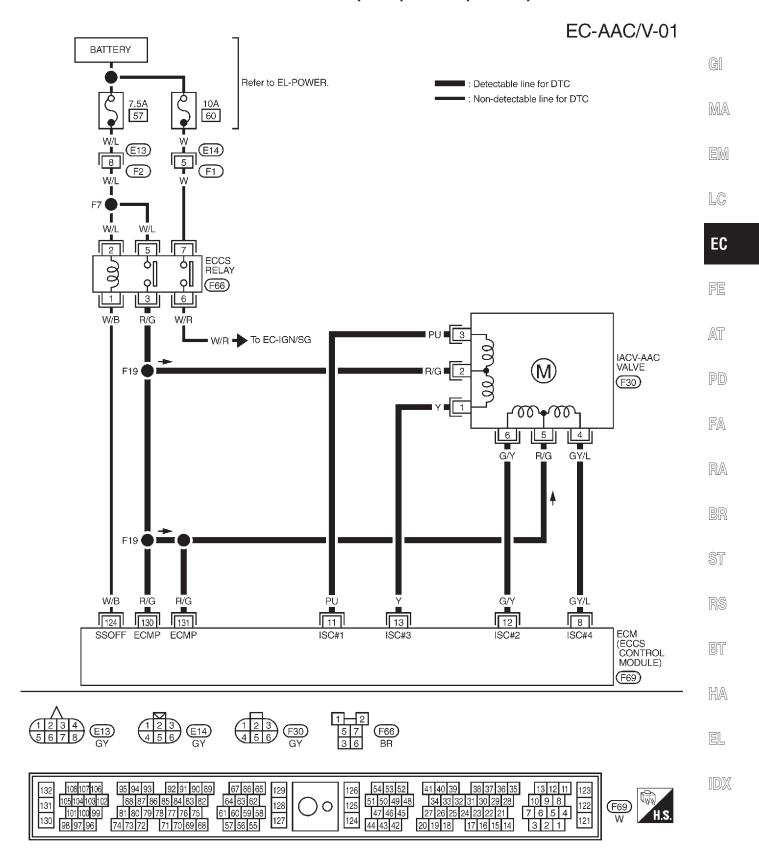

Do not rev engine up to speeds more than 3,000 rpm.

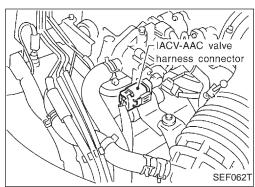
Perform step 4 once more.

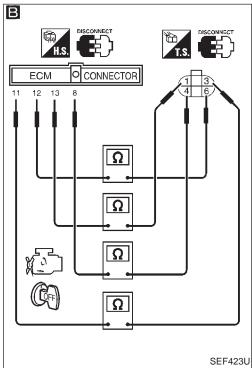
6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-344.

Follow the procedure "With CONSULT-II" above.

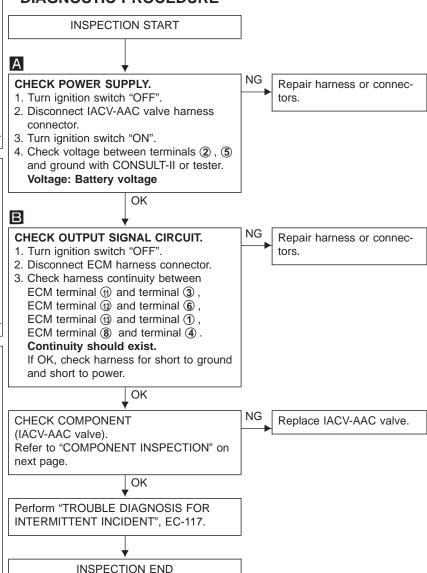
Procedure for malfunction B

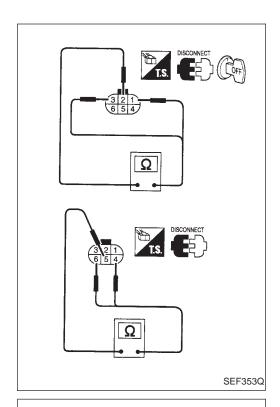

- 1) Open engine hood.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- 5) Start engine and run it for at least 1 minute at idle speed. (Headlamp switch, rear defogger switch: OFF)
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-344.


- OR -


Follow the procedure "With CONSULT-II" above.

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)





A DISCONNECT CON WITH SEF143T

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd) DIAGNOSTIC PROCEDURE

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd) **COMPONENT INSPECTION**

IACV-AAC valve

- 1. Disconnect IACV-AAC valve harness connector.
- 2. Check resistance between the following terminals. terminal 2 and terminals 1, 3

terminal (5) and terminals (4), (6)

Resistance:

Approximately 30 Ω [at 20°C (68°F)]

GI

LC

EC

AT

PD

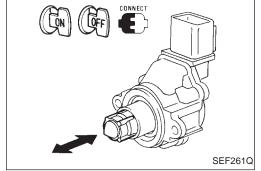
FA

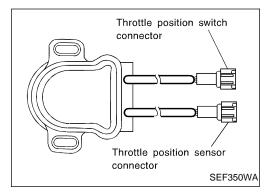
- Reconnect IACV-AAC valve harness connector.
- Remove idle air adjusting unit assembly (IACV-AAC valve is built-in) from engine.

(The IACV-AAC valve harness connector should remain con-

nected.)

5. Turn ignition switch "ON" and "OFF", and ensure the IACV-AAC valve shaft smoothly moves forward and backward, according to the ignition switch position. If NG, replace the IACV-AAC valve.


RA


BR

BT

HA

EL

Closed Throttle Position Switch

COMPONENT DESCRIPTION

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge control valve when the throttle position sensor is malfunctioning.

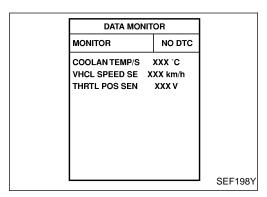
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

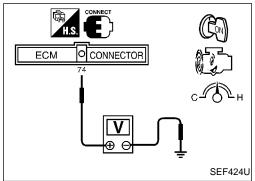
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
CLSD THL/P SW	 Engine: After warming up Ignition switch: ON (Engine stopped) More than -40.0 kPa (-300) 	Throttle valve: Idle position	ON
CLOD THEF SW	mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	Throttle valve: Slightly open	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	GY/L	Throttle position switch (Closed position)	Engine is running (Warmed-up condition) • Accelerator pedal fully released • More than -40.0 kPa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a handy vacuum pump.	BATTERY VOLTAGE (11 - 14V)
			Ignition switch "ON" Accelerator pedal fully depressed	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0510 0203	Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.	 Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor

Closed Throttle Position Switch (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

1) Start engine and warm it up to normal operating temperature.

2) Check voltage between ECM terminal 7 and ground under the following conditions.

At idle: Battery voltage At 2,000 rpm: 0 - 1V

If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-349. If OK, go to following step.

3) Select "DATA MONITOR" mode with CONSULT-II at the start of the test.

4) Drive the vehicle for at least 5 consecutive seconds under the following condition.

THRTL POS SEN: More than 1.8V VHCL SPEED SE: More than 4 km/h (2 MPH)

Selector lever: Suitable position

Driving pattern: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-349.

- OR **OVERALL FUNCTION CHECK**

Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

1) Start engine and warm it up to normal operating temperature.

2) Check the voltage between ECM terminal (74) and ground under the following conditions.

At idle: Battery voltage At 2,000 rpm: Approximately 0V

3) If NG, go to "DIAGNOSTIC PROCEDURE", EC-349.

HA

GI

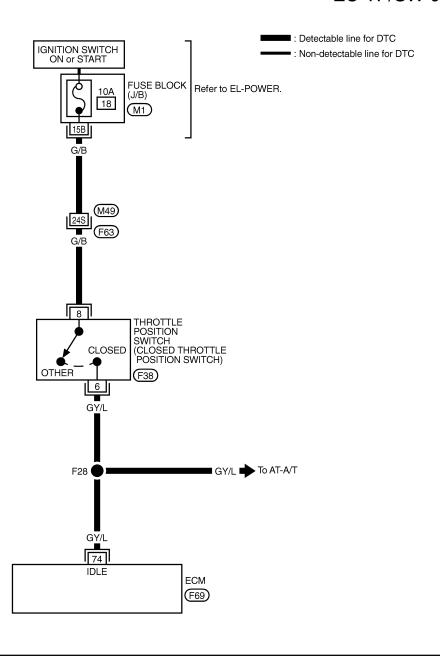
MA

LC

EC

AT

PD

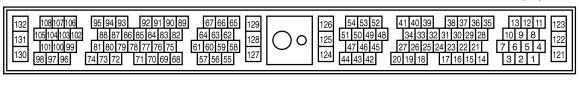

FA

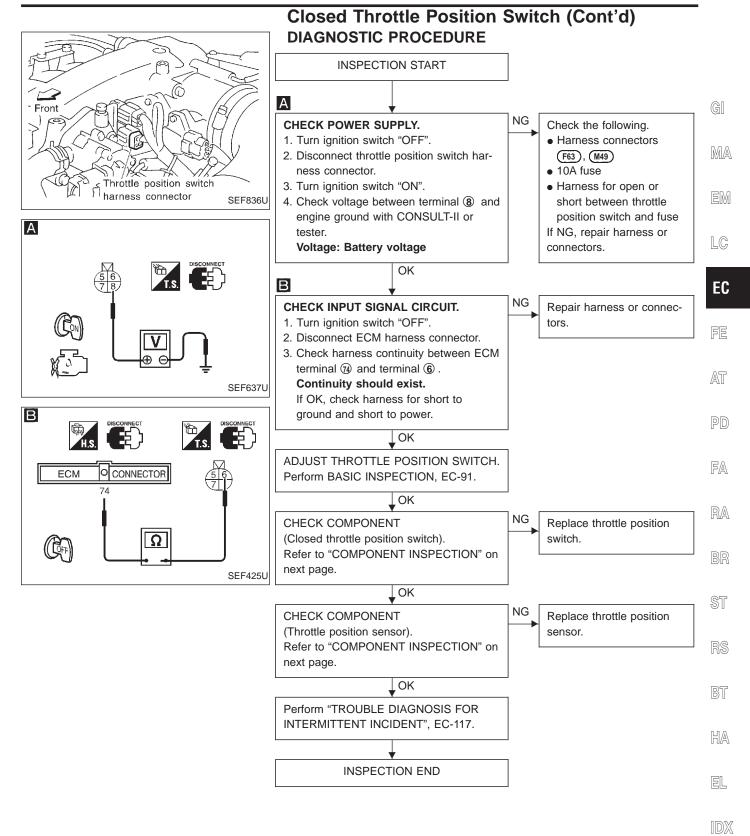
RA

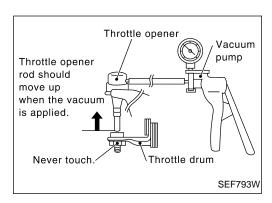
EL

Closed Throttle Position Switch (Cont'd)

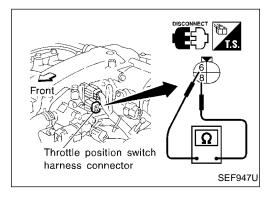
EC-TP/SW-01




REFER TO THE FOLLOWING.


(F63) -SUPER MULTIPLE
JUNCTION (SMJ)

(M1) -FUSE BLOCK-JUNCTION
BOX (J/B)



DATA MOR	DATA MONITOR	
MONITOR	NO DTO	;
CMPS-RPM(POS) COOLAN TEMP/S THRTL POS SEN	XXX rpm XXX °C XXX V	
CLSD THL POS	OFF	
		─ SEF266

Closed Throttle Position Switch (Cont'd) COMPONENT INSPECTION

Closed throttle position switch (Built in throttle position sensor)

- Start engine and warm it up to normal operating temperature.
- Stop engine (Ignition switch "OFF").
- Remove the vacuum hose connected to the throttle opener.
- Connect suitable vacuum hose to the vacuum pump and the opener.
- Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

- 6. Turn ignition switch "ON".
- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check indication of "CLSD THL/P SW".

Measurement must be made with closed throttle position switch installed in vehicle.

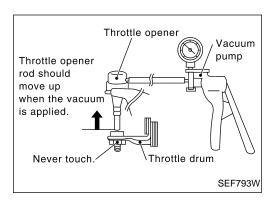
Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

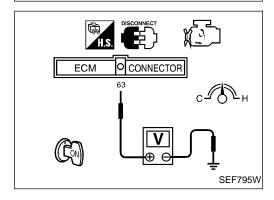
9. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

6. Disconnect closed throttle position switch harness con-

- OR -


7. Check continuity between closed throttle position switch terminals (6) and (8).

Resistance measurement must be made with closed throttle position switch installed in vehicle.


Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

8. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

DATA MON	IITOR	
MONITOR	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	XXX °C	
THRTL POS SEN	XXX V	
CLSD THL POS	OFF	
		SEF266

Closed Throttle Position Switch (Cont'd)

Throttle position sensor

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (Ignition switch "OFF").
- 3. Remove the vacuum hose connected to the throttle opener.
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- 6. Turn ignition switch "ON".
 - 7. Select "DATA MONITOR" mode with CONSULT-II.
 - 8. Check voltage of "THRTL POS SEN".

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	THRTL POS SEN	
Completely closed (a)	0.15 - 0.85	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7	

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

- OR

9. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

Check voltage between ECM terminal (3) (Throttle position sensor signal) and ground.

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage (V)
Completely closed	0.15 - 0.85
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7

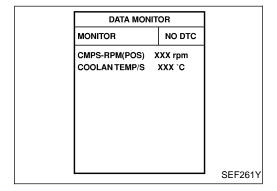
If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-91.

8. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

MA

FE

A/T Communication Line (P0600) and A/T Diagnostic Communication Line (P1605)


This circuit line (LAN) controls the smooth shifting up and down of A/T during the hard acceleration/deceleration. Pulse signals are exchanged between ECM and TCM (P0600).

This circuit line is also used to communicate malfunction information related to A/T (Automatic Transmission) is transferred through the line (LAN circuit) from TCM to ECM (P1605).

Be sure to erase the malfunction information such as DTC not only in TCM but also ECM after the A/T related repair.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0600 0504	 ECM receives incorrect voltage from TCM continuously. 	Harness or connectors (The communication line circuit between ECM and TCM is one or chested.)
P1605 0804	Signal from TCM is not sent to ECM.	TCM is open or shorted.) TCM Dead (Weak) battery

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

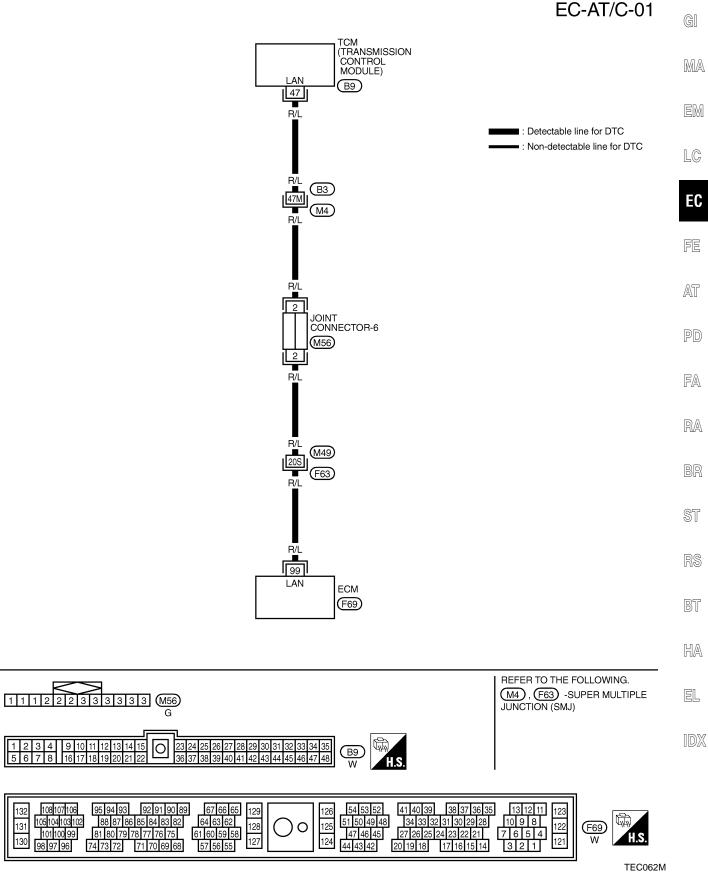
NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

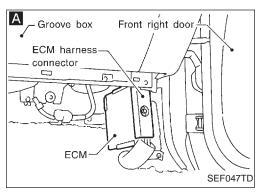
Before performing the following procedure, confirm that battery voltage is more than 10.5V.

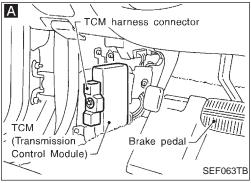
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 2 seconds (P0600) and 40 seconds (P1605).
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-354.

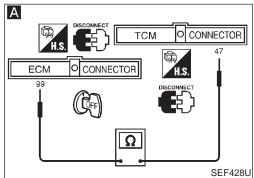


Follow the procedure "With CONSULT-II" above.

- OR -

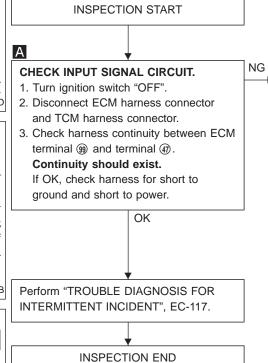

TROUBLE DIAGNOSIS FOR DTC P0600, P1605


A/T Communication Line (P0600) and A/T Diagnostic Communication Line (P1605) (Cont'd)

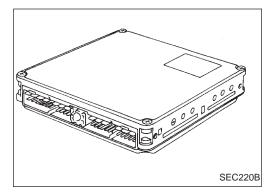


EC-353

TROUBLE DIAGNOSIS FOR DTC P0600, P1605



A/T Communication Line (P0600) and A/T Diagnostic Communication Line (P1605) (Cont'd)


DIAGNOSTIC PROCEDURE

Check the following.

- Harness connectors
 M4), B3
- Harness connectors
 (F63), (M49)
- Joint connector-6
- Check harness for open or short between ECM and TCM.

If NG, repair open circuit or short to ground or short to power in harness or connectors.

Engine Control Module (ECM)

The ECM consists of a microcomputer, diagnostic test mode selector, and connectors for signal input and output and for power supply. The unit controls the engine.

GI

MA

EM

LC

EC

FE

AT

PD

FA

RA

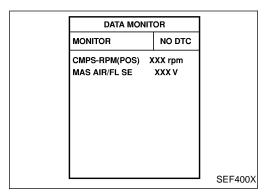
BR

ST

RS

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Item (Possible Cause)
P0605 0301	ECM calculation function is malfunctioning.	• ECM


DTC No.				
CONSULT-II GST	ECM*	Detected items	Engine operating condition in fail-safe mode	
Unable to access ECM	Unable to access Diag- nostic Test Mode II	ECM	ECM fail-safe activating condition The computing function of the ECM was judged to be malfunctioning. When the fail-safe system activates, i.e. if the ECM detects a malfunction condition in the CPU of ECM, the MALFUNCTION INDICATOR LAMP on the instrument panel lights to warn the driver. However, it is not possible to access ECM and DTC cannot be confirmed. Engine control with ECM fail-safe When the fail-safe system is operating, fuel injection, ignition timing, fuel pump operation, IACV-AAC valve operation and cooling fan operation are controlled under certain limitations.	
				ain limitations.
			controlled under certa	ECM fail-safe operation
			Engine speed	ECM fail-safe operation Engine speed will not rise more than 3,000 rpm.
			Engine speed Fuel injection	ECM fail-safe operation Engine speed will not rise more than 3,000 rpm. Simultaneous multiport fuel injection system

^{*:} In Diagnostic Test Mode II (Self-diagnostic results)

HA

BT

EL

Engine Control Module (ECM) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

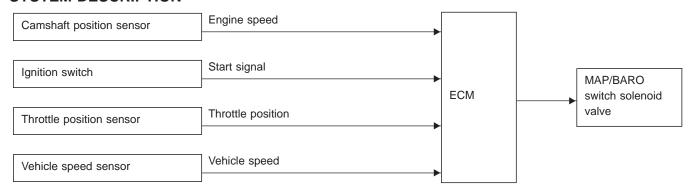
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-357.

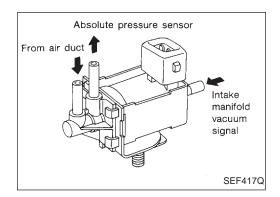
Follow the procedure "With CONSULT-II" above.

Engine Control Module (ECM) (Cont'd) DIAGNOSTIC PROCEDURE



HA

EL


Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve

SYSTEM DESCRIPTION

This system allows the absolute pressure sensor to monitor either ambient barometric pressure or intake manifold pressure. The MAP/BARO switch solenoid valve switches between two passages by ON-OFF pulse signals from the ECM. (One passage is from the intake air duct, the other is from the intake manifold.) Either ambient barometric pressure or intake manifold pressure is applied to the absolute pressure sensor.

Solenoid	Conditions
	For 5 seconds after turning ignition switch "ON"
	OR ———
	 For 5 seconds after starting engine
	OR —
ON	More than 5 minutes after the solenoid valve shuts OFF.
0.1	and
	Throttle valve is shut or almost fully shut for more than 5 seconds
	and
	Vehicle speed is less than 100 km/h (62 MPH).

COMPONENT DESCRIPTION

The MAP/BARO switch solenoid valve switches its air flow passage according to the voltage signal sent from the ECM. When voltage is supplied from the ECM, the MAP/BARO switch solenoid turns "ON". Then, the absolute pressure sensor can monitor the ambient barometric pressure. When voltage is not supplied from the ECM, the MAP/BARO switch solenoid valve turns "OFF". Then, the sensor monitors intake manifold pressure.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

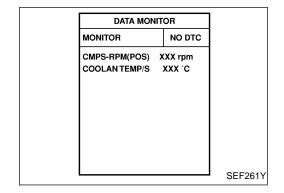
Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	For 5 seconds after turning ignition switch "ON"For 5 seconds after starting engine	BARO
	More than 5 seconds after starting engine	MAP

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

ECM's transistor. Use a ground other than ECM terminals such as the body ground.			_ MA		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EM
			Ignition switch "ON" For 5 seconds after turning ignition switch "ON"	Approximately 0V	LG
41	W	MAP/BARO switch sole-	Engine is running For 5 seconds after starting engine.		EC
41	VV	noid valve	Ignition switch "ON" More than 5 seconds after turning ignition	BATTERY VOLTAGE	FE
			switch "ON" Engine is running More than 5 seconds after starting engine	(11 - 14V)	AT
	-			1	_

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1105 1302	MAP/BARO switch solenoid valve receives the voltage supplied though ECM does not supply the voltage to the valve.	Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.) MAP/BARO switch solenoid valve
	B) There is little difference between MAP/BARO switch solenoid valve input voltage at ambient barometric pressure and voltage at intake manifold pressure.	 Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.) Hoses (Hoses are clogged, bent, kinked, disconnected, not connected properly.) Absolute pressure sensor MAP/BARO switch solenoid valve

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

PD

FA

RA

ST

BT

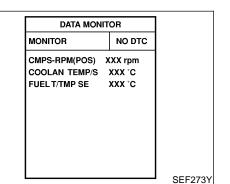
HA

Manifold Absolute Pressure (MAP)/Barometric **Pressure (BARO) Switch Solenoid Valve** (Cont'd)

Procedure for malfunction A

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.



- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and let it idle.
- 3) Wait at least 10 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-364.

– OR -

Follow the procedure "With CONSULT-II" above.

Procedure for malfunction B

- 1) Start engine and warm it up to normal operating tem-
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON" again and select "DATA MONI-TOR" mode with CONSULT-II.
- 4) Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 5) Start engine and let it idle for at least 10 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-305.

- OR

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Check that voltage between ECM terminal (9) and ground is less than 4.2V.
- 5) Start engine and let it idle for at least 10 seconds.

– OR –

- 6) Select "MODE 7" with GST.7) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-305.

- Start engine and warm it up to normal operating tem-
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Check that voltage between ECM terminal (9) and ground is less than 4.2V.
- 5) Start engine and let it idle for at least 10 seconds.
- 6) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

8) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-305.

G

MA

EM

LC

EC

FE

AT

PD

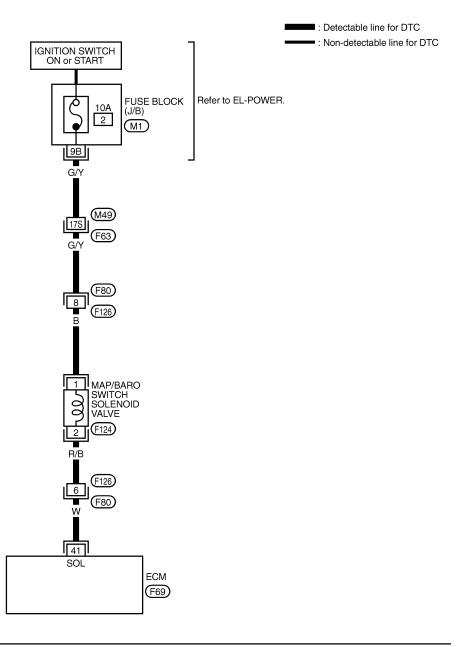
FA

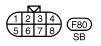
RA

BR

ST

RS

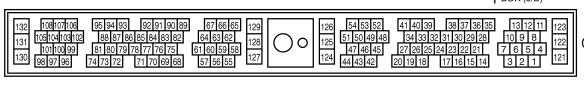

BT

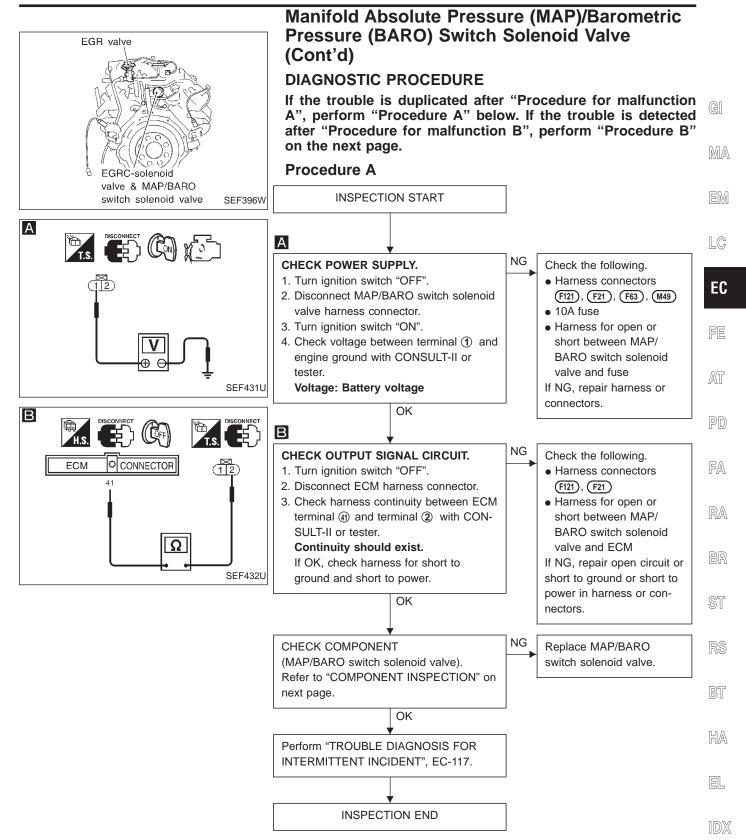

HA

EL

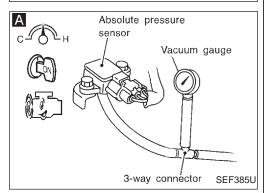
Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

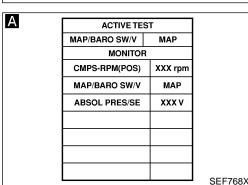
EC-SW/V-01

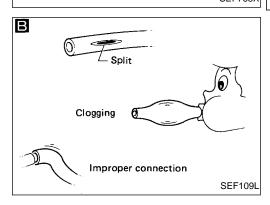



REFER TO THE FOLLOWING.

(F63) -SUPER MULTIPLE
JUNCTION (SMJ)


(M1) -FUSE BLOCK-JUNCTION
BOX (J/B)





EGR valve EGRC-solenoid valve & MAP/BARO switch solenoid valve SEF396W

Α			
A	ACTIVE TES		
	MAP/BARO SW/V		
	MONITOR		
	CMPS-RPM(POS)		
	MAP/BARO SW/V BARO		
	ABSOL PRES/SE XXX V		
			SEF767X

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

OK

Procedure B

INSPECTION START

CHECK VACUUM SOURCE AND CIRCUIT TO MAP/BARO SWITCH SOLE-NOID VALVE.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- Connect the MAP/BARO switch solenoid valve and absolute pressure sensor with a rubber tube that has a vacuum gauge.

Α

- 4. Turn ignition switch "ON".
- 5. Select "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 6. Start engine and let it idle.
- 7. Touch "MAP" and "BARO" alternatively.

MAP/BARO SW/S	Vacuum
BARO	Should not exist.
MAP	Should exist.

- 4. Turn ignition switch "ON".
- Check vacuum gauge within 5 seconds after turning ignition switch "ON".

OR -

Vacuum should not exist.

- 6. Start engine and let it idle.
- 7. Check vacuum gauge.

 Vacuum should exist.

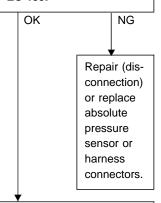
NG

CHECK HOSE.

В

- 1. Turn ignition switch "OFF".
- 2. Check hose for clogging, cracks, disconnection or improper connection.

OK


(A)

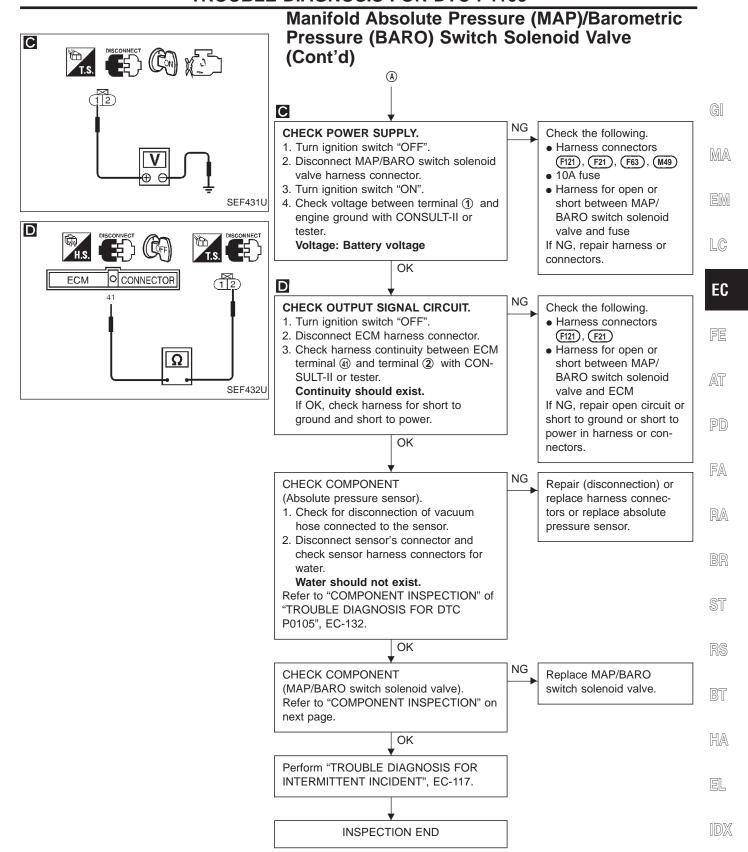
(Go to next page.)

CHECK COMPONENT (Absolute pressure sensor).

- Check for disconnection of vacuum hose connected to the sensor.
- Disconnect sensor's connector and check sensor harness connector for water.

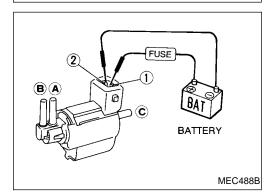
Water should not exist. Refer to "COMPONENT INSPECTION" of "TROUBLE DIAGNOSIS FOR DTC P0105", EC-139.

Go to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" in EC-117.


Clean, repair or reconnect the hose.

NG

If NG, check vacuum port for clogging.


OK

CHECK INTAKE SYSTEM. Check the intake system for air leaks.

ACTIVE TES	ACTIVE TEST		
MAP/BARO SW/V	BARO		
MONITOR			
CMPS-RPM(POS)	XXX rpm		
MAP/BARO SW/V	BARO		
ABSOL PRES/SE	xxx v		
		SEF767	

ACTIVE TES	T T	
MAP/BARO SW/V	MAP	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
MAP/BARO SW/V MAP		
ABSOL PRES/SE	xxx v	
		SEF76

Manifold Absolute Pressure (MAP)/Barometric Pressure (BARO) Switch Solenoid Valve (Cont'd)

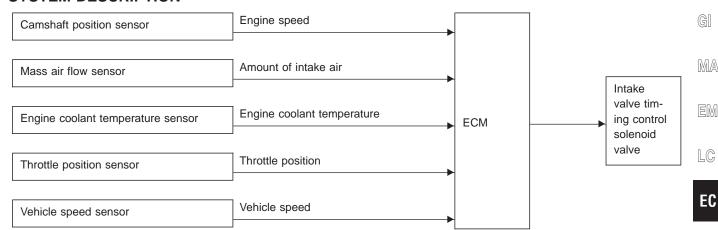
COMPONENT INSPECTION

MAP/BARO switch solenoid valve

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
 - Condition: At idle under no-load
 - CONSULT-II display

MAP/BARO SW/V	ABSOL PRES/SE (Voltage)	
BARO	More than 2.6V	
MAP	Less than the voltage at BARO	
 Time for voltage to 	change	
MAP/BARO SW/V	Required time to switch	
BARO to MAP	Less than 1 second	
MAP to BARO	Less man i second	

4. If NG, check solenoid valve as shown below.

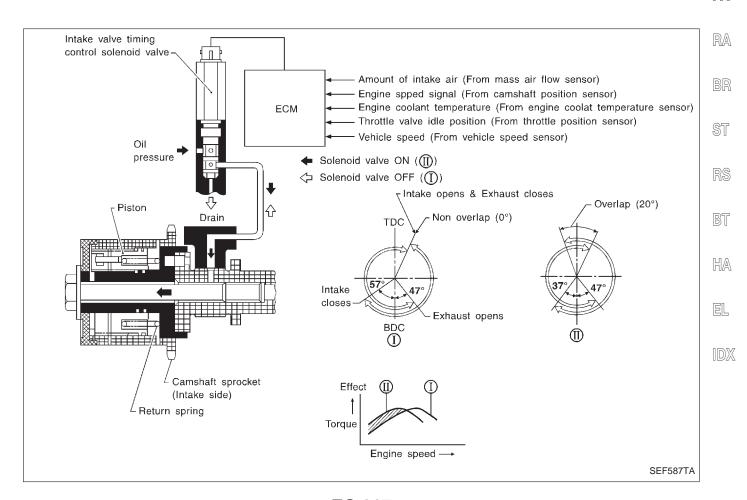

- 1. Remove MAP/BARO switch solenoid valve.
- 2. Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

- 3. Check the time required for the solenoid valve to switch. It should be less than 1 second.
- 4. If NG, replace solenoid valve.
- 5. If OK, check "Absolute pressure sensor". Refer to "COMPONENT INSPECTION", EC-139.

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank)

SYSTEM DESCRIPTION


The intake valve timing control system is utilized to control intake valve opening and closing timing. Engine coolant temperature signals, engine speed, amount of intake air, vehicle speed and throttle position are used to determine intake valve timing. The intake camshaft sprocket position is regulated by oil pressure controlled by the intake valve timing control.

When ECM sends ON signal to intake valve timing control solenoid valve, oil pressure is transmitted to camshaft sprocket. Then, intake side camshaft is advanced.

AT

PD

FA

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

OPERATION

Engine operating condition	Intake valve timing control solenoid valve	Intake valve opening and closing time	Valve overlap	Engine valve timing
 Engine coolant temperature is between 15°C (59°F) to 110°C (230°F) and engine speed is between 1,100 rpm and 4,600 rpm. During high load condition Vehicle speed is more than 4 km/h (2 MPH). 	ON	Advance	Increased	•
Those other than above	OFF	Normal	Normal	0

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

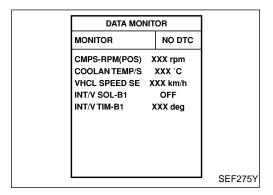
Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
INT/V SOL-B1 INT/V SOL-B2	Engine speed is more than 2,000 rpm. Ouickly depressed accelerator pedal	OFF \rightarrow ON (Using "INT/V TIM-B1 (B2)" in "DATA MONITOR", the difference of degree between "OFF" and "ON" is approximately 20 deg.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
24 (B2)	BR/Y	Intake valve timing control	Engine is running. Intake valve timing control solenoid is operating.	Approximately 0V
25 (B1)	BR	solenoid valves	Engine is running. Intake valve timing control solenoid is not operating.	Battery voltage
70 (B2)	R/L	Intake valve timing control	Engine is running. Lidle speed	Approximately 0V (V) 4 2 0 20 ms SEF551T
71 (B1)	L/W	position sensors	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V (V) 4 2 0 20 ms SEF552T

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P1110 0805 (Bank 1)	Comparing the intake valve timing position when the intake valve timing solenoid is ON with that when the solenoid is OFF, the difference does not exceed a cer-	Harness or connectors (The left bank intake valve timing control position sensor circuit is open.)	GI
P1135 1301 (Bank 2)	tain limit.	 Intake valve timing control position sensor Accumulation of debris to the signal pick-up portion of the camshaft 	MA

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive at safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

1) Warm up engine to normal operating temperature [more than 82°C (180°F)].

LC

EC

PD

FA

RA

RS

HA

EL

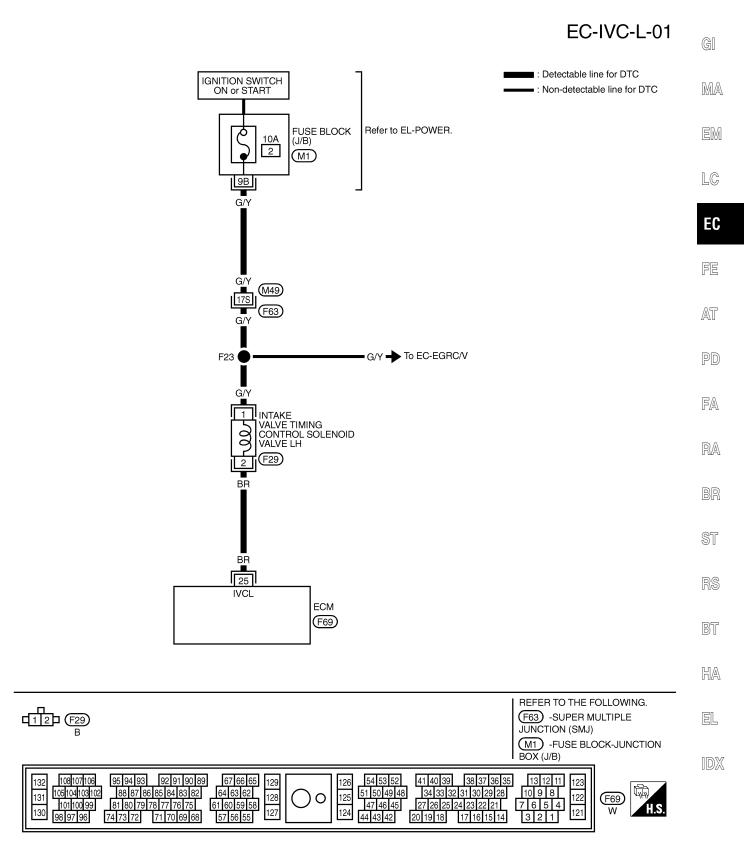
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4) Restart engine and wait at least 30 seconds.
- 5) Turn TCS switch "OFF".
- 6) Shift A/T selector lever to "2nd" position.
- 7) Gradually raise engine speed and keep it between 1,100 rpm and 1,500 rpm for at least 20 seconds. (Test is completed when "INT/V SOL B1 in "DATA MONITOR" with CONSULT-II remains "OFF". If indication is "ON", repeat 7.
- 8) Quickly raise engine speed to more than 2,500 rpm and keep it there for at least 6 seconds. (Test is completed when "INT/V SOL B1 in "DATA MONITOR" with CONSULT-II remains "ON". If indication is "OFF", repeat 8.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-373.

– OR -

- 1) Warm up engine to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Restart engine and wait at least 30 second.
- 4) Turn TCS switch "OFF".
- 5) Shift A/T selector lever to "2nd" positions.
- 6) Gradually raise engine speed and keep it between 1,000 rpm and 1,500 rpm for at least 12 seconds.
- 7) Quickly raise engine speed to more than 2,500 rpm and keep it there for at least 6 seconds.
- 8) Select "MODE 7" with GST.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-373.

- OR

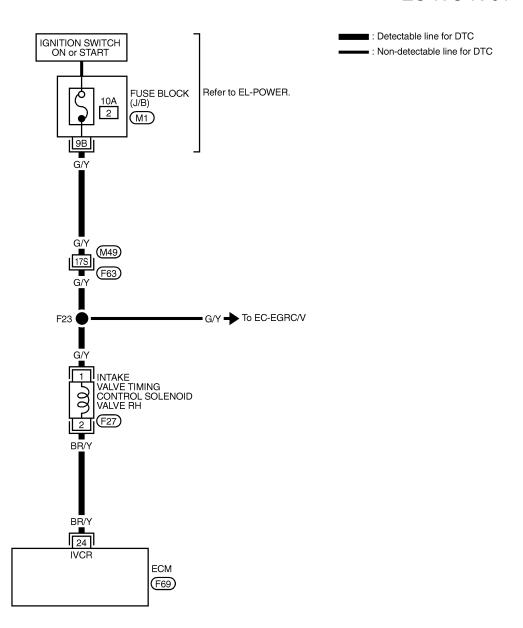
- 1) Warm up engine to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Restart engine and wait at least 30 seconds.
- 4) Turn TCS switch "OFF".
- 5) Shift A/T selector lever to "D" position.

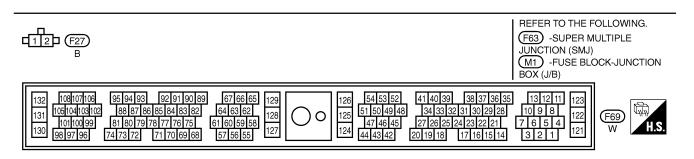

EC-369

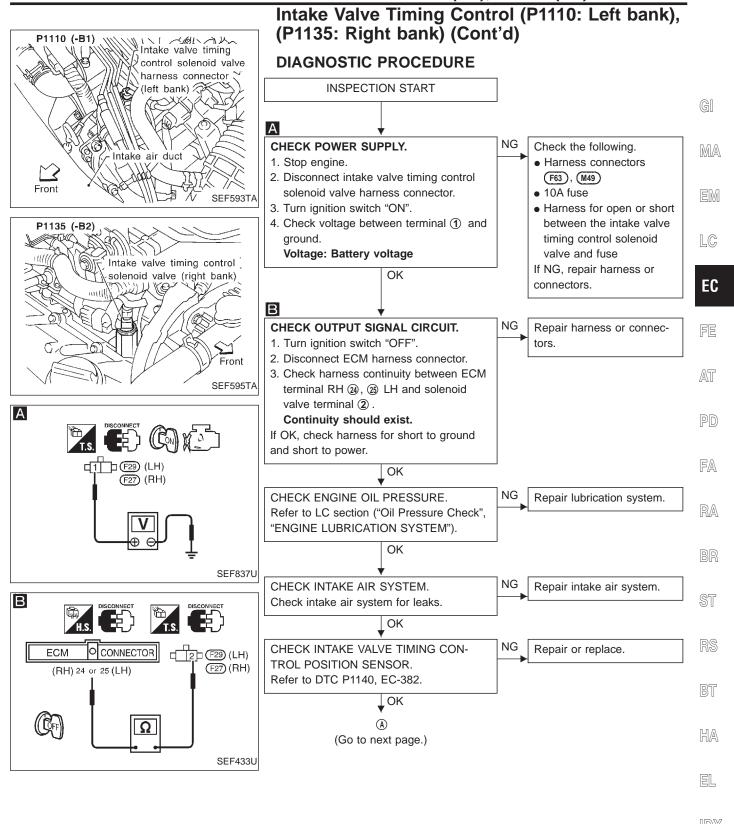
Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

- 6) Gradually raise engine speed and keep it between 1,000 rpm and 1,500 rpm for at least 12 seconds.
- 7) Quickly raise engine speed to more than 2,500 rpm and keep it there for at least 6 seconds.
- 8) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 9) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 10) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-373.

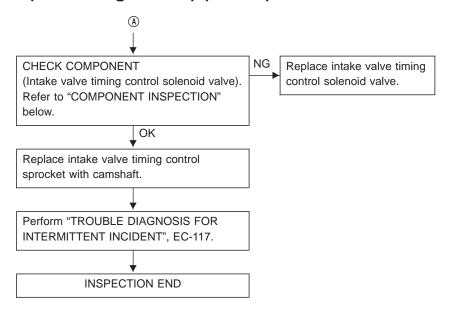
Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

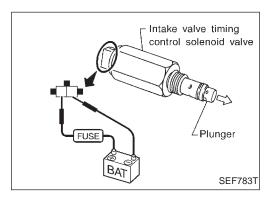

LEFT BANK



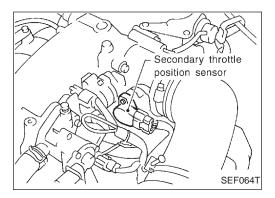

Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

RIGHT BANK


EC-IVC-R-01



Intake Valve Timing Control (P1110: Left bank), (P1135: Right bank) (Cont'd)

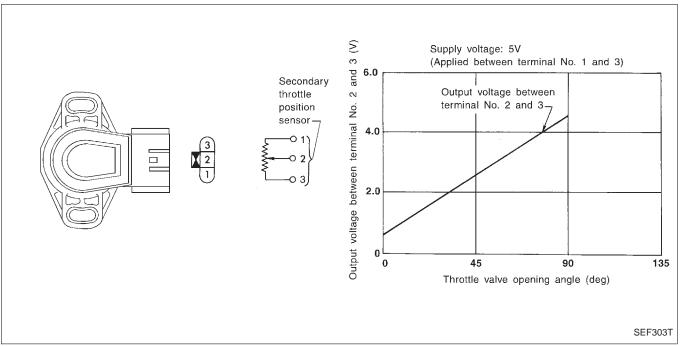


COMPONENT INSPECTION

Intake valve timing control solenoid valve

- 1. Check oil passage visually for any metal debris.
- 2. Supply intake valve timing control solenoid valve terminals with battery voltage.
- 3. Make sure that inside plunger protrudes. If NG, replace intake valve timing control solenoid valve.

Secondary Throttle Position Sensor (STPS)


COMPONENT DESCRIPTION

The secondary throttle position sensor responds to the movement of the throttle motor which is controlled by the TAC module.

This sensor is a kind of potentiometer which transforms the secondary throttle position into output voltage, and emits the voltage signal to the TAC module. In addition, the sensor detects the opening and closing speed and position of the secondary throttle valve and feeds the voltage signal to the TAC module.

becomes smaller than the ordinary throttle valve opening due to TCS operation. In this case, the signal from the secondary throttle valve is used for engine control. This replaces the signal from the ordinary throttle position sensor. The signal of the secondary throttle valve first enters the TAC module, from where it is sent to the ECM.

Another case is when the secondary throttle valve opening

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL/P SEN2	Ignition switch: ON	Throttle valve: fully closed	0.60 - 1.15V
	(Engine stopped)	Throttle valve: fully open	4.3 - 4.7V

MA

LC

EC

AT

PD

FA

RA

HA

EL

Secondary Throttle Position Sensor (STPS) (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

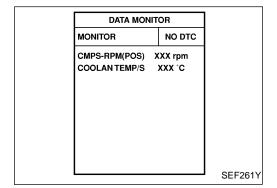
Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
66		Secondary throttle position	Ignition switch "ON" Approximately 3 seconds after ignition switch "ON" and thereafter	Approximately 3.4V
00	<u> </u>	sensor	Ignition switch "ON" Disconnect throttle motor harness connector. Fully close secondary throttle valve by hand.	Approximately 0.4V

ON BOARD DIAGNOSIS LOGIC


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1120 0406	A) An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
	B) Rationally incorrect voltage is sent to ECM compared with the signals from mass air flow sensor, camshaft position sensor and IACV-AAC valve.	 Harness or connectors Secondary throttle position sensor TCM

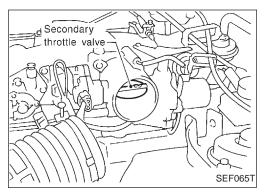
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

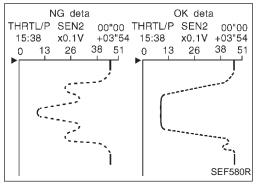
Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

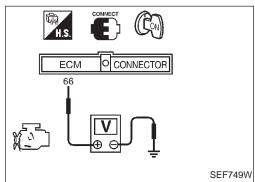
NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Procedure for malfunction A




- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and wait at least 5 seconds.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-379.



Follow the procedure "With CONSULT-II" above.

Secondary Throttle Position Sensor (STPS) (Cont'd)

Procedure for malfunction B.

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the secondary throttle position sensor circuit. During this check, a DTC might not be confirmed.

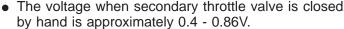
WARNING:

Before touching the secondary throttle valve, be sure to disconnect the throttle motor harness connector. Failure to do so may cause injury due to accidental actuation of the valve.

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and disconnect throttle motor 2)

EC

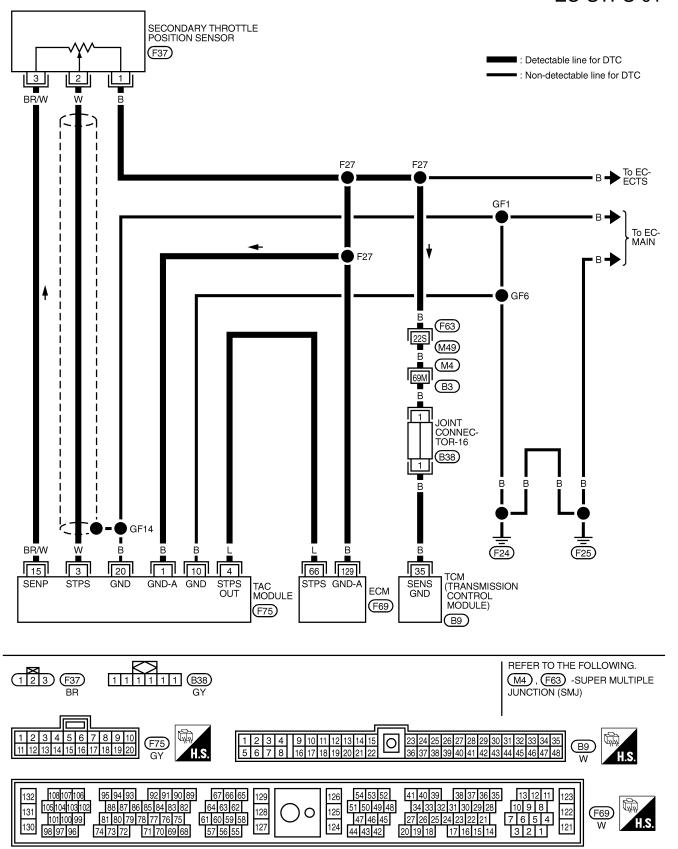
EM

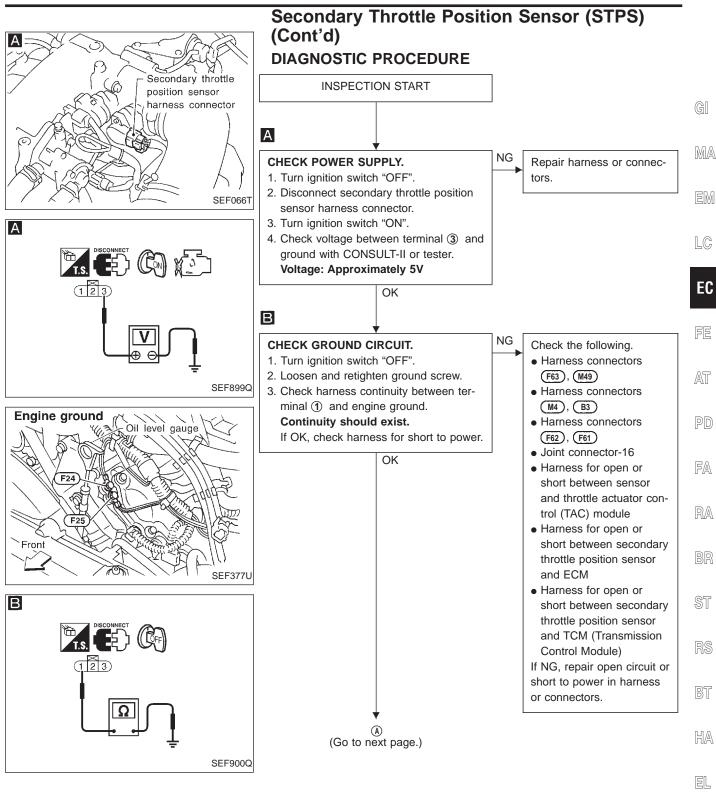

- harness connector. Remove intake air duct.
- Turn ignition switch "ON".
- Select "MANUAL TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II.
- Select "THRTL/P SEN2" in "DATA MONITOR" mode with CONSULT-II. 7) Press RECORD on CONSULT-II SCREEN at the same
 - time close the secondary throttle valve by hand.
- 8) Print out the recorded data and check the following: The voltage when secondary throttle valve is closed
 - by hand is approximately 0.60 1.15V.
 - The voltage decrease is linear in response to secondary throttle valve closing.
 - The voltage when secondary throttle valve is fully opened is approximately 4.3 - 4.7V.
 - If NG, go to "DIAGNOSTIC PROCEDURE", EC-379. - OR -

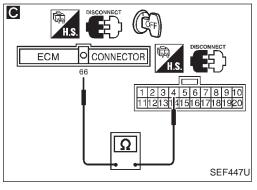
RA

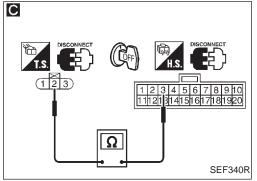
FA

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and disconnect throttle motor harness connector.
- Remove intake air duct.
- Turn ignition switch "ON". 4)
- 5) Check the voltage between ECM terminal 66 ground, then check the following:

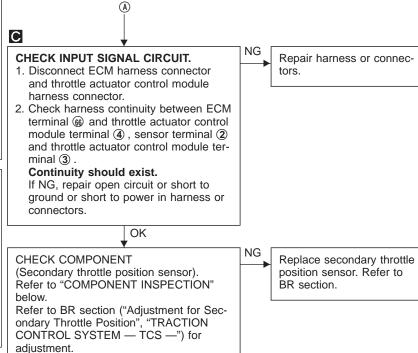

- The voltage decrease is linear in response to secondary throttle valve closing.
- The voltage when secondary throttle valve is fully opened is approximately 3.3 - 3.5V.
- 6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-379.

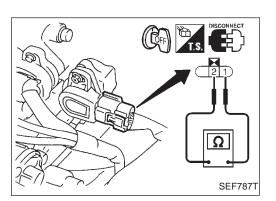

HA


EL


Secondary Throttle Position Sensor (STPS) (Cont'd)

EC-STPS-01





Secondary Throttle Position Sensor (STPS) (Cont'd)

COMPONENT INSPECTION

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

INSPECTION END

Secondary throttle position sensor

OK

WARNING:

Before touching the secondary throttle valve, be sure to disconnect the throttle motor harness connector. Failure to do so may cause injury due to accidental actuation of the valve.

- 1. Turn ignition switch "OFF".
- Disconnect secondary throttle position sensor harness connector.
- 3. Disconnect throttle motor harness connector.
- Remove intake air duct.
- 5. Make sure that resistance between terminals ② and ① changes when opening secondary throttle valve manually.

Throttle valve conditions	Resistance at 25°C (77°F)
Completely closed	Approximately 0.6 kΩ
Partially open	0.6 - 4.0 kΩ
Completely open	Approximately 5 kΩ

Tandem Throttle Position Sensor

This diagnosis is for tandem throttles (main throttle and secondary throttle). The quantity of intake air is determined by these two throttle valves. A rationality check is then carried out by ECM after monitoring the signals of these two throttle position sensors.

GI

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	MA
P1125 1502	Rationally incorrect voltage is entered to ECM compared with the signals from mass air flow sensor, camshaft position sensor and IACV-AAC valve.	 Harness or connectors (The sensor circuits are open or shorted.) Throttle position sensor or secondary throttle posi- 	EM
		tion sensor Throttle actuator control (TAC) module	LC

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

PD

FA

BR

1) Start engine and warm it up to normal operating temperature.

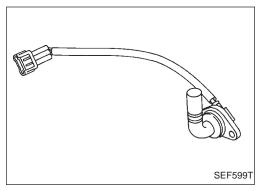
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.

– OR -

5) Start engine and run it for 15 seconds.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- 3) Start engine and run it for 15 seconds.
- 4) Select "MODE 7" with GST.

– OR –


- 1) Start engine and warm it up to normal operating temperature.
 - Stop engine and wait at least 5 seconds.
- 3) Start engine and run it for 15 seconds.
- 4) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 5) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

DIAGNOSTIC PROCEDURE

Refer to TROUBLE DIAGNOSIS FOR DTC P0120, EC-150 OR Refer to TROUBLE DIAGNOSIS FOR DTC P1120, EC-375.

Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank)

COMPONENT DESCRIPTION

The intake valve timing control position sensor is located rearmost of the left-bank cylinder head. This sensor detects a signal (intake valve position) generated by the cutout portion of camshaft and sends it to the ECM. This sensor is not used to control the engine system. It is used only for the on board diagnosis of intake valve timing control.

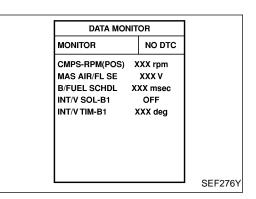
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
INT/V TIM-B1 INT/V TIM-B2	• Engine is running.	Advanced angle (degree) of the intake camshaft should be displayed.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

	ti ai ioiot	on ose a ground out	than Low terminals saon as the body	ground.
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
70 (RH)	R/L		Engine is running. Lidle speed	Approximately 0V (V) 4 2 0 20 ms
		Intake valve timing con-		SEF551T
71 (LH)	L/W	trol position sensors	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V (V) 4 2 0 20 ms
				SEF552T

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1140 1303 (Left bank) P1145 1304 (Right bank)	The proper pulse signal from the intake valve timing control position sensors is not sent to ECM while the engine is running at the specified engine speed.	 Harness or connectors (The left bank intake valve timing control position sensor circuit is open.) Intake valve timing control position sensor Accumulation of debris to the signal pick-up portion of the camshaft

Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

 Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

2) Start engine and keep the engine speed at 2,000 rpm and wait at least 15 seconds.

3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-386.

- OR

OR

LC

EC

- 1) Start engine and keep the engine speed at 2,000 rpm and wait at least 15 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-386.

NO

- 1) Start engine and keep the engine speed at 2,000 rpm and wait at least 15 seconds.
- 2) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-386.

FA

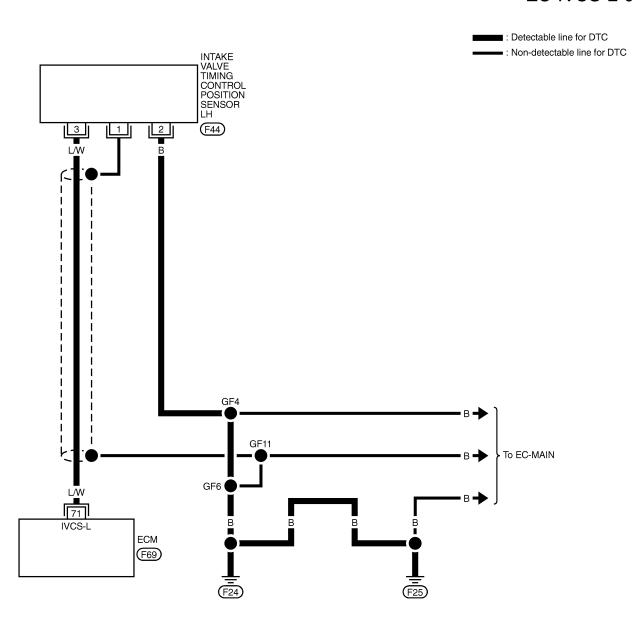
PD

RA

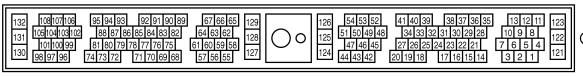
51

RS

BT

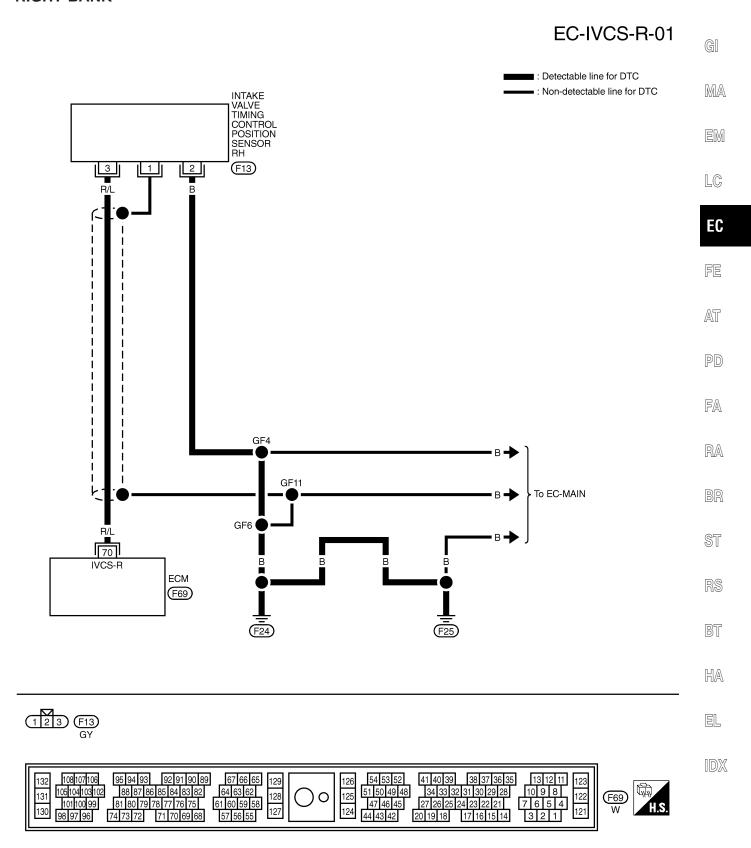

HA

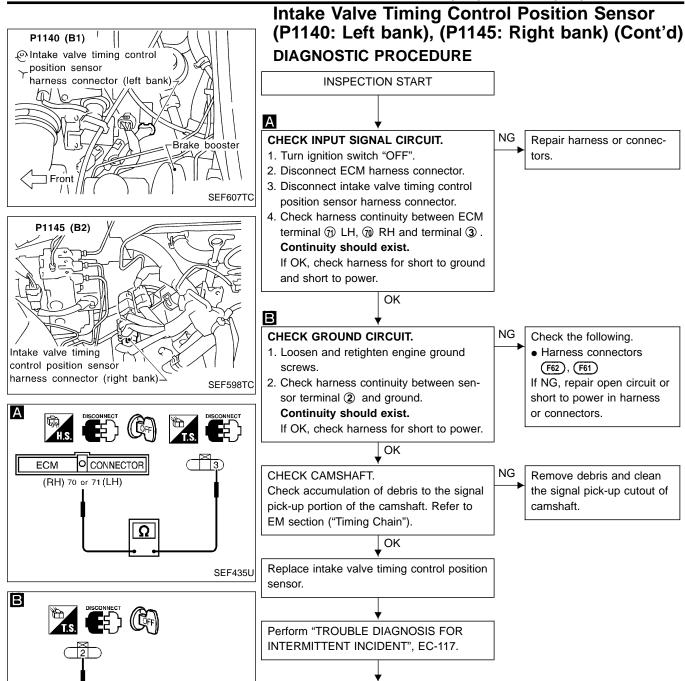
EL


Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd)

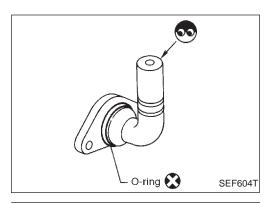
LEFT BANK

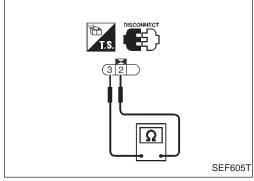
EC-IVCS-L-01





Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd)


RIGHT BANK



SEF603T

INSPECTION END

Intake Valve Timing Control Position Sensor (P1140: Left bank), (P1145: Right bank) (Cont'd) COMPONENT INSPECTION

Intake valve timing control position sensor

- 1. Disconnect intake valve timing control position sensor harness connector.
- 2. Loosen fixing bolt of the sensor.
- 3. Visually check the sensor for chipping.
- 4. Check resistance between terminals ② and ③.

Resistance:

600 - 740Ω [at 20°C (68°F)]

If NG, replace intake valve timing control position sensor.

EM

LC

EC

FE

AT

PD

FA

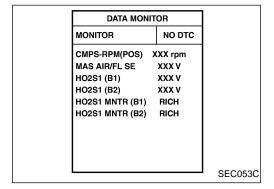
RA

BR

ST

BT

HA


EL

Closed Loop Control (P1148: Left bank), (P1168: Right bank)

★ The closed loop control has the one trip detection logic.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1148 0307 (Left bank)	The closed loop control function for left bank does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 (front) circuit is open or shorted. Heated oxygen sensor 1 (front)
P1168 0308 (Right bank)		Heated oxygen sensor 1 heater (front)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,200 rpm during the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE". If the engine speed limit is exceeded, retry the procedure from step 2).
- Before performing the following procedure, confirm that battery voltage is more than 11V.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Hold engine speed at 2,000 rpm and check the following.
- "HO2S1" voltage should go above 0.70V at least once.

 OR

 OR
- "HO2S1" voltage should go below 0.21V at least once.
 If the check result is NG, perform "DIAGNOSIS PROCEDURE", EC-192.
 - If the check result is OK, perform the following step.
- 4) Let engine idle at least 3 minutes.

Closed Loop Control (P1148: Left bank), (P1168: Right bank) (Cont'd)

5) Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL: 2.5 ms or more CMPS-RPM (POS): 2,000 - 3,000 rpm Selector lever: Suitable position

VHCL SPEED SE: More than 70 km/h (43 MPH) During this test P0130 may be displayed on the CONSULT-II screen.

6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-187.

Use this procedure to check the overall function of the closed loop control. During this check, a 1st trip DTC might not be confirmed.

1) Start engine and warm it up to normal operating temperature.

Set voltmeter probes between ECM terminals (2) (RH), (83) (LH) (sensor) and ground.

3) Check the following with engine speed held at 2,000 rpm constant under no-load.

• The voltage should go above 0.70V at least once. - OR -

 The voltage should go below 0.21V at least once. 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-187.

DIAGNOSTIC PROCEDURE

Refer to TROUBLE DIAGNOSIS FOR DTC P0133 (B1), P0153 (B2), EC-187.

RA

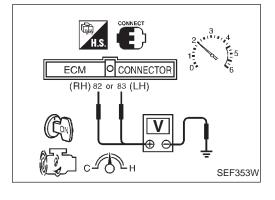
FA

EC-389

MA

LC

EC


FE

AT

PD

HA

EL

Traction Control System (TCS) Signal Circuit

The ECM uses this circuit line for checking the TCS operation. Voltage signals are sent and received between the ECM and the throttle actuator control module.

★ Freeze frame data is not stored in the ECM for the TCS signal circuit. The MIL will not light for TCS signal circuit malfunction.

ON BOARD DIAGNOSIS LOGIC

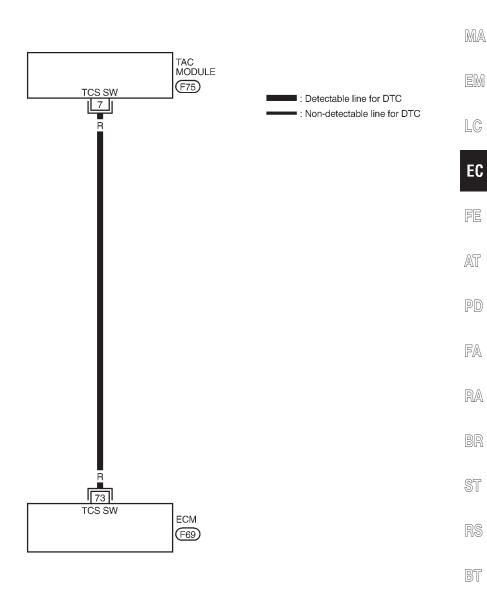
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P1210 0106	An excessively low or high voltage from the throttle actuator control (TAC) module is sent to	Harness or connectors (The circuit is open or shorted.)	
	ECM.	Throttle actuator control (TAC) module	

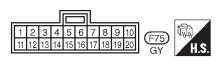
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

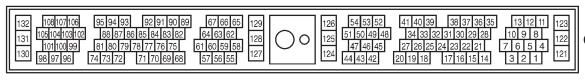
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON" and TCS switch "ON", then start engine.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Run engine for at least 3 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-392.

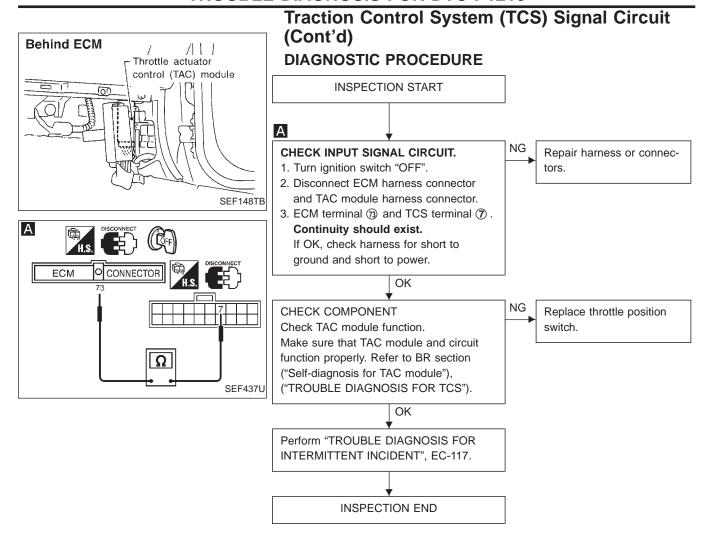

- 1) Turn ignition switch "ON" and TCS switch "ON", then start engine.
- 2) Run engine for at least 3 seconds at idle speed.
- 3) Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 4) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-392.

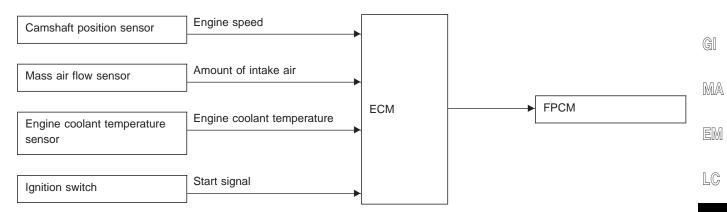

Traction Control System (TCS) Signal Circuit (Cont'd)


EC-TCS/SW-01

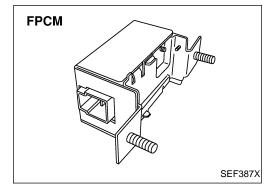
G[

EC




HA

EL


Fuel Pump Control Module (FPCM)

SYSTEM DESCRIPTION

This system controls the fuel pump operation. The amount of fuel flow delivered from the fuel pump is altered between two flow rates by the FPCM operation. The FPCM determines the voltage supplied to the fuel pump (and therefore fuel flow) according to the following conditions.

Conditions	Amount of fuel flow	Supplied voltage	FE
 Engine cranking Within 16 seconds after starting engine [above 100°C (212°F)] Engine is running under heavy load and high speed conditions 	high	Battery voltage (11 - 14V)	AT PD
Except the above	low	Approximately 7V	FA

COMPONENT DESCRIPTION

The FPCM adjusts the voltage supplied to the fuel pump to control the amount of fuel flow. When the FPCM increases the voltage supplied to the fuel pump, the fuel flow is increased. When the FPCM decreases the voltage, the fuel flow is decreased.

ST

RS

BT

RA

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

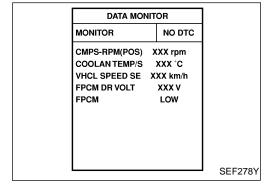
MONITOR ITEM	CONDITION	SPECIFICATION	HA
FPCM	Within 16 seconds after starting the engine, when engine coolant temperature is more than 100°C (212°F)	HIGH → LOW	
FPCM D/R VOLT	Within 16 seconds after starting the engine, when engine coolant temperature is more than 100°C (212°F)	Approx. 5.0V → Approx. 0.4V	
			IDX

EC-393

Fuel Pump Control Module (FPCM) (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
			Engine is cranking.	Approximately 0.4V
15	R/L	Fuel pump control module	Engine is running. Lidle speed	Approximately 10V
93	G/R	Fuel pump control module	When cranking the engine	Approximately 0V
93	G/K	(FPCM) check	After starting the engine	Approximately 5V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1220 1305	An improper voltage signal from the FPCM, which is supplied to a point between the fuel pump and the dropping resistor, is detected by ECM.	 Harness or connectors (FPCM circuit is open or shorted.) Dropping resistor FPCM

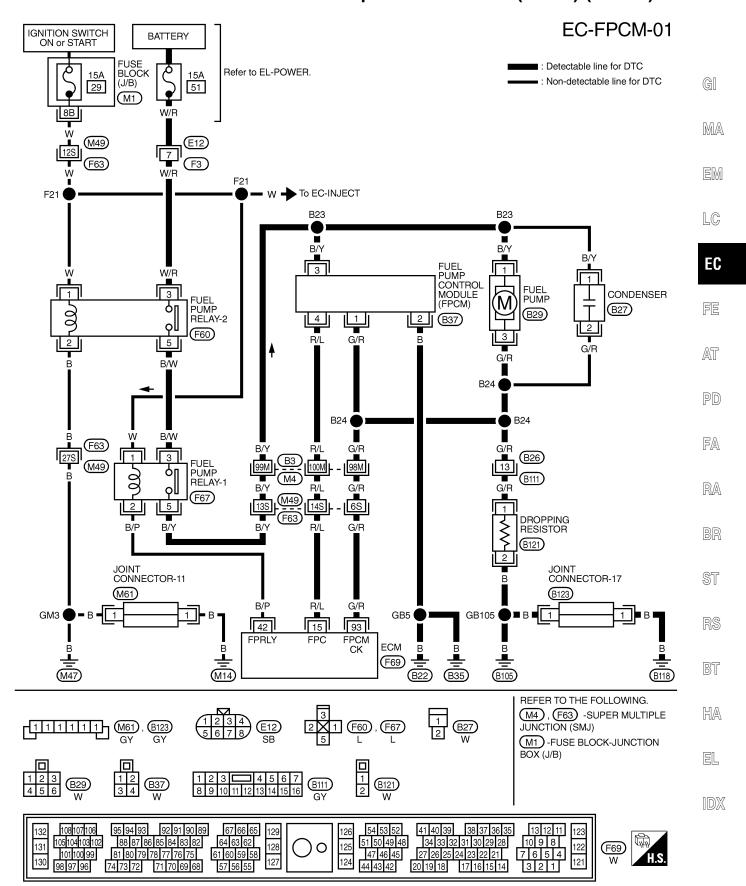
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

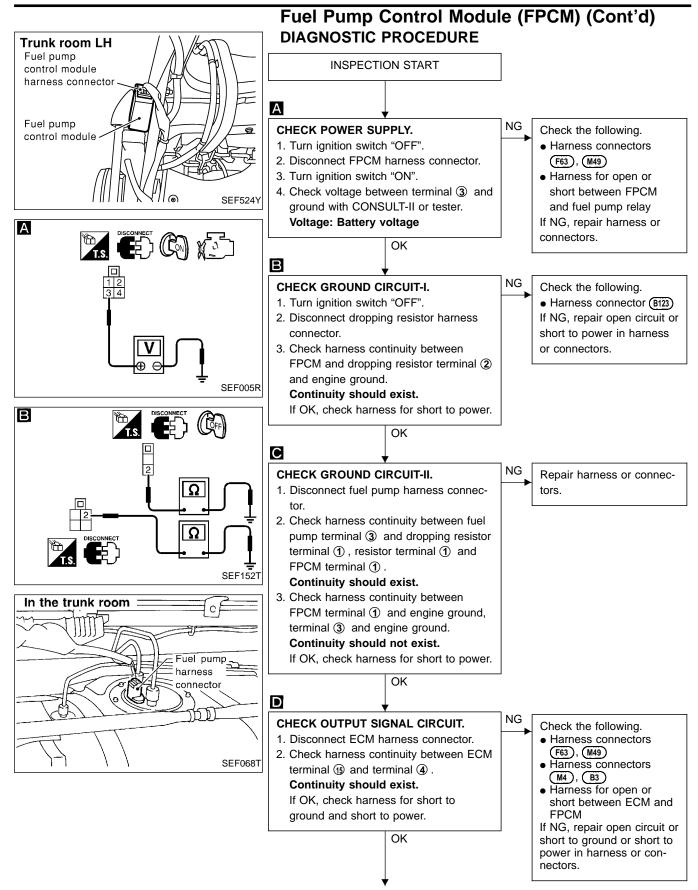
CAUTION:

Always drive at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

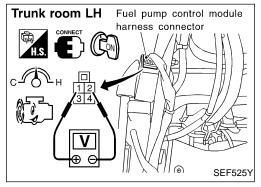

- 1) Lift up vehicle.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine (TCS switch "OFF").
- 4) Shift A/T selector lever to "D" position.
- 5) Hold vehicle speed at 70 to 100 km/h (43 to 62 MPH) for 12 seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-396.



Follow the procedure "With CONSULT-II" above.

· OR ·

Fuel Pump Control Module (FPCM) (Cont'd)


(Go to next page.)


Fuel Pump Control Module (FPCM) (Cont'd) С (A) T.S. CEP T.S. DISCONNECT T.S. Ε NG G[CHECK INPUT SIGNAL CIRCUIT. Check the following. 1. Check harness continuity between ECM Harness connectors (F63), (M49) terminal (9) and terminal (1) (or fuel Harness connectors MA pump terminal (3)). M4), (B3) Continuity should exist. Harness for open or 2. Check harness continuity between ECM Ω short between ECM and EM terminal 3 and engine ground. FPCM (or fuel pump) If NG, repair open circuit or Continuity should not exist. short to ground or short to DISCONNECT TIS DISCONNECT OFF If OK, check harness for short to power in harness or con-LC ground and short to power. nectors. OK EC NG CHECK COMPONENT Replace dropping resistor. (Dropping resistor). Refer to "COMPONENT INSPECTION" on FE В next page. OK AT SEF153T NG Replace FPCM. CHECK COMPONENT D (FPCM). PD Refer to "COMPONENT INSPECTION" on next page. 1 2 3 4 ECM CONNECTOR OK FA Perform "TROUBLE DIAGNOSIS FOR RA INTERMITTENT INCIDENT", EC-117. Ω BR INSPECTION END SEF426Q E CONNECTOR ECM BT HA Ω EL CONNECTOR ECM

SEF438U

ACTIVE TEST FPCM HI MONITOR CMPS-RPM(POS) XXX rpm FPCM DR VOLT XXX V FPCM LOW SEF770X

ACTIVE TES	Т	
FPCM	LOW	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
FPCM DR VOLT	xxx v	
FPCM	LOW	
		SEF771X

Fuel Pump Control Module (FPCM) (Cont'd) COMPONENT INSPECTION

FPCM

- 1. Start engine and let it idle.
- Perform "FPCM" in "ACTIVE TEST" mode with CON-SULT-II.
- 3. Check the following.
 - When selecting "HI", "FPCM DR VOLT" indicates approximately 0V.
 - When selecting "LOW", "FPCM DR VOLT" indicates approximately 4.4V.
- 4. If NG, replace FPCM.

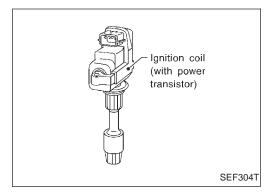
- OR -

- Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 5 seconds.
- 3. Start engine and let it idle.
- 4. Check voltage between terminals 1 and 2.

Within 30 seconds of starting engine:

Approximately 0V

More than 30 seconds after starting engine:


Approximately 4.4V

5. If NG, replace FPCM.

Dropping resistor

Check resistance between terminals (1) and (2).

Resistance: Approximately 0.8Ω at 25°C (77°F)

Ignition Signal

COMPONENT DESCRIPTION

Ignition coil & power transistor

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

MA

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM CONDITION **SPECIFICATION** • Engine: After warming up Idle 15° BTDC · Air conditioner switch: "OFF" **IGN TIMING** • Shift lever: "N" 2,000 rpm More than 25° BTDC No-load

EC

FE

AT

LC

ECM TERMINALS AND REFERENCE VALUE

ITEM

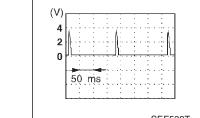
Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

WIRE

COLOR

TER-


MINAL

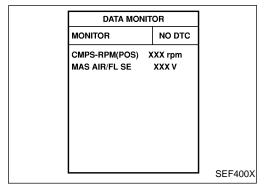
NO.

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

CONDITION

PD FA (DC voltage) Approximately 0.38V RA

DATA



43 44	Y/R G/R	Ignition signal (No. 1) Ignition signal (No. 8)	Engine is running. (Warmed-up condition) Idle speed	50 ms	BR ST
46 47	L/R GY	Ignition signal (No. 7) Ignition signal (No. 3)		SEF538T	RS
50 51 53 54	PU/W GY/R W/R R/L	Ignition signal (No. 6) Ignition signal (No. 5) Ignition signal (No. 4) Ignition signal (No. 2)	Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	Approximately 0.55V	BT HA
				SEF539T	EL
					IDX

Ignition Signal (Cont'd)

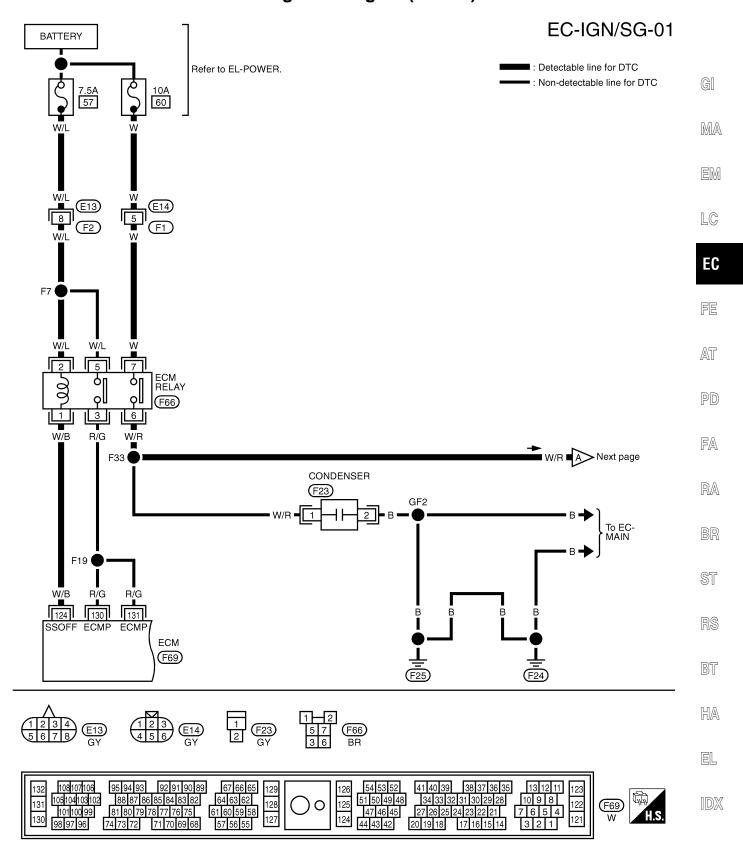
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1320 0201	The ignition signal in the primary circuit is not sent during engine cranking or running.	 Harness or connectors (The ignition primary circuit is open or shorted.) Power transistor unit built into ignition coil Camshaft position sensor Camshaft position sensor circuit

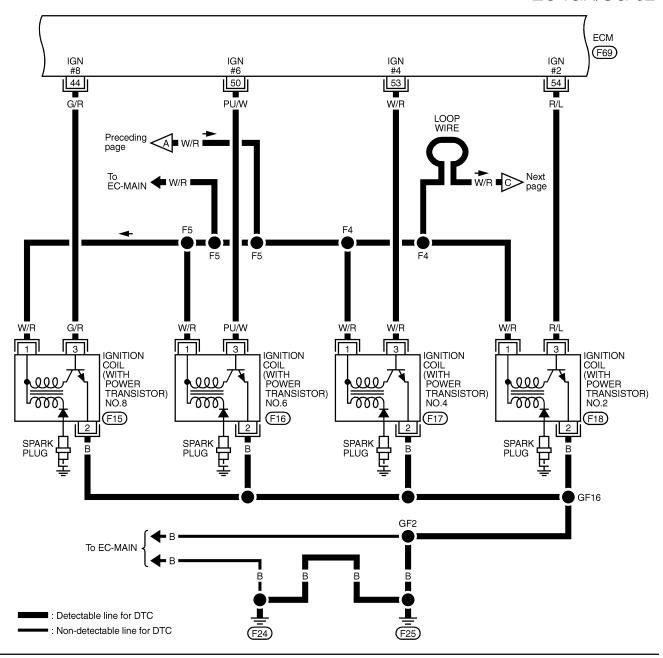
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

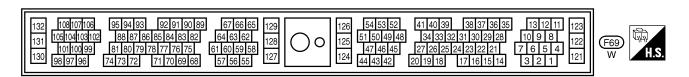
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- If DTC P1320 is displayed with DTC P0335, P0340 or P1336, perform trouble diagnosis for DTC P0335, P0340 or P1336 first. Refer to EC-270, EC-275 or EC-407.



- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 4 seconds. (If engine does not run, turn ignition switch to "START" for at least 5 seconds.)
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-404.

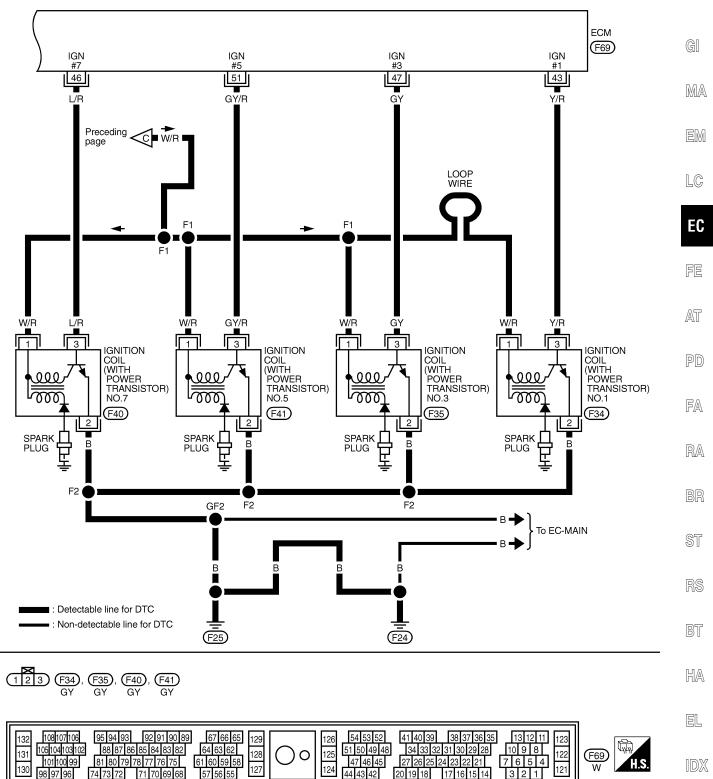

Follow the procedure "With CONSULT-II" above.

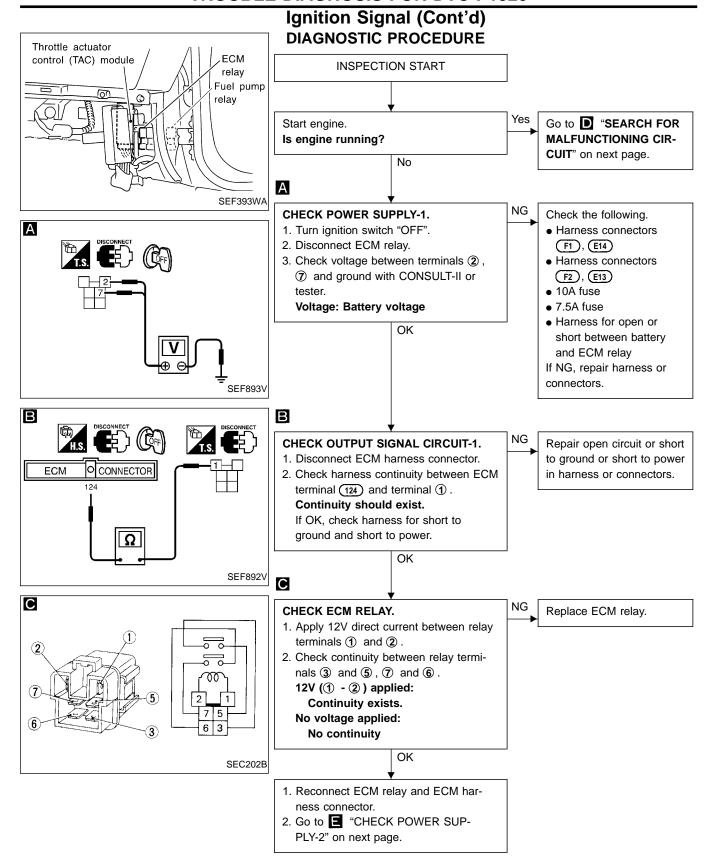
Ignition Signal (Cont'd)

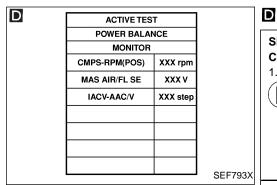


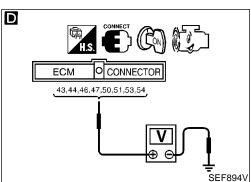
Ignition Signal (Cont'd)

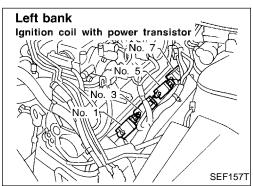
EC-IGN/SG-02

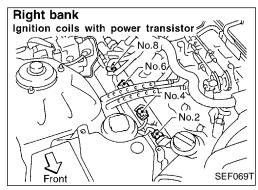


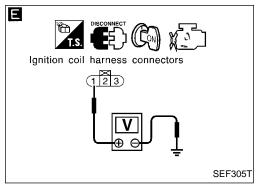



Ignition Signal (Cont'd)


EC-IGN/SG-03

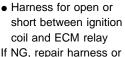





Ignition Signal (Cont'd)

SEARCH FOR MALFUNCTIONING CIR-CUIT.

1. Start engine and let it idle.


- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Search for circuit which does not produce a momentary engine speed drop. - OR

Ε

- 2. Check output signal voltage between ECM terminals (4), (4), (46, (47, 50), (51), (53), (54) and ground with oscilloscope.
- 3. Search for circuit that signal voltage does not match to "DATA" in "ECM INSPECTION TABLE".

NG Check the following.

If NG, repair harness or connectors.

CHECK POWER SUPPLY-2.

- 1. Turn ignition switch "OFF".
- 2. Disconnect ignition coil harness connector(s).
- 3. Turn ignition switch "ON".
- 4. Check voltage between each ignition coil harness connector terminal 1 and ground with CONSULT-II or tester. Voltage: Battery voltage

OK

CHECK GROUND CIRCUIT.

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground
- 3. Check harness continuity between ignition coil harness connector terminal (2) and engine ground.

Continuity should exist.

If OK, check harness for short to power.

OK (A)

(Go to next page.)

- Harness connectors (F61), (F62)
- Check for open or short between ignition coil and engine ground

If NG, repair open circuit or short to power in harness or connectors.

Check the following.

RS

GI

MA

EM

LC

EC

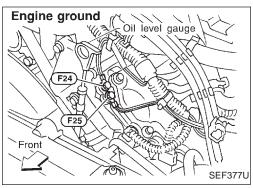
FE

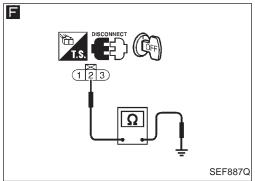
AT

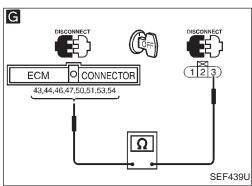
PD

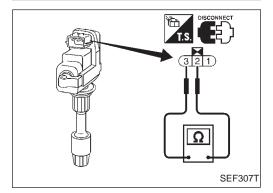
FA

RA

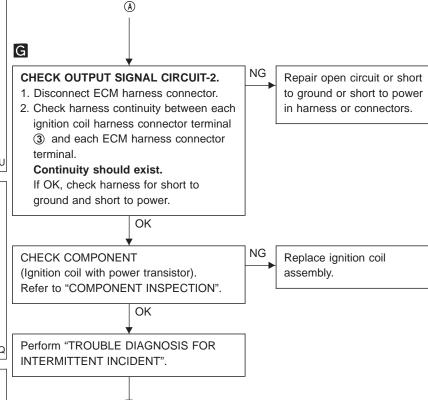

BR


ST


BT

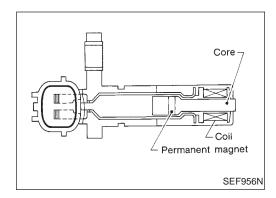

HA

EL



Ignition Signal (Cont'd)

COMPONENT INSPECTION


INSPECTION END

Ignition coil with power transistor

- Disconnect ignition coil with power transistor harness connector.
- 2. Check ignition coil with power transistor for resistance between terminals ③ and ②.

Terminals	Resistance	Result
③ and ②	Not 0Ω	OK
3 and 2	0Ω	NG

If NG, replace ignition coil with power transistor assembly.

Crankshaft Position Sensor (CKPS) (OBD) (COG)

COMPONENT DESCRIPTION

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis of misfire.

LC

MA

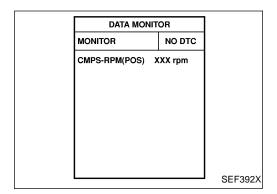
EC

FE

AT

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

ECIVI S	เเลเเธเธเ	or. Use a ground office	er than Edwi terminais such as the body	ground.	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC voltage)	PD FA
				Approximately 1.7V (AC voltage)	RA
			Engine is running. (Warmed-up condition) Idle speed	10 5	BR
				0 () () () () () () () () () (ST
57	B/R	Crankshaft position sen-		SEF391X	B.0
		sor (OBD)		Approximately 0V	RS
				(V) 10	BT
		Engine is running. (Warmed-up condition) Engine speed is 2,000 rpm.	5 0	HA	
				0.4 ms	EL
				SEF546T	

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1336 0905	Chipping of the signal plate (on drive plate) gear teeth (cogs) is detected by the ECM.	 Harness or connectors Crankshaft position sensor (POS) Signal plate (drive plate) Dead (Weak) battery

Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

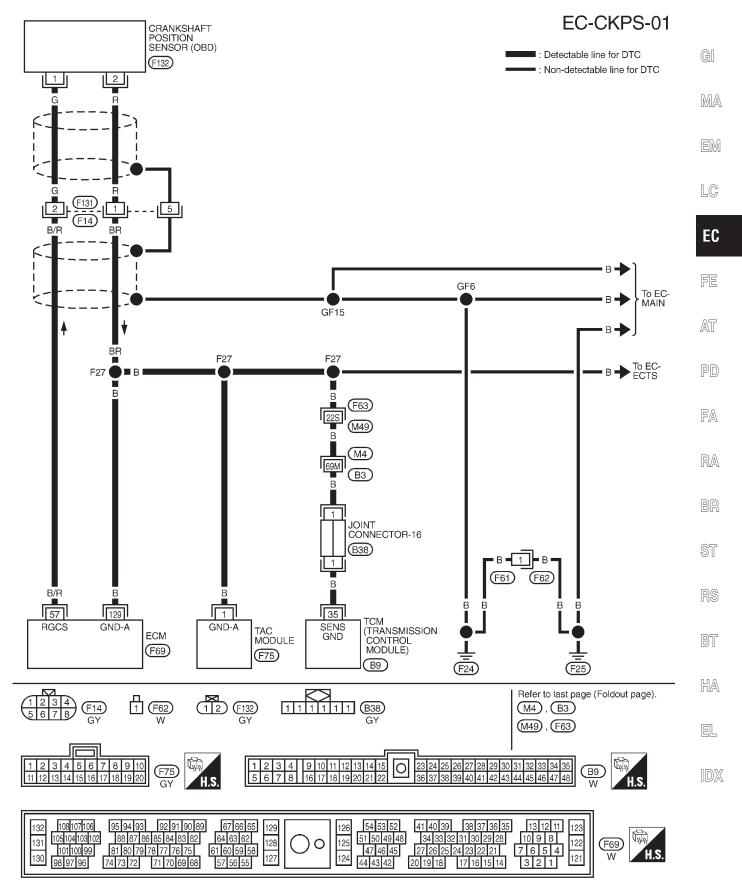
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

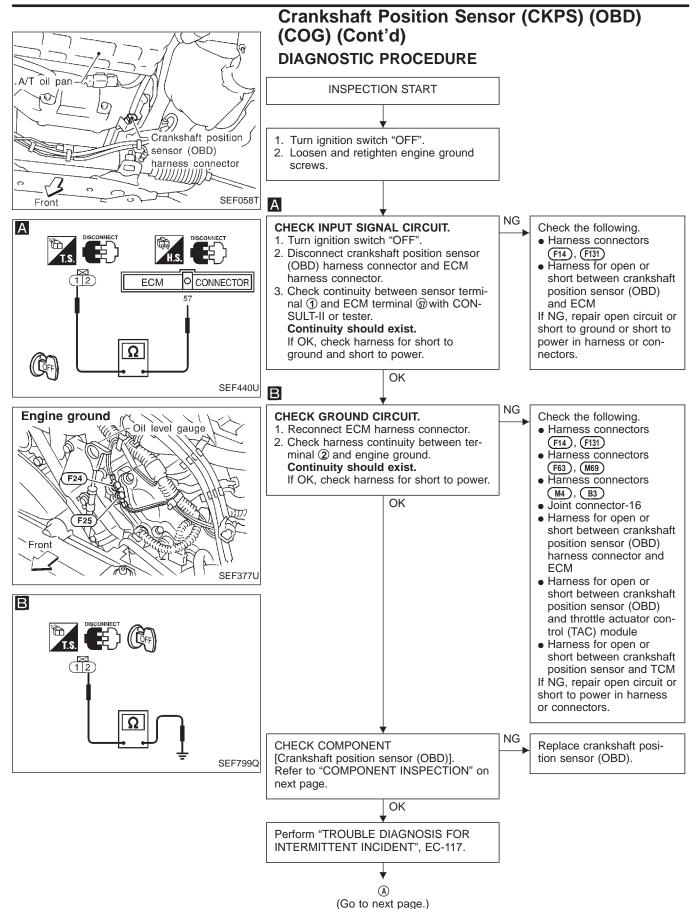
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

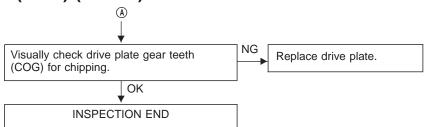
TESTING CONDITION:

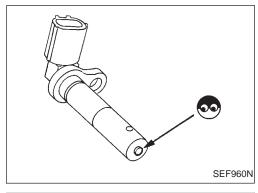
Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

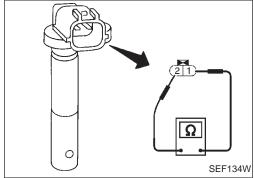

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 3 minutes at idle speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-410.



GSF


Follow the procedure "With CONSULT-II" above.


Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)



Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

COMPONENT INSPECTION

Crankshaft position sensor (OBD)

- . Disconnect crankshaft position sensor (OBD) harness connector.
- Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure. **Resistance:**

Approximately 166.5 - 203.5 Ω [at 20°C (68°F)]

AT

GI

MA

EM

LC

EC

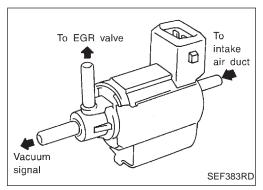
FE

PD

RA

FA

BR


ST

RS

BT

HA

EL

EGRC-solenoid Valve

COMPONENT DESCRIPTION

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. A plunger will then move to flow the vacuum signal (from the intake manifold collector to the EGR valve.)

The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve. When the ECM sends an OFF signal, the plunger is returned by the spring and cut the vacuum signal.

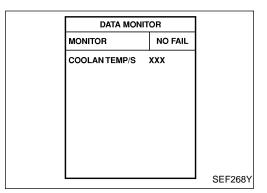
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up Air conditioner switch: "OFF"	Idle	OFF (CUT)
EGRC SOL/V	Air conditioner switch. OFF Shift lever: "D" No-load	Revving engine up from idle to 3,000 rpm	ON (FLOW)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
10	L/Y	EGRC-solenoid valve	Engine is running. (Warmed-up condition) Lift up drive wheels and rev engine up from idle to 3,000 rpm in "1st" position.	0 - 0.7V
			Engine is running. (Warmed-up condition) Lidle speed	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1400 1005	The improper voltage signal is sent to ECM through EGRC-solenoid valve.	Harness or connectors (The EGRC-solenoid valve circuit is open or shorted.) EGRC-solenoid valve

EGRC-solenoid Valve (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

TESTING CONDITION:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II and wait at least 5 seconds.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-415.

EM

- OR -Follow the procedure "With CONSULT-II" above.

LC

EC

FE

AT

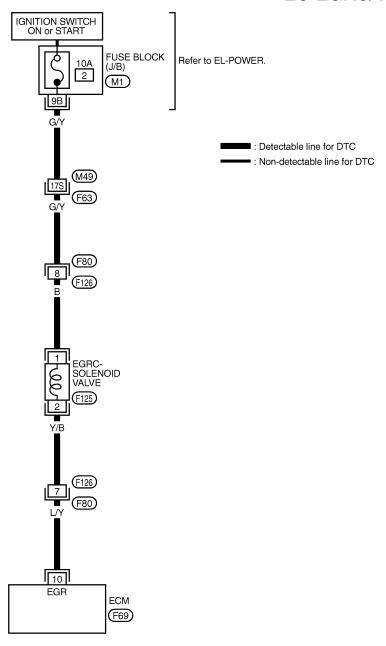
PD

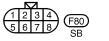
FA

RA

BR

ST

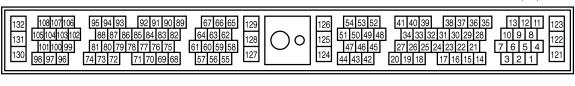

RS


BT

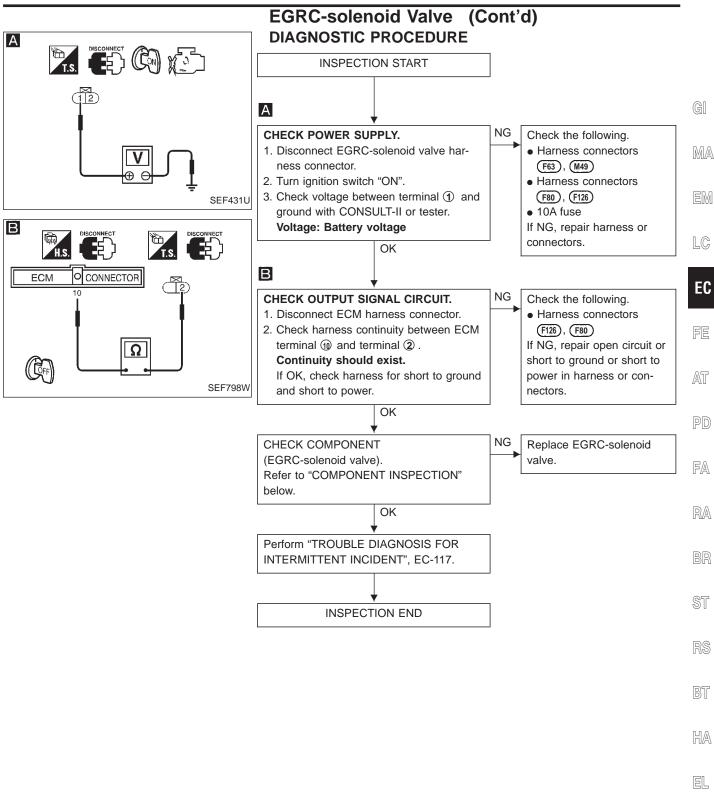
HA

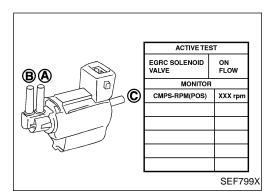
EGRC-solenoid Valve (Cont'd)

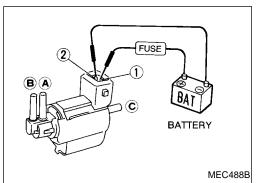
EC-EGRC/V-01



REFER TO THE FOLLOWING.


(F63) -SUPER MULTIPLE
JUNCTION (SMJ)


M1 -FUSE BLOCK-JUNCTION BOX (J/B)



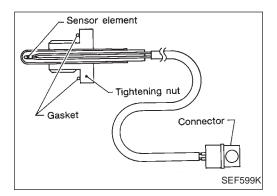
EGRC-solenoid Valve (Cont'd)

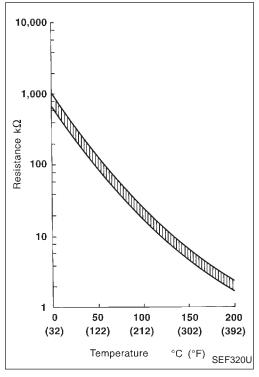
EGRC-solenoid valve

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST"

Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON (FLOW)	Yes	No
OFF (CUT)	No	Yes


– OR -



Check solenoid valve, following the table as shown below:

Conditions	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace the solenoid valve.

EGR Temperature Sensor

COMPONENT DESCRIPTION

The EGR temperature sensor detects temperature changes in the EGR passage way. When the EGR valve opens, hot exhaust gases flow, and the temperature in the passage way changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

EGR temperature °C (°F)	Voltage* (V)	Resistance
C(F)	(V)	(MΩ)
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.092 - 0.12
100 (212)	0.87	0.017 - 0.024

^{*:} These data are reference values and measured between ECM terminal (3) (EGR temperature sensor) and ground.

When EGR system is operating: Voltage: 0 - 1.5V

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

		ADD		CNIC	CIC		~
UN	BU	AKU	DIA	GNU	515	LOGIC	U

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	RS
P1401 0305	An excessively low voltage from the EGR temperature sensor is sent to ECM, even when engine coolant temperature is low.	 Harness or connectors (The EGR temperature sensor circuit is shorted.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve 	BT
	B) An excessively high voltage from the EGR temperature sensor is sent to ECM, even when engine coolant temperature is high.	Harness or connectors (The EGR temperature sensor circuit is open.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve	HA EL

MA

EM

LC

EC

FE

AT

PD

FA

RA

CMPS-RPM(POS) XXX rpm COOLAN TEMP/S XXX C EGR TEMP SEN XXX V	DATA MON	IITOR
COOLANTEMP/S XXX °C EGRTEMP SEN XXX V	MONITOR	NO DTO
GR TEMP SEN XXX V	CMPS-RPM(POS)	XXX rpm
	COOLAN TEMP/S	XXX °C
NT/A TEMP SE VVV °C	EGR TEMP SEN	XXX V
NI/A I EINIF SE XXX C	INT/A TEMP SE	XXX °C

EGR Temperature Sensor (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Verify that engine coolant temperature is less than 40°C (104°F).

If the engine coolant temperature is above the range, cool the engine down.

- 4) Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-421.

- OR Follow the procedure "With CONSULT-II" above.

Procedure for malfunction B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at temperature above -10°C (14°F).

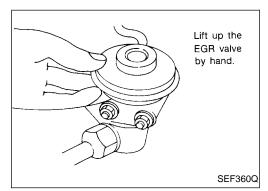
- 1) Start engine and warm it up to normal operating temperature.
- Run engine at idle for at least 2 minutes. 2)
- 3) Confirm that EGR valve is not lifting. If the check result is NG, go to "TROUBLE DIAG-NOSES FOR DTC P0400, P0402 and P1402". (See pages EC-281, 290 and 423.)
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Read "EGR TEMP SEN" at about 1,500 rpm while holding the EGR valve in full open position by hand. Voltage should decrease to less than 1.0V.

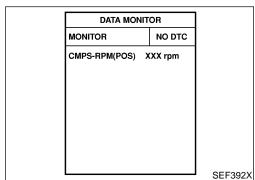
If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-421.

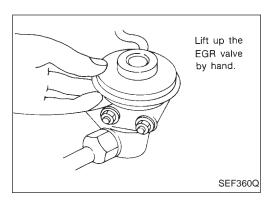
If the check result is OK, go to following step.

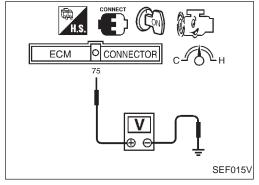
- 6) Turn ignition switch "OFF" and wait at least 5 seconds.
- 7) Turn ignition switch "ON".
- 8) Check the output voltage of "THRTL POS SEN" at closed throttle position and note it.
- 9) Start engine (TCS switch "OFF").
- 10) Maintain the following conditions for at least 5 consecutive seconds.

CMPS-RPM (POS): 1,200 - 2,200 rpm


VHCL SPEED SE: 10 km/h (6 MPH) or more


B/FUEL SCHDL: 3.3 - 4.5 msec THRTL POS SEN: X - (X + 0.52) V


> X = Voltage value measured at step 7)


Selector lever: Suitable position

11) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-421.

EGR Temperature Sensor (Cont'd)

- OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 2) Run engine at idle for at least 2 minutes.
- 3) Confirm that EGR valve is not lifting. If NG, go to TROUBLE DIAGNOSES FOR DTC P1402, EC-423.
- 4) Check voltage between ECM terminal (3) and ground at about 1,500 rpm with EGR valve lifted up to the full position by hand.

Voltage should decrease to less than 1.0V.

- 5) If step 4 is OK, perform TROUBLE DIAGNOSES FOR DTC P0400 and P1400, EC-286, 415.
- 6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-421.

GI

MA

EM

LC

EC

FE

AT

PD

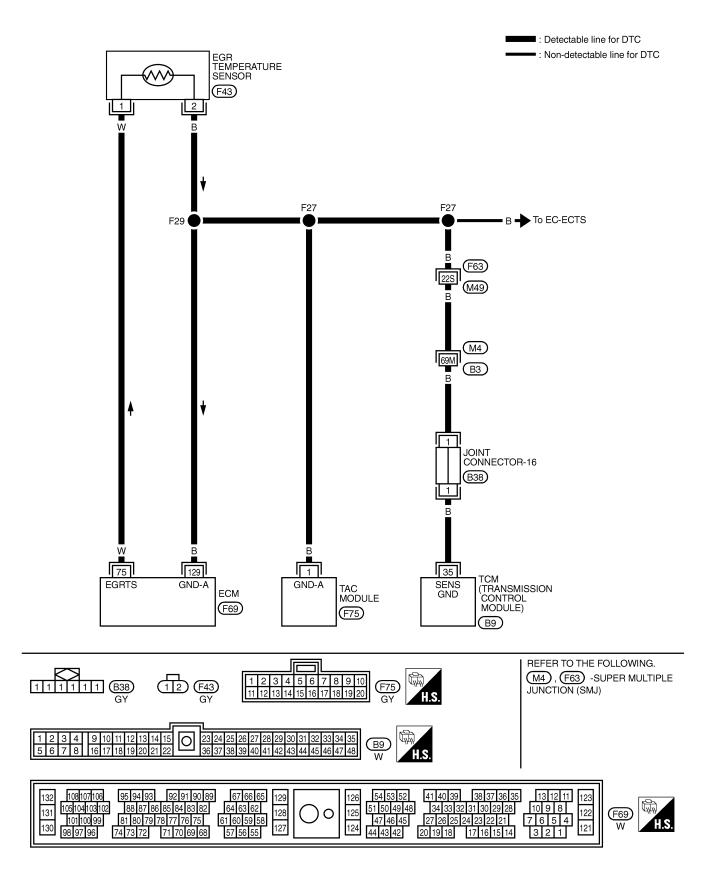
FA

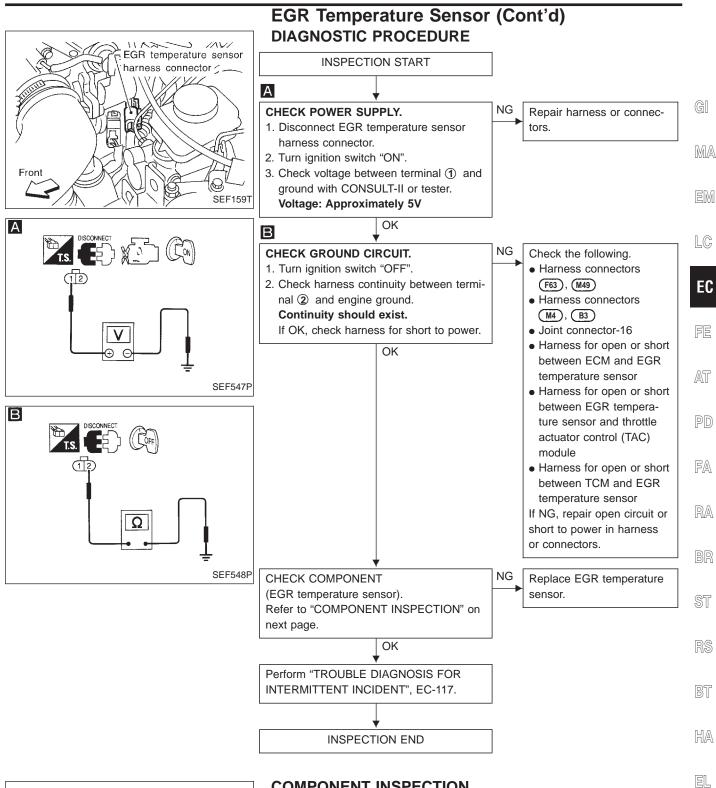
RA

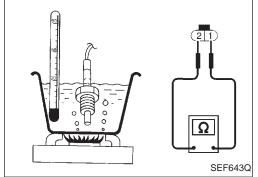
BR

ST

D@

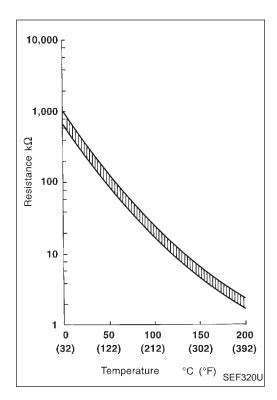

BT


HA


EL

EGR Temperature Sensor (Cont'd)

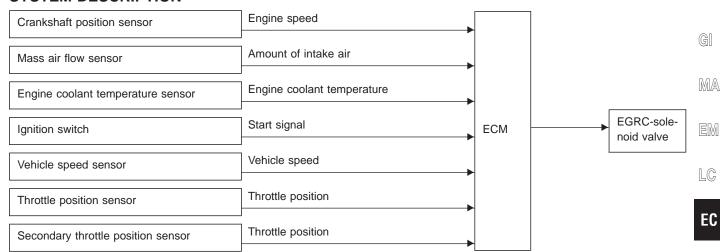
EC-EGR/TS-01



COMPONENT INSPECTION

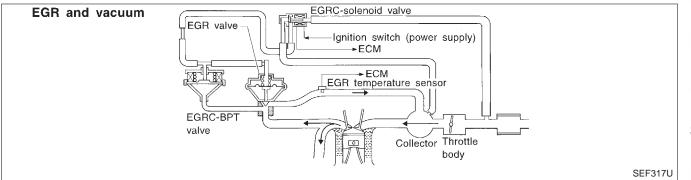
EGR temperature sensor

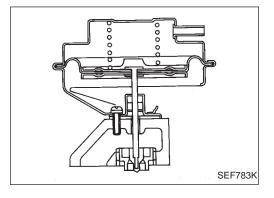
Check resistance change and resistance value.


EGR Temperature Sensor (Cont'd)

EGR temperature °C (°F)	Voltage* (V)	Resistance $(M\Omega)$
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.092 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.


EGR Function (Open)


SYSTEM DESCRIPTION

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current flows through the solenoid valve. This causes the port vacuum to be discharged into the atmosphere. The EGR valve remain closed.

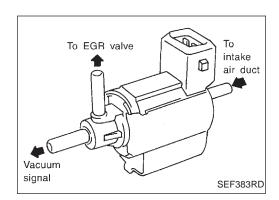
- Low engine coolant temperature
- Engine starting
- Engine stopped
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low vehicle speed
- TCS is operating

COMPONENT DESCRIPTION

Exhaust gas recirculation (EGR) valve

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

AT



EGR Function (Open) (Cont'd)

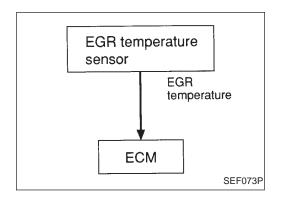
EGRC-solenoid valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The signal reaches to the EGR valve. When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold collector to the EGR valve.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming up Air conditioner switch: "OFF"	Idle	OFF (CUT)
EGRC SOL/V	Shift lever: "N" No-load	Revving engine up from idle to 3,000 rpm	ON (FLOW)


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
75 W EGR temperature sens		EGR temperature sensor	Engine is running. (Warmed-up condition) L Idle speed	Less than 4.5V
	75 W EGK temperature sensor		Engine is running. (Warmed-up condition) EGR system is operating.	0 - 1.0V
10 L/Y EGR	EGRC-solenoid valve	Engine is running. (Warmed-up condition) Lift up drive wheels and rev engine up from idle to 3,000 rpm in "D" position.	0 - 0.7V	
			Engine is running. (Warmed-up condition) L Idle speed	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

If EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.

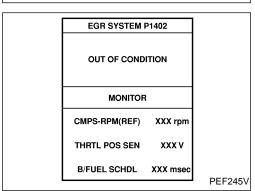
NOTE:

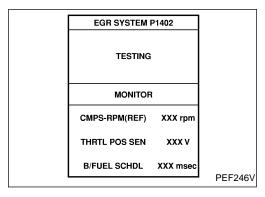
Diagnosis for this DTC will end when engine coolant temperature is approx. 50 to 60°C (122 to 140°F). Ignition switch must be turned "ON" (engine start) with engine coolant temperature below 40°C (104°F) when starting DTC confirmation procedure.

EGR Function (Open) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1402 0514	EGR flow is detected under conditions that do not call for EGR.	 EGRC-solenoid valve EGR valve leaking or stuck open EGR temperature sensor EGRC-BPT valve

EGR SYSTEM P1402


CHECK ENGINE COOLANT TEMP WITH DATA MONITOR.


IS COOLANT TEMP BETWEEN -10 TO 40 °C.(14 TO 104 °F)

MONITOR

COOLAN TEMP/S XXX °C

DATA MON	DATA MONITOR	
MONITORING	NO DTC	
CMPS-RPM(POS)	XXX rpm	
COOLAN TEMP/S	xxx ·c	
EGR TEMP SEN	xxx v	
INT/A TEMP SE	xxx .c	

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform the test at temperature above -10°C (14°F).
- Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.

COOLAN TEMP/S: -10 to 40°C (14 to 104°F)

EGR TEMP SEN: Less than 4.8V

If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the coolant or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- 1) Turn ignition switch "OFF" and wait at least 5 seconds. Then turn ignition switch "ON".
- Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3) Follow instruction of CONSULT-II.
- 4) Start engine and let it idle until "TESTING" on CON-SULT-II screen is turned to "COMPLETED". (It will take 70 seconds or more.)

If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 40°C (14 to 104°F). Retry from step 1).

5) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-428.

EM

LC

MA

GI

EC

FE

I-7 II

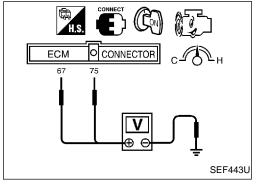
PD

FA

RA

__

D@


D7

HA

EL

EGR Function (Open) (Cont'd)

Turn ignition switch "ON" and select "MODE 1" with GST.

OR

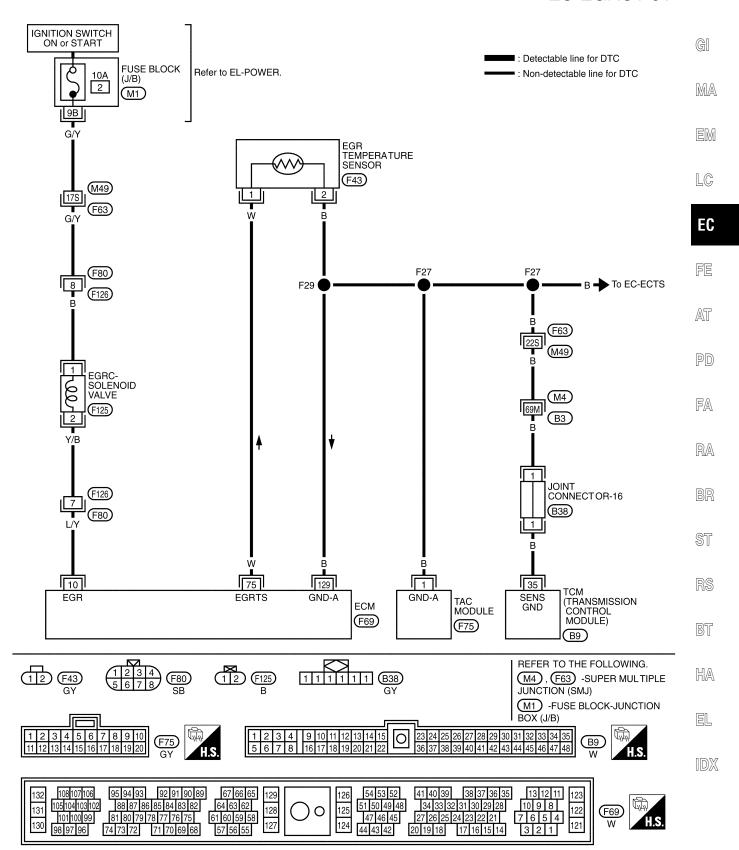
- 2) Check that engine coolant temperature is within the range of -10 to 40°C (14 to 104°F).
- 3) Check that voltage between ECM terminal (75) (EGR) temperature) and ground is less than 4.8V.
- 4) Start engine (TCS switch "OFF") and let it idle for at least 70 seconds.
- Stop engine. 5)
- 6) Perform the step 1) to 4) again.
- 7) Select "MODE 3" with GST.
- DTC is detected, "DIAGNOSTIC go PROCEDURE", EC-428.

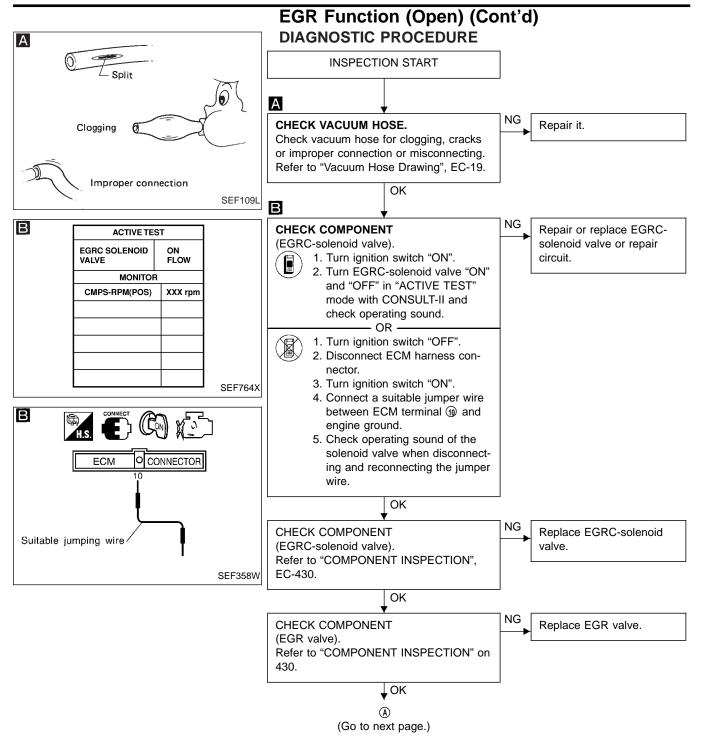
(GSF)

- 1) Turn ignition switch "ON".
- 2) Check the following voltages.

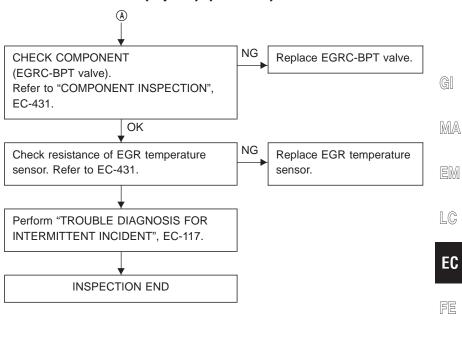
ECM terminal (f) (Engine coolant temperature) and ground:

2.7 - 4.4V


ECM terminal (5) (EGR temperature) and ground: Less than 4.8V


- 3) Start engine and let it idle for at least 70 seconds.
- 4) Turn ignition "OFF" and wait at least 5 seconds.
- 5) Perform "Diagnostic Test Mode II" (Self-diagnostic results) with ECM.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-428.

When using GST, "DIAGNOSTIC TROUBLE CODE CONFIRMA-TION PROCEDURE" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.


EGR Function (Open) (Cont'd)

EC-EGRC1-01

EGR Function (Open) (Cont'd)

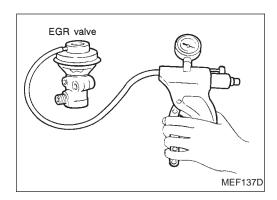
AT

PD

FA

RA

BR


ST

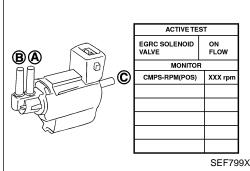
RS

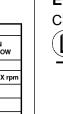
BT

HA

EL

EGR Function (Open) (Cont'd) **COMPONENT INSPECTION**


EGR valve


Apply vacuum to EGR valve vacuum port with a hand vacuum pump.

EGR valve spring should lift.

Check for sticking.

If NG, repair or replace EGR valve.

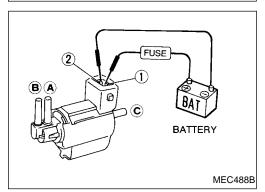
EGRC-solenoid valve

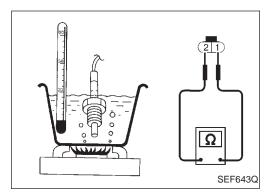
Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.

Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON (FLOW)	Yes	No
OFF (CUT)	No	Yes

OR -





Check solenoid valve, following the table as shown below:

Conditions	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace the solenoid valve.

150

(302)

200

(392)

°C (°F) _{SEF320U}

100

(212)

10,000

1,000

100

10

(32)

50

(122)

Temperature

Apply pressure

Resistance

EGR Function (Open) (Cont'd)

EGR temperature sensor

Check resistance change and resistance value.

EGR temperature °C (°F)	Voltage* (V)	Resistance $(M\Omega)$
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.092 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.

EM

LC

EC

AT

PD

ST

EGRC-BPT valve

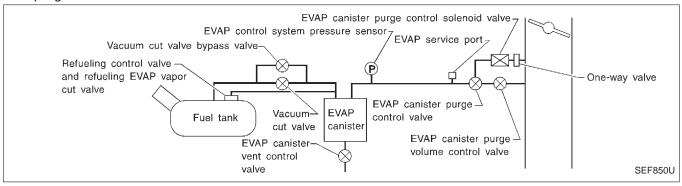
Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mmH₂ \ddot{O} , 3.94 inH₂ \dot{O}) from under EGRC-BPT valve.

If a leakage is noted, replace the valve.

HA

SEF083P

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure)

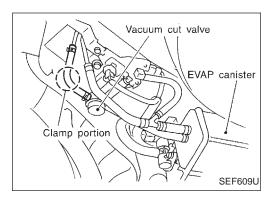

Note: If DTC P1448 is displayed with P1440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (See EC-464.)

ON BOARD DIAGNOSIS LOGIC

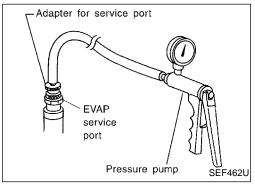
This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

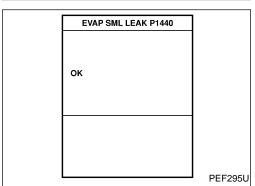
The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge control valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge control valve.



ON BOARD DIAGNOSIS LOGIC


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1440 0213	EVAP control system has a leak. EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge control valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge control valve EVAP canister purge volume control valve EVAP canister purge control solenoid valve Absolute pressure sensor Fuel tank temperature sensor MAP/BARO switch solenoid valve Blocked or bent rubber tube to MAP/BARO switch solenoid valve O-ring of EVAP canister vent control valve is missing or damaged. Water separator EVAP canister is saturated with water.


CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

EVAP SML LEAK P1440 1)PERFORM TEST AT A LOCATION OF 0-30C (32-86F) 2)STOP ENGINE AND TURN IGN SW ON. 3)CLAMP EVAP HOSE TIGHTLY. SEE SERVICE MANUAL FOR LOCATION. 4)TOUCH START.

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

- Never use compressed air or high pressure pump.
 Otherwise, EVAP system may be damaged.
- Do not start the engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

MA

LC

EC

PD

RA

HA

NOTE:

- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- Always remove service port adapter from service port after applying air up to 0.69 to 1.38 kPa (5.17 to 10.34 mmHg, 0.20 to 0.41 inHg).
- During the test, clamp the EVAP hose tightly as shown at left
- When clamping the hose, do not clamp other than middle of the hose to prevent loose or damage of the hose.
- If DTC P1448 is displayed with P1440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (See EC-464.)

- 1) Turn ignition switch "OFF".
- 2) Clamp the EVAP hose as shown left.
- 3) Turn ignition switch "ON".
- 4) Select "EVAP SML LEAK P1440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
 - Follow the instruction displayed.
- Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-435.
- Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.
- It is better that the fuel level is low.

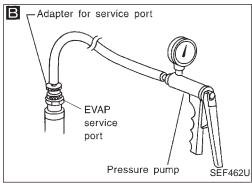
- 1) Start engine.
- 2) Drive vehicle according to "Driving pattern", EC-56.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

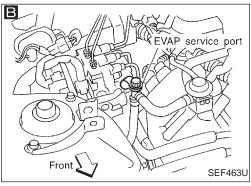
It is not necessary to cool engine down before driving.

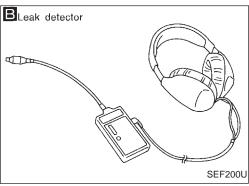
- 7) Drive vehicle again according to the "Driving pattern", EC-56.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447". EC-457.
- If P0440 is displayed on the screen, go to "DIAGNOS-TIC PROCEDURE", EC-301.
- If P1440 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1440", EC-435.
- If P0440 and P1440 are not displayed on the screen, go to the following step.

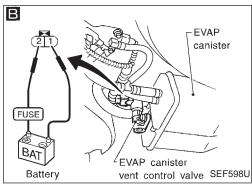
Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

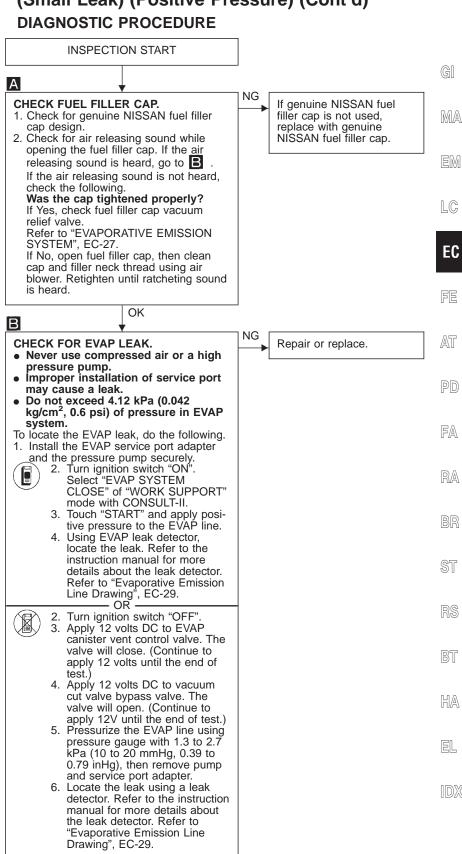

10) Select "MODE 1" with GST.

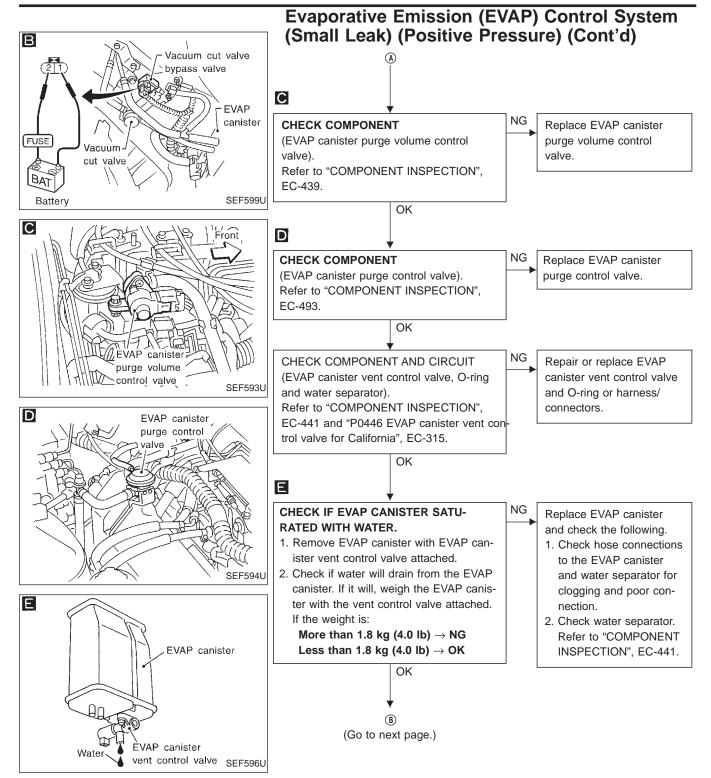

- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6).

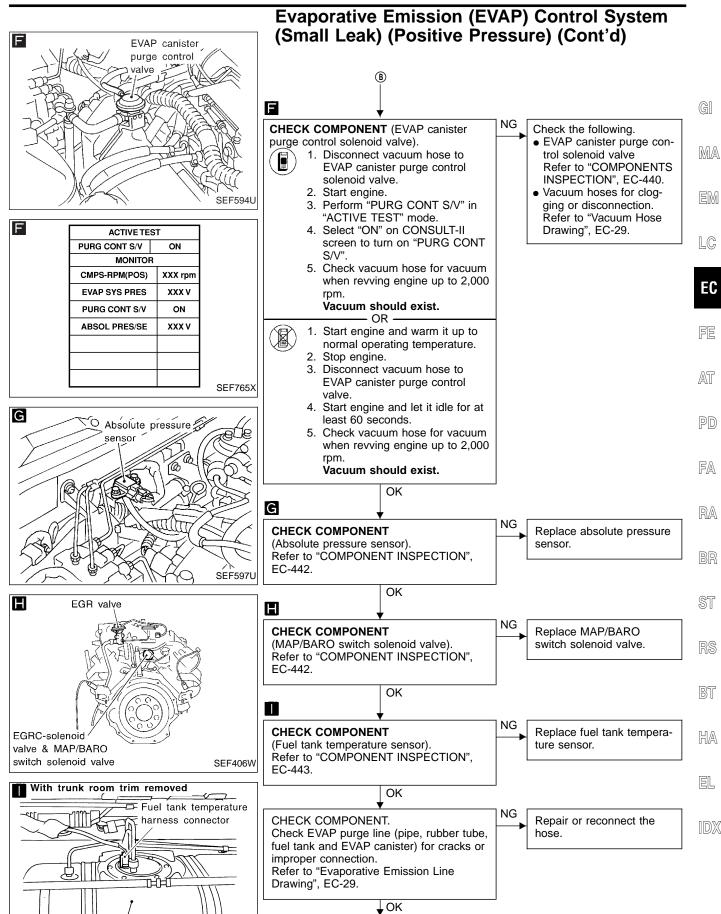

_ OR -


- Be sure to read the explanation of "Driving pattern" on EC-56 before driving vehicle.
- It is better that the fuel level is low.


- Start engine.
 Drive vehicle according to "Driving pattern", EC-56.
- 3) Stop vehicle.
- 4) Turn ignition switch "OFF" and wait at least 5 seconds.
- 5) Turn ignition switch "ON" and perform "Diagnostic Test Mode (Self-diagnostic results)" with ECM.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-435.

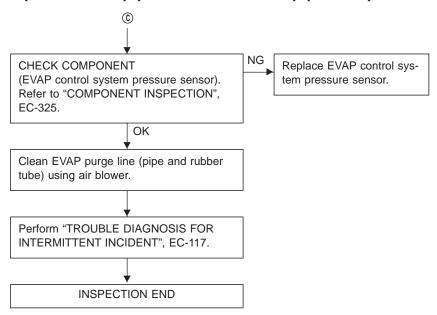





Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd) DIAGNOSTIC PROCEDURE

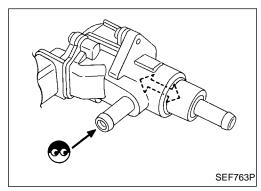
ŲOK

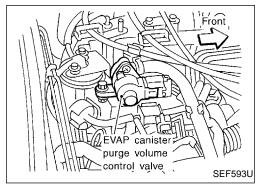
(Go to next page.)


Fuel tank

SFF394WA

(C)


(Go to next page.)


Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

DISCONNECT SEF353Q

ACTIVE TES		
PURG VOL CONT/V 20 step		
MONITOR		
CMPS-RPM(POS) XXX rpm		
HO2S1 (B1) LEAN		
HO2S1 (B2)	LEAN	
THRTL POS SEN	xxx v	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		SEC049C

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

COMPONENT INSPECTION

EVAP canister purge volume control valve

- 1. Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals. terminal ② and terminals ①, ③ terminal ⑤ and terminals ④, ⑥

Resistance:

Approximately 35 - 43Ω [At 25°C (77°F)]

- Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5. Turn ignition switch "ON".
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the valve opening. If NG, replace the EVAP canister purge volume control valve.

- Disconnect EVAP canister purge volume control valve harness connector.
- 2. Check resistance between the following terminals. terminal ② and terminals ①, ③ terminal ⑤ and terminals ④, ⑥

- OR -

Resistance:

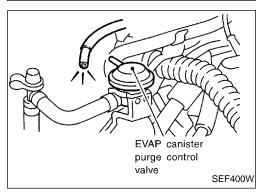
Approximately 35 - 43 Ω [At 25°C (77°F)]

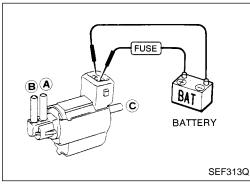
- Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- Turn ignition switch "ON" and "OFF". Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the ignition switch position.
 - If NG, replace the EVAP canister purge volume control valve.

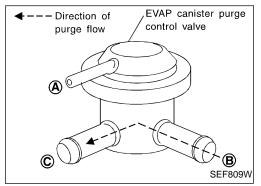
MA

EM

EC


FE


PD


FA

RA

ACTIVE TES		
PURG CONT S/V		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
EVAP SYS PRES XXX V		
PURG CONT S/V	ON	
ABSOL PRES/SE	xxx v	
		SEF765X

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

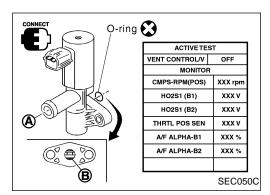
EVAP canister purge control solenoid valve

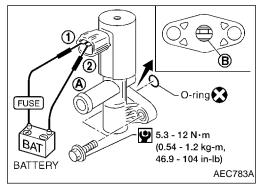
- 1. Turn ignition switch "ON".
- 2. Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- Disconnect vacuum hose at EVAP canister purge control valve.
- 5. Touch "ON" and "OFF" and check for vacuum passing through the hose.

Condition	Vacuum	
Idle	Not exist	
2,000 rpm	Exist	

- OR

Check air passage continuity.


Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals	Yes	No
No supply	No	Yes


If NG or operation takes more than 1 second, replace solenoid valve.

EVAP canister purge control valve

Check EVAP canister purge control valve as follows:

- 1. Blow air in port (A) and (C), then ensure that there is no leakage.
- 2. Blow air in port (B), then ensure that there is a resistance to flow out of port (C).
- 3. Apply vacuum to port (a). [Approximately -13.3 to -20.0 kPa (-100 to -150 mmHg, -3.94 to -5.91 inHg)] Blow air in port (c) and ensure free flow out of port (b).

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

EVAP canister vent control valve

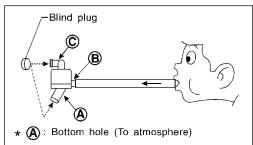
Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with

Condition Air passage continuity between (a) and (b)

ON No

OFF Yes


_____ OR

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

Make sure new O-ring is installed properly.

- (B): Emergency tube (From EVAP canister)
- (C): Inlet port (To member)

SEF829T

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that (A) and (C) are not clogged by blowing air into (B) with (A), and then (C) plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE

Do not disassemble water separator.

HA

BT

GI

MA

EM

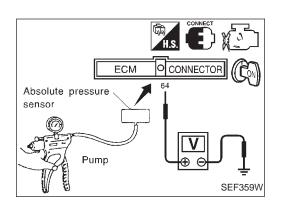
LC

EC

FE

PD

FA


RA

BR

ST

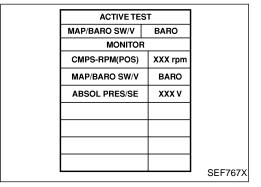
RS

EL

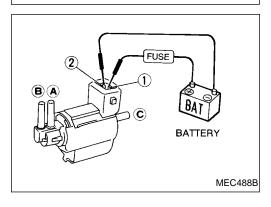
Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

Absolute pressure sensor

- Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch "ON" and check output voltage between terminal 64 and ground.


The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.


The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.
- 5. If NG, replace absolute pressure sensor.

ACTIVE TES		
MAP/BARO SW/V		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxx v	

MAP/BARO switch solenoid valve

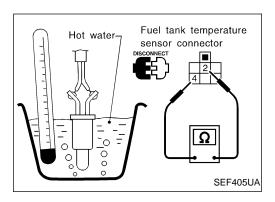
- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
 - Condition: At idle under no-load
 - CONSULT-II display

MAP/BARO SW/V	ABSOL PRES/SE (Voltage)		
BARO	More than 2.6V		
MAP	Less than the voltage at BARO		
Time for voltage to change			

Time for voltage to change

MAP/BARO SW/V	Required time to switch	
BARO to MAP	Less than 1 second	
MAP to BARO	Less than 1 second	

4. If NG, check solenoid valve as shown below.


- OR -

- 1. Remove MAP/BARO switch solenoid valve.
- 2. Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace solenoid valve.

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

GI

MA

LC

- -

EC

FE

AT

PD

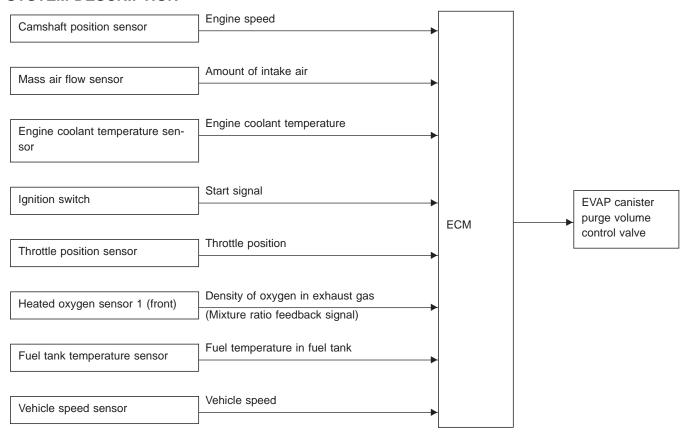
FA

RA

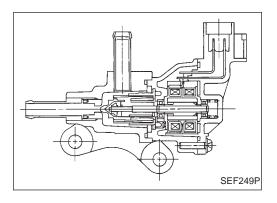
BR

ST

RS


BT

HA


EL

Evaporative Emission (EVAP) Canister Purge Volume Control Valve

SYSTEM DESCRIPTION

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control valve uses a step motor to control the flow rate of fuel vapor from the EVAP canister. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

EM

LC

EC

AT

PD

FA

RA

BR

BT

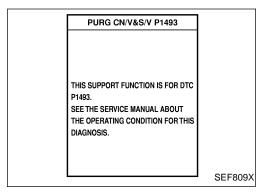
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

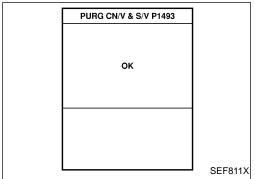
Specification data are reference values.

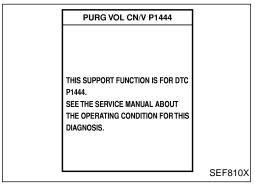
MONITOR ITEM	CONDITION		SPECIFICATION	GI
PURG VOL C/V	- Engine: After werming up	Idle	0 step	
	Engine: After warming upAir conditioner switch "OFF"	Vehicle running (Shift lever "1")	_	MA

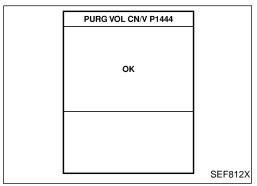
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.


		<u> </u>		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	W/B	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
130	R/G	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE
131	17/3	1 OWE! SUPPLY TO! ECIVI	[Gillion Switch Olv]	(11 - 14V)
123	W/L	Current return	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
28	BR/Y	EVAP canister purge vol-	Engine is running.	0 - 0.4V or
29	G	ume control valve	Idle speed	BATTERY VOLTAGE (11 - 14V)
35	G/OR	EVAP canister purge vol-	Engine is running.	0 - 0.4V or
36	L/B	ume control valve	Idle speed	BATTERY VOLTAGE (11 - 14V)


ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	HA
P1444 0214	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control valve is completely.	 EVAP control system pressure sensor EVAP canister purge volume control valve (The valve is stuck open.) 	
	closed.	 EVAP canister purge control valve Hoses (Hoses are connected incorrectly or clogged.) EVAP canister vent control valve 	IDX

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

 If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at temperature above 0°C (32°F).

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".
- 6) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
- 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take for at least 30 seconds.)

 Selector lever: Suitable position

Vehicle speed: 36 - 120 km/h (22 - 75 MPH) CMPS-RPM (POS): 900 - 6,300 rpm B/FUEL SCHDL: 2 - 4.8 msec

- 8) Stop vehicle with engine running.
- Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 10) Touch "START".

If "COMPLETED" is displayed, go to step 12).

11) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take for at least 20 seconds.)

Selector lever: Suitable position

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

CMPS-RPM (POS): 900 - 6,300 rpm B/FUEL SCHDL: 2 - 4.8 msec

If "TESTING" is not displayed after 5 minutes, retry from step 2).

12) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-448.

ENGINE SPD 825RPM	
COOLANT TEMP 69°C	
VEHICLE SPD 0MPH	
IGN ADVANCE 8.0°	
CALC LOAD 28.2%	
MAP36KPaA	
MAF 5.20gm/s	
THROTTLE POS 0.0%	
INTAKE AIR27°C	
FUEL SYS #1 OLDRIVE	
FUEL SYS #2 UNUSED	
SHORT FT #1 0.8%	
LONG FT #1 0.0%	
O2S B1 S1 0.200V	
O2FT B1 S1 0.8%	
O2S B1 S2 0.010V	SEE519R
	JOE: 01910

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

1) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

GI

MA

LC

EC

FA

BT

Select "MODE 1" with GST.

3) Check coolant temperature.

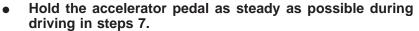
Coolant temperature: 40 - 100°C (104 - 212°F)

Be sure that water temperature does not exceed 100°C (212°F). If it becomes higher than 100°C (212°F), cool down the engine and perform the procedure again from the beginning.

4) Turn ignition switch "OFF" and wait at least 5 seconds.

5) Turn ignition switch "ON" and wait at least 15 seconds.

6) Restart engine and let it idle for at least 80 seconds.


 Maintain the following conditions for at least 80 seconds.

Gear position: Suitable gear position Vehicle speed: 36 - 120 km/h (22 - 75 MPH) CMPS-RPM (POS): 900 - 6,300 rpm Coolant temperature: 40 - 100°C (104 - 212°F)

8) Select "MODE 7" with GST.

9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-448.

NOTE:

 If the driving conditions are not satisfied in steps 7, restart the procedure.

It is better that the fuel level is low.

- OR

1) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

Check voltage between ECM terminal (a) and ground Voltage: 0.8 - 1.5V
 Perform the following procedure before the voltage drops below 0.8V. If the voltage drops below 0.8V, cool

down the engine and perform the entire procedure all over again.

Turn ignition switch "OFF" and wait at least 5 seconds.

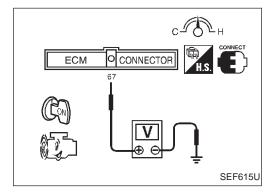
4) Turn ignition switch "ON" and wait at least 15 seconds.

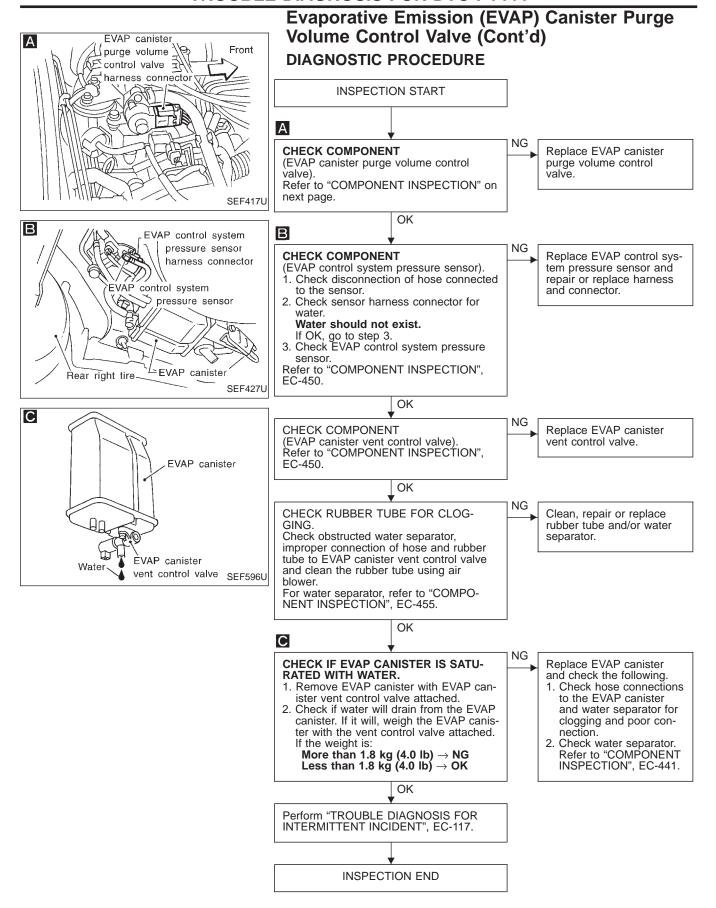
5) Restart engine and let it idle for at least 80 seconds.

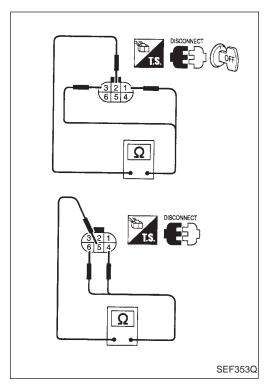
Maintain the following conditions for at least 80 seconds.

Gear position: Suitable gear position Vehicle speed: 36 - 120 km/h (22 - 75 MPH) CMPS-RPM: 900 - 6,300 rpm

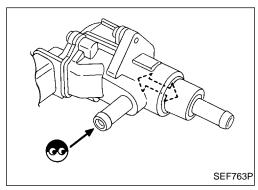
Check voltage between ECM terminal 67 and ground: 0.8 - 1.5V

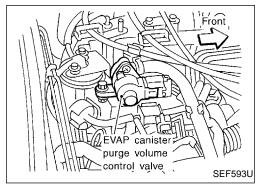

7) Turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON".


8) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.


9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-448.

NOTE:


- Hold the accelerator pedal as steady as possible during driving in steps 6.
- If the driving conditions are not satisfied in steps 6, restart the procedure.
- It is better that the fuel level is low.



		1
ACTIVE TEST		
PURG VOL CONT/V	20 step	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
HO2S1 (B1)	LEAN	
HO2S1 (B2)	LEAN	
THRTL POS SEN	xxx v	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		SEC049C

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control valve

- 1. Disconnect EVAP canister purge volume control valve harness connector.
- harness connector.

 2. Check resistance between the following terminals. terminal ② and terminals ①, ③

terminal (5) and terminals (4), (6)

Resistance:

Approximately 35 - 43 Ω [At 25°C (77°F)]

- 3. Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.

(Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)

- 5. Turn ignition switch "ON".
- 6. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the valve opening. If NG, replace the EVAP canister purge volume control valve.

- Disconnect EVAP canister purge volume control valve
- harness connector.

 2. Check resistance between the following terminals.

– OR –

terminal ② and terminals ①, ③ terminal ⑤ and terminals ④, ⑥

Resistance:

Approximately 35 - 43Ω [At 25°C (77°F)]

- Reconnect EVAP canister purge volume control valve harness connector.
- 4. Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.

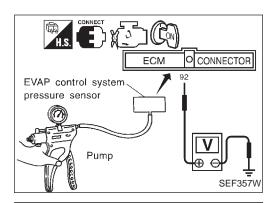
(Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)

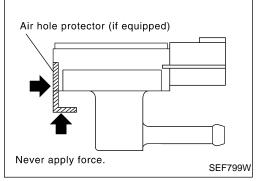
5. Turn ignition switch "ON" and "OFF". Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

If NG, replace the EVAP canister purge volume control valve.

MA

EM


FE


PD

FA

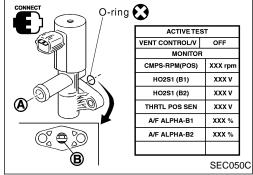
RA

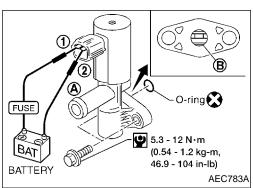
EL

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

COMPONENT INSPECTION

EVAP control system pressure sensor


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal


 and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

EVAP canister vent control valve

Check air passage continuity.

Pe Co

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (a) and (b)
ON	No
OFF	Yes
0	R

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

Evaporative Emission (EVAP) Canister Purge Volume Control Valve (Cont'd)

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

GI

MA

EM

LC

EC

FE

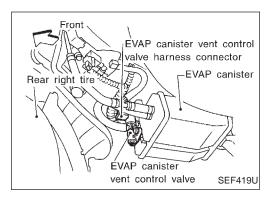
AT

PD

FA

RA

BR


ST

RS

BT

HA

EL

Evaporative Emission (EVAP) Canister Vent Control Valve (Close)

COMPONENT DESCRIPTION

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	P/B	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1446 0215	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water.

DATA MO	NITOR	
MONITOR	NO DT	
CMPS-RPM(POS) COOLAN TEMP/S VHCL SPEED SE THRTL POS SEN B/FUEL SCHDL	XXX °C XXX km/h XXX V	

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine (TCS switch "OFF").
- 4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-454.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

– OR -

Follow the procedure "With CONSULT-II" above.

AT

GI

MA

LC

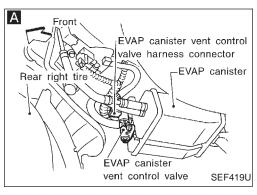
EC

FA

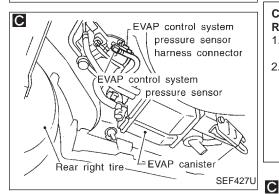
PD

RA

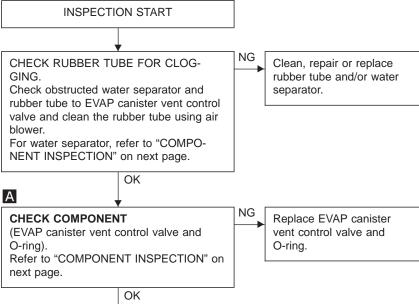
BR


ST

RS


BT

HA


EL

EVAP canister Water Vent control valve SEF596U

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd) DIAGNOSTIC PROCEDURE

NG

NG

- CHECK IF EVAP CANISTER IS SATURATED WITH WATER.
- 1. Remove EVAP canister with the vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

If it will, weigh the EVAP canister with the vent control valve attached. If the weight is:

More than 1.8 kg (4.0 lb) \rightarrow NG Less than 1.8 kg (4.0 lb) \rightarrow OK

OK

Replace EVAP canister and check the following.

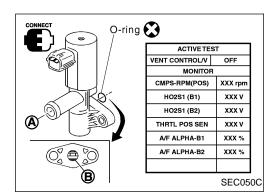
- Check hose connections to the EVAP canister and water separator for clogging and poor connection.
- Check water separator. Refer to "COMPONENT INSPECTION", EC-455.

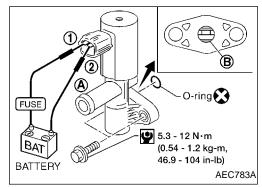
В

(EVAP control system pressure sensor).

- Check for disconnection of hose connected to the sensor.
- Check sensors harness connector for water.

Water should not exist.


If OK, go to step 3.


Check EVAP control system pressure sensor.

Refer to "COMPONENT INSPECTION",

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

INSPECTION END

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)

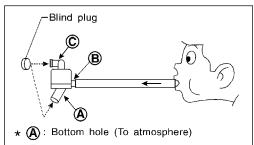
COMPONENT INSPECTION

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes


OR

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

- (B): Emergency tube (From EVAP canister)
- C: Inlet port (To member)

SEF829T

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that (a) and (b) are not clogged by blowing air into (b) with (a), and then (c) plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.

BT

RS

GI

MA

EM

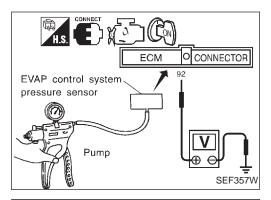
LC

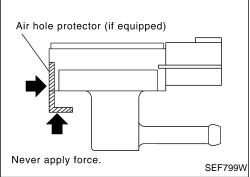
EC

FE

AT

FA


RA


BR

ST

HA

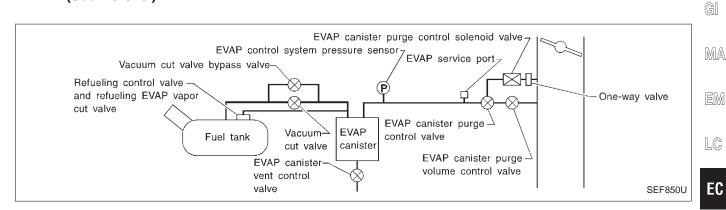
EL

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal

 and ground.


Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Evaporative Emission (EVAP) Control System Purge Flow Monitoring

NOTE: If DTC P1447 is displayed with P0510, perform TROUBLE DIAGNOSIS FOR DTC P0510 first. (See EC-346.)

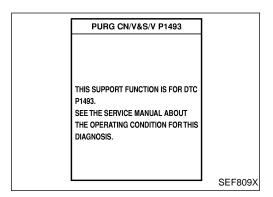
SYSTEM DESCRIPTION

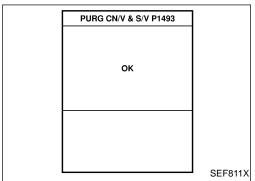
In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control valve and EVAP canister purge control valve are open. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

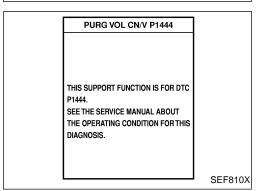
ON BOARD DIAGNOSIS LOGIC

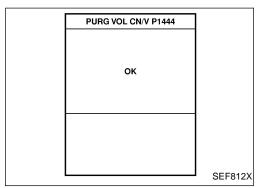
Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

	I	ı	FA
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	. RA
P1447 0111	EVAP control system does not operate properly. EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	 EVAP canister purge volume control valve stuck closed EVAP canister purge control valve stuck closed EVAP control system pressure sensor Loose, disconnected or improper connection of rubber tube Blocked rubber tube EVAP canister purge control solenoid valve Blocked or bent rubber tube to MAP/BARO switch solenoid valve Cracked EVAP canister EVAP canister purge volume control valve Closed throttle position switch Improper connection of one-way valve Blocked purge port EVAP canister vent control valve 	BF ST RS


HA


AT


PD


EL

 \mathbb{M}

	PURG FLOW P1		
	OUT OF CONDITION		
	MONITOR		
	CMPS-RPM(POS) XXX rpm		
	B/FUEL SCHDL XXX msec		
	THRTL POS SEN XXX V		
SEC054			SEC054C

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

 If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

• Always perform test at temperature above 0°C (32°F).

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
- Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 5) Touch "START".
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

CMPS-RPM (POS): 900 - 6,300 rpm

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

B/FUEL SCHDL: 2 - 4.8 msec

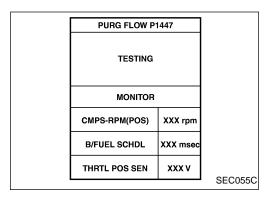
Selector lever: Suitable position

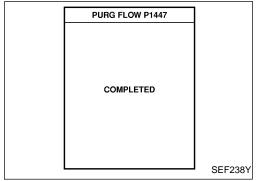
If "TESTING" is not displayed after 5 minutes, retry from step 2).

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-491.
- Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 9) Touch "START".

If "COMPLETED" is displayed, go to 11).

10) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 20 seconds.)


CMPS-RPM (POS): 900 - 6,300 rpm


Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

B/FUEL SCHDL: 2 - 4.8 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

- 11) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE" of "TROUBLE DIAGNOSIS FOR DTC P1444". EC-448.
- 12) Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- 13) Touch "START".
- 14) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd)

conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

CMPS-RPM (POS): 900 - 6,300 rpm

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

15) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-460. GI

MA

EM

LC

FC

AT

PD

OVERALL FUNCTION CHECK

least 1 minute.

Use this procedure to check the overall monitoring function of the EVAP control system purge flow. During this check, a 1st trip DTC might not be confirmed.

FA

1) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

RA

2) Turn ignition switch "OFF", wait at least 5 seconds.

3) Start engine and wait at least 70 seconds.

4) Set voltmeter probes to ECM terminals (9) (EVAP control system pressure sensor signal) and (128) (ECM ground).

ground).
5) Check EVAP control system pressure sensor value at \$\infty\$

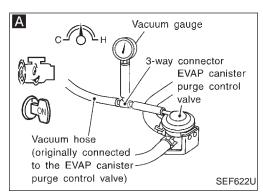
idle speed.
6) Establish and maintain the following conditions for at

l RS

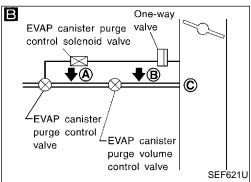
Air conditioner switch: ON Steering wheel: Fully turned Headlamp switch: ON

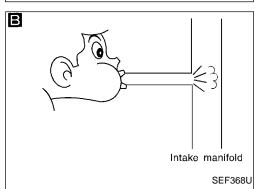
Rear window defogger switch: ON Engine speed: Approx. 3,000 rpm

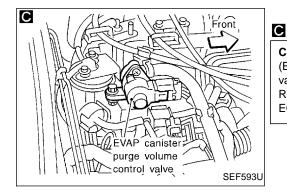
HA

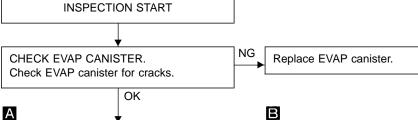

BT

Gear position:


Any position other than "P", "N" or "R"


Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed for at least 1 second.


7) If NG, go to "DIAGNOSTIC PROCEDURE", EC-460.


ACTIVE TEST PURG CONT S/V ON MONITOR CMPS-RPM(POS) XXX rpm EVAP SYS PRES XXX V PURG CONT S/V ON ABSOL PRES/SE XXX V

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd) DIAGNOSTIC PROCEDURE

NG

CHECK PURGE FLOW.

- Disconnect vacuum hose from EVAP canister purge control valve and install vacuum gauge.
- 2. Start engine and let it idle.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Rev engine up to 2,000 rpm.
- Select "ON" and "OFF" on CON-SULT-II screen to turn on "PURG CONT/V S/V".

ON: Vacuum should exist.
OFF: Vacuum should not exist.

OR

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose from EVAP canister purge control valve and install vacuum gauge.
- 4. Start engine and let it idle for at least 60 seconds.
- Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

While operating solenoid valve, vacuum should exist.

6. Release the accelerator pedal and let idle.

Vacuum should not exist.

OK

CHECK EVAP PURGE LINE.

Check EVAP purge line for improper connection, disconnection and blocked purge port.

- 1. Turn ignition switch "OFF".
- Disconnect purge hoses connected to EVAP canister purge control valve (A) and EVAP canister purge volume control valve (B).
- Blow air into each hose and make sure air flows freely.
- Check EVAP purge port
 C).
- 5. Check improper connection of one-way valve.

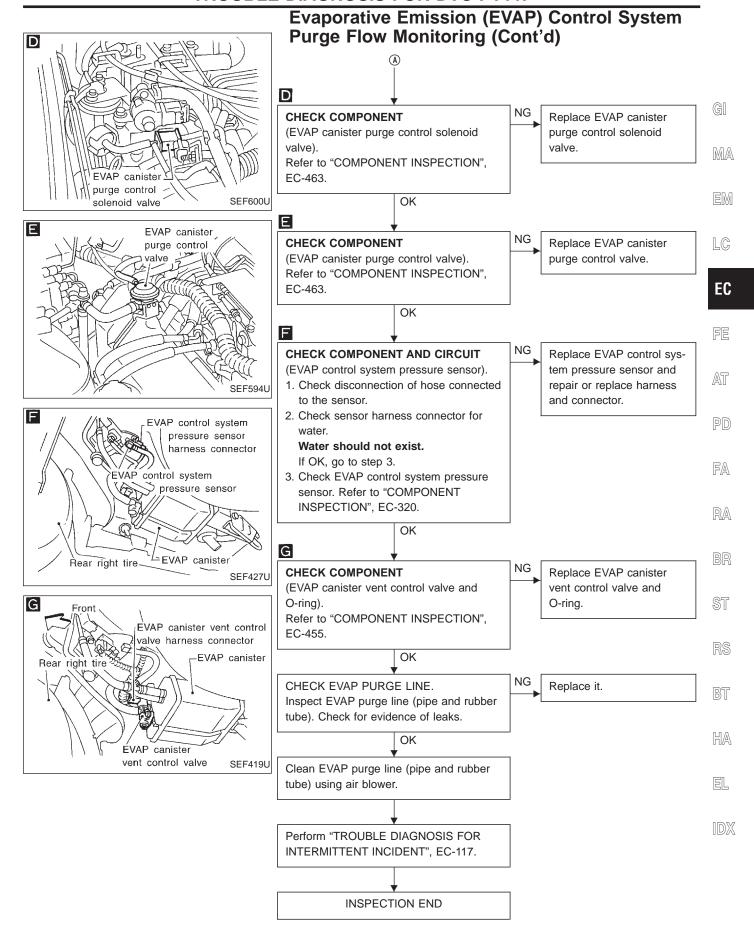
If NG, reconnect one-way valve properly or repair or clean hoses and/or purge port.

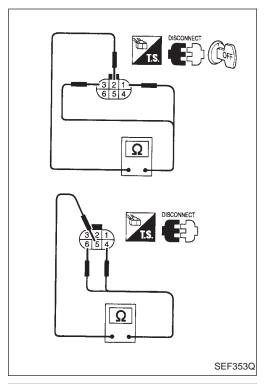
OK

CHECK ONE-WAY VALVE.

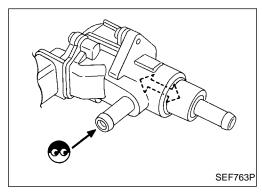
- Check for improper connection
- 2. Check component. Refer to EC-393.

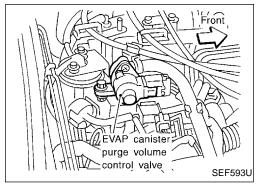
ОК


CHECK COMPONENTS (EVAP canister purge volume control solenoid valve).


Refer to "COMPONENT INSPECTION", EC-462.

CHECK COMPONENT
(EVAP canister purge volume control valve).
Refer to "COMPONENT INSPECTION", EC-462.


↓OK (Go to next page.) Replace EVAP canister purge volume control valve.


NG

ACTIVE TEST		
PURG VOL CONT/V 20 step		
MONITOR		
CMPS-RPM(POS)	XXX rpm	
HO2S1 (B1)	LEAN	
HO2S1 (B2)	LEAN	
THRTL POS SEN	xxx v	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
	'	SEC049C

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control valve

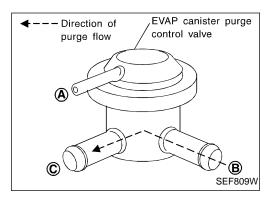
- Disconnect EVAP canister purge volume control valve harness connector.
- Check resistance between the following terminals. terminal ② and terminals ①, ③ terminal ⑤ and terminals ④, ⑥
 Resistance:

Approximately 35 - 43 Ω [At 25°C (77°F)]

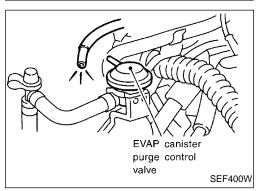
- Reconnect EVAP canister purge volume control valve harness connector.
- 4) Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain
- 5) Turn ignition switch "ON".

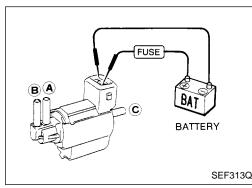
connected.)

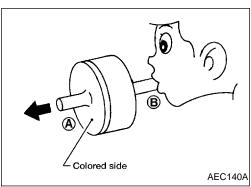
6) Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the valve opening. If NG, replace the EVAP canister purge volume control valve.


- 1) Disconnect EVAP canister purge volume control valve harness connector.
- 2) Check resistance between the following terminals. terminal ② and terminals ①, ③ terminal ⑤ and terminals ④, ⑥

– OR –


Resistance:


Approximately 35 - 43Ω [At 25°C (77°F)]


- 3) Reconnect EVAP canister purge volume control valve harness connector.
- 4) Remove EVAP canister purge volume control valve from intake manifold collector and disconnect hoses from the valve.
 - (Plug the purge hoses. The EVAP canister purge volume control valve harness connector should remain connected.)
- 5) Turn ignition switch "ON" and "OFF". Check that EVAP canister purge volume control valve shaft moves smoothly forward and backward according to the ignition switch position.
 - If NG, replace the EVAP canister purge volume control valve.

_			
	ACTIVE TES		
	PURG CONT S/V	ON	
	MONITOR		
	CMPS-RPM(POS)	XXX rpm	
	EVAP SYS PRES	xxx v	
	PURG CONT S/V	ON	
	ABSOL PRES/SE	xxx v	
			SEF765X

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd)

EVAP canister purge control valve

Check EVAP canister purge control valve as follows:

- 1. Blow air in port (A) and (C), then ensure that there is no leakage.
- Blow air in port (B), then ensure that there is a resistance to flow out of port (C).
- 3. Apply vacuum to port (a). [Approximately -13.3 to -20.0 kPa (-100 to -150 mmHg, -3.94 to -5.91 inHg)]

Blow air in port (C) and ensure free flow out of port (B).

EVAP canister purge control solenoid valve

- 1. Turn ignition switch "ON".
- Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.

EM

LC

EC

FE

AT

PD

FA

RA

ST

BT

HA

EL

- Start engine and warm it up to normal operating temperature.
- 4. Disconnect vacuum hose at EVAP canister purge control valve.
- 5. Touch "ON" and "OFF" and check for vacuum passing through the hose.

Condition	Vacuum
Idle	Not exist
2,000 rpm	Exist

OR

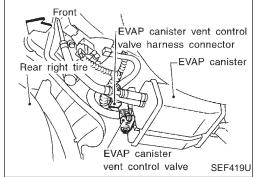
Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG or operation takes more 1 second, replace solenoid valve.

One-way valve

Check one-way valve air passage continuity.


Condition	Air passage continuity
Blow air into side B to A	Yes
Blow air into side A to B	No

If NG, replace one-way valve.

Make sure to install one-way valve with the colored side facing the vacuum.

Evaporative Emission (EVAP) Canister Vent Control Valve (Open)

COMPONENT DESCRIPTION

NOTE

If DTC P1448 is displayed with P0440, P1440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

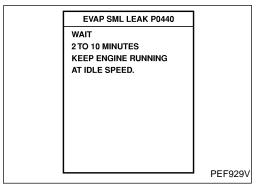
Specification data are reference values.

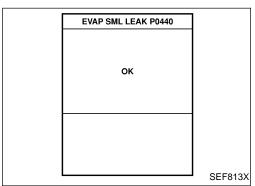
MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

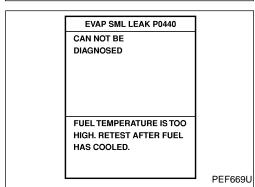
ECM TERMINALS AND REFERENCE VALUE

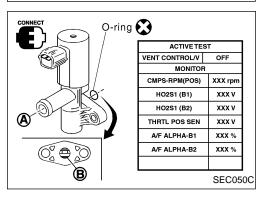
Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	P/B	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)


ON BOARD DIAGNOSIS LOGIC


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1448 0309	EVAP canister vent control valve remains opened under specified driving conditions.	EVAP canister vent control valve EVAP control system pressure sensor Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve

EVAP SML LEAK P0440 1)IT IS BETTER TO PERFORM TEST AT A LOCATION OF 0 TO 30 °C (32 TO 86 °F). 2)OPEN ENGINE HOOD. 3)START ENGINE WITH VEHICLE STOPPED. IF ENG IS ON, STOP FOR 5 SEC. THEN RESTART. 4)TOUCH START.

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

SEF814X

- If DTC P1448 is displayed with P0440, P1440, perform TROUBLE DIAGNOSIS FOR DTC P1448 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full. And vehicle is placed on a flat level surface.
- Always perform test at temperature of 0 to 30°C (32 to 86°F).
- It is better that fuel level is low.
 - 1) Turn ignition switch "ON".
 - 2) Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - Follow the instruction displayed.
 - 3) Make sure that "OK" is displayed. If "NG" is displayed, go to following step.

NOTF:

- If the CONSULT-II screen shown at left ("CAN NOT BE DIAGNOSED") is displayed, stop the engine and stabilize the vehicle temperature at 25°C (77°F) or cooler. After "FUEL T/TMP SE" becomes less than 30°C (86°F), retest.
 - (Use a fan to reduce the stabilization time.)
- If the engine speed cannot be maintained within the range on the CONSULT-II screen, go to "BASIC INSPECTION", EC-91.
- 4) Disconnect hose from water separator.
- 5) Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 6) Touch "ON" and "OFF" alternately.
- 7) Make sure the following.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-467.

If the result is OK, go to "DIAGNOSTIC PROCEDURE" for "TROUBLE DIAGNOSIS FOR DTC P0440", EC-298.

GI

 $\mathbb{M}\mathbb{A}$

LC

EM

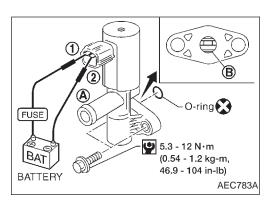
EC

AT

PD

FA

RA


ST

•

BT

EL

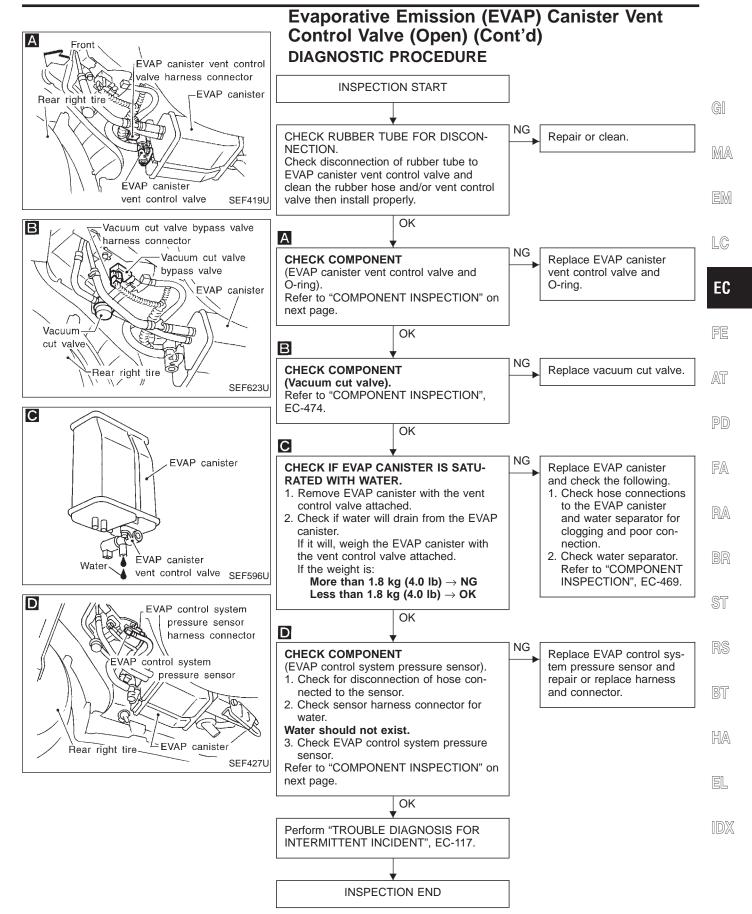
M

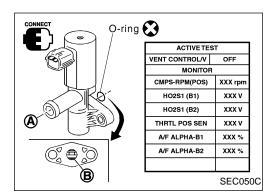
Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

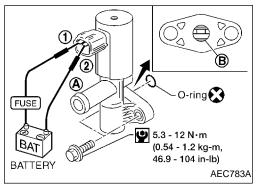
- OR

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.




- 1) Disconnect hose from water separator.
- 2) Disconnect EVAP canister vent control valve harness connector.
- 3) Verify the following.


Condition	Air passage continuity
12V direct current supply between terminals ① and ②	No
No supply	Yes

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-467.

If the result is OK, go to "TROUBLE DIAGNOSIS FOR DTC P0440", EC-298.

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

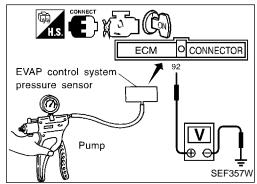
COMPONENT INSPECTION

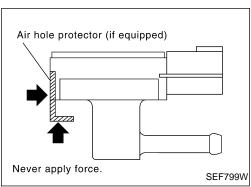
EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)	
ON	No	
OFF	Yes	
OR		




Condition	Air passage continuity between (a) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- Turn ignition switch "ON". 3.
- Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- Check output voltage between ECM terminal (92) and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7) in) onto a hard surface such as a concrete floor; use a new one.

* A: Bottom hole (To atmosphere) B: Emergency tube (From EVAP canister) C: Inlet port (To member) SEF829T

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that (A) and (C) are not clogged by blowing air into (B) with (A), and then (C) plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.

MA

GI

LC

EC

FE

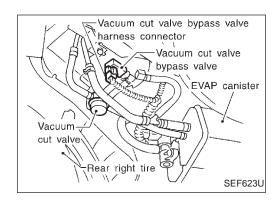
AT

PD

FA

RA

BR


ST

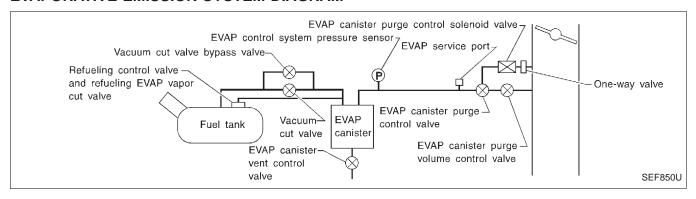
RS

BT

HA

EL

Vacuum Cut Valve Bypass Valve (Circuit) COMPONENT DESCRIPTION


The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

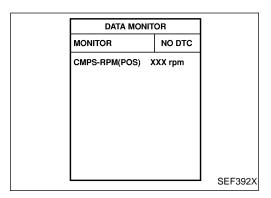
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	LG/B	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1490 0801	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.) Vacuum cut valve bypass valve

Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn the ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-473.

LC

Follow the procedure "With CONSULT-II" above.

EC

__

FE

AT

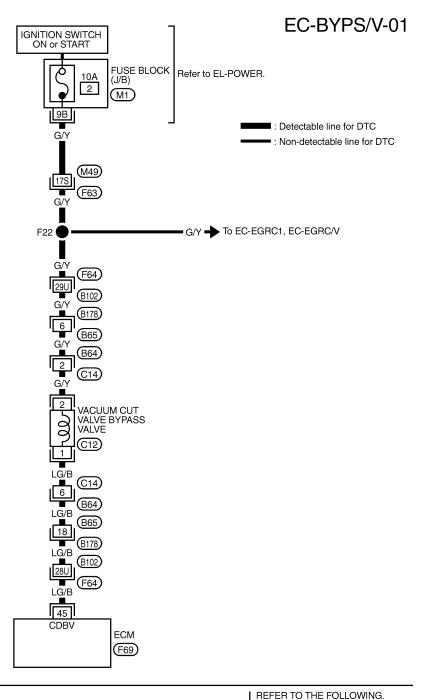
PD

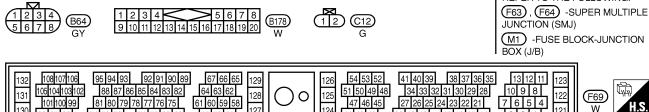
FA

RA

BR

ST


RS

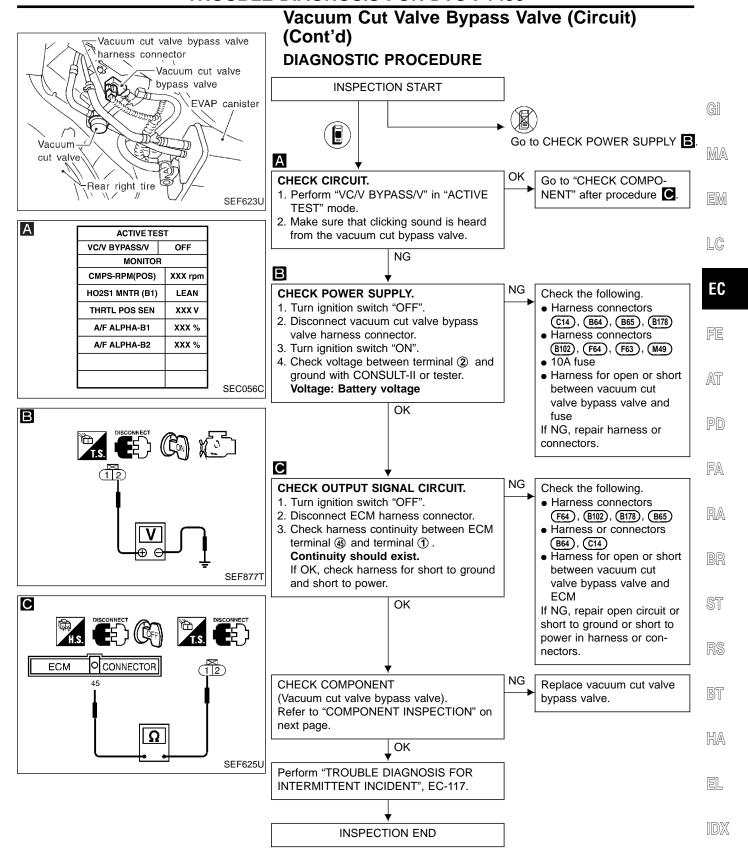

BT

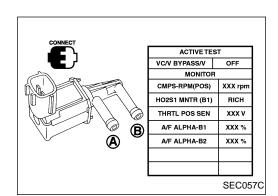
HA

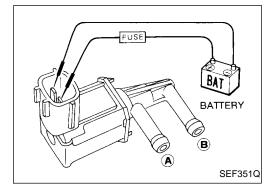
EL

Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)

98 97 96


71 70 69 68


57 56 55


20 19 18

17 16 15 14

3 2 1

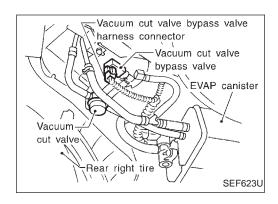
Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)

COMPONENT INSPECTION

Vacuum cut valve bypass valve

Check air passage continuity.

Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.


Condition VC/V BYPASS/V	Air passage continuity between (a) and (b)
ON	Yes
OFF	No

- OR -

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

Vacuum Cut Valve Bypass Valve

COMPONENT DESCRIPTION

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

GI

MA

EM

LG

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
45	LG/B	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	

EC

312

AT

PD

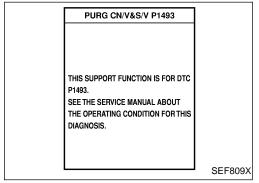
FA

RA

BR

ST

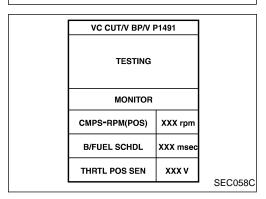
D@


HA

EL

Vacuum Cut Valve Bypass Valve (Cont'd)

ON BOARD DIAGNOSIS LOGIC


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1491 0311	Vacuum cut valve bypass valve does not operate properly.	Vacuum cut valve bypass valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged EVAP canister EVAP purge port of fuel tank for clogging

PURG VOL CN/V P1444

THIS SUPPORT FUNCTION IS FOR DTC P1444.
SEE THE SERVICE MANUAL ABOUT THE OPERATING CONDITION FOR THIS DIAGNOSIS.

SEF810X

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

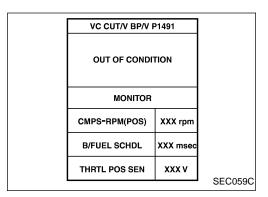
NOTE:

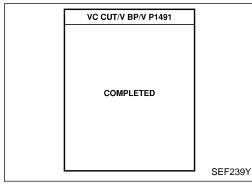
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

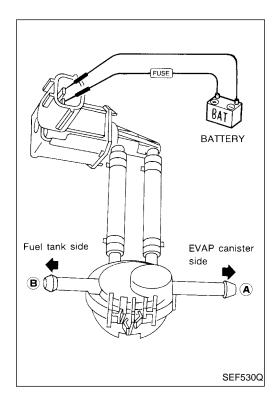
TESTING CONDITION:

 Always perform test at temperature of 0 to 30°C (32 to 86°F).

- 1) Turn ignition switch "ON".
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
- Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 6) Touch "START".
- 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)


CMPS-RPM (POS): 900 - 6,300 rpm


Vehicle speed: 36 - 120 km/h (22 - 75 MPH)


B/FUEL SCHDL: 2 - 4.8 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 3).

8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "TROUBLE DIAGNOSIS FOR DTC P1493", EC-488.

Vacuum Cut Valve Bypass Valve (Cont'd)

- 9) Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 10) Touch "START". If "COMPLETED" is displayed on CONSULT-II screen, go to step 12).
- 11) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 20 seconds.)

CMPS-RPM (POS): 900 - 6,300 rpm

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

B/FUEL SCHDL: 2 - 4.8 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 3).

- 12) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "TROUBLE DIAGNOSIS FOR DTC P1444", EC-444.
- 13) Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 14) Touch "START".
- 15) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

CMPS-RPM (POS): 900 - 6,300 rpm

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

B/FUEL SCHDL: 0.5 - 4.5 msec Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 3).

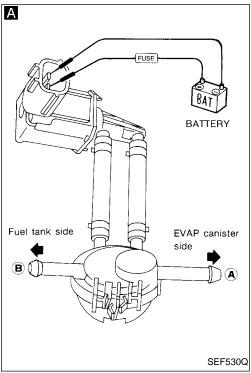
16) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-478.

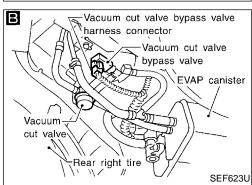
– OR -

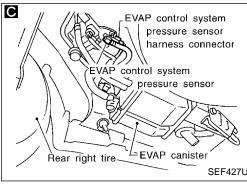
OVERALL FUNCTION CHECK

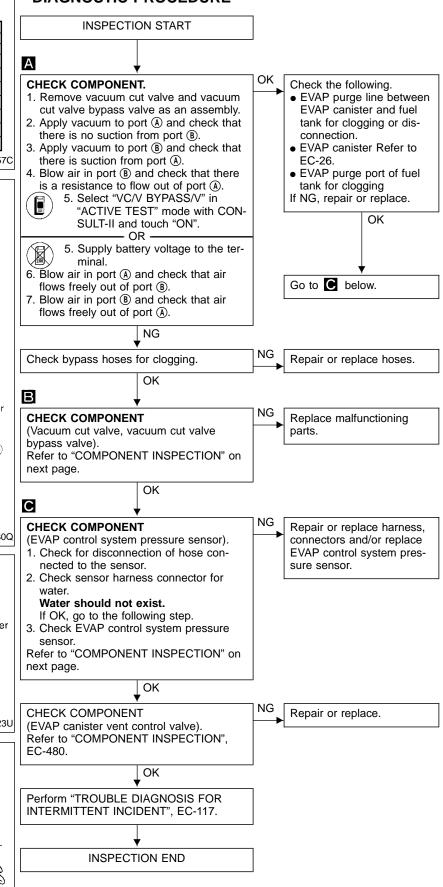
- Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 2) Apply vacuum to port (A) and check that there is no suction from port (B).
- 3) Apply vacuum to port (B) and check that there is suction from port (A).
- 4) Blow air in port (B) and check that there is a resistance to flow out of port (A).
- Supply battery voltage to the terminal.
- 6) Blow air in port (A) and check that air flows freely out of port **B**.
- Blow air in port (B) and check that air flows freely out of port (A).
- 8) If NG, go to "DIAGNOSTIC PROCEDURE", EC-478.

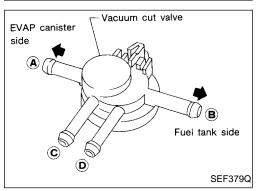
EC

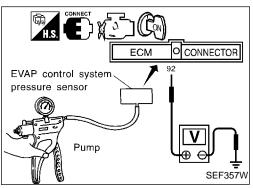


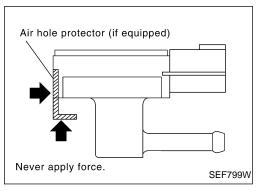





ACTIVE TEST VC/V BYPASS/V OFF MONITOR CMPS-RPM(POS) XXX rpm HO2S1 MNTR (B1) RICH THRTL POS SEN XXX V A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX %




Vacuum Cut Valve Bypass Valve (Cont'd) DIAGNOSTIC PROCEDURE



ACTIVE TEST VC/V BYPASS/V MONITOR CMPS-RPM(POS) XXX rpn HO2S1 MNTR (B1) THRTL POS SEN xxx v A/F ALPHA-B1 XXX % **(B)** A/F ALPHA-B2 XXX % SEC057C

FUSE BAT BATTERY **(B**) SEF351Q

Vacuum Cut Valve Bypass Valve (Cont'd) COMPONENT INSPECTION

Vacuum cut valve bypass valve

Check air passage continuity.

Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.

Condition VC/V BYPASS/V	Air passage continuity between (a) and (b)
ON	Yes
OFF	No

OR

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

Vacuum cut valve

Check vacuum cut valve as follows:

Plug port © and D with fingers.

Apply vacuum to port (A) and check that there is no suction from port (B).

Apply vacuum to port (B) and check that there is suction from port (A).

Blow air in port (B) and check that there is a resistance to flow out of port (A).

5. Open port (C) and (D).

6. Blow air in port (A) check that air flows freely out of port (C).

Blow air in port (B) check that air flows freely out of port (D).

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.

3. Turn ignition switch "ON".

Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.

Check output voltage between ECM terminal

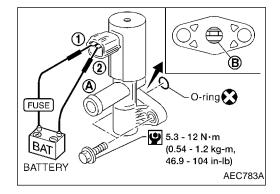
and ground.

Pressure (Relative to atmospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

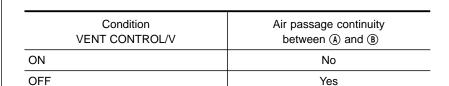
CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7) in) onto a hard surface such as a concrete floor; use a new one.

PD



Q-ring 🔀 ACTIVE TEST VENT CONTROL/V OFF MONITOR CMPS-RPM(POS) XXX rpm HO2S1 (B1) HO2S1 (B2) xxx v THRTL POS SEN $xxx\,v$ A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % SEC050C


Vacuum Cut Valve Bypass Valve (Cont'd)

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with

CONSULT-II.

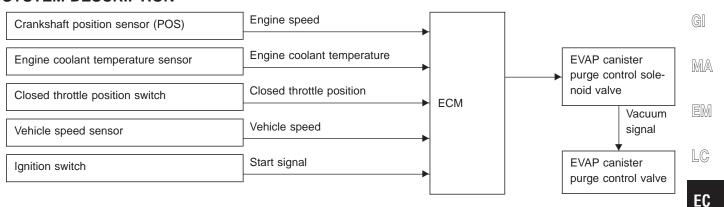
OR

Condition	Air passage continuity between (a) and (B)
10) / 15 / / / / / / /	

12V direct current supply between terminals ① and ②

No supply

Yes

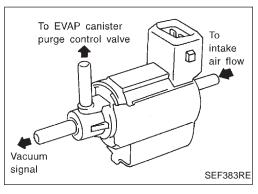

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

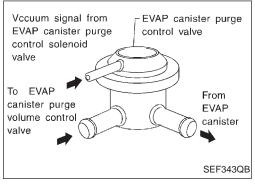
If the portion $\ensuremath{\mathbb{B}}$ is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit)

SYSTEM DESCRIPTION




This system controls the vacuum signal applied to the EVAP canister purge control valve.

When the ECM detects any of the following conditions, current does not flow through the EVAP canister purge control solenoid valve.

The solenoid valve cuts the vacuum signal so that the EVAP canister purge control valve remains closed.

- Start switch "ON"
- Closed throttle position
- Low or high engine coolant temperature
- During deceleration
- Engine stopped
- For 60 seconds after starting engine (After warming up to normal operating temperature)

COMPONENT DESCRIPTION

EVAP canister purge control solenoid valve

The EVAP canister purge control solenoid valve responds to signals from the ECM. When the ECM sends an OFF signal, the vacuum signal (from the intake manifold to the EVAP canister purge control valve) is cut.

When the ECM sends an ON (ground) signal, the vacuum signal passes through the EVAP canister purge control solenoid valve. The signal then reaches the EVAP canister purge control valve.

EVAP canister purge control valve

When the vacuum signal is cut by EVAP canister purge control solenoid valve, EVAP canister purge control valve shuts off the EVAP purge line.

AT

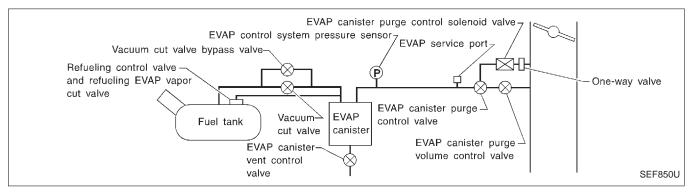
PD

FA

RA

ST

[U]


BT

HA

EL

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd)

EVAPORATIVE EMISSION SYSTEM DIAGRAM

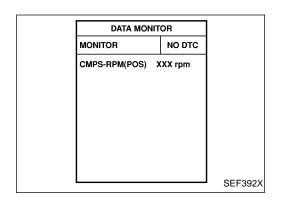
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG CONT S/V • Engine: After warming up	- Engine, After warming up	Idle	OFF
	2,000 rpm	ON	

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22 Y	EVAP canister purge con-	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)	
22	1	trol solenoid valve	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1492 0807	The improper voltage signal is sent to ECM through EVAP canister purge control solenoid valve.	Harness or connectors (The EVAP canister purge control solenoid valve circuit is open or shorted.) EVAP canister purge control solenoid valve

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd)

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn the ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.

3) Wait at least 5 seconds.

4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-485.

– OR -Follow the procedure "With CONSULT-II" above.

EC

FE

AT

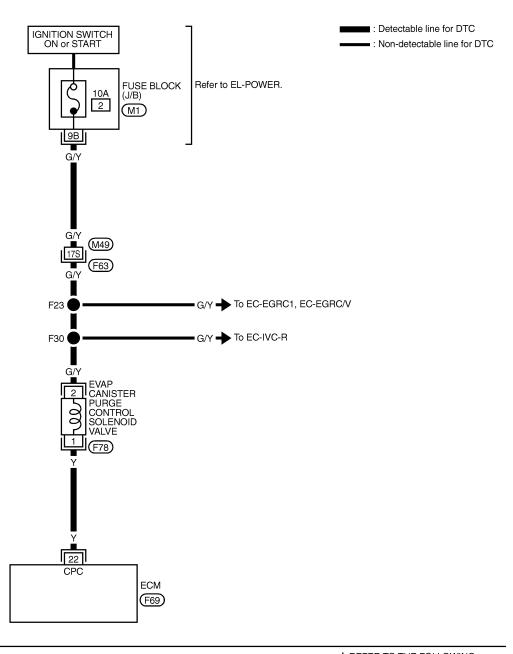
PD

FA

RA

BR

ST

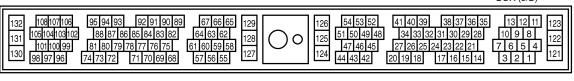

RS

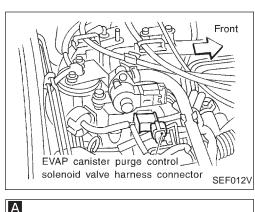
BT

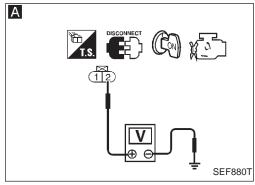
HA

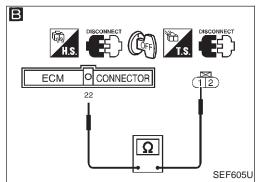
Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd)

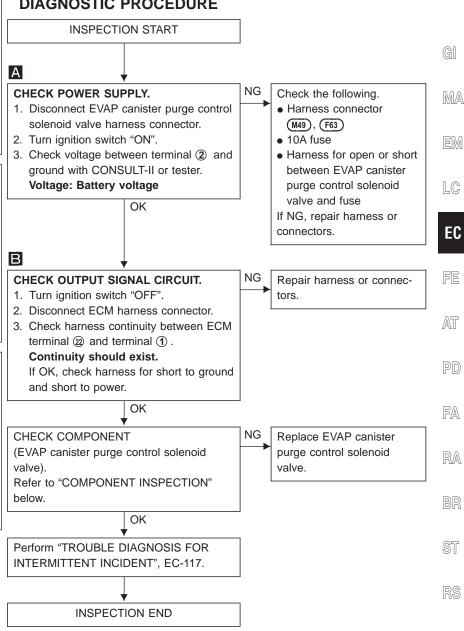
EC-CANI/V-01

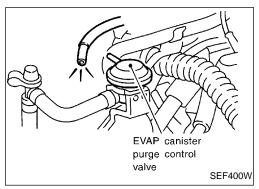


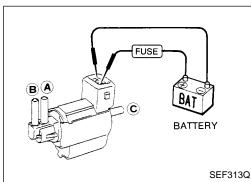

REFER TO THE FOLLOWING.


(F63) -SUPER MULTIPLE
JUNCTION (SMJ)


M1 -FUSE BLOCK-JUNCTION BOX (J/B)




Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd) DIAGNOSTIC PROCEDURE



HA

EL

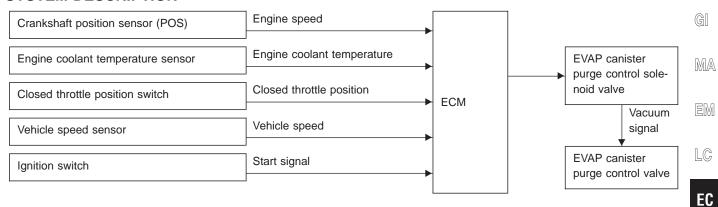
ACTIVE TES		
PURG CONT S/V	ON	
MONITOR		
CMPS-RPM(POS)	XXX rpm	
EVAP SYS PRES	xxx v	
PURG CONT S/V	ON	
ABSOL PRES/SE	xxx v	
		SEF765X

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Circuit) (Cont'd) COMPONENT INSPECTION

EVAP canister purge control solenoid valve

- 1. Turn ignition switch "ON".
- 2. Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Disconnect vacuum hose at EVAP canister purge control valve
- 5. Touch "ON" and "OFF" and check for vacuum passing through the hose.

Condition	Vacuum	
Idle	Not exist	
2,000 rpm	Exist	
0	R	

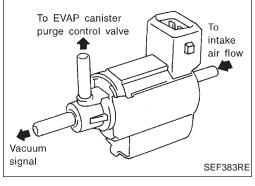

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace solenoid valve.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve

SYSTEM DESCRIPTION



This system controls the vacuum signal applied to the EVAP canister purge control valve.

When the ECM detects any of the following conditions, current does not flow through the EVAP canister purge control solenoid valve.

The solenoid valve cuts the vacuum signal so that the EVAP canister purge control valve remains closed.

- Start switch "ON"
- Closed throttle position
- Low or high engine coolant temperature
- **During deceleration**
- Engine stopped
- For 60 seconds after starting engine (After warming up to normal operating temperature)

COMPONENT DESCRIPTION

EVAP canister purge control solenoid valve

The EVAP canister purge control solenoid valve responds to signals from the ECM. When the ECM sends an OFF signal, the vacuum signal (from the intake manifold to the EVAP canister purge control valve) is cut.

When the ECM sends an ON (ground) signal, the vacuum signal passes through the EVAP canister purge control solenoid valve. The signal then reaches the EVAP canister purge control valve.

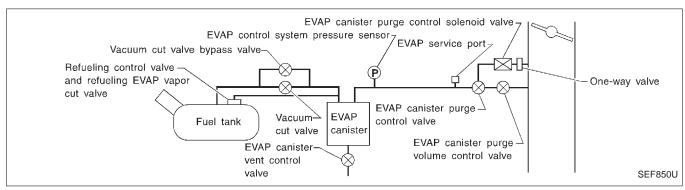
EVAP canister purge control valve

EC-487

When the vacuum signal is cut by EVAP canister purge control solenoid valve, EVAP canister purge control valve shuts off the EVAP purge line.

AT

FA


RA

HA

EL

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG CONT S/V • Engine: After warming up	- Engine, After warming up	Idle	OFF
	2,000 rpm	ON	

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22 Y	EVAP canister purge con-	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)	
22	1	trol solenoid valve	Engine is running. Engine speed is 2,000 rpm.	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1493 0312	EVAP canister purge control valve does not operate properly (stuck open).	 EVAP canister purge control valve EVAP canister purge control solenoid valve Vacuum hoses for clogging or disconnection EVAP control system pressure sensor EVAP canister vent control valve Water separator EVAP canister saturated with water

PURG CN/V&S/V P1493 THIS SUPPORT FUNCTION IS FOR DTC P1493. SEE THE SERVICE MANUAL ABOUT THE OPERATING CONDITION FOR THIS DIAGNOSIS. SEF809X

PURG CN/V & S/V P1493 OK SEF811X

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

NOTF:

If DTC P1492 is displayed with P1493, first perform "TROUBLE DIAGNOSIS FOR DTC P1492". Refer to EC-482.

GI

MA

LC

EC

PD

FA

RA

HA

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON".
- 4) Select "PURG CN/V & S/V P1493" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 5) Touch "START".
- 6) Start engine (TCS switch "OFF") and let it idle for at least 90 seconds.
- 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds.)

Vehicle speed: 36 - 120 km/h (22 - 75 MPH) CMPS-RPM (POS): 900 - 6,300 rpm B/FUEL SCHDL: 2 - 4.8 msec

Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAG-NOSTIC PROCEDURE", EC-491.

ENGINE SPD COOLANT TEMP 69°C VEHICLE SPD 0MPH

THROTTLE POS0.0% INTAKE AIR 27°C
FUEL SYS #1 OLDRIVE
FUEL SYS #2 UNUSED
SHORT FT #1 0.8%
LONG FT #1 0.0%

O2S B1 S1 0.200V O2FT B1 S1 0.8%

O2S B1 S2 0.010V

SFF519R

Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

- OR -

- Select "MODE 1" with GST.
- 3) Check coolant temperature.

Coolant temperature: 30 - 100°C (86 - 212°F) Be sure that water temperature does not exceed 100°C. If it becomes higher than 100°C, cool down the engine and perform the procedure again from the beginning.

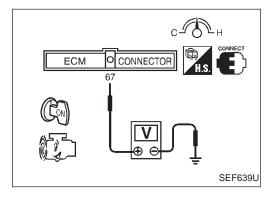
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 5) Turn ignition switch "ON" and wait at least 15 seconds.

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

- 6) Restart engine and let it idle for at least 90 seconds.
- Maintain the following conditions for at least 30 seconds.

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

Engine speed: 900 - 6,300 rpm


Gear position: Suitable gear position

Coolant temperature: 30 - 100°C (86 - 212°F)

- 8) Select "MODE 7" with GST.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-491.

NOTE:

- Hold the accelerator pedal as steady as possible during driving in steps 7.
- If the driving conditions are not satisfied in steps 7, restart the procedure.
- It is better that the fuel level is low.

1) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.

OR

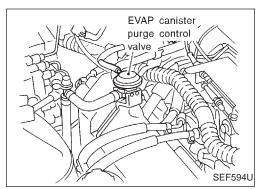
2) Check voltage between ECM terminal (6) and ground Voltage: 3.12 - 0.8V

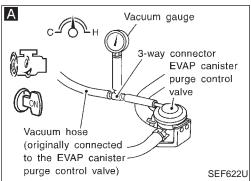
Perform the following procedure before the voltage drops below 0.8V. If the voltage drops below 0.8V, cool down the engine and perform the entire procedure all over again.

- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON" and wait at least 15 seconds.
- 5) Restart engine and let it idle for at least 90 seconds.
- Maintain the following conditions for at least 30 seconds.

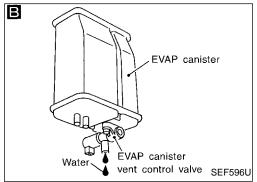
Vehicle speed: 40 - 120 km/h (25 - 75 MPH)

Engine speed: 1,000 - 2,100 rpm

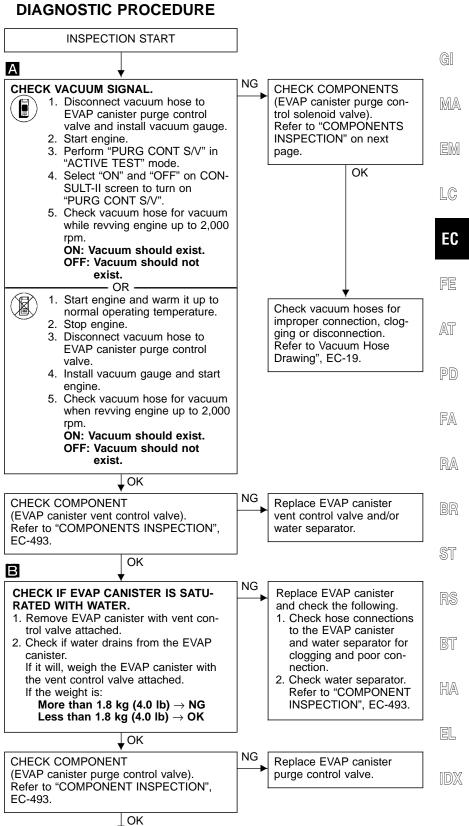

Gear position: Suitable gear position

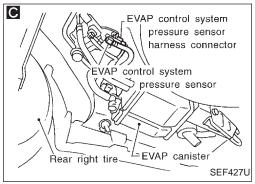

Check voltage between ECM terminal 67 and ground: 3.12 - 0.8V

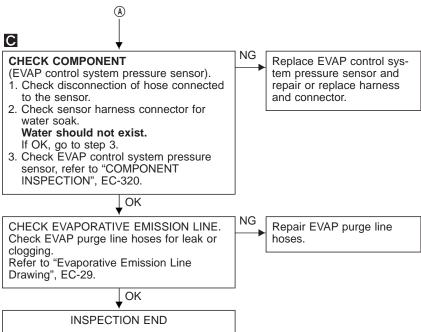
- 7) Stop the vehicle, turn ignition switch "OFF", wait at least 5 seconds, and then turn "ON".
- 8) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 9) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-491.

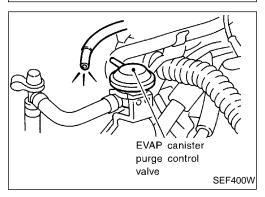

NOTE:

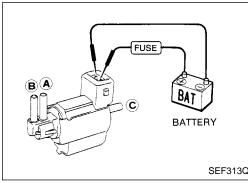
- Hold the accelerator pedal as steady as possible during driving in steps 6.
- If the driving conditions are not satisfied in steps 6, restart the procedure.
- It is better that the fuel level is low.




Δ				
A	ACTIVE TES	ACTIVE TEST		
	PURG CONT S/V	ON		
	MONITOR			
	CMPS-RPM(POS)	XXX rpm		
	EVAP SYS PRES	EVAP SYS PRES XXX V		
	PURG CONT S/V	PURG CONT S/V ON		
	ABSOL PRES/SE	ABSOL PRES/SE XXX V		
		<u> </u>	SEF765X	


Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd) DIAGNOSTIC PROCEDURE


(Go to next page.)



Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

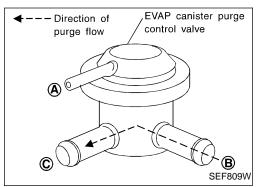
ACTIVE TEST PURG CONT S/V ON MONITOR CMPS-RPM(POS) XXX rpm EVAP SYS PRES XXX V PURG CONT S/V ON ABSOL PRES/SE XXX V

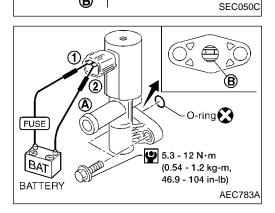
COMPONENT INSPECTION

EVAP canister purge control solenoid valve

- 1. Turn ignition switch "ON".
- 2. Select "PURG CONT S/V" of "ACTIVE TEST" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Disconnect vacuum hose at EVAP canister purge control valve.
- 5. Touch "ON" and "OFF" and check for vacuum passing through the hose.

Condition	Vacuum	
Idle	Not exist	
2,000 rpm	Exist	


- OR


Check air passage continuity.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (a) and (c)
12V direct current supply between terminals	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace solenoid valve.

O-ring 🔀 ACTIVE TEST VENT CONTROL/V OFF MONITO CMPS-RPM(POS) XXX rpm HO2S1 (B1) xxx v HO2S1 (B2) xxx v THRTL POS SEN xxx v A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX %

Evaporative Emission (EVAP) Canister Purge Control Valve/Solenoid Valve (Cont'd)

EVAP canister purge control valve

Check EVAP canister purge control valve as follows:

- Blow air in port (A) and (C), then ensure that there is no leak-
- Blow air in port (B), then ensure that there is a resistance to flow out of port ©.
- 3. Apply vacuum to port (A). [Approximately -13.3 to -20.0 kPa (-100 to -150 mmHg, -3.94 to -5.91 inHg)]

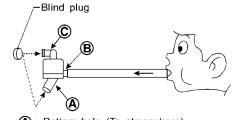
Blow air in port © and ensure free flow out of port B.

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)		
ON	No		
OFF	Yes		
OR			



Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

- (A): Bottom hole (To atmosphere)
- (B): Emergency tube (From EVAP canister)
- (C): Inlet port (To member) SFF829T

Water separator

- Check visually for insect's nest in the water separator air inlet.
- Check visually for cracks or flaws in the appearance.
- Check visually for cracks or flaws in the hose.
- Check that (A) and (C) are not clogged by blowing air into (B) with (A), and then (C) plugged.
- In case of NG in items 2 4, replace the parts. 5.

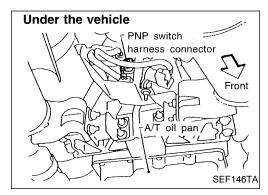
Do not disassemble water separator.

EC-493

LC

EC

AT



HA

EL

Park/Neutral Position (PNP) Switch COMPONENT DESCRIPTION

When the gear position is in "P" or "N", park/neutral position (PNP) switch is "ON". ECM detects the position because the continuity of the line (the "ON" signal) exists.

The PNP switch assembly also includes a transmission range switch to detect the selector lever position.

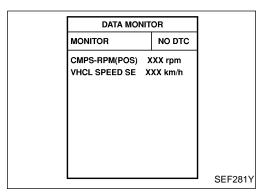
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

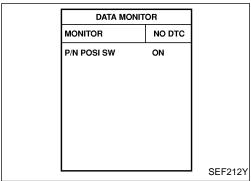
Specification data are reference values.

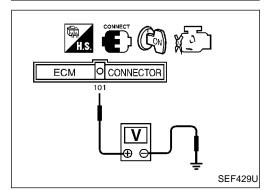
MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON
		Except above	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
404 0/00 000 000	Ignition switch "ON" Gear position is "N" or "P".	Approximately 0V		
101	G/OR	PNP switch	Ignition switch "ON" Except the above gear position	Approximately 5V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1706 1003	The signal of the park/neutral position switch is not changed in the process of engine starting and driving.	 Harness or connectors (The PNP switch circuit is open or shorted.) Harness or connectors (The park/neutral position relay circuit is open or shorted.) PNP switch Park/neutral position relay

Park/Neutral Position (PNP) Switch (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

1) Turn ignition switch "ON".

2) Select "P/N POSI SW" in "DATA MONITOR" mode with CONSULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
"N" and "P" positions	ON
Except the above position	OFF

If NG, go to "DIAGNOSTIC PROCEDURE", EC-497. If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

CMPS-RPM (REF): 1,500 - 2,200 rpm COOLAN TEMP/S: More than 70°C (158°F)

B/FUEL SCHDL: 1.4 - 5.8 msec

VHCL SPEED SE: More than 70 km/h (43 MPH) Selector lever: Suitable position

6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-497

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

1) Turn ignition switch "ON".

2) Check voltage between ECM terminal (101) and body ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known good data)
"P" and "N" position	Approx. 0
Except the above position	Approx. 5

3) If NG, go to "DIAGNOSTIC PROCEDURE", EC-497.

EL

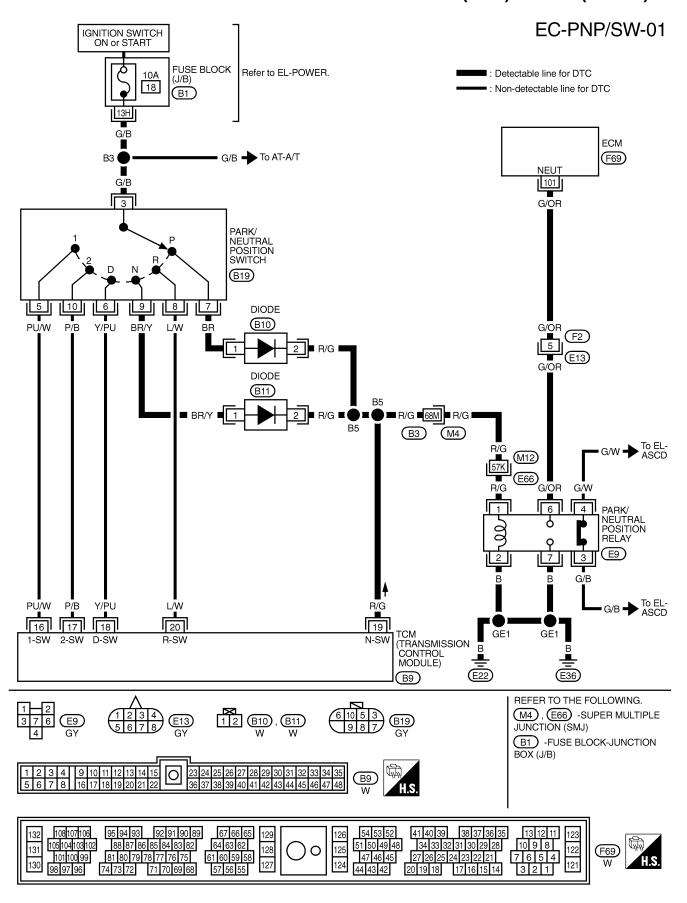
HA

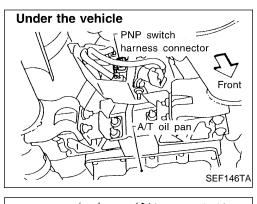
GI

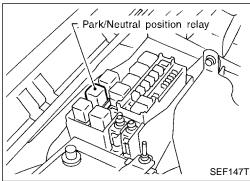
MA

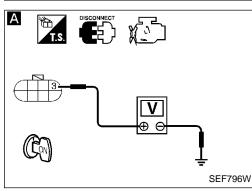
EM

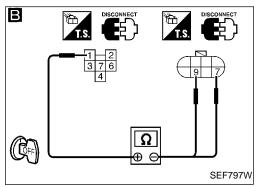
LC

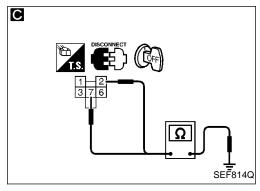

PD

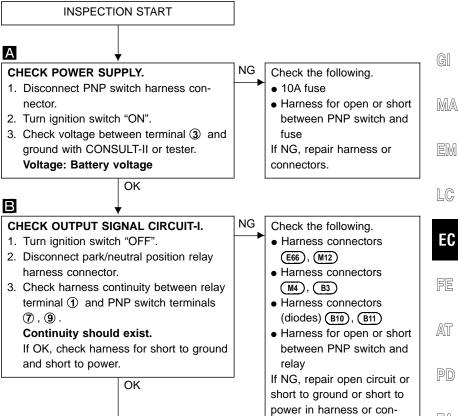

FA


RA


 \mathbb{D}


Park/Neutral Position (PNP) Switch (Cont'd)





Park/Neutral Position (PNP) Switch (Cont'd) **DIAGNOSTIC PROCEDURE**

CHECK GROUND CIRCUIT.

C

D

1. Check harness continuity between relay terminals 2, 7 and engine ground. Continuity should exist.

If OK, check harness for short to power.

OK

CHECK OUTPUT SIGNAL CIRCUIT-II. NG 1. Disconnect ECM harness connector. 2. Check harness continuity between ECM terminal (101) and relay terminal (6). Continuity should exist. If OK, check harness for short to ground and short to power. OK (Go to next page.)

Repair harness or connectors.

nectors.

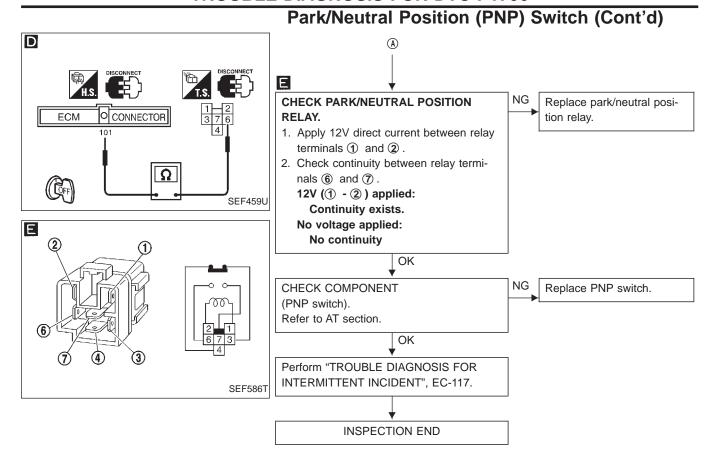
NG

Check the following.

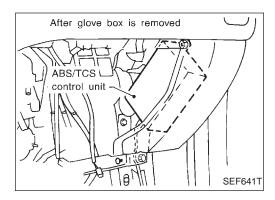
• Harness connectors (E13), (F2)

• Harness for open or short between ECM and relay If NG, repair open circuit or short to ground or short to power in harness or connectors.

EL


FA

RA


ST

BT

HA

TROUBLE DIAGNOSIS FOR ABS/TCS C/U SIGNAL

ABS/TCS Control Unit

The malfunction information related to ABS/TCS control unit is transferred through the line (LAN) from ABS/TCS control unit to

Be sure to erase the malfunction information such as DTC not only for ABS/TCS control unit but also for ECM after the ABS/ TCS related repair.

MA

EM

Freeze frame data is not stored in the ECM for the ABS/TCS control unit. The MIL will not light up for ABS/TCS control unit.

LC

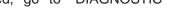
EC

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
* 0107	ECM receives incorrect voltage from ABS/TCS control unit continuously.	Harness or connectors (The circuit between ECM and ABS/TCS control unit is open or shorted.) ABS/TCS control unit	

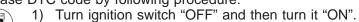
^{*:} SAE J2012 number is not applicable

PD


AT

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 40 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-502.



- OR -Start engine and let it idle for at least 40 seconds.
- Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-502.

DTC erasing procedure for ABS/TCS related repair

Erase DTC code by following procedure:

- 2) Connect CONSULT-II and select "ABS". 3) Insert UE990 card and install it.
- 4) Select "ABS" and touch "SELF-DIAG RESULTS".
- 5) Touch "ERASE".
- Touch "BACK" then erase malfunction code which has been stored in the TCM or ECM.

EL

HA

DIAGNOSTIC PROCEDURE

Refer to "DIAGNOSTIC PROCEDURE", EC-502.

ABS/TCS Communication Line

This circuit line is used to control the smooth engine operation of ABS/TCS during the TCS operation. Pulse signals are exchanged between ECM and ABS/TCS control unit.

Be sure to erase the malfunction information such as DTC not only in ABS/TCS control unit but also ECM after the ABS/TCS related repair. Refer to BR section (Self-diagnosis for ABS/TCS control unit, "HOW TO ERASE SELF DIAGNOSTIC RESULTS").

Freeze frame data is not stored in the ECM for the ABS/TCS communication line. The MIL will not light up for the ABS/TCS communication line.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
* 0404	ECM receives incorrect voltage from ABS/TCS control unit continuously.	Harness or connectors (The communication line circuit between ECM and ABS/TCS control unit is open or shorted.) ABS/TCS control unit Dead (Weak) battery

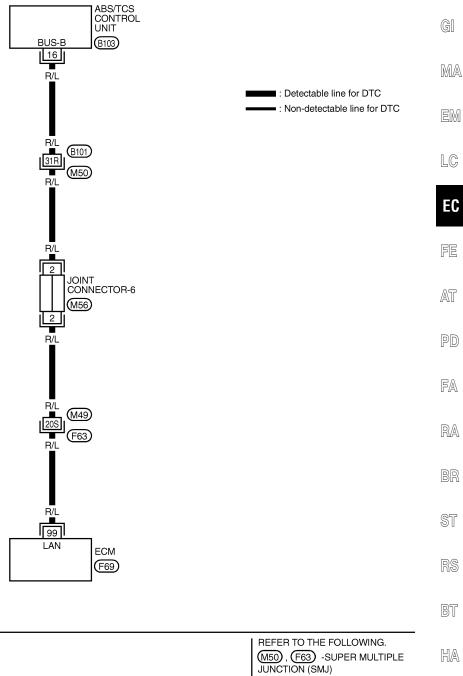
^{*:} SAE J2012 number is not applicable.

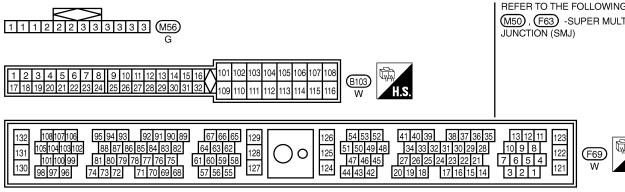
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 3 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-502.

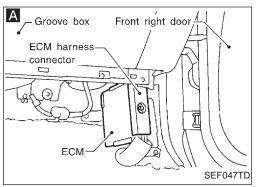
OR

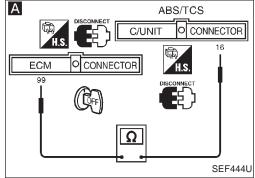



- 1) Start engine and let it idle for at least 3 seconds.
- Turn ignition switch "OFF", wait at least 5 seconds and then turn "ON".
- 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-502.

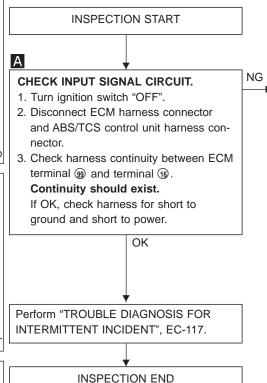
TROUBLE DIAGNOSIS FOR ECM — ABS/TCS COMM NG

ABS/TCS Communication Line (Cont'd)


EC-TCS-01



EL

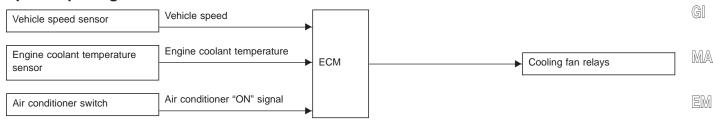

TROUBLE DIAGNOSIS FOR ECM — ABS/TCS COMM NG

After glove box is removed ABS/TCS control unit SEF641T

ABS/TCS Communication Line (Cont'd) DIAGNOSTIC PROCEDURE

Check the following.

- Harness connectors
 M50 , B101
- Harness connectors
 (F63), (M49)
- Joint connector-6
- Check harness for open or short between ECM and ABS/TCS control unit.


If NG, repair open circuit or short to ground or short to power in harness or connectors.

TROUBLE DIAGNOSIS FOR OVERHEAT

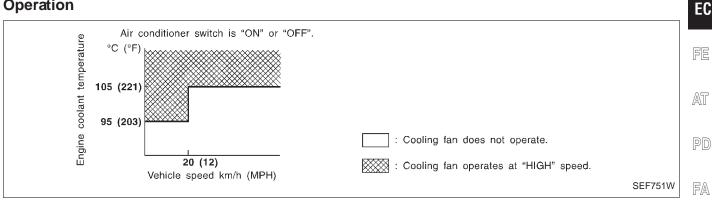
Overheat

SYSTEM DESCRIPTION

Input/output signal line

The ECM controls the cooling fan corresponding to vehicle speed, engine coolant temperature and air conditioner ON signal.

LC


RA

BR

HA

EL

Operation

- The cooling fan operates at HIGH if diagnostic test mode II (self-diagnostic results) for engine coolant temperature sensor is "NG" or when the ECM fail-safe is activating.
- When A/C line pressure reaches the specified value, the triple-pressure switch turns on to operate cooling fans at low speed.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	ć
		Engine coolant temperature is 94°C (201°F) or less	OFF	[
COOLING FAN	After warming up engine, idle the engine.Air conditioner switch: "OFF"	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F) at vehicle speeds less than 80 km/h	HIGH	[
		Engine coolant temperature is 105°C (221°F) or more	HIGH	

EC-503

TROUBLE DIAGNOSIS FOR OVERHEAT

Overheat (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
34	LG	Cooling fan relay-1 (High)	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
27	LG/R	Cooling fan relay-2 (High)	Engine is running. Cooling fan is operating.	0 - 1V

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

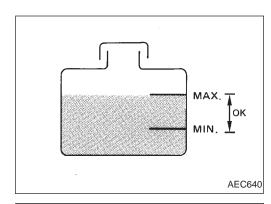
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up, idle the engine	Air conditioner switch: "OFF"	OFF
AIR COND SIG		Air conditioner switch: "ON" (Compressor operates.)	ON
	 After warming up engine, idle the engine. Air conditioner switch: "OFF" 	Engine coolant temperature is 94°C (201°F) or less	OFF
COOLING FAN		Engine coolant temperature is between 95°C (203°F) and 104°C (219°F) at vehicle speed less than 20 km/h (12 MPH)	HIGH
		Engine coolant temperature is 105°C (221°F) or more	

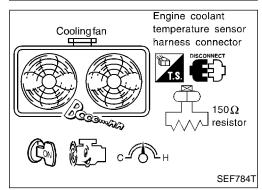
ON BOARD DIAGNOSIS LOGIC

This diagnosis continuously monitors the engine coolant temperature.

If the cooling fan or another component in the cooling system malfunctions, the engine coolant temperature will rise.


When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Diagnostic trouble code No.	Malfunction is detected when	Check Items (Possible Cause)
OVERHEAT 0208	Engine coolant reaches an abnormally high temperature.	 Harness or connectors. (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", (EC-513).


CAUTION:

When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA section ("Changing Engine Coolant", "ENGINE MAINTENANCE"). Also, replace the engine oil.

- a. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA section ("Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS").
- b. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

ACTIVE TES		
COOLING FAN OFF		
MONITOR	1	
COOLAN TEMP/S	xxx °c	
		SEF792X

Overheat (Cont'd) OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the cooling fan. During this check, a 1st trip DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

GI

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

плл

Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "DIAGNOSTIC PROCEDURE", EC-507.

EM

 Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "DIAG-NOSTIC PROCEDURE", EC-507.

3) Turn ignition switch "ON".

SE

EC

4) Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II.

 Disconnect engine coolant temperature sensor harness connector.

4) Connect 150Ω resistor to engine coolant temperature sensor harness connector.

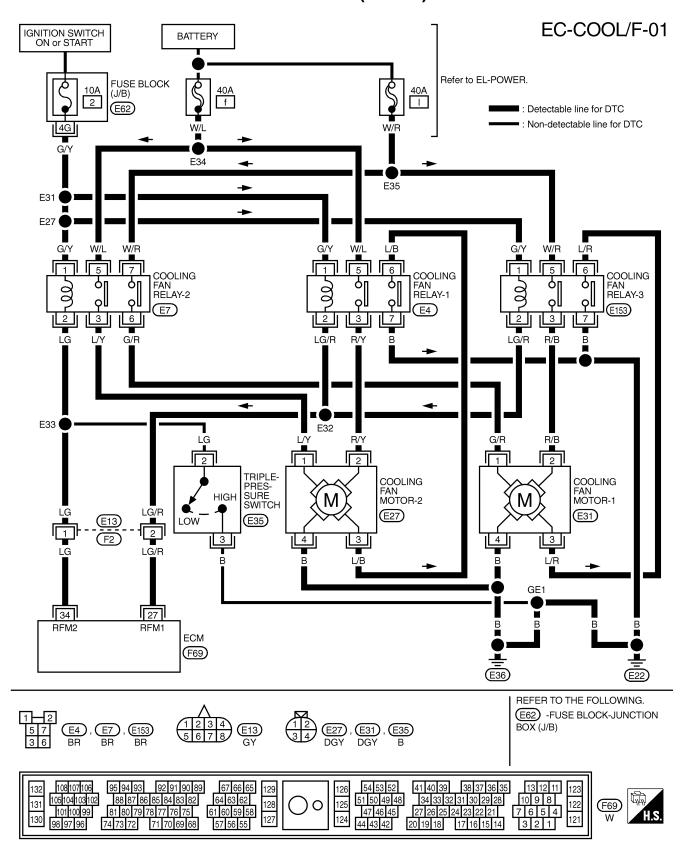
5) Start engine and make sure that cooling fan operates. **Be careful not to overheat engine.**

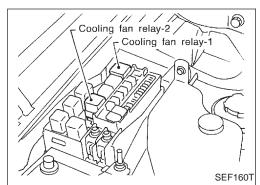
6) If NG, go to "DIAGNOSTIC PROCEDURE", EC-507.

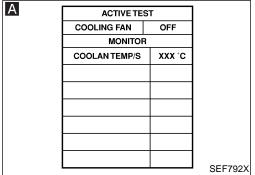
RA

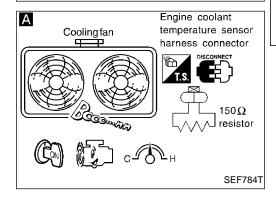
BIK

ST

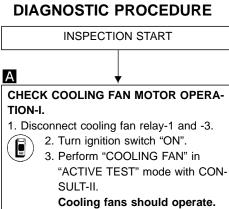

D@


DT


HA


EL

Overheat (Cont'd)



Overheat (Cont'd)

– OR –

ness connector.

motors operate.

seconds.

engine.

2. Disconnect engine coolant tem-

3. Connect 150Ω resistor to engine coolant temperature sensor har-

4. Start engine and wait at least 15

5. Make sure that cooling fan

Be careful not to overheat

J oĸ

(Go to next page.)

perature sensor harness connec-

J-

NG

Check cooling fan motor-I speed control circuit.
(Go to PROCEDURE A).)

G[

MA

LC

EC

FE

_

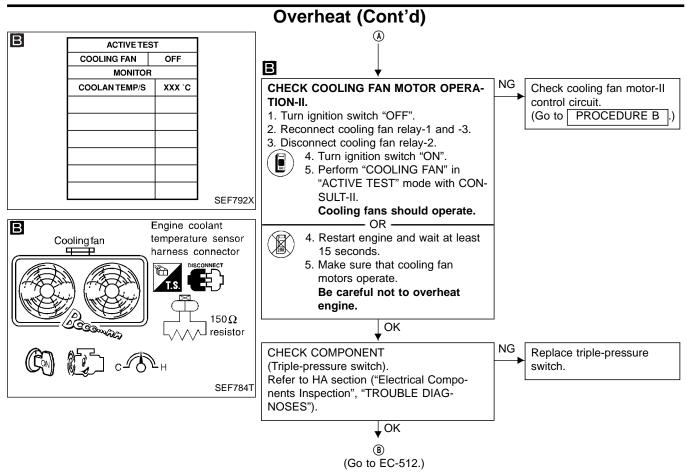
AT

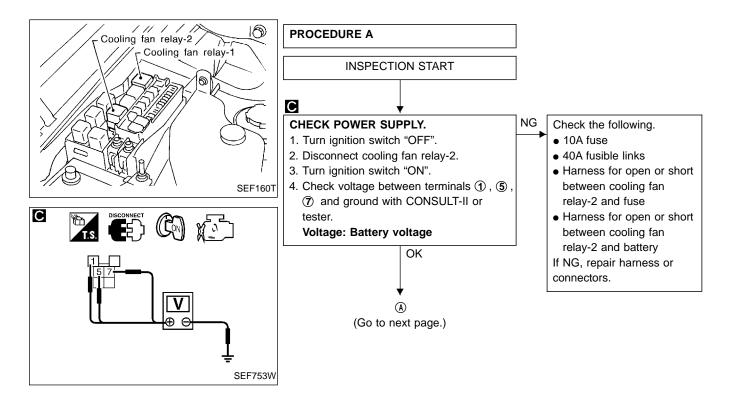
PD

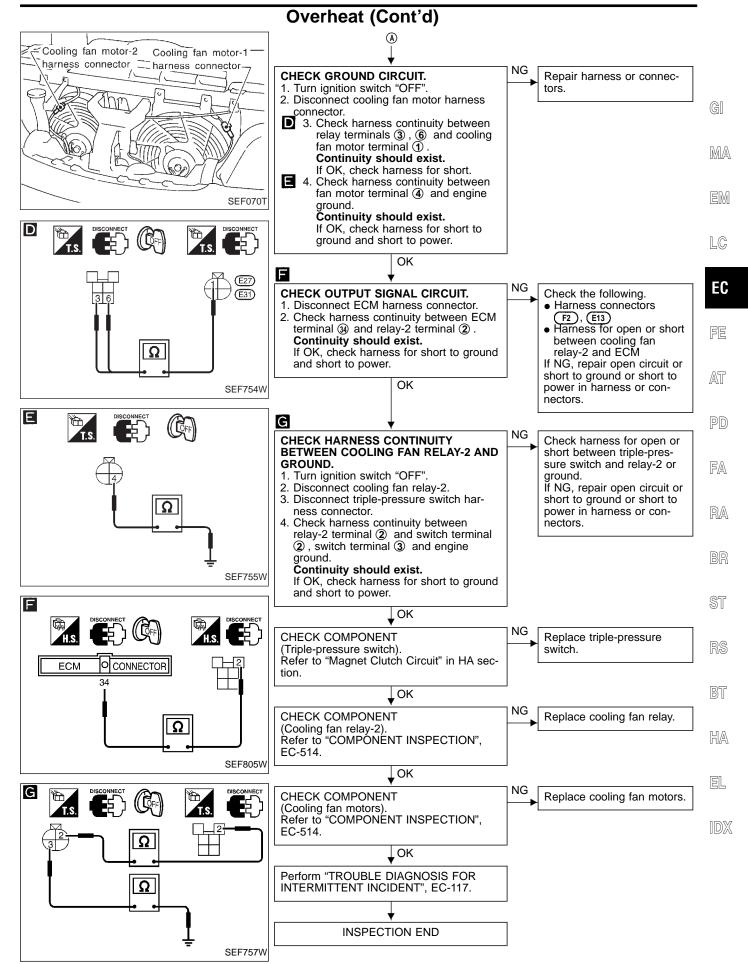
FA

RA

BR

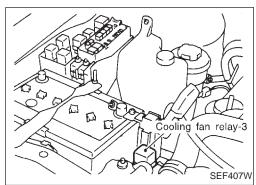

ST

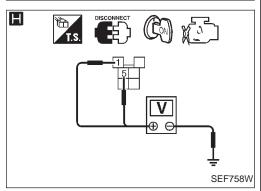

RS

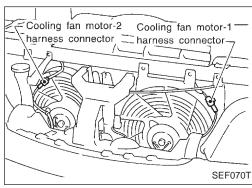

BT

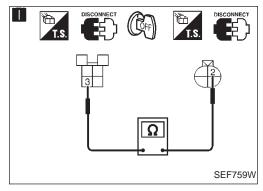
HA

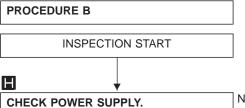
EL






EC-509


Overheat (Cont'd)



- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan relay-1 and 3.
- 3. Turn ignition switch "ON".
- 4. Check voltage between cooling fan relay-1 and -3 terminals (1), (5) and ground with CONSULT-II or tester.

Voltage: Battery voltage

Check the following. • 40A fusible links • 10A fuse

> Harness continuity between cooling fan relay-1 and -3 and fuse Harness continuity

between cooling fan relay-1 and -3 and battery If NG, repair harness or connectors.

Repair harness or connec-

tors.

CHECK GROUND CIRCUIT.

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 and -2 harness connectors.
- 3. Check harness continuity between relay-1 and -3 terminal 3 and cooling fan motor-1 and -2 terminal 2 . Continuity should exist.

If OK, check harness for short.

- J 4. Check harness continuity between relay-1, -3 terminal (6) and fan motor-1 and -2 terminal 3 . Continuity should exist. If OK, check harness for short to ground and short to power.
- K 5. Check harness continuity between relay -1, -3 terminal 7 and engine ground.

Continuity should exist.

If OK, check harness for short to ground and short to power.

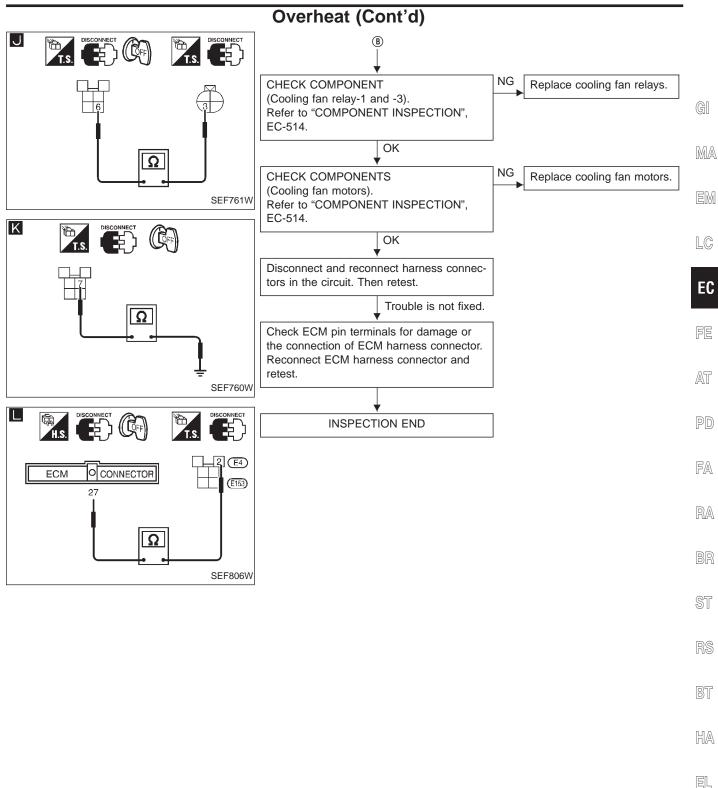
OK

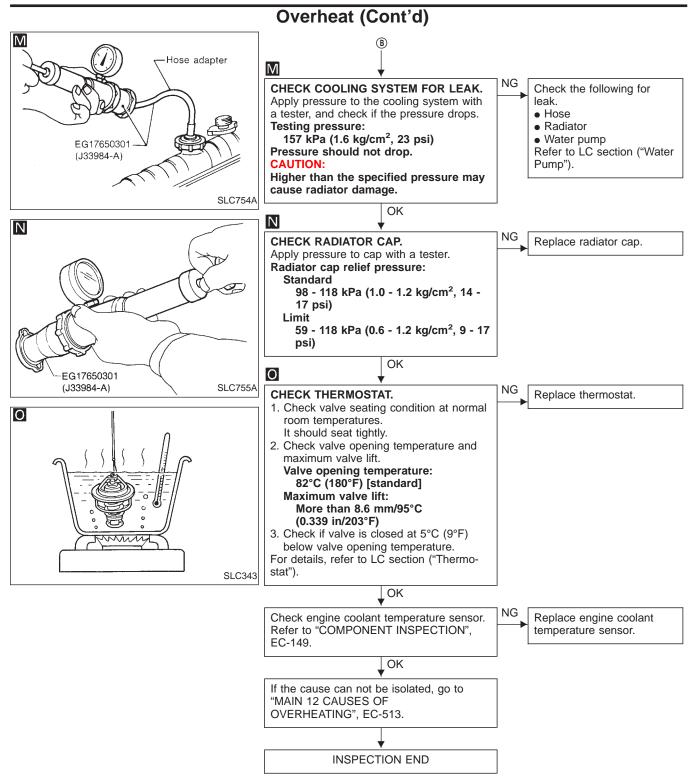
NG CHECK OUTPUT SIGNAL CIRCUIT.

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal @ and fan relay-1, -3 terminal

Continuity should exist.


If OK, check harness for short to ground and short to power.


> OK (Go to next page.)

Check the following.

- Harness connectors (F2), (E13)
- Harness for open or short between cooling fan relay-1, -3 and ECM If NG, repair open circuit or short to ground or short to power in harness or con-

nectors.

Perform FINAL CHECK by the following procedure after repair is completed.

- 1. Warn up engine. Run the vehicle for at least 20 minutes. Pay attention to engine coolant temperature gauge on the instrument panel. If the reading shows an abnormally high temperature, another part may be malfunctioning.
- Stop vehicle and let engine idle. Check the intake and exhaust systems for leaks by listening for noise or visually inspecting the components.
- 3. Allow engine to cool and visually check for oil and coolant leaks. Then, perform "OVERALL FUNCTION CHECK".

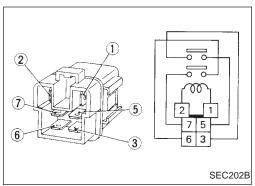
Overheat (Cont'd)

MAIN 12 CAUSES OF OVERHEATING

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS" in MA section
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAIN- TENANCE" in MA section
	4	Radiator cap	Pressure tester	98 - 118 kPa (1.0 - 1.2 kg/cm ² , 14 - 17 psi) 59 - 118 kPa (0.6 - 1.2 kg/cm ² , 9 - 17	See "System Check" "ENGINE COOLING SYS- TEM" in LC section
				psi) (Limit)	
ON* ²	5	Coolant leaks	Visual	No leaks	See "System Check" "ENGINE COOLING SYSTEM" in LC section
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in LC section
ON*1	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAGNO- SIS FOR OVERHEAT" (EC-503)
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAIN- TENANCE" in MA section
OFF*4	10	Coolant return from reservoir tank to radiator	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in MA section
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYLIN- DER HEAD" in EM sec- tion
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYLIN- DER BLOCK" in EM sec- tion

^{*1:} Turn the ignition switch ON.

For more information, refer to "OVERHEATING CAUSE ANALYSIS" in LC section.



^{*2:} Engine running at 3,000 rpm for 10 minutes.
*3: Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

Cooling fan motor harness connector SEF321T

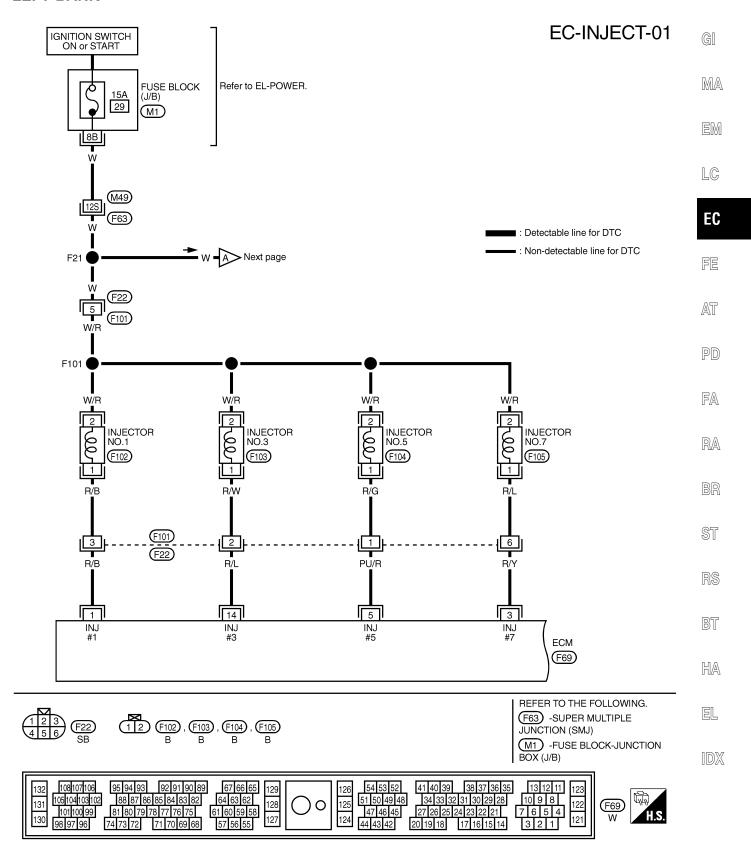
Overheat (Cont'd) **COMPONENT INSPECTION**

Cooling fan relays-1 and -2, -3

Check continuity between terminals 3 and 5, 6 and 7.

Conditions	Continuity
12V direct current supply between terminals ① and ②	Yes
No current supply	No

Cooling fan motor

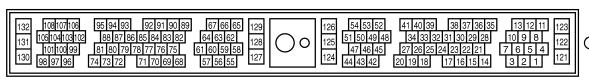

- Disconnect cooling fan motor harness connectors.
- Supply cooling fan motor terminals with battery voltage and check operation as shown in the figure.

Conditions	Cooling fan motor
12V direct current supply between terminal ①,② and ③,④ (Ground)	Cooling fan operates at high speed

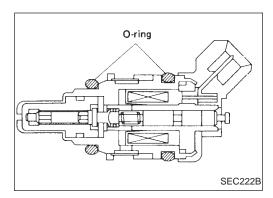
If NG, replace cooling fan motor.

Injector

LEFT BANK


Injector (Cont'd)

RIGHT BANK


EC-INJECT-02

Injector (Cont'd) COMPONENT DESCRIPTION

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

GI

MA

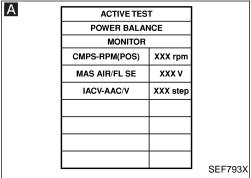
EM

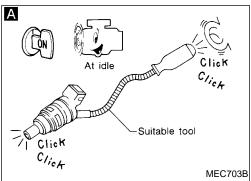
LC

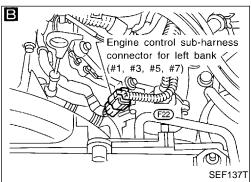
ECM TERMINALS AND REFERENCE VALUE

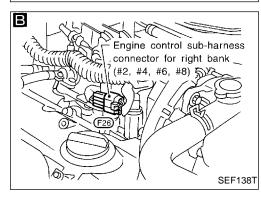
Specification data are reference values, and are measured between each terminal and ground.

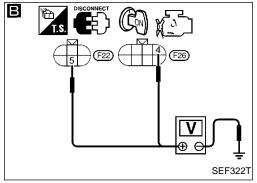
CAUTION:

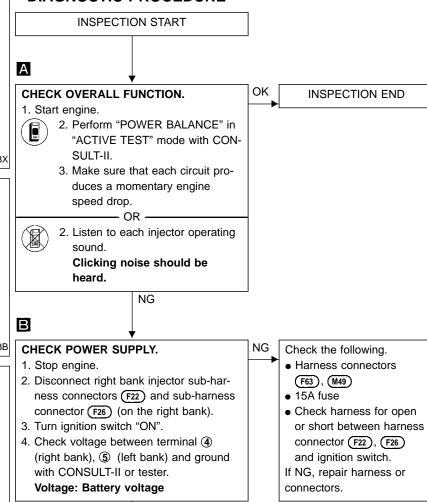

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

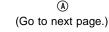

TER-WIRE DATA FE MINAL ITEM CONDITION **COLOR** (DC voltage) NO. **BATTERY VOLTAGE** AT R/B 1 Injector No. 1 (11 - 14V)PD 2 R/W Injector No. 8 20 Engine is running. (Warmed-up condition) 10 Idle speed 0 FA R/Y 3 Injector No. 7 50 ms R/L 14 Injector No. 3 RA SEF388X BATTERY VOLTAGE 4 W/R Injector No. 6 (11 - 14V)PU/R 5 Injector No. 5 20 ST Engine is running. 10 Engine speed is 2,000 rpm. 6 GY/L Injector No. 4 RS 50 ms L/G 7 Injector No. 2 BT SEF526Y

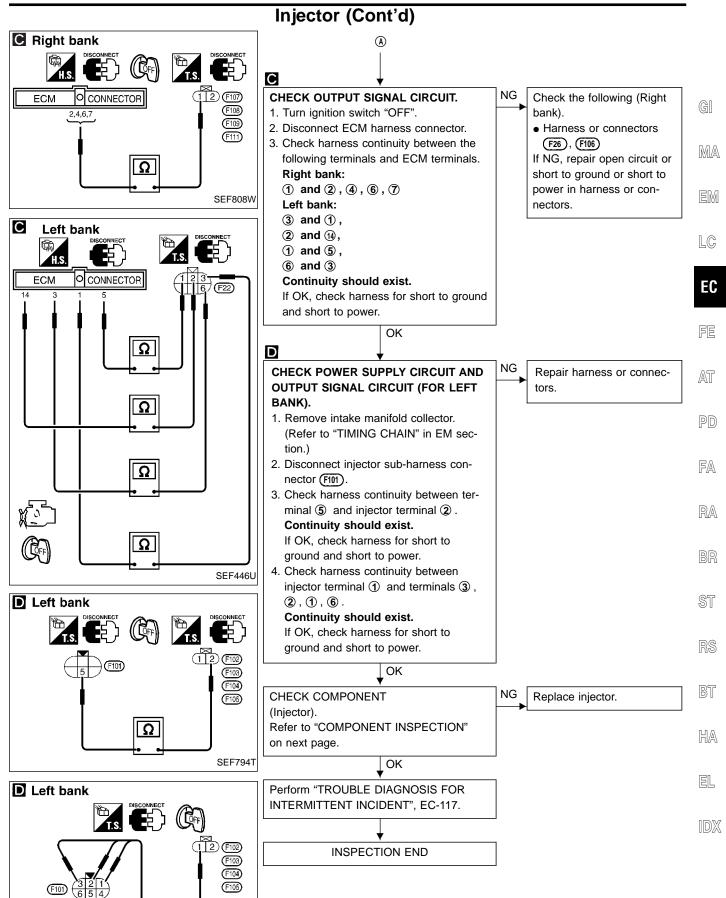

EC


HA

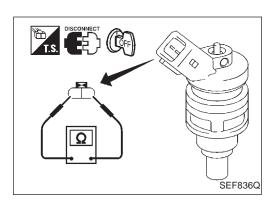

EL







Injector (Cont'd) DIAGNOSTIC PROCEDURE



OK

Ω

SEF795T

Injector (Cont'd) **COMPONENT INSPECTION**

Injector

- Disconnect injector harness connector.
 Check resistance between terminals as shown in the figure. Resistance: 10 - 14 Ω at 25°C (77°F) If NG, replace injector.

Start Signal

EC-S/SIG-01

G[

MA

EM

LC

EC

FE

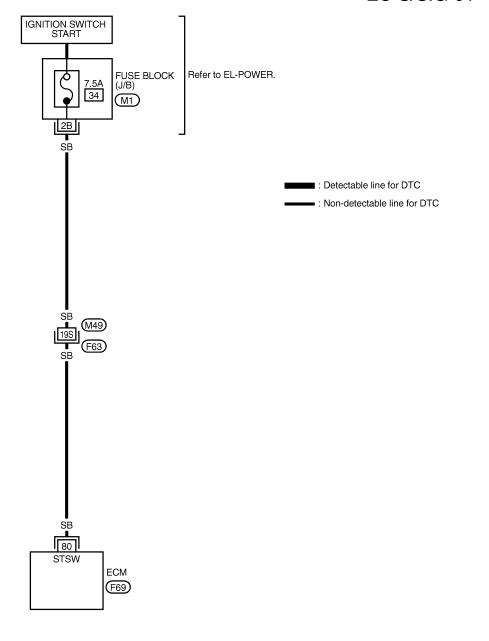
AT

PD

FA

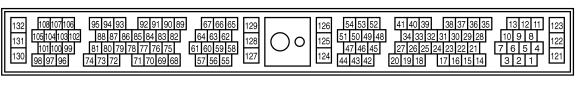
RA

BR

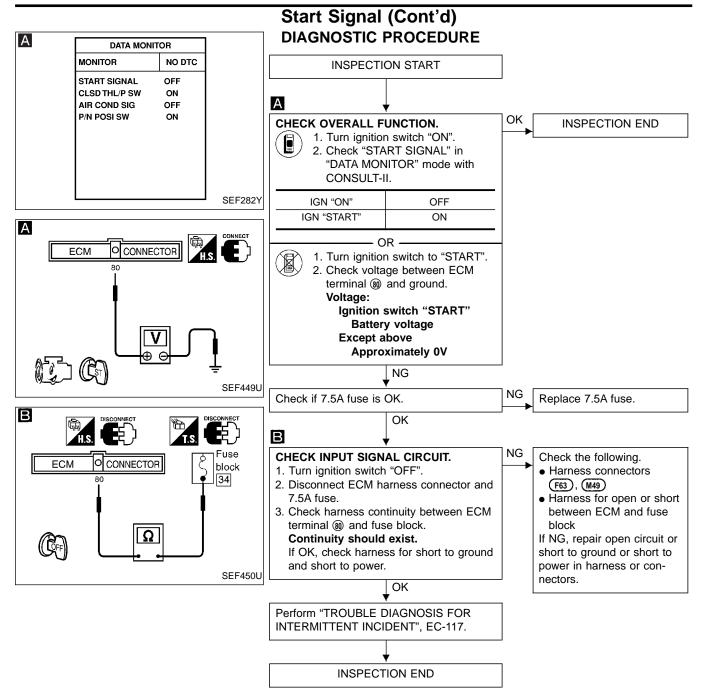

ST

RS

BT

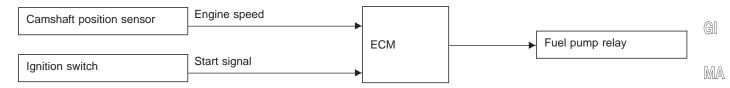

HA

EL



REFER TO THE FOLLOWING. (F63) -SUPER MULTIPLE JUNCTION (SMJ) M1 -FUSE BLOCK-JUNCTION

BOX (J/B)



Fuel Pump Control

SYSTEM DESCRIPTION

EM

LC

EC

AT

PD

FA

RA

BR

HA

EL

Fuel pump ON-OFF control

The ECM activates the fuel pump for several seconds after the ignition switch is turned ON to improve engine start-up. If the ECM receives a 1° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to activate. If the 1° signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents the battery from discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

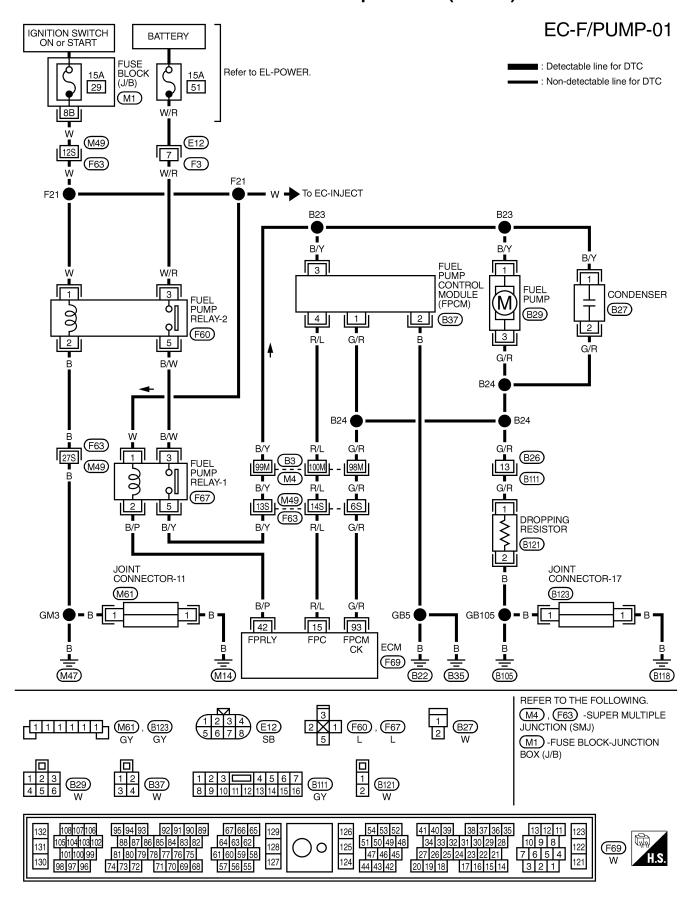
Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 5 seconds
Engine is running and cranking	Operates
When engine is stopped	Stops for 1.5 seconds
Except as shown above	Stops

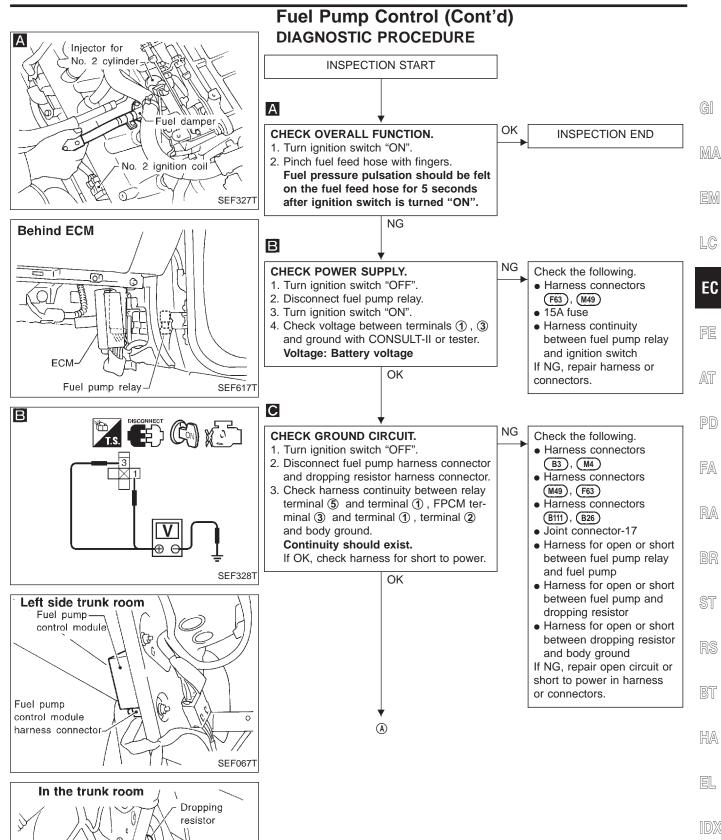
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	0
	 Ignition switch is turned to ON (Operates for 1 second) Engine running and cranking 	ON	
	Except as shown above	OFF	

ECM TERMINALS AND REFERENCE VALUE

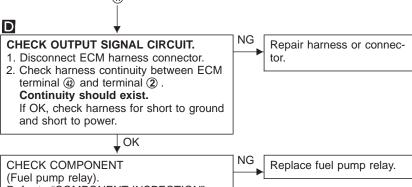

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
11	PU	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running.	0 - 1V
			Ignition switch "ON" 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

Fuel Pump Control (Cont'd)


00

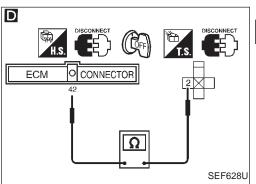
Dropping resistor harness connector

SEF330T

DISCONNECT T.S. DISCONNECT T.S. DISCONNECT T.S. DISCONNECT T.S. SEF329T

Fuel Pump Control (Cont'd)

Replace fuel pump.

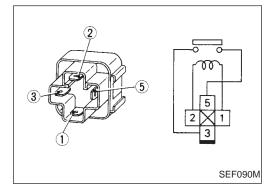

Refer to "COMPÓNENT INSPECTION" below.

CHECK COMPONENT (Fuel pump).
Refer to "COMPONENT INSPECTION" below.

_OK

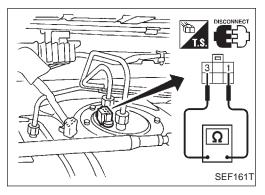
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-117.

INSPECTION END

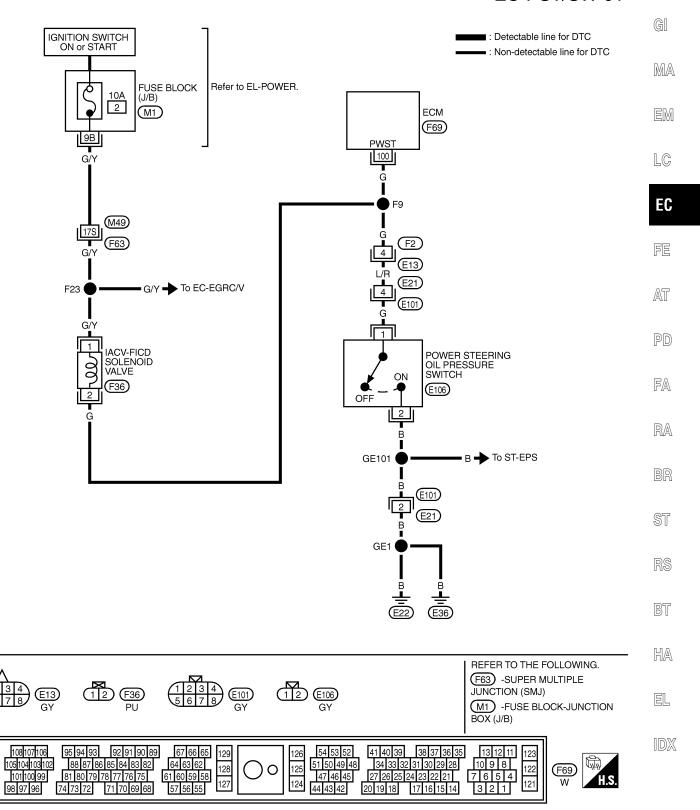

COMPONENT INSPECTION

Fuel pump relay

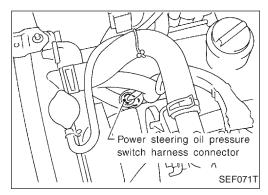
Check continuity between terminals (3) and (5).


Conditions	Continuity
12V direct current supply between terminals ① and ②	Yes
No current supply	No

If NG, replace relay.


Fuel pump

- Disconnect fuel pump harness connector.
- Check resistance between terminals ① and ③.
 Resistance: 0.2 5.0Ω at 25°C (77°F)
 If NG, replace fuel pump.



Power Steering Oil Pressure Switch

EC-PST/SW-01

131

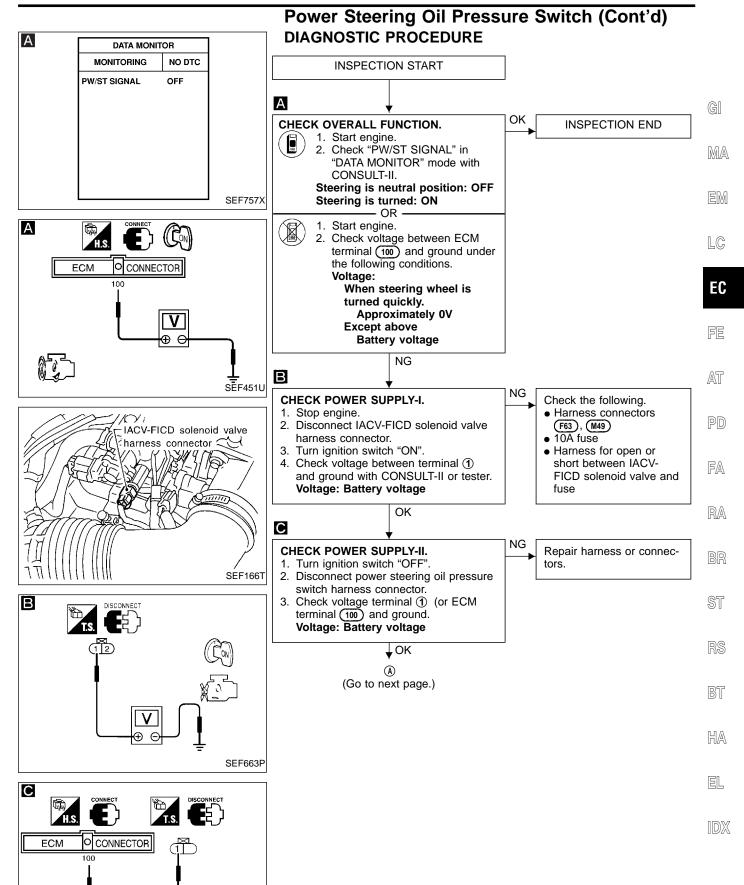
Power Steering Oil Pressure Switch (Cont'd) COMPONENT DESCRIPTION

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-FICD solenoid valve to increase the idle speed and adjust for the increased load.

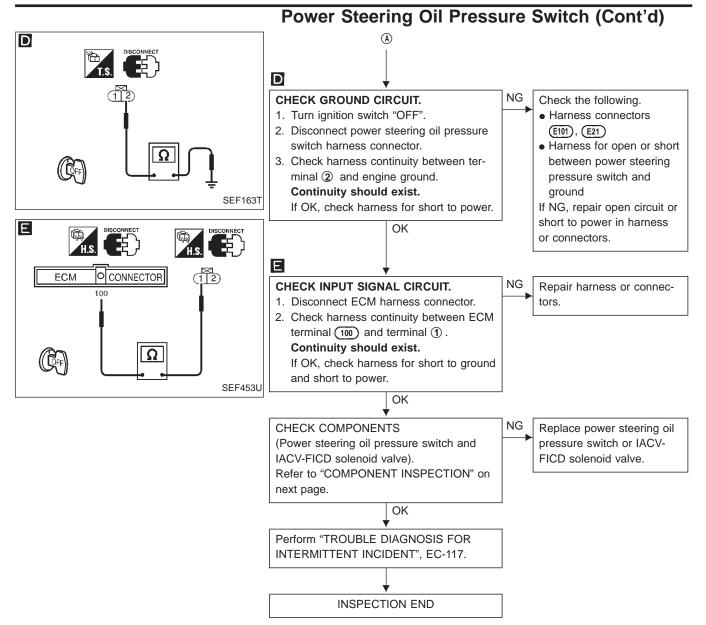
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

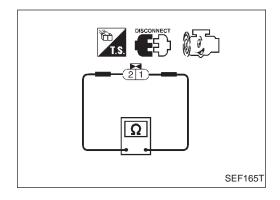
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL		Steering wheel in neutral position (forward direction)	OFF
	engine	The steering wheel is turned	ON


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values, and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals such as the body ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC voltage)
100	Power steering oil pres-	Engine is running. Steering wheel is being turned.	0 - 1.5V	
100	G	sure switch	Engine is running. Steering wheel is not being turned.	BATTERY VOLTAGE (11 - 14V)

SEF452U

Power Steering Oil Pressure Switch (Cont'd) **COMPONENT INSPECTION**

Power steering oil pressure switch

- Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals (1) and (2).

Conditions	Continuity
Steering wheel is being turned	Yes
Steering wheel is not being turned	No

If NG, replace power steering oil pressure switch.

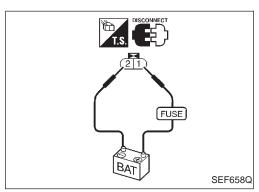
EC

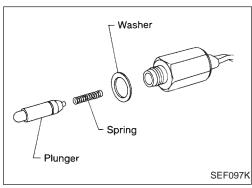
FE

AT

PD

FA


RA


BR

ST

BT

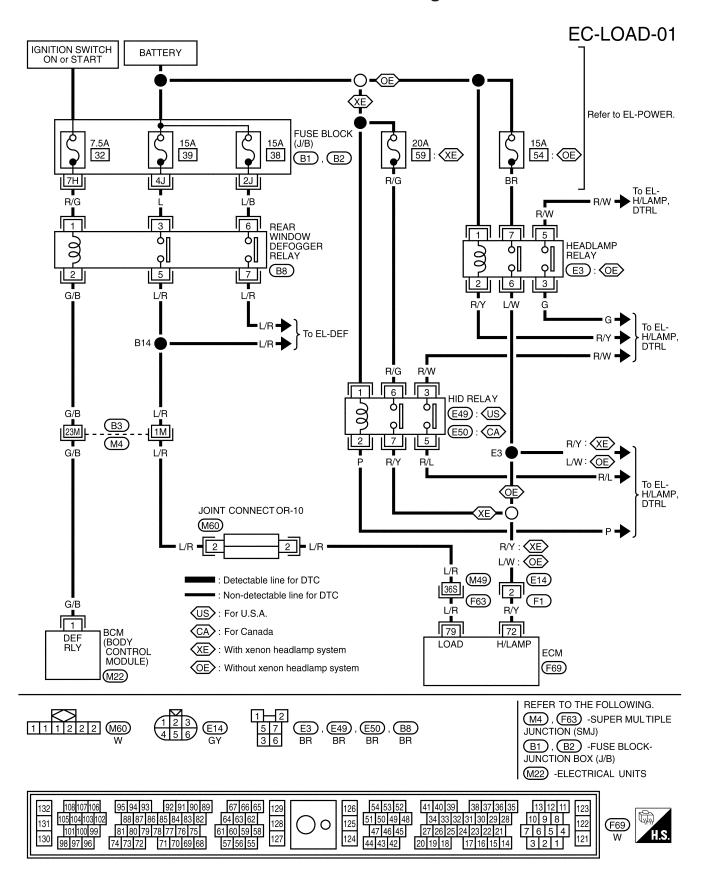
HA

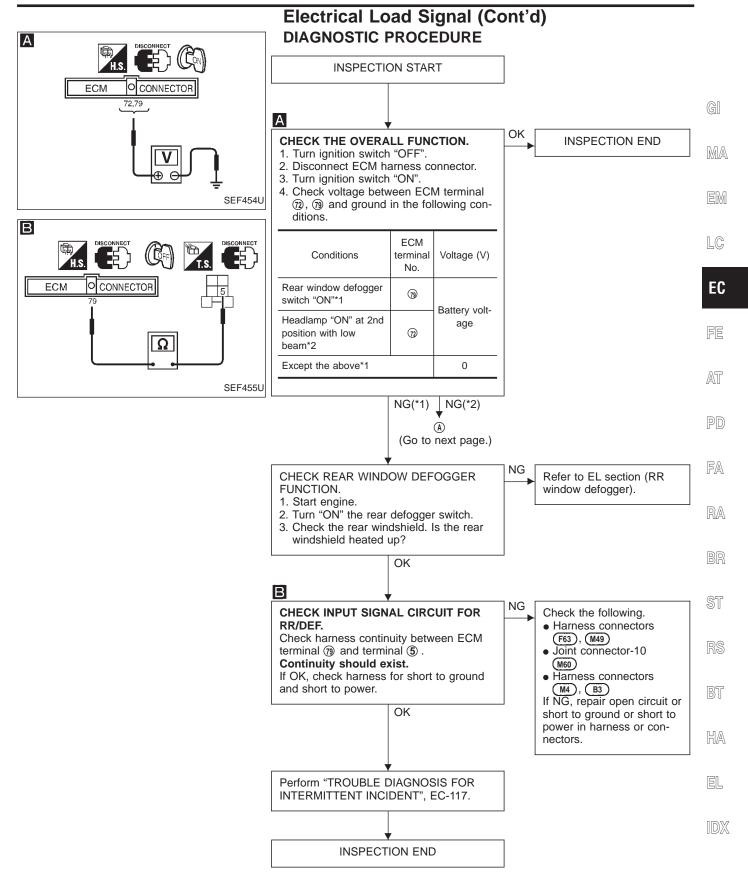
IACV-FICD solenoid valve

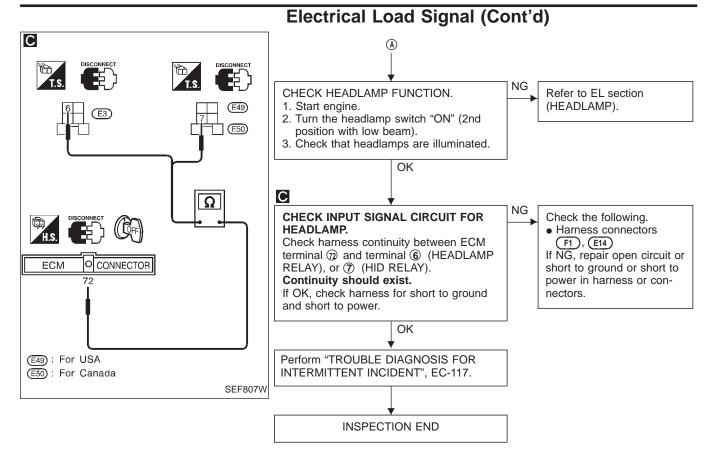
Disconnect IACV-FICD solenoid valve harness connector.

Check for clicking sound when applying 12V direct current to terminals.

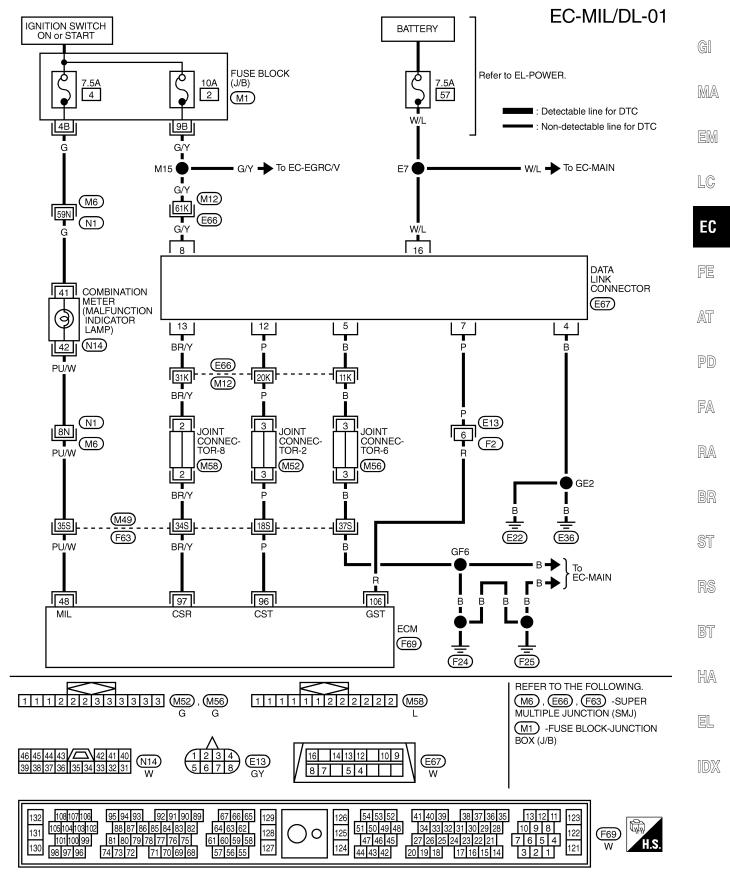
- Check plunger for seizing or sticking.
- Check for broken spring.




GI


MA

EL


Electrical Load Signal

MIL & Data Link Connectors

General Specifications

PRESSURE REGULATOR

Fuel pressure	kPa (kg/cm², psi)	
At idle		Approximately 235 (2.4, 34)
A few seconds after ignition switch is turned OFF to ON		Approximately 294 (3.0, 43)

Inspection and Adjustment

Target idle speed*1 rp	m
No-load*3	650±50 (in "P" or "N" position)
Base idle speed*2 rp	m
No-load*3	600±50 (in "P" or "N" position)
Air conditioner: ON (in "N" position	More than 700 rpm
Ignition timing	15°±2° BTDC

- Air conditioner switch: OFF
- Electric load: OFF (Lights, heater, fan & rear defogger)

MASS AIR FLOW SENSOR

Supply voltage V	Battery voltage (11 - 14)
Output voltage V	1.0 - 1.7 at idle* Approximately 2.1 at 2,500
Mass air flow (Using CONSULT-II or GST) g·m/sec	3.0 - 6.0 at idle* 12.9 - 25.3 at 2,500 rpm*

^{*:} Engine is warmed up sufficiently and idling under no-load.

ENGINE COOLANT TEMPERATURE SENSOR

Temperature °C (°F)	Resistance (kΩ)
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

EGR TEMPERATURE SENSOR

EGR temperature °C (°F)	Voltage (V)	Resistance (MΩ)
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Resistance [at 25°C (77°F)]	Ω	2.3 - 4.3

HEATED OXYGEN SENSOR 2 HEATER (REAR)

Resistance [at 25°C (77°F)]	Ω	2.3 - 4.3	
Resistance [at 25°C (77°F)]	Ω	2.3 -	4.3

FUEL PUMP

Resistance [at 25°C (77°F)]	Ω	0.2 - 5.0
-----------------------------	---	-----------

IACV-AAC VALVE (Step motor type)

Resistance [at 25°C (77°F)]	Ω	Approximately 30

INJECTOR

Resistance [at 25°C (77°F)]	Ω	10 - 14
-----------------------------	---	---------

THROTTLE POSITION SENSOR

Accelerator pedal conditions	Voltage*
Completely released (a)	0.15 - 0.85
Partially released	Between (a) and (b)
Completely depressed (b)	3.5 - 4.7

^{*:} Measured with vacuum applied to the throttle opener using a vacuum pump.

CALCULATED LOAD VALUE

	Calculated load value % (Using CONSULT-II or GST)
At idle	13.0 - 32
At 2,500 rpm	13.0 - 25.5

INTAKE AIR TEMPERATURE SENSOR

Temperature °C (°F)	Resistance
20 (68)	2.1 - 2.9 kΩ
80 (176)	0.68 - 1.00 kΩ

^{*1:} TPS harness connector connected.
*2: Using CONSULT-II "WORK SUPPORT" or TPS harness connector disconnected.

^{*3:} Under the following conditions:

SERVICE DATA AND SPECIFICATIONS (SDS)

Inspection and Adjustment (Cont'd)

DROPPING RESISTOR

CRANKSHAFT POSITION SENSOR (OBD)

Resistance [at 25°C (77°F)]	Ω	Approximately 0.8		Resistance Ω	166.5 - 203.5 [at 25°C (77°F)]
-----------------------------	---	-------------------	--	--------------	--------------------------------

EVAP CANISTER PURGE VOLUME CONTROL VALVE

INTAKE VALVE TIMING CONTROL POSITION SENSOR

Resistance [at 25°C (77°F)]	Ω	35 - 43	Resistance [at 25°C (77°F)]	Ω	600 - 740

G[

 $\mathbb{M}\mathbb{A}$

LC

EC

FE

AT

PD

FA

RA

BR

ST

RS

BT

HA

NOTES