CONTENTS

PRECAUTIONS 4
Supplemental Restraint Svstem (SRS) "AIRBAG'4
Wiring Diagrams and Trouble Diagnosis. 4
HARNESS CONNECTOR. 5
Description. 5
STANDARDIZED RELAY. 7
Description. 7
POWER SUPPLY ROUTING. 9
Schematic 10
Wiring Diagram - POWER - 12
Inspection. 19
GROUND 20
Ground Distribution. 20
COMBINATION SWITCH 29
Check 29
Replacement. 30
STEERING SWITCH 31
Check. 31
HEADLAMP (FOR USA) 32
Component Parts and Harness Connector
Location 32
Svstem Description. 32
Wiring Diagram - H/LAMP - 34
Trouble Diagnoses. 36
Bulb Replacement 44
Aiming Adjustment. 44
HEADLAMP (FOR CANADA) - DAYTIME LIGHT SYSTEM - 46
Component Parts and Harness Connector Location 46
Svstem Description. 46
Wiring Diagram - DTRL 49
Trouble Diagnoses 51
Bulb Replacement 52
Aiming Adiustment. 52
PARKING, LICENSE AND TAIL LAMPS 53
Wiring Diagram - TAIL/L 53
STOP LAMP 54
Wiring Diagram - STOP/I - 54
BACK-UP LAMP 55
Wiring Diagram - BACKIL - 55
CORNERING LAMP 56
System Description. 56
Wiring Diagram - CORNER - 57
TURN SIGNAL AND HAZARD WARNING LAMPS 58
System Description 58
Wiring Diagram - TURN 59
Trouble Diagnoses. 61
Electrical Components Inspection 61
TRAILER TOW 62
System Description 62
Wiring Diagram - T/TOW - 63
Trouble Diagnoses 64
ILLUMINATION 65
System Description 65
Schematic 67
Wiring Diagram - ILL 68
INTERIOR ROOM LAMP. 72
System Description 72
Schematic 74
Wiring Diagram - INT/L 75
Trouble Diagnoses. 78
METERS AND GAUGES 80
Component Parts and Harness Connector Location 80
System Description 80
Combination Meter 82
Wiring Diagram - METER - 84
Trouble Diagnoses 85
Electrical Component Inspection 90
WARNING LAMPS 92
System Description. 92
Schematic 94
Wiring Diagram - WARN 95
Flectrical Component Inspection 99
WARNING CHIME 100

CONTENTS (Contd)

Component Parts and Harness Connector
Location100
System Description 100
Wiring Diagram - CHIME - 102
Trouble Diagnoses 103
FRONT WIPER AND WASHER 108
System Description. 108
Wiring Diagram - WIPER - 109
Trouble Diagnoses 110
Removal and Installation 110
Washer Nozzle Adiustment 111
REAR WIPER AND WASHER 113
Svstem Description/Except for Glass Hatch Model 113
Wiring Diagram - WIP/R - /Except for Glass Hatch Model 114
System Descrintion/For Glass Hatch Model 115
Wiring Diagram - WIP/R - /For Glass Hatch Model 116
Removal and Installation 117
Washer Fluid and Check Valve 118
HORN 119
Wiring Diagram - HORN - 119
CIGARETTE LIGHTER. 120
Wiring Diagram - CIGAR- 120
REAR WINDOW DEFOGGER 121
Component Parts and Harness Connector
Location 121
Sustem Description. 121
Wiring Diagram - DEF - 123
Trouble Diagnoses 124
Electrical Components Inspection 126
Filament Check 126
Filament Repair 127
AUDIO 129
System Descrintion. 129
Schematic 130
Wiring Diagram - AUJDIO - 131
Trouble Diagnoses 134
AUDIO ANTENNA 141
Location of Antenna 141
Removal and Installation 141
POWER SUNROOF 142
System Description 142
Wiring Diagram - SROOF - 143
POWER DOOR MIRROR 144
Wiring Diagram - MIRROR - Without Automatio Drive Positioner 144
HEATED MIRROR 145
Wiring Diagram - H/MIRR - 145
AUTOMATIC DRIVE POSITIONER 146
Component Parts and Harness Connector
Location146
Sustem Description 146
Schematic 149
Wiring Diagram - AUT/DP 150
Trouble Diagnosis 155
POWER SEAT 183
Wiring Diagram - SEAT - 183
AUTOMATIC SPEED CONTROL DEVICE (ASCD) 185
Components Parts and Harness Connector Location 185
System Descrintion 186
Schematic 188
Wiring Diagram - ASCD 189
Fail-safe Svstem 194
Trouble Diagnoses 195
Flectrical Component Inspection 206
ASCD Wire Adiustment 208
POWER WINDOW 209
System Description 209
Wiring Diagram - WINDOW - 211
Trouble Diagnoses 213
POWER DOOR LOCK 214
Component Parts and Harness Connector Iocation 214
System Description 214
Schematic 216
Wiring Diagram - D/LOCK - 217
Trouble Diagnosis 222
MULTI-REMOTE CONTROL SYSTEM 234
Component Parts and Harness Connector Location 234
System Description 234
Schematic 237
Wiring Diagram - MULTI - 238
Trouble Diagnoses 242
ID Code Entry Procedure 251
Remote Controller Rattery Replacement 252
THEFT WARNING SYSTEM 253
Component Parts and Harness Connector Location 253
System Description 255
Schematic 258
Wiring Diagram - THEFT - 259
Trouble Diagnoses 266
SMART ENTRANCE CONTROL UNIT. 278
Description 278
Schematic 280
Smart Entrance Control Unit Inspection Table 282
INTEGRATED HOMELINK TRANSMITTER 284
Wiring Diagram - TRNSMT - 284
Trouble Diagnoses 285

CONTENTS (Cont'd)

ELECTRICAL UNITS LOCATION 287
Fngine Compartment. 287
Passenger Compartment 288
HARNESS LAYOUT 290
How to Read Harness Lavout 290
Outline. 291
Main Harness and Body No. 2 Harness 292
Engine Room Harness 296
Engine Control Harness 299
Body Harness 303
Back Door Harness 304
Back Door No. 2 Harness 305
Room Lamp Harness 306
Air Bag Harness 307
Front Door Harness 308
Sliding Door Harness 309
BULB SPECIFICATIONS 310
Headlamp 310
Exterior Lamp 310
Interior Lamp 310
WIRING DIAGRAM CODES (CELL CODES) 311
SUPER MULTIPLE JUNCTION (SMJ) 313
Installation 313
Terminal Arrangement 314
FUSE BLOCK 315
Terminal Arrangement 315
FUSE AND FUSIBLE LINK BOX 316
Terminal Arrangement 316
JOINT CONNECTOR 317
Terminal Arrangement 317
ELECTRICAL UNITS 318
Terminal Arrangement 318

Supplemental Restraint System (SRS) "AIR BAG"

The Supplemental Restraint System "AIR BAG", used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger in a frontal collision. The Supplemental Restraint System consists of air bag modules (located in the center of the steering wheel and on the instrument panel on the passenger side), a diagnosis sensor unit, warning lamp, wiring harness and spiral cable. Information necessary to service the system safely is included in the RS section of this Service Manual.
WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses are covered with yellow insulation either just before the harness connectors or for the complete harness, for easy identification.

Wiring Diagrams and Trouble Diagnosis

When you read wiring diagrams, refer to the followings:

- GI-10"HOW TO READ WIRING DIAGRAMS"
- EL-12"POWER SUPPLY ROUTING" for power distribution circuit

When you perform trouble diagnosis, refer to the followings:

- GI-34 HOW TO FOLLOW TEST GROUP IN TROUBLE DIAGNOSIS"
- GI-23*HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT"

Check for any Service bulletins before servicing the vehicle.

Description

HARNESS CONNECTOR (TAB-LOCKING TYPE)

- The tab-locking type connectors help prevent accidental looseness or disconnection.
- The tab-locking type connectors are disconnected by pushing or lifting the locking tabs.

Refer to illustration below.
Refer to the next page for description of slide-locking type connectors.

CAUTION:

- Do not pull the harness or wires when disconnecting the connector.
- Be careful not to damage the connector support bracket when disconnecting the connector. [Example]

HARNESS CONNECTOR (SLIDE-LOCKING TYPE)

- A new style slide-locking type connector is used on certain systems and components, especially those related to OBD.
- The slide-locking type connectors help prevent incomplete locking and accidental looseness or disconnection.
- The slide-locking type connectors are disconnected by pushing or pulling the slider.

Refer to illustration below.
CAUTION:

- Do not pull the harness or wires when disconnecting the connector.
- Be careful not to damage the connector support bracket when disconnecting the connector.
[Example]

Description

NORMAL OPEN, NORMAL CLOSED AND MIXED TYPE RELAYS
Relays can mainly be divided into three types: normal open, normal closed and mixed type relays.

	NORMAL OPEN RELAY	NORMAL CLOSED RELAY	MIXED TYPE RELAY
$\begin{aligned} & \dot{\bar{u}} \\ & \stackrel{H}{0} \\ & = \\ & \underset{\omega}{3} \end{aligned}$	Does not flow.	Flows.	
z 0 0 \vdots \vdots	Flows.		Does not flow.

TYPE OF STANDARDIZED RELAYS
NDELOOO4S02

1 M	1 Make	2 M	2 Make
1 T	1 Transfer	$1 \mathrm{M} \cdot 1 \mathrm{~B}$	1 Make 1 Break

1M	2M
$1 T$	$1 \mathrm{M} \cdot 1 \mathrm{~B}$

STANDARDIZED RELAY

Description (Cont'd)

Type	Outer view	Circuit	Connector symbol and connection	Case color
1 T				BLACK
2M				BROWN
$1 \mathrm{M} \cdot 1 \mathrm{~B}$				GRAY
1M				$\begin{aligned} & \text { BLUE } \\ & \text { or } \\ & \text { YELLOW } \end{aligned}$

The arrangement of terminal numbers on the actual relays may differ from those shown above.

NOTE:

POWER SUPPLY ROUTING

Schematic

EL-10

Wiring Diagram - POWER -
 BATTERY POWER SUPPLY - IGNITION SW. IN ANY POSITION

NOTE:
For detailed ground distribution information, refer to "GROUND DISTRIBUTION", EL-20,

EL－POWER－02

EL－POWER－04

（M2）（M3－FUSE BLOCK

ACCESSORY POWER SUPPLY - IGNITION SW. IN ACC OR ON
NOTE:
For detailed ground distribution information, refer to "GROUND DISTRIBUTION", EL-20

1	3	5
6	2	4

B\end{gathered}\)
Refer to the following.

IGNITION POWER SUPPLY — IGNITION SW. IN ON AND/OR START
NOTE:
For detailed ground distribution information, refer to "GROUND DISTRIBUTION", EL-20

Refer to the following
(M2), E103, E104- FUSE BLOCK
E21 - FUSE AND FUSIBLE LINK BOX

Refer to the following
(M2), (M3), E102, E103
FUSE BLOCK

Inspection

FUSE

FUSIBLE LINK

A melted fusible link can be detected either by visual inspection or by feeling with finger tip．If its condition is questionable，use circuit tester or test lamp．
CAUTION：
－If fusible link should melt，it is possible that critical circuit （power supply or large current carrying circuit）is shorted． In such a case，carefully check and eliminate cause of problem．
－Never wrap outside of fusible link with vinyl tape．Impor－ tant：Never let fusible link touch any other wiring harness， vinyl or rubber parts．

CIRCUIT BREAKER

Ground Distribution
 MAIN HARNESS

NDELOOO8 NDELOOOBSO1

Body ground

Body ground

Body ground

GROUND

Body ground

GROUND

ENGINE ROOM HARNESS
NDELOOO8S02

Body ground

CONNECTOR NUMBER	CONNECT TO
M176	Diode－1（Without ABS）
E1	Front wiper amplifier（Terminal No．5）
E20	Cooling fan motor
E103	Fuse block • Accessory relay • Ignition relay
E106	A／T device
E107	Combination switch－1（Terminal No．12）

（C）To © ${ }^{-50}$

GROUND

GENERATOR HARNESS

Body ground

| CONNECTOR
 NUMBER | CONNECT
 TO |
| :---: | :---: | :---: |
| $(44$ | Generator |

GROUND

ENGINE CONTROL SUB HARNESS

Engine grounds

GROUND

Ground Distribution (Cont'd)

BODY NO. 2 HARNESS

Body ground

View with rear side lower garnish

BACK DOOR NO． 2 HARNESS

GROUND

REAR DEFOGGER GROUND HARNESS

Body ground
View with D pillar upper garnish //

CONNECTOR NUMBER	CONNECT TO
(2251	Rear window defogger

Check

Lighting switch（without auto lamps）

Lighting switch（with auto lamps）

Replacement

- To remove combination switch base, remove base attaching screws.

Component Parts and Harness Connector Location

WEL280

System Description

The headlamps are controlled by the headlamp control unit.
Power is supplied at all times

- through 15A fuse (No. 37, located in the fuse and fusible link box)
- to headlamp control unit terminal 7 (for LH headlamp)
- through 15A fuse (No. 36, located in the fuse and fusible link box)
- to headlamp control unit terminal 5 (for RH headlamp).

MANUAL OPERATION

Low Beam Operation

When the combination switch is placed in the LOW BEAM (B) position, with lighting switch in the ON (2ND) position, ground is supplied

- to headlamp control unit terminal 9
- through lighting switch terminal 8
- to lighting switch terminal 7
- through body grounds M68, M105 and M130.

Then, power is supplied

- from headlamp control unit terminal 3
- to LH headlamp terminal 3
- from headlamp control unit terminal 6
- to RH headlamp terminal 3.

Ground is supplied to each headlamp terminal 2 through body grounds E3, E30 and E50. With power and ground supplied, the low beam headlamps will illuminate.

High Beam Operation

When the lighting switch is placed in the headlamp ON (2ND) position, ground is supplied to headlamp control unit terminal 9 in the same manner as low beam operation.
With combination switch in the HIGH BEAM (A) position, ground is supplied

- to headlamp control unit terminal 18
- through combination switch terminal 11
- to combination switch terminal 14
- through body grounds E3, E30 and E50.

Then, power is supplied

```
- from headlamp control unit terminal 8
- to LH headlamp terminal 1
- from headlamp control unit terminal 4
- to RH headlamp terminal 1.
```

Ground is supplied to each headlamp terminal 2 through body grounds E3, E30 and E50.
With power and ground supplied, the high beam headlamps will illuminate.
Power is also supplied

- from headlamp control unit terminal 8 (models without autolamp), 13 (models with autolamp)
- to combination meter terminal 6 for HIGH BEAM indicator.

Ground is supplied to combination meter terminal 12 through body grounds M68, M105 and M130.
With power and ground supplied the HIGH BEAM indicator will illuminate.

Flash to Pass Operation

When the combination switch is placed in the FLASH TO PASS (C) position, ground is supplied

- to headlamp control unit terminal 20
- through combination switch terminal 13
- to combination switch terminal 12
- through body grounds E3, E30 and E50.

Then, power is supplied to each headlamp (HIGH) from headlamp control unit to turn on the lamps in the same manner as high beam operation.

AUTO LAMP OPERATION (IF EQUIPPED)

NDELOO13S02

Automatic Illumination

When the ignition switch is in ON position, power is supplied

- through 10A fuse (No. 30, located in the fuse block)
- to headlamp control unit terminal 2.

With power at terminal 2 and lighting switch in AUTO1 or AUTO2 position, the headlamp control unit will measure the ambient light intensity through terminals 10 and 21. If the autolamp sensor does not detect sufficient light, power is supplied to headlamps in the same manner as low or high beam operation. Headlamp control unit decides to illuminate headlamps (Low or High) according to combination switch position (LOW or HIGH).
At this time, ground is also supplied to tail lamp relay through headlamp control unit terminal 12 to energize tail lamp relay. Then tail lamp relay supplies power to turn on parking, license, tail lamps and illumination. For detailed wiring diagrams, refer to "PARKING, LICENSE, TAIL LAMPS", EL-53 and "ILLUMINATION", EL-68.

Shut-off Delay

While the headlamps are lit in the automatic illumination mode, the ignition switch is turned from ON to OFF position and auto lamp shut-off delay timer starts. At this time, ground to tail lamp relay is discontinued.
The delay time is set based on the resistance value at headlamp control unit terminal 14. With the timer running, the headlamps remain lit. When the timer reaches the end of its cycle, the headlamps turn off.
Headlamp lighting time can be adjusted from 0 to 3 minutes.

THEFT WARNING SYSTEM

If the theft warning system is triggered, alarm signal is sent

- to headlamp control unit terminal 19
- from smart entrance control unit terminal 2.

Then headlamp control unit operates to flash the high beams. For details, refer to "THEFT WARNING SYSTEM", EL-253.

HEADLAMP (FOR USA)

Wiring Diagram — H/LAMP -

Refer to the following.
(M1 - E101- SUPER MULTIPLE

5	9			9	20
3	8	7	6	18	4

10	9	8	7	6			5	4	3
22	21	20	19	18	17				

Symptom	Possible cause	Repair order
Headlamp beams cannot switch between low/high.	1. Combination switch-1 2. Combination switch-1 ground circuit 3. Harness for open or short	1. Check combination switch-1. 2. Check continuity between combination switch terminal 14 and ground. 3. Check harness for open or short between headlamp control unit terminal 18 and combination switch-1 terminal 11.
Flash to pass cannot be operated. (High beams illuminate with other operation.)	1. Combination switch-1 2. Combination switch-1 ground circuit 3. Harness for open or short	1. Check combination switch-1. 2. Check continuity between combination switch terminal 12 and ground. 3. Check harness for open or short between headlamp control unit terminal 20 and combination switch-1 terminal 13.
Automatic illumination does not operate properly.	-	Go to "AUTOLAMP CHECK", EL-37.
Shut off delay does not operate properly.	-	Go to "SHUT OFF DELAY SWITCH CHECK", EL-40.
Tail lamps do not operate by automatic illumination. (Headlamps operate properly by automatic illumination.)	-	Go to "TAIL LAMP RELAY CHECK", EL-40,
AUTOLAMP CHECK NDELOO15		
1 CHECK HEADLAMP	OPERATION	
Do headlamps operate properly with lighting switch?		
Yes or No		
Yes	GO TO 2.	
No	Check headlamp, refer to EL-36	
2 CHECK AUTOLAMP	OPERATION	
1. Turn ignition switch to ON 2. Turn lighting switch to AUT 3. Obstruct autolamp sensor.	position. O1 or AUTO2 position.	
Do headlamps and tail lamps illuminate?		
Yes	Go to "SHUT OFF DELAY SWIT	CH CHECK", EL-40.
No	GO TO 3.	

Trouble Diagnoses (Cont'd)

3	CHECK IGNITION SWITCH ON SIGNAL		
Che	voltage between headla	p control unit terminal 2 and ground with ignition switch ON. Does battery voltage exist?	AEL935B
Yes	-	GO TO 4.	
No	-	Check the following. - 10 A fuse (No. 30, located in the fuse block) - Harness for open or short between fuse and headlamp control unit	

5	CHECK AUTOLAMP SENSOR	
1. Disconnect autolamp sensor connector. 2. Check continuity between autolamp sensor connector terminals 2 and 1 . With positive lead on pin 1 and negative lead on pin 2. Continuity should exist. 3. Reverse leads. Continuity should not exist. NOTE: Specifications may vary depending on tester type. Before performing this inspection, refer to instruction manual for your tester. Continuity should not exist.		
OK		Check harness for open or short between headlamp control unit and autolamp sensor.
NG		

HEADLAMP (FOR USA)

Trouble Diagnoses (Cont'd)

SHUT OFF DELAY SWITCH CHECK

2	CHECK IGNITION SWITCH ON SIGNAL CIRCUIT		
$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	connect headlamp contr eck voltage between hea	unit. amp control unit terminal 2 and ground with ignition switch OFF. Does battery voltage exist?	AEL324C
Yes	\checkmark	Repair the harness between fuse and headlamp control unit.	
No	\checkmark	Replace headlamp control unit.	

TAIL LAMP RELAY CHECK

$\mathbf{1}$	CHECK TAIL LAMP OPERATION	
Do tail lamps illuminate with lighting switch operation? NOTE: For wiring diagram of tail lamp relay, refer to "PARKING, LICENSE AND TAIL LAMPS", EL-53 Yes or No		
Yes	GO TO 4.	
No	GO TO 2.	

Trouble Diagnoses (Cont'd)

HEADLAMP CONTROL UNIT INSPECTION TABLE

Terminal No.	Wire color	Item	Condition	Voltage (Approximate value)
2*	LG	Ignition switch on signal	Ignition switch OFF, ACC position	0
			Ignition switch ON, START position	12
3	OR	LH headlamp low beam	Lighting switch in the headlamp ON (2ND) position and combination switch in LOW BEAM (B) position	12
			All other conditions	0
4	OR/W	RH headlamp high beam	Lighting switch in the ON (2ND) position and combination switch in HIGH BEAM (A) position	12
			All other conditions	0
5	R/Y	Power source for RH headlamp	-	12

HEADLAMP (FOR USA)

Bulb Replacement

NDELOO16
The headlamp is a semi-sealed beam type which uses a replaceable halogen bulb. The bulb can be replaced from the engine compartment side without removing the headlamp body.

- Grasp only the plastic base when handling the bulb. Never touch the glass envelope.

1. Disconnect the battery cable.
2. Disconnect the harness connector from the back side of the bulb.
3. Turn the bulb retaining ring counterclockwise until it is free from the headlamp reflector, and then remove it.
4. Remove the headlamp bulb carefully. Do not shake or rotate the bulb when removing it.
5. Install in the reverse order of removal.

CAUTION:

Do not leave headlamp reflector without bulb for a long period of time. Dust, moisture, smoke, etc. entering headlamp body may affect the performance of the headlamp. Remove headlamp bulb from the headlamp reflector just before a replacement bulb is installed.

Aiming Adjustment

When performing headlamp aiming adjustment, use an aiming machine, aiming wall screen or headlamp tester. Aimers should be in good repair, calibrated and operated in accordance with respective operation manuals.
If any aimer is not available, aiming adjustment can be done as follows:
For details, refer to the regulations in your own country.

1) Keep all tires inflated to correct pressures.
2) Place vehicle and tester on one and same flat surface.
3) See that there is no-load in vehicle (coolant, engine oil filled up to correct level and full fuel tank) other than the driver (or equivalent weight placed in driver's position).

AIMER ADJUSTMENT MARK

NDELO017S01
When using a mechanical aimer, adjust adapter legs to the data marked on the headlamps.

Example 20V23H

Horizontal side: 23
Vertical side: $\mathbf{2 0}$

LOW BEAM

1．Turn headlamp low beam on．
2．Use adjusting screws to perform aiming adjustment．
－Upper edge and left edge of high intensity zone should be within the range shown at left．Adjust headlamps accord－ ingly．
－Dotted lines in illustration show center of headlamp．
＂H＂：Horizontal center line of headlamps
＂ W_{L}＂：Distance between each headlamp center

Component Parts and Harness Connector Location

WEL280

System Description

The headlamps are controlled by the headlamp control unit.
Power is supplied at all times

- through 15A fuse (No. 37, located in the fuse and fusible link box)
- to headlamp control unit terminal 7 (for LH headlamp)
- through 15A fuse (No. 36, located in the fuse and fusible link box)
- to headlamp control unit terminal 5 (for RH headlamp).

MANUAL OPERATION

Low Beam Operation

When the combination switch is placed in the LOW BEAM (B) position, with lighting switch in the headdamp ON (2ND) position, ground is supplied

- to headlamp control unit terminal 9
- through lighting switch terminal 8
- to lighting switch terminal 7
- through body grounds M68, M105 and M130.

Then power is supplied

- from headlamp control unit terminal 3
- to LH headlamp terminal 3
- from headlamp control unit terminal 6
- to RH headlamp terminal 3.

Ground is supplied to each headlamp terminal 2 through body grounds E3, E30 and E50. With power and ground supplied, the low beam headlamps will illuminate.

High Beam Operation

When the lighting switch is placed in the headlamp ON (2ND) position, ground is supplied to headlamp control unit terminal 9 in the same manner as low beam operation.
With combination switch in the HIGH BEAM (A) position, ground is supplied

- to headlamp control unit terminal 18
- through combination switch terminal 11
- to combination switch terminal 14
- through body grounds E3, E30 and E50.

Then power is supplied
－from headlamp control unit terminal 8
－to LH headlamp terminal 1
－from headlamp control unit terminal 4
－to RH headlamp terminal 1
Ground is supplied to each headlamp terminal 2 through body grounds E3，E30 and E50．
With power and ground supplied，the high beam headlamps will illuminate．
Power is also supplied
－from headlamp control unit terminal 13
－to combination meter terminal 6 for the HIGH BEAM indicator．
Ground is supplied to combination meter terminal 12 through body grounds M68，M105 and M130．
With power and ground supplied，the HIGH BEAM indicator will illuminate．

Flash to Pass Operation

When the combination switch is placed in the FLASH TO PASS（C）position，ground is supplied
－to headlamp control unit terminal 20
－through combination switch terminal 13
－to combination switch terminal 12
－through body grounds E3，E30 and E50．
Then power is supplied to each headlamp HIGH from headlamp control unit to turn on the lamps in the same manner as high beam operation．

DAYTIME LIGHT OPERATION

The headlamp system for CANADA vehicles contains a daytime light control system that activates the high beam headlamps at approximately half illumination whenever the engine is running（engine running signal is supplied to the headlamp control unit terminal 17 from generator L terminal）．
If the parking brake is applied before the engine is started，the daytime lights will not be illuminated．The day－ time lights will illuminate once the parking brake is released．Thereafter，the daytime lights will continue to operate when the parking brake is applied．
With the engine running，the lighting switch in the OFF or 1ST position and parking brake released，power is supplied
－to headlamp control unit terminal 11
－through headlamp control unit terminal 8
－to terminal 1 of LH headlamp．
And also
－through headlamp control unit terminal 4
－to terminal 1 of RH headlamp．
Ground is supplied to terminal 2 of LH and RH headlamps through body grounds E3，E30 and E50．

OPERATION

After starting the engine with the lighting switch in the OFF or 1ST position, the headlamp high beam automatically turns on. Lighting switch operations other than the above are the same as conventional light systems.

		With engine stopped									With engine running								
Lighting switch		OFF			1ST			2ND			OFF			1ST			2ND		
		A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Headlamp	High beam	X	X	0	X	X	0	0	X	0	\triangle^{*}	\triangle^{*}	0	\triangle^{*}	\triangle^{*}	0	O	X	0
	Low beam	X	X	X	X	X	X	X	0	X	X	X	X	X	X	X	X	0	X
Clearance and tail lamp		X	X	X	0	0	0	0	0	0	X	X	X	0	0	0	0	0	0
License and instrument illumination lamp		X	X	X	0	0	0	0	0	0	X	X	X	O	0	0	O	O	O

A: HIGH BEAM position
B: LOW BEAM position
C: FLASH TO PASS position
O : Lamp ON
X : Lamp OFF
\triangle : Lamp dims. (Added functions)
*: When starting the engine with the parking brake released, the daytime lights will come ON.
When starting the engine with the parking brake applied, the daytime lights won't come ON.

AUTO LAMP OPERATION

Automatic Illumination

When the ignition switch is in ON position, power is supplied

- through 10A fuse (No. 30, located in the fuse block)
- to headlamp control unit terminal 2.

With power at terminal 2 and lighting switch in AUTO1 or AUTO2 position, the headlamp control unit will measure the ambient light intensity through terminals 10 and 21 . If the autolamp sensor does not detect sufficient light, power is supplied to headlamps in the same manner as low or high beam operation. The headlamp control unit illuminates the headlamps High or Low according to combination switch position HIGH or LOW.
At this time, ground is also supplied to tail lamp relay through headlamp control unit terminal 12 to energize tail lamp relay. Then tail lamp relay supplies power to turn on parking, license, tail lamps and interior illumination. (For detailed wiring diagrams, refer to "PARKING, LICENSE, TAIL LAMPS, EL-53 and "ILLUMINATION", EL-68.)

Shut-off Delay

While the headlamps are lit in the automatic illumination mode and the ignition switch is turned from ON to OFF position, the autolamp shut-off delay timer starts. At this time, ground to tail lamp relay is discontinued. The delay time is set based on the resistance value at headlamp control unit terminal 14. With the timer running, the headlamps remain lit. When the timer reaches the end of its cycle, the headlamps turn off.
Headlamp lighting time can be adjusted from about 0 to 3 minutes.

THEFT WARNING SYSTEM

If the theft warning system is triggered, alarm signal is sent

- to headlamp control unit terminal 19
- from smart entrance control unit terminal 29.

Then headlamp control unit operates to flash the high beams. For details, refer to "THEFT WARNING SYSTEM", EL-255.

$\square \frac{(M 10}{B}$

Refer to the following
M9) - JOINT CONNECTOR

HEADLAMP（FOR CANADA）— DAYTIME LIGHT SYSTEM－

Trouble Diagnoses

Trouble Diagnoses

NDELOO23
NOTE：
For trouble diagnoses relating to autolamp system，refer to＂SYMPTOM AND INSPECTION CHART＂for ＂HEADLAMP（FOR USA）＂，EL－36．
HEADLAMP CONTROL UNIT INSPECTION TABLE
NDEL0023S01

Terminal No．	Wire color	Item	Condition	Voltage （Approximate value）
1	G／B	Parking brake switch	Parking brake is released	12
			Parking brake is applied	0
2	LG	Ignition switch on signal	Ignition switch OFF，ACC position	0
			Ignition switch ON，START position	12
3	OR	LH headlamp low beam	Lighting switch in the headlamp ON（2ND）position and combination switch in LOW BEAM（B）position	12
			All other conditions	0
4	OR／W	RH headlamp high beam	Lighting switch in the ON（2ND）position and combi－ nation switch in HIGH BEAM（A）position	12
			When releasing parking brake with engine running and lighting switch to OFF（daytime light operation） CAUTION： Block wheels and ensure selector lever is in \mathbf{N} or P position．	6
			All other conditions	0
5	R／Y	Power source for RH headlamp	－	12
6	R／W	RH headlamp low beam	Lighting switch in the headlamp ON（2ND）position and combination switch in LOW BEAM（B）position	12
			All other conditions	0
7	R／L	Power source for LH head－ lamp	－	12
8	OR／L	LH headlamp high beam	Lighting switch in the ON（2ND）position and combi－ nation switch in HIGH BEAM（A）position	12
			When releasing parking brake with engine running and lighting switch to OFF（daytime light operation） CAUTION：	6

HEADLAMP (FOR CANADA) — DAYTIME LIGHT SYSTEM —
Trouble Diagnoses (Cont'd)

Terminal No.	Wire color	Item	Condition	Voltage (Approximate value)
12	GY/R	Tail lamp relay	Autolamp is not operating and lighting switch is in the OFF position	12
			Autolamp is operating	0
13	OR/L	High beam indicator	Lighting switch in the ON (2ND) position and combination switch in HIGH BEAM (A) position Combination switch in FLASH TO PASS (C) position	12
			All other conditions	0
14	L/W	Shut-off delay switch (lighting switch)	OFF	0.5
			AUTO1	3.5
			AUTO2	4.5
17	L/Y	Generator (L terminal)	When engine is running	12
			All other conditions	0
18	LG/R	Combination switch	HIGH BEAM (A) position	0
			All other conditions	12
19	P/W	Smart entrance control unit (with theft warning)	When theft warning system is in alarm phase or panic operation is activated by multi-remote control system	0
			All other conditions	12
20	BR	Combination switch	FLASH TO PASS (C) position	0
			All other conditions	0
21	B/W	Autolamp sensor (-)	-	-
22	B	Ground	-	-

Headlamp control unit connector

Bulb Replacement

Refer to "HEADLAMP (FOR USA)", EL-44.
Aiming Adjustment
Refer to "HEADLAMP (FOR USA)", EL-44.

Wiring Diagram — TAIL/L —

For information about autolamp operation, refer to "AUTOLAMP OPERATION (IF EQUIPPED)", "HEADLAMP (FOR USA)", EL-33, "AUTOLAMP OPERATION (IF EQUIPPED)", "HEADLAMP (FOR CANADA) - DAYTIME LIGHT SYSTEM", EL-48.

Wiring Diagram — STOP/L —
NDELOO27

1/2 $\frac{\pi}{\mathrm{M} 14}$

\mid			
1	3	4	4
6	7	8	4

1	0	2	
3	4	5	6

| O |
| :---: | :---: |
| 12205 |
| 12 |

CORNERING LAMP

System Description

The lighting switch must be in the 1ST or 2ND position for the cornering lamps to operate. The cornering lamp switch is part of the combination switch and is controlled by the turn signal lever. The cornering lamps provide additional lighting in the direction of the turn.
With the lighting switch in the 1ST or 2ND position, the tail lamp relay is energized and power is supplied

- from tail lamp relay terminal 5
- through 10A fuse (No. 17, located in the fuse block)
- to cornering lamp switch terminal 4.

RH TURN

When the turn signal lever is moved to the RH position, power is supplied

- from cornering lamp switch terminal 4
- through cornering lamp switch terminal 6
- to cornering lamp RH terminal 3.

Ground is supplied to cornering lamp RH terminal 1 through body grounds E3, E30 and E50.
The RH cornering lamp illuminates until the turn is completed.

LH TURN

When the turn signal lever is moved to the LH position, power is supplied

- from cornering lamp switch terminal 4
- through cornering lamp switch terminal 5
- to cornering lamp LH terminal 3.

Ground is supplied to cornering lamp LH terminal 1 through body grounds E3, E30 and E50.
The LH cornering lamp illuminates until the turn is completed.

System Description

TURN SIGNAL OPERATION

With the hazard switch in the OFF position and the ignition switch in the ON or START position, power is supplied

- through 10A fuse (No. 27, located in the fuse block)
- to hazard switch terminal 2
- through terminal 1 of the hazard switch
- to combination flasher unit terminal 1
- through terminal 3 of the combination flasher unit
- to turn signal switch terminal 1.

Ground is supplied to combination flasher unit terminal 2 through body grounds M68, M105 and M130.

LH Turn

When the turn signal switch is moved to the LH position, power is supplied from turn signal switch terminal 2 to

- front turn signal lamp LH terminal 3
- combination meter terminal 15
- rear combination lamp LH terminal 2.

Ground is supplied to the front turn signal lamp LH terminal 1 through body grounds E3, E30 and E50.
Ground is supplied to the rear combination lamp LH terminal 4 through body grounds M68, M105 and M130.
Ground is supplied to combination meter terminal 22 through body grounds M68, M105 and M130.
With power and ground supplied, the combination flasher unit controls the flashing of the LH turn signal lamps.

RH Turn

When the turn signal switch is moved to the RH position, power is supplied from turn signal switch terminal 3 to

- front turn signal lamp RH terminal 3
- combination meter terminal 21
- rear combination lamp RH terminal 2.

Ground is supplied to the front turn signal lamp RH terminal 1 through body grounds E3, E30 and E50. Ground is supplied to the rear combination lamp RH terminal 4 through body ground B15.
Ground is supplied to combination meter terminal 22 through body grounds M68, M105 and M130.
With power and ground supplied, the combination flasher unit controls the flashing of the RH turn signal lamps.

HAZARD LAMP OPERATION

Power is supplied at all times to hazard switch terminal 3 through:

- 10A fuse (No. 23, located in the fuse block).

With the hazard switch in the ON position, power is supplied

- through terminal 1 of the hazard switch
- to combination flasher unit terminal 1
- through terminal 3 of the combination flasher unit
- to hazard switch terminal 5 .

Ground is supplied to combination flasher unit terminal 2 through body grounds M68, M105 and M130.
Power is supplied through terminal 4 of the hazard switch to

- front turn signal lamp LH terminal 3
- combination meter terminal 15
- rear combination lamp LH terminal 2.

Power is supplied through terminal 6 of the hazard switch to

- front turn signal lamp RH terminal 3
- combination meter terminal 21
- rear combination lamp RH terminal 2.

Ground is supplied to each lamp in the same manner as for LH or RH turn operation.
With power and ground supplied, the combination flasher unit controls the flashing of hazard warning lamps.

WEL195

TURN SIGNAL AND HAZARD WARNING LAMPS
Wiring Diagram - TURN - (Cont'd)

Trouble Diagnoses

Symptom	Possible cause	Repair order
Turn signal and hazard warning lamps do not operate.	1. Hazard switch 2. Combination flasher unit 3. Open in combination flasher unit circuit	1. Check hazard switch. 2. Refer to combination flasher unit check. 3. Check wiring to combination flasher unit for open circuit.
Turn signal lamps do not operate but hazard warning lamps operate.	1. 10 A fuse 2. Hazard switch 3. Turn signal switch 4. Open in turn signal switch circuit	1. Check 10A fuse (No. 27, located in fuse block). Turn ignition switch ON and verify battery positive voltage is present at terminal 2 of hazard switch. 2. Check hazard switch. 3. Check turn signal switch. 4. Check PU wire between combination flasher unit and turn signal switch for open circuit.
Hazard warning lamps do not operate but turn signal lamps operate.	1. 10A fuse 2. Hazard switch 3. Open in hazard switch circuit	1. Check 10A fuse (No. 23, located in fuse block). Verify battery positive voltage is present at terminal 3 of hazard switch. 2. Check hazard switch. 3. Check PU wire between combination flasher unit and hazard switch for open circuit.
Front turn signal lamp LH or RH does not operate.	1. Bulb 2. Grounds E3, E30 and E50	1. Check bulb. 2. Check grounds E3, E30 and E50.
Rear turn signal lamp LH does not operate.	1. Bulb 2. Grounds M68, M105 and M130	1. Check bulb. 2. Check grounds M68, M105 and M130.
Rear turn signal lamp RH does not operate.	1. Bulb 2. Ground B15	1. Check bulb. 2. Check ground B15.
LH and RH turn indicators do not operate.	1. Grounds M68, M105 and M130	1. Check grounds M68, M105 and M130.
LH or RH turn indicator does not operate.	1. Bulb	1. Check bulb in combination meter.

Electrical Components Inspection COMBINATION FLASHER UNIT CHECK

- Before checking, ensure that bulbs meet specifications.
- Connect a battery and test lamp to the combination flasher unit, as shown. Combination flasher unit is properly functioning if it blinks when power is supplied to the circuit.

System Description

TRAILER TAIL LAMP OPERATION

With the lighting switch in the 1ST or 2ND position, the tail lamp relay is energized and power is supplied Noossor

- from tail lamp relay terminal 5
- through 10A fuse (No. 19, located in the fuse block)
- to trailer harness connector terminal 2.

Ground is supplied to trailer tow control unit terminal 2 and trailer harness connector terminal 1 through body grounds M68, M105 and M130.
With power and ground supplied, the trailer tail lamps will illuminate.

TRAILER STOP, TURN SIGNAL AND HAZARD LAMP OPERATION

NDELOO35S02
The trailer stop, turn signal and hazard lamps are all controlled by the trailer tow control unit. The trailer tow control unit regulates the amount of voltage supplied to the trailer lamps. If either turn signal or the hazard lamps are turned on and the control unit gets a brake lamp input, the control unit supplies more voltage to the trailer lamps to make them illuminate brighter.
Power is supplied to trailer tow control unit terminals 3 and 4 through 20A fuse (No. 22, located in the fuse block) at all times.
Stop lamp input is supplied to trailer tow control unit terminal 1.
Left turn signal and hazard lamp input is supplied to trailer tow control unit terminal 7.
Right turn signal and hazard lamp input is supplied to trailer tow control unit terminal 8.
Based on the stop lamp, turn signal lamp and hazard lamp inputs to the trailer tow control unit, power is supplied to trailer LH stop/turn lamp:

- from trailer tow control unit terminal 6
- to trailer harness connector terminal 3.

Power is also supplied to trailer RH stop/turn lamp:

- from trailer tow control unit terminal 5
- to trailer harness connector terminal 4.

TRAILER TOW

Trouble Diagnoses
Trouble Diagnoses
nDELOO37
TRAILER TOW CONTROL UNIT INSPECTION TABLE
NDEL0037S01

Terminal No.	Wire color	Item	Condition	Voltage (Approximate value)
1	Y/B	Stop lamps signal	When brake pedal is depressed	12
			When brake pedal is released	0
2	B	Ground	-	-
3	R/W	Power supply	-	12
4	R/W	Power supply	-	12
5	G	Stop/RH turn lamp (output)	When brake pedal is depressed	12
			When RH turn lamps or hazard lamps operate	12 (intermittently)
			All other conditions	0
6	Y	Stop/LH turn lamp (output)	When brake pedal is depressed	12
			When LH turn lamps or hazard lamps operate	12 (intermittently)
			All other conditions	0
7	R/G	LH turn lamps	When LH turn lamps or hazard lamps operate	12 (intermittently)
			All other conditions	0
8	R/W	RH turn lamps	When RH turn lamps or hazard lamps operate	12 (intermittently)
			All other conditions	0

System Description

Power is supplied at all times
－through 7．5A fuse（No．39，located in the fuse and fusible link box）
－to smart entrance control unit terminal 13.
Power is supplied at all times
－to tail lamp relay terminals 2 and 3.
With the ignition switch in the ACC or ON position，power is supplied
－through 7．5A fuse（No．5，located in the fuse block）
－to door mirror remote control switch terminal 1.
Ground is supplied to smart entrance control unit terminal 10 through body grounds M68，M105 and M130．
With the lighting switch in the 1ST or 2ND position，the tail lamp relay is energized and power is supplied
－from tail lamp relay terminal 5
－through 7．5A fuse（No．18，located in the fuse block）
－to power terminal on all illuminated components except door mirror remote control switch．
For auto lamp operation（if equipped），ground is supplied to tail lamp relay through headlamp control unit ter－ minal 12 to energize tail lamp relay．Then tail lamp relay supplies power to turn on parking，license，tail lamps and illumination．For detailed information on autolamp operation，refer to＂HEADLAMP（USA）＂，EL－32 or ＂HEADLAMP（FOR CANADA）－DAYTIME LIGHT SYSTEM，EL－46．
The illumination control switch in combination with the smart entrance control unit control the amount of cur－ rent flow through the illumination system．This is accomplished by varying the amount of ground supplied to the illumination system．
When the illumination control switch is pushed in the LIGHTER direction，ground is supplied
－to smart entrance control unit terminal 42
－through illumination control switch terminal 5
－from illumination control switch terminal 8
－through body grounds M68，M105 and M130．
When the illumination control switch is pushed in the DARKER direction，ground is supplied
－to smart entrance control unit terminal 33
－through illumination control switch terminal 2
－from illumination control switch terminal 8
－through body grounds M68，M105 and M130．
Ground is supplied to the illumination system from smart entrance control unit terminal 11 through smart entrance control unit terminal 10.
The rear audio remote control unit illumination is not controlled by the illumination control switch．The inten－ sity of this lamp does not change．Rear audio remote control unit terminal 10 is grounded directly through body grounds M68，M105 and M130．
The following chart indicates power and ground terminals for the illumination system components．

Component	Connector No．	Power terminal	Ground Terminal
Audio unit	M45	21	22
Combination meter	M16，M17	23 and 10	24 and 11
ASCD main switch	M6	5	6
Illumination control switch and autolamp switch	M8	1	7
Lighting switch	M7	1	2
Main power window and door lock／unlock switch	D14	3	10
Door lock／unlock switch RH	D109	1	6
Front power window switch RH	D108	1	6
Rear audio remote control unit	M115	9	10
Rear fan switch（rear）＊	B6	1	2
A／C control unit（without EATC）	M37，M34	1 and 7	2 and 1

ILLUMINATION

System Description (Cont'd)

Component	Connector No.	Power terminal	Ground Terminal
EATC unit*	M33	6	1
Hazard switch	M23	7	8
Rear window defogger switch	M22	6	5
Rear fan switch (front)*	M32	2	3
Ash tray	M77	1	2
Rear wiper switch	M21	3	2
Door mirror remote control switch*	D9	1	3

* If equipped.

Schematic

NDELOO4O

ILLUMINATION

WEL200

INTERIOR ROOM LAMP

System Description

OUTLINE

Interior room lamps other than vanity lamp LH/RH (and map lamp when switch is in ON position) are controlled by the smart entrance control unit corresponding to the following signals

- Ignition switch (Power supply signal to smart entrance control unit terminal 43)
- Key switch (Ground signal to smart entrance control unit terminal 35)
- Lighting switch (Momentary ground signal to smart entrance control unit terminal 32)
- Front door switch LH/RH, sliding door switch LH/RH, back door latch switch LH/RH (Ground signal to smart entrance control unit terminal 9, 24, 34 or 41)
- Multi-remote controller.

Power is supplied at all times

- through 15A fuse (No. 21, located in the fuse block)
- to all interior room lamps.

Ground is supplied to the controlled interior room lamps

- through smart entrance control unit terminal 5 (Zone A)
- through smart entrance control unit terminal 4 (Zone B) or
- through smart entrance control unit terminal 6 (Zone C).

Controlled interior room lamps are grouped as zone A, B or C depending on connected smart entrance control unit terminals as follows

- Map lamp (Zone A, when its switch is in DOOR position)
- Front/rear room lamp (Zone B, when its switch is in DOOR position or Zone C, when its switch is in ON position)
- Front/rear personal lamps (Zone B, when its switch is in DOOR position or Zone C, when its switch is in ON position)
- Front step lamp LH/RH (Zone A)
- Foot lamp LH/RH (Zone A)
- Sliding door step lamp LH/RH (Zone B)
- Back door lamp (Zone B)
- Glove box lamp (Zone C, when glove box lid is opened).

Vanity lamp LH/RH are not controlled by the smart entrance control unit. They turn on and off corresponding to the switch position on the lamp.
When the vanity lamp LH/RH or map lamp switch is turned on, ground is supplied

- to vanity lamp LH/RH or map lamp terminal 2.

With power and ground supplied, the operated lamp turns on.

OPERATION

Interior room lamps turn on when

- key switch REMOVED (ignition key removed from ignition key cylinder)
- any door is opened
- lighting switch is pushed (momentary on switch)
- unlock signal is transmitted from multi-remote controller (only for zone A and B).

Zone C interior room lamps will turn off when the last door is closed. Zone A and B interior room lamps will remain fully illuminated for 1 second. After 1 second, zone A and B interior room lamps are lit at half illumination for approximately 10 seconds. Finally the interior room lamps will gradually fade away over approximately the next 5 seconds.
Interior room lamps will turn off immediately during the above timer operation when

- ignition switch is turned to ON position
- lock signal is transmitted from multi-remote controller
- lighting switch is pushed (momentary on switch).

If the interior room lamps are turned on by pushing the lighting switch (momentary on switch), they can be turned off by pushing the lighting switch again.

INTERIOR ROOM LAMP

BATTERY SAVER

If any of the lamps controlled by smart entrance control unit remain on for an extended period of time，the smart entrance control unit will turn off the lamps to save the battery consumption by opening the ground circuit．

Schematic

EL-74

Refer to the following.
M20 - JOINT CONNECTOR

1	2				3
4	5	6	7		

	Refer to the following. (M20)- JOINT CONNECTOR

Trouble Diagnoses
SYMPTOM: Interior room lamp does not turn on or off properly.

$\mathbf{1}$	CHECK INTERIOR ROOM LAMP FUSE	
Check 15 A fuse (No. 21, located in fuse block).		
OK		
NG		GO TO 2.

2	CHECK LIGHTING S	TCH (INTERIOR) SIGNAL
1. Close all doors, turn ignition switch to ON position and push lighting switch. Do interior room lamps turn on? 2. Push lighting switch again. Do interior room lamps turn off?		
OK or NG		
OK	-	GO TO 3.
NG	-	Check the following. - Lighting switch - Lighting switch ground circuit - Harness for open or short between lighting switch and smart entrance control unit

3	CHECK INTERIOR ROOM LAMP POWER SUPPLY					
Check voltage between room lamp terminals and ground						
				inals	Voltage [V]	
			(+)	(-)		
		Front room lamp	1	Ground	Approx. 12	
		Rear room lamp	1	Ground	Approx. 12	
						AEL868B
OK or NG						
OK	-	GO TO 4.				
NG	-	Check harness for	n bet	een fus	and interior	

4	CHECK INTERIOR ROOM LAMP BULB		
Check interior room lamp bulb.			
OK		OK or NG	
NG		GO TO 5.	

| 5 | CHECK KEY SWITCH (INSERTED) AND IGNITION ON SIGNAL |
| :--- | :--- | :--- |
| 1. Insert key into ignition key cylinder.
 2. Open front door LH.
 Does warning chime sound? | |
| 3.Turn ignition key to ON position.
 Does warning chime stop sounding?
 OK
 NG\quad GO TO 6. \quad OK or NG | |

6	CHECK DOOR SWITCH INPUT SIGNAL						
Check voltage between smart entrance control unit terminals and ground.							
				Tminals	Door	Voltage (V)	
			(+)	$(-)$	condition	(Approx.)	
		Front door	34	Ground	Open	0	
		switch LH			Closed	1.5	
		Front door switch RH	9	Ground	${ }_{\text {Open }}$	0	
		Sliding door switch			Open	0	
		LH and RH	41	Ground	Closed	1.5	
		Back door latch	24	Ground	Open	0	
		switch LH and RH	24		Closed	1.5	
							WEL547A
OK or NG							
OK	-	Check harness for open or short between smart entrance control unit and interior room lamps.					
NG	-	Check the following. - Door switch - Door switch ground condition - Harness for open or short between door switch and smart entrance control unit					

Component Parts and Harness Connector Location

NDEL0045

System Description

POWER SUPPLY AND GROUND CIRCUIT

With the ignition switch in the ON or START position, power is supplied

- through 10A fuse (No. 29, located in the fuse block)
- to combination meter terminals 14 and 33.

Ground is supplied

- to combination meter terminals 17 and 30
- through body ground M51.

WATER TEMPERATURE GAUGE

The water temperature gauge indicates the engine coolant temperature. The reading on the gauge is NoEloots502 on the resistance of the thermal transmitter.
As the temperature of the coolant increases, the resistance of the thermal transmitter decreases. A variable ground is supplied to terminal 13 of the combination meter for the water temperature gauge. The needle on the gauge moves from " C " to " H ".

TACHOMETER

The tachometer indicates engine speed in revolutions per minute (rpm).
The tachometer is regulated by a signal

- from terminal 3 of the ECM
- to combination meter terminal 29 for the tachometer.

FUEL GAUGE

The fuel gauge indicates the approximate fuel level in the fuel tank.
The fuel gauge is regulated by a variable ground signal supplied

- to combination meter terminal 20 for the fuel gauge
- from terminal 5 of the fuel level sensor unit
- through terminal 6 of the fuel level sensor unit and
- through body grounds M68, M105 and M130.

SPEEDOMETER

The vehicle speed sensor sends a voltage signal to the combination meter for the speedometer.
Pulsed ground is supplied

- to combination meter terminal 32 for the speedometer

METERS AND GAUGES

- from terminal 1 of the vehicle speed sensor.

The speedometer converts the pulsed ground into the vehicle speed displayed.

Combination Meter

Bulb socket color	Bulb watage
Tan	1.3 w
Black	3.8 w

(): Bulb socket color

Trouble Diagnoses SYMPTOM CHART		NDELOO49 NDEL0049SO1
Symptom	Diagnoses procedure	Reference page
Speedometer is malfunctioning.	POWER SUPPLY AND GROUND CIRCUIT CHECK	EL-85
	INSPECTION/VEHICLE SPEED SENSOR	Fl-86
Tachometer is malfunctioning.	INSPECTION/ENGINE REVOLUTION SIGNAL	EL-88
Fuel tank gauge is malfunctioning.	POWER SUPPLY AND GROUND CIRCUIT CHECK	EL-85
	INSPECTION/FUEL LEVEL SENSOR UNIT	FI-89
Water temperature gauge is malfunctioning.	POWER SUPPLY AND GROUND CIRCUIT CHECK	FI-85
	INSPECTION/THERMAL TRANSMITTER	EL-90

POWER SUPPLY AND GROUND CIRCUIT CHECK Power Supply Circuit Check

Terminals		Ignition switch position		
$(+)$	$(-)$	OFF	ON	START
14	Ground	$0 \vee$	Battery voltage	Battery voltage
33	Ground	$0 \vee$	Battery voltage	Battery voltage

If $N G$, check the following

- 10A fuse (No. 29, located in fuse block)
- Harness for open or short between fuse and combination meter.

Ground Circuit Check

Terminals	Continuity
17 - Ground	Yes
30 - Ground	Yes

INSPECTION/VEHICLE SPEED SENSOR

1	CHECK VEHICLE SPEED SENSOR OUTPUT		
1. Remove vehicle speed sensor from transaxle. 2. Check voltage between combination meter terminals 30 and 32 while quickly turning speed sensor pinion.			
OK	\checkmark	Vehicle speed sensor is OK.	
NG	\checkmark	GO TO 2.	

INSPECTION/ENGINE REVOLUTION SIGNAL

INSPECTION／FUEL LEVEL SENSOR UNIT

1	CHECK GAUGE OPERATION			
1．Disconnect fuel level sensor unit connector． 2．Turn ignition switch ON． 3．Check gauge operation． Gauge should move smoothly to full scale． 4．Connect terminals 5 and 6 with wire for less than 10 seconds． 5．Check gauge operation． Fuel level sensor unit B205 Circuit = open Gauge = full Fuel level sensor unit Circuit＝closed Gauge＝empty				WEL235
OK	\checkmark	GO TO 2.		
NG	\checkmark	Check the following． －Low fuel／anti－slosh unit －Combination meter		

$\mathbf{2}$	CHECK GAUGE UNITS	
Refer to＂FUEL LEVEL SENSOR UNIT CHECK＂，EL－90．		
OK	\quad OK or NG	
NG		Fuel level sensor is OK．

INSPECTION/THERMAL TRANSMITTER

$\mathbf{1}$	CHECK THERMAL TRANSMITTER		
Refer to "THERMAL TRANSMITTER CHECK", EL-91.			
OK	OK or NG		
NG		GO TO 2.	

2	CHECK HARNESS FOR OPEN OR SHORT		
1. Disconnect combination meter connector and thermal transmitter connector. 2. Check continuity between combination meter terminal 13 and thermal transmitter terminal 1. Continuity should exist. 3. Check continuity between combination meter terminal 13 and ground. Continuity should not exist.			
OK	\checkmark	Thermal transmitter is OK.	
NG	\checkmark	Repair harness or connector.	

Electrical Component Inspection

 FUEL LEVEL SENSOR UNIT CHECK- For removal, refer to "FUEL PUMP AND GAUGE", FE-6 Check the resistance between terminals 5 and 6.

Ohmmeter		Float position mm (in)			Resistance value (Ω)
(+)	(-)				
5	6	*3	Full	22.5 (0.89)	Approx. 160.0
		*2	1/2	81.3 (3.20)	Approx. 84.0
		*1	Empty	$\begin{aligned} & 150.5 \\ & (5.93) \end{aligned}$	Approx. 15.0

THERMAL TRANSMITTER CHECK

Check the resistance between the terminals of thermal transmitter and body ground．

Water temperature	Resistance value
$75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$	Approx． $179-219 \Omega$
$100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$	Approx． $60-72 \Omega$

VEHICLE SPEED SENSOR SIGNAL CHECK

1．Remove vehicle speed sensor from transaxle．
2．Turn vehicle speed sensor pinion quickly and measure voltage across terminals 1 and 2 ．

System Description

POWER SUPPLY AND GROUND CIRCUIT

With the ignition switch in the ON or START position, power is supplied

- through 10A fuse (No. 29, located in the fuse block)
- to combination meter terminals $33,14,8$ and
- bulb check relay terminal 1.

Ground is supplied

- to combination meter terminal 12 ,
- fuel tank gauge unit terminal 6 and
- seat belt buckle switch terminal 2
- through body ground M68, M105 and M130.

Ground is supplied to combination meter terminal 17 through body ground M51.
Ground is supplied

- to bulb check relay terminal 3,
- brake fluid level switch terminal 2 and
- washer fluid level switch terminal 1
- through body grounds E3, E30 and E50.

AIR BAG WARNING LAMP

During prove out or when an air bag malfunction occurs, the ground path is interrupted

- from the air bag diagnosis sensor unit terminal 15
- to combination meter terminal 7.

Ground is then supplied

- to combination meter terminal 12
- through body grounds M68, M105 and M130.

With power and ground supplied, the air bag warning lamp (LEDs) illuminates or flashes. For further information, refer to RS section.

O/D OFF INDICATOR LAMP

During prove out or when overdrive is cancelled, ground is supplied

- to combination meter terminal 28
- from TCM (transmission control module) terminal 13.

With power and ground supplied, O/D off indicator lamp illuminates.
When TCM detects malfunctioning, the indicator flashes. For further information, refer to AT-35.

LOW FUEL LEVEL WARNING LAMP

The amount of fuel in the fuel tank is determined by a float in the tank. A signal is sent from fuel level sensor terminal 5 to combination meter terminal 20. The low fuel/anti-slosh unit will illuminate the low fuel level warning lamp when the fuel level is low.

DOOR AJAR WARNING LAMP

When a door is open, ground is supplied to the smart entrance control unit at terminals $9,24,34$ or 41 . Ground is then supplied

- to combination meter terminal 5
- from smart entrance control unit terminal 14.

With power and ground supplied, the door ajar warning lamp illuminates.

LOW WASHER FLUID LEVEL WARNING LAMP

When the washer fluid level is low, ground is supplied

- to combination meter terminal 34
- from washer fluid level switch terminal 2.

With power and ground supplied, the low washer fluid level warning lamp illuminates.

LOW OIL PRESSURE WARNING LAMP

Low oil pressure, causes the oil pressure switch terminal 1 to provide ground to combination meter terminal 4.
With power and ground supplied, the low oil pressure warning lamp illuminates.

BRAKE WARNING LAMP

When the parking brake is applied or the brake fluid level is low, ground is supplied

- to combination meter terminal 3
- from parking brake switch terminal 1 or
- brake fluid level switch terminal 1.

With power and ground supplied, the brake warning lamp illuminates.

CHARGE WARNING LAMP

During prove out or when a generator malfunction occurs, ground is supplied

- to combination meter terminal 9
- from generator terminal 3.

With power and ground supplied, the charge warning lamp illuminates.

BULB CHECK RELAY (BRAKE WARNING LAMP PROVE OUT)

When the ignition switch is in the ON or START position, and with the engine not running, ground is supplied

- to bulb check relay terminal 2
- from generator terminal 3.

With power and ground supplied, the bulb check relay is energized, providing a ground path for the brake warning lamp. With power and ground supplied, the brake warning lamp illuminates.

SEAT BELT WARNING LAMP

When the driver's seat belt is unfastened, ground is supplied

- to combination meter terminal 2
- from seat belt buckle switch terminal 1.

With power and ground supplied, the seat belt warning lamp illuminates.

MALFUNCTION INDICATOR LAMP

During prove out or when an engine control malfunction occurs, ground is supplied

- to combination meter terminal 27
- from ECM terminal 18.

With power and ground supplied, the malfunction indicator lamp illuminates.
For further information, refer to EC-65.

ABS WARNING LAMP

During prove out or when an ABS malfunction occurs, ground is interrupted

- to combination meter terminal 25
- from ABS actuator and electric unit (control unit) terminal 21.

With power and ground supplied, the ABS warning lamp illuminates.
For further information, refer to BR-31.

Schematic

WEL208

EL-94

Electrical Component Inspection

FUEL WARNING LAMP SENSOR CHECK

NDEL0054S01

- The low fuel level warning lamp is controlled by the low fuelois anti-slosh unit, which is built into the combination meter. If the low fuel level warning lamp fails to illuminate, first check the fuel level sensor unit, refer to "INSPECTION/FUEL LEVEL SENSOR UNIT" EL-89. If the fuel level sensor unit is operating properly, inspect the low fuel level warning lamp bulb and anti-slosh unit for proper function.

OIL PRESSURE SWITCH CHECK

NDEL0054S02

	Oil pressure $\mathrm{kPa}\left(\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	Continuity
Engine start	More than $10-20$ $(0.1-0.2,1-3)$	NO
Engine stop	Less than $10-20$ $(0.1-0.2,1-3)$	YES

Check the continuity between the terminals of oil pressure switch and body ground.

DIODE CHECK

- Check continuity using an ohmmeter.

- Diode is functioning properly if test results are as shown in the figure at left.
- Check diodes at the combination meter harness connector instead of on the combination meter assembly. Refer to "Wiring Diagram-WARN-", EL-95.
NOTE:
Specifications may vary depending on the type of tester. Before performing this inspection, be sure to refer to the instruction manual for your tester.

WARNING CHIME

Component Parts and Harness Connector Location

WEL281

System Description

POWER SUPPLY AND GROUND CIRCUIT

The warning chime is integrated with the smart entrance control unit, which controls its operation.
Power is supplied at all times

- through 7.5A fuse (No. 39, located in the fuse and fusible link box)
- to smart entrance control unit terminal 13.

With the ignition switch in the ON or START position, power is supplied

- through 10A fuse (No. 30, located in the fuse block)
- to smart entrance control unit terminal 43.

Ground is supplied to smart entrance control unit terminal 10 through body grounds M68, M105 and M130. When a signal, or combination of signals, is received by the smart entrance control unit, the warning chime will sound.

IGNITION KEY WARNING CHIME

With the key in and the ignition switch in the OFF or ACC position, and the front door LH open, the warning chime will sound. Ground is supplied

- from key switch terminal 1
- to smart entrance control unit terminal 35 and
- from front door switch LH terminal 2
- to smart entrance control unit terminal 34.

Key switch terminal 2 is grounded through body grounds E3, E30 and E50.

LIGHT WARNING CHIME

With ignition switch OFF or ACC, front door LH open, and lighting switch in 1ST or 2ND position, warning chime will sound. Ground is supplied

- from lighting switch terminal 3
- to smart entrance control unit terminal 26 and
- from front door switch LH terminal 2
- to smart entrance control unit terminal 34.

Lighting switch terminal 7 is grounded through body grounds M68, M105 and M130.

SEAT BELT WARNING CHIME

With ignition switch turned ON and seat belt unfastened (seat belt buckle switch ON), warning chime will soound for approximately 6 seconds.
Ground is supplied

- from seat belt buckle switch terminal 1
- to smart entrance control unit terminal 38.

Seat belt buckle switch terminal 2 is grounded through body grounds M68, M105 and M130.

WARNING CHIME

Wiring Diagram — CHIME -

NDEL0057
EL-CHIME-01

WARNING CHIME

Trouble Diagnoses

Trouble Diagnoses SYMPTOM CHART					NDELOO58 NDELOO58SO1 107
REFERENCE PAGE (EL-)	103	104	104	106	
SYMPTOM					
Light warning chime does not activate.	X	X			X
Ignition key warning chime does not activate.	X		X		X
Seat belt warning chime does not activate.	X			X	
All warning chimes do not activate.	X				X

Smart entrance control unit connector M40

B
$\frac{\square}{\square}$

AEL872B

POWER SUPPLY AND GROUND CIRCUIT CHECK Power Supply Circuit Check

Terminals		Ignition switch position		
$(+)$	$(-)$	OFF	ACC	ON
13	Ground	Battery voltage	Battery voltage	Battery voltage
43	Ground	$0 V$	$0 V$	Battery voltage

Ground Circuit Check
NDEL0058S0202

Terminals	Continuity
$10-$ Ground	YES

WARNING CHIME

Trouble Diagnoses (Cont'd)

LIGHTING SWITCH INPUT SIGNAL CHECK

1	CHECK LIGHTING SWITCH INPUT SIGNAL		
Check voltage between control unit terminal 26 and ground. Smart entrance control unit connector M40 Voltage [V]: Condition of lighting switch: 1ST or 2ND 0 Condition of lighting switch: OFF Approx 12			
OK	>	Lighting switch is OK.	
NG	-	Check to following. - Lighting switch - Lighting switch ground circuit - Harness for open or short between control unit and lighting switch	

KEY SWITCH (INSERTED) CHECK

1	CHECK KEY SWITCH INPUT SIGNAL		
Check voltage between control unit terminal 35 and ground. Voltage [V]: Condition of key switch: Key is inserted. 0 Condition of key switch: Key is withdrawn. Approx 1.5			
OK	\checkmark	Key switch is OK.	
NG	-	GO TO 2.	

WARNING CHIME

Trouble Diagnoses (Cont'd)

SEAT BELT BUCKLE SWITCH CHECK

WARNING CHIME

FRONT DOOR SWITCH LH CHECK

1	CHECK FRONT DOOR SWITCH LH INPUT SIGNAL			
Check voltage between control unit terminal 34 and ground． Smart entrance control unit connector M39 Voltage［V］： Condition of front door LH：CLOSED Approx． 1.5 Condition of front door LH：OPENED 0				
OK	＞	Frond door switch LH is OK．		
NG	－	GO TO 2.		

2	CHECK FRONT DOOR SWITCH LH		
Check continuity between terminal 2 and switch body． Front door switch LH connector M110 Continuity： Front door switch LH is pushed． No Front door switch LH is released． Yes			
OK	＞	Check the following． －Front door switch LH ground condition －Harness for open or short between control unit and front door switch LH	
NG	－	Replace front door switch LH．	

System Description

WIPER OPERATION

The wiper switch is controlled by a lever built into the combination switch.
There are three wiper switch positions

- LOW speed
- HIGH speed
- INT ("S" through "F")

With the ignition switch in the ACC or ON position, power is supplied

- through 20A fuse (No. 8, located in the fuse block)
- to front wiper motor terminal 6 and
- front wiper amplifier terminal 6.

Ground is supplied to front wiper amplifier terminals 4 and 5 through body grounds E3, E30 and E50.

Low and High Speed Wiper Operation

When the wiper switch is placed in the LOW position, ground is supplied

- through terminal 8 of the front wiper amplifier
- to front wiper motor terminal 2.

With power and ground supplied, the wiper motor operates at low speed.
When the wiper switch is placed in the HIGH position, ground is supplied

- through terminal 10 of the front wiper amplifier
- to front wiper motor terminal 1.

With power and ground supplied, the wiper motor operates at high speed.

Auto Stop Operation

With wiper switch turned OFF, the front wiper motor will continue to operate until wiper arms reach windshield base.
When the wiper switch is placed in OFF position, ground is no longer supplied by the front wiper amplifier. Ground is now supplied through front wiper motor terminal 4. When wiper blades reach park position on windshield, front wiper motor ground is interrupted and the front wiper motor stops.

Intermittent Operation

The front wiper motor operates the wiper arms one time at low speed at an interval of approximately 1 to 14 seconds. This feature is controlled by the front wiper amplifier.
With the wiper switch in the INT position, the front wiper amplifier cycles the front wiper motor. Ground is supplied in the same manner as low speed wiper operation.

WASHER OPERATION

With the ignition switch in the ACC or ON position, power is supplied

- through 20A fuse (No. 8, located in the fuse block)
- to front washer motor terminal 1.

When the lever is pushed to the WASH position, ground is supplied

- to front washer motor terminal 2
- from front wiper amplifier terminal 9, and
- to amplifier terminals 4 and 5
- through body grounds E3, E30 and E50.

With power and ground supplied, the front washer motor operates.
The front wiper motor is activated when the lever is pushed to WASH for 1 second or more. The motor operates at low speed for approximately 3 seconds. This feature is controlled by the front wiper amplifier in the same manner as intermittent operation.

Trouble Diagnoses
 FRONT WIPER AMP INSPECTION TABLE

Terminal No.	Wire color	Ignition switch condition	Item	Condition	Voltage (Approximate value)
1	G	$\begin{gathered} \text { ACC } \\ \text { or } \\ \text { ON } \end{gathered}$	Combination switch (wiper switch ground)	-	-
2	P	$\begin{gathered} \text { ACC } \\ \text { or } \\ \text { ON } \end{gathered}$	Combination switch (wiper switch)	Intermittent (slow)	3.5
				Intermittent (fast)	3.5
				Low or high	3.6
3	W	$\begin{gathered} \text { ACC } \\ \text { or } \\ \text { ON } \end{gathered}$	Combination switch (wiper switch)	Intermittent (slow)	3.3
				Intermittent (fast)	3.5
				Low or high	3.7
4	B	-	Ground	-	-
5	B	-	Ground	-	-
6	B/W	-	Power supply	Ignition switch in ACC or ON position	12
				Ignition switch in OFF position	0
7	R	$\begin{gathered} \text { ACC } \\ \text { or } \\ \text { ON } \end{gathered}$	Front wiper motor (position switch)	When wiper blade is not in park position	0
				When wiper blade is in park position	12
8	BR/W	$\begin{aligned} & \text { ACC } \\ & \text { or } \\ & \text { ON } \end{aligned}$	Front wiper motor (low)	When wiper is operating at low speed	0
				All other conditions	12
9	Y/R	$\begin{gathered} \text { ACC } \\ \text { or } \\ \text { ON } \end{gathered}$	Front washer motor	When washer motor is operating	0
				All other conditions	12
10	L/OR	$\begin{gathered} \text { ACC } \\ \text { or } \\ \text { ON } \end{gathered}$	Front wiper motor (high)	When wiper is operating at high speed	0
				All other conditions	12

Removal and Installation

REMOVAL

NDELOO62

1. Tilt wiper arm to upright position.
2. Pull out and hold locking lever at base of wiper arm.
3. Pull wiper arm off pivot shaft.

INSTALLATION

1. Push wiper arm onto pivot shaft, paying attention to blind spline.
2. Tilt and hold wiper arm in upright position.
3. Push locking lever at base of wiper arm inward.

EL-110

4．Gently tilt the wiper arm downward until contacting windshield．

WIPER ARM ADJUSTMENT

NDELOO62S03
The wiper arms on this vehicle have a blind spline．The blind spline acts as an index and only allows the windshield wiper arm to be installed in one position．Therefore the wiper arms are not adjust－ able．If the measurement of clearance＂ C ＂is out of specification， inspect the windshield wiper motor，linkage and pivot for damage．

Clearance＂C＂：47－87 mm（1．85－3．43 in）

Washer Nozzle Adjustment

1．Operate washers and ensure that spray patterns fall within target areas illustrated．
2．Adjust washer nozzle spray pattern by inserting a suitable tool （needle）into nozzle and pivoting the nozzle until spray is within target area．

Front wiper and washer

Unit：mm（in）

${ }^{*} 1:$	$342(13.5)$
${ }^{*} 2:$	$340(13.4)$
${ }^{*} 3:$	$197(7.8)$
${ }^{*} 4:$	$475(18.7)$
$* 5:$	$102(4.0)$
${ }^{*} 6:$	$193(7.6)$
${ }^{*} 7:$	$390(15.4)$
${ }^{*} 8:$	$395(15.6)$

＊Diameters of these circles are less than 60 （2．36）．

FRONT WIPER AND WASHER

Washer Nozzle Adjustment (Cont'd)

- Before reinstalling wiper arm, clean the pivot area as illustrated. This will ease installation and reduce possibility of wiper arm looseness.

System Description/Except for Glass Hatch Model

POWER SUPPLY AND GROUND CIRCUIT

With the ignition switch in the ACC or ON position, power is supplied

- through 10A fuse (No. 9, located in the fuse block)
- to rear wiper motor terminal 1 and
- to rear washer motor terminal 1.

Ground is supplied

- to rear wiper switch terminal 4
- through body grounds M68, M105 and M130.

Ground is also supplied

- to rear wiper motor terminal 2
- through body ground D204.

WIPER OPERATION

When the rear wiper switch WIPER is in the ON position, ground is supplied

- to rear wiper motor terminal 3
- through rear wiper switch terminal 1.

WASHER OPERATION

When the rear wiper switch WASHER is in the ON position, ground is supplied

- to rear washer motor terminal 2
- through rear wiper switch terminal 5.

With power and ground supplied, the rear wiper and rear washer motor operates until the rear window wiper switch is released from the ON position. If the switch is pressed momentarily, the rear wiper motor will cycle two times.

AUTO STOP OPERATION

When the rear wiper switch is placed in the OFF position, the rear wiper motor will continue to operate until the rear wiper blade reaches the park position.
The ground circuit is now routed through the rear wiper motor terminal 2 . This allows the rear wiper motor to operate until the rear wiper blade reaches the park position. The rear wiper motor ground is interrupted when the rear wiper blade reaches the park position and the rear wiper motor stops.

Wiring Diagram — WIP/R — /Except for Glass
Hatch Model
NDEL0064

Refer to the following
(M1 , E101 - SUPER MULTIPLE

REAR WIPER AND WASHER

System Description/For Glass Hatch Model

System Description/For Glass Hatch Model POWER SUPPLY AND GROUND CIRCUIT

Power is supplied at all times

- through 10A fuse (No. 2, located in the fuse block)
- to rear wiper motor terminal 2.

With the ignition switch in the ACC or ON position, power is supplied

- through 10A fuse (No. 9, located in the fuse block)
- to rear washer motor terminal 1 and
- rear wiper motor terminal 5.

Ground is supplied

- to glass hatch latch switch terminal 2 and
- rear wiper motor terminal 4
- through body ground D204.

Ground is also supplied

- to rear wiper switch terminal 4
- through body grounds M68, M105 and M130.

With the glass hatch open, the glass hatch latch switch closes and ground is supplied

- to rear wiper motor terminal 1
- through glass hatch latch switch terminal 1.

The rear wiper motor operates momentarily to move the wiper arm off the glass hatch so that it may be opened.

WIPER OPERATION

When the rear wiper switch is in the ON position, ground is supplied
NDELOO65S02

- to rear wiper motor terminal 6
- through rear wiper switch terminal 1.

With power and ground supplied, the rear wiper motor operates intermittently, with approximately a 15 second interval between cycles.

WASHER OPERATION

When the rear window wiper switch washer is in the ON position, ground is supplied

- to rear wiper motor terminal 3 and
- rear washer motor terminal 2
- through rear wiper switch terminal 5.

With power and ground supplied, the rear wiper and rear washer motors operate until the rear window wiper switch is released from the ON position.

AUTO STOP OPERATION

When the rear wiper switch is placed in the OFF position, the rear wiper motor will continue to operate until the rear wiper blade reaches the park position.
The ground circuit is now routed through the rear wiper motor terminal 4. This allows the rear wiper motor to operate until the rear wiper blade reaches the park position. The rear wiper motor ground is interrupted when the rear wiper blade reaches the park position, and the rear wiper motor stops.

Wiring Diagram — WIP/R — /For Glass Hatch Model
 NDEL0066

Refer to the following.
(M1 - E101- SUPER MULTIPLE JUNCTION (SMJ)

1	0	2	
3	4	5	6

1	2	
	2023	
	4	W

Removal and Installation

REMOVAL

1. Tilt rear wiper arm to upright position.
2. Grasp base of rear wiper arm and pull it from the pivot shaft.
3. Disconnect washer solvent hose.

INSTALLATION

1. Connect washer solvent hose.
2. Place wiper arm base over pivot shaft and firmly push wiper arm onto pivot shaft.
3. Gently tilt wiper arm downward until contacting rear glass.

WIPER ARM ADJUSTMENT

1. With wiper arm removed, turn on wiper and allow it to cycle two or three times, then turn the wiper SWitch to OFF and allow wiper motor to return to "park" position.
2. Install wiper arm and align splines so that the wiper blade is located on the edge of the black printing on the rear glass.
3. With wiper arm installed, operate the wiper and allow it to cycle two or three times.
4. Turn the wiper switch to OFF and allow the wiper motor to return to the "park" position, then ensure that the wiper blade is still located at the edge of the black printing.
5. If necessary, readjust wiper arm.

NOTE:

Model with rear hatch glass shown in illustration. Adjustment for fixed rear glass models is the same.

REAR WIPER AND WASHER

1 Rear wiper arm
2 Pivot shaft cover
3 Pivot shaft nut
4 Outer collar

5 Seal
6 Inner collar
7 Rear wiper motor
8 Bracket bolts

9 Bracket
10 Mounting bolts
11 Back door
12 Rear wiper blade

Washer Fluid and Check Valve

- A check valve is provided in the washer fluid line. Be careful not to connect check valve to washer tube in the wrong direction.

Wiring Diagram — CIGAR -
NDELOO69
EL- CIGAR-01

RP) : With rear
power point

Component Parts and Harness Connector Location

System Description

The rear window defogger system is controlled by the smart entrance control unit．The rear window defogger operates for approximately 15 minutes．
Power is supplied at all times
－to rear window defogger relay terminals 7 and 5
－through 45A fusible link（letter \mathbf{i} ，located in the fuse and fusible link box）．
With the ignition switch in the ON position，power is supplied
－to the rear window defogger relay terminal 1.
With the ignition switch in the ON or START position，power is supplied
－through 10A fuse（No．30，located in the fuse block）
－to smart entrance control unit terminal 43.
Ground is supplied to rear window defogger switch terminal 2 through body grounds M68，M105 and M130．
When the rear window defogger switch is turned ON，ground is supplied
－through rear window defogger switch terminal 1
－to smart entrance control unit terminal 23.
Then，smart entrance control unit terminal 22 supplies ground to the rear window defogger relay terminal 2. With power and ground supplied，the rear window defogger relay is energized．
Power is then supplied
－through terminals 6 and 3 of the rear window defogger relay
－through 20A fuses（No． 15 and 14，located in the fuse block）
－to rear window defogger terminal 1.

REAR WINDOW DEFOGGER

System Description (Cont'd)
The rear window defogger has an independent ground.
With power and ground supplied, the rear window defogger filaments heat and defog the rear window.
With the rear window defogger relay energized, power is also supplied

- from terminals 6 and 3 of the rear window defogger relay
- through 10A fuse (No.16, located in the fuse block).
- to terminal 3 of the rear window defogger switch

Ground is supplied to rear window defogger switch terminal 4 through body grounds M68, M105 and M130. With power and ground supplied, the rear window defogger indicator illuminates in the rear window defogger switch.

REAR WINDOW DEFOGGER

Trouble Diagnoses

DIAGNOSTIC PROCEDURE
SYMPTOM: Rear window defogger does not activate, or does not go off after activating.

REAR WINDOW DEFOGGER

3	CHECK REAR WINDOW DEFOGGER SWITCH INPUT SIGNAL	
Check continuity between control unit terminal 23 and ground. Smart entrance control unit connector M40 Continuity: Rear window defogger switch is pushed. Yes Rear window defogger switch is released. No		
OK	-	GO TO 4.
NG	-	Check the following - Rear window defogger switch (Refer to EL-126) - Harness for open or short between control unit and rear window defogger switch - Rear window defogger switch ground circuit.

4	CHECK REAR WINDOW DEFOGGER OUTPUT SIGNAL		
1. Turn ignition switch to ON position. 2. Check voltage between control unit harness terminal 22 and ground. Smart entrance control unit connector M40			AEL951B
OK	-	Check the following - Rear window defogger relay (Refer to EL-126) - Rear window defogger circuit - Rear window defogger filament check (Refer to EL-126.)	
NG	-	GO TO 5.	

REAR WINDOW DEFOGGER

Trouble Diagnoses (Cont'd)

5	CHECK DEFOGGER RELAY COIL SIDE CIRCUIT	
1. Disconnect control unit connector. 2. Turn ignition switch to ON position. 3. Check voltage between control unit terminal 22 and ground. Smart entrance control unit connector M40 Does battery voltage exist?		
Yes	\checkmark	Replace control unit.
No	\checkmark	Check the following - Harness for open or short between ignition switch and rear window defogger relay - Rear window defogger relay - Harness for open or short between rear window defogger relay and control unit.

Electrical Components Inspection

 REAR WINDOW DEFOGGER RELAYCheck continuity between terminals 3 and 5, 6 and 7 .

Condition	Continuity
12V direct current supply between ter- minals 1 and 2	Yes
No current supply	No

REAR WINDOW DEFOGGER SWITCH

Check continuity between terminals when rear window defogger switch is pushed and released.

Terminals	Condition	Continuity
$1-2$	Rear window defogger switch is pushed.	Yes
	Rear window defogger switch is released.	No

Filament Check

1. Attach probe circuit tester (in volt range) to middle portion of each filament.

REAR WINDOW DEFOGGER

－When measuring voltage，wrap tin foil around the top of the negative probe．Then press the foil against the wire with your finger．

2．If a filament is burned out，circuit tester registers 0 or 12 volts．

1）Conductive silver composition（Dupont No． 4817 or equivalent）
2）Ruler 30 cm （11．8 in）long
3）Drawing pen
4）Heat gun
5）Alcohol
6）Cloth

REAR WINDOW DEFOGGER

Filament Repair (Cont'd)

REPAIRING PROCEDURE

1. Wipe broken heat wire and its surrounding area clean with a cloth dampened in alcohol.
2. Apply a small amount of conductive silver composition to tip of drawing pen.

Shake silver composition container before use.

3. Place ruler on glass along broken line. Deposit conductive silver composition on break with drawing pen. Slightly overlap existing heat wire on both sides [preferably $5 \mathrm{~mm}(0.20 \mathrm{in})$] of the break.
4. After repair has been completed, check repaired wire for continuity. This check should be conducted 10 minutes after silver composition is deposited.
Do not touch repaired area while test is being conducted.
5. Apply a constant stream of hot air directly to the repaired area for approximately 20 minutes with a heat gun. A minimum distance of 3 cm (1.2 in) should be kept between repaired area and hot air outlet. If a heat gun is not available, let the repaired area dry for 24 hours.

System Description

Refer to Owner's Manual for audio system operating instructions.
Power is supplied at all times

- through 10A fuse (No. 20, located in the fuse block)
- to audio unit terminal 29 and
- to CD changer terminal 9 and
- to rear audio remote control unit terminal 15.

With the ignition switch in the ACC or ON position, power is supplied

- through 7.5A fuse (No. 10, located in the fuse block)
- to audio unit terminal 30 and
- through 20 A fuse (No. 11, located in the fuse block)
- to subwoofer amplifier terminal 6.

Ground is supplied to audio unit terminals 31 and 36 and CD changer terminal 3 through body ground M52. Ground is supplied to rear audio remote control unit terminal 14 and subwoofer amplifier terminal 5 through body grounds M68, M105 and M130.
When the system is ON, audio signals are supplied

- through audio unit terminals $25,26,27,28,32,33,34,35,37$ and 38
- to subwoofer amplifier terminals 1 and 2, and
- to rear audio remote control unit terminals 3, 4, 6 and 7 for the headphone jacks, and
- to the front speakers and rear speakers.

The volume may be increased or decreased, or the next preset station may be selected using the steering wheel audio control switches.
The audio unit receives a ground signal at terminal 14 (volume increase or volume decrease), or at terminal 14 (next preset) when the switches are depressed.

AUDIO

Schematic

WEL654

[^0]
AUDIO

Trouble Diagnoses

SPEAKER WALK-AROUND TEST NOTE:

The audio unit must be turned on and in radio tuner mode (AM/FM) in order to enter the speaker walk-around test.

1. To enter the speaker walk-around test, simultaneously press station select buttons 3 and 6 .
2. The speaker walk-around test stops and applies sound to each speaker for about 2 seconds. Each speaker is tested and displayed on the audio unit display in the following sequence: RF, LF, LR, and RR.
3. If the vehicle is equipped with dual media audio unit, the speaker walk-around test automatically continues and tests antenna and subwoofer (if equipped). If a speaker short exists, "SPKR SHORT" will be displayed. If the vehicle is not equipped with a CD changer or if the CD changer is not responding, "NO CDDJ" will be displayed

AUDIO UNIT SELF-TEST MATRIX

NOTE:
The audio unit must be turned on and in radio tuner mode (AM/FM) in order to enter the audio unit self-test mode.
Document the diagnostic trouble codes (DTC's) and perform the self-test again.

1. To enter each of the following tests, press and release the station select button while in the speaker walkaround test.

Station Select Button	AM/FM/Cassette Audio Unit Test Function	
1	This is an audio internal and external on-demand self- test. "SELF TEST" will be displayed during the test. If "SELF FAIL" is displayed, press and release "TUNE>" to scroll view each DTC stored. Refer to the "AM/FM/ CASSETTE AUDIO UNIT DTC INDEX", EL-136. If the system is OK, "SELF PASS" will be displayed.	This is an audio internal and external on-demand self- test. "SELF TEST" will be displayed during this test. If DTC's are retrieved, "DTCS FOUND" will be displayed. Press and release "TUNE>" to scroll view each DTC stored. Refer to the "DUAL MEDIA AUDIO UNIT DTC INDEX", EL-135.
2	View/Clear continuous DTC's. "NO DTCS" is displayed if no DTC's are retrieved. If "DTCS FOUND" is displayed, press and release "TUNE>" to scroll view each DTC retrieved. Refer to the "AM/FM/CASSETTE AUDIO UNIT DTC INDEX", EL-136. To clear all DTC's, press the eject "EJ" button. "DTCS CLEAR" will be displayed.	No self-test function.
3	This is an antenna signal test. This test measures the average strength at the current tuner setting.	This is an antenna signal test. This test measures the average strength at the current tuner setting.
4	Software configuration level. This test queries each radio system controller for its software configuration level. "SOFT LEVELS" will be displayed upon completion of the query. Press and release "TUNE>" to scroll view the software configuration version level.	Software configuration level. The software configuration level will be displayed.
5	This is a display test. This test will light all display seg- ments for five seconds. When the test is complete, "DIS- PLAY TEST" is displayed.	This is a display test. This test will light all display seg- ments for five seconds. When the test is complete, "DIS- PLAY TEST" is displayed.
6	Audio unit configuration. "RADIO CONFIG" will be dis- played. Press and release "TUNE>" to scroll view audio unit configuration data.	No self-test function.

2. To exit the self-test mode, turn the ignition switch or the audio unit off.
3. If the concern remains and the fault is not detected, proceed to the "SYMPTOM CHART", EL-137.

DUAL MEDIA AUDIO UNIT DTC INDEX

=NDEL0081S12

DTC	Description	Repair Order
9342	Audio unit is defective	Document and clear the DTC's. Perform the self-test. Remove the audio unit for repair if DTC 9342 is retrieved again.
B2401	Audio tape deck mechanism fault	Verify that no cassette is inserted in the audio unit. Document and clear the DTC's. Perform the self-test. Remove the audio unit for repair if DTC B2401 is retrieved again.
B2402	CD changer thermal shutdown fault	Allow CD changer to cool down. If DTC still exists after cool down, proceed to the following steps. 1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage is present at terminal 9 of CD changer. 2. Check CD changer body ground. 3. Remove CD changer for repair.
B2403	CD changer internal fault	1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage is present at terminal 9 of CD changer. 2. Check CD changer body ground. 3. Remove CD changer for repair.
B2404	Steering wheel audio control switches circuit fault	1. Check continuity between audio unit harness connector M44 and steering wheel audio control switches connector Z203. 2. Check steering wheel audio control switches. Refer to "STEERING WHEEL AUDIO CONTROL SWITCHES INSPECTION", FI-138 3. Remove audio unit for repair.
B2405	Audio single disc CD player thermal shutdown fault	Document and clear the DTC's. Perform the self-test. Remove the audio unit for repair if DTC B2405 is retrieved again.
B2406	Audio single disc CD player internal fault	Document and clear the DTC's. Perform the self-test. Remove the audio unit for repair if DTC B2406 is retrieved again.
U2003	CD changer is not responding	1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage is present at terminal 9 of CD changer. 2. Check CD changer body ground. 3. Remove CD changer for repair.
U2005	Rear audio remote control unit is not responding	NOTE: U2005 is retrieved if rear audio remote control unit is not present, disconnected or inoperative. Verify the vehicle is equipped with rear audio remote control unit. 1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage at terminal 15 of rear audio remote control unit. 2. Check rear audio remote control unit body ground.
U2008	Cell phone is not responding	This DTC will always be present because there is no telephone availability on the vehicle for this audio unit.

Trouble Diagnoses (Cont'd)

AM/FM/CASSETTE AUDIO UNIT DTC INDEX		
DTC	Description	Repair Order
B1342	Audio unit is defective	Document and clear the DTC's. Perform the self-test. Remove the audio unit for repair if DTC B1342 is retrieved again.
B2401	Audio tape deck mechanism fault	Verify that no cassette is inserted in the audio unit. Document and clear the DTC's. Perform the self-test. Remove the audio unit for repair if DTC B2401 is retrieved again.
B2402	CD changer thermal shutdown fault	Allow CD changer to cool down. If DTC still exists after cool down, proceed to the following steps. 1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage is present at terminal 9 of $C D$ changer. 2. Check CD changer body ground. 3. Remove CD changer for repair.
B2403	CD changer internal fault	1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage is present at terminal 9 of CD changer. 2. Check CD changer body ground. 3. Remove CD changer for repair.
B2404	Steering wheel audio control switches circuit fault	1. Check continuity between audio unit harness connector M44 and steering wheel audio control switches connector Z203. 2. Check steering wheel audio control switches. Refer to "STEERING WHEEL AUDIO CONTROL SWITCHES INSPECTION", FI-138 3. Remove audio unit for repair.
B2405	Audio single disc CD player thermal shutdown fault	Not applicable with this audio unit.
B2406	Audio single disc CD player internal fault	Not applicable with this audio unit.
U2003	CD changer is not responding	1. Check 10A fuse (No. 20, located in the fuse block). Verify battery voltage is present at terminal 9 of CD changer. 2. Check CD changer body ground. 3. Remove CD changer for repair.
U2005	Rear audio remote control unit is not responding	NOTE: U2005 is retrieved if rear audio remote control unit is not present, disconnected or inoperative. Verify the vehicle is equipped with rear audio remote control unit. 1. Check 10 A fuse (No . 20, located in the fuse block). Verify battery voltage at terminal 15 of rear audio remote control unit. 2. Check rear audio remote control unit body ground.
U2008	Cell phone is not responding	This DTC will always be present because there is no telephone availability on the vehicle for this audio unit.

SYMPTOM CHART

=NDEL0081S14

Symptom
Audio unit, CD changer
and/or rear audio remote
control unit inoperative
(no digital display and no
sound from speakers).

Possible causes	
1. 10A fuse and 7.5A fuse	1
2. Poor audio unit (base system), or poor	
audio unit, CD changer or rear audio	
remote control unit body ground	
(midgrade and premium systems)	
3. Audio unit, CD changer or rear audio	
remote control unit	2

AUDIO

Trouble Diagnoses (Cont'd)

- If reception improves, check antenna ground (at body surface)
- If reception does not improve, check main feeder cable for short circuit or open circuit.

STEERING WHEEL AUDIO CONTROL SWITCHES INSPECTION

1. Disconnect audio unit M44.
2. Measure the resistance between audio unit M44 and ground while pressing each button.

3. Resistances should be within specifications.

AUDIO UNIT, C/D CHANGER, REAR AUDIO REMOTE CONTROL UNIT AND SUBWOOFER AMPLIFIER INSPECTION

All voltage inspections are made with

- Ignition switch ON or ACC
- Audio unit ON
- Audio unit, CD changer, rear audio remote control unit and subwoofer amplifier connected. (If the base audio unit is removed from the audio unit mounting bracket to make the inspection, supply a ground to the case using a jumper wire.

AUDIO UNIT VOLTAGES

Terminal	Wire color	Voltage (V)	Terminal	Wire color	Voltage (V)
1	-	-	23	-	-
2	-	-	24	-	-
3	-	-	25	R/L	0-7
4	-	-	26	Y/R	0-7
5	Y/R	10.8-15.6 (Audio unit on)	27	L* or R	0-7
6	LG	Data line	28	$\begin{aligned} & Y^{*} \text { or } \\ & R / W \end{aligned}$	0-7
7	PU	Data line	29	BR/W	10.8-15.6 (Battery)
8	-	-	30	OR	10.8-15.6 (Ignition ACC or ON)
9	-	-	31	B	Body ground
10	-	-	32	L/W	0-7
11	-	-	33	SB	0-7
12	-	-	34	$\begin{gathered} \text { GY/L** or } \\ \text { G } \end{gathered}$	0-7
13	-	-	35	Y/L* or G/R	0-7
14	W/B	Check continuity between audio unit harness connector M44 and steering wheel audio control switches connector Z203.	36	B	Body ground

Terminal	Wire color	Voltage (V)	Terminal	Wire color	Voltage (V)
15	W/R	-	37	L	Approx. 0
16	-	Shield ground	38	W	0-5
17	R	$0-5$ [CD changer right channel (+) input]	39	-	Shield ground
18	G	0-5 [CD changer right channel (-) input]	40	OR	Approx. 5 (Mute output)
19	B	0-5 [CD changer left channel (+) input]	41	-	-
20	W	0-5 [CD changer left channel (-) input]	42	-	-
21	P	10.8-15.6 (Illumination on)	43	-	-
22	P/B	0-11 (Illumination on)	44	-	-

* with midgrade

REAR AUDIO REMOTE CONTROL UNIT VOLTAGES

Terminal	Wire color	Voltage (V)	Terminal	Wire color	Voltage (V)
1	-	-	9	P	$10.8-15.6$ (Illumination on)
2	G	$0-7$	10	P / B	$0-11$ (lllumination on) or 0^{*}
3	$\mathrm{~L} / \mathrm{W}$	$0-7$ (input)	11	-	-
4	$\mathrm{~L} / \mathrm{Y}$	$0-7$ (input)	-	12	PU
5	-	$0-7$ (input)	$0-7$ (input)	13	LG
6	L/B	$0-7$	14	B	Data line
7	R/L	L	Bata line		
8		Body ground			

* with rear audio remote control unit (illumination control)

C/D CHANGER VOLTAGES

Terminal	Wire color	Voltage (V)	Terminal	Wire color	Voltage (V)
1	LG	Data line	7	PU	Data line
2	-	-	8	Y/R	10.8-15.6 (Audio unit on)
3	B	Body ground	9	BR/W	10.8-15.6 (Battery)
4	-	-	10	-	Shield ground
5	B	0-5 [left channel (+) output]	11	W	0-5 [left channel (-) output]
6	R	0-5 [right channel (+) output]	12	G	0-5 [right channel (-) output]

SUBWOOFER AMPLIFIER VOLTAGES

Terminal	Wire color	Voltage (V)	Terminal	Wire color	Voltage (V)
1	L	$0-1.5$ (input)	4	-	Shield ground
2	W	$0-1.5$	5	B	Body ground

AUDIO

Trouble Diagnoses (Cont'd)

Terminal	Wire color	Voltage (V)	Terminal	Wire color	Voltage (V)
3	OR	Greater than 11 (Audio unit on)	6	OR/B	$10.8-15.6$ (Ignition ACC or ON)

Location of Antenna

Removal and Installation

1．Remove antenna rod．
2．Remove antenna nut and antenna base．
3．Remove inner splash shield．
4．Disconnect antenna cable from audio unit，refer to BT－23．
5．Remove bolt and antenna．
To install，reverse removal procedure．

System Description

POWER

Power is supplied to the sunroof motor assembly by the power window relay. When the ignition switch is turned ON, the relay is energized by the smart entrance control unit. The power circuit is protected by the circuit breaker-1. The sunroof motor assembly is grounded through body grounds M68, M105 and M130.
When the ignition switch is turned to the OFF position, the sunroof will still operate for up to approximately 15 minutes unless the driver's door is opened. (Delayed power operation.)

NOTE:

When the battery or sunroof motor harness connector is disconnected during service, the sunroof will not operate properly.
Procedure for resetting motor memory:
From any sunroof position (full open, partially open, closed, partially vented, and vented), push and hold the button in the forward position until the sunroof vents in the Full-Up position. This resets the sunroof motor memory and now the sunroof will operate correctly.

TILT AND SLIDE OPERATION

The sunroof is controlled by the sunroof switch. With the sunroof in closed position, depressing UP/CLOSE switch will tilt rear of sunroof up. The sunroof will stop when the switch is released, or when the sunroof reaches its maximum tilt position.
The sunroof will tilt down when in tilt up position and DOWN/OPEN switch is depressed. The sunroof will stop when switch is released, or when sunroof is fully closed.
With sunroof in closed position, pressing DOWN/OPEN switch will cause sunroof to slide open. The sunroof will slide open until switch is released or until it is all the way open. The sunroof will close when in open position, and UP/CLOSE switch is depressed. The sunroof will slide until switch is released, or when sunroof is fully closed.
All automatic operations in sunroof are controlled by internal limit switches located in sunroof motor assembly.

Wiring Diagram — MIRROR — /Without Automatic Drive Positioner

NOTE:
For the information about door mirror for models with automatic drive positioner, refer to "AUTOMATIC DRIVE POSITIONER", EL-146.

Component Parts and Harness Connector Location

NDEL0088

System Description

OPERATION

Automatic drive positioner allows automatic positioning of driver seat, LH and RH door mirror to two programmable positions using the memory set switch located on the drivers door and multi-remote controller.
Driver's seat can be adjusted for sliding, reclining and cushion height.

MEMORY POSITION OPERATION

Automatic drive positioner has the following three functions

- Memory set switch operation (Memorized position can be set corresponding to memory switch operation.)
- Multi-remote controller operation (Memorized position can be set by unlocking driver's door with multi-remote controller.)
- Auto back operation (Driver's seat fully rearward and down for easy access.)

NOTE:

- As a safety feature, the memory positioning operation is permitted to operate only if the park/neutral position (PNP) switch is in the park or neutral position. If the memory position operation is activated and PNP switch is moved from park or neutral position, the memory position operation will be halted.
- If either memory position switch is pressed after motion has started, all motion will immediately stop.
- If a manual control switch is pressed, memory operation will be cancelled.
- All seat and mirror sensors shall be monitored for validity. If any sensor is seen to be out of range, no motion shall be performed for that axis during memory recall. Invalid sensors do not affect manual operation.
－Up to 2 seat axes will move simultaneously during memory position operation．All mirror axes may move simultaneously during memory position operation．

Memory Set Switch Operation

1．Push and release memory set switch 1 or 2 with ignition switch in OFF or ACC position．（LED indicator on the memory set switch will turn on until memory set switch is released or 10 seconds have passed．）
2．Driver＇s seat，LH and RH door mirrors will move to the memorized position．

Multi－remote Controller Operation

1．Unlock driver＇s door with multi－remote controller．（Automatic positioning signal will be sent to memory seat and mirror control unit from smart entrance control unit．）
2．Driver＇s seat，LH and RH door mirrors will move to the memorized position．

Auto Back Operation

1．Push and release memory set switch 1 and 2 together with the park／neutral position（PNP）switch in park or neutral position．（LED indicator on the memory set switch will turn on until both memory set switches are released or 10 seconds have passed．
2．Driver＇s seat moves fully rearward and downward for easy entry and exist．

PROCEDURE FOR STORING MEMORY POSITION

AEL006C

NOTE:

- The stored memory positions are maintained unless battery power is disconnected from memory seat and mirror control unit.
- Two different positions are memorized for positions 1 and 2 in the memory seat and mirror control unit initially. After the battery power supply is disconnected and reconnected, the memories of positions will return to the initial memorized positions.
If the current position is the programmed position for that switch, the position will not be re-programmed.
- If a sensor is not valid, the memory of axis position will not be changed. Only the position of motors with a valid sensor will change to new positions.

PROCEDURE FOR STORING MULTI-REMOTE CONTROLLER

Procedure for Erasing Multi-remote Controller Memory

Hold both memory switch 1 and 2 then push UNLOCK switch on the multi-remote controller to be deprogrammed.
NOTE:
In this case auto back function will not operate.

Wiring Diagram — AUT/DP —

FIG. 1

Refer to the following.
(M1 , E101-SUPER MULTIPLE JUNCTION (SMJ)
(M20 - JOINT CONNECTOR

1	2	3	4	0	0	5	6	7
8	9	10	11	12	13	14	15	16

\section*{| | | | | | |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 1 | 2 | 3 | 4 | | |
| 5 | 6 | 7 | 8 | | |}

FIG. 2
NDEL0091S02

FIG. 3

FIG. 4

AUTOMATIC DRIVE POSITIONER

FIG. 5

Trouble Diagnosis
 PRELIMINARY CHECK
 NOTE：
 After performing preliminary check，go to symptom chart on next page．

AUTOMATIC DRIVE POSITIONER

SYMPTOM CHART

Before starting trouble diagnoses below, perform preiniminamy check, EL-155. Symptom numbers in symptom chart correspond with those of preliminary check.

Symptom			Diagnoses/service procedure	Reference page
1	Neither seat nor mirror function operate by any operation.		POWER SUPPLY AND GROUND CIRCUIT FOR MEMORY SEAT AND MIRROR CONTROL UNIT CHECK	EL-157
2	All/some functions of the power seat do not operate during manual operation or memory position operation.	Sliding	POWER SEAT SLIDING MOTOR CHECK	EL-160
			POWER SEAT SWITCH CHECK	EL-175
		Reclining	POWER SEAT RECLINING MOTOR CHECK	EL-161
			POWER SEAT SWITCH CHECK	EL-175
		Lifting	POWER SEAT LIFTING MOTOR CHECK	EL-162
			POWER SEAT SWITCH CHECK	EL-175
		All	POWER SEAT SWITCH CHECK	EL-175
3	All/some functions of the power door mirror do not operate during manual operation or memory position operation.	Driver side	POWER DOOR MIRROR MOTOR CHECK	EL-169
			DOOR MIRROR REMOTE CONTROL SWITCH CHECK	EL-179
		Passenger side	POWER DOOR MIRROR MOTOR CHECK	EL-169
			DOOR MIRROR REMOTE CONTROL SWITCH CHECK	EL-179
		Both driver and passenger side	DOOR MIRROR REMOTE CONTROL COMMON CIRCUIT CHECK	EL-177
4	Some functions of the power seat do not operate during memory position operation. (Power seat operates properly with manual operation.)	Sliding	POWER SEAT SLIDING SENSOR CHECK	EL-163
		Reclining	POWER SEAT RECLINING SENSOR CHECK	EL-165
		Lifting	POWER SEAT LIFTING SENSOR CHECK	EL-167
5	Some functions of the power door mirrors do not operate during memory position operation. (Door mirrors operate properly with manual operation.)	Driver side	DOOR MIRROR POSITION SENSOR CHECK (DRIVER SIDE)	EL-171
		Passenger side	DOOR MIRROR POSITION SENSOR CHECK (PASSENGER SIDE)	EL-173
6	Memory positioning does not operate with either memory switch or multi-remote controller operation.		IGNITION SWITCH ON SIGNAL CHECK	EL-157
			PARK/NEUTRAL POSITION (PNP) SWITCH CHECK	EL-158
7	Memory positioning does not operate with memory set switch operation. (Memory positioning operates with multi-remote controller operation.)		MEMORY SET SWITCH CHECK	EL-180
8	Memory positioning does not operate with multiremote controller operation. (Memory positioning operates with memory set switch operation.)		REMOTE CONTROLLER SIGNAL CHECK	EL-182
9	Memory indicator does not light up.		MEMORY INDICATOR CHECK	EL-181
-	Seat and mirror positions cannot be retained in memory.		MEMORY SET SWITCH CHECK	EL-180

POWER SUPPLY AND GROUND CIRCUIT FOR
MEMORY SEAT AND MIRROR CONTROL UNIT CHECK
Power Supply Circuit Check

NDELLoossos NoELoossosor						
Terminals				Ignition switch position		
$(+)$	$(-)$	OFF	ACC	ON		
1	Ground	Battery voltage	Battery voltage	Battery voltage		
6	Ground	Battery voltage	Battery voltage	Battery voltage		
4	Ground	Battery voltage	Battery voltage	Battery voltage		

If result for terminal 4 is NG , check the following

- 15A fuse (No. 21, located in the fuse block)
- Joint connector-3
- Harness for open or short between memory seat and mirror control unit and fuse.
If result for terminals 1 or 6 is NG, check the following
- 30A fusible link (letter f, located in the fuse and fusible link box)
- Circuit breaker-2
- Harness for open or short between memory seat and mirror control unit and fuse.

Ground Circuit Check

Terminals	Continuity
5 - Ground	Yes
$9-$ Ground	Yes
$10-$ Ground	Yes

If $N G$, check harness for open between memory seat and mirror control unit and ground.

IGNITION SWITCH ON SIGNAL CHECK

Terminals		Ignition switch position		
$(+)$	$(-)$	OFF	ACC	ON
32	Ground	0	0	Battery voltage

If $N G$, check the following

- 10A fuse (No. 29, located in the fuse block)
- Harness for open or short between memory seat and mirror control unit and fuse.

PARK/NEUTRAL POSITION (PNP) SWITCH CHECK

| 3 | CHECK POWER SUPPLY CIRCUIT FOR PARK/NEUTRAL POSITION (PNP) SWITCH |
| :--- | :--- | :--- |
| 1. Disconnect park/neutral position (PNP) switch. | |
| 2. Turn ignition switch to ON position. | |
| 3. Check voltage between park/neutral position (PNP) switch terminal 3 and ground. | |
| Yes | AEL326C |
| No | GO TO 4. |

5	REPLACE FUSE		
Replace fuse.			
Does the fuse blow again when ignition switch is turned to ON position?			
Yes		Check harness for short to ground.	
No		INSPECTION END	

POWER SEAT SLIDING MOTOR CHECK

POWER SEAT RECLINING MOTOR CHECK

OK or NG
Check harness for open or short between memory seat and mirror control unit and reclining motor．

Replace reclining motor．

POWER SEAT SLIDING SENSOR CHECK

1	CHECK SLIDING SENSOR PULL UP VOLTAGE	
1. Disconnect sliding sensor connector. 2. Check voltage between sliding sensor connector terminals 1 and 3 .		
Refer to wiring diagram, EL-151. AEL975B		
Does 5V exist?		
Yes	-	GO TO 2.
No	-	Check the following - Harness for open or short between sliding sensor terminal 1 and memory seat and mirror control unit terminal 41 - Harness for open or short between sliding sensor terminal 3 and memory seat and mirror control unit terminal 44.

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)
3 CHECK SLIDING SENSOR OPEN OR SHORT CIRCUIT

1. Disconnect sliding sensor connector and memory seat and mirror control unit.
2. Check continuity between memory seat and mirror control unit terminal 33 and sliding sensor terminal 2.

Continuity should exist.
3. Check continuity between memory seat and mirror control unit terminal 33 and ground.

Continuity should not exist.
OK or NG

OK	$>$	Replace sliding sensor.
NG	$>$	Repair harness.

POWER SEAT RECLINING SENSOR CHECK

1	CHECK RECLINING SENSOR PULL UP VOLTAGE	
1．Disconnect reclining sensor connector． 2．Check voltage between reclining sensor connector terminals 1 and 3 ．		
		Seat reclining sensor connector
Refer to wiring diagram，EL－151．		
Does 5V exist？		
Yes	－	GO TO 2.
No	\checkmark	Check the following －Harness for open or short between reclining sensor terminal 1 and memory seat and mirror control unit terminal 41 －Harness for open or short between reclining sensor terminal 3 and memory seat and mirror control unit terminal 44.

2	CHECK RECLINING SENSOR INPUT SIGNAL
Measure voltage between memory seat and mirror control unit terminal 43 and ground with oscilloscope when seat reclin－	
ing is operated．	
OK	
NG	AEL9

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)
$3 \quad$ CHECK RECLINING SENSOR OPEN OR SHORT CIRCUIT

1. Disconnect reclining sensor connector and memory seat and mirror control unit.
2. Check continuity between memory seat and mirror control unit terminal 43 and reclining sensor terminal 2.

Continuity should exist.
3. Check continuity between memory seat and mirror control unit terminal 43 and ground.

Continuity should not exist.
OK or NG

OK		Replace reclining sensor.
NG		Repair harness.

POWER SEAT LIFTING SENSOR CHECK
＝NDEL0092S 10

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)

3 CHECK LIFTING SENSOR OPEN OR SHORT CIRCUIT

1. Disconnect lifting sensor connector and memory seat and mirror control unit.
2. Check continuity between memory seat and mirror control unit terminal 42 and lifting sensor terminal 2.

3. Check continuity between memory seat and mirror control unit terminal 42 and ground.

Continuity should not exist.
OK or NG

OK		Replace lifting sensor.
NG		Repair harness.

POWER DOOR MIRROR MOTOR CHECK
＝NDEL0092S07

$\mathbf{1}$	PRELIMINARY CHECK	
Determine which direction（horizontal or vertical）is not functioning．		
		GO TO 2．

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)

3	CHECK DOOR MIRROR MOTOR					
1. Disconnect door mirror motor connector. 2. Apply 12 V DC direct current to motor and check operation.						
					ration	
		(+)	$(-)$			
		4	3	Left	Horizontal	
		3	4	Right		
		5	10	Up	Verrical	
		10	5	Down		
						AEL973b
OK	∇	Check harnes mirror motor.	en or	betw	memo	nd door
NG	-	Replace door	motor			

DOOR MIRROR POSITION SENSOR CHECK (DRIVER SIDE)

1	CHECK DOOR MIRROR SENSOR PULL UP VOLTAGE	
1. 2.	connect LH door mirror eck voltage between LH fer to wiring diagram, EL	nsor connector. oor mirror sensor connector terminals 6 and 9. 53. Does 5V exist?
Yes	,	GO TO 2.
No	\checkmark	Check the following - Harness for open or short between LH door mirror sensor terminal 6 and memory seat and mirror control unit terminal 2 - Harness for open or short between LH door mirror sensor terminal 9 and memory seat and mirror control unit terminal 17.

| 2 | CHECK DOOR MIRROR SENSOR INPUT SIGNAL |
| :--- | :--- | :--- | :--- |
| Measure voltage between memory seat and mirror control unit terminal 21 (horizontal), 22 (vertical) and ground with oscil- | |
| loscope when LH door mirror is operated. | |
| OK | |
| NG | |

AUTOMATIC DRIVE POSITIONER

3 CHECK DOOR MIRROR SENSOR OPEN OR SHORT CIRCUIT

1. Disconnect LH door mirror sensor connector and memory seat and mirror control unit.
2. Check continuity between memory seat and mirror control unit terminal 21 and LH door mirror sensor terminal 7 (horizontal), memory seat and mirror control unit terminal 22 and LH door mirror terminal 8 (vertical).

Continuity should exist.

3. Check continuity between memory seat and mirror control unit terminal 21 (horizontal), 22 (vertical) and ground.

Continuity should not exist.
OK or NG

OK		Replace LH door mirror sensor.
NG		Repair harness.

DOOR MIRROR POSITION SENSOR CHECK
 (PASSENGER SIDE)

| 2 | CHECK DOOR MIRROR SENSOR INPUT SIGNAL |
| :--- | :--- | :--- | :--- |
| Measure voltage between memory seat and mirror control unit terminal 30 (horizontal), 31 (vertical) and ground with oscil- | |
| loscope when RH door mirror is operated. | |
| OK | |
| NG | |

3 CHECK DOOR MIRROR SENSOR OPEN OR SHORT CIRCUIT

1. Disconnect RH door mirror sensor connector and memory seat and mirror control unit.
2. Check continuity between memory seat and mirror control unit terminal 30 and RH door mirror sensor terminal 7 (horizontal), memory seat and mirror control unit terminal 31 and RH door mirror terminal 8 (vertical).

Continuity should exist.

3. Check continuity between memory seat and mirror control unit terminal 30 (horizontal), 31 (vertical) and ground.

Continuity should not exist.
OK or NG

OK		Replace RH door mirror sensor.
NG		Repair harness.

POWER SEAT SWITCH CHECK

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)

DOOR MIRROR REMOTE CONTROL COMMON CIRCUIT CHECK

1	PRELIMINARY CHECK	
Do both power mirrors (LH and RH) not operate with door mirror remote control switch?		
Yes or NO		
Yes	\checkmark	GO TO 2.
No	\checkmark	GO TO "DOOR MIRROR REMOTE CONTROL SWITCH CHECK", EL-179.

2	CHECK POWER SUPPLY CIRCUIT FOR DOOR MIRROR REMOTE CONTROL SWITCH		
1. Turn ignition switch to ACC position. 2. Check voltage between door mirror remote control switch terminal 1 and ground.			
Yes	-	GO TO 3.	
No	\checkmark	Check the following - 10A fuse (No. 5, located in the fuse block) - Harness for open or short between fuse and the switch.	

Does continuity exist?

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)

4 CHECK DOOR MIRROR COMMON SIGNAL OPEN OR SHORT CIRCUIT

1. Disconnect memory seat and mirror control unit connector and door mirror remote control switch connector.
2. Check continuity between memory seat and mirror control unit terminal 29 and door mirror remote control switch terminal 2.

Continuity should exist.
3. Check continuity between memory seat and mirror control unit terminal 29 and ground.

Continuity should not exist.

OK or NG

| OK | Replace door mirror remote control switch. |
| :--- | :--- | :--- |
| NG | Repair harness. |

DOOR MIRROR REMOTE CONTROL SWITCH CHECK

1	PRELIMINARY CHECK	
Do both power mirrors（LH and RH）not operate with door mirror remote control switch？		
Yes or No？		
Yes	－	GO TO＂DOOR MIRROR REMOTE CONTROL COMMON CIRCUIT CHECK＂，EL－177
No	－	GO TO 2.

2	CHECK DOOR MIRROR REMOTE CONTROL SWITCH									
1．Disconnect door mirror remote control switch connector． 2．Check continuity between door mirror remote control switch terminals． Door mirror remote control switch connector										
		Switch				ermina				
		condition		$1{ }^{1} 2$	4	5	6	7	8	
			\cup	\bigcirc		\bigcirc	\bigcirc			
			D	\bigcirc		\bigcirc	\bigcirc			
		LH side	L	\bigcirc	\bigcirc	\bigcirc				
			R	0	\bigcirc	\bigcirc				
			N							
			U	\bigcirc		\bigcirc		\bigcirc		
			D	\bigcirc		\bigcirc		\bigcirc		
		RH side	L	\bigcirc		\bigcirc		\bigcirc	\bigcirc	
			R	\bigcirc		\bigcirc				
			$\stackrel{\sim}{\text { N }}$							
										AEL008C
					K or					
OK	－	Check harne remote contro	ssf	or open witch．	or sho	ort be	ween	me		
NG	－	Replace door	mir	rror rem	te co	ntrol	switch			

AUTOMATIC DRIVE POSITIONER

Trouble Diagnosis (Cont'd)

MEMORY SET SWITCH CHECK

1	CHECK MEMORY SET SWITCH INPUT SIGNAL					
Check voltage between memory seat and mirror control unit Memory seat and mirror control unit connector M117) Refer to wiring diagram in EL-150.			and ground Terminals 20 - Ground 28 - Ground	Memory switch con Set switch 1 Set switch 2	ton ON OFF ON OFF	Voltage [C$]$ 0 5 0 5
OK	-	Memory set switch is OK.				
NG	\checkmark	GO TO 2.				

MEMORY INDICATOR CHECK

1	CHECK INDICATOR OUTPUT SIGNAL		
Check voltage between memory seat and mirror control unit terminal 27 and grounds with any of memory set switch pushed． NOTE： Check voltage within 10 seconds after the switch is pushed． Memory seat and mirror control unit connector M117			
Does battery voltage exist？			
Yes	－	Check the following harnesses for opens －Between memory seat and mirror control un －Between memory set switch indicator and If results are OK，replace memory set switch．	
No		Check memory set switch．Refer to EL－179． If results are OK，replace memory seat and	

REMOTE CONTROLLER SIGNAL CHECK

| $\mathbf{1}$ | CHECK ID REGISTRATION |
| :--- | :--- | :--- |
| Re-register multi-remote controller ID into memory seat and mirror control unit. (Refer to EL-148.)
 NOTE:
 Before re-registering the ID, confirm that multi-remote control system operates properly. If NG, check multi-remote control
 system, refer to EL-234.
 Yes
 No | The system is OK. (The remote controller ID has not been entered.) |

[^1]

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

System Description

Refer to Owner's Manual for ASCD operating instructions.

POWER SUPPLY AND GROUND CIRCUIT

When ignition switch is in the ON or START position, power is supplied

- through 10A fuse (No. 29, located in the fuse block)
- to ASCD main switch terminal 1 ,
- to ASCD hold relay terminal 5 and
- to ASCD brake switch terminal 1.

When ASCD main switch is in ON position, power is supplied

- from ASCD main switch terminal 3
- to ASCD hold relay terminal 2.

Ground is supplied

- to ASCD hold relay terminal 1
- through body grounds E3, E30 and E50.

With power and ground supplied, ASCD hold relay is energized, and then power is supplied

- from ASCD hold relay terminal 3
- to ASCD control unit terminal 4 and
- to ASCD main switch terminal 2.

After the ASCD main switch is released, power remains supplied

- to the coil circuit of ASCD hold relay
- through ASCD main switch terminals 2 and 3.

This power supply continues until any of the following things happen.

- Ignition switch is returned to the ACC or OFF position
- ASCD main switch is turned to OFF position.

While ASCD hold relay is energized power is also supplied to ASCD control unit terminal 5

- through ASCD brake switch, ASCD hold relay and park/neutral position (PNP) relay.

Ground is supplied

- to ASCD control unit terminal 3
- through body grounds M68, M105 and M130.

OPERATION

Set Operation

To activate the ASCD, all of following conditions must exist

- Power supply to ASCD control unit terminal 4.
- Power supply to ASCD control unit terminal 5 (Brake pedal is released and A/T selector lever is in other than P and N positions.)
- Vehicle speed is greater than $48 \mathrm{~km} / \mathrm{h}$ (30 MPH) (Signal from combination meter).

When the SET/COAST switch is depressed, power is supplied

- from ASCD steering switch terminal 1
- to ASCD control unit terminal 2.

And then ASCD actuator is activated to control throttle wire and ASCD control unit terminal 13 supplies power - to combination meter terminal 1 to illuminate CRUISE indicator.

A/T Overdrive Control During Cruise Control Driving

- from ASCD control unit terminal 12
- to TCM (transmission control module) terminal 24.

When this occurs, the TCM cancels overdrive.
After vehicle speed is approximately $3 \mathrm{~km} / \mathrm{h}(2 \mathrm{MPH})$ above set speed, overdrive is reactivated.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

System Description (Cont'd)

Coast Operation

When the SET/COAST switch is depressed during cruise control driving, ASCD actuator returns the throttle cable to decrease vehicle set speed until the switch is released. Then ASCD will keep the new set speed.

Accel Operation

When the RESUME/ACCEL switch is depressed, power is supplied

- from ASCD steering switch terminal 2
- to ASCD control unit terminal 1.

If the RESUME/ACCEL switch is depressed during cruise control driving, ASCD actuator pulls the throttle cable to increase the vehicle speed until the switch is released or vehicle speed is reached to maximum controlled speed by the system. Then ASCD will keep the new set speed.

Cancel Operation

When any of the following condition exists, cruise operation will be canceled (main switch indicator will continue to illuminate.)

- CANCEL switch is depressed (power is supplied to ASCD control unit terminals 1 and 2.)
- Brake pedal is depressed (power is supplied to ASCD control unit terminal 11 from stop lamp switch and power supply to ASCD control unit terminal 5 is interrupted.)
- A/T selector lever is shifted to P or N position (power supply to ASCD control unit terminal 5 is interrupted.) If MAIN switch is depressed while ASCD is activated, all of ASCD operation will be canceled and vehicle speed memory will be erased.

Resume Operation

When the RESUME/ACCEL switch is depressed after cancel operation (other than depressing MAIN SWwitch), vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions

- Brake pedal is released
- A / T selector lever is in other than P or N position
- Vehicle speed is greater than $48 \mathrm{~km} / \mathrm{h}$ (30 MPH).

ASCD ACTUATOR OPERATION

The ASCD actuator consists of a vacuum valve, an air valve and a release valve. When the ASCD activates, power is supplied

- from terminal 8 of ASCD control unit
- to ASCD actuator terminal 1.

Ground is supplied to vacuum valve, air valve and released valve from ASCD control unit depending on the operating condition as shown in the table below.
When the vacuum valve is opened, the vacuum is applied to the diaphragm of ASCD actuator through ASCD vacuum tank.

		Air valve*	Release valve*	Vacuum valve**	Actuator inner pressure
ASCD not operating		Open	Open	Close	Atmosphere
ASCD operating	Releasing throttle cable	Open	Close	Close	Vacuum (decrease)
	Holding throttle position	Close	Close	Close	Vacuum (hold)
	Pulling throttle cable	Close	Close	Open	Vacuum (increase)

[^2]
AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Schematic

Wiring Diagram — ASCD —

FIG. 1
,

Refer to the following.
(M1) , E101-SUPER MULTIPLE JUNCTION (SMJ)

FIG. 2

FIG． 3

FIG. 4

FIG. 5
EL-ASCD-05

Refer to the following
M1 , E101-SUPER MULTIPLE JUNCTION (SMJ)

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Fail-safe System

CRUISE indicator operation Unit: seconds	Fail-safe System DESCRIPTION When the fail safe system senses a malfunction, it deactivates ASCD operation. The CRUISE indicator in the combination meter will then flash.	
MALFUNCTION DETECTION CONDITIONS ${ }^{\text {NDELOO97502 }}$		
Detection conditions		ASCD operation during malfunction detection
- ASCD steering (RESUME/ACCEL, CANCEL, SET/COAST) switch is stuck. - Vacuum valve ground circuit or power circuit is open or shorted. - Air valve ground circuit or power circuit is open or shorted. - Release valve ground circuit or power circuit is open or shorted. - Vehicle speed sensor is faulty. - ASCD control unit internal circuit is malfunctioning. - ASCD is deactivated. - Vehicle speed memory is canceled.		
- ASCD brake switch or stop lamp switch is faulty.		- ASCD is deactivated. - Vehicle speed memory is canceled.

Trouble Diagnoses
SYMPTOM CHART
=NDEL0098
NDEL0098S01

REFERENCE PAGE (EL-)	196	197	198	199	201	202	204	204	205
SYMPTOM									
ASCD cannot be set. ("CRUISE" indicator lamp does not blink.)		X	X	X		X	X		X ${ }^{\text {3 }}$
ASCD cannot be set. ("CRUISE" indicator lamp blinks. $\star 1$)	X				X	X	X	X	
Vehicle speed does not decrease after SET/COAST switch has been pressed.						X			X
Vehicle speed does not return to the set speed after RESUME/ ACCEL switch has been pressed. $\star 2$						X			X
Vehicle speed does not increase after RESUME/ACCEL switch has been pressed.						X			X
System is not released after CANCEL switch (steering) has been pressed.						X			X
Large difference between set speed and actual vehicle speed.							X	X	X
Deceleration is greatest immediately after ASCD has been set.							X	X	X

$\star 1$: It indicates that system is in fail-safe. After completing diagnostic procedures, perform "FAIL-SAFE SYSTEM CHECK" (EL-196) to verify repairs.
$\star 2$: If vehicle speed is greater than $48 \mathrm{~km} / \mathrm{h}(30 \mathrm{MPH})$ after system has been released, pressing RESUME/ACCEL switch returns vehicle speed to the set speed previously achieved. However, doing so when the ASCD main switch is turned to "OFF", vehicle speed will not return to the set speed since the memory is canceled.
$\star 3$: Verify that vacuum hose between ASCD vacuum tank and intake manifold collector or between ASCD vacuum tank and ASCD actuator has not come off.

FAIL-SAFE SYSTEM CHECK

1. Turn ignition switch to ON position.
2. Turn ASCD main switch to ON and check if the "cruise indicator" blinks.
If the indicator lamp blinks, refer to the following

- ASCD Steering Switch Check. Refer to EL-202.

3. Drive the vehicle at more than $48 \mathrm{~km} / \mathrm{h}(30 \mathrm{MPH})$ and push SET/COAST switch.
If the indicator lamp blinks, refer to the following

- Vehicle Speed Sensor Check. Refer to EL-204.
- ASCD Actuator Circuit Check. Refer to EL-204.
- Replace control unit.

4. Depress brake pedal slowly (brake pedal should be depressed more than 5 seconds).
If the indicator lamp blinks, refer to the following

- ASCD Brake/Stop Lamp Switch Check. Refer to EL-201.

5. END. (System is OK.)

AUTOMATIC SPEED CONTROL DEVICE（ASCD）

Trouble Diagnoses（Cont＇d）
POWER SUPPLY AND GROUND CIRCUIT CHECK
NDEL0098S03

1	OPERATION CHECK	
1．Turn ignition switch ON． 2．Push ASCD main switch ON．		
Does ASCD indicator illuminate？		
Yes	\checkmark	GO TO 2.
No	\checkmark	Go to ASCD MAIN SWITCH CHECK．Refer to EL－198．

2	CHECK POWER SUPPLY CIRCUIT FOR ASCD CONTROL UNIT					
1．Disconnect ASCD control unit connector． 2．Turn ignition switch ON． 3．Push ASCD main switch ON． 4．Check voltage between control unit connector terminal 4 and ground． Refer to wiring diagram，EL－190． Does battery voltage exist？						
Yes	－	GO TO 3.				
No	\checkmark	Go to ASCD HOLD RELAY CHECK．Refer to EL－199．				

AUTOMATIC SPEED CONTROL DEVICE (ASCD)
Trouble Diagnoses (Cont'd)

ASCD MAIN SWITCH CHECK

| 1 | CHECK POWER SUPPLY FOR ASCD MAIN SWITCH |
| :--- | :--- | :--- |
| 1. Disconnect main switch connector. | |
| 2. Check voltage between main switch terminals 1 and 4. | |
| Refer to wiring diagram, EL-189. | |
| Yes | |
| No | GO TO 2. |

$\mathbf{2}$	CHECK ASCD MAIN SWITCH	
Check ASCD main switch. Refer to "Electrical Component Inspection", EL-206. OK or NG		
OK	Go to ASCD HOLD RELAY CHECK. Refer to EL-199. NG$>$	Replace ASCD main switch.

ASCD HOLD RELAY CHECK

1	CHECK POWER SUPPLY CIRCUIT FOR ASCD HOLD RELAY		
1．Disconnect ASCD hold relay． 2．Check voltage between ASCD hold relay terminal 5 and body ground．			
Refer to wiring diagram，EL－190．			
Does battery voltage exist？			
Yes	－	GO TO 2.	
No	－	Check the following －10A fuse（No．29，located in the fuse block） －Harness for open or short between fuse and ASCD hold relay．	

Does continuity exist？

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Trouble Diagnoses (Cont'd)

Continuity should exist.
2. Check continuity between ASCD hold relay terminal 2 and body ground.

AEL021C
Continuity should not exist.
OK or NG

OK		GO TO 4.
NG		GO TO 5.

| 4 | CHECK ASCD HOLD RELAY |
| :--- | :--- | :--- |
| Check ASCD hold relay. Refer to "Electrical Component Inspection", EL-207. | |
| OK or NG | |

| 5 | CHECK ASCD MAIN SWITCH |
| :--- | :--- | :--- |
| Check ASCD main switch. Refer to "Electrical Component Inspection", EL-206. | |
| OK or NG | |

ASCD BRAKE／STOP LAMP SWITCH CHECK

1	CHECK ASCD BRAKE SWITCH CIRCUIT					
1．Disconnect control unit connector． 2．Turn ignition switch ON． 3．Push ASCD main switch ON． 4．Check voltage between control unit connector harness terminal 5 and body ground． When brake pedal is depressed or A / T selector lever is in N or P range： Approx．OV When both brake pedal is released and A / T selector lever is not in N or P range： Battery voltage should exist． Refer to wiring diagrams，EL－189， 190.						
OK $>^{\text {a }}$ ，GO TO 2.						
NG \quadCheck the following \bullet ASCD brake switch，ASCD hold relay，park neutral position（PNP）switch Refer to＂Electrical Components Inspection＂，EL－206． \bullet Harness for open or short．		Check the following －ASCD brake switch，ASCD hold relay，park neutral position（PNP）switch Refer to＂Electrical Components Inspection＂，EL－206． －Harness for open or short．				

Approx．OV
hen both brake pedal is released and A / T selector lever is not in N or P range：
Battery voltage should exist
Refer to wiring diagrams，EL－189， 190.
OK or NG

2	CHECK STOP LAMP SWITCH CIRCUIT		
1．Disconnect control unit connector． 2．Check voltage between control unit harness terminal 11 and ground． Voltage［V］： Stop lamp switch：Depressed Approx． 12 Stop lamp switch：Released 0 Refer to wiring diagram，EL－192．			
OK	＞	ASCD brake／stop lamp switch is OK．	
NG	－	Check the following －15A fuse（No．22，located in the fuse block） －Harness for open or short between ASCD control unit and stop lamp switch －Stop lamp switch Refer to＂Electrical Components Inspection＂，EL－206．	

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Trouble Diagnoses (Cont'd)

ASCD STEERING SWITCH CHECK

	Terminal No.		Switch condition	
	$(+)$	$(-)$	Pressed	Released
SET/COAST SW	2	ground	12 V	0 V
RESUME/ACC SW	1	ground	12 V	0 V
CANCEL SW	2	ground	12 V	0 V
	1	ground	12 V	0 V

MTBL0002
Refer to wiring diagram, EL-192.
OK or NG

OK		ASCD steering switch is OK.
NG		GO TO 2.

2	CHECK POWER SUPPLY FOR ASCD STEERING SWITCH	
\quadDoes horn work?		
Yes		GO TO 3.
No	Check the following \bullet 15A fuse (No. 42, located in the fuse and fusible link box) \bullet Horn relay \bullet •Harness for open or short between horn relay and fuse.	

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Trouble Diagnoses (Cont'd)

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Trouble Diagnoses (Cont'd)
VEHICLE SPEED SENSOR CHECK

1	CHECK SPEEDOMETER OPERATION	
Refer to wiring diagram, EL-191.		
Does speedometer operate normally?		
Yes	\checkmark	GO TO 2.
No	\checkmark	Check speedometer and vehicle speed sensor circuit. Refer to FI-80.

2	CHECK VEHICLE SPEED INPUT	
1. Apply wheel chocks and jack up drive wheels. 2. Disconnect control unit connector. 3. Check voltage between control unit terminal 7 and ground with turning drive wheels slowly. Does voltmeter pointer deflect?		
Yes		Vehicle speed sensor is OK.
No		Check harness for open or short between ASCD control unit terminal 7 and combination meter terminal 31. Refer to "Inspection/Vehicle Speed Sensor", EL-86.

ASCD ACTUATOR CIRCUIT CHECK

ASCD ACTUATOR CHECK

＝NDELOO98S10

| $\mathbf{1}$ | CHECK VACUUM HOSE |
| :--- | :--- | :--- |
| Check vacuum hose（between ASCD actuator and ASCD vacuum tank）and between ASCD vacuum tank and intake mani－ | |
| fold collector for breakage，cracks and fracture． | |
| OK | GO TO 2． |
| NG | Repair or replace hose． |

OK or NG

OK	$>$	GO TO 4．
NG	$>$	Replace ASCD vacuum tank．

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

Trouble Diagnoses (Cont'd)

Electrical Component Inspection ASCD MAIN SWITCH

NDEL0099
ndeLoogesot
Check continuity between terminals by pushing switch to each position.

Switch position	Terminals	Illumination
ON	$1-2-3-4$	5
N	$2-3-4$	
OFF		

AUTOMATIC SPEED CONTROL DEVICE（ASCD）

Electrical Component Inspection（Cont＇d）

ASCD BRAKE SWITCH AND STOP LAMP SWITCH
NDELOO99SO2

Condition	Continuity	
	ASCD brake switch	Stop lamp switch
When brake pedal is depressed	No	Yes
When brake pedal is released	Yes	No

Check each switch after adjusting brake pedal — refer to BR－13．

PARK NEUTRAL POSITION（PNP）SWITCH

Selector lever position	Continuity
	Notween terminals 1 and 2
P	Yes
N	Yes
Except P and N	No

ASCD HOLD RELAY

Check continuity between terminals 3 and 5， 6 and 7 ．

Condition	Continuity
12V DC direct current supply between	
terminals 1 and 2	Yes
No current supply	No

ASCD Wire Adjustment

CAUTION:

- Be careful not to twist ASCD wire when removing it.
- Do not tense ASCD wire excessively during adjustment.

Adjust the tension of ASCD wire in the following manner.

1. Loosen lock nut and adjusting nut.
2. Make sure that accelerator wire is properly adjusted. Refer to "ACCELERATOR CONTROL SYSTEM", FE-3
3. Tighten adjusting nut just until throttle drum starts to move.
4. Loosen adjusting nut again $1 / 2$ to 1 turn.
5. Tighten lock nut.

System Description
 POWER SUPPLY AND GROUND CIRCUIT

Power is supplied at all times

- from 7.5A fuse (No. 39, located in the fuse and fusible link box)
- to smart entrance control unit terminal 13 and
- from 30A fusible link (letter f, located in the fuse and fusible link box)
- to circuit breaker-1 terminal 1
- through circuit breaker- 1 terminal 2
- to power window relay terminals 5 and 1.

Ground is supplied

- to main power window and door lock/unlock switch terminal 8 and
- to smart entrance control unit terminal 10
- through body grounds M68, M105 and M130.

With the ignition in the ON or START position, power is supplied

- from 10A fuse (No. 30, located in the fuse block)
- to smart entrance control unit terminal 43.

Ground is then supplied to power window relay terminal 2 from smart entrance control unit terminal 30.
With power and ground supplied, the power window relay is energized and power is supplied

- from power window relay terminal 3
- to main power window and door lock/unlock switch terminal 1 and
- to front power window switch RH terminal 5.

When the ignition switch is turned to the OFF position, the power windows will still operate for approximately
15 minutes unless the driver's door is opened. (Delayed power operation)

FRONT DOOR LH

Window Up

When the main power window and door lock/unlock switch is pressed in the UP position, power is supplied

- from main power window and door lock/unlock switch terminal 2
- to front power window motor LH terminal 2.

Ground is supplied

- to front power window motor LH terminal 1
- from main power widow and door lock/unlock switch terminal 9.

With power and ground supplied, the front power window motor LH will raise the window until the switch is released.

Window Down

NDELO101SO202
When the main power window and door lock/unlock switch is pressed in the DOWN position, power is supplied

- from main power window and door lock/unlock switch terminal 9
- to front power window motor LH terminal 1.

Ground is supplied

- to front power window motor LH terminal 2
- from main power window and door lock/unlock switch terminal 2.

With power and ground supplied, the power window motor LH will lower the window until the switch is released.

Auto Down

FRONT DOOR RH

NOTE:
Figures in parenthesis () refer to terminal Nos. arranged in order when UP or DOWN section of power window switch is pressed.

Operation By Main Switch

Power is supplied

- from main power window and door lock/unlock switch terminal $(7,6)$
- to front power window switch RH terminal (8, 3).

Subsequent operations are the same as those outlined under "Operation By Front Power Window Switch RH".

Operation By Front Power Window Switch RH

Power is supplied

- from front power window switch RH terminal 5
- Through front power window switch RH terminal $(7,4)$
- to front power window motor RH terminal $(2,1)$.

Ground is supplied

- to front power window motor RH terminal $(1,2)$
- through front power window switch RH terminal $(4,7)$
- to front power window switch RH terminal $(3,8)$
- through main power window and door lock/unlock switch terminal $(6,7)$
- to main power window and door lock/unlock switch terminal 8
- through body grounds M68, M105 and M130.

Lock Feature

If the main power window and door lock/unlock switch window lockout switch is in the LOCK position, the front power window switch RH ground circuit is interrupted. When this happens, the front power window motor RH cannot be operated by the front power window switch RH or the main power window and door lock/unlock switch.

REAR POWER VENT WINDOW LH

NOTE:
Figures in parenthesis () refer to terminal Nos. arranged in order when OPEN or CLOSED section of power window switch is pressed.
When the rear LH vent switch (in main power window and door lock/unlock switch) is pressed in the OPEN(CLOSE) position, power is supplied

- from main power window and door lock/unlock switch terminal $(14,13)$
- to rear power vent window motor LH $(1,2)$.

Ground is supplied

- to rear power vent window motor $(2,1)$
- through main power window and door lock/unlock switch terminal $(13,14)$
- to main power window and door lock/unlock switch terminal 8
- through body grounds M68, M105 and M130.

REAR POWER VENT WINDOW RH

Rear power vent window RH operates in the same manner as rear power vent window LH.

EL-WINDOW-02

Trouble Diagnoses

NDEL0103

| Symptom | Possible cause | Repair order |
| :--- | :--- | :--- | :--- |
| None of the power windows can be
 operated using any switch. | 1. 7.5A fuse, 10A fuse, 30A fusible
 link and circuit breaker-1
 2. Grounds M68, M105 and M130
 3. Power window relay
 4. Open/short in main power window
 and door lock/unlock switch circuit | 1. Check 7.5A fuse (No. 39, located in fuse and
 fusible link box), 10A fuse (No. 30, located in
 fuse block), 30A fusible link (letter f, located in
 the fuse and fusible link box) and circuit
 breaker-1. Turn ignition switch "ON" and verify
 battery positive voltage is present at terminal 1
 of main power window and door lock/unlock, ter-
 minal 5 of front power window switch RH. |

Component Parts and Harness Connector Location

	Fuse and fusible link box	

System Description

POWER SUPPLY AND GROUND CIRCUIT

Power is supplied at all times

- through 30A fusible link (letter f, located in the fuse and fusible link box)
- and through circuit breaker-1
- to smart entrance control unit terminal 7
- through 7.5A fuse (No. 39, located in the fuse and fusible link box)
- to smart entrance control unit terminal 13.

Ground is supplied

- to smart entrance control unit terminal 2, 10 and 16

- through body grounds M68, M105 and M130.

STANDARD DOOR LOCK/UNLOCK FUNCTION

NDELO105SO2
When main power window and door lock/unlock switch or door lock/unlock switch RH is in LOCK position, ground is supplied

- to smart entrance control unit terminal 47
- from main power window and door lock/unlock switch terminal 12 or door lock/unlock switch RH terminal 4
- through body grounds M68, M105 and M130.

Then power and ground is supplied from smart entrance control unit to all door lock actuators to lock all doors. When main power window and door lock/unlock switch or door lock/unlock switch RH is in UNLOCK position, ground is supplied

- to smart entrance control unit terminal 39
- from main power window and door lock/unlock switch terminal 11 or door lock/unlock switch RH terminal 7.

Then power and ground is supplied from smart entrance control unit to all door lock actuators to unlock all doors.

FRONT DOOR KNOB LOCK SWITCH OPERATION

When front door knob lock switch LH or RH is in LOCK position, ground is interrupted
NDELO105S03

- to smart entrance control unit terminal 46 or 37
- from front door lock actuator LH or RH terminal 4.

Then smart entrance control unit supplies power and ground to all door lock actuators to lock all doors.

DOOR KEY CYLINDER OPERATION

With key inserted in front door key cylinder switch LH or RH and turned to LOCK, ground is supplied

- to smart entrance control unit terminal 19
- through front door key cylinder switch LH terminal 2 or RH terminal 1
- through body grounds M68, M105 and M130.

Then power and ground is supplied from smart entrance control unit to all door lock actuators to lock all doors. With key inserted in front door key cylinder switch LH or RH or back door key cylinder switch and turned to UNLOCK, ground is supplied

- to smart entrance control unit terminal 27
- through front door key cylinder switch LH terminal 1, RH terminal 2 or back door key cylinder switch terminal 2
- through body grounds M68, M105 and M130 or D204.

Key will unlock only corresponding door. If front door key cylinder switch LH or RH is turned to UNLOCK again within 5 seconds after first unlock operation, then smart entrance control unit supplies power and ground to all door lock actuators to unlock all doors.

KEY REMINDER

NDELO105S05
If both of the following conditions exist, performing any front door lock operation locks the doors once but immediately unlocks them when

- ignition key is in ignition key cylinder (ground is supplied at smart entrance control unit terminal 35)
- either front door is opened (ground is supplied at smart entrance control unit terminal 34 or 9).

Frond door lock status is detected by ground supplied from front door lock actuator to smart entrance control unit terminal 46 or 37.

SLIDING DOOR LOCK DELAY FUNCTION

If a sliding door is open when a lock operation is performed, that sliding door will not be locked.
If the sliding door is closed after the lock operation is performed, the smart entrance control unit supplies power and ground to all door lock actuators to lock all doors again.
If a mechanical or electrical unlock of either front door is performed before closing sliding door, sliding door delay feature is canceled.

Schematic

WEL246

FIG． 1
EL－D／LOCK－01

Refer to the following．
（M1 ，E101－SUPER MULTIPLE JUNCTION（SMJ）

FIG. 2

EL-D/LOCK-02

FIG． 3

FIG. 4

11	12	13	14	15	16	17	18

FIG. 5

Trouble Diagnosis
SYMPTOM CHART
NDELO108S01

REFERENCE PAGE (EL-)	223	224	225	226	227	229	231	232
SYMPTOM								
Key reminder door system does not operate properly.	X	X		X			X	X
Specific door lock actuator does not operate properly.	X							X
Power door lock/unlock does not operate with door lock and unlock switch on power window main switch.	X				x			
Power door lock/unlock does not operate with front door key cylinder operation.	X					X		
Power door unlock does not operate with back door key cylinder operations.	X					X		
Power door lock does not operate with front door lock knob switch.	X						x	
Sliding door lock delay feature does not operate properly.	X		X					

MAIN POWER SUPPLY AND GROUND CIRCUIT CHECK
Main Power Supply Circuit Check

Terminal		Ignition switch position		
$(+)$	$(-)$	OFF	ACC	ON
13	Ground	Battery voltage	Battery voltage	Battery voltage
7	Ground	Battery voltage	Battery voltage	Battery voltage

- 7.5A fuse (No. 39, located in the fuse and fusible link box)
- Harness for open or short between smart entrance control unit and fuse.
If check result for terminal 7 is NG, check the following
- 30A fusible link (letter \mathbf{f}, located in the fuse and fusible link box)
- Circuit breaker-1
- Harness for open or short between smart entrance control unit and fusible link.

Ground Circuit Check

Terminals		Continuity
$(+)$	$(-)$	
2	Ground	Yes
10	Ground	Yes
16	Ground	Yes

FRONT DOOR SWITCH CHECK

(13 CHECK FRONT DOOR SWITCH INPUT SIGNAL

2	CHECK FRONT DOOR SWITCH		
Check continuity between term Continuity Door switch is pushed. No Door switch is released Yes		2 and switch body. OK or NG	AEL884B
O	$>$	Check the following - Door switch ground condition - Harness for open or short between smart entrance	
N	-	Replace door switch.	

SLIDING DOOR SWITCH CHECK

2	CHECK SLIDING DOOR SWITCH	
Check continuity between sliding door switch terminal 1 and switch body．		
OK	V	Check the following －Sliding door switch ground condition －Harness for open or short between smart entrance control unit and sliding door switch．
NG	－	Replace sliding door switch．

KEY SWITCH (INSERTED) CHECK

DOOR LOCK／UNLOCK SWITCH CHECK

1	CHECK DOOR LOCK／UNLOCK SWITCH INPUT SIGNAL				
1．Disconnect smart entrance control unit connector． 2．Check continuity between control unit terminal 39 or 47 and ground．					AEL889B
		Terminals	Door lock／unlock switch （LH or RH）condition	Continuity	
			Lock	Yes	
		47 －ground	N and Unlock	No	
		39 －ground	Unlock	Yes	
		39 －ground	N and Lock	No	
Refer to wiring diagram，EL－217．					AEL890B
OK or NG					
OK	＞	Door lock／unloc	switch is OK．		
NG	－	GO TO 2.			

DOOR KEY CYLINDER SWITCH CHECK
Check voltage between control unit terminals 19 or 27 and ground．

POWER DOOR LOCK

Trouble Diagnosis (Cont'd)

2	CHECK DOOR KEY CYLINDER SWITCH				
1. Disconnect door key cylinder switch connector. 2. Check continuity between door key cylinder switch terminals. Door key cylinder switch connector Front LH : D11 Front RH : D110 Back : D303 : Door unlock switch terminal (Front LH) Door lock switch terminal (Front RH) (2): Door lock switch terminal (Front LH) Door unlock switch terminal (Front RH and back) (4): Ground terminal					
		Terminals Front LH: $2-4$ Front RH: $1-4$ Front LH: $1-4$ Front RH: $2-4$ Back: $2-4$	Key position Neutral Lock Neutral Unlock	Continuity No Yos No Yes	
OK or NG					
OK	-	Check the following - Door key cylinder switch ground circuit - Harness for open or short between control unit and door key cylinder switch.			
NO	-	Replace door key cylinder switch.			

FRONT DOOR UNLOCK SENSOR CHECK

Condition: Locked
No
dition: Unlocked

OK or NG

AEL898B

Door lock/unlock switch condition	Terminal No.		Voltage [V]
	$(+)$	$(-)$	
Lock	1	ground	Approx. 12
Unlock	3	ground	

- Front door lock actuator RH, sliding door lock actuator LH and RH, and back door lock actuator

Door lock/unlock switch condition	Terminals		

Refer to wiring diagrams, EL-220.
OK or NG

OK	$>$	GO TO 2.
NG	Replace smart entrance control unit. (Before replacing smart entrance control unit, perform "DOOR LOCK/UNLOCK SWITCH CHECK", EL-232.)	

2	CHECK DOOR LOCK ACTUATOR			
1．Disconnect door lock actuator connector． 2．Apply 12 V direct current to door lock actuator and check operation． Door lock actuator connector Front LH ：D12 Front RH：D111 Sliding LH：D402 Sliding RH：D502 Back：D311 Door lock actuator operation： Terminals between（＋）： 3 and（－）： 1 Unlocked \rightarrow Locked Terminals between（＋）： 1 and（－）： 3 Locked \rightarrow Unlocked				
OK	$>$	Check harness for open or short lock actuator．	tween smart	and door
NG	\checkmark	Replace door lock actuator．		

Component Parts and Harness Connector Location

System Description

INPUTS

When the key switch is ON (ignition key is inserted in the key cylinder), ground is supplied

- Through key switch terminal 1
- to smart entrance control unit terminal 35.

When the front door switch LH is OPEN, ground is supplied

- to smart entrance control unit terminal 34
- through front door switch LH terminal 2
- through front door switch LH body ground.

When the front door switch RH is OPEN, ground is supplied

- to smart entrance control unit terminal 9
- through front door switch RH body ground.

When the sliding door switches are OPEN, ground is supplied

- to smart entrance control unit terminal 41
- through the sliding door switches body grounds.

When either back door latch is OPEN, ground is supplied

- to smart entrance control unit terminal 24
- through body ground D204.

Remote controller signal is inputted to the smart entrance control unit（The antenna of the system is combined with smart entrance control unit）．
The multi－remote control system controls operation of the
－power door lock
－interior lamp
－panic alarm
－door lock verification
－automatic drive positioner

OPERATED PROCEDURE

Power Door Lock Operation

Smart entrance control unit receives a LOCK signal from remote controller．Smart entrance control unit locks all doors with input of LOCK signal from remote controller．
When an UNLOCK signal is sent from remote controller once，front door LH will unlocked．
Then，if an UNLOCK signal is sent from remote controller again within 5 seconds，all other doors will be unlocked．

Door Lock Verification

Power is supplied at all times
－to tail lamp relay terminals 2 and 3
－to horn relay terminals 2 and 3
－through 15A fuse（No．42，located in the fusible link and fuse box）．
When smart entrance control unit receives LOCK or UNLOCK signal from remote controller with all doors closed，ground is supplied
－to tail lamp relay terminal 1
－through smart entrance control unit terminal 26，and
－to horn relay terminal 1
－through smart entrance control unit terminal 21
Tail lamp relay and horn relay are now energized，and side marker，tail，and license lamps flash and horn sounds as a reminder（if horn chirp function is activated）．
The hazard and horn reminder has a horn chirp mode and a non－horn chirp mode．
Operating function of door lock verification

	Horn chirp mode		Non－horn chirp mode	
	Side marker，tail and license lamps flash	Horn sound	Side Marker，tail and license lamps flash	Horn sound
	Twice	Once	Twice	-
Unlock	Once	-	-	-

How to change door lock verification mode
When LOCK and UNLOCK signals are sent from the remote controller for more than 2 seconds at the same time，the door lock verification mode is changed and hazard warning lamp flashes and horn sounds as fol－ lows：

Interior Lamp Operation

When the following input signals are both supplied:

- door switch CLOSED (when all doors are closed);
- front door LH LOCKED;
multi-remote control system turns on interior lamp (for 30 seconds) with input of UNLOCK signal from remote controller.
For detailed description, refer to "INTERIOR ROOM LAMP", EL-72.

Panic Alarm Operation

Multi-remote control system turns on and off horn and headlamp intermittently with input of PANIC ALELARMOMOM signal from remote controller.
For detailed description, refer to "THEFT WARNING SYSTEM", EL-253.

Schematic

Wiring Diagram — MULTI —
FIG. 1

FIG． 2

MULTI-REMOTE CONTROL SYSTEM

Wiring Diagram — MULTI — (Cont'd)
FIG. 3

1	2	3	4	0	0	5	6

FIG. 4

1] 2 回 $3 / 4 \frac{\text { (N112 }}{\mathrm{B}}, \frac{\mathrm{B9}}{\mathrm{~B}}$

MULTI-REMOTE CONTROL SYSTEM

Trouble Diagnoses

	Trouble Diagnoses SYMPTOM CHART NOTE: Always check the remote controller battery befo remote controller.	replacing
Symptom	Diagnoses/service procedure	Reference page
All functions of multi-remote control system do not operate.	1. Remote controller battery check	EL-243
	2. Power supply and ground circuit for smart entrance control unit check	EL-244
	3. Replace remote controller. Refer to ID Code Entry Procedure.	EL-251
Remote controller ID code cannot be entered.	1. Remote controller battery check	EL-243
	2. Key switch (inserted) check	EL-248
	3. Door switch check	EL-246
	4. Door unlock sensor check	EL-249
	5. Power supply and ground circuit for smart entrance control unit check	EL-244
	6. Replace remote controller. Refer to ID Code Entry Procedure.	EL-251
Door lock or unlock does not function. (If the power door lock system does not operate manually, check power door lock system. Refer to EL-222.)	1. Replace remote controller. Refer to ID Code Entry Procedure.	EL-251
Side marker lamps, tail lamps, license lamps and interior illumination do not flash when pressing lock or unlock button of remote controller.	1. Tail lamp relay check	EL-250
	2. Door unlock sensor check	EL-249
	3. Replace remote controller. Refer to ID Code Entry Procedure.	EL-251
Horn does not chirp when pressing lock button of remote controller.	1. Check horn chirp setting. Refer to "System Description".	EL-235
	2. Check door unlock sensor. Refer to "DOOR UNLOCK SENSOR CHECK".	EL-249
	3. Check theft warning operation. Refer to "PRELIMINARY CHECK" in "THEFT WARNING SYSTEM".	EL-266
	4. Replace remote controller. Refer to ID Code Entry Procedure.	EL-251
Panic alarm (horn and headlamps) does not activate when panic alarm button is continuously pressed more than 1.5 seconds.	1. Theft warning operation check. Refer to "PRELIMINARY CHECK" in "THEFT WARNING SYSTEM".	EL-266
	2. Replace remote controller. Refer to ID Code Entry Procedure.	EL-251

REMOTE CONTROLLER BATTERY CHECK

1	CHECK REMOTE CONTROLLER BATTERY		
Remove battery（refer to EL－252）and measure voltage across battery positive and negative terminals，（＋）and（－）．			
Voltage［V］：2．5－3．0 NOTE： Remote controller does not function if battery is not installed correctly．			
OK		Check remote controll	
NG	－	Replace battery．	

2	CHECK IGNITION SWITCH ACC CIRCUIT		
1. Disconnect smart entrance control unit connector. 2. Check voltage between smart entrance control unit terminal 36 and ground with ignition switch in ACC. Refer to wiring diagram, EL-238. Does battery voltage exist?			
Yes	\checkmark	GO TO 3.	
No	\checkmark	Check the following - 7.5A fuse (No. 5, located in fuse block) - Harness for open or short between smart entrance control unit and fuse.	

KEY SWITCH (INSERTED) CHECK

DOOR UNLOCK SENSOR CHECK

2	CHECK DOOR UNLOCK SENSOR	
1．Disconnect door unlock sensor connector． 2．Check continuity between door unlock sensor terminals． Continuity： Condition：Locked No Condition：Unlocked Yes		
OK	＞	Check the following －Door unlock sensor ground circuit（front door LH／RH and back door） －Harness for open or short between smart entrance control unit and door unlock sen－ sor．
NG	－	Replace door unlock sensor．

Condition：Locked No dition：Unlocked

OK or NG

TAIL LAMP RELAY CHECK

$\mathbf{1}$	CHECK TAIL LAMP OPERATION	
Do tail lamps illuminate with lighting switch operation?		
Yes		Check harness for open or short between smart entrance control unit and tail lamp relay.
No		GO TO 2.

2	CHECK TAIL LAMP RELAY			
1. Apply 12V DC direct current between relay terminals 1 and 2. 2. Check continuity between relay terminals 3 and 5 .				
Continuity: 12 V applied Yes No voltage applied No OK or NG				
OK		GO TO 3.		
NG	-	Replace relay.		

ID Code Entry Procedure

NOTE:

- If a remote controller is lost, the ID code of the lost remote controller must be erased to prevent unauthorized use. When the ID code of a lost remote controller is not known, all controller ID codes should be erased. After all ID codes are erased, the ID codes of all remaining and/or new remote controllers must be re-registered. To erase all ID codes in memory, register one ID code (remote controller) four times. After all codes are erased, the ID codes of all remaining and/or new remote controllers must be re-registered.
- When registering an additional remote controller, the existing ID codes in memory may or may not be erased. If four ID codes are stored in memory, when an additional code is registered, only the oldest code is erased. If less than four ID codes are stored in memory, when an additional ID code is registered, the new ID code is added and no ID codes are erased.
- If you need to activate more than two new remote controllers, repeat the procedure "Additional ID code entry" for each additional new remote controller.
- A maximum of four ID codes may be entered. When more than four ID codes are entered, the ID oldest code will be erased.
- For the procedure to memorize position for automatic drive positioner, refer to "PROCEDURE FOR STORING MULTI-REMOTE CONTROLLER", "AUTOMATIC DRIVE POSITIONER", EL-148.
- Even if the same ID code that is already in the memory is input, the same ID code can be entered. The code is counted as an additional code.

Remote Controller Battery Replacement

NOTE:

- Be careful not to touch the circuit board or battery terminal.
- The remote controller is water-resistant. However, if it does get wet, immediately wipe dry.

Component Parts and Harness Connector Location

THEFT WARNING SYSTEM

System Description

DESCRIPTION

2. Setting the Theft Warning System Initial condition

1) Close all doors.
2) Close hood and back door.

Disarmed phase

Theft warning system is in the disarmed phase when hood or any door is open. Security indicator lamp blinks every second.
Pre-armed phase and armed phase
Theft warning system turns into "pre-armed" phase when hood and all doors are closed and doors are locked by key or remote controller. (Security indicator lamp illuminates.)
After about 30 seconds, system automatically shifts into "armed" phase (system is set). (Security indicator lamp blinks every 2.6 seconds.)

3. Canceling the Set Theft Warning System

When the following 1) or 2) operation is performed, armed phase is canceled.

1) Unlock door with the key or remote controller.
2) ACC power is supplied with ignition key in ignition key cylinder.

4. Activating the Alarm Operation of the Theft Warning System

Make sure system is in armed phase. (Security indicator lamp blinks every 2.6 seconds.)
When the following operation 1), 2), 3) or 4) is performed, system sounds horns and flashes headlamps and exterior lamps for about 2.5 minutes. (At the same time, system disconnects the starting system circuit.)

1) Hood or any door is opened before unlocking door with key or remote controller.
2) Door is unlocked without using key or remote controller.
3) Battery is reconnected after being disconnected while system is in armed phase.
4) ACC, ON or START power is supplied without ignition key in ignition key cylinder

POWER SUPPLY AND GROUND CIRCUIT

Power is supplied at all times

- through 10A fuse (No. 23, located in the fuse block)
- to security indicator lamp terminal 1.

Power is supplied at all times

- through 30A fusible link (letter f, located in the fuse and fusible link box)

THEFT WARNING SYSTEM

- to circuit breaker-1 terminal 1
- through circuit breaker-1 terminal 2
- to smart entrance control unit terminal 7 and
- through 7.5A fuse (No. 39, located in the fuse and fusible link box)
- to smart entrance control unit terminal 13.

With ignition switch in ACC or ON position, power is supplied

- through 7.5A fuse (No. 5, located in the fuse block)
- to smart entrance control unit terminal 36.

With the ignition switch in ON or START position, power is supplied

- through 10A fuse (No. 30, located in the fuse block)
- to smart entrance control unit terminal 43.

Ground is supplied

- to smart entrance control unit terminals 2, 10 and 16
- through body grounds M68, M105 and M130.

INITIAL CONDITION TO ACTIVATE THE SYSTEM

Operation of theft warning system is controlled by doors.
To activate theft warning system, smart entrance control unit must receive signals indicating doors and hood are closed and doors are locked.
When a door is open, smart entrance control unit terminal 9,24 , 34 or 41 receives a ground signal from a door switch or back door latch switches.
When a door is unlocked, smart entrance control unit terminal $37,40,46$ or 48 receives a ground signal from front door lock actuator LH or RH (door unlock sensor) terminal 4 or from back door lock actuator (door unlock sensor) terminal 4 or from sliding door lock actuator LH or RH (door unlock sensor) terminal 4.
When hood is open, smart entrance control unit terminal 31 receives a ground signal

- from hood switch terminal 1
- through body grounds E3, E30 and E50.

When back door is open, smart entrance control unit terminal 24 receives a ground signal

- from back door latch switch LH and RH terminal 1
- through body ground D204.

When doors are locked with key or multi-remote controller and none of the described conditions exist, theft warning system will automatically shift to armed phase.

THEFT WARNING SYSTEM ACTIVATION (WITH KEY OR REMOTE CONTROLLER USED TO LOCK DOORS)

If key is used to lock doors, smart entrance control unit terminal 19 receives a ground signal

- from front door key cylinder switch LH terminal 2
- from front door key cylinder switch RH terminal 1
- through body grounds M68, M105 and M130
- from back door key cylinder switch terminal 2
- through body ground D204.

If this signal or lock signal from remote controller is received by smart entrance control unit, theft warning system will activate automatically.
Once theft warning system has been activated, smart entrance control unit terminal 45 supplies ground to security indicator lamp terminal 2.
Security lamp will illuminate for approximately 30 seconds and then blink.
Theft warning system is now in armed phase.

THEFT WARNING SYSTEM ALARM OPERATION

Theft warning system is triggered by

- opening a door without using key or remote controller
- opening hood
- unlocking door without using key or remote controller
- ACC, ON or START signal without ignition key in ignition key cylinder
- Battery is reconnected after being disconnected while system is in armed phase.

Once theft warning system is in armed phase, if smart entrance control unit receives a ground signal at terminal $37,40,46,48$ (door unlock sensor), $9,24,34,41$ (door switch), or 31 (hood switch), or power is supplied to smart entrance control unit terminal 36 or 43 without ignition key inserted signal at terminal 35 , theft warning system will be triggered. Headlamps flash, horn sounds intermittently, and starting system is interrupted.
Power is supplied at all times

- through 7.5A fuse (No. 39, located in the fuse and fusible link box)
- to theft warning relay terminal 2.

If theft warning system is triggered, ground is supplied

- from smart entrance control unit terminal 28
- to theft warning relay terminal 1.

With power and ground supplied, starter motor circuit is interrupted. Starter motor will not crank and engine will not start.
Power is supplied at all times

- through 15A fuse (No. 42, located in fuse and fusible link box)
- to horn relay terminals 2 and 3, and
- to tail lamp relay terminals 2 and 3 .

When theft warning system is triggered, ground is supplied intermittently

- from smart entrance control unit terminal 21
- to horn relay terminals 1 and
- from smart entrance control unit terminal 26
- to tail lamp relay terminal 1.

At this time, alarm signal is sent from smart entrance control unit terminal 29 to headlamp control unit terminal 19.
Headlamps and exterior lamps flash and horn sounds intermittently.
Alarm automatically turns off after 2 or 3 minutes but will reactivate if the vehicle is tampered with again.

THEFT WARNING SYSTEM DEACTIVATION

To deactivate theft warning system, a door must be unlocked with key or remote controller.
When key is used to unlock the door, smart entrance control unit terminal 27 receives a ground signal

- from front door key cylinder switch LH terminal 1
- from front door key cylinder switch RH terminal 2
- from back door key cylinder switch terminal 2.

When smart entrance control unit receives one of these signals or unlock signal from remote controller, theft warning system is deactivated (Disarmed phase).
PANIC ALARM OPERATION

Schematic

Wiring Diagram — THEFT —

FIG． 1

FIG. 2

EL-THEFT-02

Refer to the following.
(M1), E101- SUPER MULTIPLE.
JUNCTION (SMJ)

THEFT WARNING SYSTEM

FIG. 3
NDELO119S03

11	12	13	14	15	16	17	18

FIG. 4

EL-THEFT-04

1	2	3	4	0	0	5	6

FIG． 5
NDELO119S05

THEFT WARNING SYSTEM

Wiring Diagram - THEFT — (Cont'd)
FIG. 6

FIG. 7
NDELO119S07

EL-THEFT-07

Trouble Diagnoses

PRELIMINARY CHECK

The system operation is canceled by turning ignition switch to ACOCC at any step between START and ARMED in the following flow chart.

SYMPTOM CHART

REFERENCE PAGE (EL-)			266	268	26.9	273	274	229	275	275	276	277	242
SYMPTOM													
1	"SECURITY" indicator lamp does not turn on or blink.		X	X		X							
2		All items	X	X	X		X						
		Door outside key	X	X				X					
		Back door key	X	X				X					
		Remote controller	X	X									X
3		Any door is opened.	X	X	X								
		Any door is unlocked without using key or remote controller.	X	X			X						
4		All function	X	X	X		X						
		Horn alarm	X	X					X				
		Headlamp alarm	X	X						X			
		Exterior lamp alarm									X		
		Starter interrupt	X	X								X	
5		Door outside key	X	X				X					
		Back door key	X	X				X					
		Remote controller	X	X									X

X: Applicable
*1: Make sure the system is in the armed phase.
Before starting trouble diagnoses above, perform "PRELIMINARY CHECK", EL-266.
Symptom numbers in the symptom chart correspond with those of "PRELIMINARY CHECK".

THEFT WARNING SYSTEM

Smart entrance control unit connector M40

AEL921B

POWER SUPPLY AND GROUND CIRCUIT CHECK
Power Supply Circuit Check

Terminals		Ignition switch position		
$(+)$	$(-)$	OFF	ACC	ON
7	Ground	Battery voltage	Battery voltage	Battery voltage
13	Ground	Battery voltage	Battery voltage	Battery voltage
36	Ground	0 V	Battery voltage	Battery voltage
43	Ground	0 V	OV	Battery voltage

Ground Circuit Check

Terminals	Continuity
2 - Ground	
10 - Ground	Yes
$16-$ Ground	

DOOR AND HOOD SWITCH CHECK
 Door Switch Check

1	PRELIMINARY CHEC	
1. Turn ignition switch OFF and remove ignition key from ignition key cylinder. 2. Close all doors and hood. "SECURITY" indicator lamp should turn off. 3. Open any door. "SECURITY" indicator lamp should blink every second. OK or NG		
OK	-	Door switch is OK.
NG	-	GO TO 2.

THEFT WARNING SYSTEM

Trouble Diagnoses (Cont'd)

Hood Switch Check

2	CHECK HOOD SWITCH FITTING CONDITION	
OK or NG		
OK	-	GO TO 3.
NG	-	Adjust installation of hood switch or hood.

THEFT WARNING SYSTEM

Trouble Diagnoses (Cont'd)

| 4 | CHECK HOOD SWITCH |
| :--- | :--- | :--- |
| 1. Disconnect hood switch connector. | |
| 2. Check continuity between hood switch terminals 1 and 2. | |
| Continuity:
 Condition: Pushed
 No
 Condition: Released
 Yes | Check the following
 - Hood switch ground circuit
 - Harness for open or short between smart entrance control unit and hood switch. |
| OK | Replace hood switch. |
| NG | |

SECURITY INDICATOR LAMP CHECK

2	CHECK INDICATOR LAMP		
OK		GO TO 3.	OK or NG
NG	$>$	Replace security indicator lamp.	

1. Disconnect security indicator lamp connector.
2. Check voltage between security indicator lamp terminal 1 and ground.

Does battery voltage exist?

| Yes | Check harness for open or short between security indicator lamp and smart entrance
 control unit. |
| :--- | :--- | :--- |
| No | Check the following
 - 10A fuse (No. 23, located in fuse block)
 - Harness for open or short between security indicator lamp and fuse. |

DOOR UNLOCK SENSOR CHECK

2	CHECK DOOR UNLOCK SENSOR	
1. Disconnect door unlock sensor connector. 2. Check continuity between door unlock sensor terminals. Continuity: Condition: Locked No Condition: Unlocked Yes		
OK	-	Check the following - Door unlock sensor ground circuit (front door LH/RH and back door) - Harness for open or short between smart entrance control unit and door unlock sensor.
NG	>	Replace door unlock sensor.

THEFT WARNING HORN ALARM CHECK

1	CHECK HORN OPERATION	
Does horn work properly with horn switch?		
Yes or No		
Yes	-	GO TO 2..
No	-	Check horn circuit. Refer to "Wiring Diagram - HORN -", EL-119.

THEFT WARNING HEADLAMP ALARM CHECK

1	CHECK HEADLAMP OPERATION	
Do headlamps operate properly with lighting switch operation?		
Yes or No		
Yes	-	Check harness for open or short between headlamp control unit and smart entrance control unit.
No	-	Check headlamp circuit. Refer to "Wiring Diagram - H/LAMP -", "HEADLAMP (FOR USA)", EL-34 or "Wiring Diagram — DTRL -", "HEADLAMP (FOR CANADA) — DAYTIME LIGHT SYSTEM -", EL-49.

TAIL LAMP RELAY CHECK

$\mathbf{1}$	CHECK TAIL LAMP OPERATION	
Do tail lamps illuminate with lighting switch operation?		
Yes or No		
Yes		Check harness for open or short between smart entrance control unit and tail lamp relay.
No		GO TO 2.

3	CHECK TAIL LAMP RELAY POWER SUPPLY		
Check voltage between tail lamp relay terminals 2,3 and ground.			
		Tail lamp relay connector	
Does battery voltage exist?			
Yes	-	Check tail lamp circuits.	
No	\checkmark	Check harness between tail lamp relay and battery.	

STARTER INTERRUPT SYSTEM CHECK

1	CHECK STARTER MOTOR INTERRUPT SIGNAL	
1. Turn ignition switch ON . 2. Check voltage between smart entrance control unit terminal 28 and ground. Voltage [V]: Except starter interrupted phase Approx. 12 Starter interrupted phase 0 Refer to wiring diagram, EL-260.		
OK	-	GO TO 2.
NG	-	Check the following - 7.5A fuse (No. 39, located in fuse and fusible link box) - Harness for open or short between theft warning relay and fuse - Harness for open or short between smart entrance control unit and theft warning relay.

2	CHECK THEFT WARNING RELAY	
\quad OK or NG		
Check theft warning relay.		
OK		Check system again.
NG		Replace theft warning relay.

SMART ENTRANCE CONTROL UNIT

Description

Description

The following systems are controlled by the smart entrance control unit.

- Illumination control (brightness adjustment)
- Interior room lamp
- Warning chime
- Rear window defogger timer
- Power window and electric sunroof delay timer
- Power door lock
- Multi-remote control system
- Theft warning system

For detailed description and wiring diagrams, refer to the relevant pages for the each system.
The smart entrance control unit receives signals from the switches and sensors to control their corresponding system relays and actuators.

System	Input	Output
Illumination control	Illumination control switch	Combination meter and switch illumination
	Ignition switch (ON) Key switch (inserted) Front door switch LH and RH Sliding door switch LH and RH Back door latch switch LH and RH Lighting switch (interior)	Interior lighting
Warning chime lamp	lgnition switch (ON) Key switch (inserted) Lighting switch (1st) Seat belt buckle switch Front door switch LH	Warning chime (internal)
Rear window defogger timer	lgnition switch (ON) Rear window defogger switch	Rear window defogger relay
Power window and electric	lgnition switch (ON) Front door switch LH	Power window relay
sunroof delay timer	Door lock/unlock switch LH and RH Key switch (inserted) Front door switch LH and RH Sliding door switch LH and RH Front door unlock sensor LH and RH Sliding door unlock sensor LH and RH Front door key cylinder switch LH and RH (lock/ unlock) Back door key cylinder switch (unlock)	Door lock actuators
Power door lock	lgnition switch (ACC) Key switch (inserted) Front door switch LH and RH Sliding door switch LH and RH Back door latch switch LH and RH Front door unlock sensor LH and RH Sliding door unlock sensor LH and RH Back door unlock sensor Remote controller	Door lock actuators
Multi-remote control system	Tail lamp relay	
Interior lighting		
Headlamp control unit		
Memory seat and mirror control unit		

SMART ENTRANCE CONTROL UNIT

Description（Cont＇d）

System	Input	Output
	Ignition switch（ACC，ON） Hood switch Key switch（inserted） Front door switch LH and RH Sliding door switch LH and RH Back door latch switch LH and RH Theft warning system Front door unlock sensor LH and RH Sliding door unlock sensor LH and RH Back door unlock sensor Front door key cylinder switch LH and RH（lock／ unlock） Back door key cylinder switch（unlock）	Horn relay Tail lamp relay Headlamp control unit Security indicator lamp Theft warning relay（starter interrupt）

Tail lamp relay
Headlamp control unit
Security indicator lamp

SMART ENTRANCE CONTROL UNIT

Schematic

Schematic

NDELO122

WEL257

SMART ENTRANCE CONTROL UNIT

Smart Entrance Control Unit Inspection Table
Smart Entrance Control Unit Inspection Table

Terminal No.	Wire color	Connections	Operated condition	Voltage (Approximate values)
1	G/Y	Front door lock actuator LH/RH, sliding door lock actuator, back door lock actuator	Door lock/unlock switch NEUTRAL \rightarrow LOCK	OV \rightarrow 12V
2	B	Actuator ground	-	-
3	W/G	Front door lock actuator LH	Door lock/unlock switch NEUTRAL \rightarrow UNLOCK	OV \rightarrow 12V
4	BR/W	Interior lamps (Zone B)	When interior lamps are operated by smart entrance control unit	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
5	W	Interior lamps (Zone A)	When interior lamps are operated by smart entrance control unit	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
6	OR	Interior lamps (Zone C)	When interior lamps are operated by smart entrance control unit	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
7	LG	Circuit breaker-1 (Battery power)	-	12V
8	W/R	Front door lock actuator LH/RH, sliding door lock actuator LH/RH, back door lock actuator	Door lock/unlock switch NEUTRAL \rightarrow UNLOCK	OV \rightarrow 12V
9	R/W	Front door switch RH	OFF (Closed) \rightarrow ON (Open)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
10	B	Power ground	-	-
11	P/B	Illumination	OFF \rightarrow ON	$\begin{gathered} 0 \mathrm{~V} \rightarrow 3 \mathrm{~V} \text { or } \\ \text { more } \end{gathered}$
13	G/R	Fuse 39 (logic battery power)	-	12 V
14	BR/W	Door ajar warning lamp	OFF (Closed) \rightarrow ON (Open)	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
16	B	Signal ground	-	-
19	R	Front door key cylinder switch LH/RH	OFF (Neutral) \rightarrow ON (Locked)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
20	P	Memory seat and mirror control unit	Remote controller ID code sent to initialize automatic drive positioner	$0 \mathrm{~V} \Leftrightarrow 12 \mathrm{~V}$
21	Y	Horn relay	When doors are locked using remote controller or theft warning system is in alarm phase	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
22	G/B	Rear window defogger relay	OFF \rightarrow ON	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
23	G/R	Rear window defogger switch	OFF \rightarrow ON	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
24	R/W	Back door latch switch LH/RH	OFF (Closed) \rightarrow ON (Open)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
26	GY/R	Tail lamp relay	During remote controller operation or when theft warning system is in alarm phase	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
27	R/B	Front door key cylinder switch LH/RH, back door key cylinder switch	OFF (Neutral) \rightarrow ON (Unlock)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
28	L	Theft warning relay	Theft warning system is in alarm phase	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
29	P/W	Headlamp control unit	Theft warning system is in alarm phase or panic operation is activated	$0 \mathrm{~V} \Leftrightarrow 12 \mathrm{~V}$
30	B/R	Power window relay	OFF \rightarrow ON	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
31	B/P	Hood switch	ON (Open) \rightarrow OFF (Closed)	$0 \mathrm{~V} \rightarrow 1.5 \mathrm{~V}$

SMART ENTRANCE CONTROL UNIT

Smart Entrance Control Unit Inspection Table (Cont'd)

Terminal No.	Wire color	Connections	Operated condition	Voltage (Approximate values)
32	R	Lighting switch (Interior lighting)	OFF (Open) \rightarrow ON (Closed)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
33	L	Illumination control	NEUTRAL \rightarrow DARKER	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
34	R	Front door switch LH	OFF (Closed) \rightarrow ON (Open)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
35	L/OR	Key switch	Ignition key inserted in ignition key cylinder \rightarrow Ignition key removed from ignition key cylinder	$0 \mathrm{~V} \rightarrow 1.5 \mathrm{~V}$
36	LG/R	Ignition switch (ACC)	Ignition switch in ACC position	12V
37	G/Y	Front door lock actuator RH (door unlock sensor)	LOCKED \rightarrow UNLOCKED	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
38	G	Seat belt buckle switch	ON (Unfastened) \rightarrow OFF (Fastened)	$0 \mathrm{~V} \rightarrow 12 \mathrm{~V}$
39	G/OR	Main power window and door lock/ unlock switch, door lock/unlock switch RH	NEUTRAL \rightarrow UNLOCK	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
40	PU	Sliding door lock actuator LH/RH (door unlock sensor)	LOCKED \rightarrow UNLOCKED	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
41	R/G	Sliding door switch LH/RH	OFF (Closed) \rightarrow ON (Open)	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
42	L/R	Illumination control	NEUTRAL \rightarrow LIGHTER	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
43	LG	Ignition switch (ON)	Ignition switch in ON position	12V
45	GY	Security indicator lamp	OFF \rightarrow ON	$12 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
46	R/Y	Front door lock actuator LH (door unlock sensor)	LOCKED \rightarrow UNLOCKED	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
47	G/W	Main power window and door lock/ unlock switch, door lock/unlock switch RH	NEUTRAL \rightarrow LOCK	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$
48	R/L	Back door lock actuator (door unlock sensor)	LOCKED \rightarrow UNLOCKED	$1.5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$

INTEGRATED HOMELINK TRANSMITTER
Wiring Diagram — TRNSMT —
NDELO124

Refer to the following.
M20 - JOINT CONNECTOR

Trouble Diagnoses

DIAGNOSTIC PROCEDURE
SYMPTOM: Transmitter does not activate receiver.
Before conducting the procedure given below, make sure that system receiver (garage door opener, etc.) operates with original hand-held transmitter. If NG, receiver or hand-held transmitter is at fault, not vehicle related.

OK or NG

Does battery voltage exist?

Yes	\searrow	GO TO 4.
No	\searrow	Check fuse 15A fuse (No. 21, located in the fuse block) and repair harness.

INTEGRATED HOMELINK TRANSMITTER

Trouble Diagnoses (Cont'd)

4	CHECK GROUND CIRCUIT		
Check continuity between terminal 2 and ground.		al 2 and ground.	
		Integrated homelink transmitter connector R2 Does continuity exist?	AEL866B
Yes	-	Replace transmitter with sun visor assembly.	
No	-	Repair harness.	

Engine Compartment

Passenger Compartment

NDELO127

How to Read Harness Layout

The following Harness Layouts use a map style grid to help locate connectors on the drawings:

- Main Harness and Body No. 2 Harness
- Engine Room Harness (Engine Compartment)

TO USE THE GRID REFERENCE

1. Find the desired connector number on the connector list.
2. Find the grid reference.
3. On the drawing, find the crossing of the grid reference letter column and number row.
4. Find the connector number in the crossing zone.
5. Follow the line (if used) to the connector.

CONNECTOR SYMBOL
Main symbols of connector (in Harness Layout) are indicated in the below.

Connector type	Water proof type		Standard type	
	Male	Female	Male	Female
- Cavity: Less than 4				
- Relay connector				

Outline

NOTE:
For detailed ground distribution information, refer to "GROUND DISTRIBUTION", EL-20.

Main Harness and Body No. 2 Harness

HARNESS LAYOUT

Main Harness and Body No. 2 Harness (Cont'd)

W／4 ：To（2023

 Do not disconnect these connectors except in the case of
working according to WORK FLOW of TROUBLE DIAGNOSES
in EC and AT sections．
Main harness

Engine Room Harness
 ENGINE COMPARTMENT

AEL216C

Engine Control Harness

ENGINE COMPARTMENT
NDELO132

正

HARNESS LAYOUT
Engine Control Harness (Cont'd)

PASSENGER COMPARTMENT

ENGINE CONTROL SUB HARNESS AND GENERATOR HARNESS

Body Harness

For detailed ground distribution information，refer to＂GROUND DISTRIBUTION＂．
$\left.\begin{array}{rl}\text {（315）}-: \text { ：Body ground } \\ \text {（316）} \mathrm{BR} / 4: \text { Rear blower motor resistor } \\ \text {（with rear A／C）}\end{array}\right\}$

＊（31）W／16：To M62）	（B8）W／2 ：Sliding door step lamp RH
（B2）W／6 ：To M63	（39）B／4 ：Sliding door contact switch RH（pillar）
（33） $\mathrm{W} / 10$ ：To（M64）	（810）$B / 3$ ：Front door switch RH
＊（B4）GY／4 ：Rear heated oxygen sensor（except for California）	（311） $\mathrm{B} / 1$ ：Sliding door switch RH
（B5）W／2 ：To（101）（with RH power seat）	（812）$B / 2$ ：Rear speaker RH
（36）W／2 ：Rear fan switch（rear illumination）（with rear A／C）	（814）$B / 2$ ：Rear blower motor（with rear A / C ）
（B7）W／6 ：Rear fan switch（rear）（with rear A／C）	

Back Door Harness

(300) W/2: Back door latch switch LH
(2) RH R
(0308) GY/3 : Back-up lamp RH
(0309) GY/4 : Rear wiper motor (except for glass hatch model)
(0310) GY/6 : Rear wiper motor (for glass hatch model)
(0311) GY/4 : Back door lock actuator
(0312) $\mathrm{W} / 2$: Back door latch switch RH
(3020) $\mathrm{G} / 2$: Glass hatch latch switch (for glass hatch model)
(1303) GY/4 : Back door key cylinder switch
(0304) GY/3 : Back-up lamp LH
(0305) $\mathrm{W} / 2$: Back door lamp
(0306) W/3 : License lamp

Air Bag Harness

Front Door Harness

LH Door

(D1) $\mathrm{W} / 10: \mathrm{To}$ (M101)
(D2) $\mathrm{W} / 12: \mathrm{TO}$ (M102
(D3) $\mathrm{W} / 16$: TO (M103
(D4) B/2 : Front speaker LH
(D5) B/2 : Memory set switch (with automatic drive positioner)
(D6) W/5 : Door mirror LH
(D7) GY/5 : Door mirror LH (with automatic drive positioner)
(D8) W/2 : Front tweeter LH (except base audio)
(D9) W/8 : Door mirror remote control switch
(D10) W/2 : Diode-2
(D11) GY/4 : Front door key cylinder switch LH
(D12) GY/4 : Front door lock actuator LH
(D13) W/2 : Front step lamp LH
(D14) W/12 : Main power window and door lock/unlock switch
(D14) W/16: Main power window and door lock/unlock switch (with rear power vent windows)
(D15) B/2 : Front power window motor LH

RH Door

(1010) $\mathrm{W} / 16: \mathrm{To}$ (1065
(100) $\mathrm{W} / 10: \mathrm{To}$ (146)
(D103) B/2 : Front speaker RH
(D104) B/2 : Front power window motor RH
(D105) W/5 : Door mirror RH
(D106) GY/5 : Door mirror RH (with automatic drive positioner)
(D107) W/2 : Front tweeter RH (except base audio)
(D108) W/8 : Front power window switch RH
(D109) BR/8 : Door lock/unlock switch RH
(D10) GY/4 : Front door key cylinder switch RH
(D111) GY/4 : Front door lock actuator RH
(D112) W/2 : Front step lamp RH

Sliding Door Harness

LH Door

（840）W／4 ：To contact switch LH
（1402）GY／4 ：Sliding door lock actuator LH

RH Door

（1500）W／4 ：To contact switch RH
（1502）GY／4 ：Sliding door lock actuator RH

Headlamp			
	Item	ANSI \#	Wattage (W)
High/Low (Semi-sealed beam)	9007 (HB5)	$65 / 55$	
Front turn signal	3157 NA	$8.25 / 27$	

Exterior Lamp
NDELO141S02

Item	ANSI \#	Wattage (W)	
	Parking/Cornering lamp	3157	$8.25 / 27$
	Front side marker lamp	194	3.8
Rear combination lamp	Turn signal lamp	3156 K	27
	Stop/Tail lamp	3157 K	$8.25 / 27$
	Rear side marker lamp	168	5
Back-up lamp	3156 K	27	
License plate lamp	194	3.8	
High-mounted stop lamp	912	12.8	

Interior Lamp

Item	ANSI \#	Wattage (W)
Map lamp	578	10
Personal lamp	578	10
Room and luggage compartment lamp	$211-2$	12

WIRING DIAGRAM CODES (CELL CODES)

Use the chart below to find out what each wiring diagram code stands for.
Refer to the wiring diagram code in the alphabetical index to find the location (page number) of each wiring diagram.

Code	Section	Wiring Diagram Name
1STSIG	AT	A/T 1ST Signal
2NDSIG	AT	A/T 2ND Signal
3RDSIG	AT	A/T 3RD Signal
4THSIG	AT	A/T 4TH Signal
A/C, A	HA	Auto Air Conditioner
A/C, M	HA	Manual Air Conditioner
AAC/V	EC	IACV-AAC Valve
ABS	BR	Anti-lock Brake System
AP/SEN	EC	Absolute Pressure Sensor
ASCD	EL	Automatic Speed Control Device
AT/C	EC	A/T Control
ATDIAG	EC	A/T Diagnosis Communication Line
AUDIO	EL	Audio
AUT/DP	EL	Automatic Drive Positioner
BA/FTS	AT	A/T Fluid Temperature Sensor Circuit
BACK/L	EL	Back-up Lamp
BYPS/V	EC	Vacuum Cut Valve Bypass Valve
CANI/V	EC	EVAP Canister Purge Control Solenoid Valve
CHARGE	SC	Charging System
CHIME	EL	Warning Chime
CIGAR	EL	Cigarette Lighter
CKPS	EC	Crankshaft Position Sensor (OBD)
COOL/F	EC	Cooling Fan Control
CORNER	EL	Cornering Lamp
CMPS	EC	Camshaft Position Sensor
D/LOCK	EL	Power Door Lock
DEF	EL	Rear Window Defogger
DTRL	EL	Headlamp — With Daytime Light System -
ECTS	EC	Engine Coolant Temperature Sensor
EGR/TS	EC	EGR Temperature Sensor
EGRC/V	EC	EGRC-solenoid Valve
EGRC1	EC	EGR Function

Code	Section	Wiring Diagram Name
ENGSS	AT	Engine Speed Signal
F/PUMP	EC	Fuel Pump Control
FICD	EC	IACV-FICD Solenoid Valve
FRO2	EC	Front Heated Oxygen Sensor
FRO2/H	EC	Front Heated Oxygen Sensor Heater
FTS	AT	A/T Fluid Temperature Sensor
FTTS	EC	Fuel Tank Temperature Sensor
FUEL	EC	Fuel Injection System Function
H/LAMP	EL	Headlamp
H/MIRR	EL	Heated Mirror
HORN	EL	Horn
IATS	EC	Intake Air Temperature Sensor
IGN/SG	EC	Ignition Signal
ILL	EL	Illumination
INJECT	EC	Injector
INT/L	EL	Interior, Spot, and Tailgate Lamps
KS	EC	Knock Sensor
LPSV	AT	Line Pressure Solenoid Valve
MAFS	EC	Mass Air Flow Sensor
MAIN	AT	Main Power Supply and Ground Circuit
MAIN	EC	Main Power Supply and Ground Circuit
METER	EL	Speedometer, Tachometer, Temp., Oil, and Fuel Gauges
MIL/DL	EC	MIL and Data Link Connectors
MIRROR	EL	Door Mirror
MULTI	EL	Multi-remote Control System
NONDTC	AT	Non-detectable Items
OVRCSV	AT	Overrun Clutch Solenoid Valve
PGC/V	EC	EVAP Canister Purge Volume Control Solenoid Valve
PNP/SW	AT	Park/Neutral Position Switch
PNP/SW	EC	Park/Neutral Position Switch
POWER	EL	Power Supply Routing
PRE/SE	EC	EVAP Control System Pressure Sensor
PST/SW	EC	Power Steering Oil Pressure Switch
RRO2	EC	Rear Heated Oxygen Sensor

Code	Section	Wiring Diagram Name
RRO2/H	EC	Rear Heated Oxygen Sensor Heater
S/SIG	EC	Start Signal
SEAT	EL	Power Seat
SECU	EL	Smart Entrance Control Unit
SHIFT	AT	A/T Shift Lock System
SROOF	EL	Sunroof
SRS	RS	Supplemental Restraint System
SSV/A	AT	Shift Solenoid Valve A
SSV/B	AT	Shift Solenoid Valve B
START	SC	Starting System
STOP/L	EL	Stop lamp
SW/V	EC	MAP/BARO Switch Solenoid Valve
TAIL/L	EL	Parking, License and Tail Lamps
TCCSIG	AT	A/T TCC Signal (Lock up)
TCV	AT	Torque Converter Clutch Solenoid Valve
THEFT	EL	Theft Warning System
TP/SW	EC	Throttle Position Switch
TPS	AT	Throttle Position Sensor
TPS	EC	Throttle Position Sensor
TRNSMT	EL	Integrated HOMELINK (ill Transmitter
T/TOW	EL	Trailer Tow
TURN	EL	Turn Signal and Hazard Warning Lamps
VENT/V	EC	EVAP Canister Vent Control Valve
VSS	EC	Vehicle Speed Sensor
VSSAT	AT	Vehicle Speed Sensor A/T (Revolution Sensor)
VSSMTR	AT	Vehicle Speed Sensor MTR
WARN	EL	Warning Lamps
WINDOW	EL	Power Window
WIP/R	EL	Rear Wiper and Washer (Except for Glass Hatch Model)
WIP/R	EL	Rear Wiper and Washer (For Glass Hatch Model)
WIPER	EL	Front Wiper and Washer

[^0]: ＊：This connector is not shown in＂HARNESS LAYOUT＂of EL section．

[^1]: *: This connector is not shown in "HARNESS LAYOUT".

[^2]: *: When power and ground is supplied, valve is closed.
 **: When power and ground is supplied, valve is open.

