

 D

Е

CONTENTS

VQ40DE	EVAPORATIVE EMISSION SYSTEM39
BASIC INSPECTION8	Description39
DASIC INSPECTION8	INTAKE VALVE TIMING CONTROL42
DIAGNOSIS AND REPAIR WORKFLOW 8	Description42
Trouble Diagnosis Introduction8	·
INCRECTION AND AD HISTMENT	VARIABLE INDUCTION AIR SYSTEM43
INSPECTION AND ADJUSTMENT14	Description43
Basic Inspection	Vacuum Hose Drawing45
Idle Speed and Ignition Timing Check	ON BOARD DIAGNOSTIC (OBD) SYSTEM46
Procedure After Replacing ECM18 VIN Registration19	Introduction46
Accelerator Pedal Released Position Learning19	Two Trip Detection Logic46
Throttle Valve Closed Position Learning19	Emission-related Diagnostic Information47
Idle Air Volume Learning19	Malfunction Indicator Lamp (MIL)66
Idle All Voldine Learning19	OBD System Operation Chart69
FUNCTION DIAGNOSIS22	CONSULT-III Function (ENGINE)74
	Generic Scan Tool (GST) Function82
ENGINE CONTROL SYSTEM22	,
System Diagram22	COMPONENT DIAGNOSIS84
Engine Control Component Parts Location23	TROUBLE BLACKIONS ORFOLEIGATION
MULTIPORT FUEL INJECTION SYSTEM30	TROUBLE DIAGNOSIS - SPECIFICATION
	VALUE84
System Description30	Description84
ELECTRIC IGNITION SYSTEM33	Testing Condition84
System Description	Inspection Procedure84
	Diagnosis Procedure84
AIR CONDITIONING CUT CONTROL34	POWER SUPPLY AND GROUND CIRCUIT92
Input/Output Signal Chart34	Diagnosis Procedure92
System Description34	Ground Inspection95
AUTOMATIC SPEED CONTROL DEVICE	
	U0101 CAN COMM CIRCUIT96
(ASCD)35	Description96
System Description	On Board Diagnosis Logic96
Component Description36	DTC Confirmation Procedure96
CAN COMMUNICATION37	Diagnosis Procedure96
System Description37	LIAGOA CAN COMM CIDCUIT
System Besonption	U1001 CAN COMM CIRCUIT97
COOLING FAN CONTROL38	Description
Description38	On Board Diagnosis Logic97
•	DTC Confirmation Procedure97

Diagnosis Procedure	97	P0117, P0118 ECT SENSOR	128
DOGGA BOOGA IVIT CONTROL	20	Component Description	128
P0011, P0021 IVT CONTROL		On Board Diagnosis Logic	128
On Board Diagnosis Logic		DTC Confirmation Procedure	129
DTC Confirmation Procedure		Diagnosis Procedure	129
Diagnosis Procedure		Component Inspection	130
Component Inspection	100	D0422 D0422 TD SENSOD	400
P0031, P0032, P0051, P0052 A/F SENS	OR 1	P0122, P0123 TP SENSOR Component Description	
HEATER		On Board Diagnosis Logic	
Description		DTC Confirmation Procedure	
On Board Diagnosis Logic			
DTC Confirmation Procedure		Diagnosis Procedure	
Diagnosis Procedure		Component Inspection	135
Component Inspection		P0125 ECT SENSOR	136
		Component Description	
P0037, P0038, P0057, P0058 HO2S2 H	EAT-	On Board Diagnosis Logic	
ER	104	DTC Confirmation Procedure	
Description	104	Diagnosis Procedure	
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure		Component mopestion	
Diagnosis Procedure		P0127 IAT SENSOR	139
Component Inspection		Component Description	139
		On Board Diagnosis Logic	
P0075, P0081 IVT CONTROL SOLENO	ID	DTC Confirmation Procedure	
VALVE	108	Diagnosis Procedure	
Component Description	108	Component Inspection	
On Board Diagnosis Logic	108	·	
DTC Confirmation Procedure		P0128 THERMOSTAT FUNCTION	142
Diagnosis Procedure		On Board Diagnosis Logic	142
Component Inspection		DTC Confirmation Procedure	142
·		Diagnosis Procedure	142
P0101 MAF SENSOR		Component Inspection	143
Component Description		D0400 D0450 A/E 05N00D 4	
On Board Diagnosis Logic		P0130, P0150 A/F SENSOR 1	
DTC Confirmation Procedure		Component Description	
Overall Function Check		On Board Diagnosis Logic	
Diagnosis Procedure	113	DTC Confirmation Procedure	
Component Inspection	115	Overall Function Check	
DO402 DO402 MAE SENSOD	447	Diagnosis Procedure	145
P0102, P0103 MAF SENSOR		P0131, P0151 A/F SENSOR 1	148
Component Description		Component Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnosis Procedure		Diagnosis Procedure	
Component Inspection	119	Diagnosis i roccadio	
P0112, P0113 IAT SENSOR	122	P0132, P0152 A/F SENSOR 1	152
Component Description		Component Description	152
On Board Diagnosis Logic		On Board Diagnosis Logic	152
DTC Confirmation Procedure		DTC Confirmation Procedure	152
Diagnosis Procedure		Diagnosis Procedure	153
Component Inspection		•	
·		P0133, P0153 A/F SENSOR 1	
P0116 ECT SENSOR	125	Component Description	
Component Description	125	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnosis Procedure	157
Diagnosis Procedure		D0427 D0467 H0000	
Component Inspection		P0137, P0157 HO2S2	
•		Component Description	161

0 B 1B' 11 1			
On Board Diagnosis Logic	161	P0327, P0328, P0332, P0333 KS	
DTC Confirmation Procedure		Component Description	
Overall Function Check		On Board Diagnosis Logic	
Diagnosis Procedure		DTC Confirmation Procedure	
Component Inspection	165	Diagnosis Procedure	
P0138, P0158 HO2S2	167	Component Inspection	212
Component Description		P0335 CKP SENSOR (POS)	242
On Board Diagnosis Logic	167	Component Description	213
DTC Confirmation Procedure		On Board Diagnosis Logic	
Overall Function Check		DTC Confirmation Procedure	
Diagnosis Procedure			
Component Inspection		Diagnosis Procedure	
Component inspection	173	Component Inspection	215
P0139, P0159 HO2S2	175	P0340, P0345 CMP SENSOR (PHASE)	217
Component Description		Component Description	
On Board Diagnosis Logic	175	On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Overall Function Check		Diagnosis Procedure	
Diagnosis Procedure		Component Inspection	
Component Inspection	179		0
	F	P0420, P0430 THREE WAY CATALYST	
P0171, P0174 FUEL INJECTION SYSTEM		FUNCTION	
FUNCTION		On Board Diagnosis Logic	221
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure	181	Overall Function Check	222
Diagnosis Procedure	182	Diagnosis Procedure	222
DO472 DO475 ELIEL IN JECTION SYSTEM		20444 EVAD CONTROL OVOTEM	
P0172, P0175 FUEL INJECTION SYSTEM FUNCTION		P0441 EVAP CONTROL SYSTEM	
		System Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnosis Procedure	100	Overall Function Check	
P0181 FTT SENSOR	193	Diagnosis Procedure	
Component Description		Component Inspection	230
On Board Diagnosis Logic		P0442 EVAP CONTROL SYSTEM	231
DTC Confirmation Procedure		On Board Diagnosis Logic	
Diagnosis Procedure		DTC Confirmation Procedure	
Component Inspection		Diagnosis Procedure	
Component inoposition	100	Component Inspection	
P0182, P0183 FTT SENSOR		·	
Component Description	196 F	P0443 EVAP CANISTER PURGE VOLUME	
On Board Diagnosis Logic	196 (CONTROL SOLENOID VALVE	238
DTC Confirmation Procedure	196	Description	238
Diagnosis Procedure	196	On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
·		Diagnosis Procedure	
P0222, P0223 TP SENSOR		Component Inspection	
Component Description		·	
On Board Diagnosis Logic		P0444, P0445 EVAP CANISTER PURGE	
DTC Confirmation Procedure		OLUME CONTROL SOLENOID VALVE	243
Diagnosis Procedure		Description	243
Component Inspection	202	On Board Diagnosis Logic	
D0200 D0204 D0202 D0204 D0204		DTC Confirmation Procedure	
P0300, P0301, P0302, P0303, P0304, P0305,		Diagnosis Procedure	244
P0306 MISFIRE		Component Inspection	
On Board Diagnosis Logic		·	
DTC Confirmation Procedure		P0447 EVAP CANISTER VENT CONTROL	
Diagnosis Procedure	204	/ALVE	246

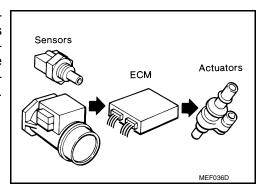
Component Description	246	Overall Function Check	284
On Board Diagnosis Logic	246	Diagnosis Procedure	285
DTC Confirmation Procedure			
Diagnosis Procedure		P0462, P0463 FUEL LEVEL SENSOR	
Component Inspection		Component Description	
		On Board Diagnosis Logic	
P0448 EVAP CANISTER VENT CONTROL	-	DTC Confirmation Procedure	286
VALVE	250	Diagnosis Procedure	286
Component Description	250	D0500 1/00	
On Board Diagnosis Logic	250	P0500 VSS	
DTC Confirmation Procedure	250	Description	
Diagnosis Procedure	251	On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
·		Overall Function Check	
P0451 EVAP CONTROL SYSTEM PRES-		Diagnosis Procedure	289
SURE SENSOR		P0506 ISC SYSTEM	200
Component Description	255		
On Board Diagnosis Logic	255	Description	
DTC Confirmation Procedure	255	On Board Diagnosis Logic	
Diagnosis Procedure	255	DTC Confirmation Procedure	
Component Inspection	256	Diagnosis Procedure	290
		P0507 ISC SYSTEM	292
P0452 EVAP CONTROL SYSTEM PRES-		Description	
SURE SENSOR		On Board Diagnosis Logic	
Component Description	258	DTC Confirmation Procedure	
On Board Diagnosis Logic	258	Diagnosis Procedure	
DTC Confirmation Procedure	258	Diagnosis Frocedure	292
Diagnosis Procedure	259	P050E COLD START CONTROL	294
Component Inspection	261	Description	
		On Board Diagnosis Logic	
P0453 EVAP CONTROL SYSTEM PRES-		DTC Confirmation Procedure	
SURE SENSOR	262	Diagnosis Procedure	
Component Description	262	Blagheole i roocaaro	200
On Board Diagnosis Logic		P0550 PSP SENSOR	296
DTC Confirmation Procedure		Component Description	296
Diagnosis Procedure	263	On Board Diagnosis Logic	296
Component Inspection	266	DTC Confirmation Procedure	296
DO ASS EVAD CONTROL OVETEN		Diagnosis Procedure	296
P0455 EVAP CONTROL SYSTEM		Component Inspection	
On Board Diagnosis Logic			
DTC Confirmation Procedure		P0603 ECM POWER SUPPLY	
Diagnosis Procedure		Component Description	
Component Inspection	272	On Board Diagnosis Logic	
P0456 EVAP CONTROL SYSTEM	274	DTC Confirmation Procedure	299
		Diagnosis Procedure	299
On Board Diagnosis Logic		D0005 F014	
DTC Confirmation Procedure		P0605 ECM	
Overall Function Check		Component Description	
Diagnosis Procedure		On Board Diagnosis Logic	
Component Inspection	281	DTC Confirmation Procedure	
P0460 FUEL LEVEL SENSOR	282	Diagnosis Procedure	302
Component Description		DOGOZ ECM	202
On Board Diagnosis Logic		P0607 ECM	
DTC Confirmation Procedure		Description	
		On Board Diagnosis Logic	
Diagnosis Procedure	282	DTC Confirmation Procedure	
P0461 FUEL LEVEL SENSOR	284	Diagnosis Procedure	303
Component Description		P0643 SENSOR POWER SUPPLY	20.4
On Board Diagnosis Logic			
on board bidgirosis Logio	204	On Board Diagnosis Logic	ა∪4

DTC Confirmation Procedure304	DTC Confirmation Procedure	330
Diagnosis Procedure304	Diagnosis Procedure	330
DOSED DND CWITCH	Component Inspection	332
P0850 PNP SWITCH307	P1554 BATTERY CURRENT SENSOR	224
Component Description		
On Board Diagnosis Logic	Component Description	
DTC Confirmation Procedure	On Board Diagnosis Logic	
Overall Function Check	Overall Function Check	
Diagnosis Procedure	Diagnosis Procedure	
P1148, P1168 CLOSED LOOP CONTROL311	Component Inspection	336
On Board Diagnosis Logic311	P1564 ASCD STEERING SWITCH	338
	Component Description	
P1211 TCS CONTROL UNIT312	On Board Diagnosis Logic	
Description312	DTC Confirmation Procedure	
On Board Diagnosis Logic312	Diagnosis Procedure	
DTC Confirmation Procedure312	Component Inspection	
Diagnosis Procedure312		
	P1572 ASCD BRAKE SWITCH	
P1212 TCS COMMUNICATION LINE313	Component Description	342
Description	On Board Diagnosis Logic	
On Board Diagnosis Logic	DTC Confirmation Procedure	
DTC Confirmation Procedure	Diagnosis Procedure	343
Diagnosis Procedure313	Component Inspection	
P1217 ENGINE OVER TEMPERATURE 314	·	
	P1574 ASCD VEHICLE SPEED SENSOR.	
On Board Diagnosis Logic	Component Description	
Overall Function Check	On Board Diagnosis Logic	
Diagnosis Procedure	DTC Confirmation Procedure	
Main 12 Causes of Overheating316	Diagnosis Procedure	351
P1225 TP SENSOR318	P1715 INPUT SPEED SENSOR	353
Component Description318	Description	
On Board Diagnosis Logic318	On Board Diagnosis Logic	
DTC Confirmation Procedure	Diagnosis Procedure	
Diagnosis Procedure318	Diagnosis i roccaire	
-	P1800 VIAS CONTROL SOLENOID VALVE	1. 354
P1226 TP SENSOR320	Component Description	354
Component Description320	On Board Diagnosis Logic	354
On Board Diagnosis Logic320	DTC Confirmation Procedure	
DTC Confirmation Procedure320	Diagnosis Procedure	354
Diagnosis Procedure320	Component Inspection	
P1550 BATTERY CURRENT SENSOR322	DAGGE DDAKE OMITOU	
Component Description	P1805 BRAKE SWITCH	
On Board Diagnosis Logic	Description	357
DTC Confirmation Procedure	On Board Diagnosis Logic	357
	DTC Confirmation Procedure	
Diagnosis Procedure	Diagnosis Procedure	
Component Inspection324	Component Inspection	359
P1551, P1552 BATTERY CURRENT SEN-	P2100, P2103 THROTTLE CONTROL MO-	
SOR326	TOR RELAY	360
Component Description	Component Description	
On Board Diagnosis Logic		
DTC Confirmation Procedure	On Board Diagnosis Logic	
Diagnosis Procedure	DTC Confirmation Procedure	
Component Inspection	Diagnosis Procedure	360
	P2101 ELECTRIC THROTTLE CONTROL	
P1553 BATTERY CURRENT SENSOR330	FUNCTION	363
Component Description330	Description	
On Board Diagnosis Logic	On Board Diagnosis Logic	
	on board bidgitoolo Logio	

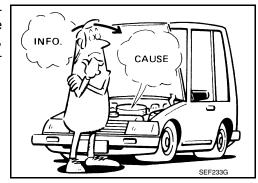
DTC Confirmation Procedure		COOLING FAN	
Diagnosis Procedure		Description	
Component Inspection	366	Diagnosis Procedure	
P2118 THROTTLE CONTROL MOTOR	367	Component Inspection	401
Component Description	367	ELECTRICAL LOAD SIGNAL	402
On Board Diagnosis Logic		Description	
DTC Confirmation Procedure		Diagnosis Procedure	
Diagnosis Procedure			
Component Inspection		FUEL INJECTOR	404
		Component Description	404
P2119 ELECTRIC THROTTLE CONTROL		Diagnosis Procedure	404
ACTUATOR	369	Component Inspection	407
Component Description		FUEL DUMP	
On Board Diagnosis Logic		FUEL PUMP	
DTC Confirmation Procedure		Description	
Diagnosis Procedure	370	Diagnosis Procedure	
P2122, P2123 APP SENSOR	271	Component Inspection	411
Component Description		IGNITION SIGNAL	412
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		Diagnosis Procedure	
Diagnosis Procedure		Component Inspection	
Component Inspection		·	
Component inspection	575	ON BOARD REFUELING VAPOR RECOV-	
P2127, P2128 APP SENSOR	374	ERY (ORVR)	
Component Description	374	System Description	
On Board Diagnosis Logic	374	Diagnosis Procedure	
DTC Confirmation Procedure		Component Inspection	420
Diagnosis Procedure	374	POSITIVE CRANKCASE VENTILATION	422
Component Inspection	377	Description	
P2135 TP SENSOR	270	Component Inspection	
		Component morecular	722
Component Description		REFRIGERANT PRESSURE SENSOR	424
On Board Diagnosis Logic DTC Confirmation Procedure		Component Description	424
Diagnosis Procedure		Diagnosis Procedure	424
Component Inspection			
Component inspection	301	VIAS	
P2138 APP SENSOR	382	Diagnosis Procedure	
Component Description	382	Component Inspection	429
On Board Diagnosis Logic		ECU DIAGNOSIS	121
DTC Confirmation Procedure	382	LOO DIAGNOOIO	43 1
Diagnosis Procedure	383	ECM	431
Component Inspection		CONSULT-III Reference Value in Data Monitor	
		Mode	431
P2A00, P2A03 A/F SENSOR 1		ECM Harness Connector Terminal Layout	
Component Description		ECM Terminal and Reference Value	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Fail-Safe Chart	
Diagnosis Procedure	387	DTC Inspection Priority Chart	
ASCD BRAKE SWITCH	301	DTC Index	
Component Description		Emission-related Diagnostic Information	
Diagnosis Procedure		•	
Component Inspection		SYMPTOM DIAGNOSIS	489
Component inspection		ENGINE CONTROL SYSTEM SYMPTOMS.	400
ASCD INDICATOR	399		
Component Description	399	Symptom Matrix Chart	489
Diagnosis Procedure	399	NORMAL OPERATING CONDITION	493

Fuel Cut Control (at No Load and High Engine	ON-VEHICLE REPAIR50	
Speed)	EVAP CANISTER50	·3
PRECAUTION494	Component Inspection50	
PRECAUTIONS494	Removal and Installation50	3 E
Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TEN-SIONER"494	SERVICE DATA AND SPECIFICATIONS (SDS)50	4
Precaution for Procedure without Cowl Top Cover. 494 On Board Diagnosis (OBD) System of Engine and	SERVICE DATA AND SPECIFICATIONS (SDS)50	4
A/T	Fuel Pressure50 Idle Speed and Ignition Timing50	
PREPARATION498	Calculated Load Value50 Mass Air Flow Sensor50	4
PREPARATION498	Intake Air Temperature Sensor50	4
Special Service Tool498	Engine Coolant Temperature Sensor50	
Commercial Service Tool499	Air Fuel Ratio (A/F) Sensor 1 Heater50 Heated Oxygen sensor 2 Heater50	
ON-VEHICLE MAINTENANCE 500	Crankshaft Position Sensor (POS)50	•
	Camshaft Position Sensor (PHASE)50	
FUEL PRESSURE500	Throttle Control Motor50	
Fuel Pressure Check500	Fuel Injector50	
EVAP LEAK CHECK502 How to Detect Fuel Vapor Leakage502	Fuel Pump50	5 -
		ŀ
		ı
		I.
		N
		1
		(

INFOID:0000000005569450

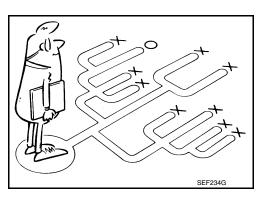

BASIC INSPECTION

DIAGNOSIS AND REPAIR WORKFLOW

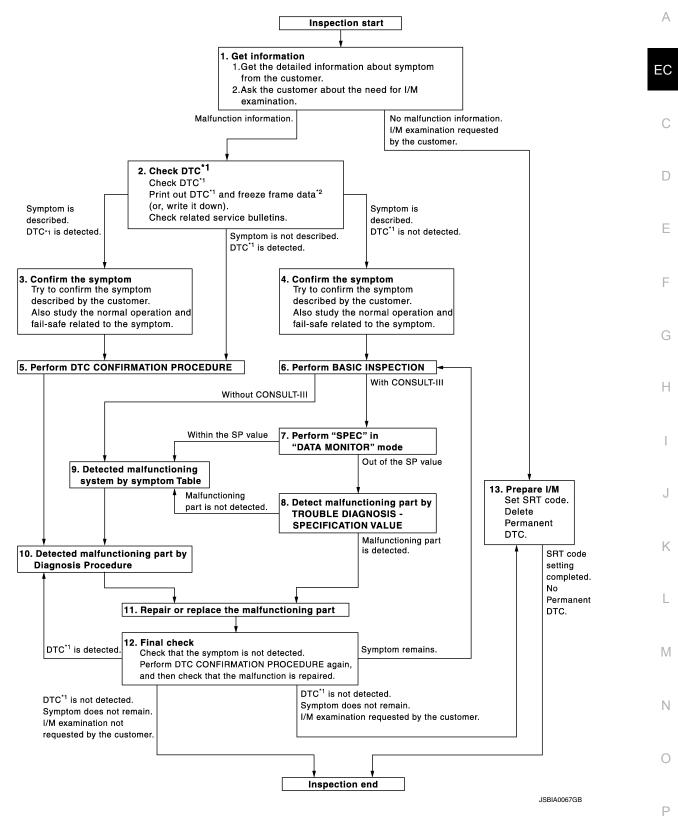

Trouble Diagnosis Introduction

INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.


It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the incidents. A road test with CONSULT-III (or GST) or a circuit tester connected should be performed. Follow the Work Flow on "Work Flow".


Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on "Worksheet Sample" should be used.

Start your diagnosis by looking for conventional malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

WORK FLOW

Overall Sequence

^{*1:} Include 1st trip DTC.

Detailed Flow

1.GET INFORMATION FOR SYMPTOM

^{*2:} Include 1st trip freeze frame data.

< BASIC INSPECTION > [VQ40DE]

1. Get the detailed information from the customer about the symptom (the condition and the environment when the incident/malfunction occurred) using the "Diagnostic Work Sheet".

2. Ask if the customer requests I/M examination.

Malfunction information, obtained>>GO TO 2.

No malfunction information, but a request for I/M examination>>GO TO 13.

2.check dtc

- 1. Check DTC.
- Perform the following procedure if DTC is displayed.
- Record DTC and freeze frame data. (Print them out with CONSULT-III or GST.)
- Erase DTC. (Refer to EC-47, "Emission-related Diagnostic Information", .)
- Study the relationship between the cause detected by DTC and the symptom described by the customer. (Symptom Table is useful. Refer to EC-489, "Symptom Matrix Chart".)
- 3. Check related service bulletins for information.

Are any symptoms described and any DTCs detected?

Symptom is described, DTC is detected>>GO TO 3.

Symptom is described, DTC is not detected>>GO TO 4.

Symptom is not described, DTC is detected>>GO TO 5.

3.CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer (except MIL ON).

Also study the normal operation and fail-safe related to the symptom.

Diagnosis Work Sheet is useful to verify the incident.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 5.

4. CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer.

Also study the normal operation and fail-safe related to the symptom.

Diagnosis Work Sheet is useful to verify the incident.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 6.

5. PERFORM DTC CONFIRMATION PROCEDURE

Perform DTC CONFIRMATION PROCEDURE for the displayed DTC, and then make sure that DTC is detected again.

If two or more DTCs are detected, refer to <u>EC-464, "DTC Inspection Priority Chart"</u> and determine trouble diagnosis order.

NOTE:

- · Freeze frame data is useful if the DTC is not detected.
- Perform Component Function Check if DTC CONFIRMATION PROCEDURE is not included on Service Manual. This simplified check procedure is an effective alternative though DTC cannot be detected during this check.

If the result of Component Function Check is NG, it is the same as the detection of DTC by DTC CONFIR-MATION PROCEDURE.

Is DTC detected?

YES >> GO TO 10.

NO >> Check according to GI-33, "Work Flow".

6.PERFORM BASIC INSPECTION

Perform EC-14, "Basic Inspection".

Do you have CONSULT-III?

YES >> GO TO 7.

NO >> GO TO 9.

[VQ40DE] < BASIC INSPECTION > 7.PERFORM SPEC IN DATA MONITOR MODE Α (P) With CONSULT-III Make sure that "MAS A/F SE-B1", "MAS A/F SE-B2", "B/FUEL SCHDL", "A/F ALPHA-B1", and "A/F ALPHA-B2" are within the SP value using CONSULT-III "SPEC" in "DATA MONITOR" mode. Refer to EC-84, "Inspec-EC Is the measurement value within the SP value? YES >> GO TO 9. NO >> GO TO 8. 8.DETECT MALFUNCTIONING PART BY TROUBLE DIAGNOSIS - SPECIFICATION VALUE D Detect malfunctioning part according to EC-84, "Diagnosis Procedure". Is a malfunctioning part detected? YES >> GO TO 11. Е NO >> GO TO 9. 9. DETECT MALFUNCTIONING SYSTEM BY SYMPTOM TABLE Detect malfunctioning system according to EC-489, "Symptom Matrix Chart" based on the confirmed symptom in step 4, and determine the trouble diagnosis order based on possible causes and symptoms. >> GO TO 10. 10.DETECT MALFUNCTIONING PART BY DIAGNOSIS PROCEDURE Inspect according to Diagnosis Procedure of the system. Н NOTE: The Diagnosis Procedure in EC section described based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnosis Procedure. For details, refer to GI-33, "Work Flow". Is a malfunctioning part detected? YES >> GO TO 11. NO >> Monitor input data from related sensors or check voltage of related ECM terminals using CON-SULT-III. Refer to EC-434, "ECM Terminal and Reference Value", EC-431, "CONSULT-III Reference Value in Data Monitor Mode". 11. REPAIR OR REPLACE THE MALFUNCTIONING PART K Repair or replace the malfunctioning part. 2. Reconnect parts or connectors disconnected during Diagnosis Procedure again after repair and replace-Check DTC. If DTC is displayed, erase it. Refer to EC-47, "Emission-related Diagnostic Information". >> GO TO 12. M 12. FINAL CHECK When DTC was detected in step 2, perform DTC CONFIRMATION PROCEDURE or Component Function Check again, and then make sure that the malfunction have been completely repaired. Ν When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure that the symptom is not detected. Is DTC detected and does symptom remain? 0 YES-1 >> DTC is detected: GO TO 10. YES-2 >> Symptom remains: GO TO 6. NO-1 >> No request for I/M examination from the customer. Before returning the vehicle to the customer, always erase unnecessary DTC in ECM and TCM (Transmission Control Module). Refer to EC-47, "Emission-related Diagnostic Information". NO-2 >> I/M examination, requested from the customer: GO TO 13. 13.PREPARE FOR I/M EXAMINATION Set SRT codes. Refer to EC-47, "Emission-related Diagnostic Information".

Revision: July 2009 EC-11 2010 Xterra

Erase permanent DTCs. Refer to EC-47, "Emission-related Diagnostic Information".

< BASIC INSPECTION > [VQ40DE]

>> INSPECTION END

DIAGNOSTIC WORKSHEET

Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about symptoms. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to illuminate or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,

Symptoms

SEF907L

< BASIC INSPECTION > [VQ40DE]

Worksheet Sample

Customer nar	me MR/MS	Model & Year	VIN	
Engine #		Trans. Mileage		
Incident Date		Manuf. Date	In Service Date	
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire☐ Fuel filler cap was left off or incorrectly	y screwed on.	
	☐ Startability	☐ Impossible to start ☐ No combustion ☐ Partial combustion ☐ Partial combustion affected by throttle position ☐ Partial combustion NOT affected by throttle position ☐ Possible but hard to start ☐ Others [
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle ☐ Low idle	
, '	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfir☐ Others [☐ Lack of power re]	
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerating ☐ Just after stopping ☐ While loading		
Incident occu	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime		
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes		
Weather cond	ditions	☐ Not affected		
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others []	
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold ☐ Humid °F	
Engine condit	tions	Engine speed	After warm-up	
		0 2,000 4,000 6,000 8,000 rpm		
Road condition	ons	☐ In town ☐ In suburbs ☐ Highway ☐ Off road (up/down)		
Driving condi	tions	□ Not affected □ At starting □ While idling □ While accelerating □ While cruis □ While decelerating □ While turning	•	
		Vehicle speed 0 10 20 30 40 50 60 MPH		
Malfunction in	ndicator lamp	☐ Turned on ☐ Not turned on		

 \mathbb{N}

Α

EC

С

 D

Е

F

G

Н

J

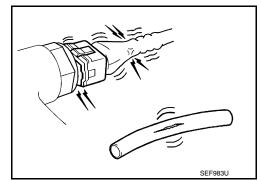
Κ

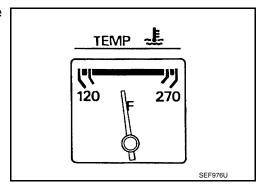
L

0

Р

Revision: July 2009 EC-13 2010 Xterra

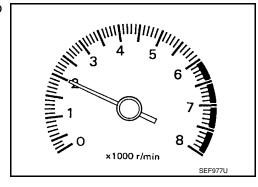

Ν


LEC031A

Basic Inspection

1.INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leakage
- Air cleaner clogging
- Gasket
- 3. Check that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine stays below 1,000 rpm.



- 5. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 6. Check that no DTC is displayed with CONSULT-III or GST.

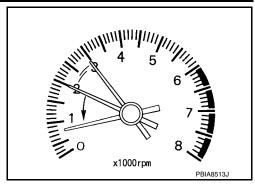
OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3.


3. CHECK TARGET IDLE SPEED

(P) With CONSULT-III

1. Run engine at about 2,000 rpm for about 2 minutes under no load.

[VQ40DE] < BASIC INSPECTION >

Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.

Read idle speed in "DATA MONITOR" mode with CONSULT-III. Refer to EC-18, "Idle Speed and Ignition Timing Check".

> M/T: 625 \pm 50 rpm (in Neutral position) A/T: 625 ± 50 rpm (in P or N position)

⋈ Without CONSULT-III

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed. Refer to EC-18, "Idle Speed and Ignition Timing Check".

M/T: 625 \pm 50 rpm (in Neutral position) A/T: 625± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

f 4.PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- Perform EC-19, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

${f 5}$. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-19, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6.PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-19, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

>> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7.CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Read idle speed in "DATA MONITOR" mode with CONSULT-III. Refer to EC-18, "Idle Speed and Ignition Timing Check".

M/T: 625 \pm 50 rpm (in Neutral position) A/T: 625± 50 rpm (in P or N position)

EC-15 2010 Xterra Revision: July 2009

Α

EC

D

Н

K

M

N

0

Е

< BASIC INSPECTION > (**) Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Check idle speed.

Refer to EC-18, "Idle Speed and Ignition Timing Check".

M/T: 625 ± 50 rpm (in Neutral position) A/T: 625 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-218</u>, "Diagnosis Procedure".
- Check crankshaft position sensor (POS) and circuit. Refer to EC-213, "Diagnosis Procedure".

OK or NG

OK >> GO TO 9.

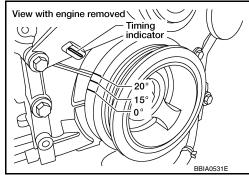
NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

- Substitute with non-malfunctioning ECM to check ECM function. (ECM may be the cause of the incident, although this is rare.)
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".

>> GO TO 4.


10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- Check ignition timing with a timing light.
 Refer to EC-18, "Idle Speed and Ignition Timing Check".

M/T: $15\pm5^{\circ}$ BTDC (in Neutral position) A/T: $15\pm5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 11.

2010 Xterra

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-19. "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-19, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-19, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

IVQ40DE1 < BASIC INSPECTION > Yes or No Α >> GO TO 14. Yes No >> 1. Follow the instruction of Idle Air Volume Learning. 2. GO TO 4. 14. CHECK TARGET IDLE SPEED AGAIN EC (P) With CONSULT-III Start engine and warm it up to normal operating temperature. Read idle speed in "DATA MONITOR" mode with CONSULT-III. Refer to EC-18, "Idle Speed and Ignition Timing Check". M/T: 625 \pm 50 rpm (in Neutral position) D A/T: 625 ± 50 rpm (in P or N position) Without CONSULT-III Е Start engine and warm it up to normal operating temperature. Check idle speed. Refer to EC-18, "Idle Speed and Ignition Timing Check". M/T: 625 ± 50 rpm (in Neutral position) A/T: 625 ± 50 rpm (in P or N position) OK or NG OK >> GO TO 15. NG >> GO TO 17. 15.check ignition timing again 1. Run engine at idle. Check ignition timing with a timing light. Refer to EC-18, "Idle Speed and Ignition Timing Check". View with engine removed \ \\\ Timing indicator M/T: 15± 5° BTDC (in Neutral position) A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position) OK or NG OK >> GO TO 19. NG >> GO TO 16. 16. CHECK TIMING CHAIN INSTALLATION Check timing chain installation. Refer to EM-59, "Removal and Installation". OK or NG OK >> GO TO 17. >> 1. Repair the timing chain installation. NG N GO TO 4. 17. DETECT MALFUNCTIONING PART Check the following. Check camshaft position sensor (PHASE) and circuit. Refer to EC-218, "Diagnosis Procedure" • Check crankshaft position sensor (POS) and circuit. Refer to EC-213, "Diagnosis Procedure". OK or NG Р OK >> GO TO 18. NG >> 1. Repair or replace. GO TO 4. 18. CHECK ECM FUNCTION

Revision: July 2009 EC-17 2010 Xterra

although this is rare.)

Substitute with non-malfunctioning ECM to check ECM function. (ECM may be the cause of the incident,

< BASIC INSPECTION > [VQ40DE]

2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".

>> GO TO 4.

19. INSPECTION END

Did you replace the ECM, referring this Basic Inspection Procedure?

Yes or No

Yes >> 1. Perform <u>EC-19</u>, "VIN Registration".

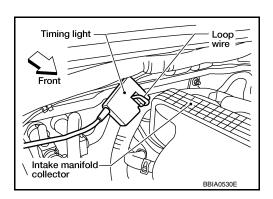
2. INSPECTION END

No >> INSPECTION END

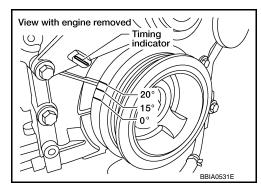
Idle Speed and Ignition Timing Check

INFOID:0000000005267335

IDLE SPEED


(P)With CONSULT-III

Check idle speed in "DATA MONITOR" mode with CONSULT-III.


Check idle speed with GST.

IGNITION TIMING

1. Attach timing light to loop wire as shown.

2. Check ignition timing.

Procedure After Replacing ECM

INFOID:0000000005267336

When replacing ECM, the following procedure must be performed.

- Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to <u>SEC-7. "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement"</u>.
- Perform EC-19, "VIN Registration".
- 3. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-19, "Throttle Valve Closed Position Learning".
- 5. Perform EC-19, "Idle Air Volume Learning".

INSPECTION AND ADJUSTMENT [VQ40DE] < BASIC INSPECTION > VIN Registration INFOID:000000005267337 Α DESCRIPTION VIN Registration is an operation to register VIN in ECM. It must be performed each time ECM is replaced. EC NOTE: Accurate VIN which is registered in ECM may be required for Inspection & Maintenance (I/M). **OPERATION PROCEDURE** (P) With CONSULT-III Check the VIN of the vehicle and note it. Refer to GI-21, "Identification Number". Turn ignition switch ON engine stopped. D Select "VIN REGISTRATION" in "WORK SUPPORT" mode. Follow the instruction on the CONSULT-III display. Е Accelerator Pedal Released Position Learning INFOID:000000005267338 DESCRIPTION Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of the accelerator pedal position sensor or ECM is disconnected. OPERATION PROCEDURE 1. Check that accelerator pedal is fully released. Н 2. Turn ignition switch ON and wait at least 2 seconds. Turn ignition switch OFF and wait at least 10 seconds. Turn ignition switch ON and wait at least 2 seconds. Turn ignition switch OFF and wait at least 10 seconds. Throttle Valve Closed Position Learning INFOID:0000000005267339 DESCRIPTION Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time the harness connector of electric throttle control actuator or ECM is disconnected. OPERATION PROCEDURE 1. Check that accelerator pedal is fully released. Turn ignition switch ON. Turn ignition switch OFF and wait at least 10 seconds. Check that throttle valve moves during above 10 seconds by confirming the operating sound. Idle Air Volume Learning INFOID:0000000005267340 N DESCRIPTION Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under the following conditions: Each time electric throttle control actuator or ECM is replaced. Idle speed or ignition timing is out of specification. PREPARATION Р Before performing Idle Air Volume Learning, check that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment. Battery voltage: More than 12.9 V (At idle) Engine coolant temperature: 70 - 100°C (158 - 212°F)

Revision: July 2009 EC-19 2010 Xterra

 PNP switch (M/T): ON Selector lever (A/T): P or N
 Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

< BASIC INSPECTION > [VQ40DE]

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started the headlamp will not illuminate.

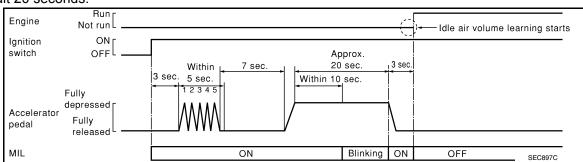
- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up
- With CONSULT-III: Drive vehicle until "ATF TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9 V.
- Without CONSULT-III: Drive vehicle for 10 minutes.

OPERATION PROCEDURE

(P) With CONSULT-III

- 1. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- 5. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.
- Touch "START" and wait 20 seconds.
- 7. Check that "CMPLT" is displayed on CONSULT-III screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.
- Rev up the engine two or three times and check that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 625 ± 50 rpm (in Neutral position) A/T: 625 ± 50 rpm (in P or N position)
Ignition timing	M/T: 15 \pm 5° BTDC (in Neutral position) A/T: 15 \pm 5° BTDC (in P or N position)


₩ Without CONSULT-III

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- 1. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Confirm that accelerator pedal is fully released, then turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 8. Wait 7 seconds, fully depress the accelerator pedal it for approx. 20 seconds until the MIL stops blinking and turns ON.
- Fully release the accelerator pedal within 3 seconds after the MIL turns ON.
- Start engine and let it idle.

[VQ40DE] < BASIC INSPECTION >

11. Wait 20 seconds.

12. Rev up the engine two or three times and check that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 625 ± 50 rpm (in Neutral position) A/T: 625 ± 50 rpm (in P or N position)
Ignition timing	M/T: $15 \pm 5^{\circ}$ BTDC (in Neutral position) A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCE-DURE below.

DIAGNOSTIC PROCEDURE

If idle air volume learning cannot be performed successfully, proceed as follows:

- Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- Check that downstream of throttle valve is free from air leakage.
- When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident. It is useful to perform "TROUBLE DIAGNOSIS - SPECIFICATION VALUE". Refer to EC-84.
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle Air Volume Learning again:
 - Engine stalls.
 - · Incorrect idle.

Α

EC

D

Е

F

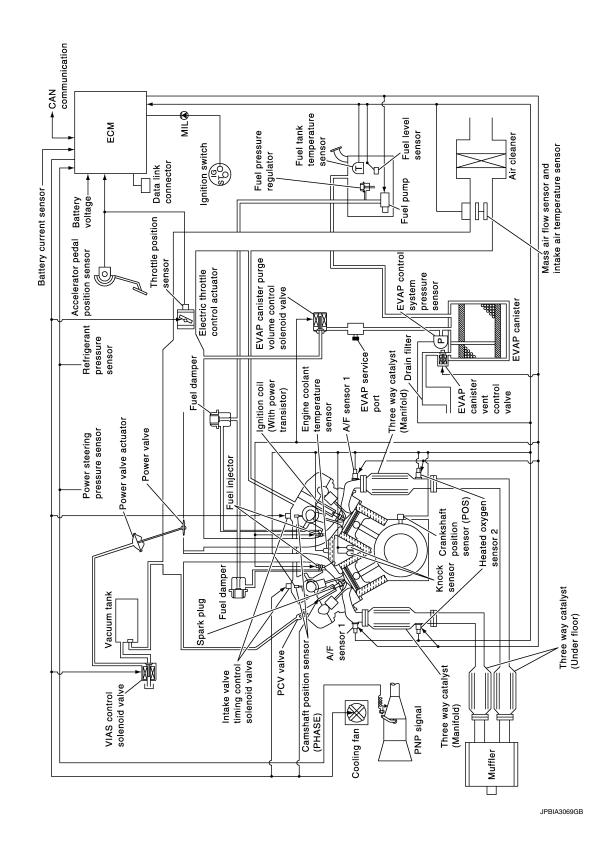
Н

J

L

K

Ν

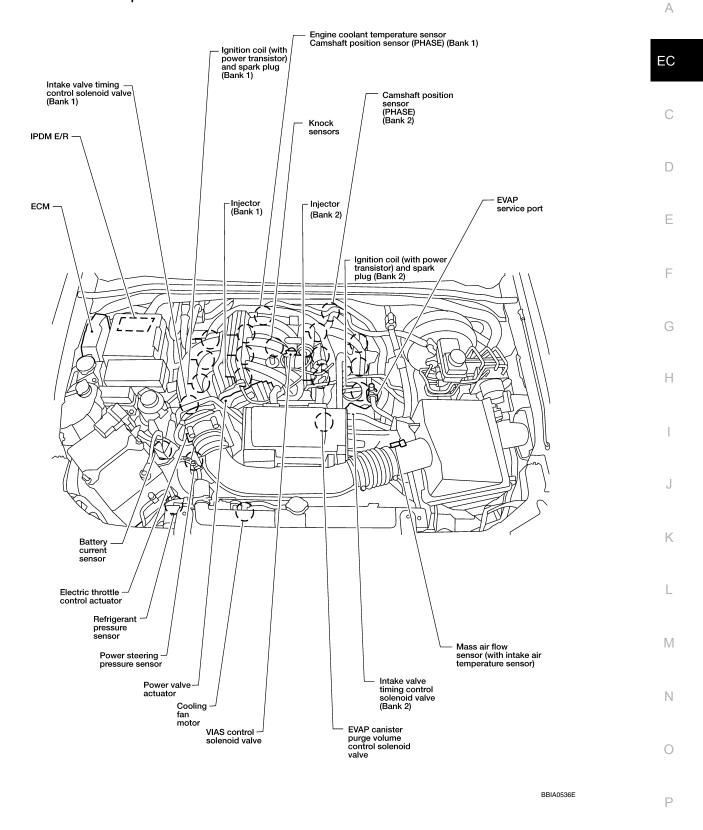

M

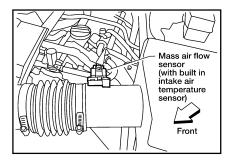
0

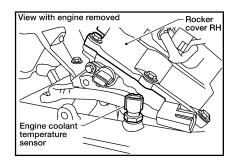
FUNCTION DIAGNOSIS

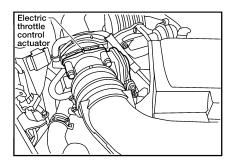
ENGINE CONTROL SYSTEM

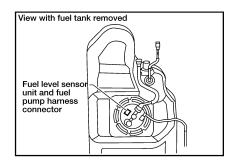
System Diagram

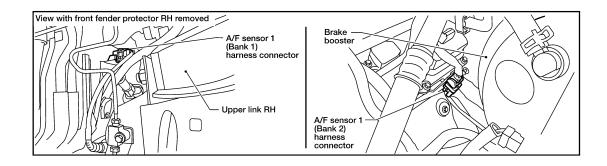


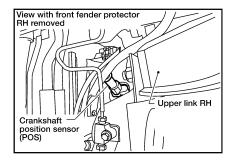

ENGINE CONTROL SYSTEM

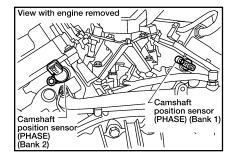

[VQ40DE]

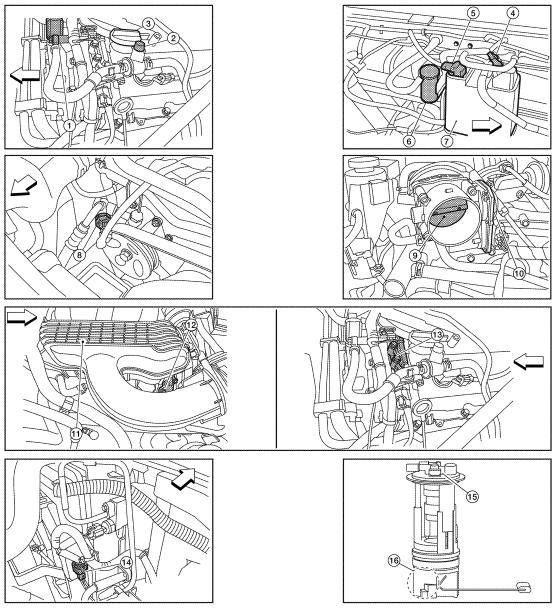

Engine Control Component Parts Location


INFOID:0000000005267342









BBIA0578E

ALBIA0516ZZ

- 1. EVAP canister purge volume control 2. solenoid valve
- 4. EVAP canister vent control valve (view with bed removed)
- 7. EVAP canister
- 10. Electric throttle control actuator
- Intake valve timing control solenoid valve (bank 2) (view with intake air duct removed)
- 16. Fuel pressure regulator
- <□ : Front

- . EVAP service port
- 5. EVAP control system pressure sen-
- 8. Power steering pressure sensor
- 11. Intake manifold collector
- Cooling fan motor harness connector (view with battery removed)

- 3. Oil filler cap
- 6. Drain filter
- Throttle valve (view with intake air duct removed)
- 12. Intake valve timing control solenoid valve (bank 1)
- 15. Fuel pump, fuel level sensor unit and fuel filter

Α

EC

D

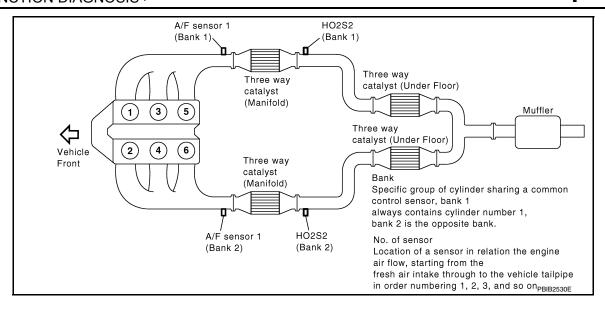
Е

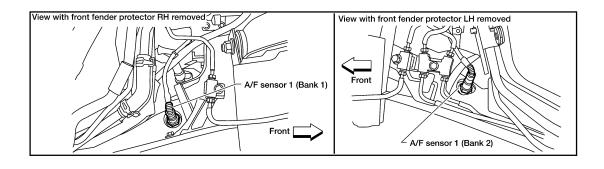
F

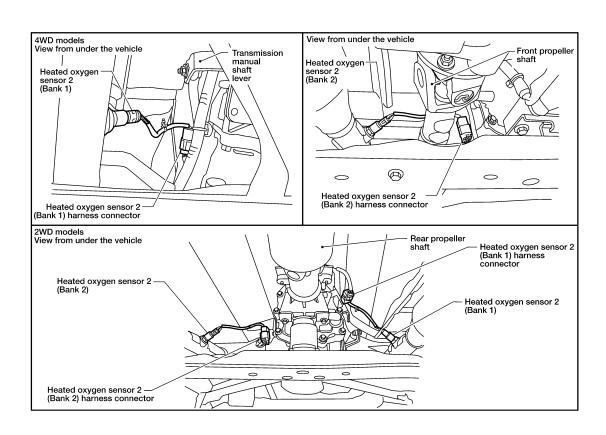
G

Н

-


J


K


IV

Ν

 \cap

Α

EC

D

Е

F

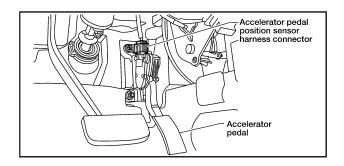
G

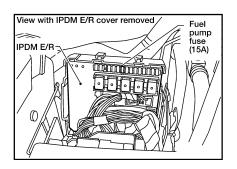
Н

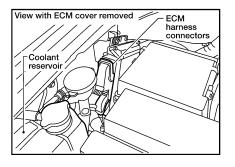
J

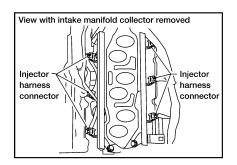
K

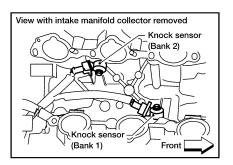
L

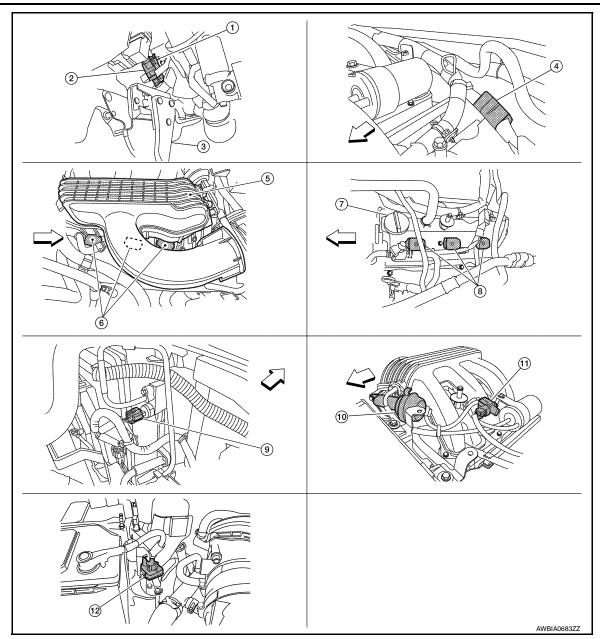

M


Ν


0


Р


BBIA0577E



PBIB2757E

- ASCD brake switch (view with lower instrument panel LH removed)
- Condenser
- Oil filler cap
- 10. Power valve actuator
- <□ : Front

- Stop lamp switch
- Intake manifold collector
- Ignition coil harness connector (Bank 2)
- 11. VIAS control solenoid valve 12. Battery current sensor
- Brake pedal
- Ignition coil harness connector (Bank 1)
- Refrigerant presser sensor harness connector (view with battery removed)

Α

EC

D

Е

F

G

Н

K

L

M

Ν

0

[VQ40DE]

MULTIPORT FUEL INJECTION SYSTEM

System Description

INFOID:000000005267343

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed*3		Fuel injector
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel injection	
Park/neutral position (PNP) switch (M/T) TCM (A/T)	Gear position	Fuel injection & mixture ratio control	
Knock sensor	Engine knocking condition		
Battery	Battery voltage*3		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas		
Air conditioner switch	Air conditioner operation* ²		
Wheel sensor	Vehicle speed*2		

^{*1:} This sensor is not used to control the engine system under normal conditions.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

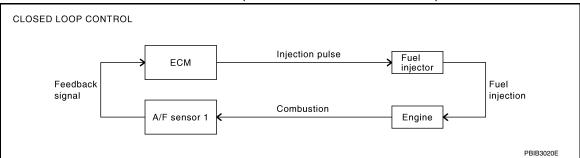
In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- · When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from N to D (A/T models)
- · High-load, high-speed operation

<Fuel decrease>

- During deceleration
- · During high engine speed operation


^{*2:} This signal is sent to the ECM via the CAN communication line.

^{*3:} ECM determines the start signal status by the signals of engine speed and battery voltage.

MULTIPORT FUEL INJECTION SYSTEM

< FUNCTION DIAGNOSIS > [VQ40DE]

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can better reduce CO, HC and NOx emissions. This system uses air fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about air fuel ratio (A/F) sensor 1, refer to EC-144. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of air fuel ratio (A/F) sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- · High-load, high-speed operation
- Malfunction of air fuel ratio (A/F) sensor 1 or its circuit
- Insufficient activation of air fuel ratio (A/F) sensor 1 at low engine coolant temperature
- · High engine coolant temperature
- During warm-up
- After shifting from N to D (A/T models)
- · When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from air fuel ratio (A/F) sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short-term fuel trim and long-term fuel trim.

"Short-term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from air fuel ratio (A/F) sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long-term fuel trim" is overall fuel compensation carried out overtime to compensate for continual deviation of the short-term fuel trim from the central value. Continual deviation will occur due to individual engine differences, wear over time and changes in the usage environment. С

Α

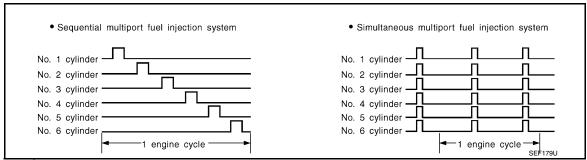
EC

Е

D

_

Н


Ν

MULTIPORT FUEL INJECTION SYSTEM

< FUNCTION DIAGNOSIS >

NOSIS > [VQ40DE]

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six fuel injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or operation of the vehicle at excessively high speeds.

ELECTRIC IGNITION SYSTEM

< FUNCTION DIAGNOSIS > [VQ40DE]

ELECTRIC IGNITION SYSTEM

System Description

INFOID:0000000005267344

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS)	Engine speed*2			
Camshaft position sensor (PHASE)	Piston position			
Mass air flow sensor	Amount of intake air		Power transistor	
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position	Ignition timing control		Power transistor
Knock sensor	Engine knocking			
Park/neutral position (PNP) switch (M/T) TCM (A/T)	Gear position			
Battery	Battery voltage*2			
Wheel sensor	Vehicle speed*1			

^{*1:} This signal is sent to the ECM via the CAN communication line.

SYSTEM DESCRIPTION

Firing order: 1-2-3-4-5-6

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM.

The ECM receives information such as the injection pulse width and camshaft position sensor (PHASE) signal. Computing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- · At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

G

Н

Α

EC

D

Е

Κ

Ν

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

[VQ40DE]

AIR CONDITIONING CUT CONTROL

Input/Output Signal Chart

INFOID:0000000005267345

Sensor	Input Signal to ECM	ECM function	Actuator
Air conditioner switch	Air conditioner ON signal*1		Air conditioner relay
Accelerator pedal position sensor	Accelerator pedal position		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2		
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner	
Battery	Battery voltage*2	cut control	
Refrigerant pressure sensor	Refrigerant pressure		
Power steering pressure sensor	Power steering operation		
Wheel sensor	Vehicle speed*1		

^{*1:} This signal is sent to the ECM via the CAN communication line.

System Description

INFOID:0000000005267346

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- · When the accelerator pedal is fully depressed.
- When cranking the engine.
- · At high engine speeds.
- · When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- · When engine speed is excessively low.
- · When refrigerant pressure is excessively low or high.

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

IVQ40DE1 < FUNCTION DIAGNOSIS >

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

System Description

INFOID:000000005267347

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to ECM	ECM function	Actuator
ASCD brake switch	Brake pedal operation		Electric throttle control actuator
Stop lamp switch	Brake pedal operation	ASCD vehicle speed control	
ASCD clutch switch	Clutch pedal operation		
ASCD steering switch	ASCD steering switch operation		
Park/Neutral position (PNP) switch (M/T) TCM (A/T)	Gear position		
Wheel sensor	Vehicle speed*		
TCM	Powertrain revolution*		

^{*:} This signal is sent to the ECM via the CAN communication line.

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/ h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in the ASCD system, it automatically deactivates control.

Always drive vehicle in a safe manner according to traffic conditions and obey all traffic laws.

SET OPERATION

Press MAIN switch. (The CRUISE indicator in combination meter illuminates.)

When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET/COAST switch. (Then SET indicator in combination meter illuminates.)

ACCELERATE OPERATION

If the RESUME/ACCELERATE switch is pressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will maintain the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is pressed
- More than 2 switches on ASCD steering switch are pressed at the same time (Set speed will be cleared)
- Brake pedal is depressed
- Clutch pedal is depressed or gear position is changed to the neutral position (M/T models)
- Selector lever position is changed to N, P or R (A/T models)
- Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed
- · VDC system is operated

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform the driver by blinking indicator lamp.

 Engine coolant temperature is slightly higher than the normal operating temperature, CRUISE lamp may blink slowly.

When the engine coolant temperature decreases to the normal operating temperature. CRUISE lamp will stop blinking and the cruise operation will be able to work by depressing SET/COAST switch or RESUME/ ACCELERATE switch.

Malfunction for some self-diagnoses regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF while ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

EC-35 2010 Xterra Revision: July 2009

EC

Α

Е

Н

K

L

N

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

< FUNCTION DIAGNOSIS > [VQ40DE]

COAST OPERATION

When the SET/COAST switch is pressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will maintain the new set speed.

RESUME OPERATION

When the RESUME/ACCELERATE switch is pressed after canceling operation other than depressing the MAIN switch, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- · Brake pedal is released
- Clutch pedal is released (M/T models)
- Selector lever position is in other than P and N (A/T models)
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

Component Description

INFOID:000000005267348

ASCD STEERING SWITCH

Refer to EC-338.

ASCD BRAKE SWITCH

Refer to EC-342 and EC-391.

ASCD CLUTCH SWITCH

Refer to EC-342 and EC-391.

STOP LAMP SWITCH

Refer to EC-342, EC-357 and EC-391.

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EC-360, EC-363, EC-367 and EC-369.

ASCD INDICATOR

Refer to EC-399.

CAN COMMUNICATION

< FUNCTION DIAGNOSIS > [VQ40DE]

CAN COMMUNICATION

System Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

Refer to LAN-46, "CAN System Specification Chart", about CAN communication for detail.

EC

Α

INFOID:0000000005267349

C

D

Е

F

G

Н

K

L

M

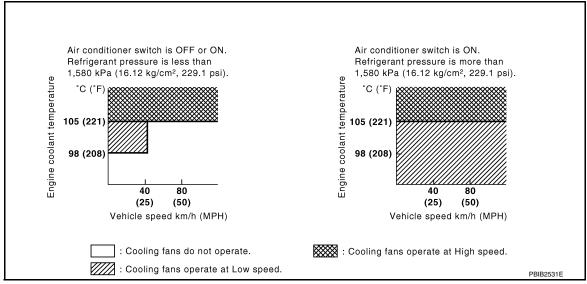
Ν

0

COOLING FAN CONTROL

Description INFOID:000000005267350

SYSTEM DESCRIPTION


Cooling Fan Control

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Battery	Battery voltage*1		
Wheel sensor	Vehicle speed*2	Cooling fan control	IPDM E/R (Cooling fan relays)
Engine coolant temperature sensor	Engine coolant temperature	00111101	(Gooming lan relays)
Air conditioner switch	Air conditioner ON signal*2		
Refrigerant pressure sensor	Refrigerant pressure		

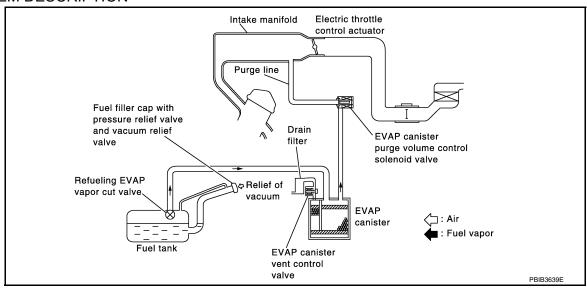
^{*1:} The ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

Cooling Fan Operation

Cooling Fan Relay Operation

The ECM controls cooling fan relays in the IPDM E/R via the CAN communication line.


Cooling fan spood	Cooling	fan relay
Cooling fan speed	LO	HI
Stop (OFF)	OFF	OFF
Low (LOW)	ON	OFF
High (HI)	ON	ON

^{*2:} This signal is sent to ECM via the CAN communication line.

EVAPORATIVE EMISSION SYSTEM

Description INFOID:0000000005267351

SYSTEM DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating.

EC

Α

D

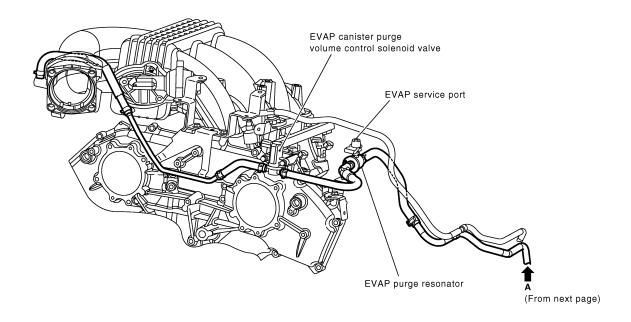
Е

F

G

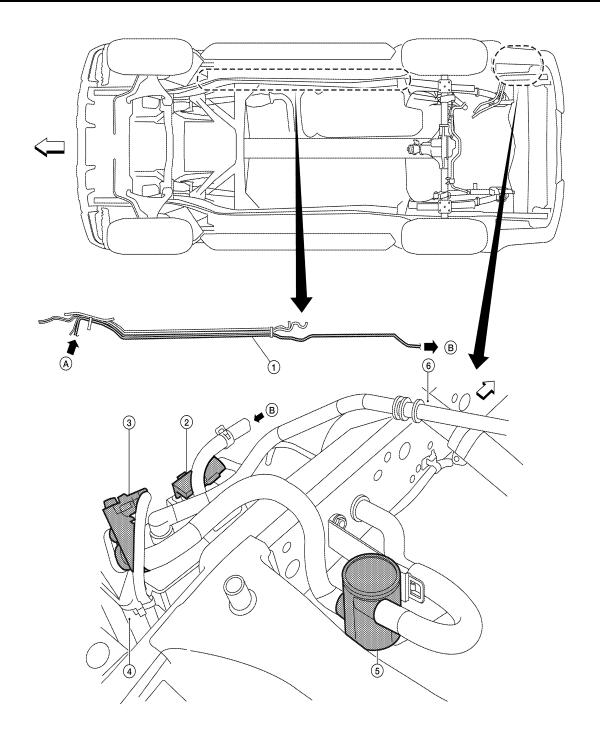
K

J


L

M

Ν


U

EVAPORATIVE EMISSION LINE DRAWING

NOTE: Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

PBIB2528E

AWBIA0222ZZ

EVAP vapor purge line

4. EVAP canister

:Vehicle front

:Previous page

2. EVAP control system pressure sen- 3.

5. Drain filter

 EVAP canister vent control valve (view with bed removed)

6. Fuel filler pipe

EC

Α

D

Е

F

G

Н

J

K

L

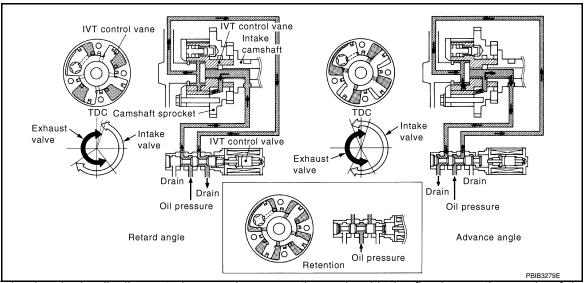
M

Ν

0

Р

H


INTAKE VALVE TIMING CONTROL

Description INFOID:000000005267352

SYSTEM DESCRIPTION

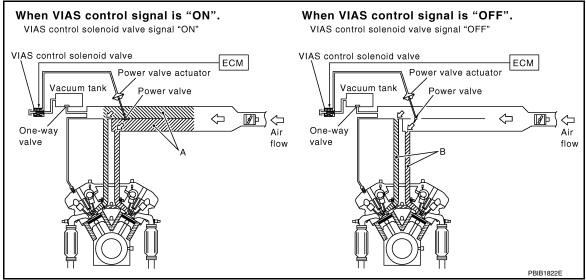
Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed and piston position		
Camshaft position sensor (PHASE)	Engine speed and piston position	Intake valve	Intake valve timing control
Engine coolant temperature sensor	Engine coolant temperature	timing control	solenoid valve
Wheel sensor	Vehicle speed*		

^{*:} This signal is sent to the ECM via the CAN communication line

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

< FUNCTION DIAGNOSIS > [VQ40DE]


VARIABLE INDUCTION AIR SYSTEM

Description

SYSTEM DESCRIPTION

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature	VIAS control	VIAS control solenoid valve
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Battery	Battery voltage*		

^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

When the engine is running at medium speed, the ECM sends the ON signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore closes the power valve.

Under this condition, the effective intake manifold length is equivalent to the total length of passage A and passage B. This long intake manifold provides increased amount of intake air, which results in improved suction efficiency and higher torque.

When engine is running at low or high speed, the ECM sends the OFF signal to the VIAS control solenoid valve and the power valve is opened.

Under this condition, the effective intake manifold length is equivalent to the length of passage B. This shortened intake manifold length results in enhanced engine output due to reduced suction resistance under high speeds.

COMPONENT DESCRIPTION

Power Valve O

Revision: July 2009 EC-43 2010 Xterra

Ν

Р

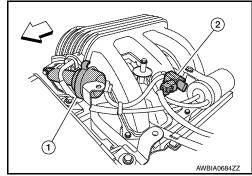
Α

EC

D

Е

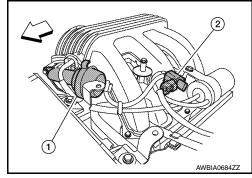
Н


VARIABLE INDUCTION AIR SYSTEM

< FUNCTION DIAGNOSIS >

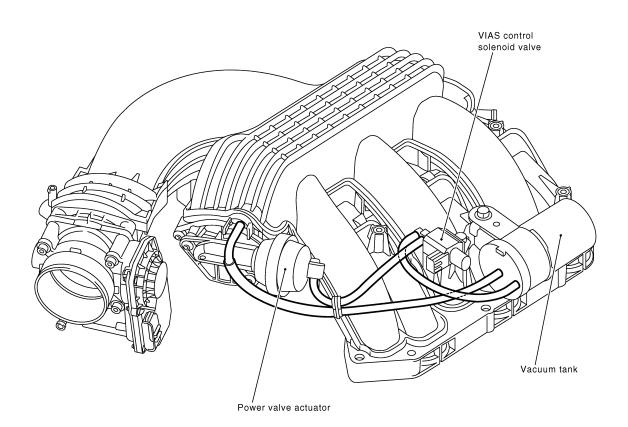
[VQ40DE]

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator (1) operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve (2).


⟨⇒ : Front

VIAS Control Solenoid Valve

The VIAS control solenoid valve (2) cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator (1).


⟨⇒ : Front

[VQ40DE]

Vacuum Hose Drawing

INFOID:0000000005267354

NOTE: Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

Refer to EC-22, "System Diagram" for Vacuum Control System.

PBIB2529E

EC-45 Revision: July 2009 2010 Xterra EC

Α

Ε

D

F

Н

Κ

Ν

0

[VQ40DE]

ON BOARD DIAGNOSTIC (OBD) SYSTEM

Introduction INFOID:0000000005267355

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode
Diagnostic Trouble Code (DTC)	Service \$03 of SAE J1979/ISO 15031-5
Freeze Frame data	Service \$02 of SAE J1979/ISO 15031-5
System Readiness Test (SRT) code	Service \$01 of SAE J1979/ISO 15031-5
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Service \$07 of SAE J1979/ISO 15031-5
1st Trip Freeze Frame data	_
Test values and Test limits	Service \$06 of SAE J1979/ISO 15031-5
Calibration ID	Service \$09 of SAE J1979/ISO 15031-5
Permanent Diagnostic Trouble Code (Permanent DTC)	Service \$0A* of SAE J1979/ISO 15031-5

^{*:} Service \$0A is not applied for regions where it is not mandated.

The above information can be checked using procedures listed in the table below.

x: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	SRT status	Test value	Permanent DTC status
CONSULT-III	×	×	×	×	×	×	_	×
GST	×	×	×	_	×	×	×	×
ECM	×	×*		_	_	×	_	_

^{*:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel illuminates when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to <u>EC-462</u>.)

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are saved in the ECM memory. The MIL will not illuminate at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are saved in the ECM memory, and the MIL illuminates. The MIL illuminates at the same time the DTC is saved. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to illuminate or blink the MIL, and save DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

INFOID:0000000005267356

	MIL				DTC		1st trip DTC	
Items	1st trip		2nd trip		1st trip	2nd trip	1st trip	2nd trip
	Blinking	Illuminat- ed	Blinking	Illuminat- ed		displaying	displaying	display- ing
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	×	_	_	_	_	_	×	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	×	_	_	×	_	_
One trip detection diagnoses (Refer to <u>EC-465</u> .)	_	×	_	_	×	_	_	_
Except above	_	_	_	×		×	×	_

< FUNCTION DIAGNOSIS > [VQ40DE]

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by Illuminated MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,500 rpm due to the fuel cut

Emission-related Diagnostic Information

INFOID:0000000005267357

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is saved in the ECM memory. The MIL will not illuminate (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are saved in the ECM memory and the MIL illuminates. In other words, the DTC is saved in the ECM memory and the MIL illuminates when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is saved and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be saved. For malfunctions that blink or illuminate the MIL during the 1st trip, the DTC and 1st trip DTC are saved in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

For malfunctions in which 1st trip DTCs are displayed, refer to "EMISSION-RELATED DIAGNOSTIC INFOR-MATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-III.

1st trip DTC is specified in Service \$07 of SAE J1979/ISO 15031-5. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step 2, refer to <u>EC-8, "Trouble Diagnosis Introduction"</u>. Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-III

With GST

CONSULT-III or GST (Generic Scan Tool) Examples: P0340, P0850, P1148, etc.

These DTCs are prescribed by SAE J2012/ISO 15031-6.

(CONSULT-III also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 0850, 1148, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST and the Diagnostic Test Mode II never indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-III can identify malfunction status as shown below. Therefore, using CONSULT-III (if available) is recommended.

DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-III. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is saved in the ECM, the time data will be [1t].

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

EC

Α

G

I

,

|

Ν

Р

Revision: July 2009 EC-47 2010 Xterra

[VQ40DE]

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are saved in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, saved together with the DTC data, are called freeze frame data and displayed on CONSULT-III or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-III screen, not on the GST. For details, see <u>EC-74</u>, "CONSULT-III Function (ENGINE)".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be saved in the ECM. 1st trip freeze frame data is saved in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is saved in the ECM memory, 1st trip freeze frame data is no longer saved. Remember, only one set of freeze frame data can be saved in the ECM. The ECM has the following priorities to update the data.

Priority	Items				
1	Freeze frame data	Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175			
2		Except the above items (Includes A/T related items)			
3	1st trip freeze frame data				

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was saved in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is saved in the ECM memory, 1st trip freeze data is no longer saved (because only one freeze frame data or 1st trip freeze frame data can be saved in the ECM). If freeze frame data is saved in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Service \$01 of SAE J1979/ISO 15031-5.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If permanent DTC is stored or MIL illuminates during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT"), DTC (No DTCs) and permanent DTC (No permanent DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

[VQ40DE]

SRT item (CONSULT-III indica- tion)	Perfor- mance Pri- ority*1	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.		
CATALYST	2	Three way catalyst function	P0420, P0430		
	2	EVAP control system purge flow monitoring	P0441		
EVAP SYSTEM	EVAP SYSTEM 1	EVAP control system	P0442		
	2	EVAP control system	P0456		
		Air fuel ratio (A/F) sensor 1	P0133, P0153		
HO2S	4	Heated oxygen sensor 2	P0137, P0157		
HOZS	'	Heated oxygen sensor 2	P0138, P0158		
		Heated oxygen sensor 2	P0139, P0159		
EGR/VVT SYSTEM	3	Intake value timing control function P0011, P0021			

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-III.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

	Self-diagnosis result			Example		
Self-diagn			← ON → O		on cycle \rightarrow ON \rightarrow O	OFF ← ON →
All OK	Case 1	P0400	OK (1)	 (1)	OK (2)	—(2)
		P0402	OK (1)	—(1)	— (1)	OK (2)
		P1402	OK (1)	OK (2)	— (2)	—(2)
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"
	Case 2	P0400	OK (1)	— (1)	—(1)	—(1)
		P0402	— (0)	— (0)	OK (1)	—(1)
		P1402	OK (1)	OK (2)	— (2)	—(2)
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"
NG exists	Case 3	P0400	OK	OK	_	_
		P0402	_	_	_	_
		P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL ON)
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses show OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is the number one (1) for each self-diagnosis (Case 1 & 2) or the number two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:

EC-49 Revision: July 2009

EC

Α

D

Е

F

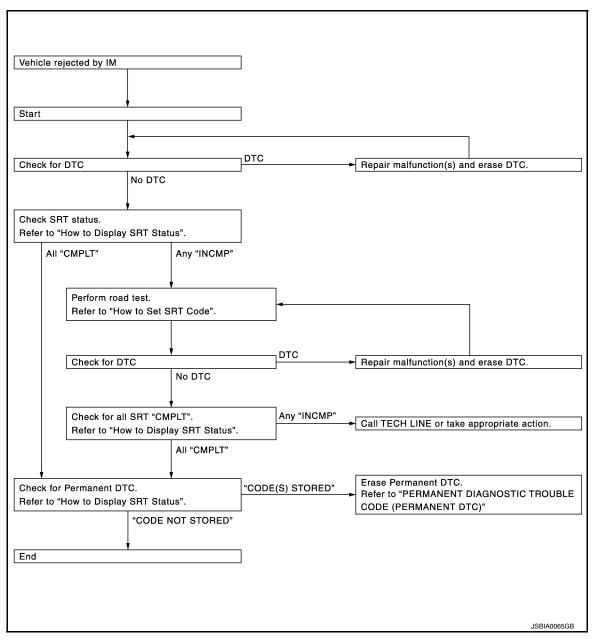
Н

Ν

2010 Xterra

^{-:} Self-diagnosis is not carried out.

< FUNCTION DIAGNOSIS > [VQ40DE]


- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- During SRT driving pattern, the 1st trip DTC (NG) is detected prior to "CMPLT" of SRT and the self-diagnosis memory must be erased from the ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

How to Display SRT Status

WITH CONSULT-III

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-III.

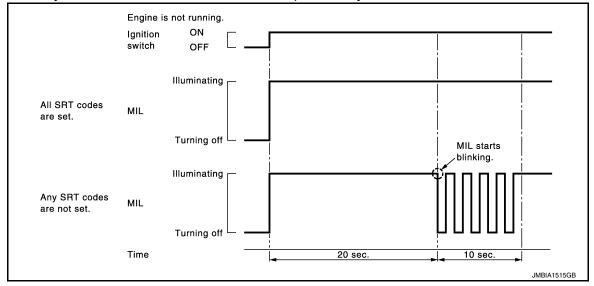
For items whose SRT codes are set, "CMPLT" is displayed on the CONSULT-III screen; for items whose SRT codes are not set, "INCMP" is displayed.

NOTE:

Though displayed on the CONSULT-III screen, "HO2S HTR" is not SRT item.

< FUNCTION DIAGNOSIS > [VQ40DE]

• "SRT STATUS" provides the presence or absence of permanent DTCs stored in ECM memory.


WITH GST

Selecting Service \$01 with GST (Generic Scan Tool)

NO TOOLS

A SRT code itself cannot be displayed, however SRT status can.

- 1. Turn ignition switch ON and wait 20 seconds.
- 2. SRT status is indicated as shown below.
 - When all SRT codes are set, MIL illuminates continuously.
 - When any SRT codes are not set, MIL will blink periodically for 10 seconds.

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) WITH CONSULT-III

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on "SRT Item".

WITHOUT CONSULT-III

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

EC

Α

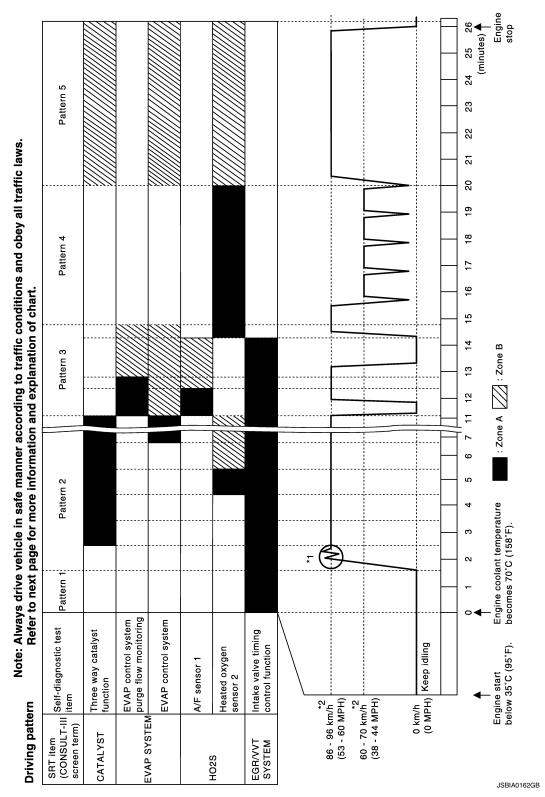
D

Е

Н

1

L


K

M

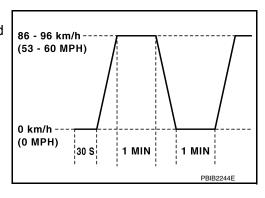
Ν

0

Driving Pattern

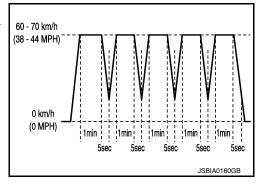
- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest.
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:

< FUNCTION DIAGNOSIS > [VQ40DE]


- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of –10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).


Pattern 2:

- When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted.
 In this case, the time required for diagnosis may be extended.
 Pattern 3:
- Operate vehicle following the driving pattern shown in the figure.
- Replace the accelerator pedal during decelerating vehicle speed from 90km/h (56MPH) to 0km/h (0MPH).

Pattern 4:

- Operate vehicle, following the driving pattern shown in the figure.
- Drive the vehicle in a proper gear at 60 km/h (38 MPH) and maintain the speed.
- Release the accelerator pedal fully at least 5 seconds.
- Repeat the above two steps at least 5 times.

Pattern 5:

- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the D position with the overdrive switch turned ON.

Suggested Upshift Speeds for M/T Models

Shown below are suggested vehicle speeds vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

EC

Α

D

Е

F

G

Н

K

M

Ν

0

	For normal acceler [less than 1,2	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:			
Gear change	ACCEL shift point km/h (MPH)	ACCEL shift point km/h (MPH) CRUISE shift point km/h (MPH)			
1st to 2nd	21 (13)	17 (11)	24 (15)		
2nd to 3rd	38 (24)	27 (17)	40 (25)		
3rd to 4th	53 (33)	40 (25)	64 (40)		
4th to 5th	69 (43)	51 (32)	72 (45)		
6th	77 (48)	72 (45)	80 (50)		

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Never exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure sage operation. Never over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	56 (35)
2nd	96 (60)
3rd	136 (85)
4th	_
5th	_
6th	_

PERMANENT DIAGNOSTIC TROUBLE CODE (PERMANENT DTC)

Permanent DTC is defined in SAE J1979/ISO 15031-5 Service \$0A.

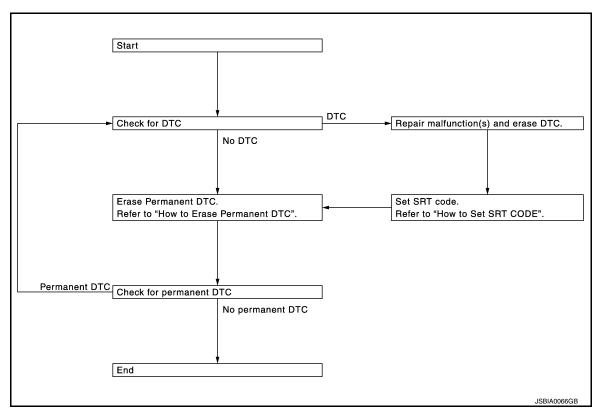
ECM stores a DTC issuing a command of turning on MIL as a permanent DTC and keeps storing the DTC as a permanent DTC until ECM judges that there is no presence of malfunction.

Permanent DTCs cannot be erased by using the Erase function of CONSULT-III or Generic Scan Tool (GST) and by disconnecting the battery to shut off power to ECM. This prevents a vehicle from passing the state emission inspection without repairing a malfunctioning part.

When not passing the state emission inspection due to more than one permanent DTC, permanent DTCs should be erased, referring to this manual.

NOTE:

- The important items in state emission inspection are that MIL is not ON, SRT test items are set, and permanent DTCs are not included.
- Permanent DTCs do not apply for regions that permanent DTCs are not regulated by law.


Permanent DTC Item

For permanent DTC items, MIL turns ON. Refer to <u>EC-47</u>, "<u>Emission-related Diagnostic Information</u>", "EMIS-SION-RELATED DIAGNOSTIC INFORMATION ITEMS".

Permanent DTC Set Timing

The setting timing of permanent DTC is stored in ECM with the lighting of MIL when a DTC is confirmed.

Permanent DTC Service Procedure

How to Display Permanent DTC Status

WITH CONSULT-IIITurn ignition sw

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.

Revision: July 2009

Select "PERMANENT DTC STATUS" in "DTC & SRT CONFIRMATION" mode with CONSULT-III.NOTE:

Permanent DTCs stored in ECM memory are displayed on the CONSULT-III screen to show if a driving pattern required for erasing permanent DTCs is complete (CMPLT) or incomplete (INCMP).

CAUTION:

Since the "PERMANENT DTC STATUS" screen displays the previous trip information, repeat the following twice to update the information: "Ignition switch OFF", "Wait for more than 10 seconds" and "Ignition switch ON".

CAUTION: Turn ignition switch from O status screen.	N to OFF twice to update the informa	ation on the
PERMANENT DTC	DRIVING PATTERN B	DRIVING PATTERN D
xxxx	INCMP	INCMP
xxxx	CMPLT	INCMP
xxxx	INCMP	CMPLT
xxxx	CMPLT	INCMP
XXXX	INCMP	INCMP
XXXX	INCMP	INCMP

JSBIA0062GB

2010 Xterra

EC-55

EC

Α

D

Ε

F

G

Н

U

K

M

L

Ν

0

[VQ40DE] < FUNCTION DIAGNOSIS >

- **WITH GST**1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Select Service \$0A with GST (Generic Scan Tool).

TEST VALUE AND TEST LIMIT

The following is the information specified in Service \$06 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by On Board Monitor ID(OBDMID), Test ID (TID), Unit and Scaling ID and can be displayed on the GST screen.

The items of the test value and test limit will be displayed with GST screen which items are provided by the ECM. (e.g., if the bank 2 is not applied on this vehicle, only the items of the bank 1 is displayed)

< FUNCTION DIAGNOSIS > [VQ40DE]

				li	e and Test mit	
Item	OBD- MID	Self-diagnostic test item	DTC	(GST	Unitand Scaling ID	Description
			P0131	83H	0BH	Minimum sensor output voltage for test cycle
			P0131	84H	0BH	Maximum sensor output voltage for test cycle
			P0130	85H	0BH	Minimum sensor output voltage for test cycle
			P0130	86H	0BH	Maximum sensor output voltage for test cycle
			P0133	87H	04H	Response rate: Response ratio (Lean to Rich)
			P0133	88H	04H	Response rate: Response ratio (Rich to Lean)
			P2A00	89H	84H	The amount of shift in air fuel ratio
			P2A00	8AH	84H	The amount of shift in air fuel ratio
			P0130	8BH	0BH	Difference in sensor output voltage
	01H	Air fuel ratio (A/F) sensor 1 (Bank 1)	P0133	8CH	83H	Response gain at the limited frequency
		(Dalik 1)	P014C	8DH	04H	O2 Sensor Slow Response - Rich to Lean Bank 1 Sensor 1
			P014C	8EH	04H	O2 Sensor Slow Response - Rich to Lean Bank 1 Sensor 1
HO2S			P014D	8FH	84H	O2 Sensor Slow Response - Lean to Rich Bank 1 Sensor 1
11023			P014D	90H	84H	O2 Sensor Slow Response - Lean to Rich Bank 1 Sensor 1
			P015A	91H	01H	O2 Sensor Delayed Response - Rich to Lean Bank 1 Sensor 1
			P015A	92H	01H	O2 Sensor Delayed Response - Rich to Lean Bank 1 Sensor 1
			P015B	93H	01H	O2 Sensor Delayed Response - Lean to Rich Bank 1 Sensor 1
			P015B	94H	01H	O2 Sensor Delayed Response - Lean to Rich Bank 1 Sensor 1
			P0138	07H	0CH	Minimum sensor output voltage for test cycle
	02H	Heated oxygen sensor 2 (Bank 1)	P0137	08H	0CH	Maximum sensor output voltage for test cycle
			P0138	80H	0CH	Sensor output voltage
			P0139	81H	0CH	Difference in sensor output voltage
			P0143	07H	0CH	Minimum sensor output voltage for test cycle
	03H	Heated oxygen sensor 3 (Bank 1)	P0144	08H	0CH	Maximum sensor output voltage for test cycle
			P0146	80H	0CH	Sensor output voltage
			P0145	81H	0CH	Difference in sensor output voltage

Revision: July 2009 EC-57 2010 Xterra

[VQ40DE]

					e and Test mit	- Description
Item	OBD-	Self-diagnostic test item	DTC	(GST	display)	
MID	MID	Sen-diagnostic test item		TID	Unit and Scaling ID	
			P0151	83H	0BH	Minimum sensor output voltage for te cycle
			P0151	84H	0BH	Maximum sensor output voltage for te cycle
			P0150	85H	0BH	Minimum sensor output voltage for te cycle
			P0150	86H	0BH	Maximum sensor output voltage for te cycle
			P0153	87H	04H	Response rate: Response ratio (Lean Rich)
			P0153	88H	04H	Response rate: Response ratio (Rich Lean)
			P2A03	89H	84H	The amount of shift in air fuel ratio
			P2A03	8AH	84H	The amount of shift in air fuel ratio
			P0150	8BH	0BH	Difference in sensor output voltage
	05H	Air fuel ratio (A/F) sensor 1	P0153	8CH	83H	Response gain at the limited frequer
		(Bank 2)	P014E	8DH	04H	O2 Sensor Slow Response - Rich to Lean Bank 2 Sensor 1
			P014E	8EH	04H	O2 Sensor Slow Response - Rich to Lean Bank 2 Sensor 1
HO2S			P014F	8FH	84H	O2 Sensor Slow Response - Lean to Rich Bank 2 Sensor 1
11023			P014F	90H	84H	O2 Sensor Slow Response - Lean to Rich Bank 2 Sensor 1
			P015C	91H	01H	O2 Sensor Delayed Response - Rich Lean Bank 2 Sensor 1
			P015C	92H	01H	O2 Sensor Delayed Response - Rich Lean Bank 2 Sensor 1
			P015D	93H	01H	O2 Sensor Delayed Response - Lean Rich Bank 2 Sensor 1
			P015D	94H	01H	O2 Sensor Delayed Response - Lean Rich Bank 2 Sensor 1
			P0158	07H	0CH	Minimum sensor output voltage for te cycle
0	06H	Heated oxygen sensor 2 (Bank 2)	P0157	08H	0CH	Maximum sensor output voltage for te cycle
			P0158	80H	0CH	Sensor output voltage
			P0159	81H	0CH	Difference in sensor output voltage
			P0163	07H	0CH	Minimum sensor output voltage for to cycle
	07H	Heated oxygen sensor 3 (Bank2)	P0164	08H	0CH	Maximum sensor output voltage for to cycle
			P0166	80H	0CH	Sensor output voltage
			P0165	81H	0CH	Difference in sensor output voltage

< FUNCTION DIAGNOSIS > [VQ40DE]

Item	OBD-	Self-diagnostic test item	DTC	Test value and Test limit (GST display)		Description
MID		Self-diagnostic test item	ыс	TID	Unitand Scaling ID	Description
			P0420	80H	01H	O2 storage index
	21H	Three way catalyst function	P0420	82H	01H	Switching time lag engine exhaust index value
	2111	(Bank1)	P2423	83H	0CH	Difference in 3rd O2 sensor output voltage
CATA-			P2423	84H	84H	O2 storage index in HC trap catalyst
LYST			P0430	80H	01H	O2 storage index
	22H	Three way catalyst function	P0430	82H	01H	Switching time lag engine exhaust index value
	2211	(Bank2)	P2424	83H	0CH	Difference in 3rd O2 sensor output voltage
			P2424	84H	84H	O2 storage index in HC trap catalyst
	1 31H	EGR function	P0400	80H	96H	Low Flow Faults: EGR temp change rate (short term)
			P0400	81H	96H	Low Flow Faults: EGR temp change rate (long term)
EGR SYSTEM			P0400	82H	96H	Low Flow Faults: Difference between max EGR temp and EGR temp under idling condition
				P0400	83H	96H
			P1402	84H	96H	High Flow Faults: EGR temp increase rate
			P0011	80H	9DH	VTC intake function diagnosis (VTC alignment check diagnosis)
	35H	VA/T Monitor (Pank1)	P0014	81H	9DH	VTC exhaust function diagnosis (VTC alignment check diagnosis)
	3311	VVT Monitor (Bank1)	P0011	82H	9DH	VTC intake function diagnosis (VTC drive failure diagnosis)
VVT			P0014	83H	9DH	VTC exhaust function diagnosis (VTC drive failure diagnosis)
SYSTEM			P0021	80H	9DH	VTC intake function diagnosis (VTC alignment check diagnosis)
	36H	VVT Monitor (Bank2)	P0024	81H	9DH	VTC exhaust function diagnosis (VTC alignment check diagnosis)
	30П	VVI MONITO (DANKZ)	P0021	82H	9DH	VTC intake function diagnosis (VTC drive failure diagnosis)
			P0024	83H	9DH	VTC exhaust function diagnosis (VTC drive failure diagnosis)

Revision: July 2009 EC-59 2010 Xterra

[VQ40DE]

					e and Test mit	
	OBD-	0.4.11	DTO		display)	
Item	MID	Self-diagnostic test item	DTC	TID	Unit and Scaling ID	Description
	39H	EVAP control system leak (Cap Off)	P0455	80H	0CH	Difference in pressure sensor output voltage before and after pull down
	3ВН	EVAP control system leak (Small leak)	P0442	80H	05H	Leak area index (for more than 0.04 inch)
EVAP			P0456	80H	05H	Leak area index (for more than 0.02 inch)
SYSTEM	3СН	EVAP control system leak (Very small leak)	P0456	81H	FDH	Maximum internal pressure of EVAP system during monitoring
			P0456	82H	FDH	Internal pressure of EVAP system at the end of monitoring
	3DH	Purge flow system	P0441	83H	0CH	Difference in pressure sensor output voltage before and after vent control valve close
	41H	A/F sensor 1 heater (Bank 1)	Low Input:P0031 High Input:P0032	81H	0BH	Converted value of Heater electric cu rent to voltage
	42H	Heated oxygen sensor 2 heater (Bank 1)	Low Input:P0037 High Input:P0038	80H	0CH	Converted value of Heater electric cu rent to voltage
O2 SEN-	43H	Heated oxygen sensor 3 heater (Bank 1)	P0043	80H	0CH	Converted value of Heater electric current to voltage
SOR HEATER	45H	A/F sensor 1 heater (Bank 2)	Low Input:P0051 High Input:P0052	81H	0BH	Converted value of Heater electric current to voltage
	46H	Heated oxygen sensor 2 heater (Bank 2)	Low Input:P0057 High Input:P0058	80H	0CH	Converted value of Heater electric current to voltage
	47H	Heated oxygen sensor 3 heater (Bank 2)	P0063	80H	0CH	Converted value of Heater electric current to voltage
			P0411	80H	01H	Secondary Air Injection System Incorrect Flow Detected
			Bank1: P0491 Bank2: P0492	81H	01H	Secondary Air Injection System Insuf cient Flow
			P2445	82H	01H	Secondary Air Injection System Pum Stuck Off
Second- ary Air	71H	Secondary Air system	P2448	83H	01H	Secondary Air Injection System High Airflow
			Bank1: P2440 Bank2: P2442	84H	01H	Secondary Air Injection System Switching Valve Stuck Open
			P2440	85H	01H	Secondary Air Injection System Switching Valve Stuck Open
			P2444	86H	01H	Secondary Air Injection System Pump Stuck On
	81H	Fuel injection system function	P0171 or P0172	80H	2FH	Long term fuel trim
FUEL	J 111	(Bank 1)	P0171 or P0172	81H	24H	The number of lambda control clamp
SYSTEM	82H	Fuel injection system function	P0174 or P0175	80H	2FH	Long term fuel trim
	0211	(Bank 2)	P0174 or P0175	81H	24H	The number of lambda control clamp

< FUNCTION DIAGNOSIS > [VQ40DE]

FUNC	I ION L	OIAGNOSIS >				[VQ40DE]				
	OBD-			li	e and Test mit display)					
Item	MID	Self-diagnostic test item	DTC	TID	Unitand Scaling ID	Description				
			P0301	80H	24H	Misfiring counter at 1000 revolution of the first cylinder				
			P0302	81H	24H	Misfiring counter at 1000 revolution of the second cylinder				
			P0303	82H	24H	Misfiring counter at 1000 revolution of the third cylinder				
			P0304	83H	24H	Misfiring counter at 1000 revolution of the fourth cylinder				
			P0305	84H	24H	Misfiring counter at 1000 revolution of the fifth cylinder				
			P0306	85H	24H	Misfiring counter at 1000 revolution of the sixth cylinder				
			P0307	86H	24H	Misfiring counter at 1000 revolution of the seventh cylinder				
			Multiple Cylinder Misfires		P0308	P0308	87H	24H	Misfiring counter at 1000 revolution of the eighth cylinder	
				P0300	88H	24H	Misfiring counter at 1000 revolution of the multiple cylinders			
MOEIDE	A 411			P0301	89H	24H	Misfiring counter at 200 revolution of the first cylinder			
MISFIRE	АП	A1H		P0302	8AH	24H	Misfiring counter at 200 revolution of the second cylinder			
			P0303	8BH	24H	Misfiring counter at 200 revolution of the third cylinder				
			P0304	8CH	24H	Misfiring counter at 200 revolution of the fourth cylinder				
			P0305	8DH	24H	Misfiring counter at 200 revolution of the fifth cylinder				
			P0306	8EH	24H	Misfiring counter at 200 revolution of the sixth cylinder				
			P0307	8FH	24H	Misfiring counter at 200 revolution of the seventh cylinder				
			P0308	90H	24H	Misfiring counter at 200 revolution of the eighth cylinder				
			P0300	91H	24H	Misfiring counter at 1000 revolution of the single cylinder				
			P0300	92H	24H	Misfiring counter at 200 revolution of the single cylinder				
			P0300	93H	24H	Misfiring counter at 200 revolution of the multiple cylinders				

				li	e and Test mit	
Item	OBD- MID	Self-diagnostic test item	DTC	(GST	display)	Description
	MID	-		TID	Unit and Scaling ID	
	A2H	No. 1 Cylinder Misfire	P0301	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0301	0CH	24H	Misfire counts for last/current driving cycles
	АЗН	No. 2 Cylinder Misfire	P0302	0BH	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0302	0CH	24H	Misfire counts for last/current driving cycles
	A4H	No. 3 Cylinder Misfire	P0303	0BH	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0303	0CH	24H	Misfire counts for last/current driving cycles
	A5H No. 4	No. 4 Cylinder Misfire	P0304	0ВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
MISFIRE			P0304	0CH	24H	Misfire counts for last/current driving cycles
MISTIRE	A6H	No. 5 Cylinder Misfire	P0305	0ВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0305	0CH	24H	Misfire counts for last/current driving cycles
	А7Н	No. 6 Cylinder Misfire	P0306	0ВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0306	0CH	24H	Misfire counts for last/current driving cycles
	A8H	No. 7 Cylinder Misfire	P0307	0ВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0307	0CH	24H	Misfire counts for last/current driving cycles
	А9Н	No. 8 Cylinder Misfire	P0308	0ВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driv- ing cycles
			P0308	0CH	24H	Misfire counts for last/current driving cycles

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to Erase DTC and 1st Trip DTC

(II) With CONSULT-III

NOTE:

- If the ignition switch stays ON after rpair work, be sure to turn ignition OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-465, "DTC Index"), skip step 1.
- 1. Erase DTC in TCM. Refer to TM-100, "OBD-II Diagnostic Trouble Code (DTC)".
- Select "ENGINE" with CONSULT-III.

[VQ40DE] < FUNCTION DIAGNOSIS >

- Select "SELF-DIAG RESULTS".
- Touch "ERASE". (DTC in ECM will be erased.)

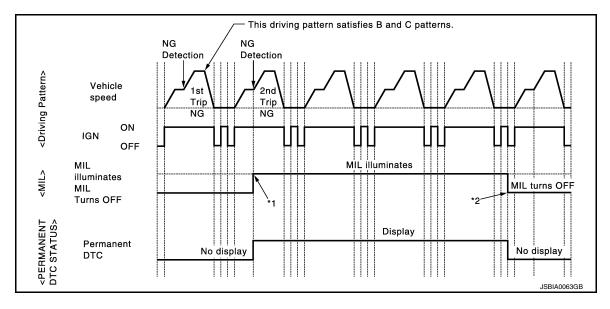
With GST

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Select Service \$04 with GST (Generic Scan Tool).

No Tools

NOTE:


- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Erase DTC in ECM. Refer to HOW TO ERASE DIAGNOSTIC TEST MODE II (SELF-DIAGNOSTIC RESULTS).
- Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal.
- · If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

How to Erase Permanent DTC

When a DTC is stored in ECM

 When a DTC is stored in ECM and MIL is ON, a permanent DTC is erased with MIL shutoff if the same malfunction is not detected after performing the driving pattern for MIL shutoff three times in a raw.

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- MIL will turn off after vehicle is driven 3 times (pattern B) without any malfunctions.

When a DTC is not stored in ECM

The erasing method depends on a permanent DTC stored in ECM. Refer to the following table.

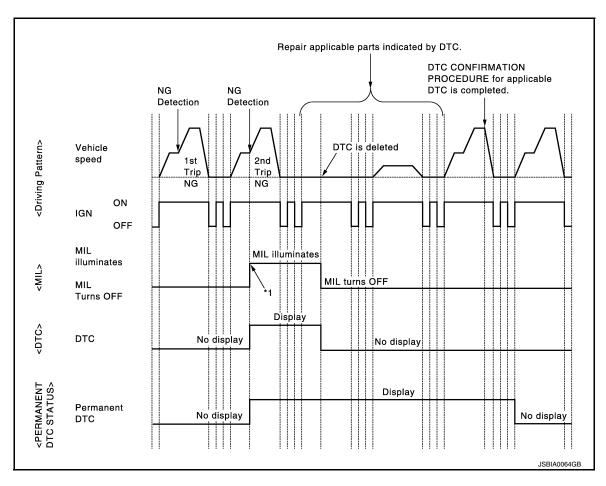
EC-63 2010 Xterra Revision: July 2009

EC

Α

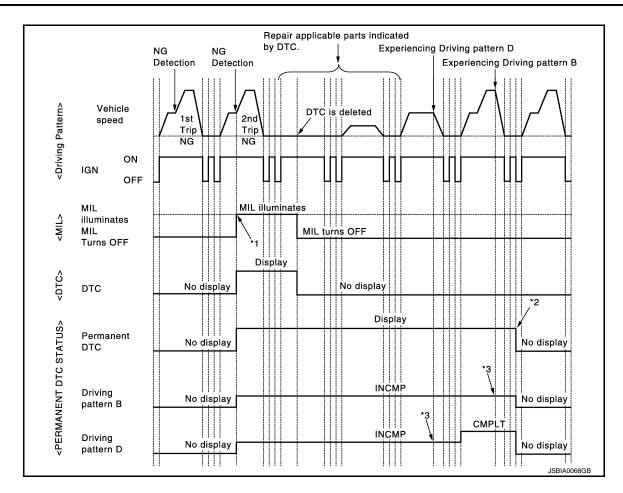
D

Н


N

x: Applicable —: Not applicable

Group*	Perform "DTC CONFIRMATION PROCEDURE"	Driving pattern		
Group	for applicable DTCs.	В	D	
А	×	_	_	
В	_	×	×	


^{*:} For group, refer to <u>EC-47, "Emission-related Diagnostic Information"</u>, "EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS".

Group A

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- Check permanent DTC. Refer to <u>EC-47, "Emission-related Diagnostic Information"</u>, "How to Display Permanent DTC Status".
- 6. Perform "DTC CONFIRMATION PROCEDURE" for DTCs which are the same as permanent DTCs stored in ECM.
- 7. Turn ignition switch OFF and wait at least 10 seconds.
- 8. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 10. Turn ignition switch ON.
- 11. Check permanent DTC. Refer to <u>EC-47, "Emission-related Diagnostic Information"</u>, "How to Display Permanent DTC Status".
- 12. Check that the permanent DTCs have been erased.

Group B

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- *2: After experiencing Driving pattern B *3: and D, permanent DTC is erased.
 - Indication does not change unless the ignition switch is turned from ON to OFF twice even after experiencing Driving pattern B or D.

NOTE:

- Drive the vehicle according to only driving patterns indicating "INCMP" in driving patterns B and D on the "PERMANENT DTC STATUS" screen.
- When experiencing both driving pattern B and D during the same trip, the experience of driving pattern D is counted by priority.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds. 3.
- Turn ignition switch ON.
- Check permanent DTC. Refer to EC-47, "Emission-related Diagnostic Information", "How to Display Permanent DTC Status".
- Start engine and warm it up to normal operating temperature.
- Drive the vehicle according to driving pattern D.

CAUTION:

- Always drive at a safe speed.
- · Never erase self-diagnosis results.
- If self-diagnosis results are erased during the trip of driving pattern B or D, the counter of driving pattern B or D is reset.
- If self-diagnosis results are erased during the trip of driving pattern B or D, an experience of driving pattern B and D during the same trip is not counted up.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Turn ignition switch ON.
- 12. Use "PERMANENT DTC WORK SUPPORT" to drive the vehicle according to driving pattern B.

Α

EC

D

Е

Н

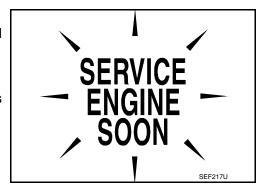
K

M

Ν

CAUTION:

- Always drive at a safe speed.
- · Never erase self-diagnosis results.
- If self-diagnosis results are erased during the trip of driving pattern B or D, the counter of driving pattern B or D is reset.
- If self-diagnosis results are erased during the trip of driving pattern B or D, an experience of driving pattern B and D during the same trip is not counted up.
- 13. Turn ignition switch OFF and wait at least 10 seconds.
- 14. Turn ignition switch ON.
- 15. Turn ignition switch OFF and wait at least 10 seconds.
- 16. Turn ignition switch ON.
- 17. Check permanent DTC. Refer to <u>EC-47, "Emission-related Diagnostic Information"</u>, "How to Display Permanent DTC Status".
- 18. Check that the permanent DTCs have been erased.


Malfunction Indicator Lamp (MIL)

INFOID:0000000005267358

DESCRIPTION

The MIL is located on the instrument panel.

- The MIL will illuminate when the ignition switch is turned ON without the engine running. This is a bulb check.
 If the MIL does not illuminate, refer to GI-33, "Work Flow".
- 2. When the engine is started, the MIL should turn off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following three functions.

< FUNCTION DIAGNOSIS >

[VQ40DE]

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will illuminate to inform the driver that a malfunction has been detected. The following malfunctions will illuminate or blink the MIL in the 1st trip. • Misfire (Possible three way catalyst damage) • One trip detection diagnoses
Mode II	Ignition switch in ON position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut

MIL Flashing Without DTC

When any SRT codes are not set, MIL may flash without DTC. For the details, refer to EC-465, "DTC Index".

HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- ECM always returns to Diagnostic Test Mode I after the ignition switch is turned OFF.

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 3. Wait 7 seconds, fully depress the accelerator pedal and keep it depressed for approx. 10 seconds until the MIL starts blinking.

NOTE:

Never release the accelerator pedal for 10 seconds if MIL Starts blinking during this period. This blinking is displaying SRT status and is continued for another 10 seconds. For the details, refer to EC-465, "DTC Index".

EC-67 2010 Xterra Revision: July 2009

D

Α

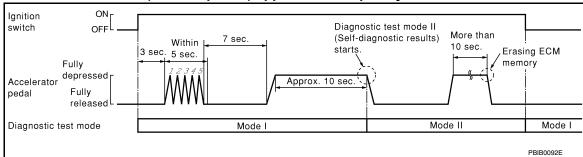
EC

Е

Н

M

Ν


< FUNCTION DIAGNOSIS > [VQ40DE]

4. Fully release the accelerator pedal.

ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

NOTE:

Wait until the same DTC (or 1st trip DTC) appears to completely confirm all DTCs.

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

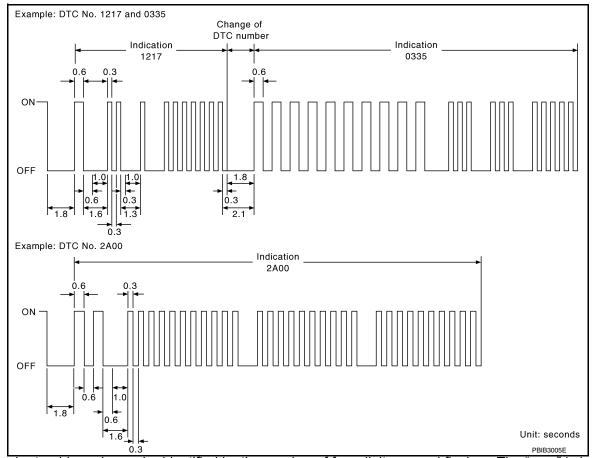
- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- Fully depress the accelerator pedal and keep it depressed for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to GI-33, "Work Flow".

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition
ON	When the malfunction is detected.
OFF	No malfunction.


This DTC number is clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These uniden-

[VQ40DE] < FUNCTION DIAGNOSIS >

tified codes can be identified by using the CONSULT-III or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The "A" is indicated by the number of eleven flash. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-seconds) - OFF (0.6-sec-

The 100th-digit numeral and lower digit numerals consist of a 0.3-seconds ON and 0.3-seconds OFF cycle. A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-seconds OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC 0000 refers to no malfunction. (See EC-465, "DTC Index")

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- · When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-46, "Two Trip Detection Logic".
- The MIL will turn off after the vehicle is driven 3 times with no malfunction. A drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern

EC

Α

D

Е

Н

J

M

N

INFOID:0000000005267359

< FUNCTION DIAGNOSIS >

[VQ40DE]

C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-III will count the number of times the vehicle is driven.

• The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (turns off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

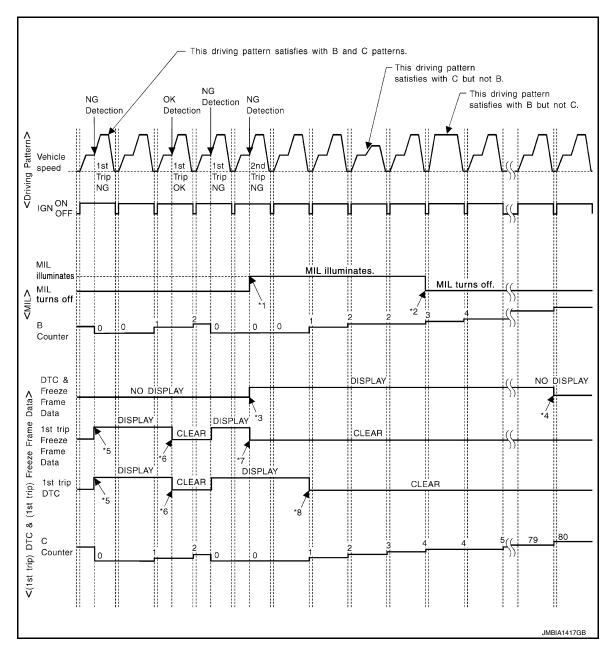
For details about patterns B and C under "Fuel Injection System" and "Misfire", see "EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"".

For details about patterns A and B under Other, see "EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"".

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.


Α

EC

D

Е

Н

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will turn off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as par the following:

Revision: July 2009 EC-71 2010 Xterra

M

Ν

0

< FUNCTION DIAGNOSIS > [VQ40DE]

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will turn off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

Driving pattern C means operating vehicle as par the following:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

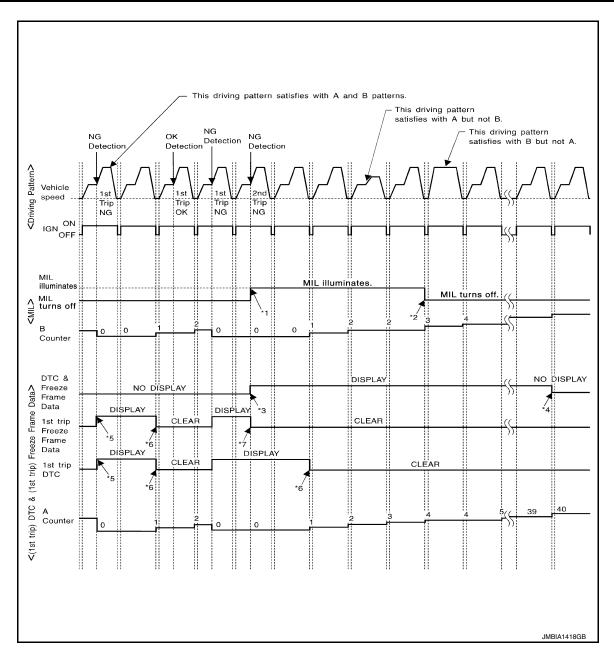
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as par the following:


Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of vehicle conditions above.
- The C counter will be counted up when vehicle conditions above are satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>". "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will turn off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETE-RIORATION>", "FUEL INJECTION SYSTEM"

EC

Α

С

D

Е

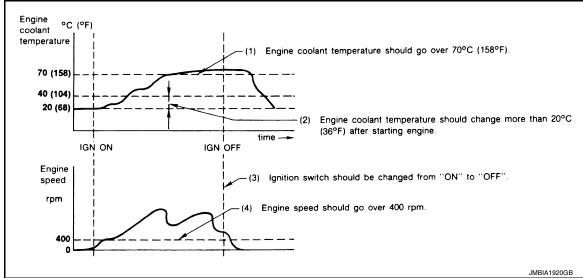
F

G

Н

-

. .


M

Ν

0

Р

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means operating vehicle as par the following:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will turn off when the B counter reaches 3 (*2 in OBD SYSTEM OPERATION CHART).

CONSULT-III Function (ENGINE)

INFOID:0000000005267360

FUNCTION

Diagnostic test mode	Function	
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-III unit.	
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*	
Data monitor	Input/Output data in the ECM can be read.	
Active test	Diagnostic Test Mode in which CONSULT-III drives some actuators apart from the ECMs and also shifts some parameters in a specified range.	
Function test	This mode is used to inform customers when the vehicle requires periodic maintenance.	
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/results can be confirmed.	
ECU identification	ECM part number can be read.	

^{*:} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- · Diagnostic trouble codes
- · 1st trip diagnostic trouble codes
- · Freeze frame data
- · 1st trip freeze frame data
- · System readiness test (SRT) codes
- · Test values

WORK SUPPORT MODE

Work Item

< FUNCTION DIAGNOSIS >

[VQ40DE]

Α

 D

Е

F

Н

K

Ν

Р

WORK ITEM	CONDITION	USAGE
• FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.		When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value
EVAP SYSTEM CLOSE	CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW ON ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM FUEL TANK TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-III WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-III MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN WHEN USING A CHARGED BATTERY.	When detecting EVAP vapor leak in the EVAP system
VIN REGISTRATION	IN THE MODE, VIN IS REGISTERED IN ECM.	When registering VIN in ECM
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of DTC and 1st trip DTC, refer to EC-465, "DTC Index".

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code that is displayed as PXXXX. (Refer to EC-465, "DTC Index".)
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed.
FUEL SYS-B2	One of the following mode is displayed. Mode2: Open loop due to detected system malfunction Mode3: Open loop due to driving conditions (power enrichment, deceleration enleanment) Mode4: Closed loop - using oxygen sensor(s) as feedback for fuel control Mode5: Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRM-B2 [%]	 The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.

< FUNCTION DIAGNOSIS >

[VQ40DE]

Freeze frame data item*	Description
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/ h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.
INT MANI PRES [kPa]	Always a cortain value is displayed.
COMBUST CONDI- TION	 Always a certain value is displayed. These items are displayed but are not applicable to this model.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

Monitored Item

Monitored item	Unit	Description	Remarks
ENG SPEED	rpm	Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1	V	The signal voltage of the mass air flow sensor is displayed.	 When the engine is stopped, a certain value is indicated. When engine is running specification range is indicated in "SPEC".
B/FUEL SCHDL	ms	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When engine is running specification range is indicated in "SPEC".
A/F ALPHA-B1	%		When the engine is stopped, a certain
A/F ALPHA-B2	%	The mean value of the air-fuel ratio feedback cor- rection factor per cycle is indicated.	 value is indicated. When engine is running specification range is indicated in "SPEC". This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S	°C or °F	The engine coolant temperature (determined by the signal voltage of the engine coolant tempera- ture sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine cool- ant temperature determined by the ECM is displayed.
A/F SEN1 (B1)	V	The A/F signal computed from the input signal of	
A/F SEN1 (B2)	V	the Air fuel ratio (A/F) sensor 1 is displayed.	
HO2S2 (B1)	V	The signal voltage of the heated oxygen sensor 2	
HO2S2 (B2)	V	is displayed.	
HO2S2 MNTR(B1)	RICH/ LEAN	Display of heated oxygen sensor 2 signal: RICH: Means the amount of oxygen after three way stabled in relatively amount.	When the engine is stopped, a certain
HO2S2 MNTR(B2)	RICH/ LEAN	catalyst is relatively small. LEAN: Means the amount of oxygen after three way catalyst is relatively large.	value is indicated.

< FUNCTION DIAGNOSIS > [VQ40DE]

Monitored item	Unit	Description	Remarks
VHCL SPEED SE	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from combination meter is dis- played.	
BATTERY VOLT	V	The power supply voltage of ECM is displayed.	
ACCEL SEN 1	V	The accelerator pedal position sensor signal volt-	ACCEL SEN 2 signal is converted by
ACCEL SEN 2	V	age is displayed.	ECM internally. Thus, it differs from ECM terminal voltage signal.
TP SEN 1-B1	V	The throttle position sensor signal voltage is dis-	THRTL SEN 2 signal is converted by
TP SEN 2-B1	V	played.	ECM internally. Thus, it differs from ECM terminal voltage signal.
FUEL T/TMP SE	°C or °F	The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	
INT/A TEMP SE	°C or °F	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EVAP SYS PRES	V		
FUEL LEVEL SE	V		
START SIGNAL	ON/OFF	Indicates start signal status [ON/OFF] computed by the ECM according to the signals of engine speed and battery voltage.	After starting the engine, [OFF] is dis- played regardless of the starter signal.
CLSD THL POS	ON/OFF	Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal.	
AIR COND SIG	ON/OFF	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal.	
P/N POSI SW	ON/OFF	Indicates [ON/OFF] condition from the park/neutral position (PNP) signal.	
PW/ST SIGNAL	ON/OFF	[ON/OFF] condition of the power steering system (determined by the signal voltage of the power steering pressure sensor signal) is indicated.	
LOAD SIGNAL	ON/OFF	Indicates [ON/OFF] condition from the electrical load signal. ON: Rear window defogger switch is ON and/or lighting switch is in 2nd position. OFF: Both rear window defogger switch and lighting switch are OFF.	
IGNITION SW	ON/OFF	Indicates [ON/OFF] condition from ignition switch signal.	
HEATER FAN SW	ON/OFF	Indicates [ON/OFF] condition from the heater fan switch signal.	
BRAKE SW	ON/OFF	Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1	msec	Indicates the actual fuel injection pulse width com-	When the engine is stopped, a certain
INJ PULSE-B2	msec	pensated by ECM according to the input signals.	computed value is indicated.
IGN TIMING	BTDC	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.
CAL/LD VALUE	%	Calculated load value indicates the value of the current air flow divided by peak air flow.	
MASS AIRFLOW	g·m/s	Indicates the mass air flow computed by ECM according to the signal voltage of the mass air flow sensor.	

Revision: July 2009 EC-77 2010 Xterra

< FUNCTION DIAGNOSIS >

[VQ40DE]

Monitored item	Unit	Description	Remarks
PURG VOL C/V	%	 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
INT/V TIM(B1)	°CA	Indicates [°CA] of intake camshaft advanced angle.	
INT/V TIM(B2)	°CA	indicates [OA] of intake cantistrate advanced angle.	
INT/V SOL(B1) INT/V SOL(B2)	%	 The control condition of the intake valve timing control solenoid valve (determined by ECM according to the input signals) is indicated. The advance angle becomes larger as the value in- 	
VIAS S/V-1	ON/OFF	The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indicated. ON: VIAS control solenoid valve is operating. OFF: VIAS control solenoid valve is not operating.	
AIR COND RLY	ON/OFF	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.	
FUEL PUMP RLY	ON/OFF	Indicates the fuel pump relay control condition de- termined by ECM according to the input signals.	
VENT CONT/V	ON/OFF	The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON: Closed OFF: Open	
THRTL RELAY	ON/OFF	 Indicates the throttle control motor relay control condition determined by the ECM according to the input signals. 	
COOLING FAN	HI/LOW/ OFF	The control condition of the cooling fan (determined by ECM according to the input signals) is indicated. HI: High speed operation LOW: Low speed operation OFF: Stop	
HO2S2 HTR (B1)	ON/OFF	Indicates [ON/OFF] condition of heated oxygen	
HO2S2 HTR (B2)	ON/OFF	sensor 2 heater determined by ECM according to the input signals.	
I/P PULLY SPD	rpm	 Indicates the engine speed computed from the in- put speed sensor signal. 	
VEHICLE SPEED	km/h or mph	Indicates the vehicle speed computed from the output speed sensor signal.	
IDL A/V LEARN	YET/ CMPLT	Displays the condition of idle air volume learning YET: Idle air volume learning has not been performed yet. CMPLT: Idle air volume learning has already been performed successfully.	
TRVL AFTER MIL	km or mile	Distance traveled while MIL is activated.	
A/F S1 HTR(B1)	%	Air fuel ratio (A/F) sensor 1 heater control value	
A/F S1 HTR(B2)	%	 computed by ECM according to the input signals. The current flow to the heater becomes larger as the value increases. 	
AC PRESS SEN	V	The signal voltage from the refrigerant pressure sensor is displayed.	

< FUNCTION DIAGNOSIS >

[VQ40DE]

Monitored item	Unit	Description	Remarks	
VHCL SPEED SE	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from TCM is displayed.		ı
SET VHCL SPD	km/h or mph	The preset vehicle speed is displayed.		Ε
MAIN SW	ON/OFF	Indicates [ON/OFF] condition from MAIN switch signal.		
CANCEL SW	ON/OFF	Indicates [ON/OFF] condition from CANCEL switch signal.		
RESUME/ACC SW	ON/OFF	Indicates [ON/OFF] condition from RESUME/AC- CELERATE switch signal.		
SET SW	ON/OFF	Indicates [ON/OFF] condition from SET/COAST switch signal.		
BRAKE SW1	ON/OFF	Indicates [ON/OFF] condition from ASCD brake switch signal.		
BRAKE SW2	ON/OFF	Indicates [ON/OFF] condition of stop lamp switch signal.		
VHCL SPD CUT	NON/ CUT	Indicates the vehicle cruise condition. NON: Vehicle speed is maintained at the ASCD set speed. CUT: Vehicle speed increased to excessively high compared with the ASCD set speed, and ASCD operation is cut off.		
LO SPEED CUT	NON/ CUT	Indicates the vehicle cruise condition. NON: Vehicle speed is maintained at the ASCD set speed. CUT: Vehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.		
AT OD MONITOR	ON/OFF	Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM.		
AT OD CANCEL	ON/OFF	Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.		
CRUISE LAMP	ON/OFF	 Indicates [ON/OFF] condition of CRUISE lamp de- termined by the ECM according to the input sig- nals. 		
SET LAMP	ON/OFF	Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals.		
ALT DUTY	%	Indicates the duty ratio of the power generation command value. The ratio is calculated by ECM based on the battery current sensor signal.		
BAT CUR SEN	mV	The signal voltage of battery current sensor is dis- played.		
ALT DUTY SIG	ON/OFF	The control condition of the power generation voltage variable control (determined by ECM according to the input signals) is indicated. ON: Power generation voltage variable control is active OFF: Power generation voltage variable control is inactive.		
A/F ADJ-B1	_	Indicates the correction factor stored in ECM. The footonic coloulated from the difference hat your the		
4/F ADJ-B2	_	factor is calculated from the difference between the target air-fuel ratio stored in ECM and the air-fuel ratio calculated from A/F sensor 1 signal.		
HO2 S2 DIAG1 (B1)	INCMP/ CMPLT	Indicates DTC P0139 self-diagnosis (delayed responce) condition. INCMP: Self-diagnosis is incomplete. CMPLT: Self-diagnosis is complete.		

Revision: July 2009 EC-79 2010 Xterra

< FUNCTION DIAGNOSIS >

[VQ40DE]

Monitored item	Unit	Description	Remarks
HO2 S2 DIAG1 (B2)	INCMP/ CMPLT	Indicates DTC P0159 self-diagnosis (delayed responce) condition. INCMP: Self-diagnosis is incomplete. CMPLT: Self-diagnosis is complete.	
HO2 S2 DIAG2 (B1)	INCMP/ CMPLT	Indicates DTC P0139 self-diagnosis (slow responce) condition. INCMP: Self-diagnosis is incomplete. CMPLT: Self-diagnosis is complete.	
HO2 S2 DIAG2 (B2)	INCMP/ CMPLT	Indicates DTC P0159 self-diagnosis (slow responce) condition. INCMP: Self-diagnosis is incomplete. CMPLT: Self-diagnosis is complete.	

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	Engine: Return to the original non-standard condition Change the amount of fuel injection using CONSULT-III.	If malfunctioning symptom disappears, see CHECK ITEM.	Harness and connectors Fuel injector Air fuel ratio (A/F) sensor 1
IGNITION TIM- ING	 Engine: Return to the original non-standard condition Timing light: Set Retard the ignition timing using CONSULT-III. 	If malfunctioning symptom disappears, see CHECK ITEM.	Perform Idle Air Volume Learning.
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch: OFF Shift lever: P or N (A/T), Neutral (M/T) Cut off each fuel injector signal one at a time using CONSULT-III. 	Engine runs rough or stops.	 Harness and connectors Compression Fuel injector Power transistor Spark plug Ignition coil
COOLING FAN*	Ignition switch: ON Turn the cooling fan HI, LOW and OFF using CONSULT-III.	Cooling fan moves and stops.	Harness and connectors Cooling fan motor IPDM E/R
ENG COOLANT TEMP	 Engine: Return to the original non-standard condition Change the engine coolant tem- perature using CONSULT-III. 	If malfunctioning symptom disappears, see CHECK ITEM.	Harness and connectors Engine coolant temperature sensor Fuel injector
FUEL PUMP RE- LAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay ON and OFF using CONSULT-III and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connectors Fuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve ON and OFF with CONSULT-III and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-III. 	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve

< FUNCTION DIAGNOSIS >

[VQ40DE]

Α

D

Е

Н

J

K

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL/T TEMP SEN	Change the fuel tank temperature using CONSULT-III.		
VENT CON- TROL/V	Ignition switch: ON (Engine stopped) Turn solenoid valve ON and OFF with the CONSULT-III and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
V/T ASSIGN AN- GLE	Engine: Return to the original non-standard condition Change intake valve timing using CONSULT-III.	If malfunctioning symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve
ALTERNATOR DUTY	Engine: Idle Change duty ratio using CON- SULT-III.	Battery voltage changes.	Harness and connectors IPDM E/R Alternator

^{*:} Leaving cooling fan OFF with CONSULT-III while engine is running may cause the engine to overheat.

DTC & SRT CONFIRMATION MODE

SRT STATUS Mode

For details, refer to EC-47, "Emission-related Diagnostic Information".

PERMANENT DTC STATUS Mode

For details, refer to EC-47, "Emission-related Diagnostic Information".

NOTE:

This mode is not used in regions that permanent DTCs are not regulated by law.

SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

PERMANENT DTC WORK SUPPORT Mode

This mode enables a technician to drive a vehicle to complete the driving pattern that is reguired for erasing permanent DTC.

NOTE:

This mode is not used in regions that permanent DTCs are not regulated by law.

DTC Work Support Mode

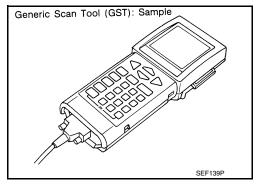
Test mode	Test item	Corresponding DTC No.	Reference page
	EVE CML LEAK DO 440/D4440*	P0442	EC-231
	EVP SML LEAK P0442/P1442*	P0455	EC-267
EVAPORATIVE SYS- TEM	EVP V/S LEAK P0456/P1456*	P0456	EC-274
T E IVI	PURG VOL CN/V P1444	P0443	EC-238
	PURG FLOW P0441	P0441	EC-226
	A/F SEN1 (B1) P1278/P1279	P0133	EC-156
A/F OFNIA	A/F SEN1 (B1) P1276	P0130	EC-144
A/F SEN1	A/F SEN1 (B2) P1288/P1289	P0153	EC-156
	A/F SEN1 (B2) P1286	P0150	EC-144
	HO2S2 (B1) P1146	P0138	EC-167
	HO2S2 (B1) P1147	P0137	EC-161
HO2S2	HO2S2 (B1) P0139	P0139	EC-175
	HO2S2 (B2) P1166	P0158	EC-167
	HO2S2 (B2) P1167	P0157	EC-161
	HO2S2 (B2) P0159	P0159	EC-175

^{*:} DTC P1442 and P1456 does not apply to N50 models but appears in DTC Work Support Mode screens.

< FUNCTION DIAGNOSIS >

[VQ40DE]

Generic Scan Tool (GST) Function


INFOID:0000000005267361

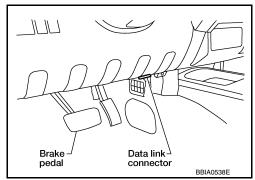
DESCRIPTION

Generic Scan Tool (OBDII scan tool) complying with SAE J1978/ISO 15031-4 has several functions explained below.

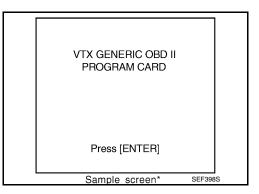
ISO15765-4 is used as the protocol.

The name GST or Generic Scan Tool is used in this service manual.

FUNCTION

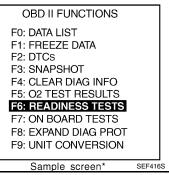

Diag	gnostic test mode	Function
Service \$01	READINESS TESTS	This diagnostic service gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
Service \$02	(FREEZE DATA)	This diagnostic service gains access to emission-related data value that were stored by ECM during the freeze frame. For details, refer to EC-47 . "Emission-related Diagnostic Information".
Service \$03	DTCs	This diagnostic service gains access to emission-related power train trouble codes which were stored by ECM.
Service \$04	CLEAR DIAG INFO	This diagnostic service can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (Service \$01) Clear diagnostic trouble codes (Service \$03) Clear trouble code for freeze frame data (Service \$01) Clear freeze frame data (Service \$02) Reset status of system monitoring test (Service \$01) Clear on board monitoring test results (Service \$06 and \$07)
Service \$06	(ON BOARD TESTS)	This diagnostic service accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
Service \$07	(ON BOARD TESTS)	This diagnostic service enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
Service \$08	_	This diagnostic service can close EVAP system in ignition switch ON position (Engine stopped). When this diagnostic service is performed, the EVAP canister vent control valve can be closed. In the following conditions, this diagnostic service cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch OFF Low fuel temperature Too much pressure is applied to EVAP system
Service \$09	(CALIBRATION ID)	This diagnostic service enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

INSPECTION PROCEDURE


1. Turn ignition switch OFF.

< FUNCTION DIAGNOSIS > [VQ40DE]

Connect GST to data link connector, which is located under LH dash panel near the hood opener handle.



- 3. Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
 - (*: Regarding GST screens in this section, sample screens are shown.)

Perform each diagnostic mode according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

Α

EC

D

C

Ε

F

G

Н

J

K

L

IVI

Ν

0

Р

< COMPONENT DIAGNOSIS >

[VQ40DE]

COMPONENT DIAGNOSIS

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

Description INFOID:000000005267362

The specification (SP) value indicates the tolerance of the value that is displayed in "SPEC" of "DATA MONITOR" mode of CONSULT-III during normal operation of the Engine Control System. When the value in "SPEC" of "DATA MONITOR" mode is within the SP value, the Engine Control System is confirmed OK. When the value "SPEC" of "DATA MONITOR" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not illuminate the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

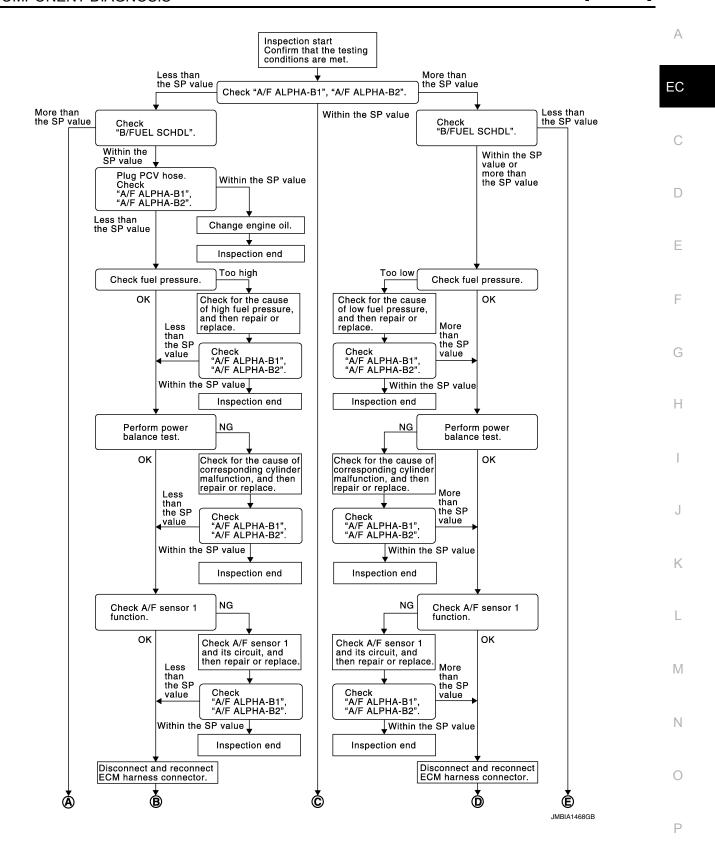
INFOID:0000000005267363

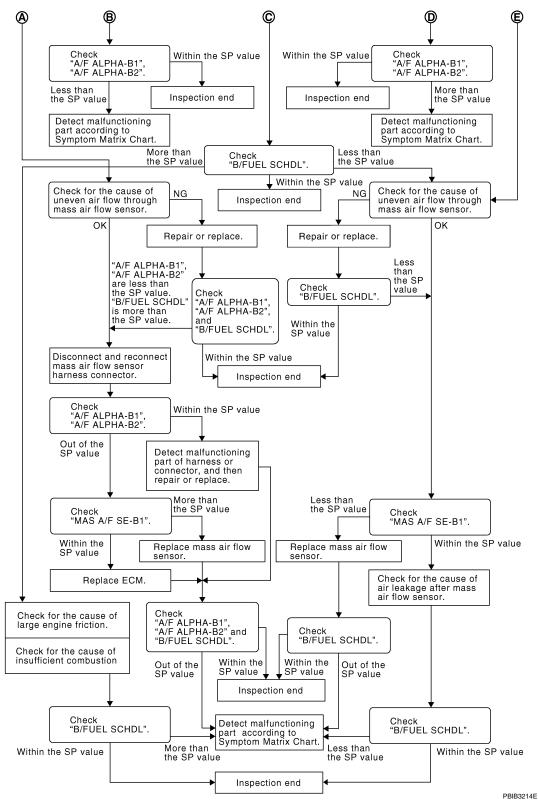
- Vehicle driven distance: More than 5,000 km (3,107 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*¹
- Electrical load: Not applied*²
- · Engine speed: Idle
- *1: After the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F).
- *2: Rear window defogger switch, air conditioner switch lighting switch are OFF. Steering wheel is straight ahead.

Inspection Procedure

INFOID:0000000005267364

NOTE:


Perform "SPEC" of "DATA MONITOR" mode in maximum scale display.


- 1. Perform EC-14, "Basic Inspection".
- Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode with CONSULT-III.
- Check that monitor items are within the SP value.
- If NG, go to <u>EC-84, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267365

OVERALL SEQUENCE

DETAILED PROCEDURE

1.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- Confirm that the testing conditions are met. Refer to <u>EC-84. "Testing Condition"</u>.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.
 NOTE:

< COMPONENT DIAGNOSIS >

[VQ40DE]

Check "A/F ALPHA-B1", "A/F ALPHA-B2" for approximately 1 minute because they may fluctuate. It is NG if the indication is out of the SP value even a little.

OK or NG

OK >> GO TO 17.

NG (Less than the SP value)>>GO TO 2.

NG (More than the SP value)>>GO TO 3.

2.CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and check that the indication is within the SP value.

OK or NG

OK >> GO TO 4.

NG (More than the SP value)>>GO TO 19.

3.CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and check that the indication is within the SP value.

OK or NG

>> GO TO 6. OK

NG (More than the SP value)>>GO TO 6.

NG (Less than the SP value)>>GO TO 25.

4.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

Stop the engine.

- Disconnect PCV hose, and then plug it.
- 3. Start engine.
- 4. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.

OK or NG

OK >> GO TO 5.

NG >> GO TO 6.

${f 5.}$ CHANGE ENGINE OIL

- 1. Stop the engine.
- 2. Change engine oil.

NOTE:

This symptom may occur when a large amount of gasoline is mixed with engine oil because of driving conditions (such as when engine oil temperature does not rise enough since a journey distance is too short during winter). The symptom will not be detected after changing engine oil or changing driving conditions.

>> INSPECTION END

O.CHECK FUEL PRESSURE

Check fuel pressure. (Refer to EC-500, "Fuel Pressure Check".)

OK or NG

OK >> GO TO 9.

NG (Fuel pressure is too high)>>Replace fuel pressure regulator, refer to EC-500, "Fuel Pressure Check". GO TO 8.

NG (Fuel pressure is too low)>>GO TO 7.

.DETECT MALFUNCTIONING PART

- Check the following.
- Clogged and bent fuel hose and fuel tube
- Clogged fuel filter

Revision: July 2009

- Fuel pump and its circuit (Refer to EC-408, "Description".)
- If NG, repair or replace the malfunctioning part. (Refer to EC-84, "Diagnosis Procedure".) If OK, replace fuel pressure regulator.

EC

D

Е

Α

Н

K

L

M

N

Р

2010 Xterra

>> GO TO 8.

8.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 9.

9. PERFORM POWER BALANCE TEST

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- Check that the each cylinder produces a momentary engine speed drop.

OK or NG

OK >> GO TO 12. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

- Check the following below.
- Ignition coil and its circuit (Refer to EC-412, "Component Description".)
- Fuel injector and its circuit (Refer to EC-404, "Component Description".)
- Intake air leakage
- Low compression pressure (Refer to <u>EM-22, "Compression Pressure"</u>.)
- 2. If NG, repair or replace the malfunctioning part.

If OK, replace fuel injector. (It may be caused by leakage from fuel injector or clogging.)

>> GO TO 11.

11.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 12.

12. CHECK A/F SENSOR 1 FUNCTION

Perform all DTC Confirmation Procedure related with A/F sensor 1.

- For DTC P0130, P0150, refer to EC-144, "DTC Confirmation Procedure".
- For DTC P0131, P0151, refer to EC-148, "DTC Confirmation Procedure".
- For DTC P0132, P0152, refer to <u>EC-152, "DTC Confirmation Procedure"</u>
- For DTC P0133, P0153, refer to EC-156, "DTC Confirmation Procedure".
- For DTC P2A00, P2A03, refer to EC-386, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 15.

NG >> GO TO 13.

13. CHECK A/F SENSOR 1 CIRCUIT

Perform Diagnostic Procedure according to corresponding DTC.

>> GO TO 14.

14. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.

OK or NG

Revision: July 2009 EC-88 2010 Xterra

< COMPONENT DIAGNOSIS > [VQ40DE]	
OK >> INSPECTION END NG >> GO TO 15.	Λ
15. DISCONNECT AND RECONNECT ECM HARNESS CONNECTOR	Α
 Stop the engine. Disconnect ECM harness connector. Check pin terminal and connector for damage, and then reconnect it. 	EC
>> GO TO 16.	0
16.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"	С
 Start engine. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value. 	D
OK or NG	_
OK >> INSPECTION END NG >> Detect malfunctioning part according to <u>EC-489</u> , "Symptom Matrix Chart".	Е
17.check "B/Fuel schol"	F
Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and check that the indication is within the SP value.	
OK or NG	G
OK >> INSPECTION END NG (More than the SP value)>>GO TO 18.	
NG (Less than the SP value)>>GO TO 25.	Н
18. DETECT MALFUNCTIONING PART	
 Check for the cause of large engine friction. Refer to the following. Engine oil viceosity 	I
 Engine oil viscosity Belt tension of power steering, alternator, A/C compressor, etc. is excessive 	
Noise from engineNoise from transmission, etc.	J
2. Check for the cause of insufficient combustion. Refer to the following.	
 Valve clearance malfunction Intake valve timing control function malfunction 	K
- Camshaft sprocket installation malfunction, etc.	T\
>> Repair or replace malfunctioning part, and then GO TO 30.	L
19.check intake system	
Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.	M
 Crushed air ducts Malfunctioning seal of air cleaner element 	
Uneven dirt of air cleaner element	
Improper specification of intake air system OK or NG	Ν
OK >> GO TO 21.	
NG >> Repair or replace malfunctioning part, and then GO TO 20.	0
20.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2", AND "B/FUEL SCHDL"	
Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.	Р
OK or NG	
OK >> INSPECTION END NG ("B/FUEL SCHDL" is more, "A/F ALPHA-B1", "A/F ALPHA-B2" are less than the SP value)>>GO TO 21.	
21. DISCONNECT AND RECONNECT MASS AIR FLOW SENSOR HARNESS CONNECTOR	

Revision: July 2009 EC-89 2010 Xterra

1. Stop the engine.

< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Disconnect mass air flow sensor harness connector. Check pin terminal and connector for damage and then reconnect it again.

>> GO TO 22.

22.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.

OK or NG

OK >> 1. Detect malfunctioning part of mass air flow sensor circuit and repair it. Refer to EC-117.

2. GO TO 29.

NG >> GO TO 23.

23. CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode, and check that the indication is within the SP value.

OK or NG

OK >> GO TO 24.

NG (More than the SP value)>>Replace mass air flow sensor, and then GO TO 29.

24.REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NVIS(NATS) system and registration of all NVIS(NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".
- 3. Perform EC-19, "VIN Registration".
- 4. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-19, "Throttle Valve Closed Position Learning".
- 6. Perform EC-19, "Idle Air Volume Learning".

>> GO TO 29.

25. CHECK INTAKE SYSTEM

Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.

- · Crushed air ducts
- Malfunctioning seal in air cleaner element
- · Uneven dirt in air cleaner element
- Improper specification in intake air system

OK or NG

OK >> GO TO 27.

NG >> Repair or replace malfunctioning part, and then GO TO 26.

26. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and check that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG (Less than the SP value)>>GO TO 27.

27.CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode, and check that the indication is within the SP value.

OK or NG

OK >> GO TO 28.

NG (Less than the SP value)>>Replace mass air flow sensor, and then GO TO 30.

28. CHECK INTAKE SYSTEM

Check for the cause of air leak after the mass air flow sensor. Refer to the following.

Revision: July 2009 EC-90 2010 Xterra

< COMPONENT DIAGNOSIS >

- Disconnection, looseness, and cracks in air duct
- Looseness of oil filler cap
- · Disconnection of oil level gauge
- Open stuck, breakage, hose disconnection, or cracks of PCV valve
- Disconnection or cracks in EVAP purge hose, stuck open of EVAP canister purge volume control solenoid valve
- · Malfunctioning seal un rocker cover gasket
- Disconnection, looseness, or cracks in hoses, such as a vacuum hose, connecting to intake air system parts
- · Malfunctioning seal in intake air system, etc.

>> GO TO 30.

 $29.\mathsf{CHECK}$ "A/F ALPHA-B1", "A/F ALPHA-B2", AND "B/FUEL SCHDL"

Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and check that each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to <u>EC-489</u>. "Symptom Matrix Chart".

30. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and then check that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to EC-489, "Symptom Matrix Chart".

Revision: July 2009 EC-91 2010 Xterra

EC

Α

[VQ40DE]

С

D

Е

E

F

G

Н

J

Κ

L

M

Ν

Р

0

INFOID:000000005267366

POWER SUPPLY AND GROUND CIRCUIT

Diagnosis Procedure

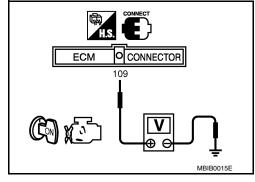
1.INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 8. No >> GO TO 2.

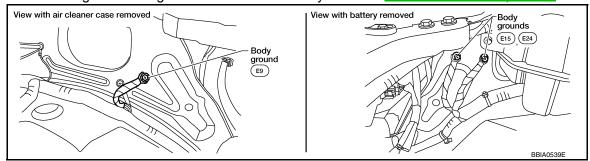

2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF and then ON.
- 2. Check voltage between ECM terminal 109 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.


3. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M4
- Harness connectors M31, E152
- 10A fuse (No.1)
- · Harness for open or short between ECM and fuse
 - >> Repair harness or connectors.

4. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".

OK or NG

OK >> GO TO 5.

NG >> Repair or replace ground connections.

5. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

POWER SUPPLY AND GROUND CIRCUIT

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

D

Е

F

Н

K

Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

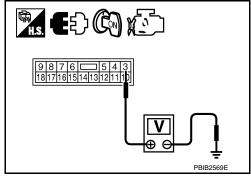
DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F32, E2
- Harness for open or short between ECM and ground

>> Repair open circuit or short to power in harness or connectors.

7.CHECK ECM POWER SUPPLY CIRCUIT-II


- Reconnect ECM harness connector.
- Turn ignition switch ON.
- Check voltage between IPDM E/R connector E119 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> Go to EC-412, "Diagnosis Procedure".

NG >> GO TO 8.

CONNECTOR

119, 120

8.CHECK ECM POWER SUPPLY CIRCUIT-III

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and then OFF.
- Check voltage between ECM terminals 119, 120 and ground with CONSULT-III or tester.

Voltage: After turning ignition switch OFF, battery voltage will exist for a few seconds, then drop

approximately 0V.

OK or NG

OK >> GO TO 13.

NG (Battery voltage does not exist.)>>GO TO 9.

NG (Battery voltage exists for more than a few seconds.)>>GO TO 11.

9.CHECK ECM POWER SUPPLY CIRCUIT-IV

Check voltage between ECM terminal 111 and ground with CON-SULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 11.

CONNECTOR **ECM** ([GFF PBIB1191E

10. CHECK ECM POWER SUPPLY CIRCUIT-V

- Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E119.

Ν

PBIB1630E

Р

EC-93 2010 Xterra Revision: July 2009

Check harness continuity between ECM terminals 119, 120 and IPDM E/R terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 16.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK ECM POWER SUPPLY CIRCUIT-VI

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E119.
- 3. Check harness continuity between ECM terminal 111 and IPDM E/R terminal 7. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

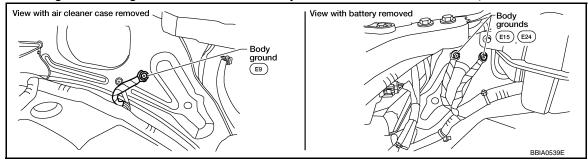
OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12.CHECK 20A FUSE

- 1. Disconnect 20 A fuse (No.53) from IPDM E/R.
- 2. Check 20 A fuse.


OK or NG

OK >> GO TO 16.

NG >> Replace 20A fuse.

13. CHECK GROUND CONNECTIONS

Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".

OK or NG

OK >> GO TO 14.

NG >> Repair or replace ground connections.

14. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

1. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 16.

NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

· Harness connectors F32, E2

Revision: July 2009 EC-94 2010 Xterra

POWER SUPPLY AND GROUND CIRCUIT

< COMPONENT DIAGNOSIS >

[VQ40DE]

INFOID:0000000005267367

- · Harness for open or short between ECM and ground
 - >> Repair open circuit or short to power in harness or connectors.

16. CHECK INTERMITTENT INCIDENT

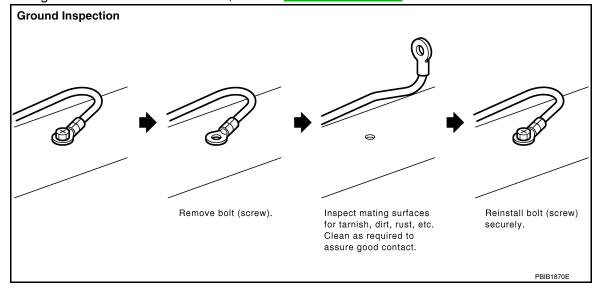
Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> Replace IPDM E/R.

NG >> Repair open circuit or short to power in harness or connectors.

Ground Inspection


Ground connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works.

Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even when the ground connection looks clean, there can be a thin film of rust on the surface.

When inspecting a ground connection follow these rules:

- · Remove the ground bolt or screw.
- Inspect all mating surfaces for tarnish, dirt, rust, etc.
- Clean as required to assure good contact.
- · Reinstall bolt or screw securely.
- · Inspect for "add-on" accessories which may be interfering with the ground circuit.
- If several wires are crimped into one ground eyelet terminal, check for proper crimps. Check all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one eyelet check no ground wires have excess wire insulation.

For detailed ground distribution information, refer to GI-33, "Work Flow".

EC

Α

D

Е

F

Н

N

U0101 CAN COMM CIRCUIT

Description INFOID:000000005267368

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

INFOID:0000000005267369

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U0101* ¹ 0101* ¹	Lost communication with TCM	When ECM is not transmitting or receiving CAN communication signal of OBD (emission- related diagnosis) with TCM for 2 seconds or more.	CAN communication line between TCM and ECM CAN communication line is open or shorted

^{*1:} This self-diagnosis has the one trip detection logic (A/T)

DTC Confirmation Procedure

INFOID:0000000005267370

- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-96, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267371

Go to LAN-46, "CAN System Specification Chart".

U1001 CAN COMM CIRCUIT

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

D

Е

F

Н

U1001 CAN COMM CIRCUIT

Description INFOID:0000000005267372

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

INFOID:0000000005267373

The MIL will not illuminate for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1001 1001	CAN communication line	When ECM is not transmitting or receiving CAN communication signal other than OBD (emission-related diagnosis) for 2 seconds or more.	Harness or connectors (CAN communication line is open or shorted)

DTC Confirmation Procedure

INFOID:0000000005267374

- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-97, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267375

Go to LAN-46, "CAN System Specification Chart".

M

Ν

U

Revision: July 2009 EC-97 2010 Xterra

P0011, P0021 IVT CONTROL

On Board Diagnosis Logic

INFOID:0000000005267376

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause
P0011 0011 (Bank 1)	lately value timing	There is a real habiture and a few and and	 Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Intake valve timing control solenoid valve
P0021 0021 (Bank 2)	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Accumulation of debris to the signal pick-up portion of the camshaft Timing chain installation Foreign matter caught in the oil groove for intake valve timing control

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function.

DTC Confirmation Procedure

INFOID:0000000005267377

CAUTION:

Always drive at a safe speed.

NOTE:

- If DTC P0011 or P0021 is displayed with DTC P0075 or P0081, first perform trouble diagnosis for DTC P0075 or P0081. Refer to EC-108.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next step.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

(P) WITH CONSULT-III

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- Maintain the following conditions for at least 6 consecutive seconds. Hold the accelerator pedal as steady as possible.

ENG SPEED	1,200 - 2,000 rpm
COOLAN TEMP/S	More than 60°C (140°F)
B/FUEL SCHDL	More than 3.5 msec
Selector lever	P or N position (A/T) Neutral position (M/T)

- 4. Stop vehicle with engine running and let engine idle for 10 seconds.
- 5. Check 1st trip DTC.
- If the 1st trip DTC is detected, go to <u>EC-99</u>, "<u>Diagnosis Procedure</u>".
 If the 1st trip DTC is not detected, go to next step.
- 7. Maintain the following conditions for at least 20 consecutive seconds.

P0011, P0021 IVT CONTROL

< COMPONENT DIAGNOSIS >

[VQ40DE]

ENG SPEED	1,700 - 3,175 rpm (A constant rotation is maintained.)
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	1st or 2nd position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)
8. Check 1st trip DTC.	

EC

D

Е

F

Н

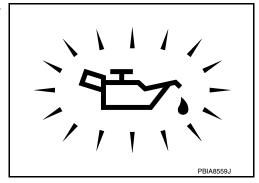
Α

- 9. If the 1st trip DTC is detected, go to EC-99, "Diagnosis Procedure".
- **WITH GST**

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267378


1. CHECK OIL PRESSURE WARNING LAMP

- Start engine.
- 2. Check oil pressure warning lamp and confirm it is not illuminated.

OK or NG

OK >> GO TO 2.

KG >> Go to LU-7, "Inspection".

2.check intake valve timing control solenoid valve

Refer to EC-100, "Component Inspection".

OK or NG

OK

NG >> Replace malfunctioning intake valve timing control solenoid valve.

3.CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-215, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace crankshaft position sensor (POS).

4. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-220, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning camshaft position sensor (PHASE).

5. CHECK CAMSHAFT (INTAKE)

Check the following.

0

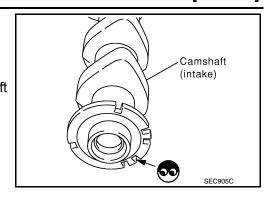
Р

EC-99 Revision: July 2009 2010 Xterra

M

K

Ν


< COMPONENT DIAGNOSIS >

- Accumulation of debris on the signal plate of camshaft rear end
- · Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 6.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

6. CHECK TIMING CHAIN INSTALLATION

Check service records for any recent repairs that may cause timing chain misalignment.

Are there any service records that may cause timing chain misalignment?

Yes or No

Yes >> Check timing chain installation. Refer to EM-59, "Removal and Installation".

No >> GO TO 7.

7.CHECK LUBRICATION CIRCUIT

Refer to EM-59, "Removal and Installation".

OK or NG

OK >> GO TO 8.

NG >> Clean lubrication line.

8. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

INFOID:0000000005267379

[VQ40DE]

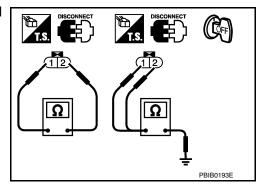
INTAKE VALVE TIMING CONTROL SOLENOID VALVE

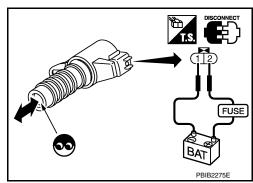
- Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve as follows.

Terminal	Resistance
1 and 2	7.0 - 7.7Ω at 20°C (68°F)
1 or 2 and ground	$\infty\Omega$ (Continuity should not exist.)

If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

- 3. Remove intake valve timing control solenoid valve.
- Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Check that the plunger moves as shown in the figure.


CAUTION:


Never apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.

If NG, replace intake valve timing control solenoid valve.

NOTE:

Always replace O-ring when intake valve timing control solenoid valve is removed.

P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< COMPONENT DIAGNOSIS >

[VQ40DE]

P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

Description

SYSTEM DESCRIPTION

EC

Α

D

Е

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Air fuel ratio (A/F) sensor 1	Air fuel ratio (A/F) sensor 1 heater	
Mass air flow sensor	Amount of intake air	ricater control		

The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating condition to keep the temperature of A/F sensor 1 element within the specified range.

On Board Diagnosis Logic

INFOID:0000000005267381

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	-
P0031 0031 (Bank 1)	Air fuel ratio (A/F) sensor	The current amperage in the A/F sensor 1 heater circuit is out of the normal range.	Harness or connectors (The A/F sensor 1 heater circuit is)	
P0051 0051 (Bank 2)	1 heater control circuit low	(An excessively low voltage signal is sent to ECM through the A/F sensor 1 heater.)	open or shorted.) • A/F sensor 1 heater	(
P0032 0032 (Bank 1)	Air fuel ratio (A/F) sensor	The current amperage in the A/F sensor 1 heater circuit is out of the normal range.	Harness or connectors (The A/F sensor 1 heater circuit is)	
P0052 0052 (Bank 2)	high	(An excessively high voltage signal is sent to ECM through the A/F sensor 1 heater.)	shorted.) • A/F sensor 1 heater	

DTC Confirmation Procedure

INFOID:0000000005267382

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

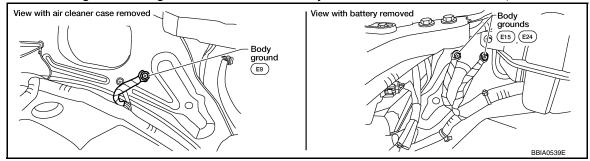
- 1. Start engine and let it idle for at least 10 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-101, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267383

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

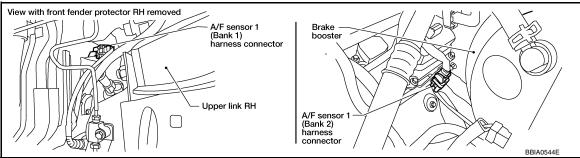

Ρ

L

Ν

Revision: July 2009 EC-101 2010 Xterra

2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

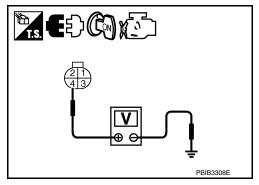

OK or NG

OK >> GO TO 2.

NG >> Repair or Replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.



- 2. Turn ignition switch ON.
- Check voltage between air fuel ratio sensor 1 terminal 4 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- IPDM E/R harness connector E119
- 15 A fuse (No.54)
- · Harness for open or short between air fuel ratio sensor 1 and fuse
 - >> Repair or replace harness or connectors.

4. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 2 (bank 1) or 24, 43 (bank 2) and air fuel ratio (A/F) sensor 1 terminal 3.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

Revision: July 2009 EC-102 2010 Xterra

P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< COMPONENT DIAGNOSIS >

[VQ40DE]

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-103. "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> GO TO 7.

6. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 7.

NG >> Repair or replace.

/ .REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

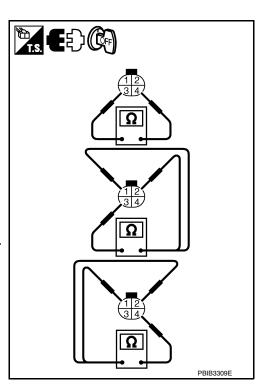
CAUTION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Component Inspection

AIR FUEL RATIO (A/F) SENSOR 1 HEATER


1. Check resistance between A/F sensor 1 terminals as follows.

Terminal No.	Resistance
3 and 4	1.80 - 2.44 Ω [at 25°C (77°F)]
3 and 1, 2	Ω
4 and 1, 2	(Continuity should not exist)

2. If NG, replace air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Revision: July 2009 EC-103 2010 Xterra

EC

Α

D

Е

_

F

j

Н

INFOID:0000000005267384

J

M

N

 \cap

Р

P0037, P0038, P0057, P0058 HO2S2 HEATER

Description INFOID.000000005267385

SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 2	
Engine coolant temperature sensor	Engine coolant temperature	heater control	Heated oxygen sensor 2 heater
Mass air flow sensor	Amount of intake air		

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	ON

On Board Diagnosis Logic

INFOID:000000005267386

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0037 0037 (Bank 1)	Heated oxygen sensor 2 heater	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater circuit is	
P0057 0057 (Bank 2)	control circuit low	(An excessively low voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	open or shorted.) • Heater oxygen sensor 2 heater	
P0038 0038 (Bank 1)	Heated oxygen	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater circuit is	
P0058 0058 (Bank 2)	control circuit high	(An excessively high voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	shorted.) • Heater oxygen sensor 2 heater	

DTC Confirmation Procedure

INFOID:0000000005267387

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-III

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.

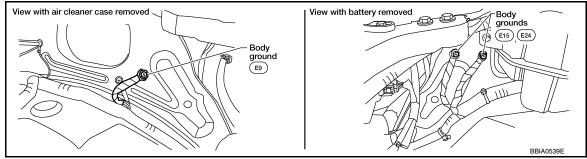
Revision: July 2009 EC-104 2010 Xterra

P0037, P0038, P0057, P0058 HO2S2 HEATER

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Turn ignition switch ON.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Start the engine and keep the engine speed between 3,500 rpm and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 1 minute.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-105, "Diagnosis Procedure".
- WITH GST

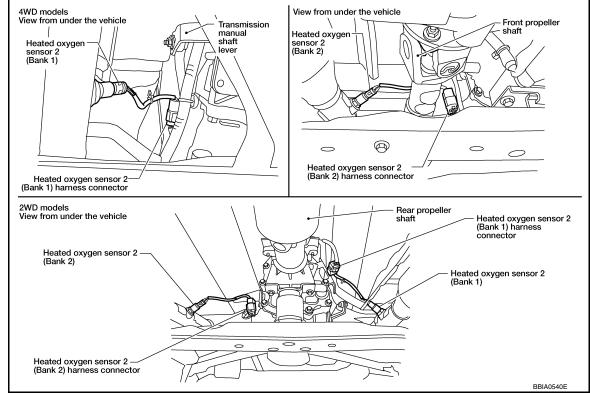

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267388

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK HO2S2 POWER SUPPLY CIRCUIT

Disconnect heated oxygen sensor 2 harness connector.

Turn ignition switch ON.

EC

Α

D

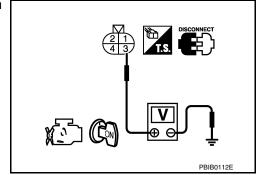
Е

Ν

Р

P0037, P0038, P0057, P0058 HO2S2 HEATER

< COMPONENT DIAGNOSIS >


[VQ40DE]

Check voltage between HO2S2 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E2, F32
- IPDM E/R harness connector E119
- 15 A fuse (No.54)
- Harness for open or short between heated oxygen sensor 2 and fuse
 - >> Repair harness or connectors.

4. CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
ыс	ECM	Sensor	Dank
P0037, P0038	25	2	1
P0057, P0058	6	2	2

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-106, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

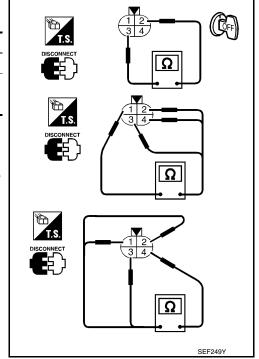
HEATED OXYGEN SENSOR 2 HEATER

INFOID:0000000005267389

P0037, P0038, P0057, P0058 HO2S2 HEATER

< COMPONENT DIAGNOSIS >

[VQ40DE]


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	9.9 - 13.3 Ω at 25°C (77°F)
1 and 2, 3, 4	$\infty \Omega$
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Α

EC

С

D

Е

F

G

Н

J

K

L

M

Ν

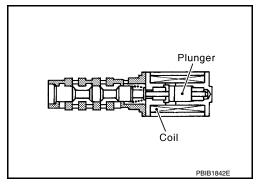
0

Р

INFOID:000000005267390

P0075, P0081 IVT CONTROL SOLENOID VALVE

Component Description


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

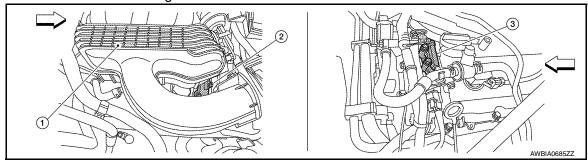
On Board Diagnosis Logic

INFOID:0000000005267391

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0075 0075 (Bank 1) P0081 0081 (Bank 2)	Intake valve timing control solenoid valve circuit	An improper voltage is sent to the ECM through intake valve timing control solenoid valve.	Harness or connectors (Intake valve timing control solenoid valve circuit is open or shorted.) Intake valve timing control solenoid valve

DTC Confirmation Procedure

INFOID:0000000005267392


- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- c. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and let it idle for 5 seconds.
- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-108</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000005267393

1.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

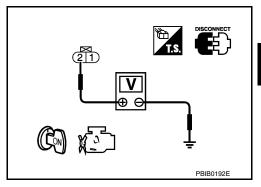
- 1. Turn ignition switch OFF.
- 2. Disconnect intake valve timing control solenoid valve harness connector.

- 1. Intake manifold collector
- 2. Intake valve timing control solenoid valve (Bank 1)
- Intake valve timing control solenoid valve (Bank 2)

: Front

Revision: July 2009 EC-108 2010 Xterra

P0075, P0081 IVT CONTROL SOLENOID VALVE


< COMPONENT DIAGNOSIS >

- Turn ignition switch ON.
- Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness connectors F26, F225 (bank 1)
- Harness for open or short between intake valve timing control solenoid valve and IPDM E/R
- Harness for open or short between intake valve timing control solenoid valve and ECM

>> Repair harness or connectors.

3.check intake valve timing control solenoid valve output signal circuit for open AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 11 (bank 1) or 10 (bank 2) and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F26, F225 (bank 1)
- Harness for open and short between ECM and intake valve timing control solenoid valve

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-109, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning intake valve timing control solenoid valve.

6.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Disconnect intake valve timing control solenoid valve harness connector.

EC-109 2010 Xterra Revision: July 2009

[VQ40DE]

EC

D

Е

F

Н

K

N

INFOID:000000005267394

P0075, P0081 IVT CONTROL SOLENOID VALVE

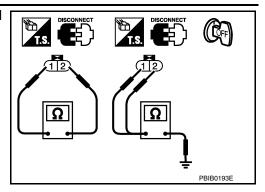
< COMPONENT DIAGNOSIS >

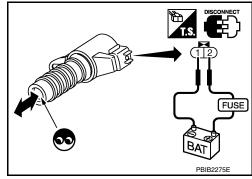
[VQ40DE]

Check resistance between intake valve timing control solenoid valve as follows.

Terminal	Resistance
1 and 2	7.0 - 7.7Ω at 20°C (68°F)
1 or 2 and ground	$\infty\Omega$ (Continuity should not exist.)

If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

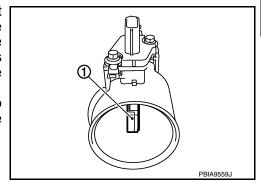

- 3. Remove intake valve timing control solenoid valve.
- 4. Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Check that the plunger moves as shown in the figure.


CAUTION:

Never apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.

If NG, replace intake valve timing control solenoid valve. **NOTE:**

Always replace O-ring when intake valve timing control solenoid valve is removed.


INFOID:0000000005267395

P0101 MAF SENSOR

Component Description

The mass air flow sensor (1) is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The greater air flow, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

On Board Diagnosis Logic

INFOID:0000000005267396

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
P0101	Mass air flow sensor cir-	A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor EVAP control system pressure sensor Intake air temperature sensor
0101	cuit range/performance	В)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor EVAP control system pressure sensor Intake air temperature sensor

DTC Confirmation Procedure

INFOID:0000000005267397

Perform PROCEDURE FOR MALFUNCTION A first.

If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

PROCEDURE FOR MALFUNCTION A

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- (P) With CONSULT-III
- 1. Start engine and warm it up to normal operating temperature.
- Run engine for at least 10 seconds at idle speed.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-113, "Diagnosis Procedure".

With GST

Follow the procedure "With CONSULT-III" above.

PROCEDURE FOR MALFUNCTION B

EC-111 2010 Xterra Revision: July 2009

EC

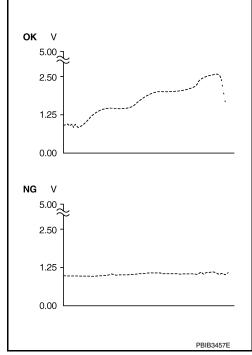
Α

D

Е

M

0


CAUTION:

Always drive vehicle at a safe speed.

- (P) With CONSULT-III
- 1. Start engine and warm it up to normal operating temperature.

 If engine cannot be started, go to EC-113, "Diagnosis Procedure".
- 2. Select "DATA MONITOR" mode with CONSULT-III.
- 3. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 4. Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to <u>EC-113</u>, "<u>Diagnosis Procedure</u>". If OK, go to following step.

6. Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 1.5 V
THRTL SEN 2	More than 1.5 V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

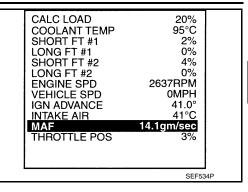
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-113, "Diagnosis Procedure"</u>.

Overall Function Check

INFOID:0000000005267398

PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.


- 1. Start engine and warm it up to normal operating temperature.
- Select Service \$01 with GST.

P0101 MAF SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

- 3. Check the mass air flow sensor signal with Service \$01.
- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-113, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:000000005267399

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

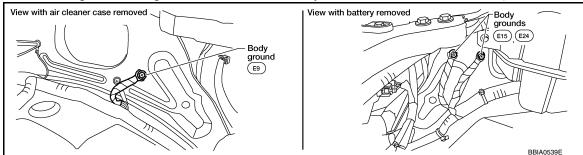
A >> GO TO 3.

B >> GO TO 2.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold

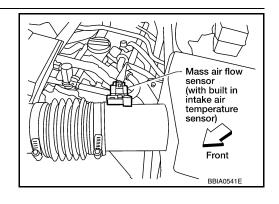

OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

3. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.
 Loosen and retighten three ground screws on the body. Refer to <u>EC-95</u>. "Ground Inspection".


OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- Turn ignition switch ON.

Revision: July 2009 EC-113 2010 Xterra

Α

EC

D

Е

F

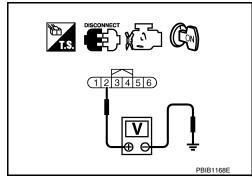
G

Н

11

N/I

. . .


Ν

Check voltage between MAF sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E2, F32
- · Harness for open or short between IPDM E/R and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

1. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-124, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace intake air temperature sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-256, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK MASS AIR FLOW SENSOR

Refer to EC-115. "Component Inspection".

P0101 MAF SENSOR

< COMPONENT DIAGNOSIS >

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

11. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection INFOID:0000000005267400

MASS AIR FLOW SENSOR

(P) With CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Connect CONSULT-III and select "DATA MONITOR" mode.
- 4. Select "MAS A/F SE-B1" and check indication under the following conditions.

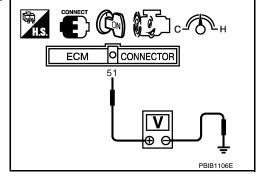
Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 1.8
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- 5. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - · Uneven dirt of air cleaner element
 - · Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again.

If OK, go to next step.

- 6. Turn ignition switch OFF.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- 8. Perform step 2 to 4 again.


Revision: July 2009

9. If NG, clean or replace mass air flow sensor.

(R) Without CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 1.8
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

EC

Α

[VQ40DE]

D

Е

Н

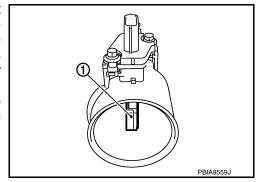
Ν

P0101 MAF SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - · Malfunctioning seal of air cleaner element
 - · Uneven dirt of air cleaner element
 - · Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 3 again. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.
- 8. If NG, clean or replace mass air flow sensor.


INFOID:0000000005267401

P0102, P0103 MAF SENSOR

Component Description

The mass air flow sensor (1) is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current is supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

On Board Diagnosis Logic

INFOID:0000000005267402

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL illuminates.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

INFOID:000000005267403

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

PROCEDURE FOR DTC P0102

- Start engine and wait at least 5 seconds.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-118, "Diagnosis Procedure".

PROCEDURE FOR DTC P0103

- Turn ignition switch ON and wait at least 5 seconds. 1.
- Check DTC.
- If DTC is detected, go to EC-118, "Diagnosis Procedure". If DTC is not detected, go to next step.
- Start engine and wait at least 5 seconds.
- Check DTC.
- If DTC is detected, go to EC-118, "Diagnosis Procedure".

EC

Α

D

Е

Н

M

N

Р

EC-117 2010 Xterra Revision: July 2009

Diagnosis Procedure

INFOID:0000000005267404

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

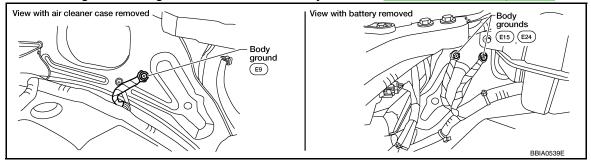
P0102 >> GO TO 2.

P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- · Vacuum hoses
- · Intake air passage between air duct and intake manifold

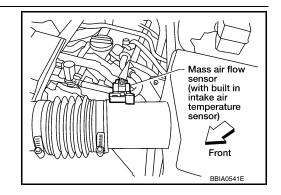

OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.

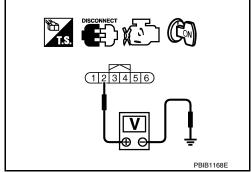

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch ON.


2010 Xterra

Check voltage between MAF sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5}$. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between IPDM E/R and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7 .CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-115, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

MASS AIR FLOW SENSOR

EC

Α

D

Е

F

Н

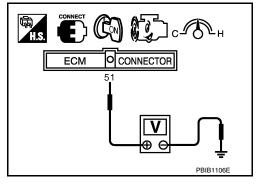
K

INFOID:0000000005267405

(P) With CONSULT-III

- Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Connect CONSULT-III and select "DATA MONITOR" mode.
- 4. Select "MAS A/F SE-B1" and check indication under the following conditions.

Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 1.8
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*


^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- 5. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - · Malfunctioning seal of air cleaner element
 - · Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
- 6. Turn ignition switch OFF.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- Perform step 2 to 4 again.
- If NG, clean or replace mass air flow sensor.

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 1.8
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - · Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 3 again. If OK, go to next step.
- 5. Turn ignition switch OFF.
- Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.

P0102, P0103 MAF SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

8. If NG, clean or replace mass air flow sensor.

Α

EC

С

D

Е

F

G

Н

1

J

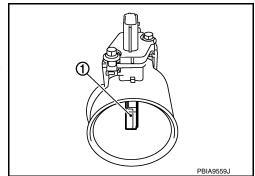
Κ

L

 \mathbb{N}

Ν

0


INFOID:0000000005267406

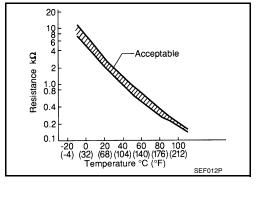
P0112, P0113 IAT SENSOR

Component Description

The intake air temperature sensor is built-into the mass air flow sensor (1). The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the rise in temperature.

<Reference data>


Intake air temperature °C (°F)	Voltage* V	Resistance $k\Omega$
25 (77)	3.3	1.800 - 2.200
80 (176)	1.2	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air tempera- ture sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air tempera- ture sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

INFOID:0000000005267408

INFOID:000000005267407

- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and wait at least 5 seconds.
- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-122, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267409

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

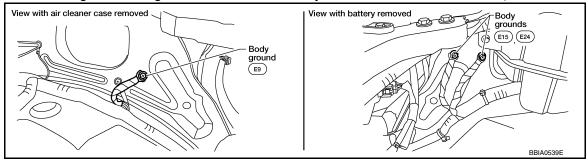
Revision: July 2009 EC-122 2010 Xterra

Α

EC

D

Е

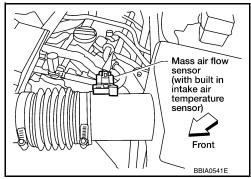

Н

M

Ν

Р

Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>

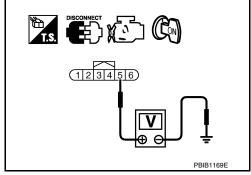

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow sensor (intake air temperature sensor is built-in) harness connector.
- 2. Turn ignition switch ON.


Check voltage between mass air flow sensor terminal 5 and ground.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair harness or connectors.

3.CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between mass air flow sensor terminal 6 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-124, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

DR ______

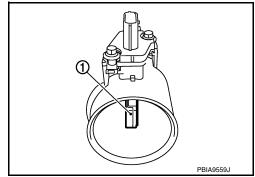
Revision: July 2009 EC-123 2010 Xterra

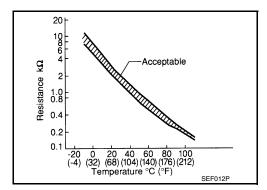
5.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

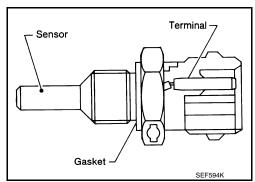

INFOID:0000000005267410


INTAKE AIR TEMPERATURE SENSOR

1. Check resistance between mass air flow sensor (1) terminals 5 and 6 under the following conditions.

Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.800 - 2.200

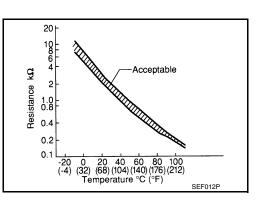
2. If NG, replace mass air flow sensor (with intake air temperature sensor).



INFOID:0000000005267411

P0116 ECT SENSOR

Component Description


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)]	Voltage* (V)	Resistance (kΩ)
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0116 0116	Engine coolant tempera- ture sensor circuit range/ performance	Engine coolant temperature signal from engine coolant temperature sensor does not fluctuate, even when some time has passed after starting the engine with pre-warming up condition.	Harness or connectors (High or low resistance in the circuit) Engine coolant temperature sensor

DTC Confirmation Procedure

NOTE:

- If DTC P0116 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117, P0118. Refer to EC-129, "DTC Confirmation Procedure".
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, never fill with the fuel.

- Start engine and warm it up to normal operating temperature.
- Rev engine up to 2,000 rpm for more than 10 minutes.
- Move the vehicle to a cool place, then stop engine and turn ignition switch OFF.
- Check resistance between "fuel level sensor and fuel pump" terminals 3 and 4.
- Soak the vehicle until the resistance between "fuel level sensor and fuel pump" terminals 3 and 4 becomes $0.5 \text{ k}\Omega$ higher than the value measured before soaking.

EC-125 2010 Xterra Revision: July 2009

EC

Α

Е

INFOID:0000000005267412

INFOID:000000005267413

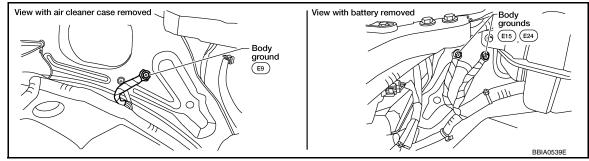
0

CAUTION:

Never turn ignition switch ON during the soaking time.

NOTE

Soak time changes depending on ambient air temperature. It may take several hours.


- 6. Start engine and let it idle for 20 minutes.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-126, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267414

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to <u>EC-95</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.check engine coolant temperature sensor

Refer to EC-126, "Component Inspection".

OK or NG

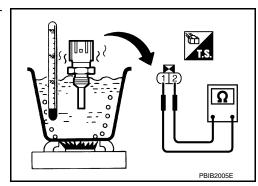
OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

3. CHECK INTERMITTENT INCIDENT

Refer to GI-34, "How to Check Terminal" and GI-37, "Intermittent Incident".

For Wiring Diagram, refer to EC-443, "Wiring Diagram".

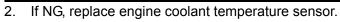

>> INSPECTION END

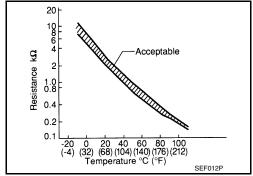
Component Inspection

INFOID:0000000005267415

ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.




P0116 ECT SENSOR

< COMPONENT DIAGNOSIS >

ſ۷	Q4	101	DE	Ξ1

Engine coolant temperature °C (°F)]	Resistance (kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

Α

EC

С

D

Е

F

G

Н

l

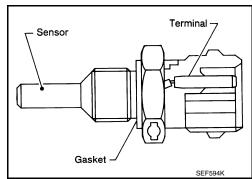
J

K

L

M

Ν


0

INFOID:0000000005267416

P0117, P0118 ECT SENSOR

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

INFOID:0000000005267417

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant tem- perature sensor cir- cuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0118 0118	Engine coolant tem- perature sensor cir- cuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

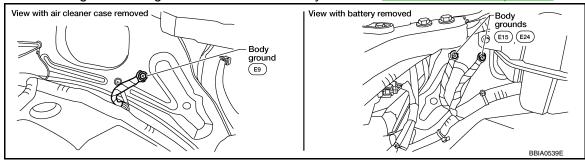
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL illuminates.

Detected items	Engine operating condition in fail-safe mode		
Engine coolant temperature will be determined by ECM based on the fol CONSULT-III displays the engine coolant temperature decided by ECM.		ğ .	
	Condition	Engine coolant temperature decided (CONSULT-III display)	
Engine coolant temperature sensor circuit	Just as ignition switch is turned ON or START	40°C (104°F)	
	Approx. 4 minutes or more after engine starting	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant temperatuengine is running.	ure sensor is activated, the cooling fan operates while	

DTC Confirmation Procedure

- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- Turn ignition switch OFF and wait at least 10 seconds. a.
- Turn ignition switch ON. b.
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON and wait at least 5 seconds.
- Check DTC.
- 4. If DTC is detected, go to EC-129, "Diagnosis Procedure".

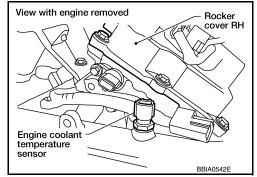

Diagnosis Procedure

INFOID:000000005267419

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ECT SENSOR POWER SUPPLY CIRCUIT

- Disconnect engine coolant temperature (ECT) sensor harness connector.
- Turn ignition switch ON.

EC-129 2010 Xterra Revision: July 2009

Α

D

Е INFOID:0000000005267418

F

Н

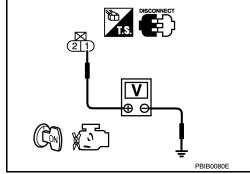
Ν

0

P0117, P0118 ECT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]


Check voltage between ECT sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECT sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-130, "Component Inspection".

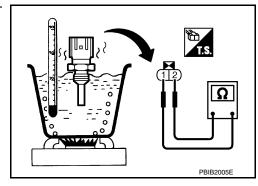
OK or NG

OK >> GO TO 5.

NG >> Replace engine coolant temperature sensor.

CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

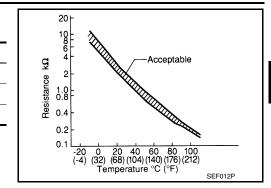
Component Inspection

INFOID:0000000005267420

ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

P0117, P0118 ECT SENSOR


< COMPONENT DIAGNOSIS >

[VQ40DE]

<Reference data>

Engine coolant temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

Α

EC

С

D

Е

F

G

Н

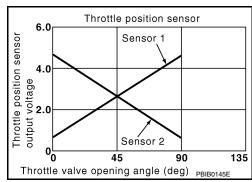
Κ

L

M

Ν

0


INFOID:000000005267421

P0122, P0123 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometer which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and controls the throttle valve opening angle in response to driving conditions via the throttle control motor.

On Board Diagnosis Logic

INFOID:000000005267422

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (The TP sensor 2 circuit is open or short	
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	ed.) (The APP sensor 2 circuit is shorted.) • Electric throttle control actuator (TP sensor 2) • Accelerator pedal position sensor (APP sensor 2)	

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000005267423

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

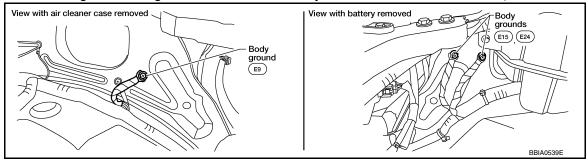
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and let it idle for 1 second.
- Check DTC.
- If DTC is detected, go to <u>EC-132</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

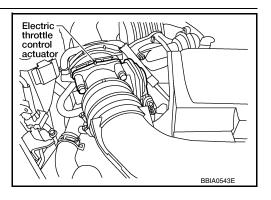

INFOID:0000000005267424

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

Revision: July 2009 EC-132 2010 Xterra

Loosen and retighten three ground screws on the body. Refer to EC-95. "Ground Inspection".

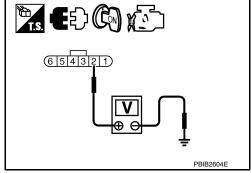

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.check throttle position sensor 2 power supply circuit-i

- Disconnect electric throttle control actuator harness connector.
- Turn ignition switch ON.



Check voltage between electric throttle control actuator terminal 2 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. >> GO TO 3. NG

3.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 2 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

f 4.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 2	FC-443
91	APP sensor terminal 1	<u>LC-443</u>

EC-133 2010 Xterra Revision: July 2009

EC

Α

D

Е

Н

M

Ν

0

< COMPONENT DIAGNOSIS >

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5.CHECK APP SENSOR

Refer to EC-377, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 6.

6.REPLACE ACCELERATOR PEDAL ASSEMBLY

- Replace accelerator pedal assembly.
- Perform EC-19, "Accelerator Pedal Released Position Learning".
- Perform EC-19, "Throttle Valve Closed Position Learning".
- Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

7.check throttle position sensor 2 ground circuit for open and short

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 4 and ECM terminal 66. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 3. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

CHECK THROTTLE POSITION SENSOR

Refer to EC-135, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-19</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

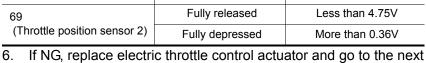
11. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

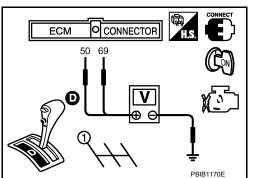
Component Inspection

INFOID:0000000005267425


THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.

step.


- 4. Set selector lever to D position (A/T), 1st position (M/T)
- 5. Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69 (Throttle position sensor 2)	Fully released	Less than 4.75V
	Fully depressed	More than 0.36V

8. Perform EC-19, "Idle Air Volume Learning".

EC

C

Α

Е

 D

F

Н

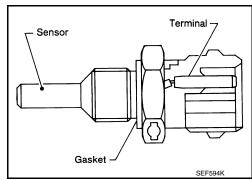
J

K

L

M

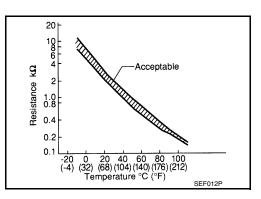
Ν


0

INFOID:0000000005267426

P0125 ECT SENSOR

Component Description


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance $k\Omega$
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

INFOID:0000000005267427

NOTE:

If DTC P0125 is displayed with P0116, first perform the trouble diagnosis for DTC P0116. Refer to EC-125, "Component Description".

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-128, "Component Description".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine cool- ant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

INFOID:0000000005267428

CAUTION:

Never overheat engine.

NOTE

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

Revision: July 2009 EC-136 2010 Xterra

P0125 ECT SENSOR

< COMPONENT DIAGNOSIS > [VQ40DE]

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- 3. Check that "COOLAN TEMP/S" is above 20°C (68°F).

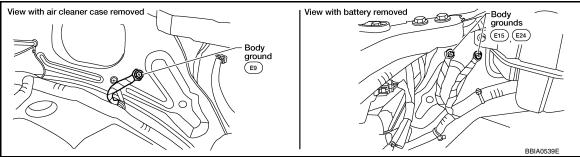
If the temperature is above 20°C (68°F), the test result will be OK. If the temperature is below 20°C (68°F), go to following step.

4. Start engine and run it for 65 minutes at idle speed.

If "COOLAN TEMP/S" increases to more than 20°C (68°F) within 65 minutes, stop engine because the test result will be OK.

- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-137, "Diagnosis Procedure".

® WITH GST


Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

2. Loosen and retighten three ground screws on the body. Refer to EC-95. "Ground Inspection"

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$oldsymbol{2}.$ CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-137, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

3.CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm that the engine coolant does not flow.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace thermostat. Refer to CO-26, "Removal and Installation".

4.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

ENGINE COOLANT TEMPERATURE SENSOR

EC

Α

0

D

Е

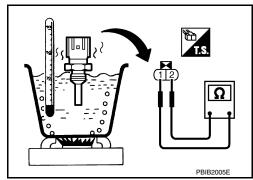
INFOID:000000005267429

G

Н

Κ

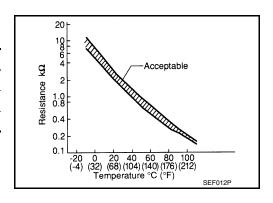
ı


M

N

INFOID:0000000005267430

Revision: July 2009 EC-137 2010 Xterra


 Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Engine coolant temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

INFOID:0000000005267431

Α

EC

D

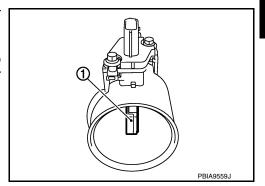
Е

Н

K

Ν

0


Р

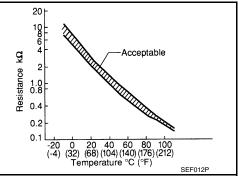
P0127 IAT SENSOR

Component Description

The intake air temperature sensor is built into mass air flow sensor (1). The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>


Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.800 - 2.200
80 (176)	1.2	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted) Intake air temperature sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-III

- Wait until engine coolant temperature is less than 96°C (205°F)
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- Check the engine coolant temperature.

INFOID:000000005267432

INFOID:0000000005267433

EC-139 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >

- d. If the engine coolant temperature is not less than 96°C (205°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature is above 96°C (205°F).
- 2. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- 4. Start engine.
- 5. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6. Check 1st trip DTC.
- 7. If 1st trip DTC is detected, go to EC-140, "Diagnosis Procedure".
- **WITH GST**


Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267434

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-140, "Component Inspection".

OK or NG

OK >> GO TO 3.

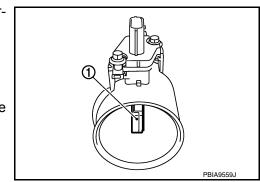
NG >> Replace mass air flow sensor (with intake air temperature sensor).

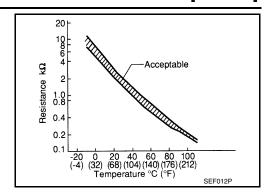
3. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection


INFOID:0000000005267435


INTAKE AIR TEMPERATURE SENSOR

Check resistance between intake air temperature sensor (1) terminals 5 and 6 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.800 - 2.200

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Α

EC

С

D

Ε

F

G

Н

K

L

 \mathbb{N}

Ν

0

INFOID:0000000005267436

P0128 THERMOSTAT FUNCTION

On Board Diagnosis Logic

NOTE:

If DTC P0128 is displayed with DTC P0300, P0301, P0302, P0303, P0304, P0305 or P0306, first perform the trouble diagnosis for DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306. Refer to EC-203, "DTC Confirmation Procedure".

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat being stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	 Thermostat Leakage from sealing portion of thermostat Engine coolant temperature sensor

DTC Confirmation Procedure

INFOID:0000000005267437

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next test.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

(II) WITH CONSULT-III

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 52°C (126°F).
- · Before performing the following procedure, do not add fuel.
- 1. Turn A/C switch OFF.
- Turn blower fan switch OFF.
- Turn ignition switch ON.
- Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- 5. Check the indication of "COOLAN TEMP/S".
 - If it is below 52°C (126°F), go to following step.
 - If it is above 52°C (126°F), cool down the engine to less than 52°C (126°F). Then go to next steps.
- 6. Start engine and wait at idle for at least 10 minutes under the following conditions.

VHCL SPEED SE	More than 56 km/h (35MPH)

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "COOLAN TEMP/S" increases to more than 71°C (160°F) within 30 minutes, turn ignition switch OFF because the test result will be OK.

- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-142</u>, "<u>Diagnosis Procedure</u>".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267438

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-143, "Component Inspection".

OK or NG

Revision: July 2009 EC-142 2010 Xterra

P0128 THERMOSTAT FUNCTION

< COMPONENT DIAGNOSIS >

[VQ40DE]

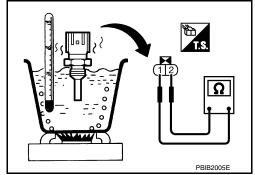
OK >> GO TO 2.

NG >> Replace engine coolant temperature sensor.

2. CHECK THERMOSTAT

Refer to CO-26. "Removal and Installation".

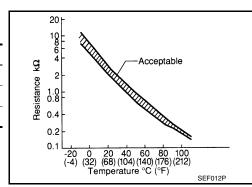
OK or NG


OK >> INSPECTION END NG >> Replace thermostat.

Component Inspection

INFOID:0000000005267439

ENGINE COOLANT TEMPERATURE SENSOR


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Engine coolant temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

EC

Α

D

Е

F

Н

Κ

M

Ν

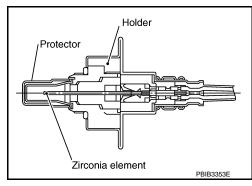
0

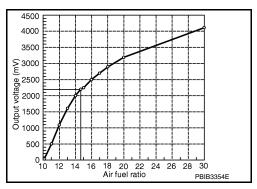
Р

Revision: July 2009 EC-143 2010 Xterra

INFOID:0000000005267440

P0130, P0150 A/F SENSOR 1


Component Description


The air fuel ratio (A/F) sensor 1 is a planar one-cell limit current sensor. The sensor element of the A/F sensor 1 is composed an electrode layer, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range.

The exhaust gas components diffuse through the diffusion layer at the sensor cell. An electrode layer is applied voltage, and this current relative oxygen density in lean. Also this current relative hydrocarbon density in rich.

Therefore, the A/F sensor 1 is able to indicate air fuel ratio by this electrode layer of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of about 800°C (1,472°F).

On Board Diagnosis Logic

INFOID:000000000526744

To judge malfunctions, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal fluctuates according to fuel feedback control.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible Cause
P0130 0130 (Bank 1)	Air fuel ratio (A/F) sensor 1 circuit	A)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly in a range other than approx. 2.2V.	Harness or connectors (The A/F sensor 1 circuit is open
P0150 0150 (Bank 2)		B)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 2.2V.	or shorted.) • Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

INFOID:0000000005267442

Perform PROCEDURE FOR MALFUNCTION A first.

If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

PROCEDURE FOR MALFUNCTION A

- 1. Start engine and warm it up to normal operating temperature.
- 2. Let engine idle for 2 minutes.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-145, "Diagnosis Procedure"</u>.

Revision: July 2009 EC-144 2010 Xterra

P0130, P0150 A/F SENSOR 1

< COMPONENT DIAGNOSIS >

IVQ40DE1

Α

EC

D

Е

Н

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

With	CONSU	ЛТ-	Ш

- Start engine and warm it up to normal operating temperature.
- Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III.
- Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 2.2V and does not fluctuates, go to EC-145, "Diagnosis Procedure". If the indication fluctuate around 2.2V, go to next step.
- 4. Select "A/F SEN1 (B1) P1276" (for DTC P0130) or "A/F SEN1 (B2) P1286" (for DTC P0150) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-III.
- Touch "START".
- 6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-III screen.

ENG SPEED	1,100 - 3,200 rpm
VHCL SPEED SE	More than 64 km/h (40 MPH)
B/FUEL SCHDL	1.0 - 8.0 msec
Shift lever	D position with "OD" OFF (A/T) 5th position (M/T)

If "TESTING" is not displayed after 20 seconds, retry from step 2.

Release accelerator pedal fully.

NOTE:

Never apply brake when releasing the accelerator pedal.

8. Check that "TESTING" changes to "COMPLETED".

If "TESTING" changed to "OUT OF CONDITION", retry from step 6.

9. Check that "OK" is displayed after touching "SELF-DIAG RESULT". If "NG" is displayed, go to EC-145, "Diagnosis Procedure".

Overall Function Check

PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in the suitable gear position.
- 3. Set D position with "OD" OFF (A/T) or 5th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 and 3 for five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Turn ignition switch ON.
- 7. Turn ignition switch OFF and wait at least 10 seconds.
- 8. Restart engine.
- 9. Repeat steps 2 and 3 for five times.
- 10. Stop the vehicle and connect GST to the vehicle.
- 11. Check that no 1st trip DTC is displayed.

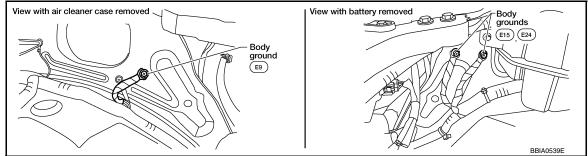
If the 1st trip DTC is displayed, go to EC-145, "Diagnosis Procedure".

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

INFOID:0000000005267443

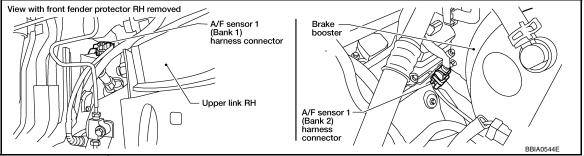

K

M

N

INFOID:0000000005267444

Loosen and retighten three ground screws on the body. Refer to <u>EC-95. "Ground Inspection"</u>.

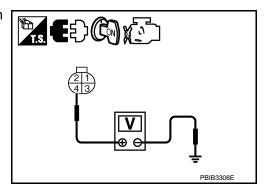

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect A/F sensor 1 harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 4 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E2, F32
- IPDM E/R connector E119
- 15A fuse
- · Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank1	1	35
Daliki	2	56

P0130, P0150 A/F SENSOR 1

< COMPONENT DIAGNOSIS >

[VQ40DE]

Bank 2	1	16
Dank 2	2	75

EC

Α

Continuity should exist.

 Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

D

Е

F

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

G

Н

5. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 6.

NG >> Repair or replace.

6. REPLACE A/F SENSOR 1

Replace malfunctioning A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

L

K

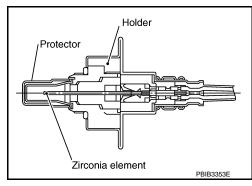
Ν

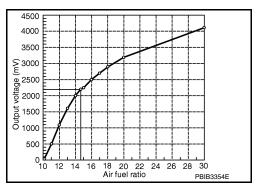
0

Р

INFOID:0000000005267445

P0131, P0151 A/F SENSOR 1


Component Description


The air fuel ratio (A/F) sensor 1 is a planar one-cell limit current sensor. The sensor element of the A/F sensor 1 is composed an electrode layer, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range.

The exhaust gas components diffuse through the diffusion layer at the sensor cell. An electrode layer is applied voltage, and this current relative oxygen density in lean. Also this current relative hydrocarbon density in rich.

Therefore, the A/F sensor 1 is able to indicate air fuel ratio by this electrode layer of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of about 800°C (1,472°F).

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/ F) sensor 1 signal is not inordinately low.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0131 0131 (Bank 1) P0151 0151 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit low voltage	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 0V.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.) A/F sensor 1

DTC Confirmation Procedure

INFOID:000000005267447

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Select "Ā/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III. Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 0V, go to EC-149, "Diagnosis Procedure". If the indication is not constantly approx. 0V, go to next step.
- Turn ignition switch OFF and wait at least 10 seconds.

P0131, P0151 A/F SENSOR 1

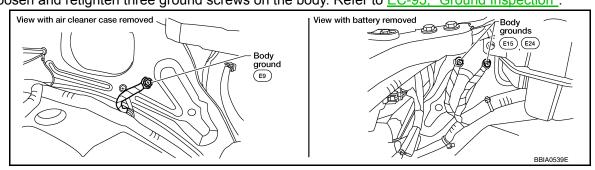
< COMPONENT DIAGNOSIS >

- Turn ignition switch ON.
- 6. Turn ignition switch OFF and wait at least 10 seconds.
- 7. Restart engine.
- 8. Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine.
- 9. Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Gear position	Suitable position

NOTE:

- Keep the accelerator pedal as steady as possible during cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step 4.
- 10. Check 1st trip DTC.
- 11. If 1st trip DTC is displayed, go to EC-149, "Diagnosis Procedure".

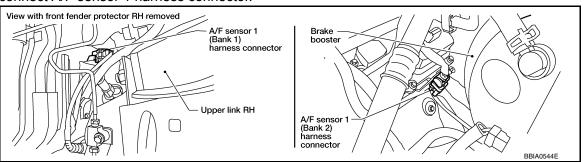

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.
 Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect A/F sensor 1 harness connector.

Turn ignition switch ON.

[VQ40DE]

EC

Α

D

Е

F

INFOID:0000000005267448

Н

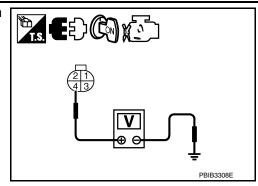
|

M

Ν

С

Р


< COMPONENT DIAGNOSIS >

Check voltage between A/F sensor 1 terminal 4 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E2, F32
- IPDM E/R connector E119
- 15 A fuse (No.54)
- · Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank1	1	35
	2	56
Bank 2	1	16
	2	75

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 6.

NG >> Repair or replace.

P0131, P0151 A/F SENSOR 1

< COMPONENT DIAGNOSIS >

[VQ40DE]

6.REPLACE A/F SENSOR 1

Replace malfunctioning A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

EC

С

D

Е

F

G

Н

.1

Κ

L

M

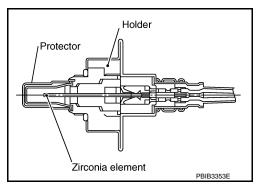
Ν

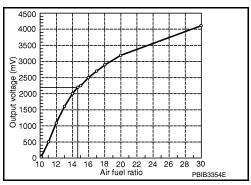
0

Р

INFOID:0000000005267449

P0132, P0152 A/F SENSOR 1


Component Description


The air fuel ratio (A/F) sensor 1 is a planar one-cell limit current sensor. The sensor element of the A/F sensor 1 is composed an electrode layer, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range.

The exhaust gas components diffuse through the diffusion layer at the sensor cell. An electrode layer is applied voltage, and this current relative oxygen density in lean. Also this current relative hydrocarbon density in rich.

Therefore, the A/F sensor 1 is able to indicate air fuel ratio by this electrode layer of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of about 800°C (1,472°F).

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the A/F sensor 1 signal is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0132 0132 (Bank 1)	Air fuel ratio (A/F) sensor 1	The A/F signal computed by ECM from the A/F	Harness or connectors (The A/F sensor 1 circuit is open or
P0152 0152 (Bank 2)	circuit high voltage	sensor 1 signal is constantly approx. 5V.	shorted.) • A/F sensor 1

DTC Confirmation Procedure

INFOID:0000000005267451

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Select "Ā/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III. Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 5V, go to EC-153, "Diagnosis Procedure". If the indication is not constantly approx. 5V, go to next step.
- Turn ignition switch OFF and wait at least 10 seconds.

P0132, P0152 A/F SENSOR 1

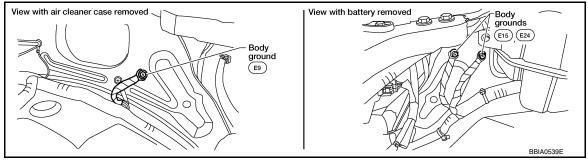
< COMPONENT DIAGNOSIS >

- Turn ignition switch ON.
- 6. Turn ignition switch OFF and wait at least 10 seconds.
- 7. Restart engine.
- 8. Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine.
- 9. Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Gear position	Suitable position

NOTE:

- Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step 4.
- 10. Check 1st trip DTC.
- 11. If 1st trip DTC displayed, go to EC-153, "Diagnosis Procedure".

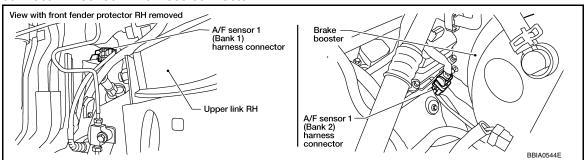

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws. Refer to EC-95, "Ground Inspection".


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect A/F sensor 1 harness connector.

Turn ignition switch ON.

[VQ40DE]

EC

Α

D

Е

F

INFOID:0000000005267452

Н

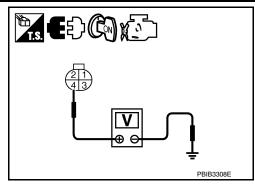
K

M

Ν

0

Р


< COMPONENT DIAGNOSIS >

Check voltage between A/F sensor 1 terminal 4 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E2, F32
- IPDM E/R connector E119
- 15 A fuse (No.54)
- · Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank1	1	35
	2	56
Bank 2	1	16
	2	75

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 6.

NG >> Repair or replace.

P0132, P0152 A/F SENSOR 1

< COMPONENT DIAGNOSIS >

[VQ40DE]

6.REPLACE A/F SENSOR 1

Replace malfunctioning A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

EC

С

D

Е

F

G

Н

Κ

L

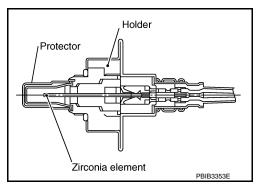
N

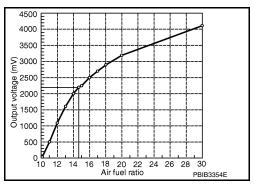
0

Р

INFOID:0000000005267453

P0133, P0153 A/F SENSOR 1


Component Description


The air fuel ratio (A/F) sensor 1 is a planar one-cell limit current sensor. The sensor element of the A/F sensor 1 is composed an electrode layer, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range.

The exhaust gas components diffuse through the diffusion layer at the sensor cell. An electrode layer is applied voltage, and this current relative oxygen density in lean. Also this current relative hydrocarbon density in rich.

Therefore, the A/F sensor 1 is able to indicate air fuel ratio by this electrode layer of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of about 800°C (1,472°F).

On Board Diagnosis Logic

NFOID:0000000005267454

To judge the malfunction of A/F sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the A/F sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the A/F sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F signal cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0133 0133 (Bank 1) P0153 0153 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit slow response	The response of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.) A/F sensor 1 A/F sensor 1 A/F sensor 1 heater Fuel pressure Fuel injector Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

INFOID:0000000005267455

NOTE:

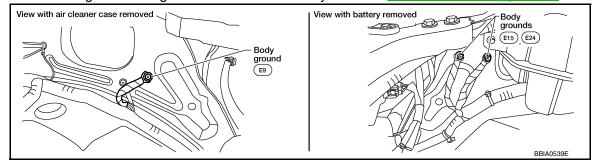
If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-III

- Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.


Revision: July 2009 EC-156 2010 Xterra

P0133, P0153 A/F SENSOR 1

IVQ40DE1 < COMPONENT DIAGNOSIS > Turn ignition switch OFF and wait at least 10 seconds. 5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1minute under no load. Let engine idle for 1 minute. 7. Select "A/F SEN1(B1) P1278/P1279" (for DTC P0133) or "A/F SEN1(B2) P1288/P1289" (for DTC P0153) EC of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-III. Touch "START". If "COMPLETED" appears on CONSULT-III screen, go to step 10. If "COMPLETED" does not appear on CONSULT-III screen, go to the following step. After perform the following procedure, "TESTING" will be displayed on the CONSULT-III screen. Increase the engine speed up to between 4,000 and 5,000 rpm and maintain that speed it for 10 seconds. D b. Fully release accelerator pedal and then let engine idle for about 10 seconds. If "TESTING" is not displayed after 10 seconds, refer to EC-84, "Description". 10. Wait for about 20 seconds idle under the condition that "TESTING" is displayed on the CONSULT-III Е screen. 11. Check that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", refer to EC-84, "Description". 12. Check that "OK" is displayed after touching "SELF-DIAG RESULT". If "NG" is displayed, go to EC-157, "Diagnosis Procedure". WITH GST 1. Start engine and warm it up to normal operating temperature. Select Service \$01 with GST. Н 3. Calculate the total value of "Short term fuel trim" and "Long term fuel trim" indications. Check that the total percentage should be within $\pm 15\%$. If OK, go to the following step. If NG, check the following. Intake air leaks · Exhaust gas leaks Incorrect fuel pressure Lack of fuel Fuel injector Incorrect PCV hose connection PCV valve · Mass air flow sensor Turn ignition switch OFF and wait at least 10 seconds. Turn ignition switch ON. 6. Turn ignition switch OFF and wait at least 10 seconds. 7. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load. M Let engine idle for 1 minute. 9. Increase the engine speed up to between 4,000 and 5,000 rpm and keep it for 10 seconds. 10. Fully release accelerator pedal and then let engine idle for about 1 minute. Ν 11. Select Service \$03 with GST and check that no DTC is displayed. If the DTC is displayed, go to EC-157, "Diagnosis Procedure". Diagnosis Procedure INFOID:0000000005267456 1. CHECK GROUND CONNECTIONS Turn ignition switch OFF.

< COMPONENT DIAGNOSIS >

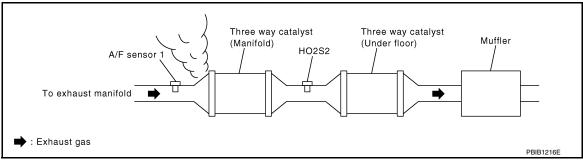
Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$2.\mathtt{RETIGHTEN}$ AIR FUEL RATIO (A/F) SENSOR 1


Loosen and retighten A/F sensor 1.

Refer to EM-32, "Removal and Installation".

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace.

5.CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.

P0133, P0153 A/F SENSOR 1

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

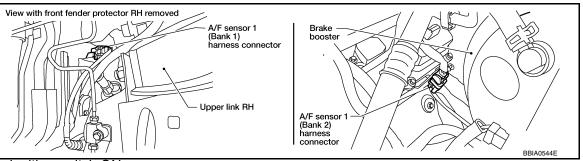
EC

D

Е

Н

- Disconnect mass air flow sensor harness connector.
- Restart engine and let it idle for at least 3 seconds.
- 5. Stop engine and reconnect mass air flow sensor harness connector.
- Check DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to EC-47, "Emission-related Diagnostic Information".
- 8. Check DTC P0000 is displayed.
- 9. Run engine for at least 10 minutes at idle speed.
 - Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

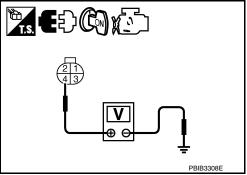

Mass air flow sensor (with built in temperature sensor) Front BBIA0541E

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-181 or EC-187. >> GO TO 6. No

$oldsymbol{6}$.CHECK A/F SENSOR 1 POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.



- Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 4 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- IPDM E/R connector E119
- 15 A fuse (No54)
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

8.CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

A/F sensor 1 terminal	ECM terminal
-----------------------	--------------

N

EC-159 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >

Bank1	1	35
Danki	2	56
Bank 2	1	16
Daill 2	2	75

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK A/F SENSOR 1 HEATER

Refer to EC-103, "Component Inspection".

OK or NG

OK >> GO TO 10. NG >> GO TO 13.

10. CHECK MASS AIR FLOW SENSOR

Refer to EC-115, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

11. CHECK PCV VALVE

Refer to EC-422, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace PCV valve.

12. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 13.

NG >> Repair or replace.

13.REPLACE A/F SENSOR 1

Replace malfunctioning A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

INFOID:0000000005267457

Α

D

Е

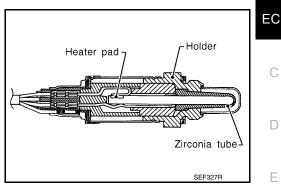
Н

K

N

Р

P0137, P0157 H02S2

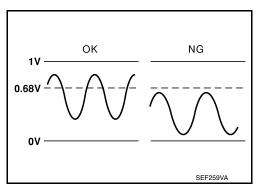

Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.



INFOID:0000000005267458

INFOID:0000000005267459

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2. ECM monitors whether the maximum voltage of the sensor is sufficiently high during various driving conditions such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0137 0137 (Bank 1) P0157 0157 (Bank 2)	Heated oxygen sensor 2 circuit low voltage	The maximum voltage from the sensor does not reach the specified voltage.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

NOTE:

If DTC confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

TESTING CONDITION:

For better results, perform DTC WORK SUPPORT at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.

EC-161 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >

- Let engine idle for 1 minute.
- 8. Check that "COOLAN TEMP/S" indicates more than 70°C (158°F).

 If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches 70°C (158°F).
- 9. Open engine hood.
- 10. Select "HO2S2 (B1) P1147" (for DTC P0137) or "HO2S2 (B2) P1167" (for DTC P0157) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- 11. Follow the instruction of CONSULT-III.

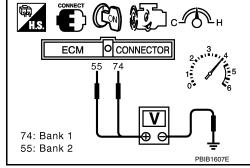
NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

12. Check that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-162, "Diagnosis Procedure".

If "CAN NOT BE DIAGNOSED" is displayed, perform the following.

- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.


Overall Function Check

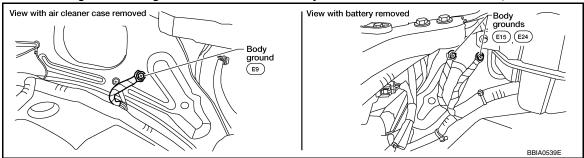
INFOID:0000000005267460

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 6. Let engine idle for 1 minute.
- 7. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 8. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V and below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 5th gear position (M/T).
 - The voltage should be above 0.68V and below 0.18V at least once during this procedure.
- 10. If NG, go to EC-162, "Diagnosis Procedure".

Diagnosis Procedure


INFOID:0000000005267461

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

[VQ40DE]

2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

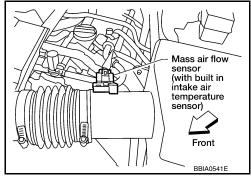
(P) With CONSULT-III

1. Start engine and warm it up to normal operating temperature.

- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

(R) Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Check DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-47</u>, "<u>Emission-related</u> <u>Diagnostic Information</u>".
- Check DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0171or P0174. Refer to <u>EC-181</u>.

No >> GO TO 3.

3.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

Turn ignition switch OFF.

Α

EC

D

Е

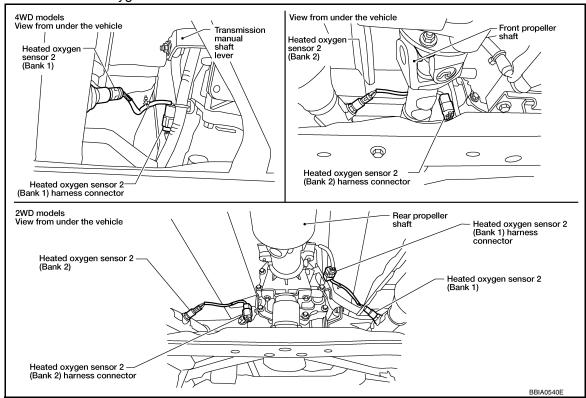
G

ı

Н

J

K


_

M

Ν

Р

Disconnect heated oxygen sensor 2 harness connector.

- Disconnect ECM harness connector.
- Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0137	74	1	1
P0157	55	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0137	74	1	1
P0157	55	1	2

Continuity should not exist.

P0137, P0157 HO2S2

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

D

Е

Н

0

Р

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-165, "Component Inspection".

OK or NG

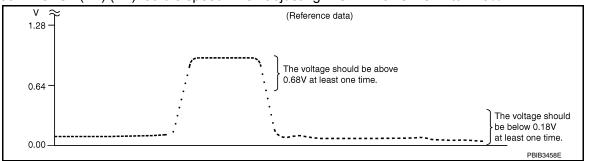
OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END


Component Inspection

INFOID:0000000005267462

HEATED OXYGEN SENSOR 2

(P) With CONSULT-III

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- 7. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

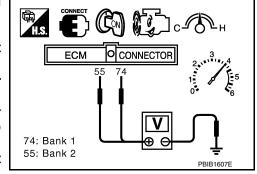
"HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Without CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.


Revision: July 2009

Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.

EC-165 2010 Xterra

< COMPONENT DIAGNOSIS >

- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V and below 0.18V at least once during this procedure.
 - If the voltage can be confirmed at step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF(A/T), 5th gear position (M/T).
 - The voltage should be above 0.68V and below 0.18V at least once during this procedure.

8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

INFOID:000000005267463

Α

EC

D

Е

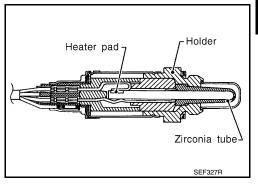
Н

M

Ν

Р

P0138, P0158 HO2S2

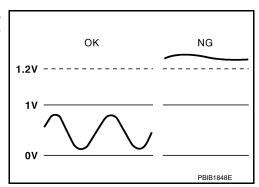

Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

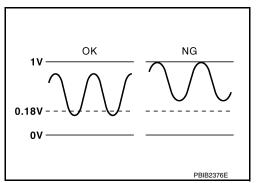
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.


INFOID:0000000005267464

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time.


MALFUNCTION A

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during various driving conditions such as fuelcut.

MALFUNCTION B

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during various driving conditions such as fuelcut.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0138 0138 (Bank 1)		A)	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0158 0158 (Bank 2)	Heated oxygen sensor 2 circuit high voltage	B)	The minimum voltage from the sensor is not reached to the specified voltage.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector

Revision: July 2009 EC-167 2010 Xterra

DTC Confirmation Procedure

INFOID:000000005267465

Perform PROCEDURE FOR MALFUNCTION A first.

If DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-III

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 2 minutes.
- 8. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-169</u>, "<u>Diagnosis Procedure</u>".

With GST

Follow the procedure "WITH CONSULT-III" above.

PROCEDURE FOR MALFUNCTION B

(II) With CONSULT-III

TESTING CONDISION:

For better results, perform DTC WORK SUPPORT at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 1 minute.
- 8. Check that "COOLAN TEMP/S" indicates more than 70°C (158°F).

 If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches 70°C (158°F).
- Open engine hood.
- Select "HO2S2 (B1) P1146" (for DTC P138) or "HO2S2 (B2) P1166" (for DTC P0158) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- Start engine and following the instruction of CONSULT-III.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- 12. Check that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-169, "Diagnosis Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

INFOID:0000000005267466

2010 Xterra

[VQ40DE]

Α

EC

D

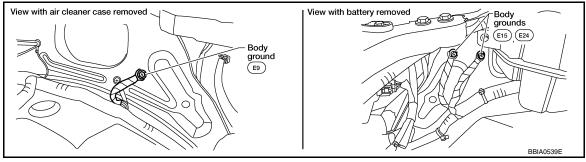
Е

Н

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 7. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 8. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessarv.
- 9. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 5th gear position (M/T). The voltage should be below 0.18V at least once during this procedure.
- 10. If NG, go to EC-169, "Diagnosis Procedure".



Diagnosis Procedure

PROCEDURE FOR MALFUNCTION A

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".

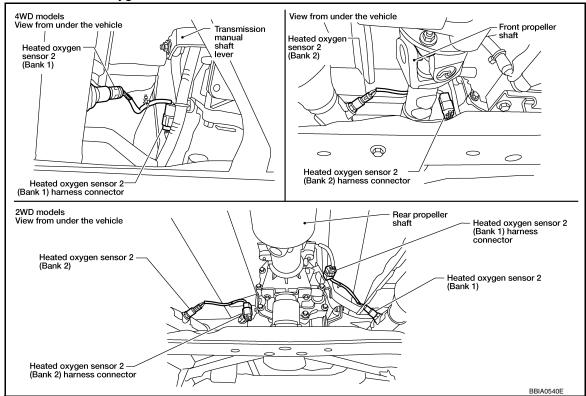
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

INFOID:0000000005267467


M

Ν

Р

EC-169 2010 Xterra Revision: July 2009

Disconnect heated oxygen sensor 2 harness connector.

- Disconnect ECM harness connector.
- Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.check ho2s2 input signal circuit for open and short

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P0138	74	1	1
P0158	55	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ы	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

Continuity should not exist.

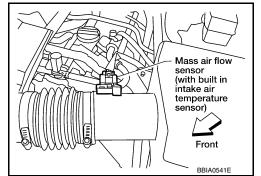
P0138, P0158 HO2S2 [VQ40DE] < COMPONENT DIAGNOSIS > Also check harness for short to power. Α OK or NG OK >> GO TO 4. NG >> Repair open circuit or short to ground or short to power in harness or connectors. EC 4. CHECK HO2S2 CONNECTOR FOR WATER Check connectors for water. Water should not exist. OK or NG OK >> GO TO 5. D NG >> Repair or replace harness or connectors. 5. CHECK HEATED OXYGEN SENSOR 2 Refer to EC-173, "Component Inspection". OK or NG OK >> GO TO 6. NG >> Replace malfunctioning heated oxygen sensor 2. O.CHECK INTERMITTENT INCIDENT Refer to GI-37, "Intermittent Incident". >> INSPECTION END Н PROCEDURE FOR MALFUNCTION B 1. CHECK GROUND CONNECTIONS Turn ignition switch OFF. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection". View with air cleaner case removed View with battery removed Body grounds (E15) (E24) ground (E9) BBIA0539E OK or NG OK >> GO TO 2. NG >> Repair or replace ground connections. 2.CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected?

Is it difficult to start engine?

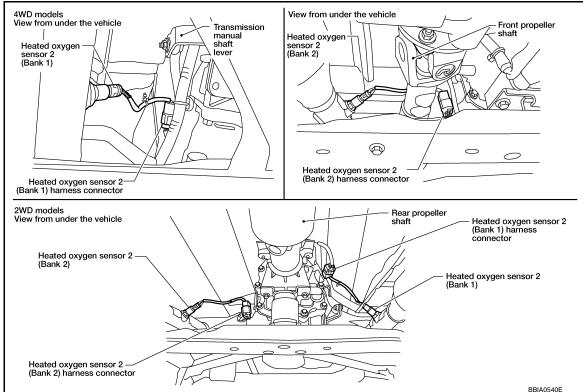

₩ Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.

Р

< COMPONENT DIAGNOSIS >

- Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Check DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-47</u>, "<u>Emission-related</u> <u>Diagnostic Information</u>".
- 7. Check DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?



Yes or No

Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to <u>EC-187, "On Board Diagnosis Logic"</u>. No >> GO TO 3.

3.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect heated oxygen sensor 2 harness connector.

- Disconnect ECM harness connector.
- Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

EC

Α

Continuity should exist.

2. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

D

DTC	Ierminals		Bank
	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

Е

F

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

G

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Н

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-173, "Component Inspection".

OK or NG

OK >> GO TO 6.

I

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

J

K

Refer to GI-37, "Intermittent Incident".

INFOID:0000000005267468

>> INSPECTION END

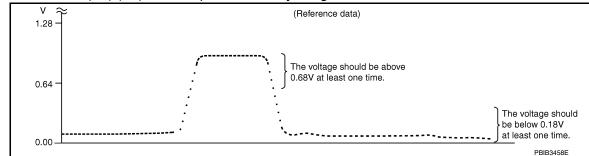
Component Inspection

HEATED OXYGEN SENSOR 2

(II) With CONSULT-III

M

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.


N

- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.

Р

0

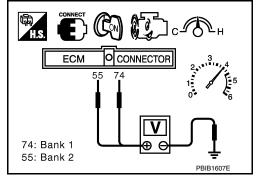
7. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.



- Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.
 - If the voltage is above 0.68V at step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 5th gear position (M/T).

 The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

INFOID:000000005267469

Α

D

Е

Н

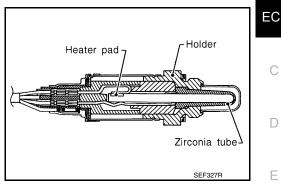
K

M

Ν

Р

P0139, P0159 HO2S2


Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000005569267

INFOID:0000000005569268

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst 1 causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2. ECM monitors whether the switching response of the sensor's voltage is faster than specified during various driving conditions such as fuel cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139	Heated oxygen sensor 2 (bank 1) circuit slow response	The switching time between rich and lean of a heated oxygen sensor 2 signal delays more than the specified time computed by ECM.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0159	Heated oxygen sensor 2 (bank 2) circuit slow response		Fuel systemEVAP systemIntake air system

DTC Confirmation Procedure

1.INSPECTION START

Do you have CONSULT-III?

Do you have CONSULT-III?

YES >> GO TO 2. NO >> GO TO 7.

2.PRECONDITIONING

If DTC Confirmation Procedure has been previously conducted, always perform the following procedure before conducting the next test.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F).

>> GO TO 3.

3. PERFORM DTC CONFIRMATION PROCEDURE

(II) With CONSULT-III

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 1 minute.
- 8. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 9. Drive the vehicle at a speed of 60 km/h (38 MPH) on the suitable gear position and keep the speed. CAUTION:

Always drive vehicle at a safe speed.

10. Release the accelerator pedal fully at least 5 seconds.

CAUTION:

- Make it the condition that engine brake operates.
- · Always drive vehicle safely.
- Never apply brake when releasing the accelerator pedal.
- 11. Repeat step 9 and 10 at least 8 times.
- 12. Check the following item of "DATA MONITOR".

DTC	Data monitor item	Status	
P0139	HO2 S2 DIAG1 (B1)		
	HO2 S2 DIAG2 (B1)	CMPLT	
P0159	HO2 S2 DIAG1 (B2)		
	HO2 S2 DIAG2 (B2)		

Is "CMPLT" displayed on CONSULT-III screen?

YES >> GO TO 6.

NO-1: "CMPLT" are not displayed on DIAG 1>>Perform DTC confirmation procedure again.

NO-2: "CMPLT" are not displayed on DIAG 2>>GO TO 4.

4.PERFORM DTC WORK SUPPORT

- 1. Open engine hood.
- 2. Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- Start engine and follow the instruction of CONSULT-III display.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

Is "COMPLETED" displayed on CONSULT-III screen?

YES >> GO TO 6.

NO >> GO TO 5.

5.PERFORM DTC CONFIRMATION PROCEDURE AGAIN

- 1. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- Perform DTC confirmation procedure again.

>> GO TO 3.

6. PERFORM SELF-DIAGNOSIS

(P)With CONSULT-III

Perform ECM self-diagnosis.

Is DTC "P0139" or "P0159" detected?

YES >> Proceed to EC-177, "Diagnosis Procedure".

NO >> INSPECTION END

7. PERFORM COMPONENT FUNCTION CHECK

[VQ40DE]

INFOID:0000000005267472

Α

EC

D

Е

Н

Perform component function check. Refer to EC-177, "Overall Function Check".

NOTE:

Use component function check to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

Is the inspection result normal?

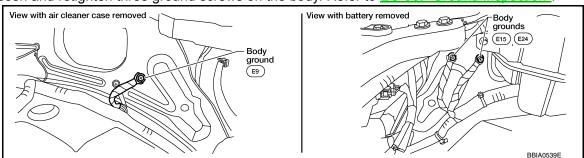
YES >> INSPECTION END

NO >> Proceed to <u>EC-177</u>, "<u>Diagnosis Procedure</u>".

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST


- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 6. Let engine idle for 1 minute.
- 7. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 8. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)
 - A change of voltage should be more than 0.8 V for 1 second during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 5th gear position (M/T).
 - A change of voltage should be more than 0.8 V for 1 second during this procedure.
- 10. If NG, go to EC-177, "Diagnosis Procedure".

Diagnosis Procedure

gricolo i 1000aute

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-III

T4: Bank 1
55: Bank 2

PBIB1607E

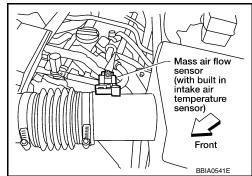
INFOID:0000000005267473

M

K

N

Р


Revision: July 2009 EC-177 2010 Xterra

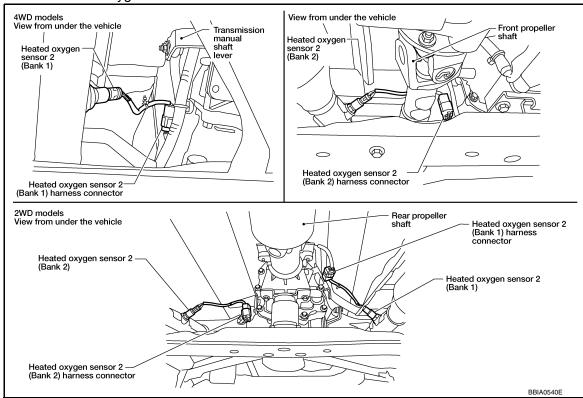
- Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Check DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-47</u>, "<u>Emission-related</u> <u>Diagnostic Information</u>".
- 7. Check DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?

Yes or No


Yes

>> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-181, "On Board Diagnosis Logic"</u> or <u>EC-187, "On Board Diagnosis Logic"</u>.

No >> GO TO 3.

3.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect heated oxygen sensor 2 harness connector.

- Disconnect ECM harness connector.
- Check harness continuity between HO2S2 terminal 4 and ECM terminal 78. Refer to Wiring Diagram.

Continuity should exist.

[VQ40DE] < COMPONENT DIAGNOSIS >

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{4}$.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
	ECM	Sensor	Dank
P0139	74	1	1
P0159	55	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Terminals		Bank
	ECM	Sensor	Dank
P0139	74	1	1
P0159	55	1	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK HEATED OXYGEN SENSOR 2

Refer to EC-179, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

HEATED OXYGEN SENSOR 2

- (P) With CONSULT-III
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item. with CONSULT-III.

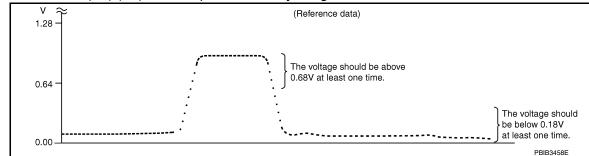
Α

EC

D

Е

Н


Ν

INFOID:0000000005267474

Р

2010 Xterra

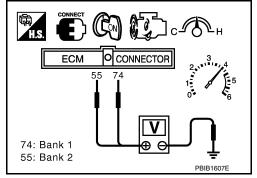
7. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to $\pm 25\%$.

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.



- Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.
 - If the voltage is above 0.68V at step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 5th gear position (M/T).

 The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

< COMPONENT DIAGNOSIS >

[VQ40DE]

INFOID:0000000005267475

P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

On Board Diagnosis Logic

With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the air fuel ratio (A/F) sensor 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical

In case the amount of the compensation value is extremely large (the actual mixture ratio is too lean), the ECM judges the condition as the fuel injection system malfunction and illuminates the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171 0171 (Bank 1)		Fuel injection system does not operate properly.	Intake air leaksAir fuel ratio (A/F) sensor 1Fuel injector
P0174 0174 (Bank 2)	Fuel injection system too lean	The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)	 Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-3. SULT-III.
- Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Performing the following procedure is advised.

a. Crank engine while depressing accelerator pedal.

NOTE:

When depressing accelerator pedal three-fourths (3/4) or more, the control system does not start the engine. Do not depress accelerator pedal too much.

- b. If engine starts, go to EC-182, "Diagnosis Procedure".
 - If engine does not start, check exhaust and intake air leakage visually.
- Keep engine at idle for at least 5 minutes.
- Check 1st trip DTC.
- The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to EC-182, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine.
- Maintain the following conditions for at least 10 consecutive minutes.

EC

Α

D

Е

Н

INFOID:0000000005550872

K

L

M

0

EC-181 2010 Xterra Revision: July 2009

[VQ40DE]

Hold the accelerator pedal as steady as possible.

VHCL SPEED SE	50 - 120 km/h (31 - 75 MPH)

CAUTION:

Always drive vehicle at a safe speed.

- d. Check 1st trip DTC.
- e. If 1st trip DTC is detected, go to <u>EC-182, "Diagnosis Procedure"</u>.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST. Check that DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Performing the following procedure is advised.

a. Crank engine while depressing accelerator pedal.

NOTE:

When depressing accelerator pedal three-fourths (3/4) or more, the control system does not start the engine. Do not depress accelerator pedal too much.

- b. If engine starts, go to <u>EC-182</u>, "<u>Diagnosis Procedure</u>"
 If engine does not start, check exhaust and intake air leakage visually.
- 9. Keep engine at idle for at least 5 minutes.
- 10. Check 1st trip DTC.
- 11. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-182</u>, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine.
- c. Maintain the following conditions for at least 10 consecutive minutes.

Hold the accelerator pedal as steady as possible.

VHCL SPEED SE	50 - 120 km/h (31 - 75 MPH)

CAUTION:

Always drive vehicle at a safe speed.

- d. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-182, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267477

1. CHECK EXHAUST GAS LEAK

Start engine and run it at idle.

Mass air flow sensor (with built in intake air temperature sensor)

Front

BRIAD541F

[VQ40DE]

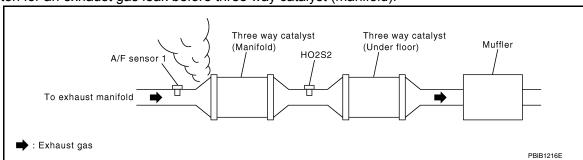
Α

EC

D

Е

F


Н

Ν

0

Р

Listen for an exhaust gas leak before three way catalyst (manifold).

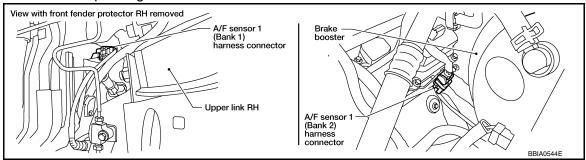
OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

- 1. Listen for an intake air leak after the mass air flow sensor.
- 2. Check PCV hose connection.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.check a/f sensor 1 input signal circuit

- 1. Turn ignition switch OFF.
- Disconnect corresponding A/F sensor 1 harness connector.

- 3. Disconnect ECM harness connector.
- Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank 1	1	35
Dank 1	2	56
Bank 2	1	16
Dalik 2	2	75

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bar	nk 1	Ban	ık 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

Revision: July 2009

< COMPONENT DIAGNOSIS >

[VQ40DE]

Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-500, "Fuel Pressure Check".
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-500, "Fuel Pressure Check"</u>.

At idling: 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> GO TO 5.

${f 5}$.DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to EC-408.)
- Fuel pressure regulator (Refer to EC-500, "Fuel Pressure Check".)
- · Fuel lines
- Fuel filter for clogging

>> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

(I) With CONSULT-III

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-III.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

NG

OK >> GO TO 8.

>> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-111, "Component Description".

7. CHECK MASS AIR FLOW SENSOR

With GST

- 1. Install all removed parts.
- Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK (P0171)>>GO TO 9.

OK (P0174)>>GO TO 11.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-111, "Component Description".

8.CHECK FUNCTION OF FUEL INJECTOR

(II) With CONSULT-III

- Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Check that each circuit produces a momentary engine speed drop.

< COMPONENT DIAGNOSIS >

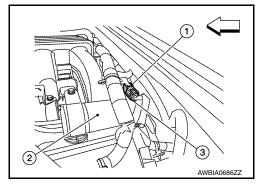
[VQ40DE]

OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-404, "Component Description".

9. CHECK FUNCTION OF FUEL INJECTOR-I


Without CONSULT-III

Stop engine.

2. Disconnect harness connector F44 (3), F201 (1)

2 : Vacuum tank <□ : Front

3. Turn ignition switch ON.

Check voltage between harness connector F44 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- Check harness continuity between harness connector F44 and ECM as follows.

Refer to Wiring Diagram.

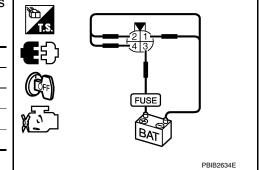
1 2 3 4
V • •
PBIB2633E

Cylinder	Harness connector F44 terminal	ECM terminal
1	2	23
3	1	22
5	4	21

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 10.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-404</u>.

10. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between harness connector F201 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F201 terminal		
	(+)	(-)	
1	3	2	
3	3	1	
5	3	4	

Operating sound should exist.

OK or NG

Revision: July 2009 EC-185 2010 Xterra

EC

Α

D

Е

F

G

Н

K

Ν

0

< COMPONENT DIAGNOSIS >

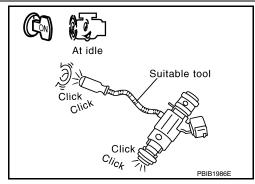
OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-404.

11. CHECK FUNCTION OF FUEL INJECTOR

Start engine.

Listen to fuel injectors No.2, No.4, No.6 operating sound.


Clicking noise should exist.

OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to

EC-404.

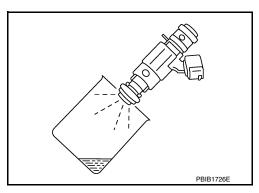
[VQ40DE]

12. CHECK FUEL INJECTOR

- Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Turn ignition switch OFF.
- 3. Disconnect all injector harness connectors.
- Remove fuel tube assembly. Refer to EM-45, "Removal and Installation". Keep fuel hose and all fuel injectors connected to fuel tube.
- For DTC P0171, reconnect fuel injector harness connectors on bank 1. For DTC P0174, reconnect fuel injector harness connectors on bank 2.
- Disconnect all ignition coil harness connectors.
- Prepare pans or saucers under each fuel injector.
- Crank engine for about 3 seconds. For DTC P0171, check that fuel sprays out from fuel injectors on

For DTC P0174, check that fuel sprays out from fuel injectors on bank 2.

OK or NG


OK >> GO TO 13.

NG >> Replace fuel injectors from which fuel does not spray out. Always replace O-ring with new ones.

13. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

< COMPONENT DIAGNOSIS >

[VQ40DE]

INFOID:0000000005267478

P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

On Board Diagnosis Logic

With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from air fuel ratio (A/F) sensor 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (the actual mixture ratio is too rich), the ECM judges the condition as the fuel injection system malfunction and illuminates the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172 0172 (Bank 1)	Fuel injection system	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too 	Air fuel ratio (A/F) sensor 1 Fuel injector Exhaust gas looks
P0175 0175 (Bank 2)	too rich	large. (The mixture ratio is too rich.)	Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Performing the following procedure is advised.

a. Crank engine while depressing accelerator pedal.

NOTE:

When depressing accelerator pedal three-fourths (3/4) or more, the control system does not start the engine. Do not depress accelerator pedal too much.

- b. If engine starts, go to EC-188, "Diagnosis Procedure". If engine does not start, remove ignition plugs and check for fouling, etc.
- Keep engine at idle for at least 5 minutes.
- Check 1st trip DTC.
- The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to EC-188, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine.
- Maintain the following conditions for at least 10 consecutive minutes.

Hold the accelerator pedal as steady as possible.

VHCL SPEED SE	50 - 120 km/h (31 - 75 MPH)
---------------	-----------------------------

EC-187 2010 Xterra Revision: July 2009

EC

Α

D

Е

Н

INFOID:0000000005550876

L

Ν

IVQ40DE1

CAUTION:

Always drive vehicle at a safe speed.

- d. Check 1st trip DTC.
- e. If 1st trip DTC is detected, go to <u>EC-188, "Diagnosis Procedure"</u>.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Disconnect mass air flow sensor harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST. Check that DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Performing the following procedure is advised.

a. Crank engine while depressing accelerator pedal.

NOTE:

When depressing accelerator pedal three-fourths (3/4) or more, the control system does not start the engine. Do not depress accelerator pedal too much.

- b. If engine starts, go to EC-188, "Diagnosis Procedure"
 If engine does not start, remove ignition plugs and check for fouling, etc.
- 9. Keep engine at idle for at least 5 minutes.
- 10. Check 1st trip DTC.
- 11. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-188</u>, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine.
- c. Maintain the following conditions for at least 10 consecutive minutes.

Hold the accelerator pedal as steady as possible.

VHCL SPEED SE	50 - 120 km/h (31 - 75 MPH)
---------------	-----------------------------

CAUTION:

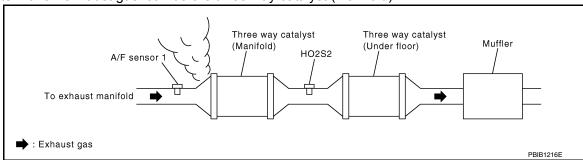
Always drive vehicle at a safe speed.

- d. Check 1st trip DTC.
- e. If 1st trip DTC is detected, go to EC-188, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267480

2010 Xterra


1. CHECK EXHAUST GAS LEAK

Start engine and run it at idle.

< COMPONENT DIAGNOSIS >

[VQ40DE]

Listen for an exhaust gas leak before three way catalyst (manifold).

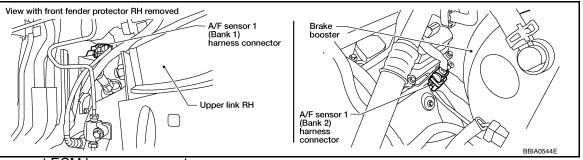
OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.check a/f sensor 1 input signal circuit

- Turn ignition switch OFF.
- Disconnect corresponding A/F sensor 1 harness connector.

- Disconnect ECM harness connector.
- Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank 1	1	35
	2	56
Bank 2	1	16
Dalik 2	2	75

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

Also check harness for short to power.

EC-189 Revision: July 2009 2010 Xterra

EC

Α

D

Е

F

Н

M

Ν

0

< COMPONENT DIAGNOSIS >

[VQ40DE]

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK FUEL PRESSURE

- Release fuel pressure to zero. Refer to <u>EC-500, "Fuel Pressure Check"</u>.
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-500, "Fuel Pressure Check"</u>.

At idling: 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to, <u>EC-408</u>.)
- Fuel pressure regulator (Refer to <u>EC-500, "Fuel Pressure Check"</u>.)

>> Repair or replace.

6.CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-III

- Install all removed parts.
- Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-III.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 8.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-117, "Component Description".

7. CHECK MASS AIR FLOW SENSOR

- 1. Install all removed parts.
- Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK (P0172)>>GO TO 9.

OK (P0175)>>GO TO 11.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-117, "Component Description".

8. CHECK FUNCTION OF FUEL INJECTOR

(P) With CONSULT-III

- Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Check that each circuit produces a momentary engine speed drop.

OK or NG

OK >> GO TO 12.

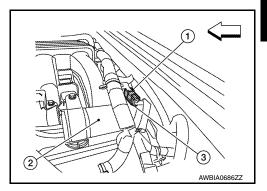
NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-404.

Revision: July 2009 EC-190 2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

9.check function of fuel injector-i

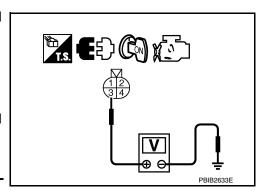

⊗ Without CONSULT-III

1. Stop engine.

2. Disconnect harness connector F44 (3), F201 (1)

2 : Vacuum tank ⟨□ : Front

3. Turn ignition switch ON.



Check voltage between harness connector F44 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

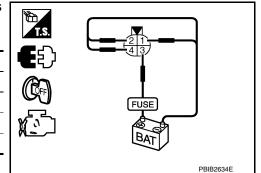
- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- Check harness continuity between harness connector F44 and ECM as follows. Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal
1	2	23
3	1	22
5	4	21

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 10.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-404</u>.

10.check function of fuel injector-ii

Provide battery voltage between harness connector F201 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F201 terminal	
	(+)	(-)
1	3	2
3	3	1
5	3	4

Operating sound should exist.

OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-404</u>.

11. CHECK FUNCTION OF FUEL INJECTOR

Revision: July 2009 EC-191 2010 Xterra

EC

D

Е

_

G

Н

J

K

M

Ν

0

< COMPONENT DIAGNOSIS >

[VQ40DE]

- 1. Start engine.
- 2. Listen to fuel injectors No.2, No.4, No.6 operating sound.

Clicking noise should exist.

OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-404.

At idle

Suitable tool

Click

Click

Click

PBIB 1986E

12. CHECK FUEL INJECTOR

- Remove fuel injector assembly. Refer to <u>EM-45, "Removal and Installation"</u>. Keep fuel hose and all fuel injectors connected to fuel tube.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Disconnect all fuel injector harness connectors.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each fuel injector.
- Crank engine for about 3 seconds.
 Make that sure fuel does not drip from fuel injector.

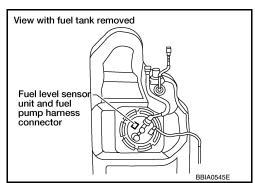
OK or NG

OK (Does not drip.)>>GO TO 13.

NG (Drips.)>>Replace the fuel injectors from which fuel is dripping. Always replace O-ring with new one.

13. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

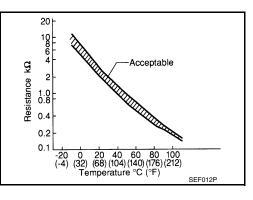
INFOID:0000000005267481

P0181 FTT SENSOR

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>


Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (fuel tank temperature sensor) and ground.

CAUTION:

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/per-formance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON. 2.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

- Turn ignition switch ON and wait at least 10 seconds.
- Check 1st trip DTC. If 1st trip DTC is detected, go to EC-194, "Diagnosis Procedure". If 1st trip DTC is not detected, go to following step.
- Select "DATA MONITOR" mode with CONSULT-III.
- Check "COOLAN TEMP/S" value. If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5. Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).

EC

Α

D

Е

INFOID:0000000005267482

INFOID:0000000005267483

Ν

Р

EC-193

Revision: July 2009 2010 Xterra

- Wait at least 10 seconds.
- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-194, "Diagnosis Procedure"</u>.
- WITH GST

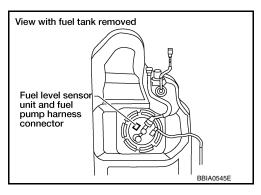
Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267484

1. CHECK COMBINATION METER FUNCTION

Refer to GI-33, "Work Flow".

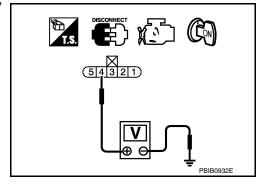

OK or NG

OK >> GO TO 2.

NG >> Go to MWI-32, "Component Function Check".

$2. \mathsf{CHECK}$ FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Turn ignition switch ON.



Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E41, C1
- · Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair harness or connector.

4. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect combination meter harness connector.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 3 and combination meter terminal 9. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

Revision: July 2009 EC-194 2010 Xterra

P0181 FTT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E41, C1
- Harness connectors E152, M31
- Harness for open or short between "fuel level sensor unit and fuel pump" and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connector.

6. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-195, "Component Inspection".

OK or NG

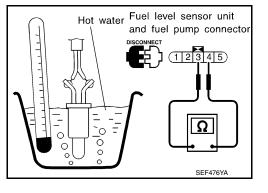
OK >> GO TO 7.

NG >> Replace fuel level sensor unit.

7. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END


Component Inspection

INFOID:0000000005267485

FUEL TANK TEMPERATURE SENSOR

- 1. Remove fuel level sensor unit.
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 3 and 4 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

EC

Α

D

Е

F

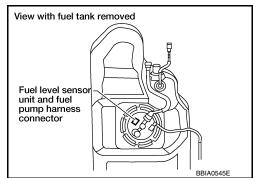
Н

J

Κ

M

Ν


0

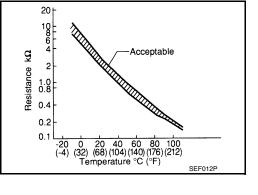
INFOID:0000000005267486

P0182, P0183 FTT SENSOR

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>


Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (fuel tank temperature sensor) and ground.

CAUTION:

Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure

INFOID:0000000005267488

INFOID:000000005267487

- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON and wait at least 5 seconds.
- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-196, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267489

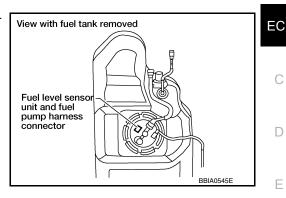
1. CHECK COMBINATION METER FUNCTION

Refer to GI-33, "Work Flow".

OK or NG

>> GO TO 2. OK

> **EC-196** Revision: July 2009 2010 Xterra

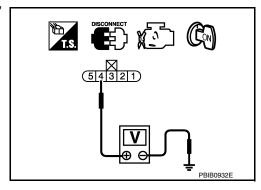

[VQ40DE]

Α

NG >> Go to MWI-32, "Component Function Check".

2.CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- Turn ignition switch ON.



4. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E41, C1
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"

>> Repair harness or connector.

4. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect combination meter harness connector.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 3 and combination meter terminal 9. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E41, C1
- Harness connectors E152, M31
- · Harness for open or short between "fuel level sensor unit and fuel pump" and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connector.

O.CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-198, "Component Inspection".

OK or NG

EC-197 Revision: July 2009 2010 Xterra K

Н

M

N

[VQ40DE]

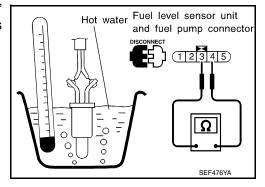
OK >> GO TO 7.

NG >> Replace fuel level sensor unit.

7. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END


Component Inspection

INFOID:0000000005267490

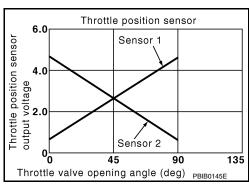
FUEL TANK TEMPERATURE SENSOR

- 1. Remove fuel level sensor unit.
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 3 and 4 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

IVQ40DE1

INFOID:0000000005267491


INFOID:0000000005267492

P0222, P0223 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or short-
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	ed.) (The APP sensor 2 circuit is shorted.) • Electric throttle control actuator (TP sensor 1) • Accelerator pedal position sensor. (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000005267493

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

Turn ignition switch OFF and wait at least 10 seconds.

2. Turn ignition switch ON.

Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Start engine and let it idle for 1 second.
- Check DTC.

NOTE:

If DTC is detected, go to EC-199, "Diagnosis Procedure".

Diagnosis Procedure

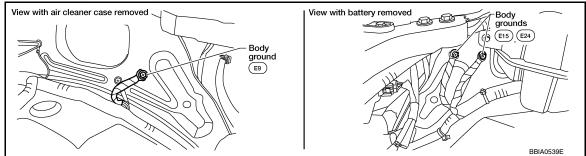
INFOID:0000000005267494

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

EC-199 2010 Xterra Revision: July 2009

EC

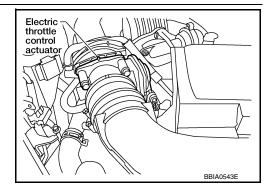

Α

Е

M

N

2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

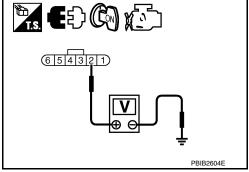

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$2. \mathsf{CHECK}$ THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-I

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 2 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 2 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

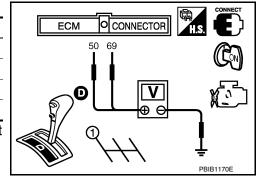
ECM terminal	Sensor terminal	Reference Wiring Diagram	
47	Electric throttle control actuator terminal 2	FC-443	
91	APP sensor terminal 1	<u>=C-443</u>	

P0222, P0223 TP SENSOR

< COMPONENT DIAGNOSIS >	[VQ40DE]
OK or NG	
OK >> GO TO 5.	
NG >> Repair short to ground or short to power in harness or connectors.	
5.CHECK APP SENSOR	
Refer to EC-377, "Component Inspection".	
OK or NG	
OK >> GO TO 11. NG >> GO TO 6.	
6.REPLACE ACCELERATOR PEDAL ASSEMBLY	
Replace accelerator pedal assembly.	
2. Perform EC-19, "Accelerator Pedal Released Position Learning".	
 Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-19</u>, "<u>Idle Air Volume Learning</u>". 	
4. I GIGITI <u>Lo 10, Idio 7 in Volumo Leanning</u> .	
>> INSPECTION END	
7.CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SH	HORT
Turn ignition switch OFF.	
 Disconnect ECM harness connector. Check harness continuity between electric throttle control actuator terminal 4 and EC 	`M terminal 66
Refer to Wiring Diagram.	ivi terriiriai oo.
Continuity about oviet	
Continuity should exist.	
 Also check harness for short to ground and short to power. OK or NG 	
OK >> GO TO 8.	
NG >> Repair open circuit or short to ground or short to power in harness or connect	tors.
8.CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AN $$	ND SHORT
1. Check harness continuity between ECM terminal 50 and electric throttle control actu	ator terminal 1.
Refer to Wiring Diagram.	
Continuity should exist.	
Also check harness for short to ground and short to power.	
OK or NG	
OK >> GO TO 9.	
NG >> Repair open circuit or short to ground or short to power in harness or connect	tors.
9.CHECK THROTTLE POSITION SENSOR	
Refer to EC-202, "Component Inspection".	
<u>OK or NG</u> OK >> GO TO 11.	
NG >> GO TO 11.	
10.REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	
Replace the electric throttle control actuator.	
2. Perform <u>EC-19</u> . "Throttle Valve Closed Position Learning".	
3. Perform EC-19, "Idle Air Volume Learning".	
>> INSPECTION END	
11. CHECK INTERMITTENT INCIDENT	
Refer to GI-37, "Intermittent Incident".	

Revision: July 2009 EC-201 2010 Xterra

>> INSPECTION END


Component Inspection

INFOID:0000000005267495

THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set selector lever to D position (A/T), 1st position (M/T).
- 5. Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69 (Throttle position sensor 2)	Fully released	Less than 4.75V
	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-19, "Throttle Valve Closed Position Learning".
- 8. Perform <u>EC-19</u>, "Idle Air Volume Learning".

P0300, P0301, P0302, P0303, P0304, P0305, P0306 MISFIRE

< COMPONENT DIAGNOSIS >

IVQ40DE1

P0300, P0301, P0302, P0303, P0304, P0305, P0306 MISFIRE

Engine speed

On Board Diagnosis Logic

Crankshaft position sensor (POS)

Sensor

INFOID:0000000005267496

Α

EC

D

Е

Н

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crankshaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring

Input Signal to ECM

o oodarring.	
ECM function	,

On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip, when a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off.

If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on.

If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected in any one cylinder or in multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder mis- fires detected	Multiple cylinder misfire.	
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Improper spark plug Insufficient compression
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	Incorrect fuel pressure The fuel injector is open or shorted Fuel injector
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	Intake air leak The ignition signal circuit is open or short-
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	ed Lack of fuel Signal plate
P0305 0305	No. 5 cylinder misfire detected	No. 5 cylinder misfires.	 Air fuel ratio (A/F) sensor 1 Incorrect PCV hose connection
P0306 0306	No. 6 cylinder misfire detected	No. 6 cylinder misfires.	

DTC Confirmation Procedure

INFOID:0000000005267497

CAUTION:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driv-

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following procedure before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds. 1.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-III.
- Start engine and warm it up to normal operating temperature.

EC-203 2010 Xterra Revision: July 2009

N

0

P0300, P0301, P0302, P0303, P0304, P0305, P0306 MISFIRE

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Restart engine and let it idle for about 15 minutes.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-204, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- c. Turn ignition switch OFF and wait at least 10 seconds.
- d. Start engine and drive the vehicle under similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

Similar conditions to (1st trip) Freeze Frame Data mean that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm	
Basic fuel schedule	Basic fuel schedule in freeze frame data \times (1 \pm 0.1)	
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

Driving time varies according to the engine speed in the freeze frame data.

Engine speed	Time
Around 1,000 rpm	Approximately 10 minutes
Around 2,000 rpm	Approximately 5 minutes
More than 3,000 rpm	Approximately 3.5 minutes

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267498

1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- 1. Start engine and run it at idle speed.
- 2. Listen for the sound of the intake air leak.
- 3. Check PCV hose connection.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2.CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK (With CONSULT-III)>>GO TO 3.

OK (Without CONSULT-III)>>GO TO 4.

NG >> Repair or replace it.

3. PERFORM POWER BALANCE TEST

(P) With CONSULT-III

Revision: July 2009 EC-204 2010 Xterra

< COMPONENT DIAGNOSIS >

. Perform "POWER BALANCE" in "ACTIVE TEST" mode.

2. Is there any cylinder which does not produce a momentary engine speed drop?

Yes or No

Yes >> GO TO 4. No >> GO TO 10.

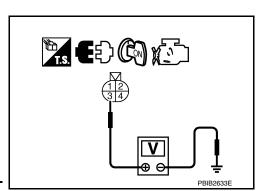
4. CHECK FUNCTION OF FUEL INJECTOR-I

Stop engine.

1. Disconnect harness connector F44 (3), F201 (1)

2 : Vacuum tank <□ : Front

2. Turn ignition switch ON.


Check voltage between harness connector F44 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

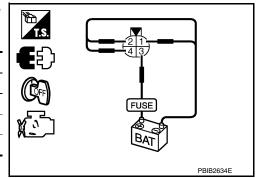
- 4. Turn ignition switch OFF.
- 5. Disconnect ECM harness connector.
- 6. Check harness continuity between harness connector F44 and ECM as follows.

Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal	
1	2	23	
3	1	22	
5	4	21	

Continuity should exist.

7. Also check harness for short to ground and short to power.


OK or NG

OK >> GO TO 5.

- NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-404</u>.
- 5. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between harness connector F201 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F201 terminal	
Cymraer	(+)	(–)
1	3	2
3	3	1
5	3	4

Operating sound should exist.

OK or NG

Revision: July 2009 EC-205 2010 Xterra

EC

Α

[VQ40DE]

D

Е

F

G

G

Н

I

J

K

IVI

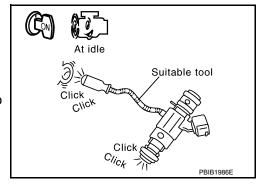
Ν

< COMPONENT DIAGNOSIS >

OK >> GO TO 6.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-404</u>.

6. CHECK FUNCTION OF FUEL INJECTOR-III


- Reconnect all harness connector disconnected.
- 2. Start engine.
- Listen to fuel injectors No. 2, No. 4, No.6 operating sound.

Clicking noise should exist.

OK or NG

OK >> GO TO 7.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to $\underline{\text{EC-404}}$.

View with IPDM E/R cover removed

IPDM E/R

IVQ40DE1

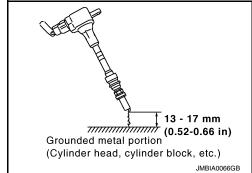
pump

fuse

(15A)

7 . CHECK FUNCTION OF IGNITION COIL-I

CAUTION:


Perform the following procedure in a place with no combustible objects and good ventilation.

- Turn ignition switch OFF.
- 2. Remove fuel pump fuse (No.48) in IPDM E/R to release fuel pressure.

NOTE:

Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- 3. Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for five seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm (0.52 0.66 in) between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about three seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

CAUTION:

- Never place to the spark plug and the ignition coil within 50cm (19.7 in) each other. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20 kV or more.
- It might cause to damage the ignition coil if the gap of more than 17 mm (0.66 in) is made. NOTE:

When the gap is less than 13 mm (0.52 in), the spark might be generated even if the coil is malfunctioning.

OK or NG

OK >> GO TO 11. NG >> GO TO 8.

8. CHECK FUNCTION OF IGNITION COIL-II

P0300, P0301, P0302, P0303, P0304, P0305, P0306 MISFIRE

< COMPONENT DIAGNOSIS >

- Turn ignition switch OFF.
- Disconnect spark plug and connect a known-good spark plug.
- Crank engine for about three seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

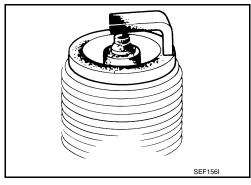
OK or NG

OK >> GO TO 9.

NG >> Check ignition coil, power transistor and their circuits. Refer to <u>EC-412</u>.

$\mathbf{9}.$ CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.


OK or NG

OK >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to EM-16, "Removal and Installa-

tion".

NG >> 1. Repair or clean spark plug.

> 2. GO TO 10.

10.CHECK FUNCTION OF IGNITION COIL-III

Reconnect the initial spark plugs.

Crank engine for about three seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to EM-16, "Removal and Installation".

11. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-22, "Compression Pressure".

OK or NG

OK >> GO TO 12.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

12. CHECK FUEL PRESSURE

Install all removed parts.

Release fuel pressure to zero. Refer to EC-500, "Fuel Pressure Check". 2.

Install fuel pressure gauge and check fuel pressure. Refer to EC-500, "Fuel Pressure Check".

At idle: Approx. 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to <u>EC-408</u>.)
- Fuel pressure regulator (Refer to EC-500, "Fuel Pressure Check".)
- · Fuel lines
- · Fuel filter for clogging

D

Α

EC

IVQ40DE1

Е

F

Н

K

M

Р

EC-207 Revision: July 2009

2010 Xterra

[VQ40DE]

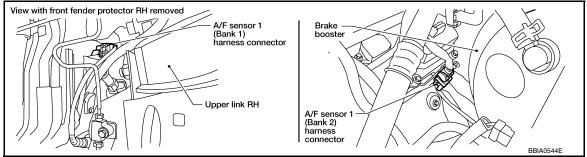
< COMPONENT DIAGNOSIS >

>> Repair or replace.

14. CHECK IGNITION TIMING

Check the following items. Refer to EC-14, "Basic Inspection".

Items	Specifications
Target idle speed	625 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)


OK or NG

OK >> GO TO 15.

NG >> Follow the EC-14, "Basic Inspection".

15. CHECK A/F SENSOR 1 INPUT SIGNAL

- 1. Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.

- Disconnect ECM harness connector.
- 4. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank 1	1	35
	2	56
Bank 2	1	16
Dalik 2	2	75

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 16.

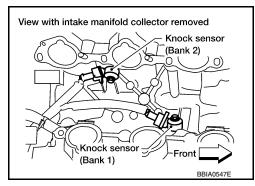
NG >> Repair open circuit or short to ground or short to power in harness or connectors between ECM and A/F sensor 1.

16.CHECK A/F SENSOR 1 HEATER

Refer to EC-103, "Component Inspection".

P0300, P0301, P0302, P0303, P0304, P0305, P0306 MISFIRE

[VQ40DE] < COMPONENT DIAGNOSIS > OK or NG Α >> GO TO 18. OK NG >> GO TO 17. 17.REPLACE A/F SENSOR 1 EC Replace malfunctioning A/F sensor 1. **CAUTION:** • Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. D >> INSPECTION END 18.CHECK MASS AIR FLOW SENSOR Е (P) With CONSULT-III Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-III. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm Check mass air flow sensor signal in Service \$01 with GST. 2.0 - 6.0 g·m/sec: at idling Н 7.0 - 20.0 g·m/sec: at 2,500 rpm OK or NG OK >> GO TO 19. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-111, "Component Description". 19. CHECK SYMPTOM MATRIX CHART Check items on the rough idle symptom in EC-489, "Symptom Matrix Chart". OK or NG K OK >> GO TO 20. NG >> Repair or replace. 20.ERASE THE 1ST TRIP DTC L Some tests may cause a 1st trip DTC to be set. Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-47, "Emission-related Diagnostic Information". >> GO TO 21. Ν 21. CHECK INTERMITTENT INCIDENT Refer to GI-37, "Intermittent Incident". 0 >> INSPECTION END Р


[VQ40DE]

INFOID:000000005267499

P0327, P0328, P0332, P0333 KS

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

INFOID:0000000005267500

The MIL will not illuminate for these diagnoses.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0327 0327 (Bank 1)	Knock sensor circuit low in-	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Knock sensor
P0332 0332 (Bank 2)	put		
P0328 0328 (Bank 1)	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	
P0333 0333 (Bank 2)			

DTC Confirmation Procedure

INFOID:0000000005267501

NOTE

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 4. Start engine and run it for at least 5 seconds at idle speed.
- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-210, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267502

$1.\mathsf{check}$ knock sensor input signal circuit for open and short-i

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check resistance between ECM terminals 15, 36 and ground. Refer to Wiring Diagram. NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]

< COMPONENT DIAGNOSIS >

[VQ40DE]

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2.CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

Disconnect knock sensor harness connector.

2. Check harness continuity between ECM terminal 15 and knock sensor (bank1) terminal 1, ECM terminal 36 and knock sensor (bank 2) terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F67, F250
- · Harness for open or short between ECM and knock sensor

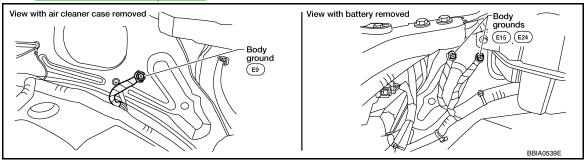
>> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK KNOCK SENSOR

Refer to EC-212, "Component Inspection".

OK or NG

OK >> GO TO 5.


NG >> Replace malfunctioning knock sensor.

5. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten three ground screws on the body.

Refer to EC-95, "Ground Inspection".

OK or NG

OK >> GO TO 6.

NG >> Repair or replace ground connections.

6.CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- Disconnect knock sensor harness connector.
- Check harness continuity between knock sensor terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

> EC-211 2010 Xterra Revision: July 2009

View with intake manifold collector removed Knock sensor (Bank 2)

BBIA0547E

Knock sensor (Bank 1)

D

Е

Α

EC

F

Н

N

[VQ40DE]

7.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors F67, F250
- · Harness connectors F14, E5
- · Harness for open or short between knock sensor and ground
 - >> Repair open circuit or short power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

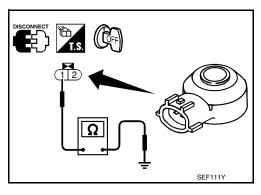
Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

INFOID:000000005267503

KNOCK SENSOR


Check resistance between knock sensor terminal 1 and ground. **NOTE:**

It is necessary to use an ohmmeter which can measure more than 10 $\text{M}\Omega.$

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]

CAUTION:

Never use any knock sensors that have been dropped or physically damaged. Use only new ones.

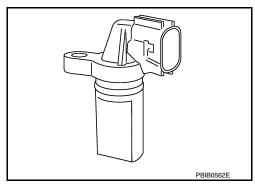
INFOID:0000000005267504

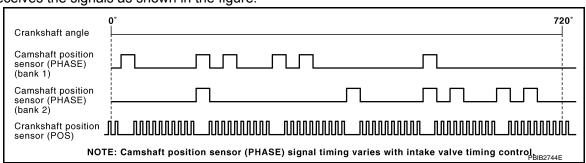
P0335 CKP SENSOR (POS)

Component Description

The crankshaft position sensor (POS) is located on the oil pan facing the gear teeth (cogs) of the signal plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.


When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.


The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

ECM receives the signals as shown in the figure.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	Harness or connectors (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate	ŀ

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-213, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:000000005267507

1.CHECK GROUND CONNECTIONS

EC-213 2010 Xterra Revision: July 2009

EC

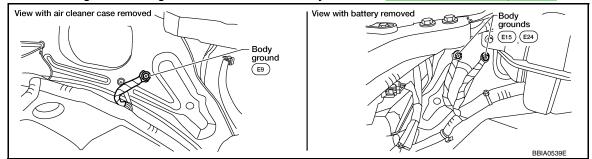
Α

D

Е

Н

INFOID:0000000005267505

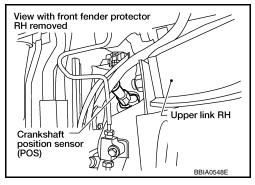

INFOID:0000000005267506

Ν

0

< COMPONENT DIAGNOSIS >

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

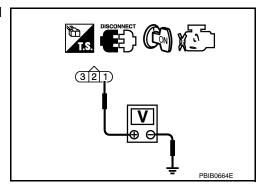

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK CRANKSHAFT POSITION (CKP) SENSOR (POS) POWER SUPPLY CIRCUIT

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- Turn ignition switch ON. 2.



Check voltage between CKP sensor (POS) terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

2010 Xterra

3.DETECT MALFUNCTIONING PART

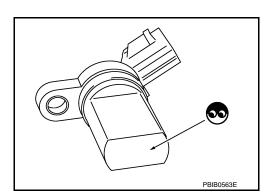
Check the following.

- · Harness connectors F32, E2
- · Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between CKP sensor (POS) terminal 3 and ground. Refer to Wiring Diagram.

Continuity should exist.


OK or NG

OK >> GO TO 6. NG >> GO TO 5.

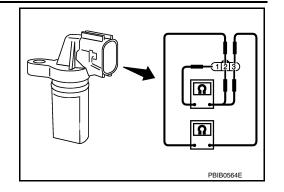
Revision: July 2009

P0335 CKP SENSOR (POS) [VQ40DE] < COMPONENT DIAGNOSIS > 5. DETECT MALFUNCTIONING PART Check the following. Harness connectors F32, E2 · Harness for open or short between crankshaft position sensor (POS) and ground EC >> Repair open circuit or short to power in harness or connectors. 6.CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT Disconnect ECM harness connector. 2. Check harness continuity between ECM terminal 13 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram. D Continuity should exist. Е 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 7. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 7. CHECK CRANKSHAFT POSITION SENSOR (POS) Refer to EC-215, "Component Inspection". OK or NG OK >> GO TO 8. NG >> Replace crankshaft position sensor (POS). Н 8. CHECK GEAR TOOTH Visually check for chipping signal plate gear tooth. OK or NG OK >> GO TO 9. NG >> Replace the signal plate. 9. CHECK INTERMITTENT INCIDENT Refer to GI-37, "Intermittent Incident". K >> INSPECTION END Component Inspection INFOID:0000000005267508 CRANKSHAFT POSITION SENSOR (POS) 1. Loosen the fixing bolt of the sensor. M 2. Disconnect crankshaft position sensor (POS) harness connector.

- 3. Remove the sensor.
- Visually check the sensor for chipping.

Ν

Revision: July 2009 EC-215 2010 Xterra


P0335 CKP SENSOR (POS)

< COMPONENT DIAGNOSIS >

[VQ40DE]

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
1 (+) - 2 (-)		
1 (+) - 3 (-)	Except 0 or ∞	
2 (+) - 3 (-)		

[VQ40DE]

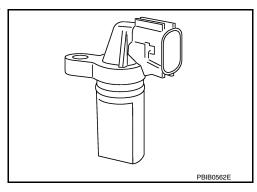
INFOID:000000005267509

P0340, P0345 CMP SENSOR (PHASE)

Component Description

The camshaft position sensor (PHASE) senses the retraction of intake valve camshaft to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.

When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.


The sensor consists of a permanent magnet and Hall IC.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

ECM receives the signals as shown in the figure.

	720°
Crankshaft angle	720
Camshaft position sensor (PHASE) (bank 1)	
Camshaft position sensor (PHASE) (bank 2)	
Crankshaft position sensor (POS)	<u> Ա</u>
NOTE	E: Camshaft position sensor (PHASE) signal timing varies with intake valve timing control

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340 0340 (Bank 1) P0345 0345 (Bank 2)	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Camshaft (Intake) Starter motor Starting system circuit Dead (Weak) battery

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed. 1.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-218, "Diagnosis Procedure". If 1st trip DTC is not detected, go to next step.
- 4. Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-218, "Diagnosis Procedure".

EC

Α

D

Е

Н

Ν

Р

INFOID:000000005267510

INFOID:0000000005267511

2010 Xterra

Revision: July 2009

EC-217

< COMPONENT DIAGNOSIS >

[VQ40DE]

Diagnosis Procedure

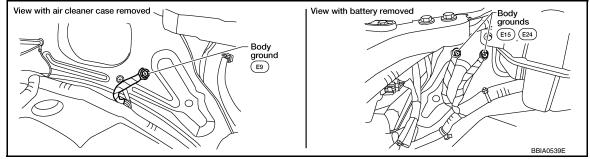
INFOID:000000005267512

1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

Does the engine turn over?

Does the starter motor operate?

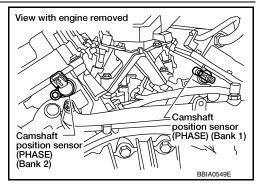

Yes or No

Yes >> GO TO 2.

No >> Check starting system. (Refer to STR-4, "Work Flow".)

2. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.

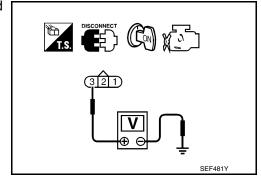

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

$3. {\tt CHECK\ CAMSHAFT\ POSITION\ (CMP)\ SENSOR\ (PHASE)\ POWER\ SUPPLY\ CIRCUIT}$

- Disconnect camshaft position (CMP) sensor (PHASE) harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between CMP sensor (PHASE) terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between camshaft position sensor (PHASE) and ECM

P0340, P0345 CMP SENSOR (PHASE)

[VQ40DE] < COMPONENT DIAGNOSIS > Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

$5.\mathtt{check}$ CMP sensor (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

Turn ignition switch OFF.

2. Check harness continuity between CMP sensor (PHASE) terminal 1 and ground.

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors F32, E2
- · Harness for open or short between CMP sensor (PHASE) and ground

>> Repair open circuit or short to power in harness or connectors.

7.CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Disconnect ECM harness connector.

Check harness continuity between ECM terminal 33 (bank 1) or 14 (bank 2) and CMP sensor (PHASE) terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK CAMSHAFT POSITION SENSOR (PHASE)

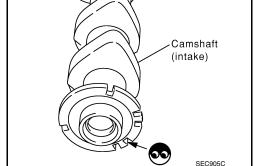
Refer to EC-220, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace malfunctioning camshaft position sensor (PHASE).

9. CHECK CAMSHAFT (INTAKE)


Check the following.

- Accumulation of debris to the signal plate of camshaft rear end
- · Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 10.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace malfunctioning camshaft.

10. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

EC

Α

Е

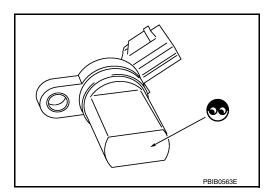
K

N

Р

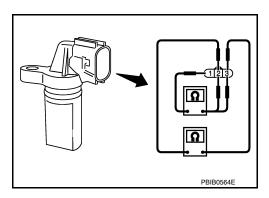
EC-219

[VQ40DE]


INFOID:0000000005267513

>> INSPECTION END

Component Inspection

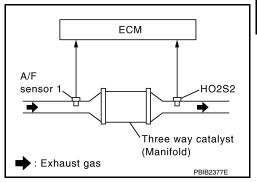

CAMSHAFT POSITION SENSOR (PHASE)

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

INFOID:0000000005267514


P0420, P0430 THREE WAY CATALYST FUNCTION

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2.

A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0420 0420 (Bank 1)	Catalyst system efficien-	Three way catalyst (manifold) does not operate properly.	Intake air leaks	
P0430 0430 (Bank 2)	cy below threshold	Three way catalyst (manifold) does not have enough oxygen storage capacity.	Fuel injectorFuel injector leaksSpark plugImproper ignition timing	

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

TESTING CONDITION:

Do not maintain engine speed for more than the specified minutes below.

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F). If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 9. Open engine hood.
- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUPPORT" mode with CONSULT-III.
- 11. Rev engine between 2,000 and 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.
 - If "INCMP" of "CATALYST" changed to "CMPLT", go to step 12.
- 12. Wait 5 seconds at idle.
- 13. Rev engine between 2,000 and 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).
- If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.
- 14. Select "SELF-DIAG RESULTS" mode with CONSULT-III.

EC

Α

D

Е

INFOID:0000000005267515

Н

K

M

EC-221

Revision: July 2009

< COMPONENT DIAGNOSIS >

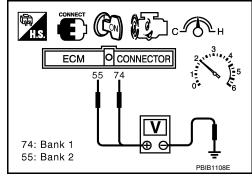
[VQ40DE]

15. Confirm that the 1st trip DTC is not detected.

If the 1st trip DTC is detected, go to EC-222, "Diagnosis Procedure".

Overall Function Check

INFOID:0000000005267516


Use this procedure to check the overall function of the three way catalyst (manifold). During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 6. Let engine idle for 1 minute.
- 7. Open engine hood.
- 8. Set voltmeter probe between ECM terminals 74 [HO2S2 (bank 1) signal], 55 [HO2S2 (bank 2) signal] and ground.
- 9. Keep engine speed at 2,500 rpm constant under no load.
- Make sure that the voltage does not vary for more than 5 seconds.

If the voltage fluctuation cycle takes less than 5 seconds, go to <u>EC-222</u>, "<u>Diagnosis Procedure</u>".

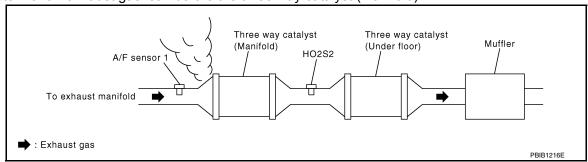
• 1 cycle: $0.6 - 1.0 \rightarrow 0 - 0.3 \rightarrow 0.6 - 1.0$

Diagnosis Procedure

INFOID:000000005267517

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dents.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before the three way catalyst (manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

Revision: July 2009 EC-222 2010 Xterra

< COMPONENT DIAGNOSIS >

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-14, "Basic Inspection".

Items	Specifications
Target idle speed	M/T: 625 \pm 50 rpm (in Neutral position) A/T: 625 \pm
Ignition timing	M/T: $15 \pm 5^{\circ}$ BTDC (in Neutral position) A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 5.

NG >> Follow the EC-14, "Basic Inspection".

5. CHECK FUEL INJECTOR

1. Stop engine and then turn ignition switch ON.

 Check voltage between ECM terminals 21, 22, 23, 40, 41, 42 and ground with CONSULT-III or tester. Refer to Wiring Diagram for FUEL INJECTOR, <u>EC-443</u>, "Wiring

Battery voltage should exist.

OK or NG

OK >> GO TO 6.

Diagram".

NG >> Perform <u>EC-404</u>, "Diagnosis Procedure".

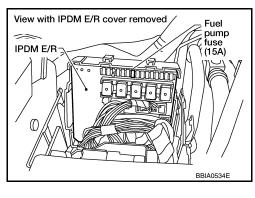
ECM O CONNECTOR 21, 22, 23, 40, 41, 42 PBIB1172E

6. CHECK FUNCTION OF IGNITION COIL-I

CAUTION:

Perform the following procedure in a place with no combustible objects and good ventilation.

- Turn ignition switch OFF.
- 2. Remove fuel pump fuse (No.48) in IPDM E/R to release fuel pressure.


NOTE:

Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 7. Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for five seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about three seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

CAUTION:

13 - 17 mm (0.52-0.66 in) Grounded metal portion (Cylinder head, cylinder block, etc.) EC

Α

[VQ40DE]

D

Е

F

G

Н

1

K

L

M

Ν

0

Р

Revision: July 2009 EC-223 2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Never place to the spark plug and the ignition coil within 50cm (19.7 in) each other. Be careful
 not to get an electrical shock while checking, because the electrical discharge voltage becomes
 20 kV or more.
- It might cause to damage the ignition coil if the gap of more than 17 mm (0.66 in) is made.
 NOTE:

When the gap is less than 13 mm (0.52 in), the spark might be generated even if the coil is malfunctioning.

OK or NG

OK >> GO TO 10. NG >> GO TO 7.

7.check function of ignition coil-ii

- 1. Turn ignition switch OFF.
- 2. Disconnect spark plug and connect a known-good spark plug.
- 3. Crank engine for approximately 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

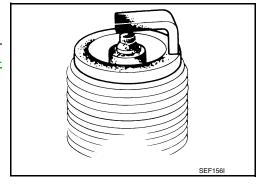
OK or NG

OK >> GO TO 8.

NG >> Check ignition coil, power transistor and their circuits. Refer to <u>EC-412</u>.

8. CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.


OK or NG

OK >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to EM-16, "Removal and Installa-

tion".

NG >> 1. Repair or clean spark plug.

GO TO 9.

9. CHECK FUNCTION OF IGNITION COIL-III

- 1. Reconnect the initial spark plugs.
- Crank engine for approximately 3 seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to <u>EM-16</u>, "Removal and Installation".

10. CHECK FUEL INJECTOR

- Turn ignition switch OFF.
- Remove fuel injector assembly.

Refer to EM-45, "Removal and Installation".

Keep fuel hose and all fuel injectors connected to fuel tube.

- 3. Reconnect all fuel injector harness connectors.
- 4. Disconnect all ignition coil harness connectors.
- 5. Turn ignition switch ON.

Check that fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 11.

NG (Drips.)>>Replace the fuel injector(s) from which fuel is dripping.

Revision: July 2009 EC-224 2010 Xterra

[VQ40DE] < COMPONENT DIAGNOSIS >

11. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

Trouble is fixed.>>INSPECTION END Trouble is not fixed.>>Replace three way catalyst (manifold).

EC

 D

Е

F

Н

J

K

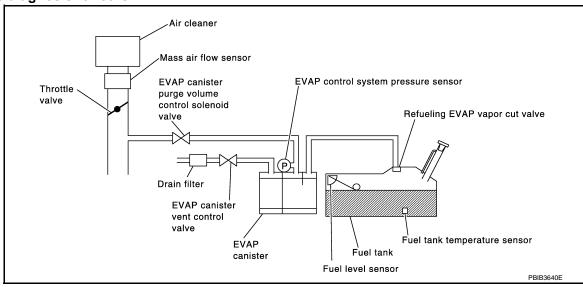
M

L

Ν

0

Р


INFOID:000000005267518

P0441 EVAP CONTROL SYSTEM

System Description

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123, P2127, P2128 or P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0441 0441	EVAP control system in- correct purge flow	EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube Blocked rubber tube Cracked EVAP canister EVAP canister purge volume control solenoid valve circuit Accelerator pedal position sensor Blocked purge port EVAP canister vent control valve Drain filter

DTC Confirmation Procedure

INFOID:0000000005267520

INFOID:000000005267519

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.

Revision: July 2009 EC-226 2010 Xterra

< COMPONENT DIAGNOSIS >

IVQ40DE1

Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

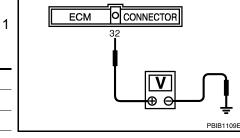
WITH CONSULT-III

- Start engine and warm it up to normal operating temperature. 1.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CON-SULT-III.
- Touch "START" 7.
 - If "COMPLETED" is displayed, go to step 7.
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-III screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
VHCL SPEED SE	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.3 - 9.0 msec
COOLAN TEMP/S	More than 0 °C (32 °F)

If "TESTING" does not change for a long time, retry from step 2.

9. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-227, "Diagnosis Procedure".


Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- Start engine (TCS switch or VDC switch OFF) and warm it up to normal operating temperature.
- Turn ignition switch OFF, wait at least 10 seconds.
- 4. Turn ignition switch ON.
- Turn ignition switch OFF, wait at least 10 seconds. 5.
- Start engine and wait at least 70 seconds.
- Set voltmeter probes to ECM terminals 32 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- 9. Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

- 10. Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 11. If NG, go to EC-227, "Diagnosis Procedure".

Diagnosis Procedure

1.CHECK EVAP CANISTER

EC-227 2010 Xterra Revision: July 2009

EC

Α

D

Е

INFOID:0000000005267521

K

M

N

Р

INFOID:0000000005267522

[VQ40DE]

< COMPONENT DIAGNOSIS >

1. Turn ignition switch OFF.

2. Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-III)>>GO TO 2.

OK (Without CONSULT-III)>>GO TO 3.

NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

(P) With CONSULT-III

- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-39, "Description".
- 2. Start engine and let it idle.
- Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-III screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	Vacuum
100%	Should exist.
0%	Should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

3. CHECK PURGE FLOW

⋈ Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine.
- 3. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-39, "Description".
- Start engine and let it idle.

Do not depress accelerator pedal even slightly.

5. Check vacuum gauge indication before 60 seconds pass after starting engine.

Vacuum should not exist.

6. Rev engine up to 2,000 rpm after 100 seconds pass after starting engine.

Vacuum should exist.

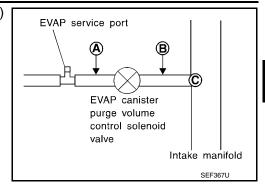
OK or NG

OK >> GO TO 7. NG >> GO TO 4.

f 4.CHECK EVAP PURGE LINE

- 1. Turn ignition switch OFF.
- Check EVAP purge line for improper connection or disconnection. Refer to EC-39, "Description".

OK or NG


OK >> GO TO 5. NG >> Repair it.

5.CHECK EVAP PURGE HOSE AND PURGE PORT

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Disconnect purge hoses connected to EVAP service port (A) and EVAP canister purge volume control solenoid valve (B).
- Blow air into each hose and EVAP purge port (C).

Check that air flows freely.

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> Repair or clean hoses and/or purge port.

6.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-245, "Component Inspection".

OK or NG

OK

NG >> Replace EVAP canister purge volume control solenoid valve.

8.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to EC-258, "DTC Confirmation Procedure" for DTC P0452, EC-262, "DTC Confirmation Procedure" for P0453.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10.CHECK RUBBER TUBE FOR CLOGGING

Disconnect rubber tube connected to EVAP canister vent control valve.

EC

Α

D

Е

N

EC-229

Revision: July 2009

< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

11. CHECK DRAIN FILTER

Refer to EC-230, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace drain filter.

12. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace EVAP canister vent control valve.

13. CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks.

Refer to EC-39, "Description".

OK or NG

OK >> GO TO 14.

NG >> Replace it.

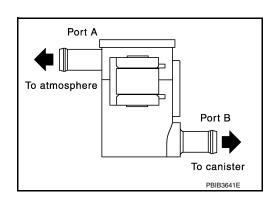
14. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 15.

15. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

Component Inspection

INFOID:0000000005267523

DRAIN FILTER

- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- 5. Block port B.
- 6. Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

[VQ40DE]

INFOID:000000005267524

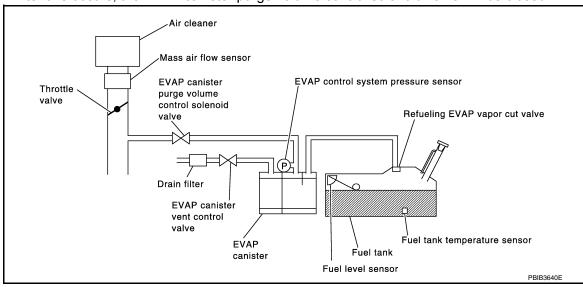
Α

EC

D

Е

Н


P0442 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following Vacuum test conditions.

The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve will then be opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0442 0442	EVAP control system small leak detected (negative pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged Drain filter EVAP canister is saturated with water EVAP control system pressure sensor Fuel level sensor and the circuit Refueling EVAP vapor cut valve ORVR system leaks

CALITION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may illuminate.
- If the fuel filler cap is not tightened properly, the MIL may illuminate.
- Use only a genuine NISSAN rubber tube as a replacement.

Revision: July 2009 EC-231 2010 Xterra

IVQ40DE

DTC Confirmation Procedure

INFOID:0000000005267525

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-III

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F)

INT/A TEMP SE: 0 - 30°C (32 - 86°F)

5. Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instructions displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-III screen, go to EC-14, "Basic Inspection".

6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-232, "Diagnosis Procedure".

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

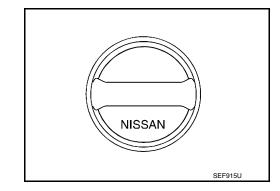
NOTE:

Be sure to read the explanation of Driving Pattern ON EC-47 before driving vehicle.

- 1. Start engine.
- 2. Drive vehicle according to Driving Pattern, <u>EC-47</u>.
- 3. Stop vehicle.
- Turn ignition switch OFF, wait at least 10 seconds.
- 5. Turn ignition switch ON.
- 6. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 7. Select Service \$07 with GST.
- If P0442 is displayed on the screen, go to <u>EC-232</u>. "<u>Diagnosis Procedure</u>".
- If P0441 is displayed on the screen, go to EC-227, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267526


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

< COMPONENT DIAGNOSIS >

[VQ40DE]

$\overline{2}$.check fuel filler cap installation

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3.CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

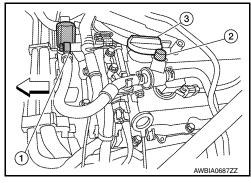
NG >> GO TO 4.

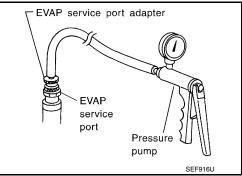
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-237, "Component Inspection".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port (2) securely. For the location of EVAP service port, refer to <u>EC-39, "Description"</u>.

: EVAP canister purge volume control solenoid valve (view with intake air duct removed)

3. : Oil filler cap<□ : Front

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 6. Without CONSULT-III>>GO TO 7.

6. CHECK FOR EVAP LEAK

With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.
 CAUTION:

Never use compressed air or a high pressure pump.

EC

С

D

Е

F

G

Н

ı

J.

Κ

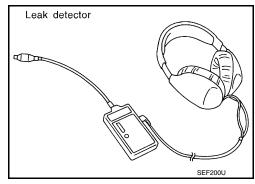
ı

M

Ν

0

Р


Revision: July 2009 EC-233 2010 Xterra

- Never exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-39</u>, "<u>Description</u>".

OK or NG

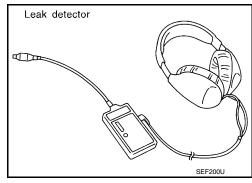
OK >> GO TO 8.

NG >> Repair or replace.

7.CHECK FOR EVAP LEAK

₩ Without CONSULT-III

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve (3). The valve will close. (Continue to apply 12 volts until the end of test.)
- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- EVAP canister (4)
- Drain filter (5)
- <□: Vehicle front
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- · Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-39</u>, "<u>Description</u>".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK DRAIN FILTER

Refer to .

OK or NG

OK >> GO TO 9.

NG >> Replace drain filter.

9.check evap canister vent control valve

Check the following.

- EVAP canister vent control valve is installed properly. Refer to EC-503, "Removal and Installation".
- EVAP canister vent control valve.

 Performed Policy Community Community

Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 10.

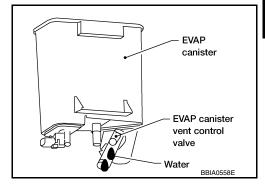
NG >> Repair or replace EVAP canister vent control valve and O-ring.

Revision: July 2009 EC-234 2010 Xterra

< COMPONENT DIAGNOSIS >

IVQ40DE1

10.check if evap canister is saturated with water


- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11.

No (With CONSULT-III)>>GO TO 13.

No (Without CONSULT-III)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK (With CONSULT-III)>>GO TO 13.

OK (Without CONSULT-III)>>GO TO 14.

NG >> GO TO 12.

12.detect malfunctioning part

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and drain filter for clogging or poor connection

>> Repair hose or replace EVAP canister.

13.check evap canister purge volume control solenoid valve operation

(P) With CONSULT-III

- 1. Disconnect vacuum hose from EVAP canister purge volume control solenoid valve at EVAP service port.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 17.

NG >> GO TO 15.

14.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose from EVAP canister purge volume control solenoid valve at EVAP service port.

EC-235

- 4. Start engine and let it idle for at least 80 seconds.
- Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16.

NG >> GO TO 15.

15. CHECK VACUUM HOSE

Revision: July 2009

Check vacuum hoses for clogging or disconnection. Refer to EC-39. "Description".

EC

Α

F

Н

M

N

Р

< COMPONENT DIAGNOSIS >

[VQ40DE]

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16.check evap canister purge volume control solenoid valve

Refer to EC-245, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-195, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-39, "Description".

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

21. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kinks, looseness and improper connection. For location, refer to EC-417, "System Description".

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

22. CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kinks, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hose, tube or filler neck tube.

23.CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-420, "Component Inspection".

OK or NG

OK >> GO TO 24

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to MWI-33, "Component Inspection".

OK or NG

Revision: July 2009 EC-236 2010 Xterra

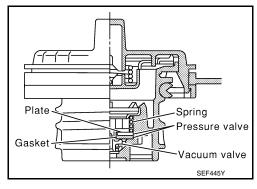
< COMPONENT DIAGNOSIS > [VQ40DE]

EC-237

OK >> GO TO 25.

NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT


Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

1. Wipe clean valve housing.

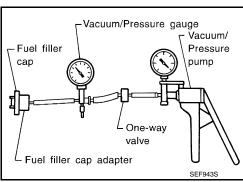
2. Check valve opening pressure and vacuum.

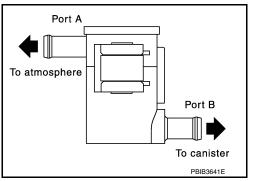
Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)

Vacuum: -6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm²,

-0.87 to -0.48 psi)


If out of specification, replace fuel filler cap as an assembly.


CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may illuminate.

DRAIN FILTER

- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- Block port B.
- 6. Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

EC

D

Е

F

INFOID:000000005267527

Α

G

Н

Κ

Р

Ν

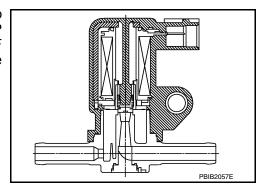
< COMPONENT DIAGNOSIS >

[VQ40DE]

P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Description INFOID:000000005267528

SYSTEM DESCRIPTION


Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*1			
Throttle position sensor	Throttle position		EVAP canister purge vol- ume control solenoid valve	
Accelerator pedal position sensor	Accelerator pedal position			
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Wheel sensor	Vehicle speed*2			

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve is used to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

On Board Diagnosis Logic

INFOID:000000005267529

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0443 0443	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve Drain filter EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

^{*2:} This signal is sent to the ECM through CAN communication line.

< COMPONENT DIAGNOSIS > [VQ40DE]

DTC Confirmation Procedure

INFOID:0000000005267530

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

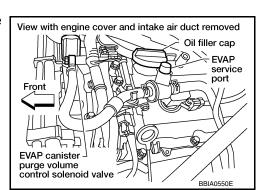
TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds and then turn ON.
- 5. Select "PURG VOL CN/V P1444" (for DTC P0443) of "EVAPORATIVE SYSTEM" in "DTC WORK SUP-PORT" mode with CONSULT-III.
- 6. Touch "START".
- 7. Start engine and let it idle until "TESTING" on CONSULT-III changes to "COMPLETED". (It will take approximately 10 seconds.)

 If "TESTING" is not displayed after 5 minutes, retry from step 2.
- 8. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-239. "Diagnosis Procedure".


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and let it idle for at least 20 seconds.
- Select Service \$07 with GST.
- If 1st trip DTC is detected, go to <u>EC-239</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

1.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
 - EVAP canister purge volume control solenoid valve (view with intake air duct removed)
 - 2 : EVAP service port3. : Oil filler cap
 - <□ : Front
- Turn ignition switch ON.

EC

Α

D

Е

F

Н

.1

K

INFOID:0000000005267531

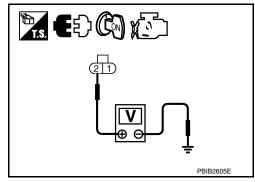
M

Ν

 \cap

Р

< COMPONENT DIAGNOSIS >


[VQ40DE]

 Check voltage between EVAP canister purge volume control solenoid valve terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- · Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair harness or connectors.

3. Check evap canister purge volume control solenoid valve output signal circuit for open and short

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Replace EVAP control system pressure sensor.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> Replace EVAP control system pressure sensor.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- 1. Turn ignition switch OFF.
- Reconnect harness connectors disconnected.
- Start engine
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE **IVQ40DE1** < COMPONENT DIAGNOSIS > OK >> GO TO 8. NG >> GO TO 7. Α 7 .CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EC-242. "Component Inspection". EC OK or NG OK >> GO TO 8. NG >> Replace EVAP canister purge volume control solenoid valve. 8.CHECK RUBBER TUBE FOR CLOGGING Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. D OK or NG OK >> GO TO 9. Е NG >> Clean the rubber tube using an air blower. 9. CHECK DRAIN FILTER Refer to EC-237, "Component Inspection". F OK or NG OK >> GO TO 10. NG >> Replace drain filter. 10.check evap canister vent control valve Refer to EC-248, "Component Inspection". Н OK or NG OK >> GO TO 11. NG >> Replace EVAP canister vent control valve. 11. CHECK IF EVAP CANISTER IS SATURATED WITH WATER Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached. 2. Check if water will drain from the EVAP canister. Yes or No EVAP Yes >> GO TO 12. K canister >> GO TO 14. No **EVAP** canister vent control valve M Water BBIA0558E 12. CHECK EVAP CANISTER Ν Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor

attached.

0

Р

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and drain filter for clogging or poor connection

>> Repair hose or replace EVAP canister.

EC-241 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >

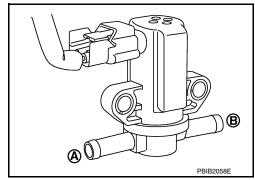
[VQ40DE]

14. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

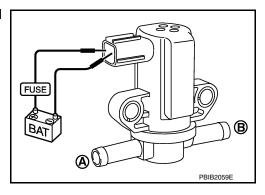
Component Inspection

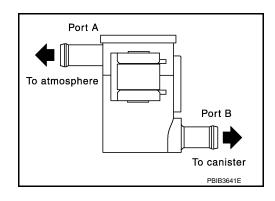

INFOID:000000005267532

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between (A) and (B)
100%	Yes
0%	No


Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	Yes
No supply	No

DRAIN FILTER

- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- 5. Block port B.
- 6. Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

< COMPONENT DIAGNOSIS >

[VQ40DE]

P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE**

Description INFOID:000000005267533

EC

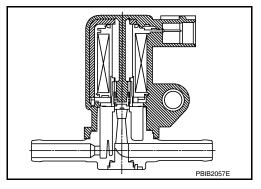
D

Е

Н

Α

SYSTEM DESCRIPTION


Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature	EVAP canister purge flow control ume control solenoid	
Battery	Battery voltage*1		
Throttle position sensor	Throttle position		EVAP canister purge vol- ume control solenoid valve
Accelerator pedal position sensor	Accelerator pedal position		and control colonela valve
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Wheel sensor	Vehicle speed*2		

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

Possible cause

EVAP canister purge volume control so-

lenoid valve

On Board Diagnosis Logic

shorted

Trouble diagnosis name

control solenoid valve circuit

DTC No.

0445

DICINO.	Trouble diagnosis name	Dio detecting condition	i ossible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445	EVAP canister purge volume	An excessively high voltage signal is sent	Harness or connectors (The solenoid valve circuit is shorted.)

to ECM through the valve

DTC detecting condition

EC-243 Revision: July 2009 2010 Xterra

Ν INFOID:0000000005267534

M

Р

^{*2:} This signal is sent to the ECM through CAN communication line.

< COMPONENT DIAGNOSIS >

[VQ40DE]

DTC Confirmation Procedure

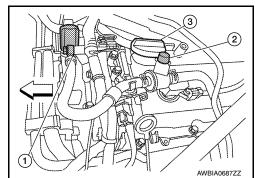
INFOID:000000005267535

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

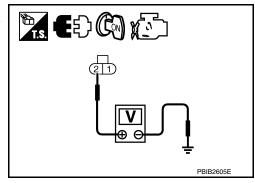

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

- 1. Start engine and let it idle for at least 13 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-244, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267536

- 1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT
- 1. Turn ignition switch OFF.
- Disconnect EVAP canister purge volume control solenoid valve harness connector.
 - EVAP canister purge volume control solenoid valve (view with intake air duct removed)
 - 2 : EVAP service port3. : Oil filler cap
 - <□ : Front
- 3. Turn ignition switch ON.



 Check voltage between EVAP canister purge volume control solenoid valve terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair harness or connectors.
- 3.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

< COMPONENT DIAGNOSIS >

[VQ40DE]

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-III)>>GO TO 4.

OK (Without CONSULT-III)>>GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-245, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

6. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

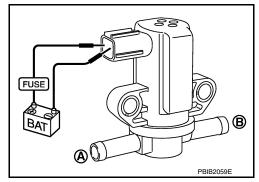
>> INSPECTION END


Component Inspection

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between (A) and (B)
100%	Yes
0%	No

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	Yes
No supply	No

EC

Α

Е

D

F

G

Н

INFOID:0000000005267537

K

L

M

Ν

С

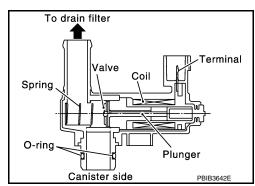
Р

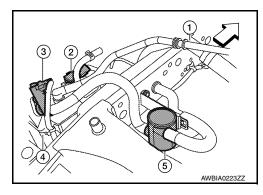
[VQ40DE]

INFOID:000000005267538

P0447 EVAP CANISTER VENT CONTROL VALVE

Component Description


The EVAP canister vent control valve (3) is located on the EVAP canister (4) and is used to seal the canister vent.


This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System diagnosis.

- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- Drain filter (5)
- <□: Vehicle front

On Board Diagnosis Logic

INFOID:0000000005267539

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve Drain filter

DTC Confirmation Procedure

INFOID:0000000005267540

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

- 1. Start engine and wait at least 8 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-246, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267541

1. INSPECTION START

Do you have CONSULT-III?

Yes or No

Yes >> GO TO 2.

Revision: July 2009 EC-246 2010 Xterra

P0447 EVAP CANISTER VENT CONTROL VALVE

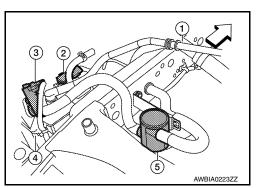
< COMPONENT DIAGNOSIS >

No >> GO TO 3.

2.CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

(P) With CONSULT-III

- Turn ignition switch OFF and then ON.
- Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-III.
- Touch "ON/OFF" on CONSULT-III screen.
- 4. Check for operating sound of the valve.

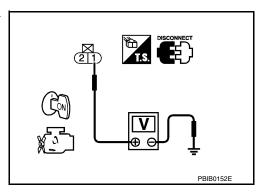

Clicking noise should be heard.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve (3) harness connector.
- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- EVAP canister (4)
- Drain filter (5)
- ⟨□: Vehicle front
- Turn ignition switch ON.



Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E41, C1
- Harness for open or short between EVAP canister vent control valve and IPDM E/R

>> Repair harness or connectors.

${f 5}.$ CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- 3. Check harness continuity between ECM terminal 117 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

Revision: July 2009

EC-247

EC

Α

IVQ40DE1

D

Е

F

Н

M

Ν

0

Р

2010 Xterra

P0447 EVAP CANISTER VENT CONTROL VALVE

< COMPONENT DIAGNOSIS >

[VQ40DE]

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- Harness for open or short between EVAP canister vent control valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK DRAIN FILTER

Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace drain filter.

9. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 10.

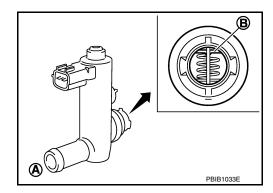
NG >> Replace EVAP canister vent control valve.

10. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection


INFOID:0000000005267542

EVAP CANISTER VENT CONTROL VALVE

- (P) With CONSULT-III
- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for rust. If NG, replace EVAP canister vent control valve. If OK, go to next step.
- 3. Reconnect harness connectors disconnected.
- Turn ignition switch ON.
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

 Make sure that new O-ring is installed properly.

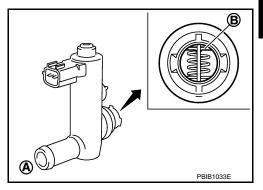
Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes

Operation takes less than 1 second.

If NG, go to next step.

- 7. Clean the air passage (portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- Perform step 6 again.

P0447 EVAP CANISTER VENT CONTROL VALVE


< COMPONENT DIAGNOSIS >

[VQ40DE]

9. If NG, replace EVAP canister vent control valve.

Without CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.

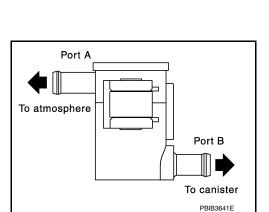
FUSE

BATTERY

3. Check air passage continuity and operation delay time under the following conditions.

Make sure that new O-ring is installed properly.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
OFF	Yes


Operation takes less than 1 second.

If NG, go to next step.

- 4. Clean the air passage (portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.
- 6. If NG, replace EVAP canister vent control valve.

DRAIN FILTER

- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- 5. Block port B.
- 6. Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

EC

Α

D

C

Е

F

G

Н

PBIB1034E

K

L

M

Ν

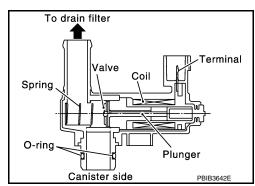
Р

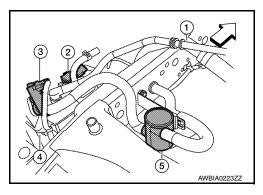
[VQ40DE]

INFOID:000000005267543

P0448 EVAP CANISTER VENT CONTROL VALVE

Component Description


The EVAP canister vent control valve (3) is located on the EVAP canister (4) and is used to seal the canister vent.


This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System diagnosis.

- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- Drain filter (5)
- <□: Vehicle front

On Board Diagnosis Logic

INFOID:0000000005267544

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0448 0448	EVAP canister vent control valve close	EVAP canister vent control valve remains closed under specified driving conditions.	EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Drain filter EVAP canister is saturated with water

DTC Confirmation Procedure

INFOID:0000000005267545

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

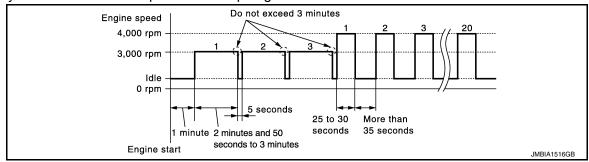
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 4. Start engine and let it idle for at least 1 minute.
- Repeat next procedures 3 times.

Revision: July 2009 EC-250 2010 Xterra

P0448 EVAP CANISTER VENT CONTROL VALVE


< COMPONENT DIAGNOSIS >

[VQ40DE]

Increase the engine speed up to between 3,000 and 3,500 rpm and maintain that speed for 2 minutes and 50 seconds to 3 minutes.

Do not exceed 3 minutes.

- Fully released accelerator pedal and keep engine idle for about 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-251, "Diagnosis Procedure". If 1st trip DTC is not detected, go to the next step.
- Repeat next procedure 20 times.
- Quickly increase the engine speed up to between 4,000 and 4,500 rpm or more and maintain that speed for 25 to 30 seconds.
- Fully released accelerator pedal and keep engine idle for at least 35 seconds.

- Check 1st trip DTC.
- 10. If 1st trip DTC is detected, go to EC-251, "Diagnosis Procedure".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267546

1. CHECK RUBBER TUBE

- Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve (3).
- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- EVAP canister (4)
- Drain filter (5)
- : Vehicle front
- Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower. 2.CHECK DRAIN FILTER

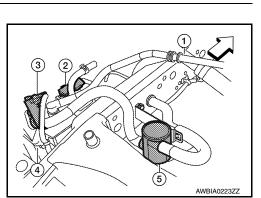
Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace drain filter.

3.CHECK EVAP CANISTER VENT CONTROL VALVE


Refer to EC-252, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace EVAP canister vent control valve.

 $oldsymbol{4}$.CHECK IF EVAP CANISTER SATURATED IS WITH WATER

EC

Α

D Е

Н

K

M

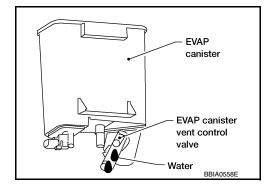
Ν

2010 Xterra

Revision: July 2009

EC-251

P0448 EVAP CANISTER VENT CONTROL VALVE


< COMPONENT DIAGNOSIS >

[VQ40DE]

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. No >> GO TO 7.

5. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and drain filter for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

f 8.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

INFOID:0000000005267547

EVAP CANISTER VENT CONTROL VALVE

- (P) With CONSULT-III
- 1. Remove EVAP canister vent control valve from EVAP canister.

P0448 EVAP CANISTER VENT CONTROL VALVE

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

C

D

Е

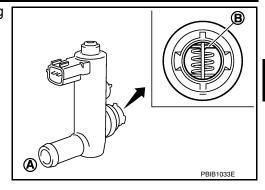
F

Н

K

M

Ν


0

Р

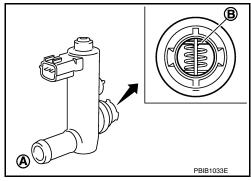
Check portion of B EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time. Make sure that new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes


Operation takes less than 1 second.

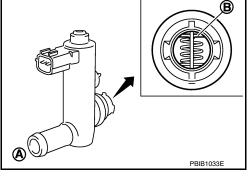
If NG, go to next step.

- 7. Clean the air passage (portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.
- 9. If NG, replace EVAP canister vent control valve.

Without CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion B of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

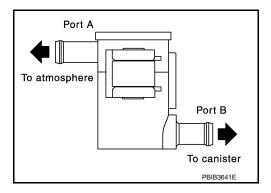

Make sure that new O-ring is installed properly.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

If NG, go to next step.

- 4. Clean the air passage (portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.
- 6. If NG, replace EVAP canister vent control valve.


P0448 EVAP CANISTER VENT CONTROL VALVE

< COMPONENT DIAGNOSIS >

[VQ40DE]

DRAIN FILTER

- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- 5. Block port B.
- 6. Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

[VQ40DE]

INFOID:000000005267548

Α

EC

C

D

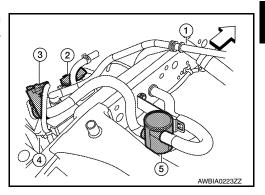
Е

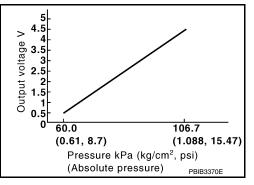
F

Н

K

Ν


INFOID:0000000005267549


P0451 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (2) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- EVAP canister vent control valve (3)
- EVAP canister (4)
- Drain filter (5)
- ← : Vehicle front

On Board Diagnosis Logic

If DTC P0451 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-304</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0451 0451	EVAP control system pressure sensor performance	ECM detects a sloshing signal from the EVAP control system pressure sensor	Harness or connectors EVAP control system pressure sensor

DTC Confirmation Procedure

- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- c. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and wait at least 40 seconds.

NOTE:

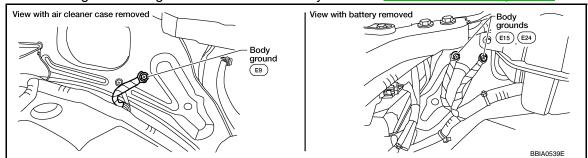
Do not depress accelerator pedal even slightly.

- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-255, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267551

1. CHECK GROUND CONNECTIONS


Turn ignition switch OFF.

Revision: July 2009 EC-255 2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK EVPA CONTROL SYSTEM PRESSURE SENSOR CONNECTOR FOR WATER

- 1. Disconnect EVAP control system pressure sensor (2) harness connector.
- Fuel filler pipe (1)
- EVAP canister vent control valve (3)
- EVAP canister (4)
- Drain filter (5)
- <: Vehicle front
- 2. Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-256, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace EVAP control system pressure sensor.

4. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

INFOID:0000000005267552

EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector. **Do not reuse the O-ring, replace it with a new one.**
- 2. Install a vacuum pump to EVAP control system pressure sensor.

< COMPONENT DIAGNOSIS >

[VQ40DE]

3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (kg/cm ² psi)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-0.272, -3.87)	2.1 to 2.5V lower than above value	

EVAP control system 32 PBIB1173E

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Never apply below -93.3 kPa (-0.952 kg/cm², -13.53 psi) or pressure over 101.3 kPa (1.033 kg/cm², 14.69 psi).
- 4. If NG, replace EVAP control system pressure sensor.

Α

EC

C

D

Ε

F

G

Н

J

K

L

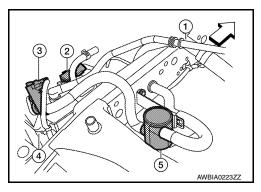
M

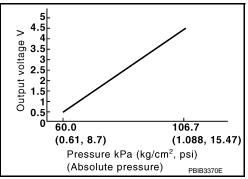
Ν

0

Р

[VQ40DE]


INFOID:000000005267553


P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (2) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- EVAP canister vent control valve (3)
- EVAP canister (4)
- Drain filter (5)
- ← ∵: Vehicle front

On Board Diagnosis Logic

INFOID:0000000005267554

If DTC P0452 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-304</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

DTC Confirmation Procedure

INFOID:0000000005267555

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds and then turn ON.
- 5. Select "DATA MONITOR" mode with CONSULT-III.
- 6. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 7. Start engine and wait at least 20 seconds.
- 8. Check 1st trip DTC.

Revision: July 2009 EC-258

< COMPONENT DIAGNOSIS >

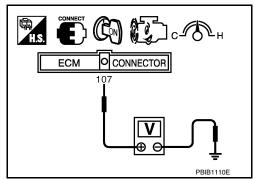
[VQ40DE]

INFOID:000000005267556

Α

EC

D

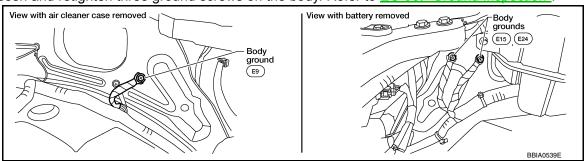

Е

Н

If 1st trip DTC is detected, go to EC-259, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and wait at least 20 seconds.
- Select Service \$07 with GST. If 1st trip DTC is detected, go to EC-259, "Diagnosis Procedure".



Diagnosis Procedure

CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

- Disconnect EVAP control system pressure sensor (2) harness connector.
- Fuel filler pipe (1)
- EVAP canister vent control valve (3)
- EVAP canister (4)
- Drain filter (5)
- ∀: Vehicle front
- Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch ON.

K

M

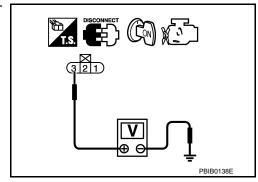
Ν

AWBIA0223ZZ

Р

EC-259 Revision: July 2009 2010 Xterra

< COMPONENT DIAGNOSIS >


[VQ40DE]

Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- · Harness connectors E5, F14
- · Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- Harness connectors E5, F14
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- · Harness connectors E5, F14

Revision: July 2009 EC-260 2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

· Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK >> GO TO 10.

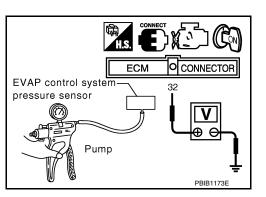
NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection


EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister. **Do not reuse the O-ring, replace it with a new one.**
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (kg/cm², psi)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-0.272, -3.87)	2.1 to 2.5V lower than above value	

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Never apply below -93.3 kPa (-0.952 kg/cm², -13.53 psi) or pressure over 101.3 kPa (1.033 kg/cm², 14.59 psi).
- 4. If NG, replace EVAP control system pressure sensor.

EC

Α

D

Е

F

INFOID:0000000005267557

G

Н

J

K

.

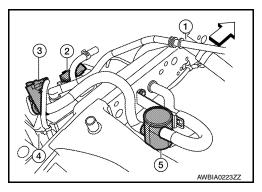
M

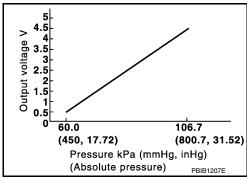
Ν

0

Р

[VQ40DE]


INFOID:000000005267558


P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (2) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- EVAP canister vent control valve (3)
- EVAP canister (4)
- Drain filter (5)
- ← ∵: Vehicle front

On Board Diagnosis Logic

INFOID:0000000005267559

If DTC P0453 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-304</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister drain filter Rubber hose from EVAP canister vent control valve to vehicle frame

DTC Confirmation Procedure

INFOID:0000000005267560

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

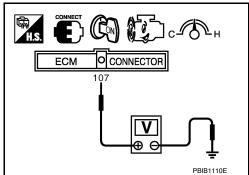
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds and then turn ON.

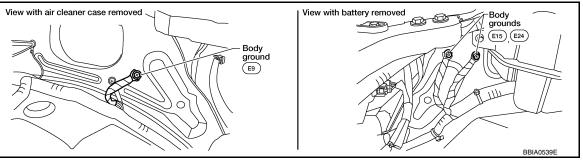

Revision: July 2009 EC-262 2010 Xterra

< COMPONENT DIAGNOSIS >

- Select "DATA MONITOR" mode with CONSULT-III.
- 6. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
- 8. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-263, "Diagnosis Procedure".

With GST

- Start engine and warm it up to normal operating temperature.
- Check that voltage between ECM terminal 107 (Fuel tank tem-2. perature sensor signal) and ground is less than 4.2V.
- Turn ignition switch OFF and wait at least 10 seconds. 3.
- Turn ignition switch ON. 4.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and wait at least 20 seconds.
- Select Service \$07 with GST. 7. If 1st trip DTC is detected, go to EC-263, "Diagnosis Procedure".



Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

- Disconnect EVAP control system pressure sensor (2) harness connector.
- Fuel filler pipe (1)
- EVAP canister vent control valve (3)
- EVAP canister (4)
- Drain filter (5)
- ⟨□: Vehicle front
- Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch ON.

INFOID:0000000005267561

[VQ40DE]

Α

EC

D

Е

Н

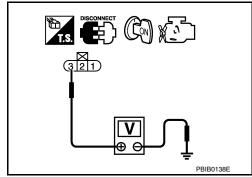
M

Ν

AWBIA0223ZZ

EC-263 Revision: July 2009 2010 Xterra

< COMPONENT DIAGNOSIS >


[VQ40DE]

Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- · Harness connectors E5, F14
- · Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- Harness connectors E5, F14
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- · Harness connectors E5, F14

Revision: July 2009 EC-264 2010 Xterra

< COMPONENT DIAGNOSIS >

Harness for open or short between EVAP control system pressure sensor and ECM

[VQ40DE]

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE

Disconnect rubber tube connected to EVAP canister vent control valve.

Check the rubber tube for clogging, vent and kinked.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower, repair or replace rubber tube.

10.check evap canister vent control valve

Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-266. "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP control system pressure sensor.

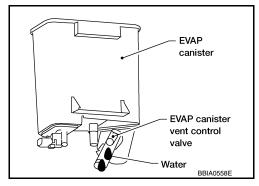
12. CHECK DRAIN FILTER

Refer to EC-266. "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace drain filter.


13. CHECK IF EVAP CANISTER IS SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 14.

>> GO TO 16. No

14. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and drain filter for clogging or poor connection

Α

EC

D

Е

K

Р

EC-265 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >

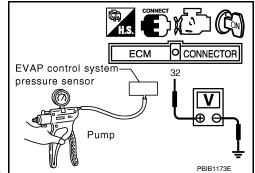
[VQ40DE]

>> Repair hose or replace EVAP canister.

16. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

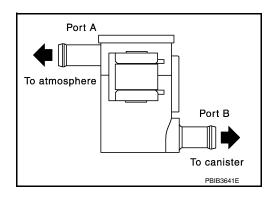

Component Inspection

INFOID:0000000005267562

EVAP CONTROL SYSTEM PRESSURE SENSOR

- Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister.
 Always replace O-ring with a new one.
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (kg/cm², psi)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-0.272, -3.87)	2.1 to 2.5V lower than above value	



CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-0.952 kg/cm², -13.53 psi) or pressure over 101.3 kPa (1.033 kg/cm², 14.59 psi).
- 4. If NG, replace EVAP control system pressure sensor.

DRAIN FILTER

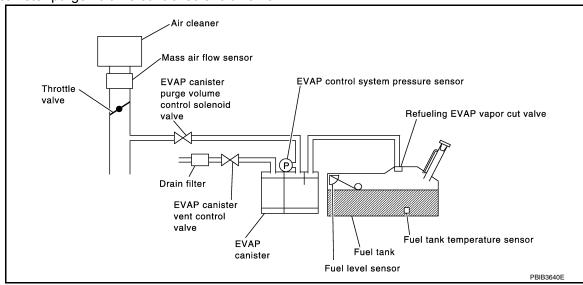
- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- 5. Block port B.
- 6. Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

[VQ40DE]

P0455 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

INFOID:0000000005267563


Α

EC

D

Е

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling EVAP vapor cut valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may illuminate.
- If the fuel filler cap is not tightened properly, the MIL may illuminate.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

INFOID:0000000005267564

Р

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure. NOTE:

Revision: July 2009 EC-267 2010 Xterra

[VQ40DE]

- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full and vehicle is placed on flat level surface.
- · Open engine hood before conducting the following procedures.

(P) WITH CONSULT-III

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instructions displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-III screen, go to EC-14, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-268. "Diagnosis Procedure".

If P0442 is displayed, perform Diagnostic Procedure for DTC P0442 EC-232, "Diagnosis Procedure".

® WITH GST

NOTE:

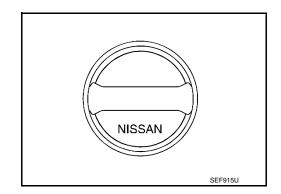
Be sure to read the explanation of EC-47, "Emission-related Diagnostic Information" before driving vehicle.

- Start engine.
- 2. Drive vehicle according to <a>EC-47, "Emission-related Diagnostic Information".
- Stop vehicle.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 5. Select Service \$07 with GST.
 - If P0455 is displayed on the screen, go to EC-268, "Diagnosis Procedure".
 - If P0442 is displayed on the screen, go to Diagnostic Procedure, for DTC P0442, EC-232.
 - If P0441 is displayed on the screen, go to Diagnostic Procedure for DTC P0441, EC-227.

Diagnosis Procedure

INFOID:0000000005267565

2010 Xterra


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

< COMPONENT DIAGNOSIS >

$\overline{2}$.CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3.CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-39, "Description".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

5. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-39, "Description".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6.CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 7.

7. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

• EVAP canister vent control valve is installed properly.

Refer to EC-503, "Removal and Installation".

• EVAP canister vent control valve.

Refer to EC-503, "Component Inspection".

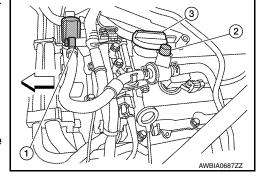
OK or NG

OK >> GO TO 8.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port (2) securely.


: EVAP canister purge volume control solenoid valve (view with intake air duct removed)

3 : Oil filler cap

<□ : Front

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

EC

[VQ40DE]

D

Е

Г

G

Н

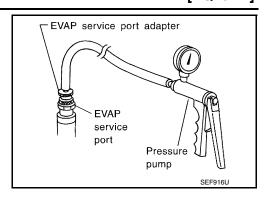
ı

J

K

L

IVI


N

0

Р

Ρ

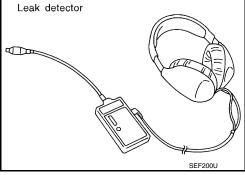
Revision: July 2009 EC-269 2010 Xterra

With CONSULT-III>>GO TO 9. Without CONSULT-III>>GO TO 10.

9. CHECK FOR EVAP LEAK

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

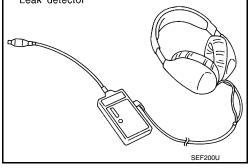

CAUTION:

- · Never use compressed air or a high pressure pump.
- Never exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-39, "Description".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.


10. CHECK FOR EVAP LEAK

⋈ Without CONSULT-III

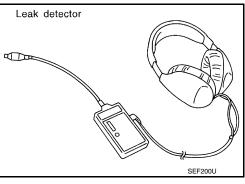
- Turn ignition switch OFF.
- Apply 12 volts DC to EVAP canister vent control valve (3). The valve will close. (Continue to apply 12 volts until the end of test.)
- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- EVAP canister (4)
- Drain filter (5)
- ⟨□: Vehicle front
- 3. Pressurize the EVAP line using pressure pump with 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi), then remove pump and EVAP service port adapter.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

AWBIA0223ZZ

< COMPONENT DIAGNOSIS >


[VQ40DE]

Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-39, "Description".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine. 2.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

12.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(R) Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15.

NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-39, "Description".

OK or NG

OK (With CONSULT-III)>>GO TO 14.

OK (Without CONSULT-III)>>GO TO 15.

>> Repair or reconnect the hose.

14.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16.

NG >> GO TO 15.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-245, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

EC-271 Revision: July 2009

Α

EC

C

D

Е

Н

Р

2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-195, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to <u>EC-417</u>, "System Description".

OK or NG

OK >> GO TO 19.

NG >> Repair or replace hoses and tubes.

19. CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 20.

NG >> Repair or replace hose, tube or filler neck tube.

20. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-420, "Component Inspection".

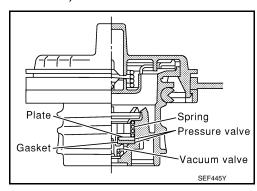
OK or NG

OK >> GO TO 21.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

21. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

Component Inspection

INFOID:0000000005267566

FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

1. Wipe clean valve housing.

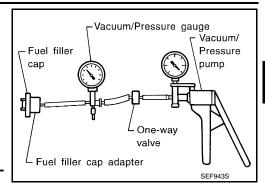
< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)


Vacuum: −6.0 to −3.3 kPa (−0.061 to −0.034 kg/cm²,

-0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

EC

Α

D

С

Е

F

Н

J

K

L

M

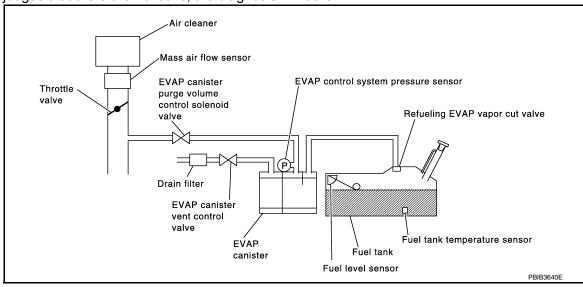
Ν

0

Р

INFOID:000000005267567

P0456 EVAP CONTROL SYSTEM


On Board Diagnosis Logic

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the negative pressure.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges that there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	EVAP system has a very small leak. EVAP system does not operate properly.	Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged EVAP canister is saturated with water EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may illuminate.
- If the fuel filler cap is not tightened properly, the MIL may illuminate.
- Use only a genuine NISSAN rubber tube as a replacement.

< COMPONENT DIAGNOSIS >

IVQ40DE1

DTC Confirmation Procedure

INFOID:0000000005267568

NOTE:

- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

- Open engine hood before conducting the following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Fuel is refilled or drained.
- EVAP component part/parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-III

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III. 1.
- Check the following conditions are met.

FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) **FUEL T/TMP SE: 0 - 35°C (32 - 95°F)** INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 5. Select "EVP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instructions displayed.

Check that "OK" is displayed.

If "NG" is displayed, refer to EC-276, "Diagnosis Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-III screen, go to EC-14, "Basic Inspection".
- Check that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

INFOID:0000000005267569

® WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Never start engine.
- Never exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).

0

EC-275 2010 Xterra Revision: July 2009

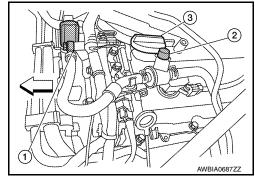
EC

Α

D

Е

K


M

Ν

Р

< COMPONENT DIAGNOSIS >

- Attach the EVAP service port adapter securely to the EVAP service port (2).
 - EVAP canister purge volume control solenoid valve (view with intake air duct removed)
 - Oil filler cap
 - <□ :Front

- 2. Set the pressure pump and a hose.
- Also set a vacuum gauge via 3-way connector and a hose.
- Turn ignition switch ON.
- 5. Connect GST and select Service \$08.
- 6. Using Service \$08 control the EVAP canister vent control valve (close).
- 7. Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (0.028 kg/cm², 0.39 psi) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (0.004 kg/cm², 0.06 psi). If NG, go to <u>EC-276, "Diagnosis Procedure"</u>.

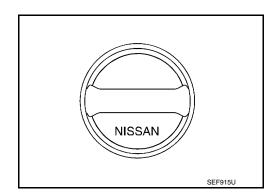
If OK, go to next step.

- Disconnect GST.
- Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Turn ignition switch ON.
- 12. Turn ignition switch OFF and wait at least 10 seconds.
- 13. Restart engine and let it idle for 90 seconds.
- 14. Keep engine speed at 2,000 rpm for 30 seconds.
- 15. Turn ignition switch OFF.

NOTE:

For more information, refer to GST instruction manual.

Diagnosis Procedure


1. CHECK FUEL FILLER CAP DESIGN

- Turn ignition switch OFF.
- Check for genuine NISSAN fuel filler cap design.

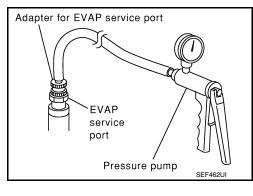
OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

INFOID:0000000005267570

2. CHECK FUEL FILLER CAP INSTALLATION


Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

EC-276 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Retighten until ratcheting sound is heard.

3.CHECK FUEL FILLER CAP FUNCTION

Α

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

D

Е

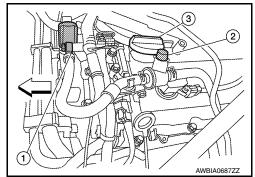
Н

EC

Refer to EC-237, "Component Inspection".

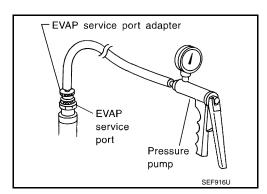
OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port (2) securely. For the location of EVAP service port, refer to <u>EC-39</u>, "<u>Description</u>".


: EVAP canister purge volume control solenoid valve (view with intake air duct removed)

3 : Oil filler cap <□ : Front

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 6. Without CONSULT-III>>GO TO 7.

6. CHECK FOR EVAP LEAK

(P) With CONSULT-III

1. Turn ignition switch ON.

- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Never exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

M

Р

Ν

Revision: July 2009 EC-277 2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

AWBIA022377

Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-39, "Description".

OK or NG

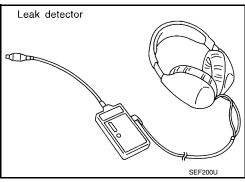
OK >> GO TO 8.

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

⋈ Without CONSULT-III

- Turn ignition switch OFF.
- Apply 12 volts DC to EVAP canister vent control valve (3). The valve will close. (Continue to apply 12 volts until the end of test.)
- Fuel filler pipe (1)
- EVAP control system pressure sensor (2)
- EVAP canister (4)
- Drain filter (5)
- 3. Pressurize the EVAP line using pressure pump with 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi), then remove pump and EVAP service port adapter.


CAUTION:

- · Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-39, "Description".

>> GO TO 8. OK

>> Repair or replace. NG

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to EC-503, "Removal and Installation".
- · EVAP canister vent control valve. Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 9.

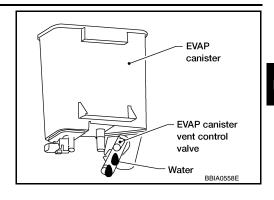
NG >> Repair or replace EVAP canister vent control valve and O-ring.

9.CHECK IF EVAP CANISTER IS SATURATED WITH WATER

Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

< COMPONENT DIAGNOSIS >

[VQ40DE]


Does water drain from the EVAP canister?

Yes or No

>> GO TO 10. Yes

No (With CONSULT-III)>>GO TO 12.

No (Without CONSULT-III)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK (With CONSULT-III)>>GO TO 12.

OK (Without CONSULT-III)>>GO TO 13.

>> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12.check evap canister purge volume control solenoid valve operation

(P) With CONSULT-III

- Disconnect vacuum hose connected to EVAP service port and EVAP canister purge volume control solenoid valve from EVAP canister purge control solenoid valve.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16.

NG >> GO TO 14.

13.check evap canister purge volume control solenoid valve operation

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose connected to EVAP service port and EVAP canister purge volume control solenoid valve from EVAP canister purge control solenoid valve.
- Start engine and let it idle for at least 80 seconds.
- Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-39, "Description".

OK or NG

OK >> GO TO 15.

> **EC-279** 2010 Xterra Revision: July 2009

Α

EC

D

Е

Н

Ν

0

Р

< COMPONENT DIAGNOSIS >

[VQ40DE]

NG >> Repair or reconnect the hose.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-245, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16.check fuel tank temperature sensor

Refer to EC-195, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to <u>EC-39</u>, "<u>Description</u>".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

20. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kinks, looseness and improper connection. For location, refer to EC-417, "System Description".

OK or NG

OK >> GO TO 21.

NG >> Repair or replace hoses and tubes.

21.CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kinks, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hose, tube or filler neck tube.

22.CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-420, "Component Inspection".

OK or NG

OK >> GO TO 23.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

23. CHECK FUEL LEVEL SENSOR

Refer to MWI-33, "Component Inspection".

OK or NG

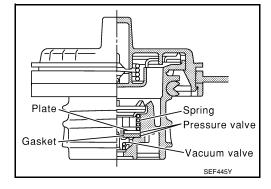
OK >> GO TO 24.

NG >> Replace fuel level sensor unit.

Revision: July 2009 EC-280 2010 Xterra

24. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

Component Inspection

INFOID:0000000005267571

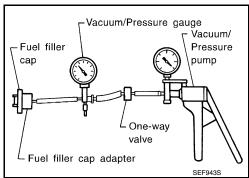
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)


Vacuum: −6.0 to −3.3 kPa (−0.061 to −0.034 kg/cm²,

-0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

EC

C

D

Е

F

Н

Α

J

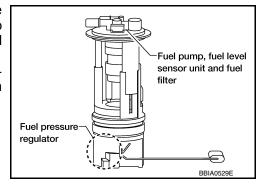
L

K

M

Ν

0


Р

INFOID:000000005267572

P0460 FUEL LEVEL SENSOR

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through the CAN communication line. It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

INFOID:0000000005267573

NOTE:

- If DTC P0460 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P0460 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to <u>EC-303</u>, "<u>Description</u>".

When the vehicle is parked, the fuel level in the fuel tank is naturally stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Combination meter Fuel level sensor

DTC Confirmation Procedure

INFOID:0000000005267574

- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- c. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and wait maximum of 2 consecutive minutes.
- 3. Check 1st trip DTC.
- 4. If 1st trip DTC is detected, go to EC-282, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267575

1. CHECK COMBINATION METER FUNCTION

Refer to MWI-3, "Work Flow".

OK or NG

OK >> GO TO 2.

NG >> Go to MWI-35, "Component Function Check".

2.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

P0460 FUEL LEVEL SENSOR

< COMPONENT DIAGNOSIS > [VQ40DE]

>> INSPECTION END

Α

EC

С

D

Е

F

G

Н

1

J

Κ

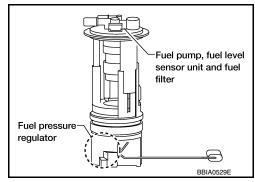
L

M

Ν

0

Ρ


INFOID:000000005267576

P0461 FUEL LEVEL SENSOR

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

INFOID:0000000005267577

NOTE:

- If DTC P0461 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P0461 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to <u>EC-303</u>, "<u>Description</u>".

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Combination meter Fuel level sensor

Overall Function Check

INFOID:0000000005267578

Use this procedure to check the overall function of the fuel level sensor. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing the following procedure, always observe the handling of the fuel. Refer to <u>FL-6</u>, <u>"Removal and Installation"</u>.

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(P) WITH CONSULT-III

NOTE:

Start from step 10, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to <u>EC-500, "Fuel Pressure Check"</u>.
- Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch OFF and wait at least 10 seconds then turn ON.
- 6. Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-III.
- 7. Check "FUEL LEVEL SE" output voltage and note it.
- 8. Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-III.
- 9. Touch ON and drain fuel approximately 30 ℓ (7-7/8 US gal, 6-5/8 lmp gal) and stop it.
- 10. Check "FUEL LEVEL SE" output voltage and note it.
- 11. Fill fuel into the fuel tank for 30 $\,\ell\,$ (7-7/8 US gal, 6-5/8 Imp gal).
- 12. Check "FUEL LEVEL SE" output voltage and note it.

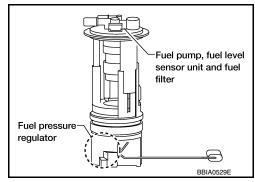
Revision: July 2009 EC-284 2010 Xterra

P0461 FUEL LEVEL SENSOR [VQ40DE] < COMPONENT DIAGNOSIS > 13. Confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12. If NG, go to EC-285, "Diagnosis Procedure". Α WITH GST NOTE: EC Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance. 1. Prepare a fuel container and a spare hose. Release fuel pressure from fuel line. Refer to EC-500, "Fuel Pressure Check". Remove the fuel feed hose on the fuel level sensor unit. Connect a spare fuel hose where the fuel feed hose was removed. Turn ignition switch ON. D Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment. 7. Confirm that the fuel gauge indication varies. 8. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal). Е 9. Confirm that the fuel gauge indication varies. 10. If NG, go to EC-285, "Diagnosis Procedure". Diagnosis Procedure INFOID:000000005267579 1. CHECK COMBINATION METER FUNCTION Refer to MWI-3, "Work Flow". OK or NG OK >> GO TO 2. NG >> Go to MWI-32, "Component Function Check". Н 2.CHECK INTERMITTENT INCIDENT Refer to GI-37, "Intermittent Incident". >> INSPECTION END

Revision: July 2009 EC-285 2010 Xterra

Ν

Р


INFOID:000000005267580

P0462, P0463 FUEL LEVEL SENSOR

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

INFOID:0000000005267581

NOTE:

- If DTC P0462 or P0463 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P0462 or P0463 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to <u>EC-303, "Description"</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The CAN communication line is open or
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	shorted) Harness or connectors (The sensor circuit is open or shorted) Combination meter Fuel level sensor

DTC Confirmation Procedure

INFOID:0000000005267582

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

- 1. Turn ignition switch ON and wait at least 5 seconds.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-286, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267583

1. CHECK COMBINATION METER FUNCTION

Refer to MWI-3, "Work Flow".

Revision: July 2009

OK or NG

OK >> GO TO 2.

NG >> Go to MWI-32, "Component Function Check".

2. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

EC-286

P0462, P0463 FUEL LEVEL SENSOR

< COMPONENT DIAGNOSIS > [VQ40DE]

>> INSPECTION END

Α

EC

С

 D

Е

F

G

Н

1

J

Κ

L

M

Ν

0

Ρ

[VQ40DE]

P0500 VSS

Description INFOID:0000000005267584

NOTE:

- If DTC P0500 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P0500 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to <u>EC-303</u>, "<u>Description</u>".

The vehicle speed signal is sent to the combination meter from the "ABS actuator and electric unit (control unit)" by CAN communication line. The combination meter then sends a signal to the ECM by CAN communication line.

On Board Diagnosis Logic

INFOID:000000005267585

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The vehicle speed signal circuit is open or shorted) Wheel sensor Combination meter ABS actuator and electric unit (control unit)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode.

Detected item	Engine operating condition in fail-safe mode	
Vehicle speed sensor	When the fail-safe system for vehicle speed sensor is activated, the cooling fan operates (High) while engine is running.	

DTC Confirmation Procedure

INFOID:0000000005267586

CAUTION:

Always drive vehicle at a safe speed.

NOTÉ:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-III

- Start engine (VDC switch OFF).
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-III. The vehicle speed on CON-SULT-III should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position. If NG, go to <u>EC-289</u>, "<u>Diagnosis Procedure</u>".

If OK, go to following step.

- 3. Select "DATA MONITOR" mode with CONSULT-III.
- 4. Warm engine up to normal operating temperature.
- 5. Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,550 - 6,000 rpm (M/T) 1,700 - 6,000 rpm (A/T)
COOLAN TEMP/S	More than 70°C (158°F)

	P0500 VSS		
< COMPONENT DIAGNOSIS >		[VQ40DE]	
B/FUEL SCHDL	5.5 - 31.8 msec (M/T) 6.3 - 31.8 msec (A/T)		А
Selector lever	Neutral position (M/T) Except P or N position (A/T)		
PW/ST SIGNAL	OFF		EC
6. Check 1st trip DTC.7. If 1st trip DTC is detected, go	to EC-289, "Diagnosis Procedure"		0
Overall Function Check		INFOID:000000005267587	С
Use this procedure to check the contribution of trip DTC might not be confirmed.	overall function of the vehicle spee	d sensor circuit. During this check, a 1st	D
WITH GST1. Lift up drive wheels.2. Start engine.			Е
3. Read vehicle speed sensor signal	GST should be able to exceed 10	km/h (6 MPH) when rotating wheels with	F
Diagnosis Procedure		INFOID:000000005267588	G
1. CHECK DTC WITH "ABS ACT	UATOR AND ELECTRIC UNIT (CC	NTROL UNIT)"	
Refer to BRC-8, "Work Flow" or B		•	Н
OK or NG			
OK >> GO TO 2. NG >> Repair or replace.			ı
2. CHECK COMBINATION METE	R FUNCTION		
Refer to GI-33, "Work Flow".			J
>> INSPECTION END			
			K
			L
			M

Ν

 \bigcirc

P0506 ISC SYSTEM

Description INFOID.000000005267589

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

INFOID:000000005267590

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control sys- tem RPM lower than ex- pected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

INFOID:0000000005267591

NOTE:

- If the target idle speed is out of the specified value, perform, <u>EC-19</u>, "Idle Air Volume Learning", before conducting DTC Confirmation Procedure. For the target idle speed, refer to the <u>EC-504</u>.
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C(14°F).
- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and run it for at least 1 minute at idle speed.
- 6. Check 1st trip DTC.
- 7. If 1st trip DTC is detected, go to EC-290, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267592

1. CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2.REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to <u>SEC-7</u>, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".
- 4. Perform EC-19, "VIN Registration".

Revision: July 2009

P0506 ISC SYSTEM

< COMPONENT DIAGNOSIS >

Perform EC-19, "Accelerator Pedal Released Position Learning".

6. Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>".
7. Perform <u>EC-19</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

[VQ40DE]

EC

Α

С

 D

Е

F

G

Н

J

K

L

M

Ν

0

P0507 ISC SYSTEM

Description INFOID:000000005267593

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

INFOID:0000000005267594

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure

INFOID:0000000005267595

NOTE:

- If the target idle speed is out of the specified value, perform, <u>EC-19</u>, "Idle Air Volume Learning", before conducting DTC Confirmation Procedure. For the target idle speed, refer to the <u>EC-504</u>.
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C(14°F).
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and run it for at least 1 minute at idle speed.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-292, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267596

1. CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Discover air leak location and repair.

Revision: July 2009 EC-292 2010 Xterra

P0507 ISC SYSTEM

[VQ40DE] < COMPONENT DIAGNOSIS >

3.REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NVIS(NATS) system and registration of all NVIS(NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".
- 4. Perform EC-19, "VIN Registration".
- 5. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 6. Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>".
 7. Perform <u>EC-19</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

EC

Α

C

D

Е

F

Н

K

M

Ν

0

P050E COLD START CONTROL

Description INFOID.000000005550803

ECM controls ignition timing and engine idle speed when engine is started with pre-warming up condition. This control promotes the activation of three way catalyst by heating the catalyst and reduces emissions.

On Board Diagnosis Logic

INFOID:0000000005575106

NOTE:

If DTC P050E is displayed with other DTC, first perform the trouble diagnosis for other DTC.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P050E	Cold start engine exhaust temperature too low	The temperature of the catalyst inlet does not rise to the proper temperature when the engine is started with pre-warming up condition.	Lack of intake air volume Fuel injection system ECM

DTC Confirmation Procedure

INFOID:0000000005575107

DTC CONFIRMATION PROCEDURE

1.PRECONDITIONING

If DTC Confirmation Procedure has been previously conducted, always perform the following procedure before conducting the next test.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11 V at idle.

>> GO TO 2.

2. PERFORM DTC CONFIRMATION PROCEDURE-I

(P)With CONSULT-III

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-III.
- Check the indication of "COOLAN TEMP/S".

With GST

Follow the procedure "With CONSULT-III" above.

Is the value of "COOLAN TEMP/S" between 15°C (59°F) and 36°C (97°F)?

YES >> GO TO 3.

NO-1 [If it is below 15°C (59°F)]>>Warm up the engine until the value of "COOLAN TEMP/S" reaches 15°C (59°F) or more. Retry from step 1.

NO-2 [If it is above 36°C (97°F)]>>Cool engine down to less than 36°C (97°F). Retry from step 1.

3.PERFORM DTC CONFIRMATION PROCEDURE-II

(P)With CONSULT-III

- Set the select lever in N range.
- 2. Start the engine and warm up in idle with the value of "COOLAN TEMP/S" between 15°C (59°F) and 40°C (104°F) for more than 15 seconds.
- Check 1st trip DTC.

®With GST

Follow the procedure "With CONSULT-III" above.

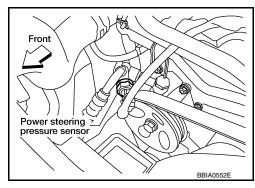
Is 1st trip DTC detected?

YES >> Go to EC-295, "Diagnosis Procedure".

NO >> INSPECTION END

Revision: July 2009

P050E COLD START CONTROL


PUSUE COLD START CONTROL	
< COMPONENT DIAGNOSIS >	[VQ40DE]
Diagnosis Procedure	INFOID:00000000005550805
1. PERFORM IDLE AIR VOLUME LEARNING	7.
Perform EC-19, "Idle Air Volume Learning".	EC
Is Idle Air Volume Learning carried out successfully?	
YES >> GO TO 2. NO >> Follow the instruction of Idle Air Volume Learning.	
2.CHECK INTAKE SYSTEM	С
Check for the cause of intake air volume lacking. Refer to the following.	
Crushed intake air passageIntake air passage clogging	D
Clogging of throttle body	
Is the inspection result normal?	Е
YES >> GO TO 3. NO >> Repair or replace malfunctioning part	
3.CHECK FUEL INJECTION SYSTEM FUNCTION	F
Perform DTC Confirmation Procedure for DTC P0171, P0174. Refer to EC-181, "DTC Confirmation Procedure for DTC P0171, P0174.	
dure".	G
Is the inspection result normal? YES >> GO TO 4.	J
NO >> Go to EC-182, "Diagnosis Procedure" for DTC P0171, P0174.	
4.PERFORM DTC CONFIRMATION PROCEDURE	Н
1. Turn ignition switch ON.	
 Erase DTC. Perform DTC Confirmation Procedure. 	I
See EC-294, "DTC Confirmation Procedure".	
Is the 1st trip DTC P050E displayed again? YES >> GO TO 5.	J
NO >> INSPECTION END	
5.REPLACE ECM	K
Replace ECM. Replace ECM. Replace ECM.	
2. Go to EC-18, "Procedure After Replacing ECM".	L
>> INSPECTION END	
	M
	IVI
	N
	0
	Р

INFOID:000000005267597

P0550 PSP SENSOR

Component Description

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

On Board Diagnosis Logic

INFOID:0000000005267598

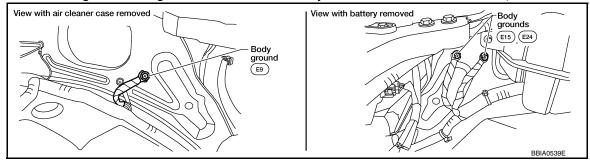
The MIL will not illuminate for this diagnosis. NOTE:

If DTC P0550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-304</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Power steering pressure sensor

DTC Confirmation Procedure

INFOID:0000000005267599


- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- c. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and let it idle for at least 5 seconds.
- Check 1st trip DTC.
- 4. If 1st trip DTC is detected, go to EC-296, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267600

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95</u>. "Ground Inspection".

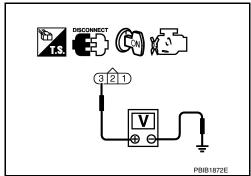

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- Disconnect power steering pressure (PSP) sensor harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between PSP sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.check PSP sensor ground circuit for open and short

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between PSP sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 12 and PSP sensor terminal 2.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK PSP SENSOR

Refer to EC-298, "Component Inspection".

OK or NG

>> GO TO 6. OK

NG >> Replace PSP sensor.

6.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

EC-297 2010 Xterra Revision: July 2009

Е

D

Α

EC

F

N

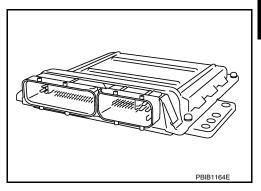
Component Inspection

INFOID:0000000005267601

POWER STEERING PRESSURE SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.
- 3. Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel: being turned	0.5 - 4.5V
Steering wheel: not being turned	0.4 - 0.8V



INFOID:000000005267602

P0603 ECM POWER SUPPLY

Component Description

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

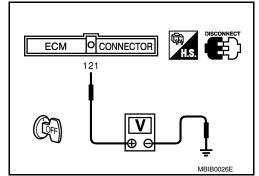
INFOID:0000000005267603

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0603 0603	ECM power supply circuit	ECM back up RAM system does not function properly.	Harness or connectors [ECM power supply (back up) circuit is open or shorted.] ECM

DTC Confirmation Procedure

- If DTC Confirmation Procedure has been previously conducted, always perform the following procedure 1. before conducting the next step.
- Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON, wait at least 10 seconds.
- 3. Turn ignition switch OFF, wait at least 5 minutes.
- 4. Turn ignition switch ON, wait at least 10 seconds.
- Repeat steps 2 to 3 for 5 times.
- 6. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-299, "Diagnosis Procedure".

Diagnosis Procedure


1. CHECK ECM POWER SUPPLY

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check voltage between ECM terminal 121 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

EC-299 2010 Xterra Revision: July 2009

EC

Α

D

Е

INFOID:000000005267604

INFOID:0000000005267605

Ν

P0603 ECM POWER SUPPLY

< COMPONENT DIAGNOSIS >

[VQ40DE]

Check the following.

- 20 A fuse (No.53)
- IPDM E/R harness connector E121
- Harness for open or short between ECM and battery
 - >> Repair open circuit in harness or connectors.

3.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

f 4.PERFORM DTC CONFIRMATION PROCEDURE

(A) With CONSULT-III

- 1. Turn ignition switch ON.
- Select "SELF DIAG RESULTS" mode with CONSULT-III.
- Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-299, "DTC Confirmation Procedure".

5. Is the 1st trip DTC P0603 displayed again?

With GST

- 1. Turn ignition switch ON.
- 2. Select Service \$04 with GST.
- Perform DTC Confirmation Procedure.

See EC-299, "DTC Confirmation Procedure".

4. Is the 1st trip DTC P0603 displayed again?

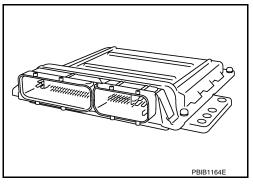
Yes or No

Yes >> GO TO 5.

No >> INSPECTION END

5.REPLACE ECM

- 1. Replace ECM.
- Perform initialization of NVIS(NATS) system and registration of all NVIS(NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".
- 3. Perform EC-19, "VIN Registration".
- 4. Perform EC-19, "Accelerator Pedal Released Position Learning".
- Perform EC-19, "Throttle Valve Closed Position Learning". Perform EC-19, "Idle Air Volume Learning".


>> INSPECTION END

P0605 ECM

Component Description

INFOID:000000005267606

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

INFOID:0000000005267607

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
		A)	ECM calculation function is malfunctioning.	
P0605 0605	Engine control module	B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode	
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 	

DTC Confirmation Procedure

INFOID:000000005267608

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

PROCEDURE FOR MALFUNCTION A

- Turn ignition switch ON.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-302, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION B

- (P) With CONSULT-III
- Turn ignition switch ON and wait at least 1 second.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-302, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION C

- (P) With CONSULT-III
- Turn ignition switch ON and wait at least 1 second.

EC-301 2010 Xterra Revision: July 2009

EC

Α

D

Е

M

Ν

P0605 ECM

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Turn ignition switch OFF, wait at least 10 seconds, and then turn it ON.
- Repeat step 2 for 32 times.
- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-302, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:000000005267609

1.INSPECTION START

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-III.
- Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-301, "DTC Confirmation Procedure".

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch ON.
- 2. Select Service \$04 with GST.
- 3. Perform DTC Confirmation Procedure.

See EC-301, "DTC Confirmation Procedure".

4. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

2.REPLACE ECM

- Replace ECM.
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".
- 3. Perform EC-19, "VIN Registration".
- 4. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-19, "Throttle Valve Closed Position Learning".
- 6. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

P0607 ECM

< COMPONENT DIAGNOSIS > [VQ40DE]

P0607 ECM

Description INFOID:0000000005267610

Α

EC

Е

Н

N

Р

INFOID:000000005267611

INFOID:0000000005267612

INFOID:0000000005267613

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0607 0607	CAN communication bus	When detecting error during the initial diagnosis of CAN controller of ECM.	• ECM

DTC Confirmation Procedure

- Turn ignition switch ON.
- 2. Check DTC.
- If DTC is detected, go to <u>EC-303</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

1.INSPECTION START

- (P) With CONSULT-III
- 1. Turn ignition switch ON.
- Select "SELF-DIAG RESULTS" mode with CONSULT-III.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-303, "DTC Confirmation Procedure".

- 5. Is the DTC P0607 displayed again?
- With GST
- 1. Turn ignition switch ON.
- Select "Service \$04" with GST.
- 3. Perform DTC Confirmation Procedure.

See EC-303, "DTC Confirmation Procedure".

4. Is the DTC P0607 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

2.REPLACE ECM

- Replace ECM.
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to SEC-7, "ECM RE-COMMUNICATING FUNCTION: Special Repair Requirement".
- 3. Perform <u>EC-19</u>, "VIN Registration".
- 4. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-19. "Throttle Valve Closed Position Learning".
- 6. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

P0643 SENSOR POWER SUPPLY

On Board Diagnosis Logic

INFOID:0000000005267614

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0643 0643	Sensor power supply circuit short	ECM detects that the voltage of power source for sensor is excessively low or high.	Harness or connectors (APP sensor 1 circuit is shorted.) (PSP sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) (Battery current sensor circuit is shorted.) (EVAP control system pressure sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 1) EVAP control system pressure sensor Power steering pressure sensor Refrigerant pressure sensor Battery current sensor

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:000000005267615

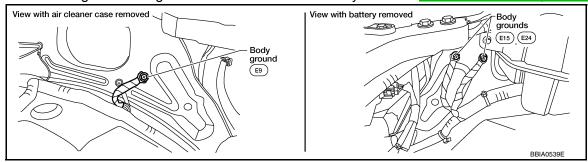
NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

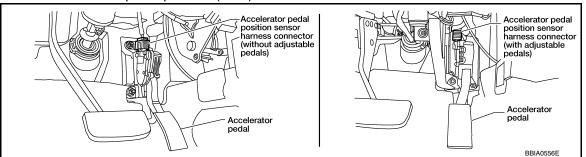

- Start engine and let it idle for 1 second.
- 2. Check 1st trip DTC.
- If DTC is detected, go to <u>EC-304</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000005267616

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground three screws on the body. Refer to EC-95, "Ground Inspection".

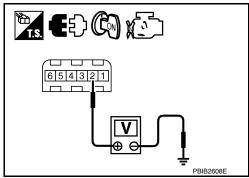

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ACCELERATOR PEDAL POSITION SENSOR 1 POWER SUPPLY CIRCUIT

Disconnect accelerator pedal position (APP) sensor harness connector.



- Turn ignition switch ON.
- Check voltage between APP sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

3.check sensor power supply circuits

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
48 EVAP control system pressure sensor terminal 3		
49	Refrigerant pressure sensor terminal 3	
49	Battery current sensor terminal 1	EC-443
68 PSP sensor terminal 3		
90	APP sensor terminal 2	

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK COMPONENTS

Check the following.

- EVAP control system pressure sensor (Refer to EC-256, "Component Inspection".)
- Refrigerant pressure sensor (Refer to EC-424, "Component Description".)
- Battery current sensor (Refer to EC-324, "Component Inspection".)
- Power steering pressure sensor (Refer to EC-298, "Component Inspection".)

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning component.

5. CHECK APP SENSOR

Refer to EC-373, "Component Inspection".

OK or NG

OK >> GO TO 7.

> **EC-305** Revision: July 2009

EC

Α

D

Е

F

Н

K

M

0

Р

2010 Xterra

P0643 SENSOR POWER SUPPLY

< COMPONENT DIAGNOSIS >

[VQ40DE]

NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- Perform <u>EC-19</u>, "Accelerator Pedal Released Position Learning".
 Perform <u>EC-19</u>, "Throttle Valve Closed Position Learning".
 Perform <u>EC-19</u>, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

P0850 PNP SWITCH

Component Description

INFOID:000000005267617

Α

EC

D

Е

When the shift lever position is Neutral, park/neutral position (PNP) switch is ON. (M/T)

When the selector lever position is P or N, park/neutral position (PNP) signal is sent to ECM from TCM via combination meter (unified meter control unit). (A/T)

ECM detects the position because the continuity of the line (the ON signal) exists.

On Board Diagnosis Logic

EOID:0000000005267618	

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0850 0850	Park/neutral position switch	The park/neutral position (PNP) signal is not changed during driving after the engine is started.	Harness or connectors [The park/neutral position (PNP) signal circuit is open or shorted.] Park/neutral position (PNP) signal (M/T) Transmission range switch (A/T) Combination meter TCM (A/T models)

DTC Confirmation Procedure

INFOID:0000000005267619

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

Н

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

- Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CONSULT-III. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
P or N position (A/T) Neutral position (M/T)	ON
Except above position	OFF

If NG, go to EC-308, "Diagnosis Procedure".

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-III.
- Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,400 - 6,375 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.0 - 31.8 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

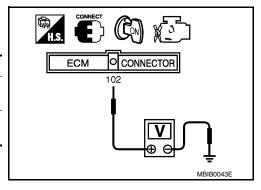
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-308, "Diagnosis Procedure".

K

Ν

Overall Function Check

INFOID:0000000005267620


Use this procedure to check the overall function of the park/neutral position (PNP) signal circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 102 (PNP signal) and ground under the following conditions.

Condition (Gear position)	Voltage V (Known-good data)
P or N position (A/T) Neutral position (M/T)	Approx. 0
Except above position	BATTERY VOLTAGE (11 - 14V)

If NG, go to <u>EC-308</u>. "<u>Diagnosis Procedure</u>".

INFOID:0000000005267621

Diagnosis Procedure

A/T MODELS

1. CHECK DTC WITH TCM

Refer to TM-184, "DTC Inspection Priority Chart".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK STARTING SYSTEM

Turn ignition switch OFF, then turn it to START.

Does starter motor operate?

Yes or No

Yes >> GO TO 3.

No >> Refer to <u>STR-7</u>, "A/T : <u>System Diagram</u>".

3.CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect A/T assembly harness connector.
- 3. Disconnect combination meter harness connector.
- 4. Check harness continuity between A/T assembly terminal 9 and combination meter terminal 17. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

f 4.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M31, E152
- Harness connectors E5, F14
- Harness for open or short between A/T assembly and combination meter.

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

P0850 PNP SWITCH

< COMPONENT DIAGNOSIS >	[VQ40DE]	
 Disconnect ECM harness connector. Check harness continuity between ECM terminal 102 and combination meter terminal 7. Refer to Wiring Diagram. 		А
Continuity should exist.		EC
3. Also check harness for short to ground and short to power.		LO
OK or NG		
OK >> GO TO 7. NG >> GO TO 6.		С
6. DETECT MALFUNCTIONING PART		
Check the following.		D
 Harness connectors E152, M31 Harness for open or short between ECM and combination meter 		
Hamese for open of short between East and combination motor		Е
>> Repair open circuit or short to ground or short to power in harness or connectors.		
7. CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-III		F
Check harness continuity between A/T assembly terminal 9 and TCM terminal 8. Defer to Wiring diagram.		
Refer to Wiring diagram.		G
Continuity should exist.		
2. Also check harness for short to ground and short to power.		Н
OK or NG OK >> GO TO 8.		
NG >> Repair open circuit or short to ground or short to power in harness or connectors.		
8. CHECK INTERMITTENT INCIDENT		I
Refer to GI-37, "Intermittent Incident".		
OK or NG		J
OK >> GO TO 9. NG >> Repair or replace.		
9. REPLACE COMBINATION METER		K
Refer to MWI-91, "Removal and Installation".		
		L
>> INSPECTION END		
M/T MODELS		M
1.CHECK PNP SWITCH GROUND CIRCUIT		
 Turn ignition switch OFF. Disconnect park/neutral position (PNP) switch harness connector. 		N.I.
3. Check harness continuity between PNP switch terminal 2 and ground.		Ν
Refer to Wiring Diagram.		
Continuity should exist.		0
4. Also check harness for short to power.		
OK or NG		Р
OK >> GO TO 3 NG >> GO TO 2.		
2. DETECT MALFUNCTIONING PART		
Check the following.		
 Harness connectors F14, E5 Harness for open or short between PNP switch and ground 		

Revision: July 2009 EC-309 2010 Xterra

>> Repair open circuit or short to power in harness or connectors.

3.check pnp switch input signal circuit

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 102 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- · Harness for open or short between PNP switch and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK PNP SWITCH

Refer to EC-443, "Wiring Diagram".

OK or NG

OK >> GO TO 6.

NG >> Replace PNP switch.

6. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

P1148, P1168 CLOSED LOOP CONTROL

< COMPONENT DIAGNOSIS >

[VQ40DE]

P1148, P1168 CLOSED LOOP CONTROL

On Board Diagnosis Logic

INFOID:0000000005267622

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148 (Bank 1)	Closed loop control	The closed loop control function for bank 1 does not operate even when vehicle is being driven in the specified condition.	Harness or connectors [The air fuel ratio (A/F) sensor 1 circuit is open or shorted.]
P1168 1168 (Bank 2)	function	The closed loop control function for bank 2 does not operate even when vehicle is being driven in the specified condition.	

DTC P1148 or P1168 is displayed with another DTC for air fuel ratio (A/F) sensor 1. Perform the trouble diagnosis for the corresponding DTC.

F

 D

Е

Α

EC

G

Н

Κ

L

M

Ν

0

P1211 TCS CONTROL UNIT

< COMPONENT DIAGNOSIS >

[VQ40DE]

P1211 TCS CONTROL UNIT

Description INFOID:000000005267623

The malfunction information related to TCS is transferred through the CAN communication line from "ABS actuator and electric unit (control unit)" to ECM.

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

INFOID:0000000005267624

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not illuminate for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211 1211	TCS control unit	ECM receives malfunction information from "ABS actuator and electric unit (Control unit)".	ABS actuator and electric unit (control unit) TCS related parts

DTC Confirmation Procedure

INFOID:0000000005267625

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- 1. Start engine and let it idle for at least 60 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-312</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000005267626

Go to BRC-8, "Work Flow" or BRC-119, "Work Flow".

P1212 TCS COMMUNICATION LINE

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

D

F

Н

P1212 TCS COMMUNICATION LINE

Description

NOTE:

- If DTC P1212 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P1212 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to EC-303.

This CAN communication line is used to control the smooth engine operation during the TCS operation. Pulse signals are exchanged between ECM and "ABS actuator and electric unit (control unit)".

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not illuminate for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	TCS communication line	ECM cannot receive the information from "ABS actuator and electric unit (control unit)".	Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit) Dead (Weak) battery

DTC Confirmation Procedure

INFOID:0000000005267629

INFOID:0000000005267628

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- 1. Start engine and let it idle for at least 10 seconds.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-313, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267630

Go to BRC-8, "Work Flow" or BRC-119, "Work Flow".

Ν

0

Р

Revision: July 2009 EC-313 2010 Xterra

INFOID:000000005267631

P1217 ENGINE OVER TEMPERATURE

On Board Diagnosis Logic

NOTE:

- If DTC P1217 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P1217 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to EC-303.

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1217 1217	Engine over tempera- ture (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant level was not added to the system using the proper filling method. Engine coolant is not within the specified range. 	Harness or connectors (The cooling fan circuit is open or shorted.) IPDM E/R Cooling fan Cooling fan Cooling fan (Crankshaft driven) Radiator hose Radiator Radiator cap Reservoir tank Reservoir tank Reservoir tank cap Water pump Thermostat For more information, refer to EC-316, "Main 12 Causes of Overheating".

CAUTION:

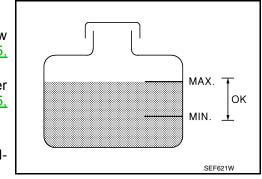
When a malfunction is indicated, always replace the coolant. Refer to <u>CO-11, "Changing Engine Coolant"</u>. Also, replace the engine oil. Refer to <u>LU-8, "Changing Engine Oil"</u>.

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Always use coolant with the proper mixture ratio. Refer to MA-13, "Engine Oil Recommendation".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

INFOID:0000000005267632

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

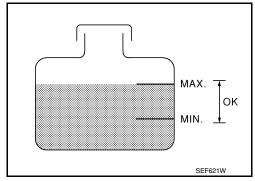

WARNING:

Never remove the radiator cap and/or reservoir tank cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator and/or reservoir tank.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-III

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-315</u>, <u>"Diagnosis Procedure"</u>.
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-315, "Diagnosis Procedure".
- 3. Turn ignition switch ON.
- 4. Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-III.
- 5. If the results are NG, go to <a>EC-315, "Diagnosis Procedure".


P1217 ENGINE OVER TEMPERATURE

< COMPONENT DIAGNOSIS >

IVQ40DE1

WITH GST

- 1. Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-315, "Diagnosis Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-315, "Diagnosis Procedure".
- 3. Perform IPDM E/R auto active test and check cooling fan motor operation, refer to PCS-13, "Diagnosis Description".
- 4. If NG, go to EC-315, "Diagnosis Procedure".

INFOID:0000000005267633

Diagnosis Procedure

1.CHECK COOLING FAN (CRANKSHAFT DRIVEN) OPERATION

- Start engine and let it idle.
- Make sure that cooling fan (crankshaft driven) operates normally. 2.

OK or NG

OK (With CONSULT-III)>>GO TO 2.

OK (Without CONSULT-III)>>GO TO 3.

>> Check cooling fan (crankshaft driven). Refer to CO-18, "Removal and Installation (Crankshaft driven type)"

2.CHECK COOLING FAN OPERATION

(III) With CONSULT-III

- Start engine and let it idle.
- Select "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-III.
- Make sure that cooling fan operates at each speed (LOW/HI).

OK or NG

OK >> GO TO 4.

NG >> Check cooling fan control circuit. (Go to "PROCEDURE A".)

3.CHECK COOLING FAN OPERATION

Without CONSULT-III

- Perform IPDM E/R auto active test and check cooling fan motors operation, refer to PCS-13, "Diagnosis Description".
- Make sure that cooling fan operates at each speed (Low/High).

OK or NG

OK >> GO TO 4.

NG >> Check cooling fan control circuit. (Go to "PROCEDURE A".)

4.CHECK COOLING SYSTEM FOR LEAK

Refer to CO-10, "System Inspection".

OK or NG

OK >> GO TO 5.

>> Check the following for leak. Refer to CO-10, "System Inspection". NG

- Hose
- Radiator
- Radiator cap
- Reservoir tank
- · Water pump

CHECK RESERVOIR TANK CAP

Refer to CO-10, "System Inspection".

Revision: July 2009

OK or NG

EC-315

2010 Xterra

EC

Α

D

Е

Н

K

M

N

P1217 ENGINE OVER TEMPERATURE

< COMPONENT DIAGNOSIS >

[VQ40DE]

OK >> GO TO 6.

NG >> Replace reservoir tank cap.

6.CHECK COMPONENT PARTS

Check the following

• Thermostat. Refer to CO-26, "Removal and Installation".

• Engine coolant temperature sensor. Refer to EC-130, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning component.

7.CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-316, "Main 12 Causes of Overheating".

>> INSPECTION END

Main 12 Causes of Overheating

INFOID:0000000005267634

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	MA-13	
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	CO-11, "Changing Engine Coolant"
	4	Reservoir tank cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	CO-10. "System Inspection"
ON* ²	5	Coolant leaks	Visual	No leaks	CO-10, "System Inspection"
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	CO-21, "Removal and Installation"
ON* ¹	7	Cooling fan	CONSULT-III	Operating	See trouble diagnosis for DTC P1217 (EC-400, "Diagnosis Procedure").
ON* ²	7	Cooling fan (Crankshaft driven)	• Visual	Operating	See <u>CO-18</u> , "Removal and Installation (Crank-shaft driven type)".
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	CO-11, "Changing Engine Coolant"
OFF* ⁴	10	Coolant return from reservoir tank to radiator	Visual	Should be initial level in reservoir tank	CO-11, "Changing Engine Coolant"
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	EM-91, "Inspection After Disassembly"
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	EM-91, "Inspection After Disassembly"

^{*1:} Turn the ignition switch ON.

Revision: July 2009 EC-316 2010 Xterra

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

P1217 ENGINE OVER TEMPERATURE

< COMPONENT DIAGNOSIS >

[VQ40DE]

*4: After 60 minutes of cool down time.

For more information, refer to CO-8, "Troubleshooting Chart".

EC

Α

С

 D

Ε

F

G

Н

J

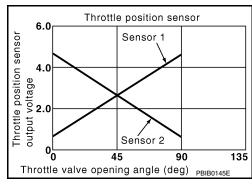
Κ

L

M

Ν

0


INFOID:000000005267635

P1225 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

The MIL will not illuminate for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

INFOID:000000005267637

INFOID:0000000005267636

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

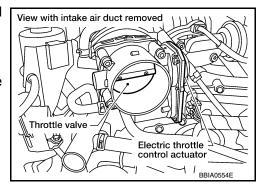
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-318, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267638

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Turn ignition switch OFF.
- Remove the intake air duct.
- Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2.REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

P1225 TP SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Replace the electric throttle control actuator.
- Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>".
 Perform <u>EC-19</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

EC

Α

 D

С

Е

F

G

Н

J

K

L

M

Ν

0

INFOID:000000005267639

P1226 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

The MIL will not illuminate for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

INFOID:0000000005267641

INFOID:0000000005267640

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

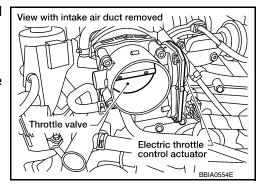
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Repeat steps 2 and 3 for 32 times.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-320, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267642


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

P1226 TP SENSOR

[VQ40DE] < COMPONENT DIAGNOSIS >

2.REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>".
 Perform <u>EC-19</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

EC

Α

 D

Е

F

G

Н

K

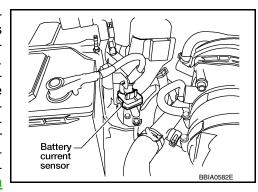
L

M

Ν

0

Р


EC-321 Revision: July 2009 2010 Xterra

INFOID:000000005267647

P1550 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to CHG-6, "System Description".

CAUTION:

Never connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then battery discharge may occur.

On Board Diagnosis Logic

INFOID:0000000005267648

The MIL will not illuminate for this diagnosis. NOTE:

If DTC P1550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-304.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1550 1550	Battery current sensor circuit range/performance	The output voltage of the battery current sensor remains within the specified range while engine is running.	Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

DTC Confirmation Procedure

INFOID:0000000005267649

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

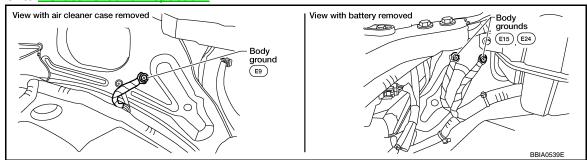
Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and wait at least 10 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-322, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267650

1. CHECK GROUND CONNECTIONS


- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body.

P1550 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

Refer to EC-95, "Ground Inspection".

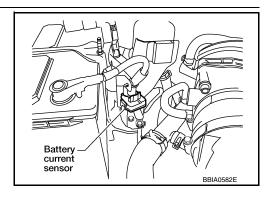
Α

EC

D

Е

Н

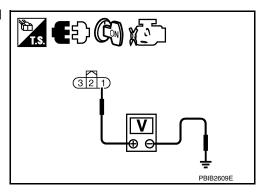

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.check battery current sensor power supply circuit

- Disconnect battery current sensor harness connector.
- Turn ignition switch ON.



3. Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. >> GO TO 3. NG

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. >> GO TO 5. NG

Revision: July 2009

2010 Xterra

Ν

P1550 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

5. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between battery current sensor terminal 3 and ECM terminal 71.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK BATTERY CURRENT SENSOR

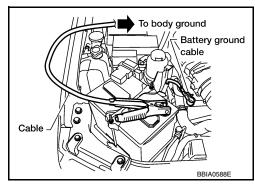
Refer to EC-324, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT


Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

BATTERY CURRENT SENSOR

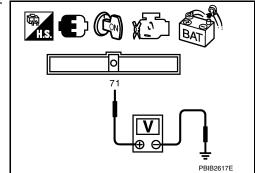
- Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable.
- Install jumper cable between battery negative terminal and body ground.
- Turn ignition switch ON.

INFOID:0000000005267651

EC-324 2010 Xterra Revision: July 2009

[VQ40DE]

P1550 BATTERY CURRENT SENSOR


< COMPONENT DIAGNOSIS >

[VQ40DE]

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

Α

EC

С

D

Е

F

Н

G

K

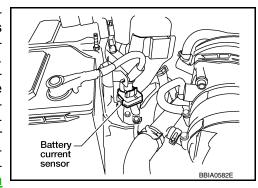
J

L

M

Ν

0


[VQ40DE]

INFOID:000000005267652

P1551, P1552 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to CHG-6, "System Description".

CAUTION:

Never connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

On Board Diagnosis Logic

INFOID:0000000005267653

The MIL will not illuminate for this diagnosis. NOTE:

If DTC P1551 or P1552 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-304.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P1551 1551	Battery current sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	
P1552 1552	Battery current sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.		

DTC Confirmation Procedure

INFOID:0000000005267654

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

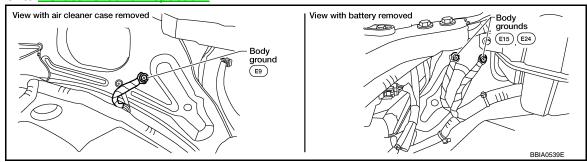
Before performing the following procedure, confirm that battery voltage is more than 8V with ignition switch ON

- Turn ignition switch ON and wait at least 10 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-326</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000005267655

1. CHECK GROUND CONNECTIONS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body.

P1551, P1552 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

Refer to EC-95, "Ground Inspection".

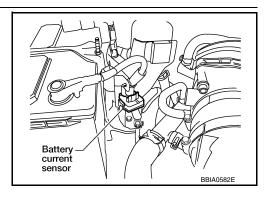
Α

EC

D

Е

Н

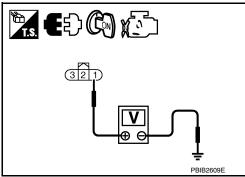

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.check battery current sensor power supply circuit

- Disconnect battery current sensor harness connector.
- Turn ignition switch ON.



3. Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. >> GO TO 3. NG

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM

>> Repair circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

Ν

P1551, P1552 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM
 - >> Repair circuit or short to ground or short to power in harness or connectors.

6. CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between battery current sensor terminal 3 and ECM terminal 71.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM
 - >> Repair circuit or short to ground or short to power in harness or connectors.

8. CHECK BATTERY CURRENT SENSOR

Refer to EC-328, "Component Inspection".

OK or NG

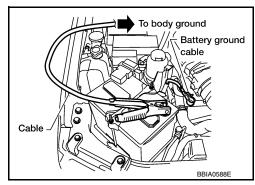
OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END


Component Inspection

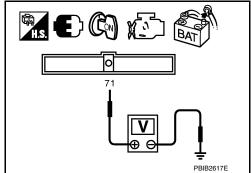
INFOID:0000000005267656

2010 Xterra

BATTERY CURRENT SENSOR

- Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable.
- 3. Install jumper cable between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

P1551, P1552 BATTERY CURRENT SENSOR


< COMPONENT DIAGNOSIS >

[VQ40DE]

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

Α

EC

С

D

Ε

G

F

Н

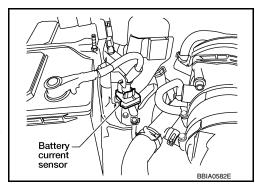
J

Κ

L

M

Ν


0

INFOID:000000005267657

P1553 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to CHG-6, "System Description".

CAUTION:

Never connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

On Board Diagnosis Logic

INFOID:0000000005267658

The MIL will not illuminate for this diagnosis. NOTE:

If DTC P1553 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-304.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1553 1553	Battery current sensor performance	The signal voltage transmitted from the sensor to ECM is higher than the amount of the maximum power generation.	 Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

DTC Confirmation Procedure

INFOID:0000000005267659

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

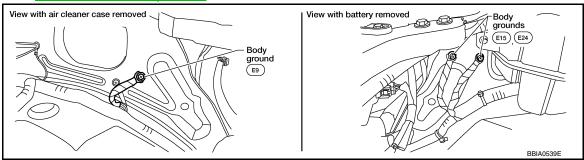
Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and wait at least 10 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-330, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267660

1. CHECK GROUND CONNECTIONS


- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body.

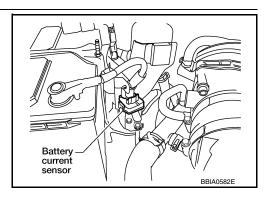
P1553 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

Refer to EC-95, "Ground Inspection".

Α

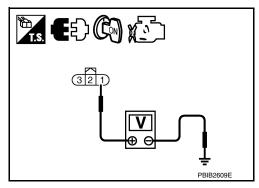

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.check battery current sensor power supply circuit

- Disconnect battery current sensor harness connector.
- Turn ignition switch ON.



3. Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. >> GO TO 3. NG

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

>> GO TO 5. NG

Revision: July 2009

EC-331

EC

D

Е

Н

Ν

P1553 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between battery current sensor terminal 3 and ECM terminal 71.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK BATTERY CURRENT SENSOR

Refer to EC-332, "Component Inspection".

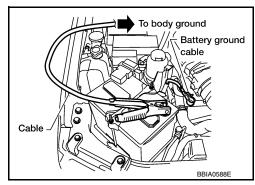
OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

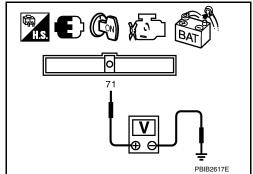
Component Inspection

INFOID:0000000005267661

BATTERY CURRENT SENSOR

- Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable.
- 3. Install jumper cable between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

P1553 BATTERY CURRENT SENSOR


< COMPONENT DIAGNOSIS >

[VQ40DE]

5. Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

Α

EC

С

D

F

Е

G

Н

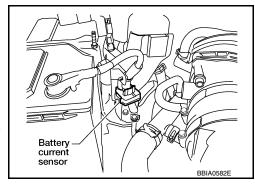
J

Κ

L

M

0


Ν

INFOID:000000005267662

P1554 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to CHG-6, "System Description".

CAUTION:

Never connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

On Board Diagnosis Logic

INFOID:0000000005267663

The MIL will not illuminate for this diagnosis. NOTE:

If DTC P1554 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-304.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1554 1554	Battery current sensor performance	The output voltage of the battery current sensor is lower than the specified value while the battery voltage is high enough.	 Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

Overall Function Check

INFOID:0000000005267664

Use this procedure to check the overall function of the battery current sensor circuit. During this check, a 1st trip DTC might not be confirmed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 12.8V at idle.
- Before performing the following procedure, confirm that all load switches and A/C switch are turned OFF.

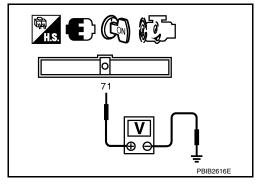
(P) WITH CONSULT-III

- 1. Start engine and let it idle.
- Select "BAT CUR SEN" in "DATA MONITOR" mode with CONSULT-III.
- Check "BAT CUR SEN" indication for 10 seconds.
 "BAT CUR SEN" should be above 2,300mV at least once.
- 4. If NG, go to EC-335, "Diagnosis Procedure".

® WITH GST

Start engine and let it idle.

P1554 BATTERY CURRENT SENSOR

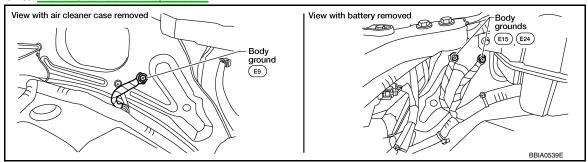

< COMPONENT DIAGNOSIS >

[VQ40DE]

Check voltage between ECM terminal 71 (battery current sensor signal) and ground for 10 seconds.

The voltage should be above 2.3V at least once.

If NG, go to EC-335, "Diagnosis Procedure".

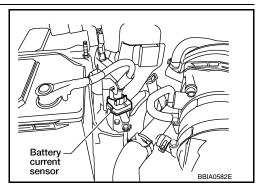


Diagnosis Procedure

INFOID:0000000005267665

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".

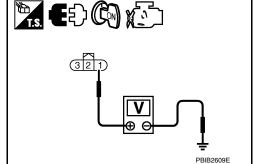

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- Disconnect battery current sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

EC-335 Revision: July 2009 2010 Xterra EC

Α

D

Е

Н

K

M

Ν

P1554 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

INFOID:0000000005267666

2010 Xterra

Check the following.

- · Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between battery current sensor terminal 2 and ECM terminal 67.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5}.$ DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between battery current sensor terminal 3 and ECM terminal 71.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E5, F14
- · Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK BATTERY CURRENT SENSOR

Refer to EC-336, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

Reconnect harness connectors disconnected.

9.check intermittent incident

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

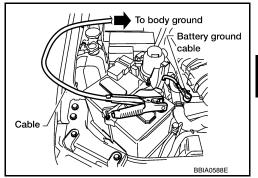
Revision: July 2009

BATTERY CURRENT SENSOR

- 2. Disconnect battery negative cable.
 - . Disconnect battery negative cable.

EC-33

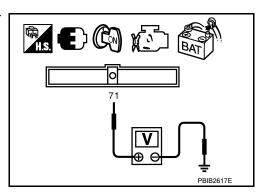
EC-336


P1554 BATTERY CURRENT SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

Install jumper cable between battery negative terminal and body ground.


4. Turn ignition switch ON.

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

Α

EC

C

D

Е

F

G

Н

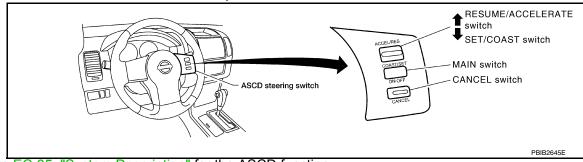
J

Κ

L

M

Ν


0

INFOID:000000005267667

P1564 ASCD STEERING SWITCH

Component Description

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to EC-35, "System Description" for the ASCD function.

On Board Diagnosis Logic

INFOID:000000005267668

This self-diagnosis has the one trip detection logic.

The MIL will not illuminate for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-301.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

INFOID:0000000005267669

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

(P) WITH CONSULT-III

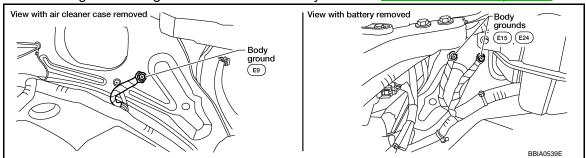
- Turn ignition switch ON and wait at least 10 seconds.
- Press MAIN switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press RESUME/ACCELERATE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press SET/COAST switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Check DTC.
- If DTC is detected, go to <u>EC-338</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:000000005267670

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.


Revision: July 2009 EC-338 2010 Xterra

P1564 ASCD STEERING SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

Loosen and retighten three ground screws on the body. Refer to EC-95. "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

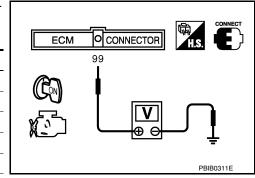
2.check ascd steering switch circuit

(II) With CONSULT-III

Turn ignition switch ON.

Select "MAIN SW", "CANCEL SW", "RESUME/ACC SW" and "SET SW" in "DATA MONITOR" mode with CONSULT-III.

Check each item indication under the following conditions.


Switch	Monitor item	Condition	Indication
MAIN switch	MAIN SW	Pressed	ON
MAIN SWILCH	WAIN SW	Released	OFF
CANCEL switch	CANCEL SW	Pressed	ON
CANCEL SWILLI	CANCEL SW	Released	OFF
RESUME/ACCELER-	RESUME/ACC SW	Pressed	ON
ATE switch	INESOIVIE/ACC SVV	Released	OFF
SET/COAST switch	SET SW	Pressed	ON
SET/OUAST SWILLIT	SLI SVV	Released	OFF

Without CONSULT-III

Turn ignition switch ON.

Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
MAIN switch	Pressed	Approx. 0
IVIAIN SWILCIT	Released	Approx. 4
CANCEL switch	Pressed	Approx. 1
CANCEL SWILCH	Released	Approx. 4
RESUME/ACCELERATE	Pressed	Approx. 3
switch	Released	Approx. 4
SET/COAST switch	Pressed	Approx. 2
SET/COAST SWIICH	Released	Approx. 4

OK or NG

OK >> GO TO 8.

NG >> GO TO 3.

${f 3}.$ check ascd steering switch ground circuit for open and short

- Turn ignition switch OFF.
- Disconnect combination switch harness connector.

EC-339 Revision: July 2009 2010 Xterra

Α

EC

D

Е

Н

K

M

Ν

P1564 ASCD STEERING SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

- 3. Disconnect ECM harness connector.
- Check harness continuity between combination switch terminal 15 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

f 4.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M31, E152
- · Harness connectors E5, F14
- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 99 and combination switch terminal 14. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M31, E152
- · Combination switch (spiral cable)
- Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD STEERING SWITCH

Refer to EC-340, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace steering switch.

8. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

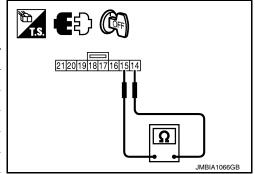
>> INSPECTION END

Component Inspection

INFOID:0000000005267671

ASCD STEERING SWITCH

1. Disconnect combination switch (spiral cable).


P1564 ASCD STEERING SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

Check continuity between combination switch (spiral cable) terminals 14 and 15 with pushing each switch.

Switch	Condition	Resistance [Ω]
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 4,000
CANCEL switch	Pressed	Approx. 250
CANCEL SWILCH	Released	Approx. 4,000
RESUME/ACCELERATE	Pressed	Approx. 1,480
switch	Released	Approx. 4,000
SET/COAST switch	Pressed	Approx. 660
3L1/COA31 SWILCH	Released	Approx. 4,000

Α

EC

С

 D

Е

F

G

Н

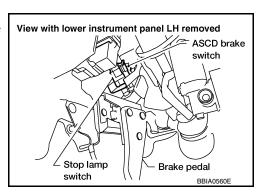
J

K

L

M

Ν


0

INFOID:0000000005267672

P1572 ASCD BRAKE SWITCH

Component Description

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by those two types of input (ON/OFF signal). Refer to EC-35, "System Description" for the ASCD function.

On Board Diagnosis Logic

INFOID:000000005267673

This self-diagnosis has the one trip detection logic. The MIL will not illuminate for this diagnosis.

NOTE:

- If DTC P 1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-301.
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed.
 1st trip DTC is erased when ignition switch is turn OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble Diagnosis Name		DTC Detecting Condition	Possible Cause
		A)	When the vehicle speed is above 30km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to ECM at the same time.	Harness or connectors (The stop lamp switch circuit is shorted.) Harness or connectors (The ASCD brake switch circuit is shorted.)
P1572 1572	ASCD brake switch	В)	ASCD brake switch signal is not sent to ECM for extremely long time while the vehicle is being driven	Harness or connector (The ASCD clutch switch circuit is shorted) (M/T models) Stop lamp switch ASCD brake switch ASCD clutch switch Incorrect stop lamp switch installation Incorrect ASCD brake switch installation Correct ASCD clutch switch installation ECM

DTC Confirmation Procedure

INFOID:0000000005267674

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- The procedure for malfunction B is not described. It takes an extremely long time to complete the procedure for malfunction B. By performing the procedure for malfunction A, the condition that causes malfunction B can be detected.
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Steps 4 and 5 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

P1572 ASCD BRAKE SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

(P) WITH CONSULT-III

- 1. Start engine (VDC switch OFF).
- Select "DATA MONITOR" mode with CONSULT-III.
- Press MAIN switch and make sure that CRUISE indicator illuminates.
- 4. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position

Check 1st trip DTC.

If DTC is detected, go to EC-343, "Diagnosis Procedure".

If DTC is not detected, go to the following step.

Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned vehicle speed.

- Check 1st trip DTC.
- If DTC is detected, go to EC-343, "Diagnosis Procedure".
- WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000005267675

A/T MODELS

1.CHECK OVERALL FUNCTION-I

(P) With CONSULT-III

- Turn ignition switch ON.
- Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

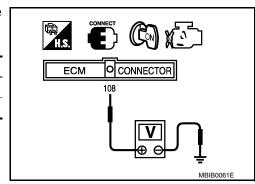
(R) Without CONSULT-III

- Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2.


NG >> GO TO 3.

2.CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Revision: July 2009

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

EC

Α

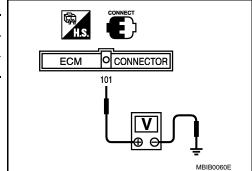
D

Е

Н

K

M

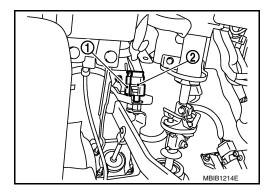

Ν

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⋈ Without CONSULT-III

Check voltage between ECM terminal 101 and ground under the following conditions.

VOLTAGE
Approximately 0V
Battery voltage

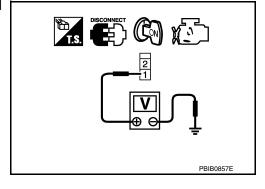


OK or NG

OK >> GO TO 11. NG >> GO TO 7.

3. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch (1) harness connector.
- Stop lamp switch (2)
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.12)
- · Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground in harness or connectors.

5. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2.
 Refer to Wiring Diagram.

Revision: July 2009 EC-344 2010 Xterra

[VQ40DE]

Continuity should exist.

4. Also check harness for short to ground and short to power.

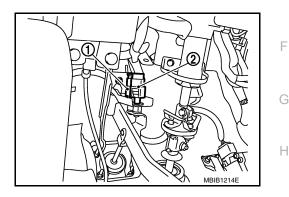
OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$\mathbf{6}$. CHECK ASCD BRAKE SWITCH

Refer to EC-349, "Component Inspection"

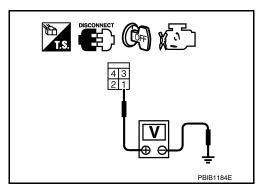

OK or NG

OK >> GO TO 11.

NG >> Replace ASCD brake switch.

.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect stop lamp switch (2) harness connector.
- ASCD brake switch (1)



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.20)
- Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

9.CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-345 2010 Xterra Revision: July 2009

EC

Α

D

Ν

[VQ40DE]

< COMPONENT DIAGNOSIS >

10. CHECK STOP LAMP SWITCH

Refer to EC-349, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace stop lamp switch.

11. CHECK INTERMITTENT INCIDENT

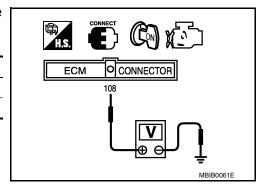
Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

M/T MODELS

1. CHECK OVERALL FUNCTION-I

(P) With CONSULT-III


- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Clutch pedal and/or brake pedal: Slightly depressed	OFF
Clutch pedal and brake pedal: Fully released	ON

⋈ Without CONSULT-III

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Clutch pedal and/or brake pedal: Slightly depressed	Approximately 0V
Clutch pedal and brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⋈ Without CONSULT-III

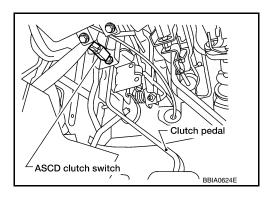
Check voltage between ECM terminal 101 and ground under the following conditions.

P1572 ASCD BRAKE SWITCH

< COMPONENT DIAGNOSIS >

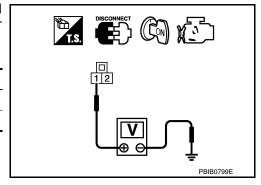
[VQ40DE]

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage


ECM O CONNECTOR

OK or NG

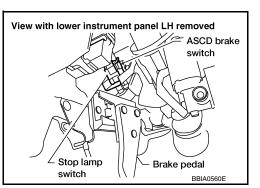
OK >> GO TO 14. NG >> GO TO 10.


$3. \mathsf{CHECK}$ ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch ON.

4. Check voltage between ASCD clutch switch terminal 1 and ground under the following conditions with CONSULT-III or tester.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage



OK or NG

OK >> GO TO 8. NG >> GO TO 4.

4. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch ON.

Α

EC

D

Е

F

Н

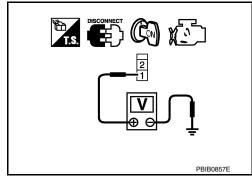
Κ

L

M

Ν

0


< COMPONENT DIAGNOSIS >

Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.12)
- · Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground in harness or connectors.

6.CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

.CHECK ASCD BRAKE SWITCH

Refer to EC-349, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace ASCD brake switch.

8.CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD clutch switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ASCD CLUTCH SWITCH

Refer to EC-349. "Component Inspection".

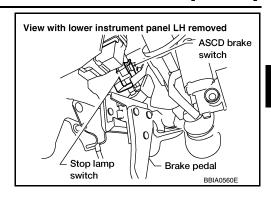
OK or NG

OK >> GO TO 14.

NG >> Replace ASCD clutch switch.

10. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.

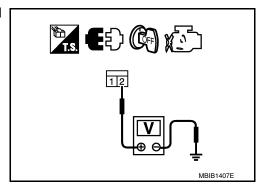

Revision: July 2009 EC-348

P1572 ASCD BRAKE SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.20)
- Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK STOP LAMP SWITCH

Refer to EC-349, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace stop lamp switch.

14. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

Revision: July 2009

ASCD BRAKE SWITCH

EC-349

EC

Α

D

C

Е

F

G

Н

Κ

L

I\ /I

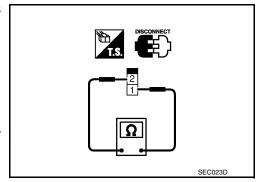
N

0

Р

Г

INFOID:0000000005267676

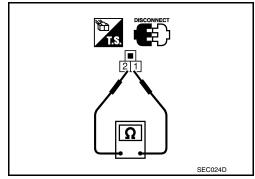

2010 Xterra

< COMPONENT DIAGNOSIS >

- Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal: Fully released.	Should exist.
When brake pedal: Slightly depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-15</u>, <u>"Inspection and Adjustment"</u>, and perform step 3 again.

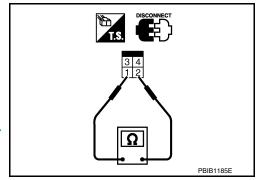


ASCD CLUTCH SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Check harness continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Clutch pedal: Fully released	Should exist
Clutch pedal: Slightly depressed	Should not exist

If NG, adjust ASCD clutch switch installation, refer to <u>BR-15</u>. "Inspection and Adjustment", and perform step 3 again.



STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal: Fully released.	Should not exist.
When brake pedal: Slightly depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to <u>BR-15</u>, <u>"Inspection and Adjustment"</u>, and perform step 3 again.

P1574 ASCD VEHICLE SPEED SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

P1574 ASCD VEHICLE SPEED SENSOR

Component Description

INFOID:0000000005267677

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from combination meter, and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to EC-35, "System Description" for ASCD functions.

EC

Α

On Board Diagnosis Logic

INFOID:0000000005267678

This self-diagnosis has the one trip detection logic.

The MIL will not illuminate for this diagnosis.

NOTE:

D

Е

Н

- If DTC P1574 is displayed with DTC UXXXX, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P1574 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to <u>EC-303</u>.
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500. Refer to <u>EC-288</u>.
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-301</u>.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1574 1574	ASCD vehicle speed sensor	The difference between the two vehicle speed signals is out of the specified range.	Harness or connectors (The CAN communication line is open or shorted.) Combination meter ABS actuator and electric unit (control unit) Wheel sensor TCM (A/T models) ECM

DTC Confirmation Procedure

INFOID:0000000005267679

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

IZ

L

Ν

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1. Start engine.
- 2. Drive the vehicle at more than 40 km/h (25 MPH).
- Check DTC.
- 4. If DTC is detected, go to EC-351, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267680

1. CHECK DTC WITH TCM

Revision: July 2009

Check DTC with TCM, Refer to TM-100, "OBD-II Diagnostic Trouble Code (DTC)",

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-8, "Work Flow" or BRC-119, "Work Flow".

EC-351

2010 Xterra

P1574 ASCD VEHICLE SPEED SENSOR

< COMPONENT DIAGNOSIS > [VQ40DE]

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.check combination meter function

Refer to GI-33, "Work Flow".

>> INSPECTION END

P1715 INPUT SPEED SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

P1715 INPUT SPEED SENSOR

Description INFOID:000000005267681

ECM receives input speed sensor signal from TCM through CAN communication line. ECM uses this signal for engine control.

EC

D

F

Α

On Board Diagnosis Logic

INFOID:0000000005267682

NOTE:

- If DTC P1715 is displayed with DTC UXXXX first perform the trouble diagnosis for DTC UXXXX.
- If DTC P1715 is displayed with DTC P0607, first perform the trouble diagnosis for DTC P0607. Refer to EC-303.
- If DTC P1715 is displayed with DTC P0335, first perform the trouble diagnosis for DTC P0335. Refer to EC-213.
- If DTC P1715 is displayed with DTC P0340, P0345 first perform the trouble diagnosis for DTC P0340, P0345. Refer to <u>EC-217</u>.
- If DTC P1715 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-301</u>.

The MIL will not illuminates for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	G
P1715 1715	Input speed sensor (TCM output)	Input speed sensor signal is different from the theoretical value calculated by ECM from output speed sensor signal and engine rpm signal.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (Input speed sensor circuit is open or shorted) TCM	Н

Diagnosis Procedure

INFOID:0000000005267683

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to TM-100, "OBD-II Diagnostic Trouble Code (DTC)".

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.REPLACE TCM

Replace TCM.

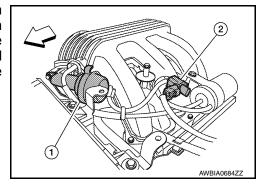
>> INSPECTION END

M

K

Ν

[VQ40DE]


INFOID:000000005267684

P1800 VIAS CONTROL SOLENOID VALVE 1

Component Description

The VIAS control solenoid valve (2) cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and sends the vacuum signal to the power valve actuator (1).

<□ : Front

On Board Diagnosis Logic

INFOID:0000000005267685

The MIL will not illuminate for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1800 1800	VIAS control solenoid valve circuit	An excessively low or high voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) VIAS control solenoid valve

DTC Confirmation Procedure

INFOID:0000000005267686

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

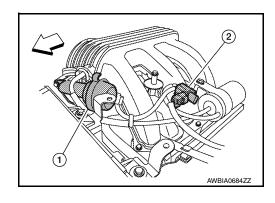
Before performing the following procedure, confirm that battery voltage is between 11V at idle.

- 1. Start engine and let it idle for at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-354, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000005267687

1. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve harness connector.

1 : Power valve actuator

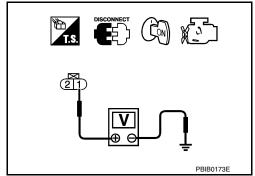
2 : VIAS control solenoid valve

← : Front

Turn ignition switch ON.

P1800 VIAS CONTROL SOLENOID VALVE 1

< COMPONENT DIAGNOSIS >


[VQ40DE]

 Check voltage between terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between VIAS control solenoid valve and IPDM E/R
- Harness for open or short between VIAS control solenoid valve and ECM

>> Repair harness or connectors.

$3. \mathsf{CHECK}$ VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-355, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace VIAS control solenoid valve.

5. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

VIAS CONTROL SOLENOID VALVE

(P) With CONSULT-III

- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.

Revision: July 2009

3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.

EC

Α

D

Е

F

G

Н

ı

J

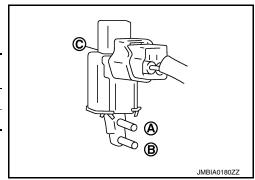
K

M

INFOID:0000000005267688

0

P1800 VIAS CONTROL SOLENOID VALVE 1

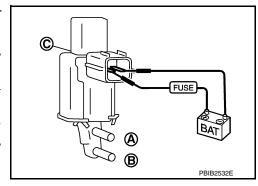

< COMPONENT DIAGNOSIS >

[VQ40DE]

4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.



With GST

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

P1805 BRAKE SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

P1805 BRAKE SWITCH

Description INFOID:0000000005267689

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is being driven.

EC

Α

On Board Diagnosis Logic

INFOID:0000000005267690

The MIL will not illuminate for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for extremely long time while the vehicle is being driven.	I Ston Jamn Switch circuit is open or short-

Е

D

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

F

Engine	operating	condition	in fail-sa	ife mode
--------	-----------	-----------	------------	----------

ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor.

Н

Vehicle condition	Driving condition
When engine is idling	Normal
When accelerating	Poor acceleration

DTC Confirmation Procedure

INFOID:0000000005267691

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- Erase the DTC with CONSULT-III.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-357, "Diagnosis Procedure".

K

Diagnosis Procedure

INFOID:000000005267692

1. CHECK STOP LAMP SWITCH CIRCUIT

- Turn ignition switch OFF.
- Check the stop lamp when depressing and releasing the brake pedal.

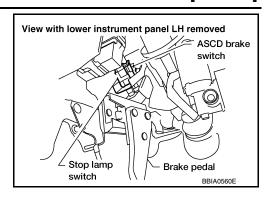
Ν

M

Brake pedal	Stop lamp
Fully released	Not illuminated
Slightly depressed	Illuminated

Р

OK or NG

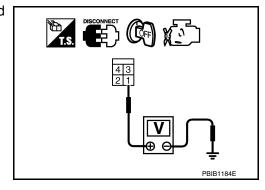

OK >> GO TO 4.

NG >> GO TO 2.

2.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

< COMPONENT DIAGNOSIS >

Disconnect stop lamp switch harness connector.



2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector E160
- · Harness for open and short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Disconnect stop lamp switch harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

View with lower instrument panel LH removed ASCD brake switch Stop lamp Brake pedal BBIA0560E

5. CHECK STOP LAMP SWITCH

Refer to EC-359, "Component Inspection".

OK or NG

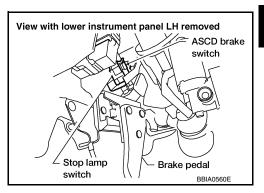
OK >> GO TO 6.

NG >> Replace stop lamp switch.

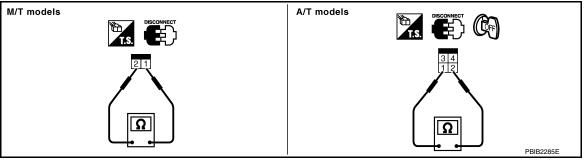
6. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END


[VQ40DE]

Component Inspection


INFOID:0000000005267693

STOP LAMP SWITCH

1. Disconnect stop lamp switch harness connector.

2. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity
Brake pedal: Fully released	Should not exist.
Brake pedal: Slightly depressed	Should exist.

3. If NG, adjust stop lamp switch installation, refer to <u>BR-15, "Inspection and Adjustment"</u>, and perform step 2 again.

EC

Α

С

D

Е

F

G

Н

L

K

NΛ

Ν

0

P2100, P2103 THROTTLE CONTROL MOTOR RELAY

< COMPONENT DIAGNOSIS >

[VQ40DE]

INFOID:000000005267694

P2100, P2103 THROTTLE CONTROL MOTOR RELAY

Component Description

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is controlled ON/OFF by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not

On Board Diagnosis Logic

provided to the ECM.

INFOID:0000000005267695

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2100 2100	Throttle control motor relay circuit open	ECM detects that the voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay
P2103 2103	Throttle control motor relay circuit short	ECM detects that the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000005267696

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

PROCEDURE FOR DTC P2100

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Start engine and let it idle for 5 seconds.
- 3. Check 1st trip DTC.
- 4. If DTC is detected, go to EC-360, "Diagnosis Procedure".

PROCEDURE FOR DTC P2103

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V.

- Turn ignition switch ON and wait at least 1 second.
- 2. Check DTC.
- If DTC is detected, go to <u>EC-360</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

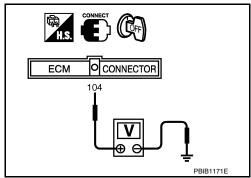
INFOID:0000000005267697

1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

1. Turn ignition switch OFF.

P2100, P2103 THROTTLE CONTROL MOTOR RELAY

< COMPONENT DIAGNOSIS >


[VQ40DE]

Check voltage between ECM terminal 104 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 4. OK NG >> GO TO 2.

2.CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

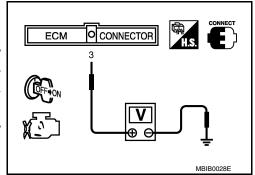
OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK FUSE

- Disconnect 20A fuse.
- Check of 20 A fuse (No.52) is blown.

OK or NG


OK >> GO TO 7.

NG >> Replace 20A fuse.

4.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-III or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 7. NG >> GO TO 5.

CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect IPDM E/R harness connector E119.
- Check continuity between ECM terminal 3 and IPDM E/R terminal 6. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

> **EC-361** Revision: July 2009

Α

EC

D

Е

Н

M

Ν

0

Р

2010 Xterra

P2100, P2103 THROTTLE CONTROL MOTOR RELAY

< COMPONENT DIAGNOSIS >

[VQ40DE]

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> Replace IPDM E/R. Refer to PCS-33, "Removal and Installation of IPDM E/R".

NG >> Repair or replace harness or connectors.

P2101 ELECTRIC THROTTLE CONTROL FUNCTION

< COMPONENT DIAGNOSIS >

[VQ40DE]

P2101 ELECTRIC THROTTLE CONTROL FUNCTION

Description INFOID:0000000005267698

NOTE:

If DTC P2101 is displayed with DTC P2100 or P2119, first perform the trouble diagnosis for DTC P2100 or P2119. Refer to <u>EC-360</u>or <u>EC-369</u>.

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor. The throttle position sensor provides feedback to the ECM, when opens/closes the throttle valve in response to driving conditions via the throttle control motor.

On Board Diagnosis Logic

INFOID:0000000005267699

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2101 2101	Electric throttle control performance	Electric throttle control function does not operate properly.	Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000005267700

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V when the engine is running.

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Start engine and let it idle for 5 seconds.
- 3. Check DTC.
- 4. If DTC is detected, go to EC-363, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267701

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF

Р

Revision: July 2009 EC-363 2010 Xterra

EC

Α

Е

D

|-

G

Н

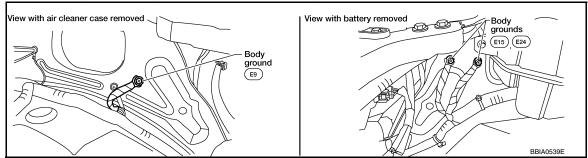
•

J

Κ

 \mathbb{N}

N


_

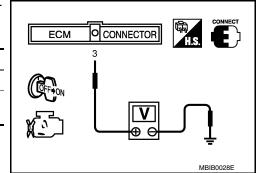
P2101 ELECTRIC THROTTLE CONTROL FUNCTION

< COMPONENT DIAGNOSIS >

[VQ40DE]

2. Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

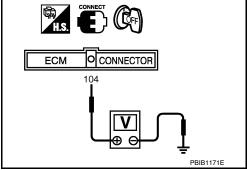
2.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-III or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 9. NG >> GO TO 3.


3.check throttle control motor relay power supply circuit-i

- 1. Turn ignition switch OFF.
- 2. Check voltage between ECM terminal 104 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 4.

4. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

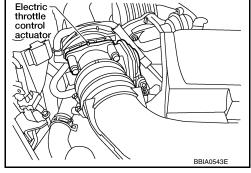
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK FUSE


- 1. Disconnect 20 A fuse (No.52).
- 2. Check 20 A fuse for blown.

OK or NG

Revision: July 2009 EC-364 2010 Xterra

P2101 ELECTRIC THROTTLE CONTROL FUNCTION **[VQ40DE]** < COMPONENT DIAGNOSIS > OK >> GO TO 8. NG >> Replace 20A fuse. Α 6.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II Turn ignition switch OFF. EC Disconnect ECM harness connector. 2. Disconnect IPDM E/R harness connector E119. Check continuity between ECM terminal 3 and IPDM E/R terminal 6. Refer to Wiring Diagram. Continuity should exist. D 5. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 8. Е NG >> GO TO 7. 7.DETECT MALFUNCTIONING PART Check the following. Harness connectors E2, F32 Harness for open or short between ECM and IPDM E/R >> Repair open circuit or short to ground or short to power in harness or connectors. 8. CHECK INTERMITTENT INCIDENT Refer to GI-37, "Intermittent Incident". OK or NG >> Replace IPDM E/R. Refer to PCS-33, "Removal and Installation of IPDM E/R". OK NG >> Repair or replace harness or connectors. 9.CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT Turn ignition switch OFF. Disconnect electric throttle control actuator harness connector. Electric 3. Disconnect ECM harness connector. throttle 4. Check harness continuity between the following terminals. actuator Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
5	5	Should not exist
	4	Should exist
6	5	Should exist
	1	Should not oxist

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace.

10.CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

Remove the intake air duct.

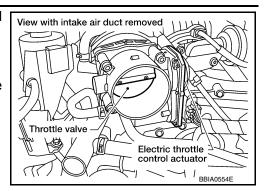
EC-365 2010 Xterra Revision: July 2009

N

M

P2101 ELECTRIC THROTTLE CONTROL FUNCTION

< COMPONENT DIAGNOSIS >


[VQ40DE]

2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 11.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

11. CHECK THROTTLE CONTROL MOTOR

Refer to EC-366, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> GO TO 13.

12. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 13.

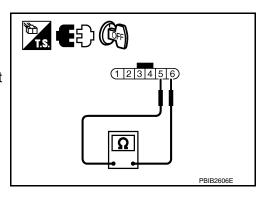
NG >> Repair or replace harness or connectors.

13. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- 3. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

Component Inspection


INFOID:0000000005267702

THROTTLE CONTROL MOTOR

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 5 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-19, "Throttle Valve Closed Position Learning".
- 5. Perform EC-19, "Idle Air Volume Learning".

P2118 THROTTLE CONTROL MOTOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

P2118 THROTTLE CONTROL MOTOR

Component Description

INFOID:0000000005267703

Α

EC

D

Е

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor The throttle sensor provides feedback to the ECM, when opens/closes the throttle valve in response to driving conditions via the throttle control motor.

On Board Diagnosis Logic

INFOID:0000000005267704

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2118 2118	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL illuminates.

Engine operating condition in fail-safe mode

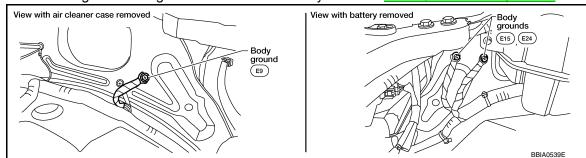
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000005267705

- 1. If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Turn ignition switch ON.
- c. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and wait at least 2 seconds.
- 3. Start engine and let it idle for 5 seconds.
- 4. Check DTC.
- If DTC is detected, go to <u>EC-367</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure


INFOID:0000000005267706

M

N

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.

OK or NG

OK >> GO TO 2.

Revision: July 2009

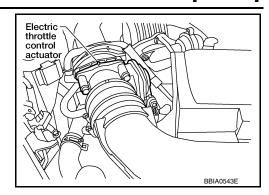
NG >> Repair or replace ground connections.

2.check throttle control motor output signal circuit for open or short

EC-367

2010 Xterra

P2118 THROTTLE CONTROL MOTOR


< COMPONENT DIAGNOSIS >

[VQ40DE]

Disconnect electric throttle control actuator harness connector.

- Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
5	5	Should not exist
	4	Should exist
6	5	Should exist
	4	Should not exist

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.check throttle control motor

Refer to EC-368, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 5.

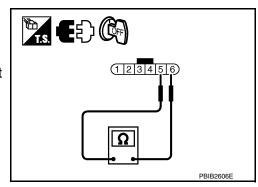
NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform <u>EC-19</u>, "Throttle Valve Closed Position Learning". Perform <u>EC-19</u>, "Idle Air Volume Learning".

>> INSPECTION END

Component Inspection


INFOID:000000005267707

THROTTLE CONTROL MOTOR

- Disconnect electric throttle control actuator harness connector.
- Check resistance between terminals 5 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-19, "Throttle Valve Closed Position Learning".
- 5. Perform EC-19, "Idle Air Volume Learning".

P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

< COMPONENT DIAGNOSIS >

IVQ40DE1

P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

Component Description

INFOID:000000005267708

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and sends the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and opens/closes the throttle valve in response to driving conditions via the throttle control motor.

On Board Diagnosis Logic

INFOID:0000000005267709

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
P2119 2119	Electric throttle control actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detects that the throttle valve is stuck open.	

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL illuminates.

Detected items	Engine operating condition in fail-safe mode	
Malfunction A The ECM controls the electric throttle actuator by regulating the throttle opening around the idle positive throttle engine speed will not rise more than 2,000 rpm.		
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less	
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.	

DTC Confirmation Procedure

INFOID:0000000005267710

NOTE:

- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C.
- If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

PROCEDURE FOR MALFUNCTION A AND B

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Shift selector lever to D position (A/T) or 1st position (M/T), and wait at least 3 seconds.
- 3. Shift selector lever to P position (A/T) or neutral position (M/T).
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and wait at least 1 second.
- Shift selector lever to D position (A/T) or 1st position (M/T), and wait at least 3 seconds.
- Shift selector lever to P position (A/T) or neutral position (M/T).
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- Check DTC.

Revision: July 2009

10. If DTC is detected, go to EC-370, "Diagnosis Procedure".

EC

Α

Е

D

Н

M

N

Р

EC-369

2010 Xterra

P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

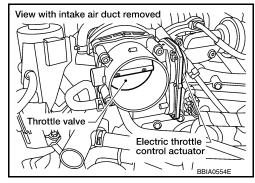
PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-III

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Shift selector lever to D position (A/T) or 1st position (M/T), and wait at least 3 seconds.
- 3. Shift selector lever to P or N position (A/T) or neutral position (M/T).
- 4. Start engine and let it idle for 3 seconds.
- 5. Check DTC.
- 6. If DTC is detected, go to EC-370, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000005267711


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- 1. Remove the intake air duct.
- 2. Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

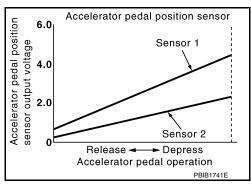
2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- Perform <u>EC-19</u>, "Idle Air Volume Learning".

>> INSPECTION END

[VQ40DE]

INFOID:000000005267712


P2122, P2123 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometer which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and sends voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for engine operations such as fuel cut.

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

NOTE:

If DTC P2122 or P2123 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-304.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or shorted.)
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	A 1 '4 1 1 1 11'

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000005267714

2010 Xterra

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-372, "Diagnosis Procedure".

EC

Α

D

Ε

INFOID:0000000005267713

Н

I

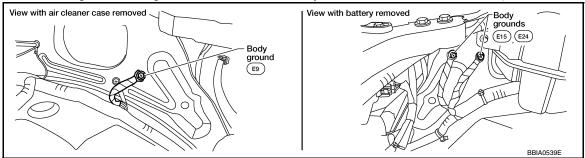
K

.

M

ct-

0

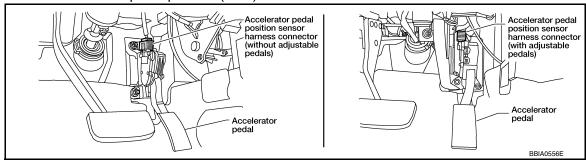

Diagnosis Procedure

INFOID:0000000005267715

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.


OK or NG

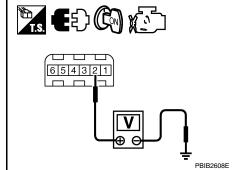
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect accelerator pedal position (APP) sensor harness connector.

- 2. Turn ignition switch ON.
- 3. Check voltage between APP sensor terminal 2 and ground with CONSULT-III or tester.


Voltage: Approximately 5V

OK or NG

NG

OK >> GO TO 3.

>> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 4 and ECM terminal 82. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 106 and APP sensor terminal 3.

Revision: July 2009 EC-372 2010 Xterra

P2122, P2123 APP SENSOR

< COMPONENT DIAGNOSIS >

Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK APP SENSOR

Refer to EC-373, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

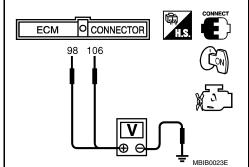
6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- Replace accelerator pedal assembly.
- Perform <u>EC-19</u>, "Accelerator Pedal Released Position Learning".
 Perform <u>EC-19</u>, "Throttle Valve Closed Position Learning".
- 4. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

Component Inspection

ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106 (Accelerator pedal position sensor 1)	Fully released	0.65 - 0.87V
	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 6. Perform <u>EC-19</u>, "Throttle Valve Closed Position Learning".
- 7. Perform EC-19, "Idle Air Volume Learning".

EC-373 2010 Xterra Revision: July 2009

EC

Α

[VQ40DE]

D

Е

Н

INFOID:0000000005267716

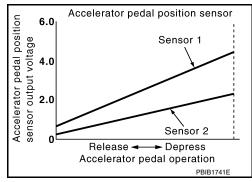
K

M

Ν

0

[VQ40DE]


INFOID:000000005267717

P2127, P2128 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM Leaves this signal for the engine operation such as fuel cut.

On Board Diagnosis Logic

INFOID:0000000005267718

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2127 2127	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or shorted.)
P2128 2128	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	 (The TP sensor circuit shorted.) Accelerator pedal position sensor (APP sensor 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000005267719

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

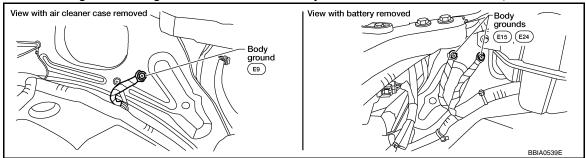
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and let it idle for 1 second.
- 2. Check DTC.
- If DTC is detected, go to <u>EC-374</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:000000005267720

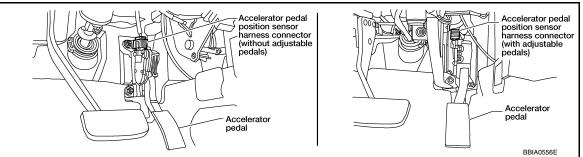

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

Revision: July 2009 EC-374 2010 Xterra

[VQ40DE]

Loosen and retighten three ground screws on the body, Refer to <u>EC-95, "Ground Inspection"</u>

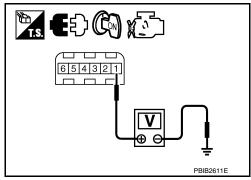

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

1. Disconnect accelerator pedal position (APP) sensor harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between APP sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 1 and ECM terminal 91. Refer to wiring diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal
91	APP sensor terminal 1
47	Electric throttle control actuator terminal 2

Α

EC

D

Е

F

G

Н

K

L

M

Ν

0

P2127, P2128 APP SENSOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

2010 Xterra

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-202, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 6.

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace electric throttle control actuator.
- Perform <u>EC-19</u>, "Throttle Valve Closed Position Learning".
- 3. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

7.CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 5 and ECM terminal 83. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 98 and APP sensor terminal 6. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9.CHECK APP SENSOR

Refer to EC-377, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10.REPLACE ACCELERATOR PEDAL ASSEMBLY

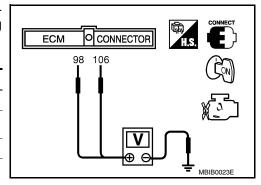
- 1. Replace accelerator pedal assembly.
- Perform <u>EC-19</u>, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-19, "Throttle Valve Closed Position Learning".
- 4. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END


Component Inspection

INFOID:0000000005267721

ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-19, "Throttle Valve Closed Position Learning".
- 7. Perform EC-19, "Idle Air Volume Learning".

EC

Α

D

Е

F

G

Н

J

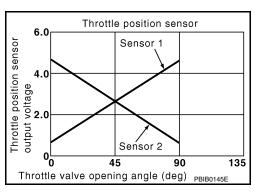
Κ

L

M

Ν

0


INFOID:0000000005267722

P2135 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000005267723

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	Harness or connector (The TP sensor 1 or 2 circuit is open or shorted.) (The APP sensor 2 circuit is shorted). Electric throttle control actuator (TP sensor 1 or 2) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL illuminates.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000005267724

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

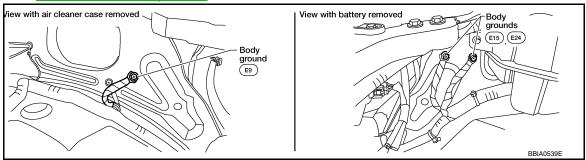
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Start engine and let it idle for 1 second.
- Check DTC.
- If DTC is detected, go to <u>EC-378</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

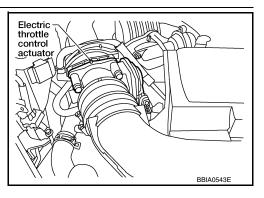

INFOID:0000000005267725

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body.

Revision: July 2009 EC-378 2010 Xterra

Refer to EC-95, "Ground Inspection".

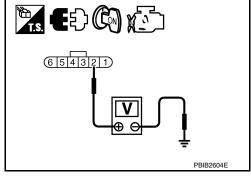

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-1

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 2 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 2 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal
47	Electric throttle control actuator terminal 2
91	APP sensor terminal 1

Revision: July 2009 EC-379 2010 Xterra

EC

Α

D

Е

F

G

Н

.

Κ

1

M

Ν

0

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-377, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- Replace accelerator pedal assembly.
- 2. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-19, "Throttle Valve Closed Position Learning".
- 4. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

7.check throttle position sensor ground circuit for open and short

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 4 and ECM terminal 66. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 1, ECM terminal 69 and electric throttle control actuator terminal 3.
 Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK THROTTLE POSITION SENSOR

Refer to EC-381, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10.REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform <u>EC-19</u>. "Throttle Valve Closed Position Learning".
- Perform <u>EC-19</u>, "Idle Air Volume Learning".

>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

Α

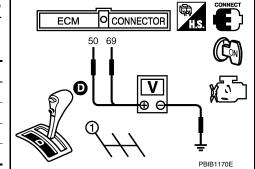
EC

D

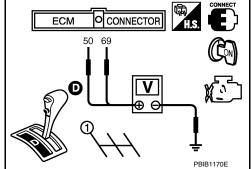
Е

F

>> INSPECTION END


Component Inspection

INFOID:0000000005267726


THROTTLE POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set selector lever to D (A/T), 1st (M/T).
- 5. Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- Perform EC-19, "Throttle Valve Closed Position Learning". 7.
- Perform EC-19, "Idle Air Volume Learning".

Н

K

L

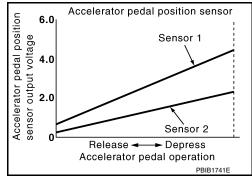
M

Ν

0

Р

EC-381 2010 Xterra Revision: July 2009


INFOID:000000005267727

P2138 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM

receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

On Board Diagnosis Logic

INFOID:0000000005267728

This self-diagnosis has the one trip detection logic.

If DTC P2138 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-304.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) (The TP sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 1 and 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL illuminates.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000005267729

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

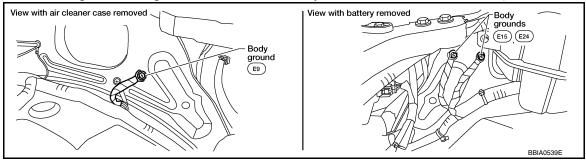
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Start engine and let it idle for 1 second.
- Check DTC.
- If DTC is detected, go to EC-383, "Diagnosis Procedure".

EC-382 2010 Xterra Revision: July 2009

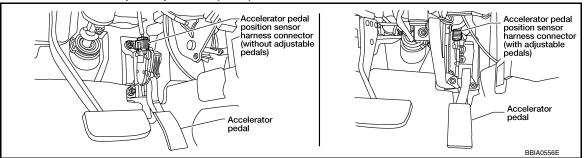

[VQ40DE]

Diagnosis Procedure

INFOID:0000000005267730

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-95, "Ground Inspection"</u>.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

Disconnect accelerator pedal position (APP) sensor harness connector.

- 2. Turn ignition switch ON.
- 3. Check voltage between APP sensor terminals 2 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

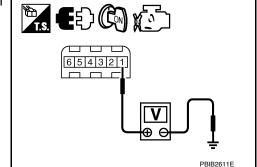
OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

ED (C) (C) (654321) PBIB2608E

3. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

Check voltage between APP sensor terminal 1 and ground with CONSULT-III or tester.


1.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 8.

NG >> GO TO 4.

4. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

1. Turn ignition switch OFF.

Revision: July 2009 EC-383 2010 Xterra

EC

Α

D

Е

F

C

Н

I

J

K

L

M

Ν

- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 1 and ECM terminal 91. Refer to wiring diagram.

Continuity should exist.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit.

CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal
91	APP sensor terminal 1
47	Electric throttle control actuator terminal 2

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK THROTTLE POSITION SENSOR

Refer to EC-202, "Component Inspection".

OK or NG

OK >> GO TO 12. NG >> GO TO 7.

7.REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace electric throttle control actuator.
- 2. Perform EC-19, "Throttle Valve Closed Position Learning".
- Perform <u>EC-19</u>, "Idle Air Volume Learning".

>> INSPECTION END

8.CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminals 4 and ECM terminal 82, APP sensor terminal 5 and ECM terminal 83.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9.CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 106 and APP sensor terminal 3, ECM terminal 98 and APP sensor terminal 6.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Revision: July 2009 EC-384 2010 Xterra

P2138 APP SENSOR

< COMPONENT DIAGNOSIS >

10. CHECK APP SENSOR Refer to EC-385, "Component Inspection".

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

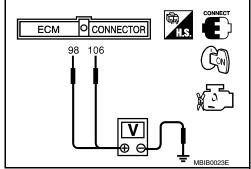
11. REPLACE ACCELERATOR PEDAL ASSEMBLY

- Replace accelerator pedal assembly.
- Perform <u>EC-19</u>, "Accelerator <u>Pedal Released Position Learning</u>".
 Perform <u>EC-19</u>, "<u>Throttle Valve Closed Position Learning</u>".
- 4. Perform EC-19, "Idle Air Volume Learning".

>> INSPECTION END

12. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

Component Inspection

ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-19, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-19, "Throttle Valve Closed Position Learning".
- 7. Perform EC-19, "Idle Air Volume Learning".

EC-385 2010 Xterra Revision: July 2009

EC

[VQ40DE]

Е

D

F

Н

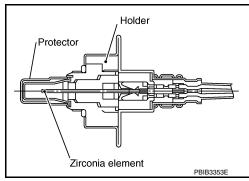
INFOID:0000000005267731

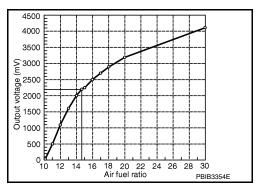
K

Ν

INFOID:0000000005267732

P2A00, P2A03 A/F SENSOR 1


Component Description


The air fuel ratio (A/F) sensor 1 is a planar one-cell limit current sensor. The sensor element of the A/F sensor 1 is composed an electrode layer, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range.

The exhaust gas components diffuse through the diffusion layer at the sensor cell. An electrode layer is applied voltage, and this current relative oxygen density in lean. Also this current relative hydrocarbon density in rich.

Therefore, the A/F sensor 1 is able to indicate air fuel ratio by this electrode layer of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of about 800°C (1,472°F).

On Board Diagnosis Logic

NFOID:000000000526773

To judge the malfunction, the A/F signal computed by ECM from the A/F sensor 1 signal is monitored so it will not shift to LEAN side or RICH side.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P2A00 2A00 (Bank 1) P2A03 2A03 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit range/performance	 The output voltage computed by ECM from the A/F sensor 1 signal shifts to the lean side for a specified period. The A/F signal computed by ECM from the A/F sensor 1 signal shifts to the rich side for a specified period. 	A/F sensor 1 A/F sensor 1 heater Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

INFOID:0000000005267734

NOTE:

If DTC Confirmation Procedure has been previously conducted, always perform the following before conducting the next step.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(I) WITH CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- Clear the self-learning coefficient by touching "CLEAR".

Revision: July 2009 EC-386 2010 Xterra

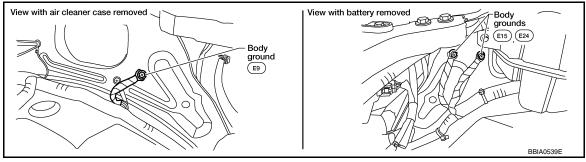
P2A00, P2A03 A/F SENSOR 1

< COMPONENT DIAGNOSIS >

- [VQ40DE]
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON. 8.
- Turn ignition switch OFF and wait at least 10 seconds.
- 10. Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 11. Let engine idle for 1 minute.
- 12. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 13. Check 1st trip DTC.
- 14. If 1st trip DTC is detected, go to EC-387, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- Disconnect mass air flow sensor harness connector.
- Start engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness con-
- 8. Select Service \$03 with GST and make sure that DTC P0102 is detected.
- Select Service \$04 with GST and erase the DTC P0102.
- 10. Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 11. Let engine idle for 1 minute.
- 12. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 13. Select Service \$07 with GST. If 1st trip DTC is detected, go to EC-387, "Diagnosis Procedure".


Mass air flow sensor (with built in intake air temperature sensor) Front

Diagnosis Procedure

CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection"

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

Loosen and retighten the air fuel ratio (A/F) sensor 1.

Refer to EM-32, "Removal and Installation".

>> GO TO 3.

3.CHECK FOR INTAKE AIR LEAK

- Start engine and run it at idle.
- Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

> **EC-387** 2010 Xterra Revision: July 2009

EC

Α

D

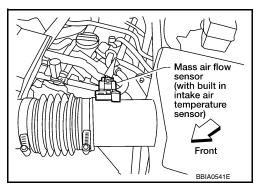
Е

INFOID:0000000005267735

N

NG >> Repair or replace.

4. CLEAR THE SELF-LEARNING DATA.

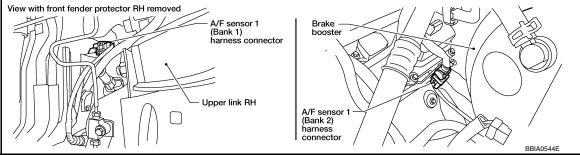

(I) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 3 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-47</u>, "<u>Emission-related</u> <u>Diagnostic Information</u>".
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172 or P0174, P0175 detected?
 Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-181</u> or <u>EC-187</u>.

No >> GO TO 5.

5. CHECK HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.

Check harness connector for water.

Water should not exit.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace harness connector.

6.CHECK A/F SENSOR 1 POWER SUPPLY CIRCUIT

1. Turn ignition switch ON.

P2A00, P2A03 A/F SENSOR 1

< COMPONENT DIAGNOSIS >


[VQ40DE]

Check voltage between A/F sensor 1 terminal 4 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- IPDM E/R connector E119
- 15 A fuse (No.54)
- · Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

8. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank1	1	35
Danki	2	56
Bank 2	1	16
Dalik Z	2	75

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bar	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	35	1	16
2	56	2	75

Continuity should not exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9.CHECK A/F SENSOR 1 HEATER

Refer to EC-103, "Component Inspection".

OK or NG

OK >> GO TO 10. NG >> GO TO 11.

> **EC-389** 2010 Xterra Revision: July 2009

EC

Α

D

Е

F

Н

Р

Ν

< COMPONENT DIAGNOSIS >

10. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11.REPLACE A/F SENSOR 1

Replace malfunctioning A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> GO TO 12.

12. CONFIRM A/F ADJUSTMENT DATA

- Turn ignition switch ON.
- 2. Select "A/F ADJ-B1" and "A/F ADJ-B2" in "DATA MONITOR" mode with CONSULT-III.
- 3. Make sure that "0" is displayed on CONSULT-III screen.

OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

13.CREAR A/F ADJUSTMENT DATA

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

⋈ Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-47, "Emission-related Diagnostic Information"</u>.
- 8. Make sure DTC P0000 is displayed.

>> GO TO 14.

Mass air flow sensor (with built in intake air temperature sensor) Front

14. CONFIRM A/F ADJUSTMENT DATA

- 1. Turn ignition switch OFF and then ON.
- Select "A/F ADJ-B1" and "A/F ADJ-B2" in "DATA MONITOR" mode with CONSULT-III.
- 3. Make sure that "0" is displayed on CONSULT-III screen.

OK or NG

OK >> INSPECTION END

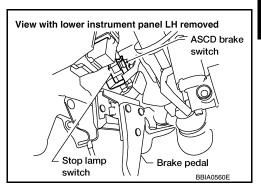
INFOID:000000005267736

Α

EC

D

Е


F

ASCD BRAKE SWITCH

Component Description

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by two types of input (ON/OFF signal).

Refer to EC-35, "System Description" for the ASCD function.

CONNECTOR

108

ECM

Diagnosis Procedure

A/T MODELS

1. CHECK OVERALL FUNCTION-I

(I) With CONSULT-III

- 1. Turn ignition switch ON.
- Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

Without CONSULT-III

- Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2.

NG >> GO TO 3.

2.CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

INFOID:0000000005267737

Н

K

M

Ν

MBIB0061E

0

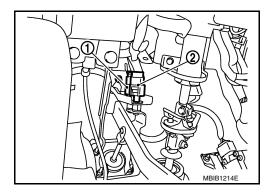
[VQ40DE]

< COMPONENT DIAGNOSIS >

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

ECM O CONNECTOR 101 MRUROOGOE

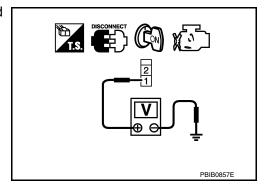

OK or NG

OK >> INSPECTION END

NG >> GO TO 7.

3. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch (1) harness connector.
- Stop lamp switch (2)
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.12)
- · Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground in harness or connectors.

$5. \mathsf{CHECK}$ ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

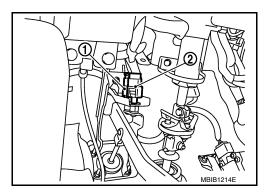
Revision: July 2009 EC-392 2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

6.CHECK ASCD BRAKE SWITCH

Refer to EC-397, "Component Inspection".

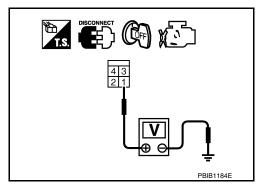

OK or NG

OK >> GO TO 11.

NG >> Replace ASCD brake switch.

7.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- Disconnect stop lamp switch (2) harness connector.
- ASCD brake switch (1)



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 9. OK NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.20)
- · Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK STOP LAMP SWITCH

Refer to EC-397, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace stop lamp switch.

EC-393 Revision: July 2009

EC

D

Е

Н

M

Р

2010 Xterra

11. CHECK INTERMITTENT INCIDENT

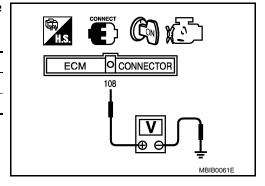
Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

M/T MODELS

1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-III


- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Clutch pedal and/or brake pedal: Slightly depressed	OFF
Clutch pedal and brake pedal: Fully released	ON

⋈ Without CONSULT-III

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

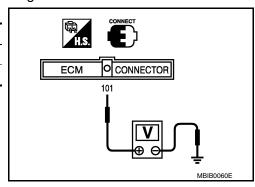
CONDITION	VOLTAGE
Clutch pedal and/or brake pedal: Slightly depressed	Approximately 0V
Clutch pedal and brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

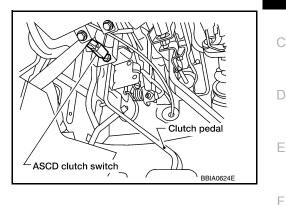

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⋈ Without CONSULT-III

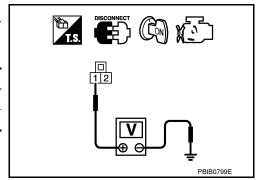
Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage


OK or NG

OK >> INSPECTION END

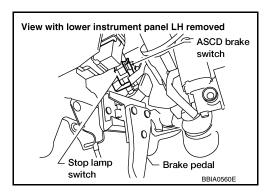
NG >> GO TO 10.


3.check ascd clutch switch power supply circuit

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch ON.

 Check voltage between ASCD clutch switch terminal 1 and ground under the following conditions with CONSULT-III or tester.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

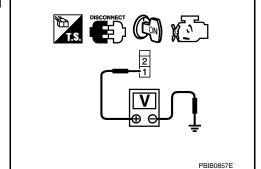


OK or NG

OK >> GO TO 8. NG >> GO TO 4.

4. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

Revision: July 2009

EC-395

2010 Xterra

Ν

M

K

Н

Α

EC

0

ASCD BRAKE SWITCH

< COMPONENT DIAGNOSIS >

[VQ40DE]

- Fuse block (J/B) connector E160
- 10 A fuse (No.12)
- · Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground in harness or connectors.

6. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD BRAKE SWITCH

Refer to EC-397, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace ASCD brake switch.

8.CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 108 and ASCD clutch switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

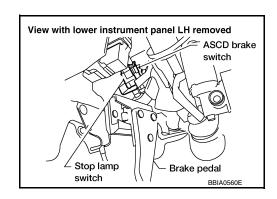
OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

CHECK ASCD CLUTCH SWITCH

Refer to EC-397, "Component Inspection".


OK or NG

OK >> GO TO 14.

NG >> Replace ASCD clutch switch.

10. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.

ASCD BRAKE SWITCH

< COMPONENT DIAGNOSIS >

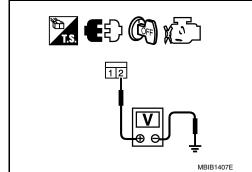
[VQ40DE]

Α

EC

D

Е


F

3. Check voltage between stop lamp switch terminal 2 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E160
- 10 A fuse (No.20)
- · Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK STOP LAMP SWITCH

Refer to EC-397, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace stop lamp switch.

14. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

ASCD BRAKE SWITCH

- Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.

Н

K

L

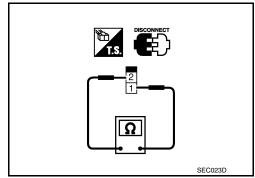
M

INFOID:0000000005267738

2010 Xterra

Ν

Revision: July 2009 EC-397

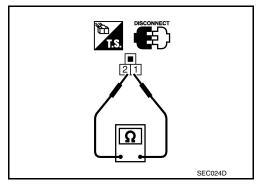

Ρ

< COMPONENT DIAGNOSIS >

3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal: Fully released.	Should exist.
When brake pedal: Slightly depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-15</u>, <u>"Inspection and Adjustment"</u>, and perform step 3 again.

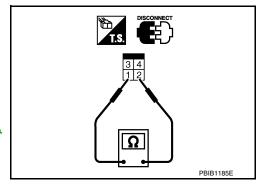


ASCD CLUTCH SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Check harness continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Clutch pedal: Fully released	Should exist
Clutch pedal: Slightly depressed	Should not exist

If NG, adjust ASCD clutch switch installation, refer to <u>BR-15.</u> "Inspection and Adjustment", and perform step 3 again.



STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal: Fully released.	Should not exist.
When brake pedal: Slightly depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to <u>BR-15</u>, <u>"Inspection and Adjustment"</u>, and perform step 3 again.

ASCD INDICATOR

< COMPONENT DIAGNOSIS > [VQ40DE]

ASCD INDICATOR

Component Description

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and

SET, and is integrated in combination meter.

CRUISE indicator illuminates when MAIN switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET indicator illuminates when the following conditions are met.

- CRUISE indicator is illuminated.
- SET/COAST switch on ASCD steering switch is turned ON while vehicle speed is within the range of the ASCD setting.

SET indicator remains lit during ASCD control.

Refer to EC-35, "System Description" for the ASCD function.

Diagnosis Procedure

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	MAIN switch: pressed at the 1st time → at the 2nd time	$ON \to OFF$
	MAIN switch: ON	ASCD: Operating	ON
SET LAMP	When vehicle speed is be- tween 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2.CHECK DTC

Check that DTC UXXXX is not displayed.

OK or NG

OK >> GO TO 3.

NG >> Perform trouble diagnoses for DTC UXXXX.

3.CHECK COMBINATION METER FUNCTION

Refer to MWI-3, "Work Flow".

OK or NG

OK >> GO TO 4.

NG >> Go to MWI-4, "METER SYSTEM : System Diagram".

4.CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Revision: July 2009 EC-399 2010 Xterra

EC

Α

С

D

INFOID:0000000005267740

INFOID:000000005267739

F

G

Н

1

J

K

_

M

14

Р

[VQ40DE]

COOLING FAN

Description INFOID:0000000005267741

COMPONENT DESCRIPTION

Cooling Fan Motor

The cooling fan operates at each speed when the current flows in the cooling fan motor as follows.

Cooling fan speed	Cooling fan motor terminals	
Cooling lan speed	(+)	(-)
Low (LOW)	1	3 and 4
	2	3 and 4
High (HI)	1 and 2	3 and 4

Diagnosis Procedure

INFOID:0000000005267742

1. CHECK IPDM E/R GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connectors E122, E124.
- Check harness continuity between IPDM E/R terminals 38, 59 and ground. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to power.

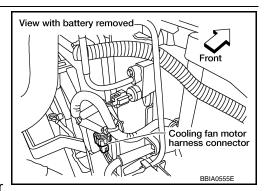
OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to power in harness or connectors.

2.CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect cooling fan motor harness connector.
- Check harness continuity between the following; cooling fan motor terminal 1 and IPDM E/R terminal 20, cooling fan motor terminal 2 and IPDM E/R terminal 24. Refer to Wiring Diagram.


Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$3. \mathsf{CHECK}$ cooling fan moter ground circuit for open or short

 Check harness continuity between the following; cooling fan motor terminal 3 and ground, cooling fan motor terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

COOLING FAN

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

D

Е

F

Н

4. CHECK COOLING FAN MOTOR

Refer to EC-401, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace cooling fan motor.

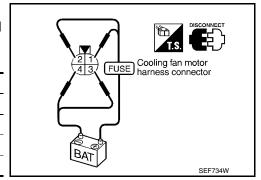
5. CHECK INTERMITTENT INCIDENT

Perform GI-37, "Intermittent Incident".

OK or NG

OK >> INSPETION END

NG >> Repair or replace harness or connector.


Component Inspection

INFOID:0000000005267743

COOLING FAN MOTOR

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

Cooling fan speed	Cooling fan motor terminals	
Cooling lan speed	(+)	(-)
Low	1	3 and 4
	2	3 and 4
High	1 and 2	3 and 4

Cooling fan motor should operate.

If NG, replace cooling fan motor.

Κ

.

M

Ν

0

Р

[VQ40DE]

ELECTRICAL LOAD SIGNAL

Description INFOID:000000005267744

The electrical load signal (Headlamp switch signal, etc.) is transferred through the CAN communication line from BCM to ECM via IPDM E/R.

Diagnosis Procedure

INFOID:0000000005267745

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- 1. Turn ignition switch ON.
- 2. Connect CONSULT-III and select "DATA MONITOR" mode.
- 3. Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch: ON	ON
Rear window defogger switch: OFF	OFF

OK or NG

OK >> GO TO 2.

NG >> GO TO 4.

2.CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch: ON at 2nd position	ON
Lighting switch: OFF	OFF

OK or NG

OK >> GO TO 3.

NG >> GO TO 5.

3.CHECK HEATER FAN SIGNAL CIRCUIT OVERALL FUNCTION

Select "HEATER FAN SW" and check indication under the following conditions.

Condition	Indication
Heater fan control switch: ON	ON
Heater fan control switch: OFF	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 6.

4. CHECK REAR WINDOW DEFOGGER SYSTEM

Refer to DEF-3, "Repair Work Flow".

>> INSPECTION END

5. CHECK HEADLAMP SYSTEM

Refer to EXL-4, "Work Flow".

>> INSPECTION END

6. CHECK HEATER FAN CONTROL SYSTEM

Refer to HAC-57, "Symptom Matrix Chart" (TYPE 1) or HAC-124, "Symptom Matrix Chart" (TYPE 2).

ELECTRICAL LOAD SIGNAL

< COMPONENT DIAGNOSIS > [VQ40DE]

>> INSPECTION END

Α

EC

С

 D

Е

F

G

Н

1

J

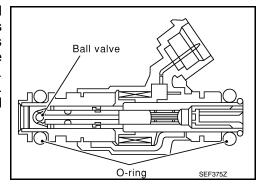
Κ

L

M

Ν

0


Ρ

FUEL INJECTOR

Component Description

INFOID:0000000005267746

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the fuel injector, the coil in the fuel injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the fuel injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the fuel injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

Diagnosis Procedure

INFOID:000000005267747

1. INSPECTION START

Turn ignition switch to START.

Are any cylinders ignited?

Yes or No

Yes (With CONSULT-III)>>GO TO 2. Yes (Without CONSULT-III)>>GO TO 3. No >> GO TO 7.

2. CHECK OVERALL FUNCTION

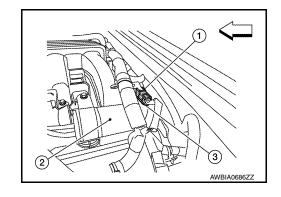
(P) With CONSULT-III

- Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> INSPECTION END

NG >> GO TO 7.


3.CHECK FUNCTION OF FUEL INJECTOR-I

⋈ Without CONSULT-III

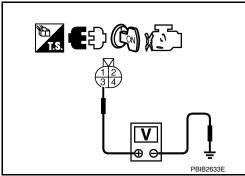
- Stop engine.
- 2. Disconnect harness connector F44 (3), F201 (1)

2 : Vacuum tank <□ : Front

Turn ignition switch ON.

FUEL INJECTOR

< COMPONENT DIAGNOSIS >


Check voltage between harness connector F44 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

- Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- 7. Check harness continuity between harness connector F44 and ECM as follows.

Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal
1	2	23
3	1	22
5	4	21

Continuity should exist.

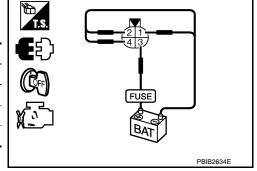
8. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

f 4.DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors E2, F32
- IPDM E/R harness connector E119
- 15 A fuse (No.55)
- · Harness for open or short between harness connector F44 and fuse
- Harness for open or short between harness connector F201 and fuel injector

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{5}$. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between harness connector F201 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F201 terminal	
Cymraer	(+)	(–)
1	3	2
3	3	1
5	3	4

Operating sound should exist.

OK or NG

OK >> GO TO 6. NG >> GO TO 7.

6.CHECK FUNCTION OF FUEL INJECTOR-III

- Reconnect all harness connector disconnected.
- 2. Start engine.

EC

Α

[VQ40DE]

D

Е

Н

K

M

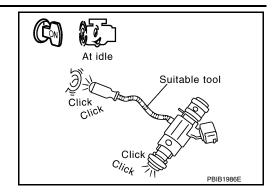
Ν

0

Р

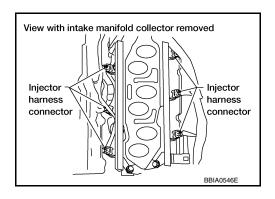
EC-405 2010 Xterra Revision: July 2009

< COMPONENT DIAGNOSIS >


Listen to fuel injectors No. 2, No. 4, No.6 operating sound.

Clicking noise should exist.

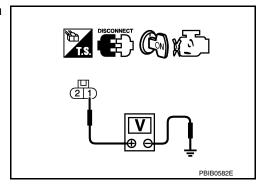
OK or NG


OK >> INSPECTION END

NG >> GO TO 7.

7.CHECK FUEL INJECTOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel injector harness connector.



- 3. Turn ignition switch ON.
- 4. Check voltage between fuel injector terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors E2, F32
- · Harness connectors F44, F201
- IPDM E/R harness connector E119
- 15 A fuse (No.55)
- · Harness for open or short between fuel injector and fuse

>> Repair harness or connectors.

$9.\mathsf{CHECK}$ FUEL INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between fuel injector terminal 2 and ECM terminals 21, 22, 23, 40, 41, 42. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

Revision: July 2009 EC-406 2010 Xterra

FUEL INJECTOR

< COMPONENT DIAGNOSIS >

[VQ40DE]

OK >> GO TO 11.

NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors F201, F44
- · Harness for open or short between fuel injector and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK FUEL INJECTOR

Refer to EC-407, "Component Inspection".

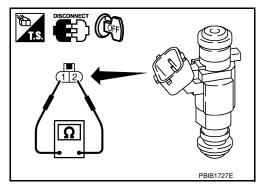
OK or NG

OK >> GO TO 12.

NG >> Replace fuel injector.

12. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".


>> INSPECTION END

Component Inspection

FUEL INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: $11.1 - 14.5\Omega$ [at $10 - 60^{\circ}$ C ($50 - 140^{\circ}$ F)]

EC

Α

C

D

Е

F

INFOID:0000000005267748

Н

J

K

M

Ν

0

Р

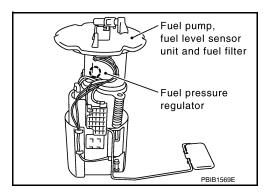
[VQ40DE]

FUEL PUMP

Description INFOID:000000005267745

SYSTEM DESCRIPTION

Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*	Fuel pump control	Fuel pump relay
Battery	Battery voltage*		


^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM activates the fuel pump for several seconds after the ignition switch is turned ON to improve engine start ability. If the ECM receives a engine speed signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

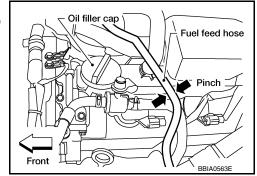
COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

Diagnosis Procedure

INFOID:000000005267750

1. CHECK OVERALL FUNCTION


- 1. Turn ignition switch ON.
- 2. Pinch fuel feed hose with two fingers.

Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned ON.

OK or NG

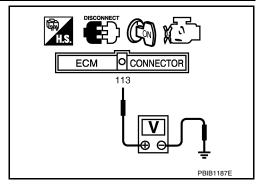
OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Turn ignition switch ON.

< COMPONENT DIAGNOSIS >

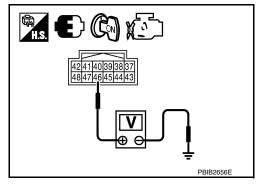

[VQ40DE]

Check voltage between ECM terminal 113 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 5. OK NG >> GO TO 3.

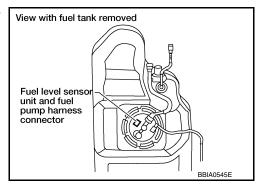

3.CHECK FUEL PUMP POWER SUPPLY CIRCUIT-II

Check voltage between IPDM E/R terminal 46 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 12.


4. DETECT MALFUNCTIONING PART

Check harness for open or short between IPDM E/R and ECM

>> Repair harness or connectors.

5. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-III

- Turn ignition switch OFF.
- Reconnect all harness connectors disconnected.
- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 4. Turn ignition switch ON.

(5|4|3|2|1)

5. Check voltage between "fuel level sensor unit and fuel pump" terminal 1 and ground with CONSULT-III or tester.

> Battery voltage should exist for 1 sec-Voltage: ond after ignition switch is turned ON.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 6.

6.CHECK 15A FUSE

Turn ignition switch OFF.

EC-409 Revision: July 2009 2010 Xterra EC

Α

D

Е

F

Н

M

Ν

Р

PBIB0795E

[VQ40DE]

- 2. Disconnect 15A fuse.
- 3. Check 15 A fuse (No.48).

OK or NG

OK >> GO TO 7.

NG >> Replace 15A fuse.

7.CHECK FUEL PUMP POWER SUPPLY CURCUIT-IV

- 1. Disconnect IPDM E/R harness connector E119.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 1 and IPDM E/R terminal 13.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- · Harness for open or short between "fuel level sensor unit and fuel pump" and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK FUEL PUMP GROUND CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 3 and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground.

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, E41
- Harness for open or short between "fuel level sensor unit and fuel pump" and ground
 - >> Repair open circuit or short to power in harness or connectors.

11. CHECK FUEL PUMP

Refer to EC-411, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace fuel pump.

12. CHECK INTERMITTENT INCIDENT

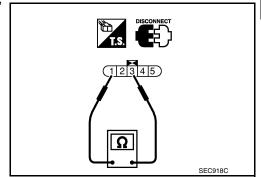
Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> Replace IPDM E/R.

NG >> Repair or replace harness or connectors.

[VQ40DE]


Component Inspection

INFOID:0000000005267751

FUEL PUMP

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.

Resistance: Approximately 0.2 - 5.0 Ω [at 25°C (77°F)]

EC

Α

С

D

Ε

F

G

Н

J

K

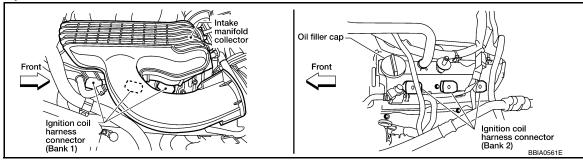
L

M

Ν

0

Р


IGNITION SIGNAL

Component Description

INFOID:000000005267752

IGNITION COIL & POWER TRANSISTOR

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns ON and OFF the ignition coil primary circuit. This ON/OFF operation induces the proper high voltage in the coil secondary circuit.

Diagnosis Procedure

INFOID:0000000005267753

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-III)>>GO TO 2.

Yes (Without CONSULT-III)>>GO TO 3.

No >> GO TO 4.

2. CHECK OVERALL FUNCTION

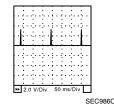
(I) With CONSULT-III

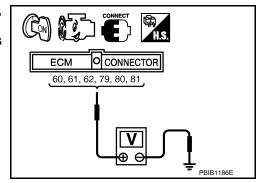
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.


3. CHECK OVERALL FUNCTION


⊗ Without CONSULT-III

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 60, 61, 62, 79, 80, 81 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

NOTE:

The pulse cycle changes depending on rpm at idle.

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

IGNITION SIGNAL

< COMPONENT DIAGNOSIS >

[VQ40DE]

EC

D

Е

F

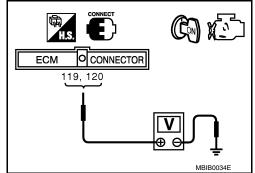
Н

M

Ν

0

Р

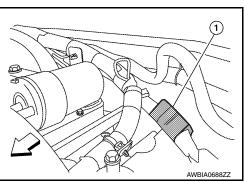

- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Check voltage between ECM terminals 119, 120 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5.

NG >> Go to EC-92, "Diagnosis Procedure".

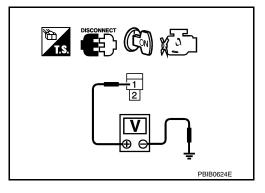


5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect condenser-1 harness connector.

: Condenser-1 ⟨⇒ : Front

Turn ignition switch ON.



Check voltage between condenser-1 terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- Turn ignition switch OFF.
- Disconnect IPDM E/R harness connector E119.
- Check harness continuity between IPDM E/R terminal 3 and condenser-1 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

Harness connectors E2, F32

Revision: July 2009

- Harness for open or short between condenser-1 and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-413

2010 Xterra

$8.\mathsf{check}$ condenser-1 ground circuit for open and short

- 1. Turn ignition switch OFF.
- Check harness continuity between condenser-1 terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

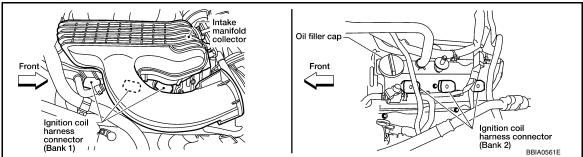
OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK CONDENSER-1

Refer to EC-415, "Component Inspection".

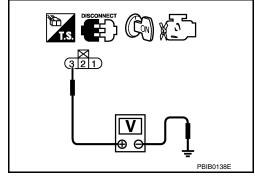

OK or NG

OK >> GO TO 10.

NG >> Replace condenser-1.

10. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.



- 4. Turn ignition switch ON.
- 5. Check voltage between ignition coil terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- · Harness connectors F26, F225
- · Harness for open or short between ignition coil and harness connector F32
 - >> Repair or replace harness or connectors.

12. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between ignition coil terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

IGNITION SIGNAL

< COMPONENT DIAGNOSIS >	[VQ40DE]
Also check harness for short to power.	
OK or NG	Α
OK >> GO TO 14. NG >> GO TO 13.	
13. DETECT MALFUNCTIONING PART	EC
Check the following. • Harness connectors F225, F26	
Harness for open or short between ignition coil and ground	
>> Repair open circuit or short to power in harness or connectors.	
14. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
Disconnect ECM harness connector.	
 Check harness continuity between ECM terminals 60, 61, 62, 79, 80, 81 and ignition coil te Refer to Wiring Diagram. 	erminal 1.
Continuity should exist.	F
3. Also check harness for short to ground and short to power.	
OK or NG	
OK >> GO TO 16. NG >> GO TO 15.	G
15. DETECT MALFUNCTIONING PART	
	H
Check the following.Harness connectors F26, F225	
Harness for open or short between ignition coil and ECM	1
>> Denoir once circuit or short to ground or short to power in hornoon or connectors	
>> Repair open circuit or short to ground or short to power in harness or connectors. 16.CHECK IGNITION COIL WITH POWER TRANSISTOR	
Refer to EC-415, "Component Inspection". OK or NG	
OK >> GO TO 17.	k
NG >> Replace malfunctioning ignition coil with power transistor.	
17. CHECK INTERMITTENT INCIDENT	L
Refer to GI-37, "Intermittent Incident".	
>> INSPECTION END	N
Component Inspection	INFOID:0000000005267754
IGNITION COIL WITH POWER TRANSISTOR	N
CAUTION:	
Do the following procedure in the place where ventilation is good without the combustib	le.
 Turn ignition switch OFF. Disconnect ignition coil harness connector. 	
	F

Check resistance between ignition coil terminals as follows.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 and 2	Except 0 or ∞
1 and 3	Except 0
2 and 3	Εχτορίο

- 4. If NG, Replace ignition coil with power transistor. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Reconnect all harness connectors disconnected.
- 7. Remove fuel pump fuse (No.48) in IPDM E/R to release fuel pressure.

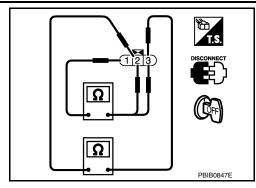
NOTE:

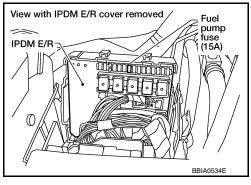
Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

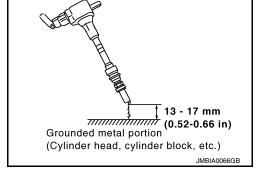
- 8. Start engine.
- 9. After engine stalls, crank it two or three times to release all fuel pressure.
- 10. Turn ignition switch OFF.
- 11. Remove ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 12. Remove ignition coil and spark plug of the cylinder to be checked.
- 13. Crank engine for five seconds or more to remove combustion gas in the cylinder.
- 14. Connect spark plug and harness connector to ignition coil.
- 15. Fix ignition coil using a rope etc. with gap of 13 17 mm (0.52 0.66 in) between the edge of the spark plug and grounded metal portion as shown in the figure.
- 16. Crank engine for about three seconds, and check whether spark is generated between the spark plug and the grounded part.

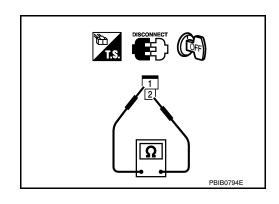
CAUTION:

- Never place to the spark plug and the ignition coil within 50cm (19.7 in) each other. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20 kV or more.
- It might cause to damage the ignition coil if the gap of more than 17 mm (0.66 in) is made. NOTE:

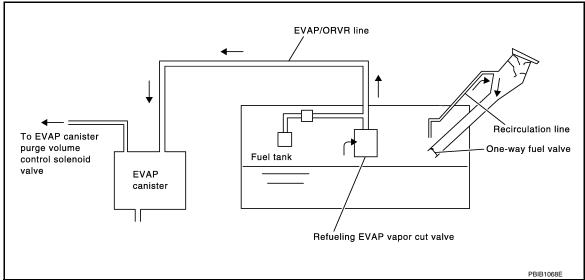

When the gap is less than 13 mm (0.52 in), the spark might be generated even if the coil is malfunctioning.


17. If NG, Replace ignition coil with power transistor.


CONDENSER-1


- 1. Turn ignition switch OFF.
- Disconnect condenser-1 harness connector.
- Check resistance between condenser-1 terminals 1 and 2.

Resistance	Above 1 MΩ at 25°C (77°F)



[VQ40DE]

INFOID:000000005267755

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

System Description

From the beginning of refueling, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

WARNING:

When conducting inspections below, always to observe the following:

- Put a "CAUTION: FLAMMABLE" sign in workshop.
- Never smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Always to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-500, "Fuel Pressure Check".
- Disconnect battery negative cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Never kink or twist hose and tube when they are installed.
- Never tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Never attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

Diagnosis Procedure

SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

> EC-417 2010 Xterra Revision: July 2009

EC

Α

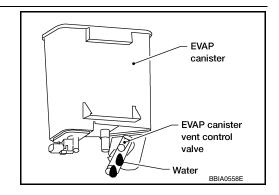
D

Е

Ν

INFOID:0000000005267756

< COMPONENT DIAGNOSIS >


[VQ40DE]

2.CHECK IF EVAP CANISTER IS SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK DRAIN FILTER

Refer to EC-420, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace drain filter.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-420, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2.CHECK IF EVAP CANISTER IS SATURATED WITH WATER

< COMPONENT DIAGNOSIS >

[VQ40DE]

Α

EC

D

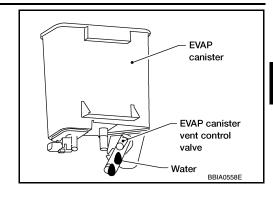
Е

K

M

Ν

0


Р

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3.

No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK DRAIN FILTER

Refer to EC-420, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace drain filter.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kinks, looseness and improper connection.

OK or NG

OK >> GO TO 7.

NG >> Repair or replace hoses and tubes.

7.CHECK FILLER NECK TUBE

Check recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 8.

NG >> Replace filler neck tube.

8. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-420, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

9. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 10.

NG >> Replace fuel filler tube.

10. CHECK ONE-WAY FUEL VALVE-I

Check one-way valve for clogging.

OK or NG

OK >> GO TO 11.

Revision: July 2009

EC-419

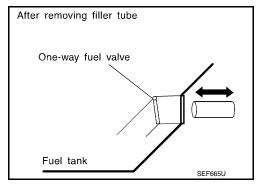
2010 Xterra

< COMPONENT DIAGNOSIS >

[VQ40DE]

NG >> Repair or replace one-way fuel valve with fuel tank.

11. CHECK ONE-WAY FUEL VALVE-II


- 1. Make sure that fuel is drained from the tank.
- 2. Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

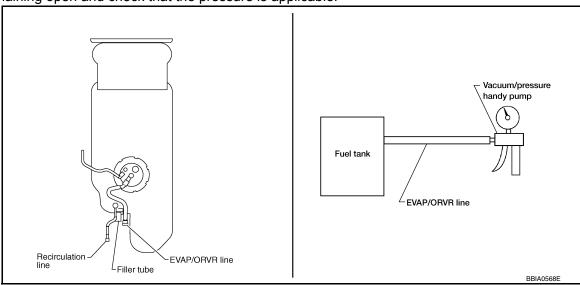
OK or NG

OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

INFOID:0000000005267757

Component Inspection

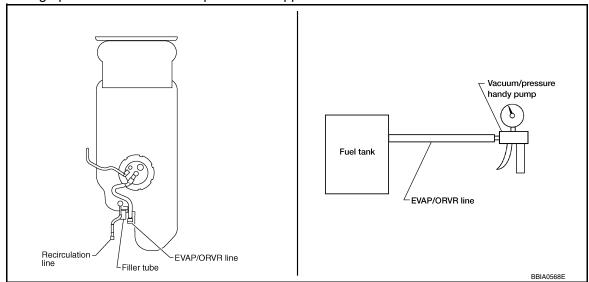

REFUELING EVAP VAPOR CUT VALVE

(P) With CONSULT-III

- 1. Remove fuel tank. Refer to FL-6, "Removal and Installation".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-III.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- Check refueling EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose end.
- Remove fuel gauge retainer with fuel gauge unit.

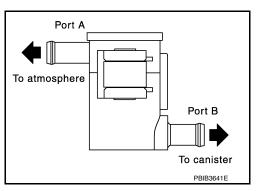
Always replace O-ring with new one.

- c. Turn fuel tank upside down.
- d. Apply vacuum pressure to hose end [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.


Without CONSULT-III

< COMPONENT DIAGNOSIS >

- Remove fuel tank. Refer to <u>FL-6. "Removal and Installation"</u>.
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a handy pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- 4. Check refueling EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose end.
- b. Remove fuel gauge retainer with fuel gauge unit.


Always replace O-ring with new one.

- c. Turn fuel tank upside down.
- d. Apply vacuum pressure to hose end [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

DRAIN FILTER

- 1. Check visually for insect nests in the drain filter air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- Check visually for cracks or flaws in the hose.
- 4. Blow air into port A and check that it flows freely out of port B.
- 5. Block port B.
- Blow air into port A and check that there is no leakage.
- 7. If NG, replace drain filter.

EC

Α

[VQ40DE]

D

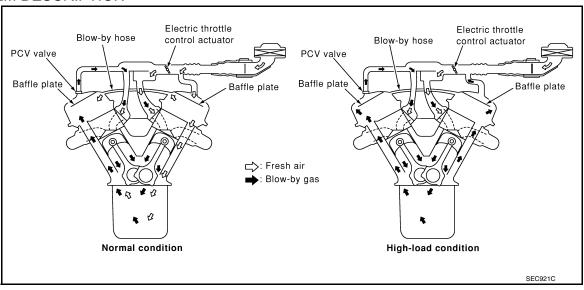
F

G

Н

K

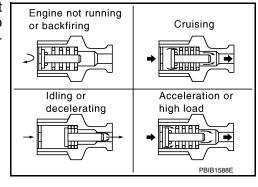
L


M

Ν

POSITIVE CRANKCASE VENTILATION

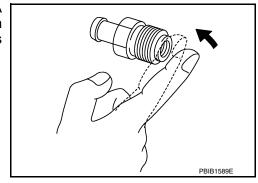
Description INFOID.000000005267758


SYSTEM DESCRIPTION

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hoseconnection to the air inlet tubes under all conditions.

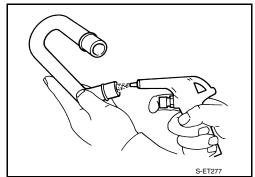


Component Inspection

INFOID:0000000005267759

PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.


POSITIVE CRANKCASE VENTILATION

< COMPONENT DIAGNOSIS >

[VQ40DE]

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hosecannot be freed of obstructions, replace.

EC

Α

С

D

Е

F

G

Н

1

J

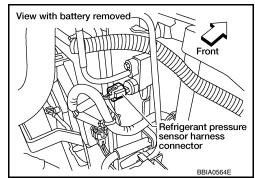
K

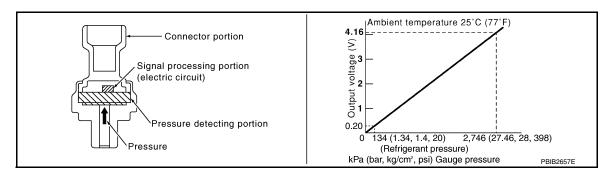
M

L

Ν

0


Р


INFOID:0000000005267760

REFRIGERANT PRESSURE SENSOR

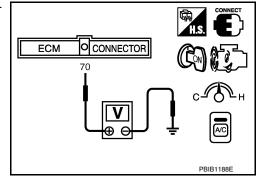
Component Description

The refrigerant pressure sensor is installed at the condenser of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

Diagnosis Procedure

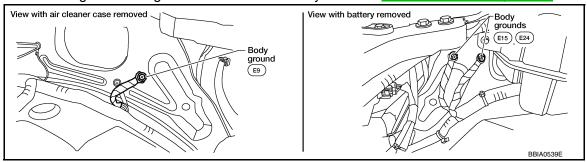
INFOID:0000000005267761

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch ON.
- Check voltage between ECM terminal 70 and ground with CON-SULT-III or tester.

Voltage: 1.0 - 4.0V

OK or NG


OK >> INSPECTION END

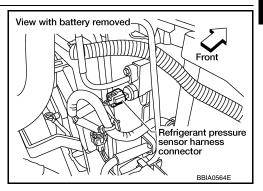
NG >> GO TO 2.

2. CHECK GROUND CONNECTIONS

- 1. Turn A/C switch and blower switch OFF.
- 2. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to EC-95, "Ground Inspection".

REFRIGERANT PRESSURE SENSOR

< COMPONENT DIAGNOSIS >

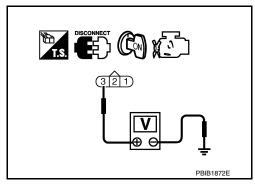

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

3.check refrigerant pressure sensor power supply circuit

- 1. Disconnect refrigerant pressure sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between refrigerant pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair harness or connectors.

${f 5.}$ CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between refrigerant pressure sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.

[VQ40DE]

EC

Α

D

Е

F

Н

J

ı

M

Ν

 \circ

Р

Ρ

efer to Wiring Diagram.

EC-425

REFRIGERANT PRESSURE SENSOR

[VQ40DE]

2010 Xterra

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- · Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

OK or NG

OK >> Replace refrigerant pressure sensor.

NG >> Repair or replace.

Α

EC

D

Е

F

Н

L

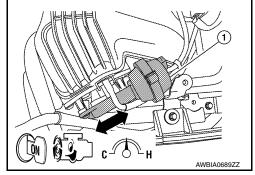
M

Ν

0

Р

VIAS


Diagnosis Procedure

INFOID:000000005267762

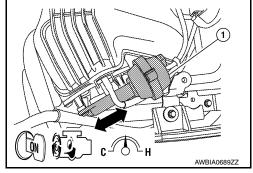
1. CHECK OVERALL FUNCTION

(P) With CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-III.
- Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.
 - : Power valve actuator

(R) Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Rev engine up to between 2,200 and 3,300 rpm and make sure that power valve actuator rod moves.


: Power valve actuator

OK or NG

OK >> INSPECTION END

NG (With CONSULT-III) >> GO TO 2.

NG (Without CONSULT-III) >> GO TO 3.

2.CHECK VACUUM EXISTENCE

(II) With CONSULT-III

- Stop engine and disconnect vacuum hose connected to power valve actuator.
- Start engine and let it idle.
- Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-III.
- Turn VIAS control solenoid valve "ON" and "OFF", and check vacuum existence under the following conditions.

VIAS SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

3.CHECK VACUUM EXISTENCE

(R) Without CONSULT-III

- Stop engine and disconnect vacuum hose connected to power valve actuator.
- Disconnect VIAS control solenoid valve harness connector.
- Start engine and let it idle.

EC-427 2010 Xterra Revision: July 2009

PBIB0845E

SEF109L

< COMPONENT DIAGNOSIS >

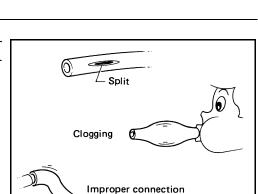
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.


4. CHECK VACUUM HOSE

- 1. Stop engine.
- Check hoses and tubes between intake manifold and power valve actuator for cracks, clogging, improper connection or disconnection. Refer to <u>EC-45</u>. "Vacuum Hose <u>Drawing</u>".

OK or NG

OK >> GO TO 5.

NG >> Repair hoses or tubes.

DISCONNECT (CO)

5. CHECK VACUUM TANK

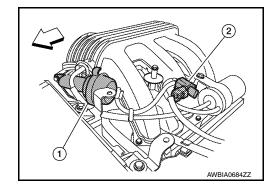
Refer to EC-429, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace vacuum tank.

6. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

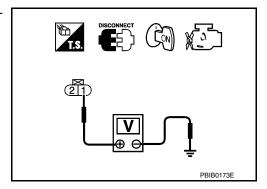

- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve harness connector.

1 : Power valve actuator

2 : VIAS control solenoid valve

<□ : Front

Turn ignition switch ON.



4. Check voltage between terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E2, F32
- Harness for open or short between VIAS control solenoid valve and IPDM E/R
- Harness for open or short between VIAS control solenoid valve and ECM

>> Repair harness or connectors.

8.check vias control solenoid valve output signal circuit for open and short

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9.CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-429, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace VIAS control solenoid valve.

10. CHECK INTERMITTENT INCIDENT

Refer to GI-37, "Intermittent Incident".

>> INSPECTION END

Component Inspection

VIAS CONTROL SOLENOID VALVE

(P) With CONSULT-III

- 1. Reconnect harness connectors disconnected.
- Turn ignition switch ON.
- Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

EC-429 2010 Xterra Revision: July 2009

EC

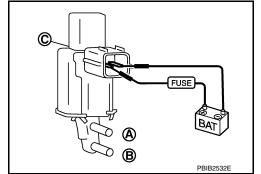
D

Е

Н

INFOID:0000000005267763

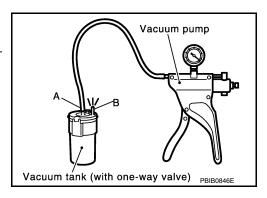
M


Ν

Р

JMBIA0180ZZ

Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

VACUUM TANK

- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the port (A) of vacuum tank.
- 3. Apply vacuum and make sure that vacuum exists at the port (B).

< ECU DIAGNOSIS > [VQ40DE]

ECU DIAGNOSIS

ECM

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000005267764

Α

EC

 D

Е

Ν

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

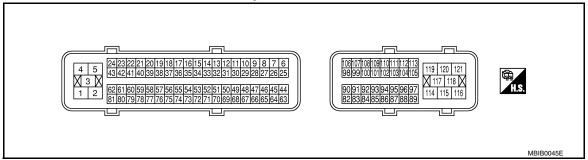
i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM	CONDITION		SPECIFICATION
ENG SPEED	Run engine and compare CONSULT-III value with the tachometer indication.		Almost the same speed as the tachometer indication.
MAS A/F SE-B1	See <u>EC-84</u> .		
B/FUEL SCHDL	See <u>EC-84</u> .		
A/F ALPHA-B1 A/F ALPHA-B2	See <u>EC-84</u> .		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 2.2 V
HO2S2 (B1) HO2S2 (B2)	- Fugine, Alter Marming III		0 - 0.3 V ←→ Approx. 0.6 - 1.0 V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 		LEAN ←→ RICH
VHCL SPEED SE	Turn drive wheels and compare CONSULT-III value with the speedometer indication.		Almost the same speed as the speedometer indication
BATTERY VOLT	Ignition switch: ON (Engine stopped)		11 - 14 V
ACCEL CEN 4	Ignition switch: ON	Accelerator pedal: Fully released	0.65 - 0.87 V
ACCEL SEN 1	(Engine stopped)	Accelerator pedal: Fully depressed	More than 4.3 V
	Ignition switch: ON	Accelerator pedal: Fully released	0.56 - 0.96 V
ACCEL SEN 2*1	(Engine stopped)	Accelerator pedal: Fully depressed	More than 4.0 V
TP SEN 1-B1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36 V
TP SEN 2-B1* ¹	(Engine stopped) • Shift lever: D (A/T), 1st (M/T)	Accelerator pedal: Fully depressed	Less than 4.75 V
EVAP SYS PRES	Ignition switch: ON		Approx. 1.8 - 4.8 V
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
GLOD THE FOO	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF
	Engine: After warming up, idle the	Air conditioner switch: OFF	OFF
AIR COND SIG	engine	Air conditioner switch: ON (Compressor operates.)	ON
D/N DOSL SW/	• Ignition switch: ON	Shift lever: P or N (A/T), Neutral (M/T)	ON
P/N POSI SW	Ignition switch: ON	Shift lever: Except above	OFF
DIAMOT CICALAL	Engine: After warming up, idle the	Steering wheel: Not being turned	OFF
PW/ST SIGNAL engine		Steering wheel: Being turned.	ON

< ECU DIAGNOSIS > [VQ40DE]

MONITOR ITEM	CON	IDITION	SPECIFICATION
LOAD CICNAL	Imitian quitale CN	Rear window defogger switch is ON and/or lighting switch is in 2nd	ON
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is OFF and lighting switch is OFF	OFF
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$		$ON \to OFF \to ON$
HEATED FAN CW	Engine: After warming up, idle the	Heater fan: Operating.	ON
HEATER FAN SW	engine	Heater fan: Not operating	OFF
	- Invition quitable ON	Brake pedal: Fully released	OFF
BRAKE SW	Ignition switch: ON	Brake pedal: Slightly depressed	ON
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	Shift lever: P or N (A/T), Neutral (M/T) Air conditioner switch: OFF No load	2,000 rpm	1.9 - 2.9 msec
	Engine: After warming up	Idle	13° - 18° BTDC
IGN TIMING	Shift lever: P or N (A/T), Neutral (M/T) Air conditioner switch: OFF No load	2,000 rpm	25° - 45° BTDC
	Engine: After warming up	Idle	5% - 35%
CAL/LD VALUE	Shift lever: P or N (A/T), Neutral (M/T) Air conditioner switch: OFF No load	2,500 rpm	5% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	 Shift lever: P or N (A/T), Neutral (M/T) Air conditioner switch: OFF No load 	2,500 rpm	7.0 - 20.0 g·m/s
PURG VOL C/V	Engine: After warming up Shift lever: P or N (A/T), Neutral (M/T)	Idle (Accelerator pedal is not depressed even slightly, after engine starting)	0%
	Air conditioner switch: OFFNo load	2,000 rpm	_
	Engine: After warming up	Idle	-5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Shift lever: P or N (A/T), Neutral (M/T) Air conditioner switch: OFF No load	2,000 rpm	Approx. 0° - 30°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	Shift lever: P or N (A/T), Neutral (M/T) Air conditioner switch: OFF No load	2,000 rpm	Approx. 0% - 50%
VIAC CA/ 1	Facility Affair and the second	2,200 - 3,300 rpm	ON
VIAS S/V-1	Engine: After warming up	Except above conditions	OFF
	• Engine: After warming and idle the	Air conditioner switch: OFF	OFF
AIR COND RLY	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates)	ON
FUEL PUMP RLY	For 1 second after turning ignition Engine running or cranking	switch ON	ON
	Except above conditions		OFF
VENT CONT/V	Ignition switch: ON		OFF
THRTL RELAY	Ignition switch: ON		ON

ECM

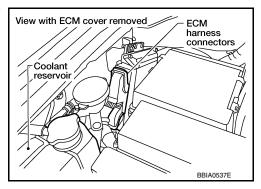

MONITOR ITEM	CON	NDITION	SPECIFICATION
		Engine coolant temperature: 97°C (207°F) or less	OFF
COOLING FAN	Engine: After warming up, idle the engine Air conditioner switch: OFF	Engine coolant temperature: Between 98°C (208°F) and 104°C (219°F)	LOW
		Engine coolant temperature: 105°C (221°F) or more	н
HO2S2 HTR (B1) HO2S2 HTR (B2)	Engine speed: Below 3,600 rpm a Engine: After warming up Keeping the engine speed betwee at idle for 1 minute under no load	fter the following conditions are met. on 3,500 and 4,000 rpm for 1 minute and	ON
	Engine speed: Above 3,600 rpm		OFF
P PULLY SPD	Vehicle speed: More than 20 km/h	ı (12 MPH)	Almost the same speed as the speedometer indication
/EHICLE SPEED	Turn drive wheels and compare th indication.	e CONSULT-III value with speedometer	Almost the same speed as the speedometer indication
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)
NF S1 HTR (B1) NF S1 HTR (B2)	Engine: After warming up, idle the	engine	4 - 100%
AC PRESS SEN	Engine: Idle Both A/C switch blower fan switch	: ON (Compressor operates)	1.0 - 4.0 V
/HCL SPEED SE	Turn drive wheels and compare sp SULT-III value.	peedometer indication with the CON-	Almost the same speed as the CONSULT-III value
SET VHCL SPD	Engine: Running	ASCD: Operating.	The preset vehicle speed is displayed.
MAIN SW	Ignition switch: ON	MAIN switch: Pressed	ON
	ignition ownor.	MAIN switch: Released	OFF
CANCEL SW	Ignition switch: ON	CANCEL switch: Pressed	ON
7 II TOLL OVV	ignition switch. Six	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
RESUME/ACC SW	- ignition switch. On	RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition switch: ON	SET/COAST switch: Pressed	ON
)_	iginuon switon. Oiv	SET/COAST switch: Released	OFF
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
ON VAINE OVVI	iginuon synton. Oly	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVAILE SVVZ	- Igillion Switch. ON	Brake pedal: Slightly depressed	ON
CRUISE LAMP	Ignition switch: ON	MAIN switch: pressed at the 1st time \rightarrow at the 2nd time	$ON \rightarrow OFF$
SET LAMP	MAIN switch: ON When vehicle speed is between 40km/h (25MPH) and 144km/h	ASCD: Operating ASCD: Not operating	ON OFF
	(89MPH)		2 220
ALT DUTY	• Engine: Idle		0 - 80%
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged*² Shift lever: P or N (A/T), Neutral (Note: Air conditioner switch: OFF No load 	M/T)	Approx. 2,600 - 3,500 mV

MONITOR ITEM	CONDITION	SPECIFICATION
ALT DUTY SIG	Power generation voltage variable control: Operating	ON
ALI DOTT SIG	Power generation voltage variable control: Not operating	OFF
HO2 S2 DIAG1 (B1)	DTC P0139 self-diagnosis (delayed response) is incomplete.	INCMP
HO2 32 DIAG1 (B1)	DTC P0139 self-diagnosis (delayed response) is complete.	CMPLT
HO2 S2 DIAG1 (B2)	DTC P0159 self-diagnosis (delayed response) is incomplete.	INCMP
HO2 32 DIAG1 (B2)	DTC P0159 self-diagnosis (delayed response) is complete.	CMPLT
HO2 S2 DIAG2 (B1)	DTC P0139 self-diagnosis (slow response) is incomplete.	INCMP
HO2 32 DIAG2 (BT)	DTC P0139 self-diagnosis (slow response) is complete.	CMPLT
HO2 S2 DIAG2 (B2)	DTC P0159 self-diagnosis (slow response) is incomplete.	INCMP
1102 32 DIAG2 (B2)	DTC P0159 self-diagnosis (slow response) is complete.	CMPLT

^{*1:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

ECM Harness Connector Terminal Layout

INFOID:0000000005267765



ECM Terminal and Reference Value

INFOID:0000000005267766

PREPARATION

ECM located in the engine room passenger side behind reservoir tank.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

^{*2:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to PG-4, "How to Handle Battery".

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	BR	ECM ground	[Engine is running] • Idle speed	Body ground
2	G	A/F sensor 1 heater (Bank 1)	 [Engine is running] Warm-up condition Idle speed (More than 140 seconds after starting engine) 	Approximately 2.9 - 8.8V★ → → → → → → → → → → → → → → → → → → →
3	V	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	L/W	Throttle control motor (Close)	[Ignition switch: ON] • Engine: Stopped • Shift lever: D (A/T), 1st (M/T) • Accelerator pedal: Fully released	0 - 14V★ → 5 V/Div 1 ms/Div T PBIB1104E
5	L/B	Throttle control motor (Open)	[Ignition switch: ON] • Engine: Stopped • Shift lever: D (A/T), 1st (M/T) • Accelerator pedal: Fully depressed	0 - 14V★ >>> 5 V/Div 1 ms/Div I PBIB1105E
6	R	Heated oxygen sensor 2 heater (Bank 2)	 [Engine is running] Engine speed is below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] Engine: Stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
10	W	Intake valve timing control solenoid valve (Bank 2)	[Engine is running] • Warm-up condition • Engine speed: 2,500 rpm	7 - 12V★

TER-		Т		
MI- V	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
11 LC	G	Intake valve timing control so- lenoid valve (Bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	7 - 12V★
12 P	,	Power steering pressure sen-	[Engine is running] • Steering wheel: Being turned	0.5 - 4.5V
		sor	[Engine is running] • Steering wheel: Not being turned	0.4 - 0.8V
13 G	3	Crankshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	Approximately 10V★ S.0V/Div 1 ms/Div T PBIB1041E
		(POS)	[Engine is running] • Engine speed: 2,000 rpm	Approximately 10V★ >> 5.0V/Div 1 ms/Div T PBIB1042E
14 Y	,	Camshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0V★ 2.5.0V/Div 20 ms/Div 1 PBIB1039E
.,		(PHASE) (Bank 2)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0V★ > 5.0V/Div 20 ms/Div PBIB1040E
15 W	V	Knock sensor (Bank 1)	[Engine is running] Idle speed	Approximately 2.5V
16 BF	R	A/F sensor 1 (Bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	Approximately 1.8V Output voltage varies with air fuel ratio.

	DIAGNO	010 -		[144-05-]	
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	F
21	w	Fuel injector No. 5	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★	
22 23	LG SB	Fuel injector No. 3 Fuel injector No. 1		BATTERY VOLTAGE (11 - 14V)★	Е
			[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	■10.0 V/Div S0 ms/Div	F
				SEC985C	Ċ.
24 43	G G	A/F sensor 1 heater (Bank 2)	 [Engine is running] Warm-up condition Idle speed (More than 140 seconds after starting engine) 	Approximately 2.9 - 8.8V★ Solution Sol	F
25	Р	Heated oxygen sensor 2 heater (Bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V	k
			[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)	L
			[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	N
29	G	VIAS control solenoid valve	[Engine is running] • Engine speed: Between 2,200 and 3,300 rpm	0 - 1.0V	N
32	W	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V	C

Р

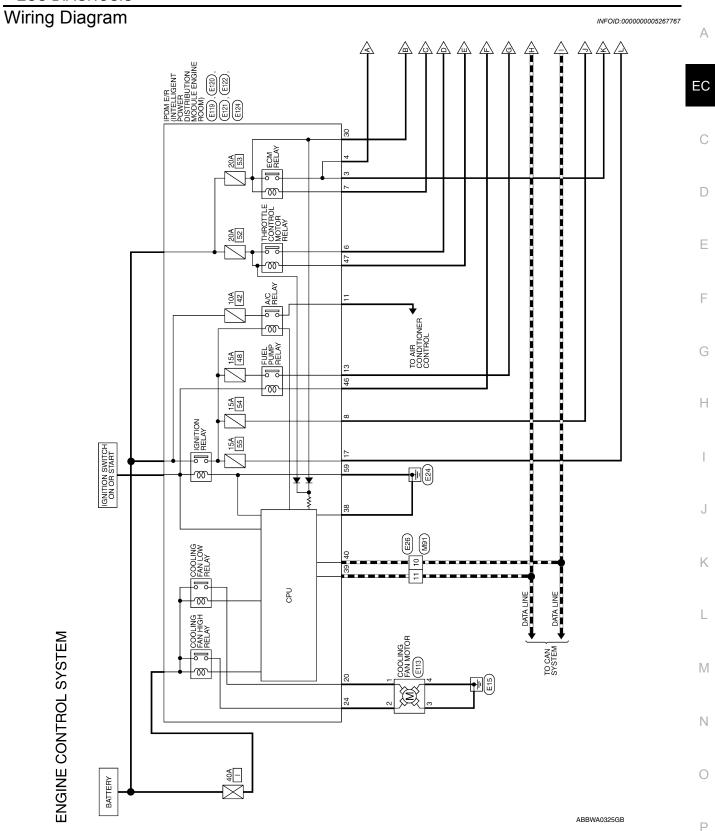
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
33	L	Camshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0V★ 1.0 - 4.0V★
		(PHASE) (Bank 1)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0 V ★ >> 5.0 V/Div 20 ms/Div PBIB1040E
34	BR	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.
35	0	A/F sensor 1 (Bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	Approximately 1.8V Output voltage varies with air fuel ratio.
36	W	Knock sensor (Bank 2)	[Engine is running] Idle speed	Approximately 2.5V
40	V	Fuel injector No. 6	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 50 ms/Div SEC984C
41 42	R O	Fuel injector No. 4	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 50 ms/Div SEC985C

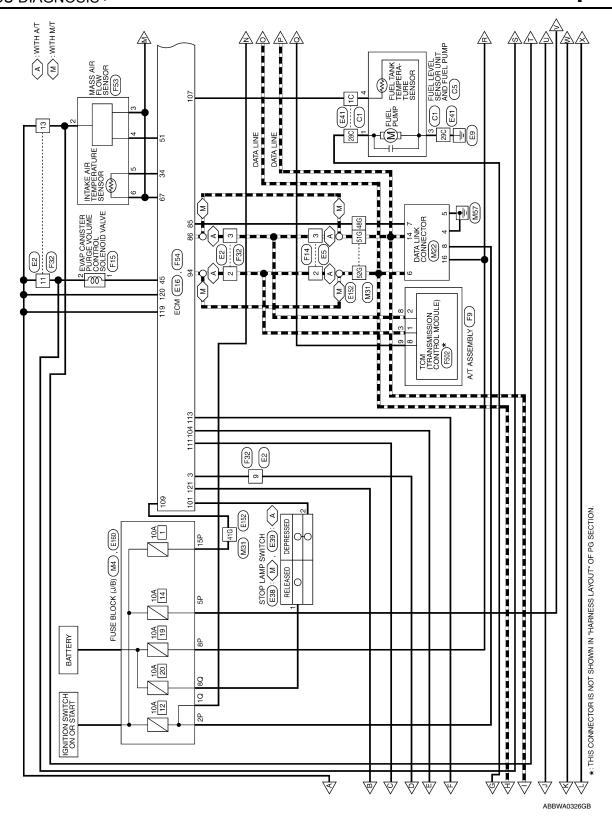
	DIAGNO	010 -		[VQ40DE]
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	D	EVAP canister purge volume	 [Engine is running] Idle speed Accelerator pedal is not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)* Indicates the state of th
45	R	control solenoid valve	 [Engine is running] Engine speed: About 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V)★ F 10.0 V/Div 50 ms/Div SEC991C
47	L	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
48	SB	Sensor power supply (EVAP control system pres- sure sensor)	[Ignition switch: ON]	Approximately 5V
49	Р	Sensor power supply (Refrigerant pressure sensor/ Battery current sensor)	[Ignition switch: ON]	Approximately 5V
50	W	Throttle position concer 1	[Ignition switch: ON] • Engine: Stopped • Shift lever: D (A/T), 1st (M/T) • Accelerator pedal: Fully released	More than 0.36V
50	VV	Throttle position sensor 1	 [Ignition switch: ON] Engine: Stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal: Fully depressed 	Less than 4.75V
			[Engine is running] • Warm-up condition • Idle speed	0.9 - 1.2V
51	P	Mass air flow sensor	[Engine is running] • Warm-up condition • Engine speed: 2,500 rpm	1.5 - 1.8V
55	G	Heated oxygen sensor 2 (Bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
56	LG	A/F sensor 1 (Bank 1)	[Ignition switch: ON]	Approximately 2.2V

- 5011		010	ECM	[VO40DE]
< ECU	DIAGNO	SIS >		[VQ40DE]
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
60 61	SB L	Ignition signal No. 5 Ignition signal No. 3	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.2V★
62	Ÿ	Ignition signal No. 1	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	0.1 - 0.4V★
66	В	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
67	В	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	G	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V
69	R	Throttle position sensor 2	[Ignition switch: ON] • Engine: Stopped • Shift lever: D (A/T), 1st (M/T) • Accelerator pedal: Fully released [Ignition switch: ON] • Engine: Stopped • Shift lever: D (A/T), 1st (M/T)	Less than 4.75V More than 0.36V
70	BR	Refrigerant pressure sensor	 Accelerator pedal: Fully depressed [Engine is running] Warm-up condition Both A/C switch and blower switch: ON (Compressor operates) 	1.0 - 4.0V
71	R	Battery current sensor	[Engine is running] • Battery: Fully charged*1 • Idle speed	Approximately 2.6 - 3.5V
73	Y	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
74	w	Heated oxygen sensor 2 (Bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
75	Р	A/F sensor 1 (Bank 2)	[Ignition switch: ON]	Approximately 2.2V
78	GR	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

ECM

TER-	1				
MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	A
79	P	Ignition signal No. 6	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.2V★	C
80 81	GR G	Ignition signal No. 4 Ignition signal No. 2	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	0.1 - 0.4V★	E
82	В	Sensor ground (APP sensor 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	G
83	В	Sensor ground (APP sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	Н
85	W	Data link connector	[Ignition switch: ON] • CONSULT-III or GST: disconnected	Approximately 5V - Battery voltage (11 - 14V)	I
86	Р	CAN communication line	_	_	
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V	J
91	G	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V	
94	L	CAN communication line	_	_	k
98	GR	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.28 - 0.48V	L
30	Oit	sensor 2	[Ignition switch: ON]Engine: StoppedAccelerator pedal: Fully depressed	More than 2.0	N
			[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V	
ļ			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V	Ν
99	SB	ASCD steering switch	[Ignition switch: ON] - CANCEL switch: Pressed	Approximately 1V	
			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V	
ļ			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V	Р
101	LG	Ston lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V	
101	LG	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
400	O*2	505	[Ignition switch: ON] • Shift lever: P or N (A/T), Neutral (M/T)	Approximately 0V
102	G*3	PNP signal	[Ignition switch: ON] • Except above position	BATTERY VOLTAGE (11 - 14V)
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V
106	R	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.65 - 0.87V
100	K	sensor 1	[Ignition switch: ON]Engine: StoppedAccelerator pedal: Fully depressed	More than 4.3V
107	Y	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.
108	LG	ASCD brake switch	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
106	LG	ASCD blake Switch	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)
-			[Ignition switch: OFF]	OV
109	W/R	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
111	BR	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(och shut on)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
113	V	Fuel pump relay	[Ignition switch: ON]For 1 second after turning ignition switch ON[Engine is running]	0 - 1.5V
113	V	T del pullip relay	[Ignition switch: ON] • More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)
115 116	B GR	ECM ground	[Engine is running] • Idle speed	Body ground
117	G	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R P	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
121	R/B	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

^{*1:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to PG-4, "How to Handle Battery".

^{*2:} M/T models

^{*3:} A/T models

С

D

Е

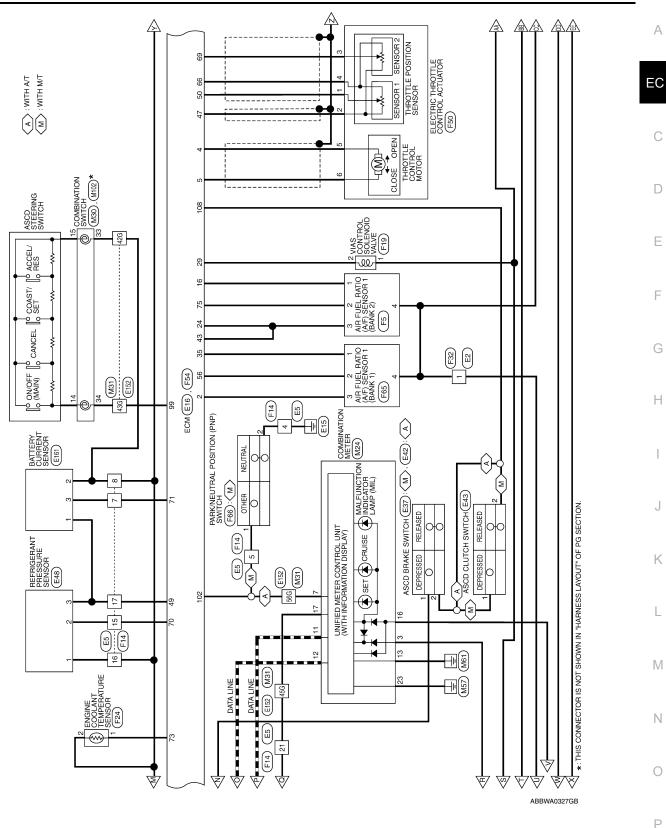
F

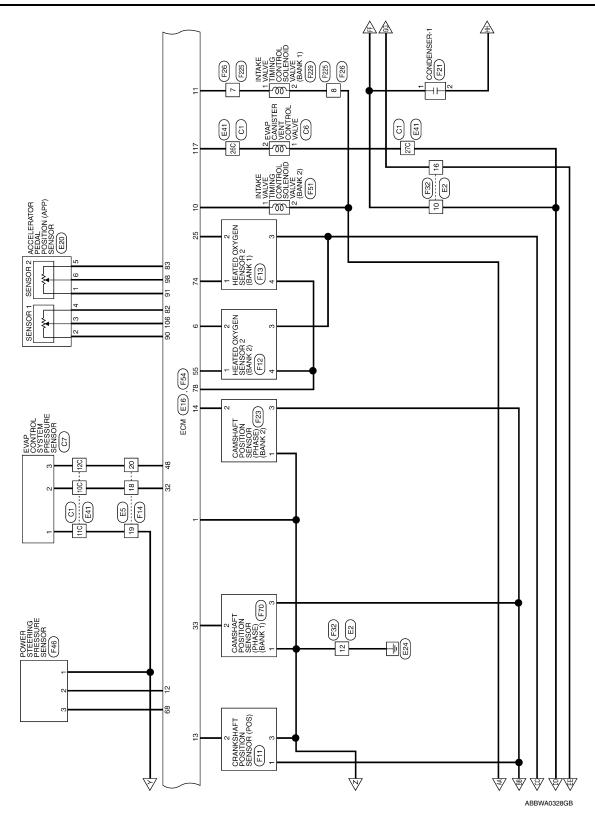
G

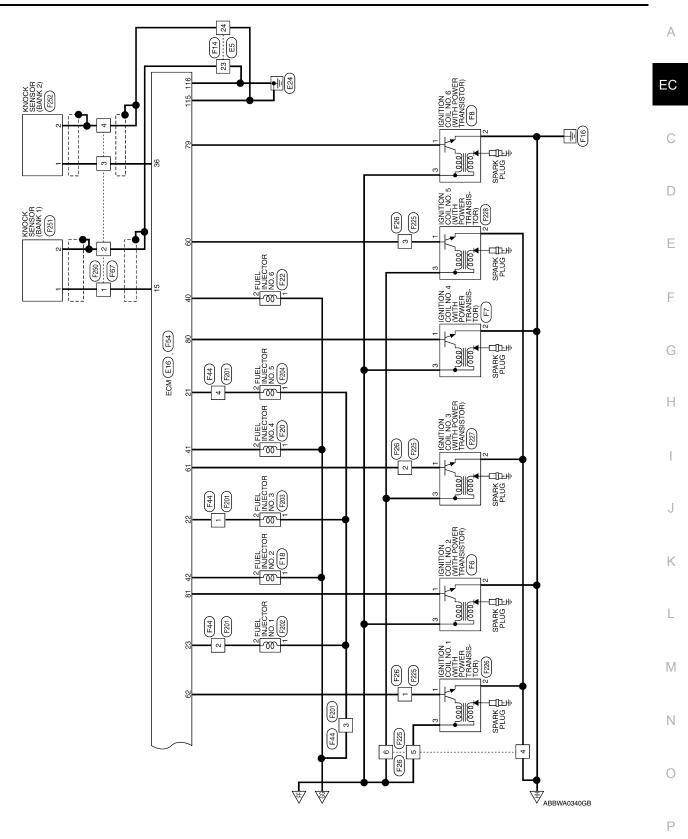
Н

J

Κ


L


M


Ν

0

Р

Revision: July 2009 EC-447 2010 Xterra

POWER-GROUND AT-PNSWITCH

Signal Name

Color of Wire

Terminal No. 41G 42G 43G 45G 48G 51G 52G 56G

W/R

Δ

I

SB

В ≥ ۵ _

RUN/START

W/G

В Ш

GROUND

GR

CAN-H CAN-L

Connector Name COMBINATION METER

M24

Connector No.

Connector Color WHITE

ENGINE CONTROL SYSTEM CONNECTORS

M22	DATA LINK CONNE	WHITE	
Connector No.	Connector Name	Connector Color	
Л4	-USE BLOCK (J/B)	VHITE	
Connector No.	Connector Name F	Connector Color	
	Connector No. M	Connector No. M SE BLOCK (J/B) Connector Name D	8 8 8

or No.	M4
or Name	or Name FUSE BLOCK (J/B)
or Color WHITE	WHITE
7P (7P 6P 5P 4P (3P 2P 1P 16P 15P 13P 12P 11P 10P 9P 8P

Signal Name	1	_	_	_
Color of Wire	M/G	M/G	R/Y	W/R
Terminal No.	2P	5P	8P	15P

Signal Name	I	1	I	I	ı	1	1
Color of Wire	<u>в</u>	В	_	≥	W/G	Ь	R/Y
Terminal No.	4	5	9	7	8	14	16

Signal Name

Color of Wire

Terminal No.

BATTERY

₹

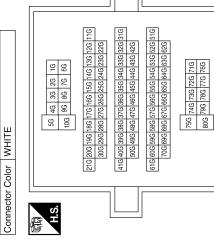
က 7

Q Ф

> Ξ 12 13 17 23

Signal Name	ı	-	1	1	1	I	I
Color of Wire	В	В	_	8	W/G	Ь	R/Y
Terminal No.	4	2	9	7	8	14	16

Terminal No. Wire 4 B B 5 B C 6 L 7 W 7 W 14 P 14 P	Signal Name	ı	_	1	ı	-	_	1	
7 7 8 8 14 14 16 16	Color of Wire	В	В	٦	>	M/G	Ь	R/Y	
	Terminal No.	4	2	9	7	8	14	16	


Connector No.	M31
nector Name	Connector Name WIRE TO WIRE
Connector Color WHITE	WHITE

Connector Name COMBINATION SWITCH

M30

Connector No.

Connector Color GRAY

33 34	Signal Name	ASCD RTN	ASCD
24 25 26 27 33 34	Color of Wire	В	SB
رن ن	ninal No.	33	34

ABBIA0449GB

Connector No.). E2	
Connector Name		WIRE TO WIRE
Connector Color WHITE	olor WHIT	Щ
晋	1 2 3	4 5 6 7
H.S.	8 9 10 1	11 12 13 14 15 16
Terminal No.	Color of Wire	Signal Name
-	W/R	1
2	_	1
က	۵	1
6	>	1
10	9	1
11	GR	ı
12	BR	1
13	ÐП	1
16	M/G	ı

	WIRE TO WIRE	ш	4 5 6 7 12 13 14 15 16	1	Signal Name	ı	_	ı	1	_	I	-	_	ı	
		lor WHITE	1 2 3 ■ 8 9 10 11		Color of Wire	W/R	٦	Д	>	В	GR	BR	ЫL	W/G	
COLLICCION INC.	Connector Name	Connector Color	管	Ę.	Terminal No.	1	2	က	6	10	11	12	13	16	

			1		_	_		
2	COMBINATION SWITCH	>-	1718 192021	Signal Name	ı	ı		Signal Name
. M102		lor GRAY	14 15 16	Color of Wire	SB	В		Color of
Connector No.	Connector Name	Connector Color	用.S.	Terminal No.	14	15		Terminal No.

WIRE TO WIRE	E	3 2	8 6 0 1 1 2	Signal Name	ı	_			WIRE TO WIRE
	WHITE	5 4	5	Color of Wire	<u>_</u>	_		E5	WIRE
ıme	olor	_	0	ု ဗိ					me
Connector Name	Connector Color	唇	H.S.	Terminal No.	10	11		Connector No.	Connector Name
							-		

Connector No.

Signal Name	1	ı	ı	ı	ı	ı	ı	I	ı	ı	ı
Color of Wire	æ	В	BR	В	Ь	>	В	SB	Я	GR	В
Terminal No.	7	8	15	16	17	18	19	20	21	23	24

			1						
	TO WIRE			6 7 8 9 10 11 12 18 19 20 21 22 23 24	Signal Name	ı	I	I	ı
E2	WIRE	WHITE		2 3 4 5 14 15 16 17	Color of Wire	7	Ь	В/Υ	0
o.	am	양		1 2 14 14					
Connector No.	Connector Name WIRE TO WIRE	Connector Color		ν; Ο	Terminal No.	2	3	4	Ŋ

ABBIA0077GB

Α

EC

С

D

Е

F

G

Н

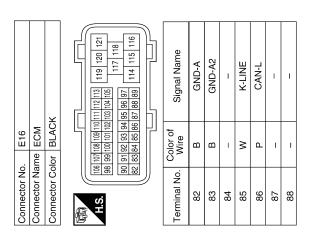
J

Κ

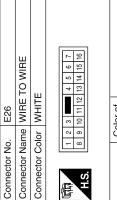
L

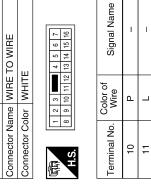
M

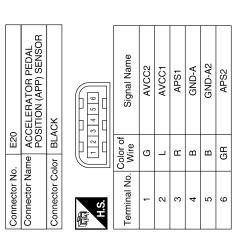
Ν


0

Р


Signal Name	APS1	¥	BNCSW	IGNSW	ı	SSOFF	ı	FPR	1	GND	GND	CDCV	I	VB	VB	BATT
Color of Wire	ш	\	LG	W/R	1	BR	ı	>	ı	В	GR	G	_	ш	Ь	B/B
Terminal No.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121


Signal Name APS1 TF BNCSW IGNSW - SSOFF - SSOFF - GND	GND	1	VB	VB	BATT
Mire Mire	GR	5 I	н	Ь	R/B
Terminal No. 106 107 108 109 110 111 112 113 114	116	118	119	120	121


Signal Name	ı	AVCC	AVCC2	I	-	CAN-H	-	I	ı	APS2	ASCD SW	ı	BRAKE	NEUT (WITH M/T)	NEUT (WITH A/T)	-	MOTRLY	_	
Color of Wire	1	٦	В	ı	_	٦	_	-	_	GR	SB	-	LG	0	G	_	0	_	
Terminal No.	89	06	91	92	93	94	92	96	26	86	66	100	101	102	102	103	104	105	

	Connector Name ASCD BRAKE SWITCH (WITH M/T)	Z		Signal Name	1	1
E37	ar ASCD (WITH	or BROWN	\[\alpha - \]	Color of Wire	W/G	>
Connector No.	Connector Nan	Connector Color	H.S.	Terminal No.	-	2

ABBIA0414GB

EC

С

D

Е

F

G

Н

J

Κ

L

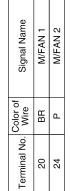
M

Ν

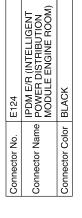
0

Р


ABBIA0450GB


Connector No. Connector Name Connector Color		E38 STOP LAMP SWITCH (WITH M/T) BLACK	Connector No. Connector Name	$\overline{}$	E39 STOP LAMP SWITCH (WITH A/T) WHITE		Connector No. E41 Connector Name WIRE TO WIRE Connector Color BLACK	ime WIR	E TO WIRE
南 H.S.	السا	2 1	是 H.S.	8 +	[[40]		H.S.		
Terminal No.	Color of Wire	Signal Name	Terminal No.	Color of Wire	Signal Name				22C 28C 35C 44C 23C 29C 36C 45C 34C 39C 45C
1 2	R/B Y	1 1	1 2	R/B Y	1 1			8 8 5 8 9	25C 39C 48C
							Terminal No.	Color of Wire	Signal Name
						1	10	>	ı
							10C	8	ı
							110	В	ı
							12C	SB	ı
							26C	5	ı
							27C	>	I
							28C	œ	ı
							29C	В	ı
Connector No.	o. E42		Connector No.). E43			Connector No.). E48	
Connector Name	ı	ASCD BRAKE SWITCH (WITH A/T)	Connector Name		ASCD CLUTCH SWITCH		Connector Name	1	REFRIGERANT PRESSURE SENSOR
Connector Color	olor BROWN	WN		-		_	Connector Color	lor BLACK	CK
(京) H.S.		Z -	是 H.S.				是 S.H	T	
Terminal No.	Color of Wire	Signal Name	Terminal No.	Color of Wire	Signal Name		Terminal No.	Color of Wire	Signal Name
-	U/M		-	>	1		-	В	GND
	2 -		2	L/G	I		2	BR	SIGNAL
I	3						3	۵	POWER SUPPLY

EC-451 2010 Xterra Revision: July 2009


Connector No.	E120	0	
Connector Name POWER DISTRIBUTION MODULE ENGINE ROOT	IPD PO\ MO	M E WEF DUL	IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM)
Connector Color WHITE	MH	밀	
	L		ſ
晋	51	21 20	19
H.S.	54	24 23 22	22

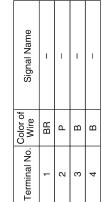
Signal Name	M/FAN 1	M/FAN 2
Color of Wire	ВВ	Ы
al No.		

GND (POWER	В	69
Signal Name	Color of Wire	Terminal No.

E119	Connector Name POWER DISTRIBUTION MODULE ENGINE ROOM)	WHITE	
Connector No.	Connector Name	Connector Color WHITE	

Signal Name	IGN COIL	ENG SUPPLY	ELEC THROTTLE	ECM RLY CONT	O2 SENS	A/C COMPRESSOR	FUEL PUMP	INJECTION
Color of Wire	5	Ъ	>	BR	W/R	>	н	W/G
Terminal No.	က	4	9		8	11	13	17

	E122	Connector Name POWER DISTRIBUTION MODULE ENGINE ROOM)
	Connector No.	Connector Name



r of Signal Name	GND (SIGNAL)	CAN-H	CAN-L	ECM (FUEL PUMP RLY CONT)	ECM (ETC BLY CONT)
No. Wire	В	_	Ь	^	0
Terminal No. Wire	38	39	40	46	47

Connector No.	E113
Connector Name	Connector Name COOLING FAN MOTOR
Connector Color GRAY	GRAY

Connector No.	E121
Connector Name	IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM)
Connector Color BROWN	BROWN
原 H.S.	29 28 77 26 25 36 35 34 33 22 31 30

Connector Connector Connector Color WHITE

Color of Wire M/R			3
Color of Wire	ECM BAT	B/B	30
	Signal Nam		Terminal No.

ABBIA0415GB

EC

С

D

Е

F

G

Н

J

Κ

L

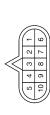
M

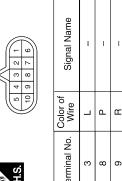
Ν

0

Р

		7												
BLOCK (J/B)	E (30)		()	50 40			Signal Name	1	ı					
E160	wHITE			80 70 60 50 40		Color of	Wire	W/G	R/B					
Connector No. E160 Connector Name FLISE BLOCK (1/B)	Connector Color		E		H.O.	-	Terminal No.	Δ1	80					
Signal Name	ı	1	1	ı	ı	1	1	I						
Color of Wire	W/R	В	SB	В	8	۵	_	g						
Terminal No. Wire	41G	42G	43G	45G	48G	51G	52G	56G						
			F											
Connector Name WIRE TO WIRE	Color WHITE			16 26 36 46 56	76		116 126 136 146 156 166 176 186 196 206 216	226 236 246 256 266 276 286 296 306		42G 43G 44G 45G 46G 47G 48G 49G 50G	516 526 536 546 556 566 576 586 596 606 616	62G 63G 64G 65G 66G 67G 68G 69G 70G	716 726 736 746 756	76G 77G 78G 79G 80G
Connector No.	Connector Color			Į Į	5									

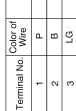

Revision: July 2009


Connector No. F6	Connector Name IGNITION COIL NO. 2 (WITH POWER TRANSISTOR)	Connector Color GRAY	H.S.	Color of Signal Name Wire	- G	2 B -	3 FG –	
	Connector Name AIR FUEL RATIO (A/F) SENSOR 1 (BANK 2)	AAY	1 0 d	Signal Name	AF+	AF-	HEATER GND	HEATER PWR
Connector No. F5	Connector Name Al	Connector Color GRAY	H.S.	Terminal No. Wire	1 BR	2 P	3	4 W/R
				Signal Name	POWER SUPPLY	GND	SIGNAL	
Connector No. E161	Connector Name BATTERY CURRENT SENSOR	Connector Color BLACK	H.S.	Color of Wire	-	2 B	3 R	

EC-453 2010 Xterra

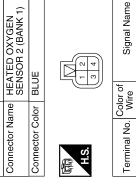
ABBIA0416GB

Connector No.	F9
Connector Name	Connector Name A/T ASSEMBLY
Connector Color	GREEN


Signal Na	I	ı	I
Color of Wire	٦	Ь	В
Terminal No.	3	8	6

Connector No.

E



Signal Name

Connector No.		F7	
Connector Na	ame	Pov	Connector Name IGNITION COIL NO. 4 (W POWER TRANSISTOR)
Connector Color	jo	GRAY	١٨.
原列 H.S.	<u> </u>		
Terminal No.	Color of Wire	or of re	Signal Name
-	ВĐ	<u>س</u>	I
2	3	В	1
c	>	ļ	

HEATED OXYGEN SENSOR 2 (BANK GREEN	1 6
--	-----

POWER SUPPLY

W/R GR

2 က 4

GND 02

HEATED GND

SIGNAL

≥ ₾

Connector No. F12

Connector Name	Connector Name CRANKSHAFT POSITION SENSOR (POS)
Connector Color BLACK	BLACK

Connector No. F11

Signal Name	POWER SUPPLY	SIGNAL	GND
Color of Wire	ш	В	BR
erminal No.	1	2	က

ABBIA0417GB

EC

С

 D

Е

F

G

Н

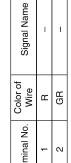
J

K

L

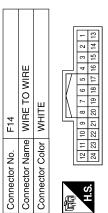
 \mathbb{N}

Ν


0

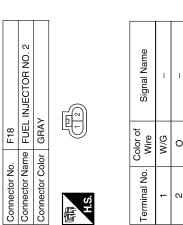
Р

[VQ40DE]


EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE BLUE Solor رخ

Connector N	Connector N	Connector C	Ø	H.S.	Terminal No.	-	2	
								Τ

Signal Name	ı	ı	ı	ı	ı	ı	1	ı	ı	ı	ı
Color of Wire	Œ	В	BR	В	Д	≯	В	SB	ш	GR	В
Terminal No.	7	8	15	16	17	18	19	20	21	23	24



-	13	l m				
7	14	Signal Name				
2	15	👸				
t	16	펼	1	1	1	-
,	17	.jg				
>	8	ဟ				
	24 23 22 21 20 19 18 17 16 15 14 13					
0	20		\vdash			
n	21	Color of Wire				
2	22	Solor o Wire		Д	B∕	0
Ξ	23	ŭ -			_	
7	24		\vdash			
Ę	0	Terminal No.	2	3	4	2

	FUEL INJECTOR NO. 4	,		Signal Name	-	ı
F20		or GRAY	4-1	Color of Wire	M/G	۵.
Connector No.	Connector Name	Connector Color	赋 H.S.	Terminal No.	F	2

ECM

Connector No.). F19	
Connector Name		VIAS CONTROL SOLENOID VALVE
Connector Color	olor BLACK	X
H.S.		
Terminal No.	Color of Wire	Signal Name
-	æ	1
2	0	ı

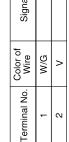
INJECTOR	,		Signal N	-	1
me FUEL	lor GRAY	4-1	Color of Wire	M/G	0
Connector Name FUEL INJECTOR	Connector Color	原 H.S.	Terminal No.	1	2

ABBIA0083GB

EC-455 2010 Xterra Revision: July 2009

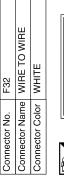
			()	
E03	1.20	Sonnector Name CAMSHAFT POSITION	SENSOR (PHASE) (BANK 2)	BLACK
old softon	COLINECTOR INO.	Connector Name		Connector Color BLACK

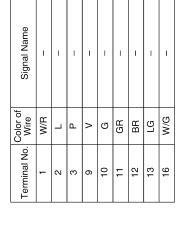
nector No.	F23
nector Name	nector Name CAMSHAFT POSITION SENSOR (PHASE) (BANK 2)
nector Color BLACK	BLACK

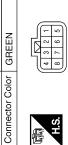


Signal Name	GND	SIGNAL	POWER SUPPL	
Color of Wire	BR	>	ш	
Ferminal No.	1	2	က	

Connector No.




Connector No.). F21	
Connector Name		CONDENSER-1
Connector Color	olor WHITE	Ē
原 H.S.		
Terminal No.	Color of Wire	Signal Name
-	Μ	-
2	В	ı



Signal Name	ı	ı	
Color of Wire	M	В	
Terminal No.	-	7	

F32	WIRE TO WIRE	WHITE	
Connector No.	Connector Name	Connector Color	

Connector Name WIRE TO WIRE

Connector Name | ENGINE COOLANT | TEMPERATURE SENSOR GRAY

Connector Color

F24

Connector No.

F26

Connector No.

Signal Nam	I	I	I	I	I	I	-	1
Color of Wire	\	٦	SB	В	g	M	ГG	н
Terminal No.	-	2	ည	4	S	9	2	8

Signal Na	1	1
Color of Wire	\	В
erminal No.	1	2

ABBIA0451GB

EC

С

D

Е

F

G

Н

J

Κ

L

 \mathbb{N}

Ν

0

Ρ

ECM

C	OCL	ELECTRIC THROTTLE CONTROL ACTUATOR	BLACK	4	4 0	of Signal Name	TPS1	AVCC2	TPS2	GND-A2	LOC TO TO TO
H	+			Į,	-	Color of Wire	≥	_	Œ	В	>
30,000	Confinector No.	Connector Name	Connector Color		H.S.	Terminal No.	-	2	က	4	2

ELECTRIC THROTTLE CONTROL ACTUATOR	BLACK	3 4 5 6	Signal Name	TPS1	AVCC2	TPS2	GND-A2	MOTOR 2 (CLOSE)	MOTOR 1 (OPEN)
		1 2	Color of Wire	>	_	Œ	В	ΓW	L/B
Connector Name	Connector Color	嘶 H.S.	Terminal No.	-	2	3	4	2	9
				•			•		

	POWER STEERING PRESSURE SENSOR	4CK	23	Signal Name	GND	SIGNAL	POWER SUPPLY
. F46		lor BLACK		Color of Wire	Ф	Ъ	മ
Connector No.	Connector Name	Connector Color	画 H.S.	Terminal No. Wire	-	5	3

Signal Name

Color of Wire ГG

Terminal No.

SB W/G W

က N

4

Connector Name WIRE TO WIRE Connector Color GREEN

F44

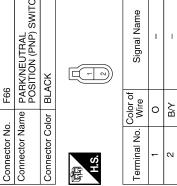
Connector No.

	MASS AIR FLOW SENSOR BLACK		2 2 1	Signal Name	POWER SUPPLY	QA-	QA+	AT SEN SIGNAL	GND
. F53	me MAS		9	Color of Wire	ГG	В	۵	BR	В
Connector No.	Connector Name MASS / Connector Color BLACK	Œ	H.S.	Terminal No. Wire	2	က	4	5	9
	Connector Name CONTROL SOLENOID VALVE (BANK 2)	Z		Signal Name	1	ı			
F51	INTA!	r GREEN		Color of Wire	M	В			
Connector No.	Connector Nam	Connector Color	H.S.	Terminal No.	-	2			

ABBIA0418GB

EC-457 2010 Xterra Revision: July 2009

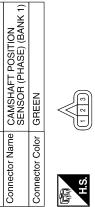
Signal Name	_	ı	1	O2SRL	AF-1	I	1	I	IGN #5	IGN #3	IGN #1	1	1	ı	GND-A2	GND-A	AVCC (PSPRESS)	TPS 2	PDPRESS	CURSEN	1	MΤ	O2SRR	AF-2	_	1	GND-02	IGN #6	IGN #4	2# NSI
Color of Wire	-	ı	-	В	LG	1	1	1	SB	7	Υ	1	_	_	В	В	G	В	BR	В	I	>	8	Ь	_	_	GR	Ь	GR	g
Terminal No.	52	53	54	22	56	57	58	59	09	61	62	63	64	92	99	29	89	69	0/	71	72	73	74	75	9/	2.2	78	79	80	81


Signal Name	1	INJ #5	INJ #3	INJ #1	AF-H2	O2HRR	-	1	1	VIAS	_	1	FTPRS	PHASE (RH)	TA	AF+1	KNK 2	1	1	ı	9# (NI	INJ #4	INJ #2	AF-H2	1	EVAP	ı	AVCC 2	AVCC	AVCC (PDPRES)	TPS 1	QA+
Color of Wire	ı	M	ГG	SB	ŋ	Ь	_	1	-	g	_	ı	8	٦	BR	0	W	ı	-	ı	^	Œ	0	В	ı	Ж	ı	٦	SB	Ь	8	۵
Terminal No.	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

ABBIA0086GB

	Connector No.	F67
RAL	Connector Name	Connector Name WIRE TO WIRE
JNP) SWII CH	Connector Color BLUE	BLUE

	_	_						
	WIRE TO WIRE	JE	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Signal Name	1	ı	ı	ı
-		lor BLUE		Color of Wire	Μ	SHIELD	≥	SHIELD
	Connector Name	Connector Color	赋利 H.S.	Terminal No.	1	2	က	4



Connector No.	. F65	
Connector Name		AIR FUEL RATIO (A/F) SENSOR 1 (BANK 1)
Connector Color		BLACK
H.S.		[2 4]
Terminal No.	Color of Wire	Signal Name
_	0	AF+
2	p_	AF-
က	ŋ	HEATER GND
4	W/R	HEATER PWR

ECM

	FUEL INJECTOR NO. 1	,	LE CO	Signal Name	1	1
F202		or GRAY		Color of Wire	M/G	В
Connector No.	Connector Name	Connector Color	H.S.	Terminal No.	1	7

1	WIRE TO WIRE	GREEN	4 z 4	Signal Name	1	1	1	I
. F201			- 8	Color of Wire	>	ŋ	W/G	_
Connector No.	Connector Name	Connector Color	H.S.	Terminal No.	-	2	ဧ	4

Connector No.

Signal Name	GND	SIGNAL	POWER SUPPL	
Color of Wire	BB	Τ	ш	
Terminal No.	-	2	3	

ABBIA0419GB

Α

EC

С

 D

Е

F

G

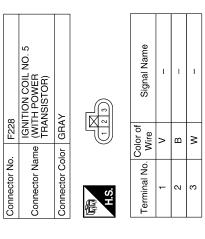
Н

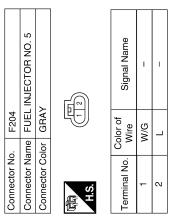
J

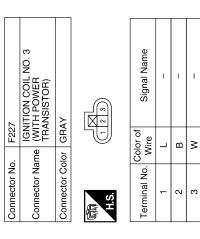
K

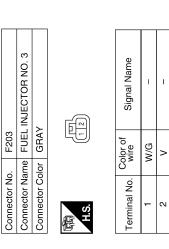
L

 \mathbb{N}


Ν


0


Р


	_	_	1									
25	WIRE TO WIRE	GREEN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Signal Name	1	1	1	1	_	1	1	ı
. F225			(n)	Color of Wire	>	_	>	В	0	>	ല	Œ
Connector No.	Connector Name	Connector Color	呵奇 H.S.	Terminal No.	-	2	က	4	5	9	7	80

Signal Name	1	1	1	ı	ı	ı	1	_
Color of Wire	>	٦	۸	В	0	M	ГG	В
Terminal No. Wire	-	2	3	4	2	9	7	8

9;	IGNITION COIL NO. 1 (WITH POWER TRANSISTOR)	AY	23	Signal Name	I	I	-
. F226	· ·	lor GRAY		Color of Wire	>	В	0
Connector No.	Connector Name	Connector Color	原列 H.S.	Terminal No.	-	2	3

ABBIA0088GB

EC

С

 D

Е

F

G

Н

J

Κ

L

M

Ν

0

Р

ame KNOCK SENSOR (BANK 1)		Color of Signal Name	W	SHIELD GND		0. C1	ame WIRE TO WIRE	olor BLACK		40C 31C 19C 11C 2C 41C 32C 4	34C 27C 21C 13C 35C 28C 22C 14C	45C 36C 29C 23C 15C 6C	300 240		Color of Signal Name	\ \	M			- B		П	
Connector Name Connector Color	H.S.	Terminal No.	-	2		Connector No.	Connector Name	Connector Color		H.S.					Terminal No.	10	10C	110	12C	26C	27C	28C	29C
WIRE TO WIRE BLUE		Signal Name	ı	1	1 1	2	TCM (TRANSMISSION	NTROL MODULE)		7 6 5 4 3 2 1		ักั 	CAN-H	CAN-L STARTER RLY									
		lo. Wire	M	SHIELD	SHIELD	No. F502		_	-	10 9 8	Color of	_	BB	<u></u> 5	-								
Connector Name Connector Color	明.S.	Terminal No.	-	2	ω 4	Connector No.	Connector Name	Connector Color		是 H.S.	ŀ	l erminai No.	-	0 8									
Connector Name CONTROL SOLENOID VALVE (BANK 1)	Connector Color GREEN	Color of	Terminal No. Wire Signal Name	_	2 R -	Connector No. F252	Connector Name KNOCK SENSOR (BANK2)	Connector Color BLACK		H.S.	Terminal No. Color of Signal Name	W KNK	2 SHIELD GND										

ECM

EC-461 Revision: July 2009 2010 Xterra

Connector No.). C7	
Connector Na	ame EVA PRE	Connector Name EVAP CONTROL SYSTEM PRESSURE SENSOR
Connector Color GRAY	olor GRA	١٧
原 H.S.		23
Terminal No.	Color of Wire	Signal Name
1	В	I
2	Μ	I
3	as	1

Connector No.). C6	
Connector Na	tme EVAP CONT	Connector Name EVAP CANISTER VENT CONTROL VALVE
Connector Color BLACK	olor BLACE	>
南 H.S.		
Terminal No.	Color of Wire	Signal Name
1	W	I
2	G	1

Connector No.). C5	
Connector Na	ame FUI	Connector Name FUEL LEVEL SENSOR UNIT AND FUEL PUMP
Connector Color GRAY	olor GR	AY
亭 H.S.		3 4 5
Terminal No.	Color of Wire	Signal Name
-	œ	ı
3	В	1
4	>	1

Fail-Safe Chart

ABBIA0090GB

INFOID:0000000005267768

When the DTC listed below is detected, the ECM enters the fail-safe mode and the MIL illuminates.

D

Е

F

Н

K

L

M

Ν

0

< ECU DIAGNOSIS > [VQ40DE]

DTC No.	Detected items	Engine opera	ating condition in fail-safe mode				
P0102 P0103	Mass air flow sensor circuit	Engine speed will not rise more that	n 2,400 rpm due to the fuel cut.				
P0117 P0118	Engine coolant tempera- ture sensor circuit		determined by ECM based on the following condition oolant temperature decided by ECM.				
		Condition	Engine coolant temperature decided (CONSULT-III display)				
		Just as ignition switch is turned ON or START	40°C (104°F)				
		Approx. 4 minutes after engine starting	80°C (176°F)				
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)				
		When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates while engine is running.					
P0122 Throttle position sensor The ECM controls the electric throttle control actuator in regulating the throttle open order for the idle position to be within +10 degrees. P0222 P0223 P0223 P2135 The ECM regulates the opening speed of the throttle valve to be slower than the no condition. Therefore, the acceleration will be poor. ECM stops the electric throttle control actuator control, throttle valve is maintained							
P0643	Sensor power supply	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	· · · · · · · · · · · · · · · · · · ·				
P2100 P2103	Throttle control motor relay	e control motor relay ECM stops the electric throttle control actuator control, throttle valve is maintained a fixed opening (approx. 5 degrees) by the return spring.					
P2101	Electric throttle control function	ECM stops the electric throttle control actuator control, throttle valve is main fixed opening (approx. 5 degrees) by the return spring.					
P2118	Throttle control motor	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.				
P2119	Electric throttle control actuator	malfunction:) ECM controls the electric throttle ad	tor does not function properly due to the return spring ctuator because of regulating the throttle opening e speed will not rise more than 2,000 rpm.				
			in fail-safe mode is not in specified range:) ontrol actuator by regulating the throttle opening to 20				
		stops, the engine stalls.	ve is stuck open:) slows down gradually by fuel cut. After the vehicle sition (A/T), Neutral position (M/T), and engine speed				
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	order for the idle position to be with	eed of the throttle valve to be slower than the normal				

• When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut
--	--

DTC Inspection Priority Chart

INFOID:0000000005267769

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

- If DTC UXXXX is displayed with other DTC, first perform the trouble diagnosis for DTC UXXXX.
- If DTC P0607 is displayed with other DTC, first perform the trouble diagnosis for DTC P0607. Refer to EC-303, "Description".

Priority	Detected items (DTC)
1	 U0101 U1001 CAN communication line P0101 P0102 P0103 Mass air flow sensor P0112 P0113 P0127 Intake air temperature sensor P0116 P0117 P0118 P0125 Engine coolant temperature sensor P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor P0128 Thermostat function P0181 P0182 P0183 Fuel tank temperature sensor P0327 P0328 P0332 P0333 Knock sensor P0335 Crankshaft position sensor (POS) P0340 P0345 Camshaft position sensor (PHASE) P0460 P0461 P0462 P0463 Fuel level sensor P0500 Vehicle speed sensor P0605 P0607 ECM P0643 Sensor power supply P0700 TCM P0705 Transmission range switch P0850 Park/Neutral position (PNP) switch P1550 P1551 P1552 P1553 P1554 Battery current sensor P1610 - P1615 NATS P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor
2	 P0031 P0032 P0051 P0052 Air fuel ratio (A/F) sensor 1 heater P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater P0075 P0081 Intake valve timing control solenoid valve P0130 P0131 P0132 P0133 P0150 P0151 P0152 P0153 P2A00 P2A03 Air fuel ratio (A/F) sensor 1 P0137 P0138 P0139 P0157 P0158 P0159 Heated oxygen sensor 2 P0441 EVAP control system purge flow monitoring P0443 P0444 P0445 EVAP canister purge volume control solenoid valve P0447 P0448 EVAP canister vent control valve P0451 P0452 P0453 EVAP control system pressure sensor P0550 Power steering pressure sensor P0603 ECM power supply P0710 P0717 P0720 P0731 P0732 P0733 P0734 P0735 P0740 P0744 P0745 P1730 P1752 P1757 P1762 P1767 P1772 P1774 A/T related sensors, solenoid valves and switches P1217 Engine over temperature (OVERHEAT) P1800 VIAS control solenoid valve P1805 Brake switch P2100 P2103 P2118 Electric throttle control actuator P2101 Electric throttle control function
3	 P0011 P0021 Intake valve timing control P0171 P0172 P0174 P0175 Fuel injection system function P0300 - P0306 Misfire P0420 P0430 Three way catalyst function P0442 P0455 P0456 EVAP control system P0506 P0507 Idle speed control system P050E Cold start control P1148 P1168 Closed loop control P1211 TCS control unit P1212 TCS communication line P1564 ASCD steering switch P1572 ASCD brake switch P1574 ASCD vehicle speed sensor P1715 Input speed sensor P2119 Electric throttle control actuator

DTC Index

Α

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

-	DTO				: Applicable —:	- тот аррисаль	EC	
Items (CONSULT-III screen terms)	CONSULT-III GST*2	ECM* ³	SRT	Trip	MIL	Permanent DTC group* ⁴	Reference page	
LOST COMM (TCM)	U0101	0101* ⁵	_	1	×	В	EC-97	С
CAN COMM CIRCUIT	U1001	1001* ⁵	_	2	_	_	EC-97	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	Blinking* ⁶	_	EC-66	D
INT/V TIM CONT-B1	P0011	0011	×	2	×	В	EC-98	Е
INT/V TIM CONT-B2	P0021	0021	×	2	×	В	EC-98	
A/F SEN1 HTR (B1)	P0031	0031	_	2	×	В	EC-101	F
A/F SEN1 HTR (B1)	P0032	0032	_	2	×	В	EC-101	-
HO2S2 HTR (B1)	P0037	0037	_	2	×	В	EC-104	
HO2S2 HTR (B1)	P0038	0038	_	2	×	В	EC-104	(
A/F SEN1 HTR (B2)	P0051	0051	_	2	×	В	EC-101	
A/F SEN1 HTR (B2)	P0052	0052	_	2	×	В	EC-101	
HO2S2 HTR (B2)	P0057	0057	_	2	×	В	EC-104	-
HO2S2 HTR (B2)	P0058	0058	_	2	×	В	EC-104	
INT/V TIM V/CIR-B1	P0075	0075	_	2	×	В	EC-108	ı
INT/V TIM V/CIR-B2	P0081	0081	_	2	×	В	EC-108	
MAF SEN/CIRCUIT-B1	P0101	0101	_	2	×	В	EC-111	
MAF SEN/CIRCUIT-B1	P0102	0102	_	1	×	В	EC-117	U
MAF SEN/CIRCUIT-B1	P0103	0103	_	1	×	В	EC-117	
IAT SEN/CIRCUIT-B1	P0112	0112	_	2	×	В	EC-122	k
IAT SEN/CIRCUIT-B1	P0113	0113	_	2	×	В	EC-122	
ECT SEN/CIRC	P0116	0116	_	2	×	В	EC-125	
ECT SEN/CIRC	P0117	0117	_	1	×	В	EC-128	L
ECT SEN/CIRC	P0118	0118	_	1	×	В	EC-128	
TP SEN 2/CIRC-B1	P0122	0122	_	1	×	В	EC-132	I.
TP SEN 2/CIRC-B1	P0123	0123	_	1	×	В	EC-132	Λ
ECT SENSOR	P0125	0125	_	2	×	В	EC-136	
IAT SENSOR-B1	P0127	0127	_	2	×	В	EC-139	N
THERMSTAT FNCTN	P0128	0128	_	2	×	В	EC-142	
A/F SENSOR1 (B1)	P0130	0130	_	2	×	Α	EC-144	
A/F SENSOR1 (B1)	P0131	0131	_	2	×	В	EC-148	(
A/F SENSOR1 (B1)	P0132	0132	_	2	×	В	EC-152	
A/F SENSOR1 (B1)	P0133	0133	×	2	×	Α	EC-156	F
HO2S2 (B1)	P0137	0137	×	2	×	Α	EC-161	
HO2S2 (B1)	P0138	0138	×	2	×	Α	EC-167	
HO2S2 (B1)	P0139	0139	×	2	×	Α	EC-175	
A/F SENSOR1 (B2)	P0150	0150	_	2	×	Α	EC-144	
A/F SENSOR1 (B2)	P0151	0151	_	2	×	В	EC-148	

Items	DTC*1		SRT			Permanent	Reference	
(CONSULT-III screen terms)	CONSULT-III GST* ²	ECM* ³	code	Trip	MIL	DTC group*4	page	
A/F SENSOR1 (B2)	P0152	0152	_	2	×	В	EC-152	
A/F SENSOR1 (B2)	P0153	0153	×	2	×	Α	EC-156	
HO2S2 (B2)	P0157	0157	×	2	×	Α	EC-161	
HO2S2 (B2)	P0158	0158	×	2	×	Α	EC-167	
HO2S2 (B2)	P0159	0159	×	2	×	Α	EC-175	
FUEL SYS-LEAN-B1	P0171	0171	_	2	×	В	EC-181	
FUEL SYS-RICH-B1	P0172	0172	_	2	×	В	EC-187	
FUEL SYS-LEAN-B2	P0174	0174	_	2	×	В	EC-181	
FUEL SYS-RICH-B2	P0175	0175	_	2	×	В	EC-187	
FTT SENSOR	P0181	0181	_	2	×	В	EC-193	
FTT SEN/CIRCUIT	P0182	0182	_	2	×	В	EC-196	
FTT SEN/CIRCUIT	P0183	0183	_	2	×	В	EC-196	
TP SEN 1/CIRC-B1	P0222	0222	_	1	×	В	EC-199	
TP SEN 1/CIRC-B1	P0223	0223	_	1	×	В	EC-199	
MULTI CYL MISFIRE	P0300	0300	_	1 or 2	×	В	EC-203	
CYL 1 MISFIRE	P0301	0301	_	1 or 2	×	В	EC-203	
CYL 2 MISFIRE	P0302	0302	_	1 or 2	×	В	EC-203	
CYL 3 MISFIRE	P0303	0303	_	1 or 2	×	В	EC-203	
CYL 4 MISFIRE	P0304	0304	_	1 or 2	×	В	EC-203	
CYL 5 MISFIRE	P0305	0305	_	1 or 2	×	В	EC-203	
CYL 6 MISFIRE	P0306	0306	_	1 or 2	×	В	EC-203	
KNOCK SEN/CIRC-B1	P0327	0327	_	2	_	_	EC-210	
KNOCK SEN/CIRC-B1	P0328	0328	—	2	_	_	EC-210	
KNOCK SEN/CIRC-B2	P0332	0332	_	2	_	_	EC-210	
KNOCK SEN/CIRC-B2	P0333	0333	_	2	_	_	EC-210	
CKP SEN/CIRCUIT	P0335	0335	_	2	×	В	EC-213	
CMP SEN/CIRC-B1	P0340	0340	_	2	×	В	EC-217	
CMP SEN/CIRC-B2	P0345	0345	_	2	×	В	EC-217	
TW CATALYST SYS-B1	P0420	0420	×	2	×	Α	EC-221	
TW CATALYST SYS-B2	P0430	0430	×	2	×	Α	EC-221	
EVAP PURG FLOW/MON	P0441	0441	×	2	×	Α	EC-226	
EVAP SMALL LEAK	P0442	0442	×	2	×	Α	EC-231	
PURG VOLUME CONT/V	P0443	0443	_	2	×	Α	EC-238	
PURG VOLUME CONT/V	P0444	0444	_	2	×	В	EC-243	
PURG VOLUME CONT/V	P0445	0445	_	2	×	В	EC-243	
VENT CONTROL VALVE	P0447	0447	1 –	2	×	В	EC-246	
VENT CONTROL VALVE	P0448	0448	<u> </u>	2	×	В	EC-250	
EVAP SYS PRES SEN	P0451	0451	<u> </u>	2	×	Α	EC-255	
EVAP SYS PRES SEN	P0452	0452	<u> </u>	2	×	В	EC-258	
EVAP SYS PRES SEN	P0453	0453	<u> </u>	2	×	В	EC-262	
EVAP GROSS LEAK	P0455	0455	T —	2	×	Α	EC-267	
EVAP VERY SML LEAK	P0456	0456	×* ⁷	2	×	Α	EC-274	

[VQ40DE] < ECU DIAGNOSIS >

Items	DTC*1		SRT			Permanent	Reference		
(CONSULT-III screen terms)	CONSULT-III GST* ²	ECM*3	code	Trip	MIL	DTC group*4	page	Α	
FUEL LEV SEN SLOSH	P0460	0460	_	2	×	А	EC-282		
FUEL LEVEL SENSOR	P0461	0461	_	2	×	В	EC-284		
FUEL LEVL SEN/CIRC	P0462	0462	_	2	×	В	EC-286		
FUEL LEVEL SEN/CIRC	P0463	0463	_	2	×	В	EC-286		
VEH SPEED SEN/CIRC	P0500	0500	_	2	×	В	EC-288		
ISC SYSTEM	P0506	0506	_	2	×	В	EC-290		
ISC SYSTEM	P0507	0507	_	2	×	В	EC-292		
COLD START CONTROL	P050E	050E	_	2	×	А	EC-294		
PW ST P SEN/CIRC	P0550	0550	_	2	_	_	EC-296		
ECM BACK UP/CIRCUIT	P0603	0603	_	2	×	В	EC-299		
ECM	P0605	0605	_	1 or 2	× or —	В	EC-301		
ECM	P0607	0607	_	1(A/T) 2(M/T)	×(A/T) —(M/T)	В	EC-303		
SENSOR POWER/CIRCUIT	P0643	0643	_	1	×	В	EC-304		
TRANSMISSION CONT	P0700	0700	_	1	×	В	TM-113		
T/M RANGE SENSOR A	P0705	0705	_	2	×	В	<u>TM-114</u>		
ATF TEMP SEN/CIRC*8	P0710	0710	_	2	×	В	<u>TM-141</u>		
NPUT SPEED SENSOR A	P0717	0717	_	2	×	В	<u>TM-116</u>		
OUTPUT SPEED SENSOR	P0720	0720	_	2	×	В	<u>TM-118</u>		
GR INCORRECT RATIO*8	P0731	0731	_	2	×	В	<u>TM-123</u>		
2GR INCORRECT RATIO*8	P0732	0732	_	2	×	В	TM-125		
BGR INCORRECT RATIO*8	P0733	0733	_	2	×	В	TM-127		
IGR INCORRECT RATIO*8	P0734	0734	_	2	×	В	TM-129		
5GR INCORRECT RATIO*8	P0735	0735	_	2	×	В	<u>TM-131</u>		
FORQUE CONVERTER	P0740	0740	_	2	×	В	TM-133		
FORQUE CONVERTER	P0744	0744	_	2	×	В	TM-135		
PC SOLENOID A	P0745	0745	_	2	×	В	TM-137		
P-N POS SW/CIRCUIT	P0850	0850	_	2	×	В	EC-307		
CLOSED LOOP-B1	P1148	1148	_	1	×	Α	EC-311		
CLOSED LOOP-B2	P1168	1168	_	1	×	Α	EC-311		
CS C/U FUNCTN	P1211	1211	_	2	_	_	EC-312		
CS/CIRC	P1212	1212	_	2	_	_	EC-313		
ENG OVER TEMP	P1217	1217	_	1	×	В	EC-314		
CTP LEARNING-B1	P1225	1225	_	2	_	_	EC-318		
CTP LEARNING-B1	P1226	1226	_	2	_	_	EC-320		
BAT CURRENT SENSOR	P1550	1550	_	2	_	_	EC-322		
BAT CURRENT SENSOR	P1551	1551	_	2	_	_	EC-326		
BAT CURRENT SENSOR	P1552	1552	_	2	_	_	EC-326		
BAT CURRENT SENSOR	P1553	1553	_	2		_	EC-330		
BAT CURRENT SENSOR	P1554	1554	_	2	_	_	EC-334		
ASCD SW	P1564	1564	_	1	_	_	EC-338		
ASCD BRAKE SW	P1572	1572	_	1	_		EC-342		

EC-467 Revision: July 2009 2010 Xterra

Items	DTC*1					Dormonont	5 (
(CONSULT-III screen terms)	CONSULT-III GST* ²	ECM* ³	- SRT code	Trip	MIL	Permanent DTC group* ⁴	Reference page	
ASCD VHL SPD SEN	P1574	1574	_	1	_	_	EC-351	
LOCK MODE	P1610	1610	_	2	_	_	SEC-25	
ID DISCARD IMM-ECM	P1611	1611	_	2	_	_	SEC-22	
CHAIN OF ECM-IMMU	P1612	1612	_	2	_	_	SEC-24	
CHAIN OF IMMU-KEY	P1614	1614	_	2	_	_	SEC-18	
DIFFERENCE OF KEY	P1615	1615	_	2	_	_	SEC-21	
IN PLUY SPEED	P1715	1715	_	2	_	_	EC-353	
INTERLOCK	P1730	1730	_	1	×	В	TM-145	
INPUT CLUTCH SOL	P1752	1752	_	1	×	В	TM-149	
FR BRAKE SOLENOID	P1757	1757	_	1	×	В	TM-151	
DRCT CLUTCH SOL	P1762	1762	_	1	×	В	TM-153	
HLR CLUTCH SOLENOID	P1767	1767	_	1	×	В	TM-155	
L C BRAKE SOLENOID	P1772	1772	_	1	×	В	TM-157	
L C BRAKE SOLENOID	P1774	1774	_	1	×	В	TM-159	
VIAS S/V-1	P1800	1800	_	2	_	_	EC-354	
BRAKE SW/CIRCUIT	P1805	1805	_	2	_	_	EC-357	
ETC MOT PWR-B1	P2100	2100	_	1	×	В	EC-360	
ETC FUNCTION/CIRC-B1	P2101	2101	_	1	×	В	EC-363	
ETC MOT PWR	P2103	2103	_	1	×	В	EC-360	
ETC MOT-B1	P2118	2118	_	1	×	В	EC-367	
ETC ACTR-B1	P2119	2119	_	1	×	В	EC-369	
APP SEN 1/CIRC	P2122	2122	_	1	×	В	EC-371	
APP SEN 1/CIRC	P2123	2123	_	1	×	В	EC-371	
APP SEN 2/CIRC	P2127	2127	_	1	×	В	EC-374	
APP SEN 2/CIRC	P2128	2128	_	1	×	В	EC-374	
TP SENSOR-B1	P2135	2135	_	1	×	В	EC-378	
APP SENSOR	P2138	2138	_	1	×	В	EC-382	
A/F SENSOR1 (B1)	P2A00	2A00	_	2	×	А	EC-386	
A/F SENSOR1 (B2)	P2A03	2A03	_	2	×	Α	EC-386	

^{*1: 1}st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

INFOID:0000000005575700

If a malfunction is detected during the 1st trip, the 1st trip DTC is saved in the ECM memory. The MIL will not illuminate (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required

^{*2:} This number is prescribed by SAE J2012/ISO 15031-6.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:}Refer to EC-47. "Emission-related Diagnostic Information", "PERMANENT DIAGNOSTIC TROUBLE CODE (PERMANENT DTC)".

^{*5:} The troubleshooting for this DTC need CONSULT-III.

^{*6:} When the ECM is in the mode of displaying SRT status, MIL may blink. For the details, refer to "How to Display SRT Status".

^{*7:} SRT code will not be set if the self-diagnostic result is NG.

^{*8:} When erasing this DTC, always use CONSULT-III or GST.

driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are saved in the ECM memory and the MIL illuminates. In other words, the DTC is saved in the ECM memory and the MIL illuminates when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is saved and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be saved. For malfunctions that blink or illuminate the MIL during the 1st trip, the DTC and 1st trip DTC are saved in the ECM memory.

EC

Н

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

For malfunctions in which 1st trip DTCs are displayed, refer to "EMISSION-RELATED DIAGNOSTIC INFOR-MATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-III.

1st trip DTC is specified in Service \$07 of SAE J1979/ISO 15031-5. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step 2, refer to <u>EC-8</u>, "<u>Trouble Diagnosis Introduction</u>". Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-III

With GST

CONSULT-III or GST (Generic Scan Tool) Examples: P0340, P0850, P1148, etc.

These DTCs are prescribed by SAE J2012/ISO 15031-6.

(CONSULT-III also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 0850, 1148, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST and the Diagnostic Test Mode II never indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-III can identify malfunction status as shown below. Therefore, using CONSULT-III (if available) is recommended.

DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-III. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is saved in the ECM, the time data will be [1t].

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are saved in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, saved together with the DTC data, are called freeze frame data and displayed on CONSULT-III or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-III screen, not on the GST. For details, see <u>EC-74, "CONSULT-III Function (ENGINE)"</u>.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be saved in the ECM. 1st trip freeze frame data is saved in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is saved in the ECM memory, 1st trip freeze frame data is no longer saved. Remember, only one set of freeze frame data can be saved in the ECM. The ECM has the following priorities to update the data.

Priority	Items			
1	Freeze frame data	Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175		
2		Except the above items (Includes A/T related items)		
3	1st trip freeze frame data			

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was saved in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is saved in the ECM memory, 1st trip freeze data is no longer saved (because only one freeze frame data or 1st trip freeze frame data can be saved in the ECM). If freeze frame data is saved in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Service \$01 of SAE J1979/ISO 15031-5.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If permanent DTC is stored or MIL illuminates during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT"), DTC (No DTCs) and permanent DTC (No permanent DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-III indica- tion)	Perfor- mance Pri- ority*1	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
	2	EVAP control system purge flow monitoring	P0441
EVAP SYSTEM	1 EVAP control system		P0442
	2	EVAP control system	P0456
		Air fuel ratio (A/F) sensor 1	P0133, P0153
HO2S	1	Heated oxygen sensor 2	P0137, P0157
11025	'	Heated oxygen sensor 2	P0138, P0158
		Heated oxygen sensor 2	P0139, P0159
EGR/VVT SYSTEM	3	Intake value timing control function	P0011, P0021

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-III.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

Self-diagnosis result		Example							
		Diagnosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
All OK	Case 1	P0400	OK (1)	—(1)	OK (2)	— (2)			
		P0402	OK (1)	—(1)	— (1)	OK (2)			
		P1402	OK (1)	OK (2)	— (2)	— (2)			
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"			
	Case 2	P0400	OK (1)	— (1)	—(1)	—(1)			
		P0402	— (0)	— (0)	OK (1)	—(1)			
		P1402	OK (1)	OK (2)	— (2)	— (2)			
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"			
NG exists	Case 3	P0400	OK	OK	_	_			
		P0402	_	_	_	_			
		P1402	NG	_	NG	NG (Consecutive NG)			
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL ON)			
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"			

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

—: Self-diagnosis is not carried out.

When all SRT related self-diagnoses show OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". \rightarrow Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is the number one (1) for each self-diagnosis (Case 1 & 2) or the number two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- During SRT driving pattern, the 1st trip DTC (NG) is detected prior to "CMPLT" of SRT and the self-diagnosis memory must be erased from the ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

Revision: July 2009 EC-471 2010 Xterra

EC

Α

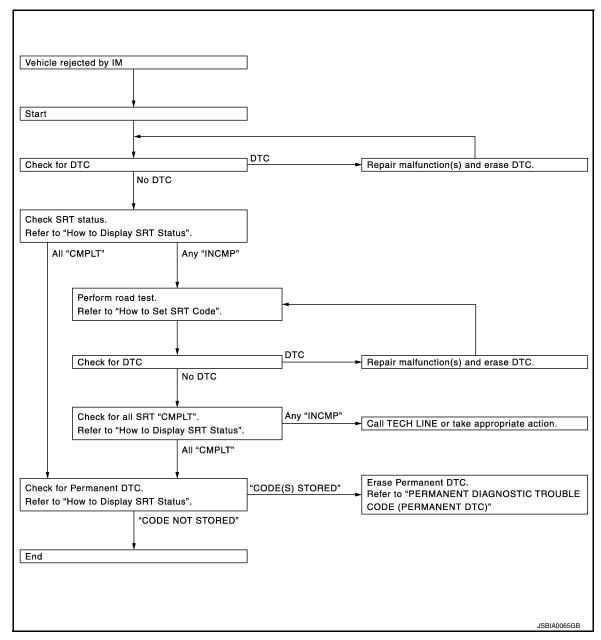
D

E

G

Н

J


.

L

M

Ν

0

How to Display SRT Status

(P)WITH CONSULT-III

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-III.

For items whose SRT codes are set, "CMPLT" is displayed on the CONSULT-III screen; for items whose SRT codes are not set, "INCMP" is displayed.

NOTE:

- Though displayed on the CONSULT-III screen, "HO2S HTR" is not SRT item.
- "SRT STATUS" provides the presence or absence of permanent DTCs stored in ECM memory.

WITH GST

Selecting Service \$01 with GST (Generic Scan Tool)

NO TOOLS

A SRT code itself cannot be displayed, however SRT status can.

- Turn ignition switch ON and wait 20 seconds.
- 2. SRT status is indicated as shown below.
 - When all SRT codes are set, MIL illuminates continuously.

Α

EC

D

Е

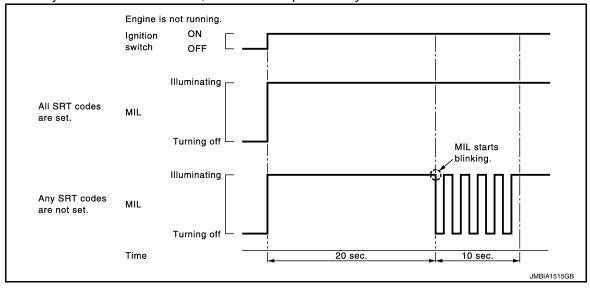
F

Н

J

K

L


M

Ν

0

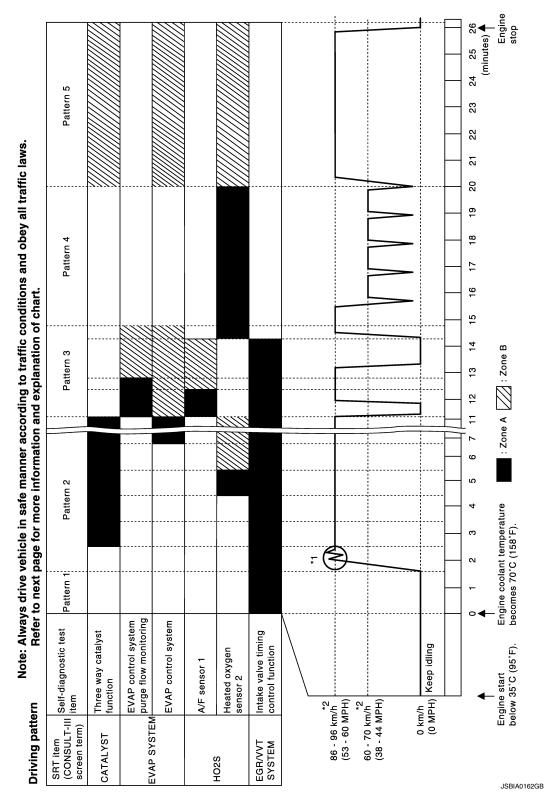
Р

· When any SRT codes are not set, MIL will blink periodically for 10 seconds.

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) WITH CONSULT-III


Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on "SRT Item".

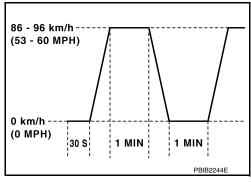
WITHOUT CONSULT-III

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

Revision: July 2009 EC-473 2010 Xterra

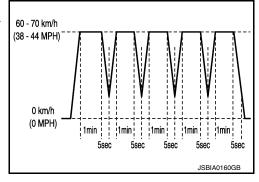
Driving Pattern

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:


- · Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of –10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).


Pattern 2:

- When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted.
 In this case, the time required for diagnosis may be extended.
 Pattern 3:
- Operate vehicle following the driving pattern shown in the figure.
- Replace the accelerator pedal during decelerating vehicle speed from 90km/h (56MPH) to 0km/h (0MPH).

Pattern 4:

- Operate vehicle, following the driving pattern shown in the figure.
- Drive the vehicle in a proper gear at 60 km/h (38 MPH) and maintain the speed.
- Release the accelerator pedal fully at least 5 seconds.
- Repeat the above two steps at least 5 times.

Pattern 5:

- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the D position with the overdrive switch turned ON.

Suggested Upshift Speeds for M/T Models

Shown below are suggested vehicle speeds vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

EC

Α

D

Ε

Г

G

Н

K

L

M

Ν

0

Р

EC-475

	For normal acceler [less than 1,2	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	change ACCEL shift point km/h (MPH) CRUISE shift point km/h (MPH)		km/h (MPH)
1st to 2nd	21 (13)	17 (11)	24 (15)
2nd to 3rd	38 (24)	27 (17)	40 (25)
3rd to 4th	53 (33)	40 (25)	64 (40)
4th to 5th	69 (43)	51 (32)	72 (45)
6th	77 (48)	72 (45)	80 (50)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Never exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure sage operation. Never over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	56 (35)
2nd	96 (60)
3rd	136 (85)
4th	_
5th	_
6th	_

PERMANENT DIAGNOSTIC TROUBLE CODE (PERMANENT DTC)

Permanent DTC is defined in SAE J1979/ISO 15031-5 Service \$0A.

ECM stores a DTC issuing a command of turning on MIL as a permanent DTC and keeps storing the DTC as a permanent DTC until ECM judges that there is no presence of malfunction.

Permanent DTCs cannot be erased by using the Erase function of CONSULT-III or Generic Scan Tool (GST) and by disconnecting the battery to shut off power to ECM. This prevents a vehicle from passing the state emission inspection without repairing a malfunctioning part.

When not passing the state emission inspection due to more than one permanent DTC, permanent DTCs should be erased, referring to this manual.

NOTE:

- The important items in state emission inspection are that MIL is not ON, SRT test items are set, and permanent DTCs are not included.
- Permanent DTCs do not apply for regions that permanent DTCs are not regulated by law.

Permanent DTC Item

For permanent DTC items, MIL turns ON. Refer to <u>EC-468. "Emission-related Diagnostic Information"</u>, "EMIS-SION-RELATED DIAGNOSTIC INFORMATION ITEMS".

Permanent DTC Set Timing

The setting timing of permanent DTC is stored in ECM with the lighting of MIL when a DTC is confirmed.

Permanent DTC Service Procedure

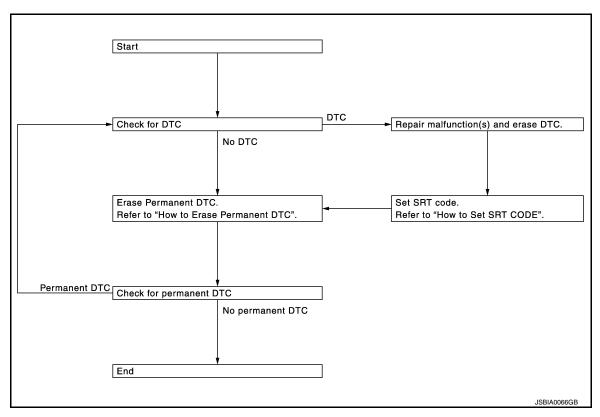
Α

EC

D

Е

Н


K

L

M

Ν

Р

How to Display Permanent DTC Status

WITH CONSULT-IIITurn ignition sw

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Select "PERMANENT DTC STATUS" in "DTC & SRT CONFIRMATION" mode with CONSULT-III. NOTE:

Permanent DTCs stored in ECM memory are displayed on the CONSULT-III screen to show if a driving pattern required for erasing permanent DTCs is complete (CMPLT) or incomplete (INCMP).

Since the "PERMANENT DTC STATUS" screen displays the previous trip information, repeat the following twice to update the information: "Ignition switch OFF", "Wait for more than 10 seconds" and "Ignition switch ON".

CAUTION: Turn ignition switch from O status screen.	N to OFF twice to update the informa	ation on the
PERMANENT DTC	DRIVING PATTERN B	DRIVING PATTERN D
xxxx	INCMP	INCMP
xxxx	CMPLT	INCMP
xxxx	INCMP	CMPLT
xxxx	CMPLT	INCMP
xxxx	INCMP	INCMP
XXXX	INCMP	INCMP

JSBIA0062GB

[VQ40DE] < ECU DIAGNOSIS >

- **WITH GST**1. Turn ian Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 5. Select Service \$0A with GST (Generic Scan Tool).

TEST VALUE AND TEST LIMIT

The following is the information specified in Service \$06 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by On Board Monitor ID(OBDMID), Test ID (TID), Unit and Scaling ID and can be displayed on the GST screen.

The items of the test value and test limit will be displayed with GST screen which items are provided by the ECM. (e.g., if the bank 2 is not applied on this vehicle, only the items of the bank 1 is displayed)

				li	e and Test mit	
ITEM	OBD- MID	Self-diagnostic test item	DTC	(GST	Unitand Scaling ID	Description
			P0131	83H	0BH	Minimum sensor output voltage for test cycle
			P0131	84H	0BH	Maximum sensor output voltage for test cycle
			P0130	85H	0BH	Minimum sensor output voltage for test cycle
			P0130	86H	0BH	Maximum sensor output voltage for test cycle
			P0133	87H	04H	Response rate: Response ratio (Lean to Rich)
			P0133	88H	04H	Response rate: Response ratio (Rich to Lean)
		Air fuel ratio (A/F) sensor 1 (Bank 1)	P2A00	89H	84H	The amount of shift in air fuel ratio
			P2A00	8AH	84H	The amount of shift in air fuel ratio
			P0130	8BH	0BH	Difference in sensor output voltage
	01H		P0133	8CH	83H	Response gain at the limited frequency
			P014C	8DH	04H	O2 Sensor Slow Response - Rich to Lean Bank 1 Sensor 1
			P014C	8EH	04H	O2 Sensor Slow Response - Rich to Lean Bank 1 Sensor 1
HO2S			P014D	8FH	84H	O2 Sensor Slow Response - Lean to Rich Bank 1 Sensor 1
11023			P014D	90H	84H	O2 Sensor Slow Response - Lean to Rich Bank 1 Sensor 1
			P015A	91H	01H	O2 Sensor Delayed Response - Rich to Lean Bank 1 Sensor 1
			P015A	92H	01H	O2 Sensor Delayed Response - Rich to Lean Bank 1 Sensor 1
			P015B	93H	01H	O2 Sensor Delayed Response - Lean to Rich Bank 1 Sensor 1
			P015B	94H	01H	O2 Sensor Delayed Response - Lean to Rich Bank 1 Sensor 1
			P0138	07H	0CH	Minimum sensor output voltage for test cycle
	02H	Heated oxygen sensor 2 (Bank 1)	P0137	08H	0CH	Maximum sensor output voltage for test cycle
			P0138	80H	0CH	Sensor output voltage
			P0139	81H	0CH	Difference in sensor output voltage
			P0143	07H	0CH	Minimum sensor output voltage for test cycle
	03H	Heated oxygen sensor 3 (Bank 1)	P0144	08H	0CH	Maximum sensor output voltage for test cycle
			P0146	80H	0CH	Sensor output voltage
			P0145	81H	0CH	Difference in sensor output voltage

		Self-diagnostic test item	DTC		e and Test mit	Description
Item	OBD-			(GST	display)	
	MID	Sen-diagnostic test item		TID	Unit and Scaling ID	Description
			P0151	83H	0BH	Minimum sensor output voltage for tes cycle
			P0151	84H	0BH	Maximum sensor output voltage for tes cycle
			P0150	85H	0BH	Minimum sensor output voltage for tes cycle
			P0150	86H	0BH	Maximum sensor output voltage for tes cycle
			P0153	87H	04H	Response rate: Response ratio (Lean t
			P0153	88H	04H	Response rate: Response ratio (Rich t Lean)
			P2A03	89H	84H	The amount of shift in air fuel ratio
		Air fuel ratio (A/F) sensor 1 (Bank 2)	P2A03	8AH	84H	The amount of shift in air fuel ratio
			P0150	8BH	0BH	Difference in sensor output voltage
	05H		P0153	8CH	83H	Response gain at the limited frequency
			P014E	8DH	04H	O2 Sensor Slow Response - Rich to Lean Bank 2 Sensor 1
			P014E	8EH	04H	O2 Sensor Slow Response - Rich to Lean Bank 2 Sensor 1
HO2S			P014F	8FH	84H	O2 Sensor Slow Response - Lean to Rich Bank 2 Sensor 1
HO23			P014F	90H	84H	O2 Sensor Slow Response - Lean to Rich Bank 2 Sensor 1
			P015C	91H	01H	O2 Sensor Delayed Response - Rich t Lean Bank 2 Sensor 1
			P015C	92H	01H	O2 Sensor Delayed Response - Rich t Lean Bank 2 Sensor 1
			P015D	93H	01H	O2 Sensor Delayed Response - Lean t Rich Bank 2 Sensor 1
			P015D	94H	01H	O2 Sensor Delayed Response - Lean 1 Rich Bank 2 Sensor 1
			P0158	07H	0CH	Minimum sensor output voltage for tescycle
	06H	Heated oxygen sensor 2 (Bank 2)	P0157	08H	0CH	Maximum sensor output voltage for teacycle
			P0158	80H	0CH	Sensor output voltage
			P0159	81H	0CH	Difference in sensor output voltage
			P0163	07H	0CH	Minimum sensor output voltage for tescycle
	07H	Heated oxygen sensor 3 (Bank2)	P0164	08H	0CH	Maximum sensor output voltage for teacycle
			P0166	80H	0CH	Sensor output voltage
			P0165	81H	0CH	Difference in sensor output voltage

Item	OBD-	Self-diagnostic test item	DTC	Test value and Test limit (GST display)		Description
пеш	MID	Sen-diagnostic test item	Dio	TID	Unitand Scaling ID	Description
			P0420	80H	01H	O2 storage index
	21H	Three way catalyst function	P0420	82H	01H	Switching time lag engine exhaust index value
	2111	(Bank1)	P2423	83H	0CH	Difference in 3rd O2 sensor output voltage
CATA-			P2423	84H	84H	O2 storage index in HC trap catalyst
_YST			P0430	80H	01H	O2 storage index
	22H	Three way catalyst function	P0430	82H	01H	Switching time lag engine exhaust index value
	2211	(Bank2)	P2424	83H	0CH	Difference in 3rd O2 sensor output voltage
			P2424	84H	84H	O2 storage index in HC trap catalyst
		EGR function	P0400	80H	96H	Low Flow Faults: EGR temp change rate (short term)
			P0400	81H	96H	Low Flow Faults: EGR temp change rate (long term)
EGR SYSTEM	31H		P0400	82H	96H	Low Flow Faults: Difference between max EGR temp and EGR temp under idling condition
			P0400	83H	96H	Low Flow Faults: Max EGR temp
			P1402	84H	96H	High Flow Faults: EGR temp increase rate
			P0011	80H	9DH	VTC intake function diagnosis (VTC alignment check diagnosis)
	35H	VVT Monitor (Bank1)	P0014	81H	9DH	VTC exhaust function diagnosis (VTC alignment check diagnosis)
	5511	VVI Monitor (Banki)	P0011	82H	9DH	VTC intake function diagnosis (VTC drive failure diagnosis)
VVT			P0014	83H	9DH	VTC exhaust function diagnosis (VTC drive failure diagnosis)
SYSTEM			P0021	80H	9DH	VTC intake function diagnosis (VTC alignment check diagnosis)
	36H	VVT Monitor (Bank2)	P0024	81H	9DH	VTC exhaust function diagnosis (VTC alignment check diagnosis)
	5011	VV 1 MOTILOT (Dalikz)	P0021	82H	9DH	VTC intake function diagnosis (VTC drive failure diagnosis)
			P0024	83H	9DH	VTC exhaust function diagnosis (VTC drive failure diagnosis)

				Test value and Test limit (GST display)		
	OBD-		DTC -			
Item	MID	Self-diagnostic test item		TID	Unit and Scaling ID	Description
	39H	EVAP control system leak (Cap Off)	P0455	80H	0CH	Difference in pressure sensor output voltage before and after pull down
	3ВН	EVAP control system leak (Small leak)	P0442	80H	05H	Leak area index (for more than 0.04 inch)
EVAP			P0456	80H	05H	Leak area index (for more than 0.02 inch)
SYSTEM	3CH	EVAP control system leak (Very small leak)	P0456	81H	FDH	Maximum internal pressure of EVAP system during monitoring
			P0456	82H	FDH	Internal pressure of EVAP system at the end of monitoring
	3DH	Purge flow system	P0441	83H	0CH	Difference in pressure sensor output voltage before and after vent control valve close
	41H	A/F sensor 1 heater (Bank 1)	Low Input:P0031 High Input:P0032	81H	0BH	Converted value of Heater electric current to voltage
	42H	Heated oxygen sensor 2 heater (Bank 1)	Low Input:P0037 High Input:P0038	80H	0CH	Converted value of Heater electric current to voltage
O2 SEN- SOR	43H	Heated oxygen sensor 3 heater (Bank 1)	P0043	80H	0CH	Converted value of Heater electric cur rent to voltage
HEATER	45H	A/F sensor 1 heater (Bank 2)	Low Input:P0051 High Input:P0052	81H	0BH	Converted value of Heater electric current to voltage
	46H	Heated oxygen sensor 2 heater (Bank 2)	Low Input:P0057 High Input:P0058	80H	0CH	Converted value of Heater electric current to voltage
	47H	Heated oxygen sensor 3 heater (Bank 2)	P0063	80H	0CH	Converted value of Heater electric cur rent to voltage
			P0411	80H	01H	Secondary Air Injection System Incorrect Flow Detected
			Bank1: P0491 Bank2: P0492	81H	01H	Secondary Air Injection System Insufficient Flow
			P2445	82H	01H	Secondary Air Injection System Pump Stuck Off
Second- ary Air	71H	Secondary Air system	P2448	83H	01H	Secondary Air Injection System High Airflow
			Bank1: P2440 Bank2: P2442	84H	01H	Secondary Air Injection System Switch ing Valve Stuck Open
			P2440	85H	01H	Secondary Air Injection System Switching Valve Stuck Open
			P2444	86H	01H	Secondary Air Injection System Pump Stuck On
	81H	Fuel injection system function	P0171 or P0172	80H	2FH	Long term fuel trim
FUEL	οιΠ	(Bank 1)	P0171 or P0172	81H	24H	The number of lambda control clampe
SYSTEM	0011	Fuel injection system function	P0174 or P0175	80H	2FH	Long term fuel trim
	82H	(Bank 2)	P0174 or P0175	81H	24H	The number of lambda control clampe

ECU D	IAGNO	DSIS >				[VQ40DE]	_
Item	OBD-	Self-diagnostic test item	DTC	li	e and Test mit display)	Description	
item	MID	Sell-diagnostic test item	Dic	TID	Unitand Scaling ID	Description	E
			P0301	80H	24H	Misfiring counter at 1000 revolution of the first cylinder	
			P0302	81H	24H	Misfiring counter at 1000 revolution of the second cylinder	
			P0303	82H	24H	Misfiring counter at 1000 revolution of the third cylinder	
			P0304	83H	24H	Misfiring counter at 1000 revolution of the fourth cylinder	
			P0305	84H	24H	Misfiring counter at 1000 revolution of the fifth cylinder	
			P0306	85H	24H	Misfiring counter at 1000 revolution of the sixth cylinder	
			P0307	86H	24H	Misfiring counter at 1000 revolution of the seventh cylinder	
		Multiple Cylinder Misfires	P0308	87H	24H	Misfiring counter at 1000 revolution of the eighth cylinder	
			P0300	88H	24H	Misfiring counter at 1000 revolution of the multiple cylinders	
			P0301	89H	24H	Misfiring counter at 200 revolution of the first cylinder	
IISFIRE	A1H		P0302	8AH	24H	Misfiring counter at 200 revolution of the second cylinder	
			P0303	8BH	24H	Misfiring counter at 200 revolution of the third cylinder	
			P0304	8CH	24H	Misfiring counter at 200 revolution of the fourth cylinder	
			P0305	8DH	24H	Misfiring counter at 200 revolution of the fifth cylinder	
	POZOE REL 24H Misfiring counte		Misfiring counter at 200 revolution of the sixth cylinder				
			P0307	8FH	24H	Misfiring counter at 200 revolution of the seventh cylinder	
			P0308	90H	24H	Misfiring counter at 200 revolution of the eighth cylinder	
			P0300	91H	24H	Misfiring counter at 1000 revolution of the single cylinder	
			P0300	92H	24H	Misfiring counter at 200 revolution of the single cylinder	
			P0300	93H	24H	Misfiring counter at 200 revolution of the multiple cylinders	

	000	Self-diagnostic test item		li	e and Test mit display)	
Item	OBD- MID		DTC	TID	Unitand Scaling ID	Description
	A2H	No. 1 Cylinder Misfire	P0301	0BH	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0301	0CH	24H	Misfire counts for last/current driving cycles
	АЗН	No. 2 Cylinder Misfire	P0302	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0302	0CH	24H	Misfire counts for last/current driving cycles
	A4H	No. 3 Cylinder Misfire	P0303	0BH	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
		-	P0303	0CH	24H	Misfire counts for last/current driving cycles
	A5H	No. 4 Cylinder Misfire	P0304	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
MICEIDE			P0304	0CH	24H	Misfire counts for last/current driving cycles
MISFIRE	A6H	No. 5 Cylinder Misfire	P0305	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0305	0CH	24H	Misfire counts for last/current driving cycles
	А7Н	No. 6 Cylinder Misfire	P0306	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0306	0CH	24H	Misfire counts for last/current driving cycles
	A8H	No. 7 Cylinder Misfire	P0307	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
		,	P0307	0CH	24H	Misfire counts for last/current driving cycles
	А9Н	No. 8 Cylinder Misfire	P0308	ОВН	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0308	0CH	24H	Misfire counts for last/current driving cycles

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to Erase DTC and 1st Trip DTC

(II) With CONSULT-III

NOTE:

- If the ignition switch stays ON after rpair work, be sure to turn ignition OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-465, "DTC Index"), skip step 1.
- 1. Erase DTC in TCM. Refer to TM-100, "OBD-II Diagnostic Trouble Code (DTC)".
- Select "ENGINE" with CONSULT-III.

Revision: July 2009 EC-484 2010 Xterra

[VQ40DE] < ECU DIAGNOSIS >

- Select "SELF-DIAG RESULTS".
- Touch "ERASE". (DTC in ECM will be erased.)

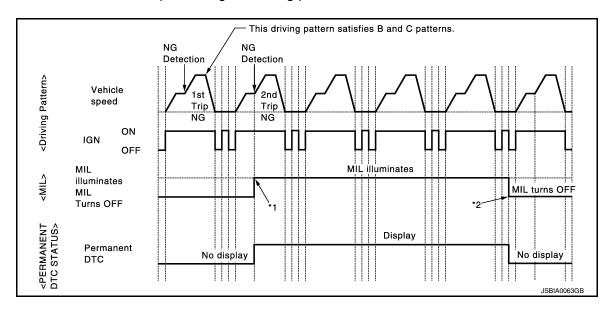
With GST

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Select Service \$04 with GST (Generic Scan Tool).

No Tools

NOTE:


- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Erase DTC in ECM. Refer to HOW TO ERASE DIAGNOSTIC TEST MODE II (SELF-DIAGNOSTIC RESULTS).
- Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal.
- · If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

How to Erase Permanent DTC

When a DTC is stored in ECM

 When a DTC is stored in ECM and MIL is ON, a permanent DTC is erased with MIL shutoff if the same malfunction is not detected after performing the driving pattern for MIL shutoff three times in a raw.

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- MIL will turn off after vehicle is driven 3 times (pattern B) without any malfunctions.

When a DTC is not stored in ECM

The erasing method depends on a permanent DTC stored in ECM. Refer to the following table.

EC-485 2010 Xterra Revision: July 2009

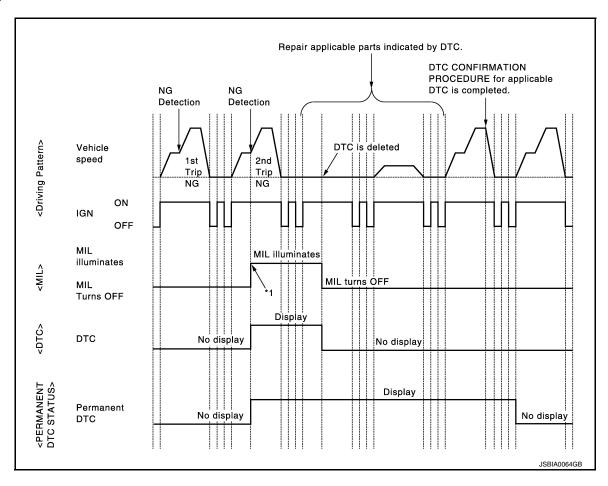
EC

Α

D

Н

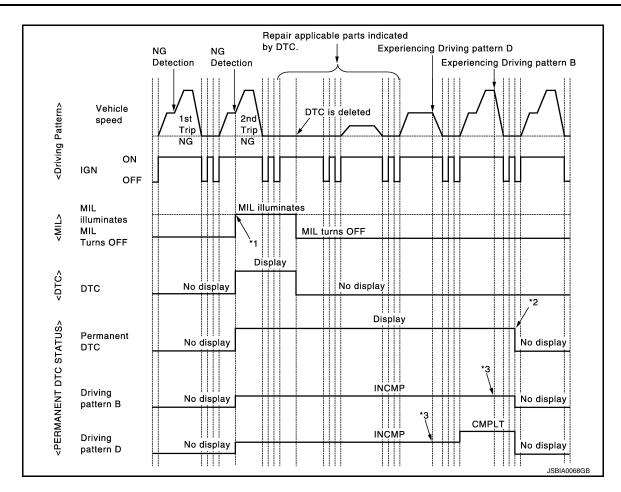
M


N

x: Applicable —: Not applicable

Group*	Perform "DTC CONFIRMATION PROCEDURE"	Driving pattern					
Group	for applicable DTCs.	В	D				
A	×	_	_				
В	_	×	×				

^{*:} For group, refer to <u>EC-468, "Emission-related Diagnostic Information"</u>, "EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS".


Group A

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Check permanent DTC. Refer to <u>EC-468</u>, "<u>Emission-related Diagnostic Information</u>", "How to Display Permanent DTC Status".
- 6. Perform "DTC CONFIRMATION PROCEDURE" for DTCs which are the same as permanent DTCs stored in ECM.
- 7. Turn ignition switch OFF and wait at least 10 seconds.
- 8. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- 10. Turn ignition switch ON.
- Check permanent DTC. Refer to <u>EC-468, "Emission-related Diagnostic Information"</u>, "How to Display Permanent DTC Status".
- 12. Check that the permanent DTCs have been erased.

Group B

[VQ40DE] < ECU DIAGNOSIS >

- *1: When the same malfunction is detected in two consecutive trips, MIL will illuminate.
- *2: After experiencing Driving pattern B *3: Indication does not change unless and D, permanent DTC is erased.
 - the ignition switch is turned from ON to OFF twice even after experiencing Driving pattern B or D.

NOTE:

- Drive the vehicle according to only driving patterns indicating "INCMP" in driving patterns B and D on the "PERMANENT DTC STATUS" screen.
- When experiencing both driving pattern B and D during the same trip, the experience of driving pattern D is counted by priority.
- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds. 3.
- 4. Turn ignition switch ON.
- Check permanent DTC. Refer to EC-468, "Emission-related Diagnostic Information", "How to Display Permanent DTC Status".
- Start engine and warm it up to normal operating temperature.
- Drive the vehicle according to driving pattern D.

CAUTION:

- Always drive at a safe speed.
- Never erase self-diagnosis results.
- If self-diagnosis results are erased during the trip of driving pattern B or D, the counter of driving pattern B or D is reset.
- If self-diagnosis results are erased during the trip of driving pattern B or D, an experience of driving pattern B and D during the same trip is not counted up.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Turn ignition switch ON.
- 12. Use "PERMANENT DTC WORK SUPPORT" to drive the vehicle according to driving pattern B.

Α

EC

D

Е

Н

K

M

Ν

CAUTION:

- Always drive at a safe speed.
- Never erase self-diagnosis results.
- If self-diagnosis results are erased during the trip of driving pattern B or D, the counter of driving pattern B or D is reset.
- If self-diagnosis results are erased during the trip of driving pattern B or D, an experience of driving pattern B and D during the same trip is not counted up.
- 13. Turn ignition switch OFF and wait at least 10 seconds.
- 14. Turn ignition switch ON.
- 15. Turn ignition switch OFF and wait at least 10 seconds.
- 16. Turn ignition switch ON.
- 17. Check permanent DTC. Refer to <u>EC-468, "Emission-related Diagnostic Information"</u>, "How to Display Permanent DTC Status".
- 18. Check that the permanent DTCs have been erased.

ENGINE CONTROL SYSTEM SYMPTOMS

< SYMPTOM DIAGNOSIS >

[VQ40DE]

Α

SYMPTOM DIAGNOSIS

ENGINE CONTROL SYSTEM SYMPTOMS

Symptom Matrix Chart

INFOID:0000000005267772

SYSTEM — BASIC ENGINE CONTROL SYSTEM

							S	/MPT	ОМ							
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	E
Warrant	y symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-408	
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-500	
	Fuel injector circuit	1	1	2	3	2		2	2			2			EC-404	
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-39	
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-422	
	Incorrect idle speed adjustment						1	1	1	1		1			EC-14	k
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-363, EC-369	
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-14	L
	Ignition circuit	1	1	2	2	2		2	2			2			EC-412	
Power s	supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-92	
Mass ai	r flow sensor circuit	1			2										EC-111, EC-117	1
Engine	coolant temperature sensor circuit	'					3			3					EC-128, EC-136	N
Air fuel	ratio (A/F) sensor 1		1	2	3	2		2	2			2			EC-144 EC-148 EC-152 EC-156 EC-386	C
Throttle position sensor circuit							2			2					EC-132, EC-199, EC-318, EC-320, EC-378	F
Accelerator pedal position sensor circuit				3	2	1									EC-92, EC- 371, EC- 374, EC- 382	

Revision: July 2009 EC-489 2010 Xterra

[VQ40DE]

						S'	/MPT	OM						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Knock sensor circuit			2								3			EC-210
Crankshaft position sensor (POS) circuit	2	2												EC-213
Camshaft position sensor (PHASE) circuit	3	2												EC-217
Vehicle speed signal circuit		2	3		3						3			EC-288
Power steering pressure sensor circuit		2					3	3						EC-296
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-299, EC-301
Intake valve timing control solenoid valve circuit		3	2		1	3	2	2	3		3			EC-108
PNP signal circuit			3		3		3	3			3			EC-307
VIAS control solenoid valve circuit					1									EC-354
Refrigerant pressure sensor circuit		2				3			3		4			EC-424
Electrical load signal circuit							3							EC-402
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	<u>HAC-5,</u> <u>HAC-73</u>
ABS actuator and electric unit (control unit)			4											BRC-8, BRC-119

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

SYSTEM — ENGINE MECHANICAL & OTHER

ENGINE CONTROL SYSTEM SYMPTOMS

< SYMPTOM DIAGNOSIS >

[VQ40DE]

							S	/MPT	OM							Α
						z					lдн					
		Ή				ATIO					유			_		EC
		(EXCP. HA)		SPOT		LER					YTUF	NOI	z	(GE)		
		Œ)		AT SF	NO	CCE				щ	PER/	MPT	OLL	CHARGE)		0
				NG/FL/	ONATI	POWER/POOR ACCELERATION	ш	NG		TO IDL	S TEMF	INSNO	OIL CONSUMPTION	DER C	Reference	С
		RT/RE		JRGII	/DET	ER/P(V IDLI	ILNU	NOI	URN.	WATER	JEL C	L COI	DEAD (UNDER	page	D
		STAI	TALL	IS/NC	OCK	MOc	:/LO	LE/F	3RA1	RET	TS/V	Æ FL	Æ OI	DEA		
		HARD/NO START/RESTART	ENGINE STALL	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	LACK OF I	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE	BATTERY		Е
	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	HA		F
Fuel	Fuel tank	5											-		<u>FL-6</u>	-
	Fuel piping			5	5	5		5	5			5			<u>FL-5</u>	0
	Vapor lock		5												_	G
	Valve deposit	_		_	_	_		_	_			_			-	=
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			-	Н
Air	Air duct														<u>EM-25</u>	_
	Air cleaner														<u>EM-25</u>	ı
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)		5	5		5		5	5			5			<u>EM-25</u>	
	Electric throttle control actuator	5			5		5			5					EM-26	J
	Air leakage from intake manifold/ Collector/Gasket														EM-26, EM-29	K
Cranking	Battery	1	1	1		1		1	1					1	PG-6	
	Generator circuit	ı	'	'		I		'	ı					'	CHG-4	-
	Starter circuit	3										1			STR-4	L
	Signal plate	6													EM-110	-
	PNP signal	4													TM-114	M
Engine	Cylinder head	5	5	5	5	5		5	5			5			EM-110	1 1 1
	Cylinder head gasket	5	3	5	5	5		5	5		4	5	3		<u>⊏IVI-11U</u>	
	Cylinder block															Ν
	Piston												4			
	Piston ring	6	6	6	6	6		6	6			6			<u>EM-110</u>	0
	Connecting rod		6 6		0	U		0	0			O			<u>LIVI-TTO</u>	0
	Bearing															
	Crankshaft															Р
Valve	Timing chain														<u>EM-59</u>	-
mecha- nism	Camshaft														EM-73	-
	Intake valve timing control	5	5	5	5	5		5	5			5			<u>EM-59</u>	=
	Intake valve												3		EM-110	-
	Exhaust valve												J		<u>LIVITIO</u>	

							S١	/MPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code		AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			EM-32, EX- 5
	Three way catalyst														<u> </u>
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery/Oil cooler	5	5	5	5	5		5	5			5			EM-35, EM-110, LU-10, LU-
	Oil level (Low)/Filthy oil	-													<u>LU-7</u>
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-10</u>
	Thermostat									5					<u>CO-26</u>
	Water pump														<u>CO-21</u>
	Water gallery	5	5	5	5	5		5	5		4	5			CO-28
	Cooling fan									5					<u>CO-18</u>
	Coolant level (Low)/Contaminated coolant									5					<u>CO-10</u>
NVIS (NIS NATS)	SAN Vehicle Immobilizer System —	1	1												SEC-3

^{1 - 6:} The numbers refer to the order of inspection.

NORMAL OPERATING CONDITION

[VQ40DE] < SYMPTOM DIAGNOSIS >

NORMAL OPERATING CONDITION

Fuel Cut Control (at No Load and High Engine Speed)

INFOID:0000000005267773

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator	
Park/neutral position (PNP) switch (M/T) TCM (A/T)	Neutral position			
Accelerator pedal position sensor	Accelerator pedal position			
Engine coolant temperature sensor	Engine coolant temperature	Fuel cut control	Fuel injector	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Wheel sensor	Vehicle speed*			

^{*:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine speed is over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.

This function is different from deceleration control listed under EC-30, "System Description".

EC-493 2010 Xterra Revision: July 2009

EC

Α

Е

D

F

Н

K

L

Ν

Р

0

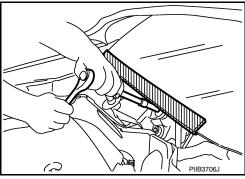
< PRECAUTION > [VQ40DE]

PRECAUTION

PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.


WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Always use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

Precaution for Procedure without Cowl Top Cover

INFOID:0000000005267775

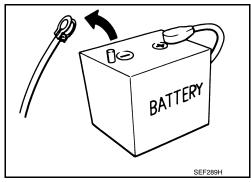
When performing the procedure after removing cowl top cover, cover the lower end of windshield with urethane, etc.

On Board Diagnosis (OBD) System of Engine and A/T

INFOID:0000000005267776

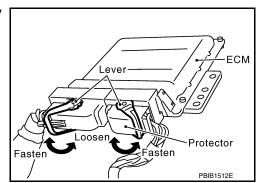
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION

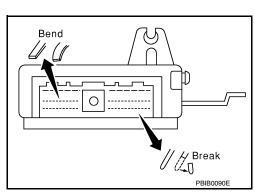

- Always turn the ignition switch OFF and disconnect the negative battery cable before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Always connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slide-locking type harness connector. For description and how to disconnect, refer to PG-63, "Description".
- Always route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Always connect rubber tubes properly after work. A misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system, etc.
- Always erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

[VQ40DE] < PRECAUTION >

Precaution


Always use a 12 volt battery as power source.

- · Never attempt to disconnect battery cables while engine is runnina.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned OFF.
- Before removing parts, turn ignition switch OFF and then disconnect negative battery cable.



Never disassemble ECM.

- If a battery cable is disconnected, the memory will return to the ECM value. The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a malfunction. Never replace parts because of a slight variation.
- · If the battery is disconnected, the following emission-related diagnostic information will be lost within 24 hours.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- <Frexible Fuel Vehicle> Presumed ethanol mixture ratio
- When connecting ECM harness connector, fasten it securely with levers as far as they will go as shown in the figure.

- When connecting or disconnecting pin connectors into or from ECM, never damage pin terminals (bends or break). Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.
- Securely connect ECM harness connectors. A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs. etc.
- Keep engine control system parts and harness dry.

EC

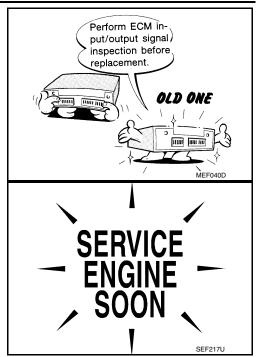
Α

INFOID:000000005267777

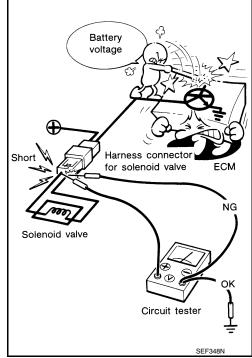
D

Е

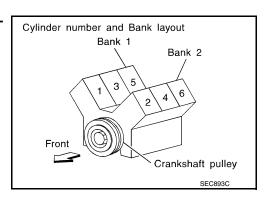
Н


K

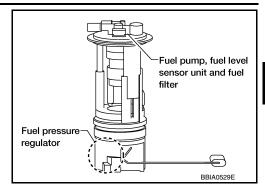
M


Ν

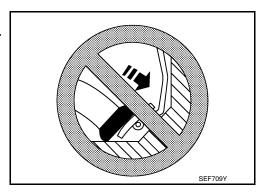
< PRECAUTION > [VQ40DE]


- Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions properly. Refer to EC-434, "ECM Terminal and Reference Value".
- Handle mass air flow sensor carefully to avoid damage.
- Never clean mass air flow sensor with any type of detergent.
- Never disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Never shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).
- After performing each TROUBLE DIAGNOSIS, perform DTC Confirmation Procedure or Overall Function Check.
 The DTC should not be displayed in the DTC Confirmation Procedure if the repair is completed. The Overall Function Check should be a good result if the repair is completed.

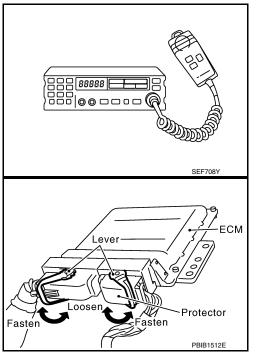
- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 - Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Never use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.



B1 indicates bank 1, B2 indicates bank 2 as shown in the figure.



< PRECAUTION > [VQ40DE]


- · Never operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

- Never depress accelerator pedal when starting.
- Immediately after starting, Never rev up engine unnecessarily.
- Never rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 Never let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.

EC

Α

D

C

F

Е

G

Н

J

K

M

Ν

0

< PREPARATION > [VQ40DE]

PREPARATION

PREPARATION

Special Service Tool

INFOID:0000000005267778

Tool number (Kent-Moore No.) Tool name		Description
EG17650301 (J-33984-A) Radiator cap tester adapter	c + + b a + + a s-NT564	Adapts radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia. Unit: mm (in)
(J-44321) Fuel pressure gauge kit	S-141564	Checks fuel pressure
(J-44321-6) Fuel pressure adapter	LBIA0376E	Connects fuel pressure gauge to quick connector type fuel lines.
(J-45488) Quick connector re- lease		Removes fuel tube quick connectors in engine room

PREPARATION

< PREPARATION > [VQ40DE]

Commercial Service Tool

INFOID:0000000005267779

Α

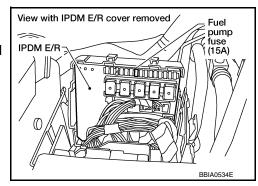
Tool name (Kent-Moore No.)		Description
Leak detector i.e.: (J-41416)		Locats the EVAP leak
	S-NT703	
EVAP service port adapter .e.: (J-41413-OBD)		Applys positive pressure through EVAP service port
Fuel filler cap adapter	S-NT704	Checks fuel tank vacuum relief valve opening
i.e.: (MLR-8382)		pressure
	S-NT815	
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removes and installs engine coolant temperature sensor
Oxygen sensor thread		Reconditions the exhaust system threads before
cleaner i.e.: (J-43897-18) (J-43897-12)	Mating surface shave cylinder	installing a new oxygen sensor. Use with anti- seize lubricant shown below. a: 18 mm diameter with pitch 1.5 mm for Zirco- nia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Tita- nia Oxygen Sensor
Anti-seize lubricant i.e.: (Permatex TM 133AR or equivalent meeting MIL specifica- tion MIL-A-907)		Lubricates oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

ON-VEHICLE MAINTENANCE

FUEL PRESSURE

Fuel Pressure Check

INFOID:0000000005267780

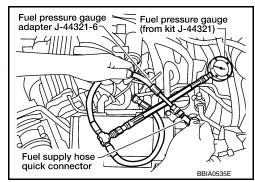

FUEL PRESSURE RELEASE

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.

Without CONSULT-III

- 1. Remove fuel pump fuse (No.48) located in IPDM E/R.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.
- 5. Reinstall fuel pump fuse after servicing fuel system.


FUEL PRESSURE CHECK

CAUTION:

Be careful not to scratch or get the fuel hose connection area dirty when servicing, so that the quick connector o-ring maintains sealability.

NOTE:

- Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be completely released because N50 models do not have fuel return system.
- Use Fuel Pressure Gauge Kit J-44321 and Fuel Pressure Adapter J-44321-6 to check fuel pressure.
- 1. Release fuel pressure to zero. Refer to "FUEL PRESSURE RELEASE".
- Remove fuel hose using Quick Connector Release J-45488. Refer to <u>EM-45, "Removal and Installation"</u>.
 - Do not twist or kink fuel hose because it is plastic hose.
 - Do not remove fuel hose from quick connector.
 - · Keep fuel hose connections clean.
- 3. Install Fuel Pressure Adapter J-44321-6 and Fuel Pressure Gauge (from kit J-44321) as shown in figure.
 - Do not distort or bend fuel rail tube when installing fuel pressure gauge adapter.
 - When reconnecting fuel hose, check the original fuel hose for damage and abnormality.
- 4. Turn ignition switch ON (reactivate fuel pump), and check for fuel leakage.
- 5. Start engine and check for fuel leakage.
- 6. Read the indication of fuel pressure gauge.
 - During fuel pressure check, check for fuel leakage from fuel connection every 3 minutes.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

7. If result is unsatisfactory, go to next step.

FUEL PRESSURE

< ON-VEHICLE MAINTENANCE >

- 8. Check the following.
 - · Fuel hoses and fuel tubes for clogging
 - · Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

If NG, repair or replace.

9. Before disconnecting Fuel Pressure Gauge and Fuel Pressure Adapter J-44321-6, release fuel pressure to zero. Refer to "FUEL PRESSURE RELEASE".

[VQ40DE]

EC

Α

D

С

Е

F

G

Н

J

K

L

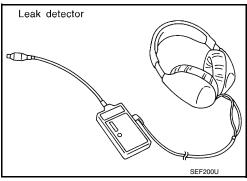
M

Ν

0

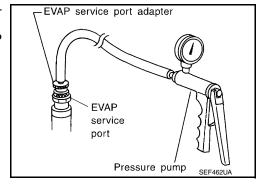
EVAP LEAK CHECK

How to Detect Fuel Vapor Leakage

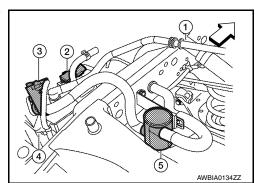

INFOID:0000000005267781

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system. NOTE:
- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.


(P) WITH CONSULT-III

- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch ON.
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-III.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.
- 8. Locate the leak using a leak detector. Refer to EC-39, "Description".



⋈ WITHOUT CONSULT-III

- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

- 3. Apply battery voltage between the terminals of EVAP canister vent control valve (3) to make a closed EVAP system.
- Fuel filler pipe (top of frame view) (1)
- EVAP control system pressure sensor (2)
- EVAP canister (4)
- Drain filter (5)
- <□: Vehicle front</p>
- 4. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5. Remove EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to <u>EC-39</u>. "<u>Description</u>".

< ON-VEHICLE REPAIR > [VQ40DE]

ON-VEHICLE REPAIR

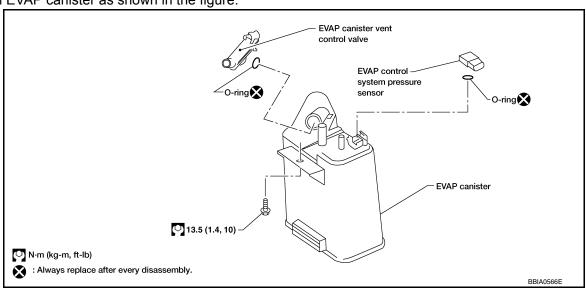
EVAP CANISTER

Component Inspection

EVAP CANISTER

Check EVAP canister as follows:

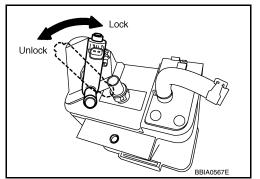
- 1. Block port **B**.
- 2. Blow air into port A and check that it flows freely out of port C.
- 3. Release blocked port B.
- 4. Apply vacuum pressure to port **B** and check that vacuum pressure exists at the ports **A** and **C**.
- 5. Block port A and B.
- 6. Apply pressure to port **C** and check that there is no leakage.


INFOID:0000000005267783

INFOID:0000000005267782

Removal and Installation

EVAP CANISTER


Tighten EVAP canister as shown in the figure.

EVAP CANISTER VENT CONTROL VALVE

- Turn EVAP canister vent control valve counterclockwise.
- 2. Remove the EVAP canister vent control valve.

Always replace O-ring with a new one.

Revision: July 2009 EC-503 2010 Xterra

EC

Α

D

Е

Н

J

K

M

Ν

0

[VQ40DE]

SERVICE DATA AND SPECIFICATIONS (SDS)

SERVICE DATA AND SPECIFICATIONS (SDS)

Fuel Pressure

Fuel pressure at idling kPa (kg/cm², psi)	Approximately 350 (3.57, 51)

Idle Speed and Ignition Timing

INFOID:0000000005267785

Target idle speed	No load* [in P or N position (A/T), Neutral position (M/T)]	625 ± 50 rpm
Air conditioner: ON	In P or N position (A/T), Neutral position (M/T)	625 rpm or more
Ignition timing	In P or N position (A/T), Neutral position (M/T)	15 ± 5° BTDC

^{*:} Under the following conditions:

- · Air conditioner switch: OFF
- · Electric load: OFF (Lights, heater fan & rear window defogger)
- · Steering wheel: Kept in straight-ahead position

Calculated Load Value

INFOID:0000000005267786

Condition	Calculated load value% (Using CONSULT-III or GST)
At idle	5 - 35
At 2,500 rpm	5 - 35

Mass Air Flow Sensor

INFOID:0000000005267787

Supply voltage	Battery voltage (11 - 14V)
Output voltage at idle	0.9 - 1.2*V
Mass air flow (Using CONSULT-III or GST)	2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*

^{*:} Engine is warmed up to normal operating temperature and running under no load.

Intake Air Temperature Sensor

INFOID:0000000005267788

Temperature °C (°F)	Resistance k Ω
25 (77)	1.800 - 2.200

Engine Coolant Temperature Sensor

INFOID:0000000005267789

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

Air Fuel Ratio (A/F) Sensor 1 Heater

INFOID:0000000005267790

Resistance [at 25°C (77°F)]	1.80 - 2.44Ω

SERVICE DATA AND S < SERVICE DATA AND SPECIFICATIONS (SDS)	PECIFICATIONS (SDS)	[VQ40DE]	
Heated Oxygen sensor 2 Heater		INFOID:0000000005267791	Α
Resistance [at 25°C (77°F)]	9.9 - 13.3Ω		
Crankshaft Position Sensor (POS)		INFOID:000000005267792	EC
Refer to EC-215, "Component Inspection". Camshaft Position Sensor (PHASE)		INFOID:000000005267793	С
Refer to EC-220, "Component Inspection". Throttle Control Motor		INFOID:0000000005267794	D
Resistance [at 25°C (77°F)]	Approximately 1 - 15Ω		Е
Fuel Injector		INFOID:0000000005267795	F
Resistance [at 10 - 60°C (50 - 140°F)]	11.1 - 14.5Ω	_	
Fuel Pump		INFOID:0000000005267796	G
Resistance [at 25°C (77°F)]	0.2 - 5.0Ω		Н
			I
			J
			K

L

Ν

 \bigcirc

Ρ

EC-505 Revision: July 2009 2010 Xterra