ENGINE CONTROL SYSTEM

SECTION EC

G[

MA

EM

LC

EC

FE

CONTENTS

KA24DE	
TROUBLE DIAGNOSIS - INDEX	13
Alphabetical & P No. Index for DTC	13
PRECAUTIONS	
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	17
Precautions for On Board Diagnostic (OBD)	
System of Engine and A/T	17
Engine Fuel & Emission Control System	18
Precautions	19
Wiring Diagrams and Trouble Diagnosis	20
PREPARATION	21
Special Service Tools	21
Commercial Service Tools	21
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	
Engine Control Component Parts Location	
Circuit Diagram	
System Diagram	
Vacuum Hose Drawing	
System Chart	28
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	
Multiport Fuel Injection (MFI) System	
Distributor Ignition (DI) System	
Air Conditioning Cut Control	33
Fuel Cut Control (at no load & high engine	
speed)	
Evaporative Emission System	
Positive Crankcase Ventilation	
BASIC SERVICE PROCEDURE	
Fuel Pressure Release	
Fuel Pressure Check	
Fuel Pressure Regulator Check	
Injector	
Fast Idle Cam (FIC)Idle Speed/Ignition Timing/Idle Mixture Ratio	41
Adjustment	12
/ NOTO SELECTION IN THE PROPERTY OF THE PROPER	⊤∠

ON BOARD DIAGNOSTIC SYSTEM	CL
DESCRIPTION	
Introduction56	MT
Two Trip Detection Logic56	ט טטט
Emission-related Diagnostic Information57	
Malfunction Indicator Lamp (MIL)69	AT
OBD System Operation Chart73	
CONSULT-II78	
Generic Scan Tool (GST)89	TF
TROUBLE DIAGNOSIS - INTRODUCTION91	
Introduction91	PD
Work Flow93	
TROUBLE DIAGNOSIS - BASIC INSPECTION95	
Basic Inspection95	$\mathbb{A}\mathbb{X}$
TROUBLE DIAGNOSIS - GENERAL	
DESCRIPTION 109	SU
DTC Inspection Priority Chart109	90
Fail-safe Chart110	
Symptom Matrix Chart111	BR
CONSULT-II Reference Value in Data Monitor	
Mode115	
Major Sensor Reference Graph in Data Monitor	ST
Mode117	
ECM Terminals and Reference Value120	RS
TROUBLE DIAGNOSIS FOR INTERMITTENT	[U]@)
INCIDENT	
Description	BT
Diagnostic Procedure	
TROUBLE DIAGNOSIS FOR POWER SUPPLY129	
Main Power Supply and Ground Circuit129	HA
DTC P0100 MASS AIR FLOW SENSOR (MAFS)136	
Component Description136 CONSULT-II Reference Value in Data Monitor	SC
	96
Mode136 ECM Terminals and Reference Value136	
On Board Diagnosis Logic137	EL
DTC Confirmation Procedure	
Overall Function Check	
Overali Function Check139	

Wiring Diagram.....140

Diagnostic Procedure	141	DTC P0131 FRONT HEATED OXYGEN SENSOR	
DTC P0105 ABSOLUTE PRESSURE SENSOR		(FRONT HO2S) (LEAN SHIFT MONITORING)	198
Component Description		Component Description	198
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	198
Overall Function Check		ECM Terminals and Reference Value	198
Wiring Diagram		On Board Diagnosis Logic	199
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0110 INTAKE AIR TEMPERATURE		Overall Function Check	
SENSOR	161	Diagnostic Procedure	
Component Description		DTC P0132 FRONT HEATED OXYGEN SENSOR	
On Board Diagnosis Logic		(FRONT HO2S) (RICH SHIFT MONITORING)	205
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure		Mode	205
DTC P0115 ENGINE COOLANT TEMPERATURE		ECM Terminals and Reference Value	
SENSOR (ECTS) (CIRCUIT)	167	On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor		Overall Function Check	
Mode	167	Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0133 FRONT HEATED OXYGEN SENSOR	201
DTC Confirmation Procedure		(FRONT HO2S) (RESPONSE MONITORING)	212
Wiring Diagram		Component Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	12
DTC P0120 THROTTLE POSITION SENSOR		Mode	212
Component Description		ECM Terminals and Reference Value	
CONSULT-II Reference Value in Data Monitor	172	On Board Diagnosis Logic	
Mode	172	DTC Confirmation Procedure	
ECM Terminals and Reference Value		Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTC P0134 FRONT HEATED OXYGEN SENSOR	210
Diagnostic Procedure		(FRONT HO2S) (HIGH VOLTAGE)	222
DTC P0125 ENGINE COOLANT TEMPERATURE		Component Description	
(ECT) SENSOR		CONSULT-II Reference Value in Data Monitor	220
Component Description		Mode	222
On Board Diagnosis Logic		ECM Terminals and Reference Value	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
DTC P0130 FRONT HEATED OXYGEN SENSOR		Diagnostic Procedure	
(FRONT HO2S) (CIRCUIT)		DTC P0135 FRONT HEATED OXYGEN SENSOR	220
Component Description		HEATER	230
CONSULT-II Reference Value in Data Monitor	190	Description	
	100	CONSULT-II Reference Value in Data Monitor	230
Mode			220
ECM Terminals and Reference Value		Mode ECM Terminals and Reference Value	
On Board Diagnosis Logic			
DTC Confirmation Procedure		On Board Diagnosis Logic	
Overall Function Check		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure	195	Diagnostic Procedure	233

DTC P0137 REAR HEATED OXYGEN SENSOR	Wiring Diagram275	GI
(REAR HO2S) (MIN. VOLTAGE MONITORING)23	•	
Component Description23		מ מ.מ
CONSULT-II Reference Value in Data Monitor	1 31311311 (12) 111 3132/	MA
Mode23	8 8	
ECM Terminals and Reference Value23		EM
On Board Diagnosis Logic23	5 Wiring Diagram280	LUVI
DTC Confirmation Procedure23	· · · · · · · · · · · · · · · · · · ·	
Overall Function Check23	L	LC
Wiring Diagram23	· · · · · · · · · · · · · · · · · · ·	
Diagnostic Procedure23		
DTC P0138 REAR HEATED OXYGEN SENSOR		EC
(REAR HO2S) (MAX. VOLTAGE MONITORING)24		
Component Description24	=	FE
CONSULT-II Reference Value in Data Monitor	DIC FUIOU FUEL TANK TEMPERATURE	rs
Mode24	5 SENSOR 293	
ECM Terminals and Reference Value24	5 Component Description293	GL
On Board Diagnosis Logic24	5 On Board Diagnosis Logic293	_
DTC Confirmation Procedure24		
Overall Function Check24		Mī
Wiring Diagram24	8 Diagnostic Procedure296	
Diagnostic Procedure24		ΛT
DTC P0139 REAR HEATED OXYGEN SENSOR	mior inc., moetin de ordinaten mior inc233	AT
(REAR HO2S) (RESPONSE MONITORING)25	• •	
Component Description25	5 DTC Confirmation Procedure299	TF
CONSULT-II Reference Value in Data Monitor	Diagnostic Procedure300	
Mode25	` ,	
ECM Terminals and Reference Value25	•	PD
On Board Diagnosis Logic25		
DTC Confirmation Procedure25	· · · · · · · · · · · · · · · · · · ·	Λ TV7
Overall Function Check25		AX
Wiring Diagram25	8 Wiring Diagram309	
Diagnostic Procedure25	<u>-</u>	SU
DTC P0140 REAR HEATED OXYGEN SENSOR	DIC P0335 CRANKSHAFT POSITION SENSOR	99
(REAR HO2S) (HIGH VOLTAGE)26	. , , , ,	
Component Description26	5 Component Description312	BR
CONSULT-II Reference Value in Data Monitor	ECM Terminals and Reference Value312	
Mode26		
ECM Terminals and Reference Value26		ST
On Board Diagnosis Logic26		
DTC Confirmation Procedure26		RS
Overall Function Check26	0 DIC P0340 CAMSHAFT POSITION SENSOR	IUI@
Wiring Diagram26		
Diagnostic Procedure26		BT
DTC P0141 REAR HEATED OXYGEN SENSOR	ECM Terminals and Reference Value318	
HEATER 27	8 8	
Description27		HA
CONSULT-II Reference Value in Data Monitor	Wiring Diagram321	
Mode27	9	@@
ECM Terminals and Reference Value27	0 21010400 20111011 (02002)	SC
On Board Diagnosis Logic27	3 Description326	
DTC Confirmation Procedure27		

DTC Confirmation Procedure	328	On Board Diagnosis Logic	398
Overall Function Check	329	DTC Confirmation Procedure	399
Wiring Diagram	330	Diagnostic Procedure	
Diagnostic Procedure		DTC P0500 VEHICLE SPEED SENSOR (VSS)	412
DTC P0402 EGRC-BPT VALVE FUNCTION		Component Description	
Description		ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Overall Function Check		Overall Function Check	
Diagnostic Procedure		Wiring Diagram	
DTC P0420 THREE WAY CATALYST FUNCTION		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0505 IDLE AIR CONTROL VALVE (IACV) -	
DTC Confirmation Procedure		AUXILIARY AIR CONTROL (AAC) VALVE	
Overall Function Check		Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	
DTC P0440 EVAP CONTROL SYSTEM (SMALL		Mode	417
LEAK) (NEGATIVE PRESSURE)	351	ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
DTC P0443 EVAP CANISTER PURGE VOLUME	00 1	Diagnostic Procedure	
CONTROL SOLENOID VALVE (CIRCUIT)	367	DTC P0510 CLOSED THROTTLE POSITION	720
Description		SWITCH	422
CONSULT-II Reference Value in Data Monitor	507	Component Description	
Mode	367	ECM Terminals and Reference Value	
ECM Terminals and Reference Value		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Overall Function Check	
Wiring Diagram		Wiring Diagram Diagnostic Procedure	
Diagnostic Procedure	371	DTC P0605 ECM	
DTC P0446 EVAPORATIVE EMISSION (EVAP)	275		
CANISTER VENT CONTROL VALVE (CIRCUIT)		Component Description	
Component Description CONSULT-II Reference Value in Data Monitor	3/3	On Board Diagnosis Logic DTC Confirmation Procedure	
	275		
Mode Poferone Value		Diagnostic Procedure	430
ECM Terminals and Reference Value		DTC P1105 MAP/BARO SWITCH SOLENOID	404
On Board Diagnosis Logic		VALVE	
DTC Confirmation Procedure		Description	43
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	40
Diagnostic Procedure	378	Mode	
DTC P0450 EVAPORATIVE EMISSION (EVAP)		ECM Terminals and Reference Value	
CONTROL SYSTEM PRESSURE SENSOR		On Board Diagnosis Logic	
Component Description	383	DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	
Mode		Diagnostic Procedure	
ECM Terminals and Reference Value		DTC P1148 CLOSED LOOP CONTROL	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Overall Function Check	
Diagnostic Procedure	387	Diagnostic Procedure	
DTC P0455 EVAP CONTROL SYSTEM (GROSS		DTC P1320 IGNITION SIGNAL	
LEAK)	398	Component Description	449

CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	491	@I
Mode	440	DTC P1446 EVAPORATIVE EMISSION (EVAP)	431	
ECM Terminals and Reference Value	_	CANISTER VENT CONTROL VALVE (CLOSE)	400	
		` ,		MA
On Board Diagnosis Logic		Component Description	499	0000
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor	400	
Wiring Diagram		Mode		EN
Diagnostic Procedure	452	ECM Terminals and Reference Value		
DTC P1336 CRANKSHAFT POSITION SENSOR		On Board Diagnosis Logic		
(CKPS) (OBD) (COG)		DTC Confirmation Procedure		LC
Component Description		Diagnostic Procedure	501	
ECM Terminals and Reference Value		DTC P1447 EVAPORATIVE EMISSION (EVAP)		
On Board Diagnosis Logic		CONTROL SYSTEM PURGE FLOW		EC
DTC Confirmation Procedure	458	MONITORING	505	
Wiring Diagram	459	System Description	505	
Diagnostic Procedure	460	On Board Diagnosis Logic	505	FE
DTC P1400 EGRC-SOLENOID VALVE	463	DTC Confirmation Procedure	506	
Component Description	463	Overall Function Check	506	GL
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	507	
Mode	463	DTC P1448 EVAPORATIVE EMISSION (EVAP)		
ECM Terminals and Reference Value	463	CANISTER VENT CONTROL VALVE (OPEN)	515	M٦
On Board Diagnosis Logic	463	Component Description		
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor		
Overall Function Check		Mode	515	AT
Wiring Diagram		ECM Terminals and Reference Value		
Diagnostic Procedure		On Board Diagnosis Logic		
DTC P1401 EGR TEMPERATURE SENSOR		DTC Confirmation Procedure		TF
Component Description		Overall Function Check		
On Board Diagnosis Logic		Diagnostic Procedure		PD
DTC Confirmation Procedure		DTC P1490 VACUUM CUT VALVE BYPASS		
Overall Function Check		VALVE (CIRCUIT)	523	
		Description		AX
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	523	<i>U</i> W/
Diagnostic Procedure			500	
DTC P1402 EGR FUNCTION (OPEN)		Mode		SU
Description		ECM Terminals and Reference Value		
On Board Diagnosis Logic		On Board Diagnosis Logic		
DTC Confirmation Procedure		DTC Confirmation Procedure		BF
Wiring Diagram		Wiring Diagram		
Diagnostic Procedure	480	Diagnostic Procedure	526	@5r
DTC P1440 EVAP CONTROL SYSTEM (SMALL		DTC P1491 VACUUM CUT VALVE BYPASS		ST
LEAK) (POSITIVE PRESSURE)		VALVE		
On Board Diagnosis Logic		Description	530	RS
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor		1110
Diagnostic Procedure	486	Mode		
DTC P1444 EVAP CANISTER PURGE VOLUME		ECM Terminals and Reference Value		BT
CONTROL SOLENOID VALVE		On Board Diagnosis Logic		
Description	487	DTC Confirmation Procedure		_
CONSULT-II Reference Value in Data Monitor		Overall Function Check	532	HÆ
Mode		Wiring Diagram	533	
ECM Terminals and Reference Value	488	Diagnostic Procedure	534	0.0
On Board Diagnosis Logic	488	DTC P1706 PARK/NEUTRAL POSITION (PNP)		SC
DTC Confirmation Procedure	489	SWITCH	541	
Wiring Diagram	490	Component Description	541	EL
				1-1-

CONSULT-II Reference Value in Data Monitor		EGR Temperature Sensor	579
Mode	541	Fuel Pump	579
ECM Terminals and Reference Value	541	IACV-AAC Valve	580
On Board Diagnosis Logic	541	Injector	580
DTC Confirmation Procedure	542	Resistor	580
Overall Function Check	543	Throttle Position Sensor	580
Wiring Diagram	544	Front Heated Oxygen Sensor Heater	580
Diagnostic Procedure For M/T Models	545	Calculated Load Value	580
TROUBLE DIAGNOSIS FOR OVERHEAT	547	Intake Air Temperature Sensor	580
On Board Diagnosis Logic	547	Rear Heated Oxygen Sensor Heater	580
Overall Function Check	547	Crankshaft Position Sensor (OBD)	580
Diagnostic Procedure	548	Fuel Tank Temperature Sensor	580
Main 11 Causes of Overheating	551		
INJECTOR		VG33E	
Component Description	552		
ECM Terminals and Reference Value		TROUBLE DIAGNOSIS - INDEX	
Wiring Diagram	553	Alphabetical & P No. Index for DTC	
Diagnostic Procedure		PRECAUTIONS	587
START SIGNAL		Supplemental Restraint System (SRS) "AIR	
CONSULT-II Reference Value in Data Monitor		BAG" and "SEAT BELT PRE-TENSIONER"	587
Mode	557	Precautions for On Board Diagnostic (OBD)	
ECM Terminals and Reference Value		System of Engine and A/T	
Wiring Diagram		Engine Fuel & Emission Control System	
Diagnostic Procedure		Precautions	
FUEL PUMP		Wiring Diagrams and Trouble Diagnosis	
System Description		PREPARATION	
Component Description		Special Service Tools	
CONSULT-II Reference Value in Data Monitor		Commercial Service Tools	591
Mode	561	ENGINE AND EMISSION CONTROL OVERALL	
ECM Terminals and Reference Value		SYSTEM	593
Wiring Diagram		Engine Control Component Parts Location	
Diagnostic Procedure		Circuit Diagram	
POWER STEERING OIL PRESSURE SWITCH		System Diagram	
Component Description		Vacuum Hose Drawing	
CONSULT-II Reference Value in Data Monitor		System Chart	598
Mode	568	ENGINE AND EMISSION BASIC CONTROL	
ECM Terminals and Reference Value		SYSTEM DESCRIPTION	599
Wiring Diagram		Multiport Fuel Injection (MFI) System	599
Diagnostic Procedure		Distributor Ignition (DI) System	601
IACV-FICD SOLENOID VALVE		Air Conditioning Cut Control	602
Component Description		Fuel Cut Control (at no load & high engine	
ECM Terminals and Reference Value		speed)	
Wiring Diagram		Evaporative Emission System	
Diagnostic Procedure		Positive Crankcase Ventilation	
MIL & DATA LINK CONNECTORS		BASIC SERVICE PROCEDURE	610
Wiring Diagram		Fuel Pressure Release	
SERVICE DATA AND SPECIFICATIONS (SDS)		Fuel Pressure Check	610
Fuel Pressure Regulator		Fuel Pressure Regulator Check	
Idle Speed and Ignition Timing		Injector	611
Ignition Coil		Fast Idle Cam (FIC)	612
Mass Air Flow Sensor		Idle Speed/Ignition Timing/Idle Mixture Ratio	
Engine Coolant Temperature Sensor		Adjustment	614

ON BOARD DIAGNOSTIC SYSTEM	Wiring Diagram	736	GI
DESCRIPTION	Diagnostic Procedure		QIII
Introduction	DTC P0115 ENGINE COOLANT TEMPERATURE	., 0,	
Two Trip Detection Logic627	SENSOR (ECTS) (CIRCUIT)	739	MA
Emission-related Diagnostic Information628	Component Description		
Malfunction Indicator Lamp (MIL)642	On Board Diagnosis Logic		
OBD System Operation Chart646	DTC Confirmation Procedure		EM
CONSULT-II651	Wiring Diagram		
Generic Scan Tool (GST)663	Diagnostic Procedure		LC
TROUBLE DIAGNOSIS - INTRODUCTION665	DTC P0120 THROTTLE POSITION SENSOR		LV
Introduction	Description		
Work Flow	CONSULT-II Reference Value in Data Monitor	.,	EC
TROUBLE DIAGNOSIS - BASIC INSPECTION669	Mode	744	
Basic Inspection	ECM Terminals and Reference Value		
TROUBLE DIAGNOSIS - GENERAL	On Board Diagnosis Logic		FE
DESCRIPTION	DTC Confirmation Procedure		
DTC Inspection Priority Chart686	Wiring Diagram		⊚ п
Fail-safe Chart687	Diagnostic Procedure		GL
Symptom Matrix Chart688	DTC P0125 ENGINE COOLANT TEMPERATURE	.750	
CONSULT-II Reference Value in Data Monitor	SENSOR (ECTS)	758	Mī
Mode	Description		UVU U
Major Sensor Reference Graph in Data Monitor	On Board Diagnosis Logic		
Mode694	DTC Confirmation Procedure		AT
ECM Terminals and Reference Value697	Wiring Diagram		
TROUBLE DIAGNOSIS FOR INTERMITTENT	Diagnostic Procedure		
INCIDENT706	DTC P0130 (RIGHT, -B1), P0150 (LEFT, -B2)	.701	TF
Description	FRONT HO2S (CIRCUIT)	763	
Diagnostic Procedure706	Component Description		PD
TROUBLE DIAGNOSIS FOR POWER SUPPLY707	CONSULT-II Reference Value in Data Monitor	.703	ru
Main Power Supply and Ground Circuit707	Mode	763	
DTC P0100 MASS AIR FLOW SENSOR (MAFS)713	ECM Terminals and Reference Value		AX
Component Description713	On Board Diagnosis Logic		5 42 4
CONSULT-II Reference Value in Data Monitor	DTC Confirmation Procedure		
Mode713	Overall Function Check		SU
ECM Terminals and Reference Value713	Wiring Diagram		
On Board Diagnosis Logic713	Diagnostic Procedure		
DTC Confirmation Procedure714	DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2)	.703	BR
Overall Function Check	FRONT HO2S (LEAN SHIFT MONITORING)	772	
Wiring Diagram717	Component Description		ST
Diagnostic Procedure718	CONSULT-II Reference Value in Data Monitor	. 1 1 2	© II
DTC P0105 ABSOLUTE PRESSURE SENSOR722	Mode	772	
Component Description722	ECM Terminals and Reference Value		RS
On Board Diagnosis Logic722	On Board Diagnosis Logic		
DTC Confirmation Procedure723	DTC Confirmation Procedure		
Overall Function Check724	Overall Function Check		BT
Wiring Diagram725	Diagnostic Procedure		
Diagnostic Procedure726	DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2)	.,,,	HA
DTC P0110 INTAKE AIR TEMPERATURE	FRONT HO2S (RICH SHIFT MONITORING)	780	U U <i>L</i> =\
SENSOR734	Component Description		
Component Description	CONSULT-II Reference Value in Data Monitor	., 00	SC
On Board Diagnosis Logic734	Mode	780	
DTC Confirmation Procedure734	ECM Terminals and Reference Value		
D 10 Communation F100caute	LOW TERRITION AND INCIDENCE VAIDE	. 1 00	EL

On Board Diagnosis Logic	781	On Board Diagnosis Logic	825
DTC Confirmation Procedure	782	DTC Confirmation Procedure	826
Overall Function Check	783	Overall Function Check	827
Diagnostic Procedure	783	Wiring Diagram	828
DTC P0133 (RIGHT, -B1), P0153 (LEFT, -B2)		Diagnostic Procedure	
FRONT HO2S (RESPONSE MONITORING)	788	DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2)	
Component Description		REAR HO2S (RESPONSE MONITORING)	835
CONSULT-II Reference Value in Data Monitor		Component Description	
Mode	788	CONSULT-II Reference Value in Data Monitor	
ECM Terminals and Reference Value		Mode	835
On Board Diagnosis Logic	789	ECM Terminals and Reference Value	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Overall Function Check		DTC Confirmation Procedure	
Wiring Diagram		Overall Function Check	
Diagnostic Procedure		Wiring Diagram	
DTC P0134 (RIGHT, -B1), P0154 (LEFT, -B2)		Diagnostic Procedure	
FRONT HO2S (HIGH VOLTAGE)	801	DTC P0140 (RIGHT, -B1), P0160 (LEFT, -B2)	
Component Description		REAR HO2S (HIGH VOLTAGE)	845
CONSULT-II Reference Value in Data Monitor		Component Description	
Mode	801	CONSULT-II Reference Value in Data Monitor	0 10
ECM Terminals and Reference Value		Mode	845
On Board Diagnosis Logic		ECM Terminals and Reference Value	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Overall Function Check	
DTC P0135 (RIGHT, -B1), P0155 (LEFT, -B2)	003	Wiring Diagram	
FRONT HO2S HEATER	800	Diagnostic Procedure	
Description		DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2)	043
CONSULT-II Reference Value in Data Monitor	003	REAR HO2S HEATER	953
Mode	800	Description	
ECM Terminals and Reference Value		CONSULT-II Reference Value in Data Monitor	000
On Board Diagnosis Logic		Mode	953
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2)	013	Wiring Diagram	
REAR HO2S (MIN. VOLTAGE MONITORING)	015	Diagnostic Procedure	
Component Description		DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2)	007
CONSULT-II Reference Value in Data Monitor	013	FUEL INJECTION SYSTEM FUNCTION (LEAN)	860
Mode	015		
ECM Terminals and Reference Value		On Board Diagnosis Logic DTC Confirmation Procedure	
On Board Diagnosis Logic			
DTC Confirmation Procedure		Wiring Diagram	
		Diagnostic Procedure	004
Overall Function Check		DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2)	000
Wiring Diagram		FUEL INJECTION SYSTEM FUNCTION (RICH)	
Diagnostic Procedure	820	On Board Diagnosis Logic	
DTC P0138 (RIGHT, -B1), P0158 (LEFT, -B2)	005	DTC Confirmation Procedure	
REAR HO2S (MAX. VOLTAGE MONITORING)		Wiring Diagram	
Component Description	825	Diagnostic Procedure	872
CONSULT-II Reference Value in Data Monitor	005	DTC P0180 FUEL TANK TEMPERATURE	075
Mode		SENSOR	
ECM Terminals and Reference Value	825	Component Description	875

On Board Diagnosis Logic	875	DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT	
DTC Confirmation Procedure	876	BANK, -B2) THREE WAY CATALYST FUNCTION.	941
Wiring Diagram	877	On Board Diagnosis Logic	941
Diagnostic Procedure	878	DTC Confirmation Procedure	942
DTC P0217 COOLANT OVERTEMPERATURE		Overall Function Check	943
ENRICHMENT PROTECTION	880	Diagnostic Procedure	944
On Board Diagnosis Logic	880	DTC P0440 EVAP CONTROL SYSTEM (SMALL	
Overall Function Check	881	LEAK) (NEGATIVE PRESSURE)	947
Wiring Diagram	884	On Board Diagnosis Logic	947
Diagnostic Procedure	885	DTC Confirmation Procedure	
Main 12 Causes of Overheating	892	Diagnostic Procedure	949
DTC P0300 - P0306 NO. 6 - 1 CYLINDER		DTC P0443 EVAP CANISTER PURGE VOLUME	
MISFIRE, MULTIPLE CYLINDER MISFIRE	893	CONTROL SOLENOID VALVE (CIRCUIT)	950
On Board Diagnosis Logic	893	Description	950
DTC Confirmation Procedure	894	CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure	894	Mode	950
DTC P0325 KNOCK SENSOR (KS)		ECM Terminals and Reference Value	951
Component Description		On Board Diagnosis Logic	952
ECM Terminals and Reference Value		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTC P0446 EVAPORATIVE EMISSION (EVAP)	
Diagnostic Procedure		CANISTER VENT CONTROL VALVE (CIRCUIT)	957
DTC P0335 CRANKSHAFT POSITION SENSO		Component Description	
(CKPS) (OBD)		CONSULT-II Reference Value in Data Monitor	
Component Description		Mode	957
ECM Terminals and Reference Value		ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
DTC P0340 CAMSHAFT POSITION SENSOR		DTC P0450 EVAPORATIVE EMISSION (EVAP)	
(CMPS)		CONTROL SYSTEM PRESSURE SENSOR	963
Component Description		Component Description	
ECM Terminals and Reference Value		CONSULT-II Reference Value in Data Monitor	
On Board Diagnosis Logic		Mode	963
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0400 EGR FUNCTION (CLOSE)		Wiring Diagram	
Description (If Equipped with EGR Valve)		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0455 EVAP CONTROL SYSTEM (GROSS	
DTC Confirmation Procedure		LEAK)(GROSS	974
Overall Function Check		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
DTC P0402 EGRC-BPT VALVE FUNCTION		DTC P0500 VEHICLE SPEED SENSOR (VSS)	
Description (If Equipped with EGR Valve)		Component Description	
On Board Diagnosis Logic		ECM Terminals and Reference Value	
DTC Confirmation Procedure			
Overall Function Check		On Board Diagnosis Logic DTC Confirmation Procedure	
Diagnostic Procedure	935	Overall Function Check	989

Wiring Diagram	990	DTC P1320 IGNITION SIGNAL	1028
Diagnostic Procedure	991	Component Description	1028
DTC P0505 IDLE AIR CONTROL VALVE (IACV) -		ECM Terminals and Reference Value	1028
AUXILIARY AIR CONTROL (AAC) VALVE	992	On Board Diagnosis Logic	1029
Description		DTC Confirmation Procedure	1029
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	
Mode	993	Diagnostic Procedure	
ECM Terminals and Reference Value	993	DTC P1336 CRANKSHAFT POSITION SENSOR	
On Board Diagnosis Logic		(CKPS) (OBD) (COG)	1036
DTC Confirmation Procedure		Component Description	
Wiring Diagram	995	ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P0510 CLOSED THROTTLE POSITION		DTC Confirmation Procedure	
SWITCH	998	Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		DTC P1400 EGRC-SOLENOID VALVE	
Mode	998	Component Description (If Equipped with EGR	
ECM Terminals and Reference Value		Valve)	1043
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	1043
Overall Function Check		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0600 A/T CONTROL		Wiring Diagram	
System Description		Diagnostic Procedure	
ECM Terminals and Reference Value		DTC P1401 EGR TEMPERATURE SENSOR	
On Board Diagnosis Logic		Component Description (If Equipped with EGR	1040
DTC Confirmation Procedure		Valve)	1048
Overall Function Check		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Overall Function Check	
DTC P0605 ECM		Wiring Diagram	
Component Description		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P1402 EGR FUNCTION (OPEN)	
DTC Confirmation Procedure		Description (If Equipped with EGR Valve)	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P1105 MAP/BARO SWITCH SOLENOID	1012	DTC Confirmation Procedure	
VALVEVALVE	1012		
Description		Wiring Diagram Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor	1013	DTC P1440 EVAP CONTROL SYSTEM (SMALL	1058
Mode	1012	•	1065
ECM Terminals and Reference Value		LEAK) (POSITIVE PRESSURE)	
		On Board Diagnosis Logic DTC Confirmation Procedure	
On Board Diagnosis Logic			
DTC Confirmation Procedure		Diagnostic Procedure	1000
Wiring Diagram		DTC P1444 EVAP CANISTER PURGE VOLUME	4007
Diagnostic Procedure	1017	CONTROL SOLENOID VALVE	
DTC P1148 (RIGHT BANK, -B1), P1168 (LEFT	1000	Description	1067
BANK, -B2) CLOSED LOOP CONTROL		CONSULT-II Reference Value in Data Monitor	400
On Board Diagnosis Logic		Mode	
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Overall Function Check		On Board Diagnosis Logic	
Diagnostic Procedure	1027	DTC Confirmation Procedure	เบ๒๖

Wiring Diagram	1070	DTC P1605 A/T DIAGNOSIS COMMUNICATION		GI
Diagnostic Procedure	1071	LINE	1121	
DTC P1446 EVAPORATIVE EMISSION (EVAP)		Component Description	1121	
CANISTER VENT CONTROL VALVE (CLOSE)	1079	ECM Terminals and Reference Value	1121	MA
Component Description	1079	On Board Diagnosis Logic	1121	
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	1121	EM
Mode	1079	Wiring Diagram	1122	
ECM Terminals and Reference Value	1079	Diagnostic Procedure	1123	
On Board Diagnosis Logic	1080	DTC P1706 PARK/NEUTRAL POSITION (PNP)		LC
DTC Confirmation Procedure	1080	SWITCH	1124	
Wiring Diagram	1081	Component Description	1124	
Diagnostic Procedure	1082	CONSULT-II Reference Value in Data Monitor		EC
DTC P1447 EVAPORATIVE EMISSION (EVAP)		Mode	1124	
CONTROL SYSTEM PURGE FLOW		ECM Terminals and Reference Value	1124	
MONITORING	1086	On Board Diagnosis Logic	1124	FE
System Description	1086	DTC Confirmation Procedure		
On Board Diagnosis Logic		Overall Function Check	1125	GL
DTC Confirmation Procedure		Wiring Diagram	1126	
Overall Function Check	1088	Diagnostic Procedure		
Diagnostic Procedure		TROUBLE DIAGNOSIS FOR OVERHEAT		Mī
DTC P1448 EVAPORATIVE EMISSION (EVAP)		(COOLING SYSTEM)	1132	
CANISTER VENT CONTROL VALVE (OPEN)	1098	System Description		
Component Description		CONSULT-II Reference Value in Data Monitor		AT
CONSULT-II Reference Value in Data Monitor		Mode	1132	
Mode	1098	ECM Terminals and Reference Value		TF
ECM Terminals and Reference Value		On Board Diagnosis Logic		
On Board Diagnosis Logic		Overall Function Check		
DTC Confirmation Procedure		Wiring Diagram		PD
Overall Function Check		Diagnostic Procedure		
Wiring Diagram		Main 12 Causes of Overheating		
Diagnostic Procedure		INJECTOR		$\mathbb{A}\mathbb{X}$
DTC P1490 VACUUM CUT VALVE BYPASS		Component Description		
VALVE (CIRCUIT)	1106	CONSULT-II Reference Value in Data Monitor		0.1.1
Description		Mode	1144	SU
CONSULT-II Reference Value in Data Monitor		ECM Terminals and Reference Value		
Mode	1106	Wiring Diagram		BR
ECM Terminals and Reference Value		Diagnostic Procedure		
On Board Diagnosis Logic		START SIGNAL		
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor		ST
Wiring Diagram		Mode	1149	0 2
Diagnostic Procedure		ECM Terminals and Reference Value		
DTC P1491 VACUUM CUT VALVE BYPASS	1100	Wiring Diagram		RS
VALVE	1112	Diagnostic Procedure		
Description		FUEL PUMP		65
CONSULT-II Reference Value in Data Monitor	1112	System Description		BT
Mode	1112	Component Description		
ECM Terminals and Reference Value		CONSULT-II Reference Value in Data Monitor	1100	HA
On Board Diagnosis Logic		Mode	1152	п пүч
DTC Confirmation Procedure		ECM Terminals and Reference Value		
Overall Function Check		Wiring Diagram		SC
Wiring Diagram				
		Diagnostic Procedure POWER STEERING OIL PRESSURE SWITCH		
Diagnostic Procedure	1110	I OWEN STEENING OIL PRESSURE SWITCH	1139	EL

Component Description	1159
CONSULT-II Reference Value in Data Monitor	
Mode	1159
ECM Terminals and Reference Value	1159
Wiring Diagram	1160
Diagnostic Procedure	
IACV-FICD SOLENOID VALVE	1164
Component Description	1164
ECM Terminals and Reference Value	1164
Wiring Diagram	1165
Diagnostic Procedure	1166
MIL & DATA LINK CONNECTORS	1170
Wiring Diagram	1170
SERVICE DATA AND SPECIFICATIONS (SDS)	1171
Fuel Pressure Regulator	1171
Idle Speed and Ignition Timing	1171

ignition Coil	1171
Mass Air Flow Sensor	1171
Engine Coolant Temperature Sensor	1171
EGR Temperature Sensor (If So Equipped)	1171
Front Heated Oxygen Sensor Heater	1171
Fuel Pump	1172
IACV-AAC Valve	
Injector	1172
Resistor	
Throttle Position Sensor	1172
Calculated Load Value	1172
Intake Air Temperature Sensor	
Rear Heated Oxygen Sensor Heater	1172
Crankshaft Position Sensor (OBD)	1172
Fuel Tank Temperature Sensor	

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC

Alphabetical & P No. Index for DTC

	DTC	DTC*6	
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	Reference page
Unable to access ECM	_	_	EC-110
*COOLAN T SEN/CIRC	P0125	0908	EC-186
ABSL PRES SEN/CIRC	P0105	0803	EC-146
AIR TEMP SEN/CIRC	P0110	0401	EC-161
CAM POS SEN/CIRC	P0340	0101	EC-318
CLOSED LOOP	P1148	0307	EC-447
CLOSED TP SW/CIRC	P0510	0203	EC-422
COOLANT T SEN/CIRC	P0115	0103	EC-167
CPS/CIRC (OBD) COG	P1336	0905	EC-457
CPS/CIRCUIT (OBD)	P0335	0802	EC-312
CYL 1 MISFIRE	P0301	0608	EC-299
CYL 2 MISFIRE	P0302	0607	EC-299
CYL 3 MISFIRE	P0303	0606	EC-299
CYL 4 MISFIRE	P0304	0605	EC-299
ECM	P0605	0301	EC-429
EGR SYSTEM	P0400	0302	EC-326
EGR SYSTEM	P1402	0514	EC-476
EGR TEMP SEN/CIRC	P1401	0305	EC-470
EGRC SOLENOID/V	P1400	1005	EC-463
EGRC-BPT VALVE	P0402	0306	EC-338
EVAP GROSS LEAK	P0455	0715	EC-398
EVAP PURG FLOW/MON	P1447	0111	EC-505
EVAP SMALL LEAK	P0440	0705	EC-351
EVAP SMALL LEAK	P1440	0213	EC-485
EVAP SYS PRES SEN	P0450	0704	EC-383
FR O2 SEN HEATER	P0135	0901	EC-230
FRONT O2 SENSOR	P0130	0303	EC-190
FRONT O2 SENSOR	P0131	0411	EC-198
FRONT O2 SENSOR	P0132	0410	EC-205
FRONT O2 SENSOR	P0133	0409	EC-212
FRONT O2 SENSOR	P0134	0412	EC-223
FUEL SYS DIAG-LEAN	P0171	0115	EC-278
FUEL SYS DIAG-RICH	P0172	0114	EC-286
FUEL TEMP SEN/CIRC	P0180	0402	EC-293

	DTC*6			
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	Reference page	
IACV/AAC VLV/CIRC	P0505	0205	EC-416	
IGN SIGNAL-PRIMARY	P1320	0201	EC-449	
KNOCK SEN/CIRCUIT	P0325	0304	EC-308	
MAF SEN/CIRCUIT*3	P0100	0102	EC-136	
MAP/BARO SW SOL/CIR	P1105	1302	EC-431	
MULTI CYL MISFIRE	P0300	0701	EC-299	
NO SELF DIAGNOSTIC FAILURE INDICATED	P0000	0505	_	
NO SELF DIAGNOSTIC FAILURE INDICATED	No DTC	Flashing*5	EC-70	
OVERHEAT	_	0208	EC-547	
P-N POS SW/CIRCUIT	P1706	1003	EC-541	
PURG VOLUME CONT/V	P0443	1008	EC-367	
PURG VOLUME CONT/V	P1444	0214	EC-487	
REAR O2 SENSOR	P0137	0511	EC-235	
REAR O2 SENSOR	P0138	0510	EC-245	
REAR O2 SENSOR	P0139	0707	EC-255	
REAR O2 SENSOR	P0140	0512	EC-265	
RR O2 SEN HEATER	P0141	0902	EC-273	
THRTL POS SEN/CIRC*3	P0120	0403	EC-172	
TW CATALYST SYSTEM	P0420	0702	EC-346	
VC CUT/V BYPASS/V	P1491	0311	EC-530	
VC/V BYPASS/V	P1490	0801	EC-523	
VEH SPEED SEN/CIRC*4	P0500	0104	EC-412	
VENT CONTROL VALVE	P0446	0903	EC-375	
VENT CONTROL VALVE	P1446	0215	EC-499	
VENT CONTROL VALVE	P1448	0309	EC-515	

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

P NO. INDEX FOR DTC

NGEC0001S02

DTC*6		Items	
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page
_	_	Unable to access ECM	EC-110
No DTC	Flashing*5	NO SELF DIAGNOSTIC FAILURE INDICATED	EC-70
P0000	0505	NO SELF DIAGNOSTIC FAILURE INDICATED	_

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

TROUBLE DIAGNOSIS — INDEX

KA24DE

Alphabetical & P No. Index for DTC (Cont'd)

DTC	2*6	14	
CONSULT-II GST*2	ECM*1	Items (CONSULT-II screen terms)	Reference page
P0100	0102	MAF SEN/CIRCUIT*3	EC-136
P0105	0803	ABSL PRES SEN/CIRC	EC-146
P0110	0401	AIR TEMP SEN/CIRC	EC-161
P0115	0103	COOLANT T SEN/CIRC	EC-167
P0120	0403	THRTL POS SEN/CIRC*3	EC-172
P0125	0908	*COOLAN T SEN/CIRC	EC-186
P0130	0303	FRONT O2 SENSOR	EC-190
P0131	0411	FRONT O2 SENSOR	EC-198
P0132	0410	FRONT O2 SENSOR	EC-205
P0133	0409	FRONT O2 SENSOR	EC-212
P0134	0412	FRONT O2 SENSOR	EC-223
P0135	0901	FR O2 SEN HEATER	EC-230
P0137	0511	REAR O2 SENSOR	EC-235
P0138	0510	REAR O2 SENSOR	EC-245
P0139	0707	REAR O2 SENSOR	EC-255
P0140	0512	REAR O2 SENSOR	EC-265
P0141	0902	RR O2 SEN HEATER	EC-273
P0171	0115	FUEL SYS DIAG-LEAN	EC-278
P0172	0114	FUEL SYS DIAG-RICH	EC-286
P0180	0402	FUEL TEMP SEN/CIRC	EC-293
P0300	0701	MULTI CYL MISFIRE	EC-299
P0301	0608	CYL 1 MISFIRE	EC-299
P0302	0607	CYL 2 MISFIRE	EC-299
P0303	0606	CYL 3 MISFIRE	EC-299
P0304	0605	CYL 4 MISFIRE	EC-299
P0325	0304	KNOCK SEN/CIRCUIT	EC-308
P0335	0802	CPS/CIRCUIT (OBD)	EC-312
P0340	0101	CAM POS SEN/CIRC	EC-318
P0400	0302	EGR SYSTEM	EC-326
P0402	0306	EGRC-BPT VALVE	EC-338
P0420	0702	TW CATALYST SYSTEM	EC-346
P0440	0705	EVAP SMALL LEAK	EC-351
P0443	1008	PURG VOLUME CONT/V	EC-367
P0446	0903	VENT CONTROL VALVE	EC-375
P0450	0704	EVAP SYS PRES SEN	EC-383
P0455	0715	EVAP GROSS LEAK	EC-398

Alphabetical & P No. Index for DTC (Cont'd)

DTC	C*6	ltems	
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page
P0500	0104	VEH SPEED SEN/CIRC*4	EC-412
P0505	0205	IACV/AAC VLV/CIRC	EC-416
P0510	0203	CLOSED TP SW/CIRC	EC-422
P0605	0301	ECM	EC-429
P1105	1302	MAP/BARO SW SOL/CIR	EC-431
P1148	0307	CLOSED LOOP	EC-447
P1320	0201	IGN SIGNAL-PRIMARY	EC-449
P1336	0905	CPS/CIRC (OBD) COG	EC-457
P1400	1005	EGRC SOLENOID/V	EC-463
P1401	0305	EGR TEMP SEN/CIRC	EC-470
P1402	0514	EGR SYSTEM	EC-476
P1440	0213	EVAP SMALL LEAK	EC-485
P1444	0214	PURG VOLUME CONT/V	EC-487
P1446	0215	VENT CONTROL VALVE	EC-499
P1447	0111	EVAP PURG FLOW/MON	EC-505
P1448	0309	VENT CONTROL VALVE	EC-515
P1490	0801	VC/V BYPASS/V	EC-523
P1491	0311	VC CUT/V BYPASS/V	EC-530
P1706	1003	P-N POS SW/CIRCUIT	EC-541
_	0208	OVERHEAT	EC-547

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

PRECAUTIONS

KA24DE

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a seat belt, help to reduce the risk or severity of injury to the driver and front passenger in a frontal collision. The Supplemental Restraint System consists of air bag modules (located in the center of the steering wheel and on the instrument panel on the passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.

In addition to the supplemental air bag modules for a frontal collision, the supplemental side air bag used along with the seat belt helps to reduce the risk or severity of injury to the driver and front passenger in a side collision. The supplemental side air bag consists of air bag modules (located in the outer side of front seats), satellite sensor, diagnosis sensor unit (one of components of supplemental air bags for a frontal collision), wiring harness, warning lamp (one of components of supplemental air bags for a frontal collision). Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses (except "SEAT BELT PRE-TENSIONER" connector) can be identified with yellow harness connector (and with yellow harness protector or yellow insulation tape before the harness connectors).

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector.
- For description and how to disconnect, refer to "Description", "HARNESS CONNECTOR", EL-5.
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EGR system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.

LC

EC

FE

ை

)L

MT

/U U

AT TF

SU

9.

BT

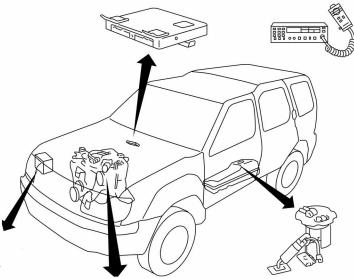
HA

SC

EL

Engine Fuel & Emission Control System

NGEC0004


ECM

- Do not disassemble ECM.
- Do not turn on board diagnostic test mode selector forcibly.
- If a battery terminal is disconnected, the memory will return to the ECM value.

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WIRELESS EQUIPMENT

- When installing CB ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far away as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- Be sure to ground the radio to vehicle body.

BATTERY

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.

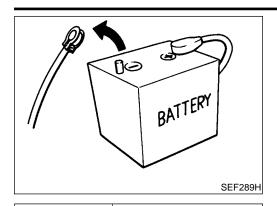
WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

ECM PARTS HANDLING

- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor or crankshaft position sensor (OBD).

FUEL PUMP


- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque. (Refer to MA section.)

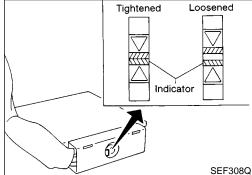
ECM HARNESS HANDLING

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in.) away from adjacent harnesses to prevent an ECM system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

AEC045B

PRECAUTIONS

Precautions


Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

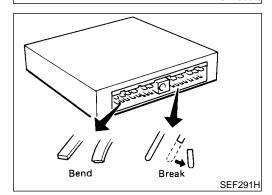
MA

EM

LC

When connecting ECM harness connector, tighten securing bolt until the gap between orange indicators disappears.

(0.3 - 0.5 kg-m, 26 - 43 in-lb)


FE

GL

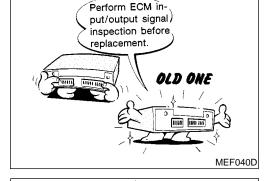
MT

AT

TF

When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminals when connecting pin connectors.


AX

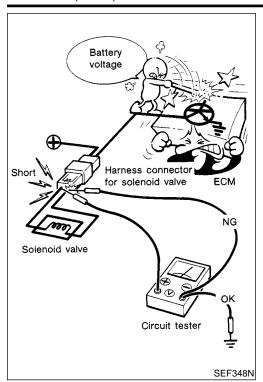
Before replacing ECM, perform Terminals and Reference Value inspection and make sure ECM functions properly.

ST

After performing each TROUBLE DIAGNOSIS, perform "Overall Function Check" or "DTC Confirmation Procedure".

HA

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.



EL

Refer to EC-120.

 When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.

Wiring Diagrams and Trouble Diagnosis

NGEC0006

When you read Wiring diagrams, refer to the followings:

- "HOW TO READ WIRING DIAGRAMS", GI-10.
- "POWER SUPPLY ROUTING", EL-9.

When you perform trouble diagnosis, refer to the followings:

- "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNO-SIS" in *GI-34*.
- "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", GI-23

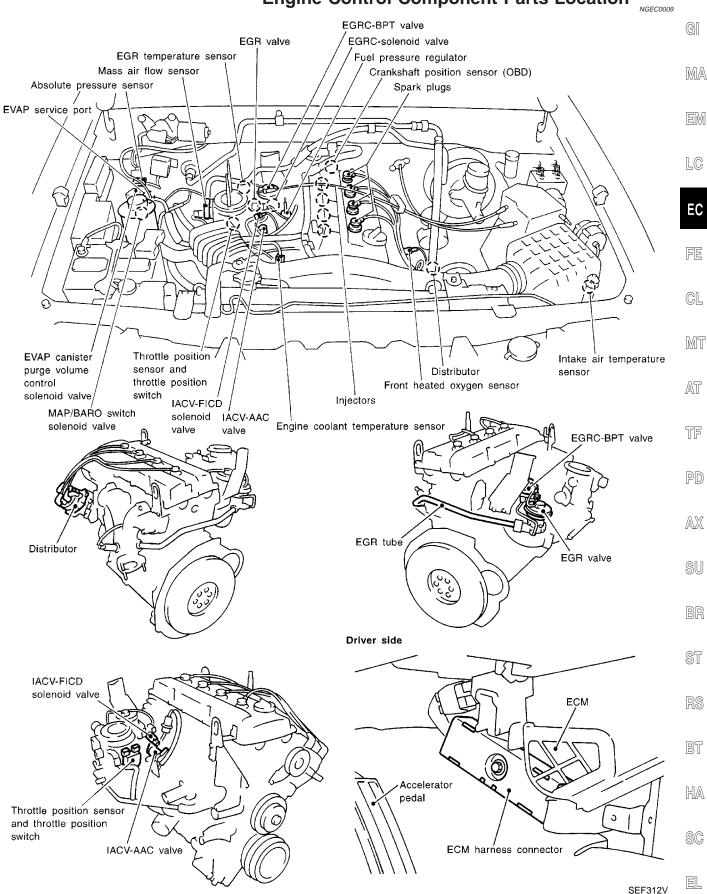
PREPARATION

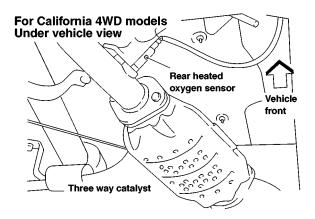
-Moore tools may differ from those of special	I service tools illustrated here.	
Description		- Gi M
	Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut	
NT379		
a a	Loosening or tightening rear heated oxygen sensor a: 22 mm (0.87 in)	- F
NT636		C
	Description NT379	Description Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut NT379 Loosening or tightening rear heated oxygen sensor a: 22 mm (0.87 in)

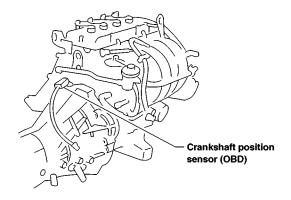
Commercial Service Tools

	Commercial S	NGEC0008	
Tool name	Description		
Fuel filler cap adapter		Checking fuel tank vacuum relief valve opening pressure	r.
	NT653		ı
Leak detector	11100	Locating the EVAP leak	
(J41416)			
	NT703		
EVAP service port adapter		Applying positive pressure through EVAP service port	• [
(J41413-OBD)		port	[
	NT704		

EL

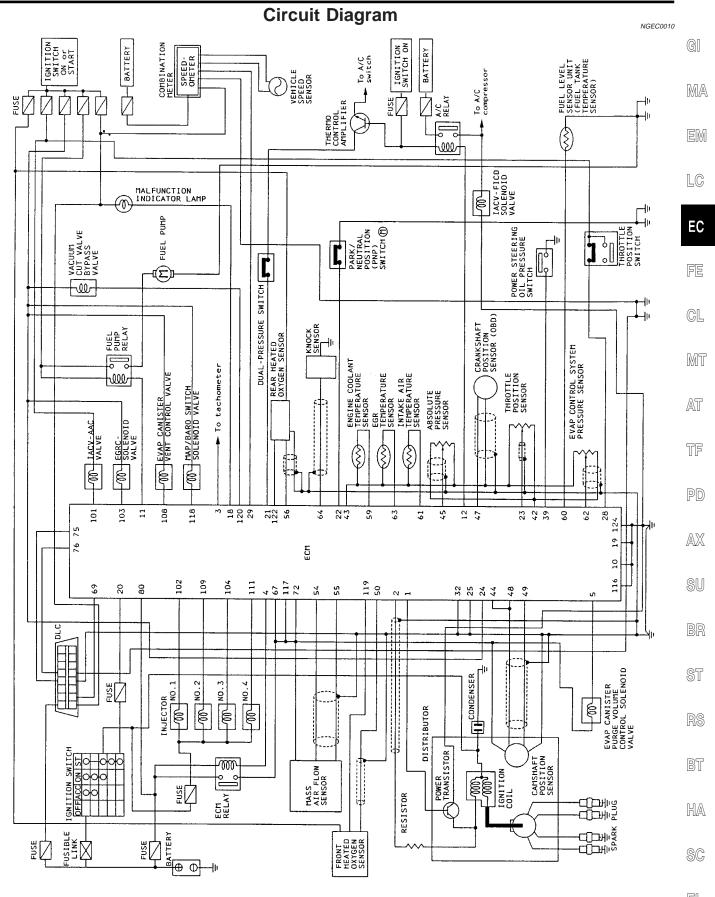

Tool name	Description	
Hose clipper (—)	Approx. 20 mm (0.79 in)	Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [EVAP control system (Small leak — Positive pressure)]
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)	a Mating surface shave cylinder Flutes	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown in "Commercial Service tools". a: J-43897-18 18 mm diameter, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter, for Titania Oxygen Sensor
Anti-seize lubricant (Permatex 133AR or equivalent meeting MIL specification MIL-A- 907)	AEM489	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.


ENGINE AND EMISSION CONTROL OVERALL SYSTEM


KA24DE

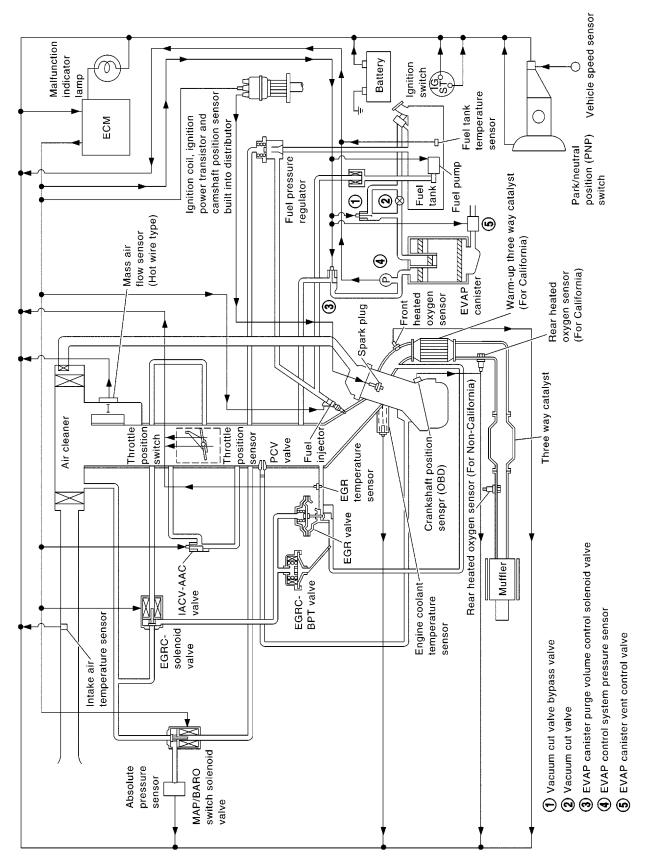
Engine Control Component Parts Location

Engine Control Component Parts Location



AEC041B

ENGINE AND EMISSION CONTROL OVERALL SYSTEM


EL

AEC053B

System Diagram

NGEC0011

SEF846W

EGR valve

To air cleane

Vacuum Hose Drawing

Fuel pressure

regulator

EGRC-solenoid

valve

Absolute pressure sensor

MAP/BARO switch

solenoid valve

View Y

Vacuum Hose Drawing

EGRC-BPT valve

Refer to "System Diagram" on EC-26 for vacuum control system.

View Y

EVAP service port

NOTE: Do not use soapy water or any type of solvent while

installing vacuum hoses or purge hoses.

EVAP canister purge volume

control solenoid valve

MAP/BARO switch

solenoid valve

Absolute pressure

sensor

NGEC0012

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

SEF107VA

EVAP canister purge volume control

solenoid valve

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

System Chart

	System Chart	NGEC0013
Input (Sensor)	ECM Function	Output (Actuator)
Camshaft position sensor	Fuel injection & mixture ratio control	Injectors
Mass air flow sensorEngine coolant temperature sensor	Distributor ignition system	Power transistor
Front heated oxygen sensorIgnition switchThrottle position sensor	Idle air control system	IACV-AAC valve and IACV-FICD solenoid valve
PNP switch	Fuel pump control	Fuel pump relay
Air conditioner switchKnock sensorEGR temperature sensor*1	Front heated oxygen sensor monitor & on board diagnostic system	Malfunction indicator lamp (On the instrument panel)
 Crankshaft position sensor (OBD) EVAP control system pressure sensor*1 Fuel tank temperature sensor Battery voltage Power steering oil pressure switch Vehicle speed sensor Intake air temperature sensor Absolute pressure sensor Rear heated oxygen sensor*2 Closed throttle position switch*3 	EGR control	EGRC-solenoid valve
	Front and rear heated oxygen sensor heater control	Heated oxygen sensor heater
	EVAP canister purge flow control	EVAP canister purge volume control valve EVAP canister purge control solenoid valve
	Air conditioning cut control	Air conditioner relay
	ON BOARD DIAGNOSIS for EVAP system	EVAP canister vent control valve Vacuum cut valve bypass valve MAP/BARO switch solenoid valve

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} Under normal conditions, this sensor is not for engine control operation.

^{*3:} This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

KA24DE

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION Input/Output Signal Chart

NGEC0014 NGEC0014S01

Input Signal to ECM	ECM func- tion	Actuator	MA	
Engine speed and piston position				
Amount of intake air			EM	
Engine coolant temperature	1		I @	
Density of oxygen in exhaust gas			LC	
Throttle position Throttle valve idle position	Fuel injection & mix-ture ratio	tion & mix-		EC
Gear position				
Vehicle speed			Injector	FE
Start signal		·	Θn	
Air conditioner operation			GL	
Engine knocking condition	1		0./157	
Ambient barometric pressure	-		MT	
Battery voltage			AT	
Power steering operation			Æ	
Density of oxygen in exhaust gas			TF	
	Engine speed and piston position Amount of intake air Engine coolant temperature Density of oxygen in exhaust gas Throttle position Throttle valve idle position Gear position Vehicle speed Start signal Air conditioner operation Engine knocking condition Ambient barometric pressure Battery voltage Power steering operation	Engine speed and piston position Amount of intake air Engine coolant temperature Density of oxygen in exhaust gas Throttle position Throttle valve idle position Gear position Vehicle speed Start signal Air conditioner operation Engine knocking condition Ambient barometric pressure Battery voltage Power steering operation	Engine speed and piston position Amount of intake air Engine coolant temperature Density of oxygen in exhaust gas Throttle position Throttle valve idle position Gear position Vehicle speed Start signal Air conditioner operation Engine knocking condition Ambient barometric pressure Battery voltage Power steering operation	

^{*} Under normal conditions, this sensor is not for engine control operation.

Basic Multiport Fuel Injection System

PD

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

Various Fuel Injection Increase/Decrease Compensation

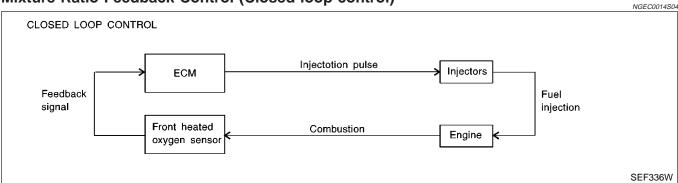
In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

- <Fuel increase>
- During warm-up
- When starting the engine
- **During acceleration**
- Hot-engine operation
- High-load, high-speed operation
- <Fuel decrease>
- During deceleration
- During high engine speed operation

SU

ST

BT


HA

SC

KA24DE

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a front heated oxygen sensor in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the front heated oxygen sensor, refer to EC-190. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Rear heated oxygen sensor is located downstream of the three way catalyst. Even if the switching characteristics of the front heated oxygen sensor shift, the air-fuel ratio is controlled to stoichiometric by the signal from the rear heated oxygen sensor.

Open Loop Control

NGEC0014S05

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

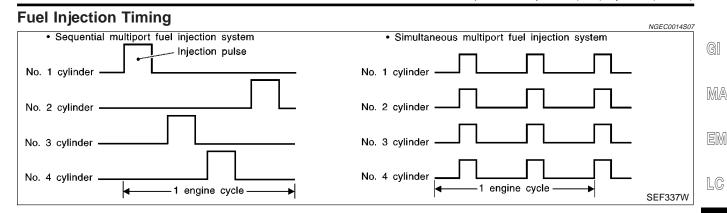
- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of front heated oxygen sensor or its circuit
- Insufficient activation of front heated oxygen sensor at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

Mixture Ratio Self-learning Control

NGEC0014S0

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the front heated oxygen sensor. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.


"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the front heated oxygen sensor indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

KA24DE

Multiport Fuel Injection (MFI) System (Cont'd)

Two types of systems are used.

Sequential Multiport Fuel Injection System

IGEC0014S0701

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

GEC0014S0702

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

IGEC0014S08

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Distributor Ignition (DI) System

DESCRIPTION

TF

Input/Output Signal Chart

NGEC0015

•				NGEC0015S01
Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Camshaft position sensor	Engine speed and piston position		Power transistor	
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position Throttle valve idle position	Ignition tim-		
Vehicle speed sensor	Vehicle speed	ing control		
Ignition switch	Start signal			
Knock sensor	Engine knocking			
PNP switch	Gear position			
Battery	Battery voltage			

D);;

EC-31

EC

FE

GL

MT

AT

PD

AX

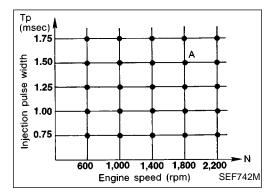
SU

ST

BT

HA

SC


EL

SYSTEM DESCRIPTION KA24DE

Distributor Ignition (DI) System (Cont'd)

System Description

NGEC0015S02

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown above.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec A°BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

KA24DE

Air Conditioning Cut Control

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

=NGEC0016

NGEC0016S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Air conditioner switch	Air conditioner "ON" signal	Air conditioner cut		EM
Throttle position sensor	Throttle valve opening angle			
Camshaft position sensor	Engine speed			LC
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			EC
Vehicle speed sensor	Vehicle speed			
Power steering oil pressure switch	Power steering operation			FE

System Description

NGEC0016S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

C

- When the accelerator pedal is fully depressed.
- When cranking the engine.

MT

AT

TF

PD

SU

- When the engine coolant temperature becomes excessively high.
- When operating power steering and air conditioner during low engine speed or when fully releasing accelerator pedal.
- When engine speed is excessively low.

Fuel Cut Control (at no load & high engine speed)

DESCRIPTION
Input/Output Signal Chart

NGEC0017

3LC0017

NGEC0017S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Vehicle speed sensor	Vehicle speed	Fuel cut control	
PNP switch	Neutral position		Injectors
Throttle position sensor	Throttle position		Injectors
Camshaft position sensor	Engine speed		

If the engine speed is above 3,000 rpm with no load, (for example, in Neutral and engine speed over 3,000 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE:

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-29.

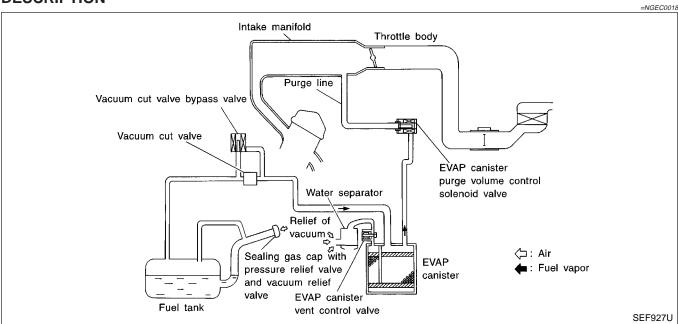
RS

BT

HA

SC

ST

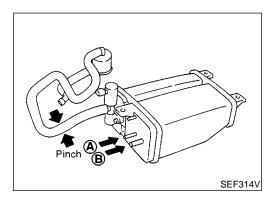

EL

 \mathbb{N}

KA24DE

Evaporative Emission System

DESCRIPTION


The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating.

EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

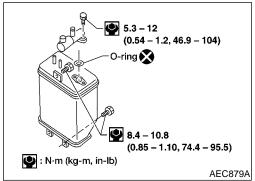
EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

INSPECTION EVAP Canister

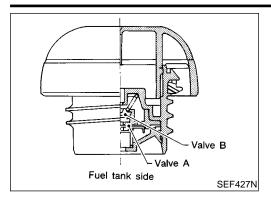
NGEC0019

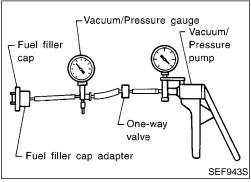
NGEC0019S01

Check EVAP canister as follows:


- Pinch the fresh air hose.
- 2. Blow air into port **A** and check that air flows freely through port

Tightening Torque


NGEC0019S02


Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

Evaporative Emission System (Cont'd)

Fuel Tank Vacuum Relief Valve (Built into fuel filler cap)

- Wipe clean valve housing.
- Check valve opening pressure and vacuum.

Pressure:

16.0 - 20.0 kPa (0.163 - 0.204 kg/cm², 2.32 - 2.90 psi) Vacuum:

-6.0 to -3.5 kPa (-0.061 to -0.036 kg/cm², -0.87 to -0.51 psi)

3. If out of specification, replace fuel filler cap as an assembly.

Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

FE

GL

MT

AT

TF

GI

LC

Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-530.

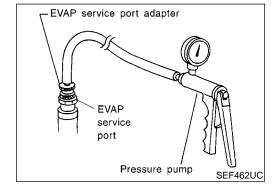
Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve NGEC0019S06

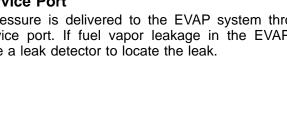
Refer to EC-487.

Tank Fuel Temperature Sensor

Refer to EC-293.

PD NGEC0019S08



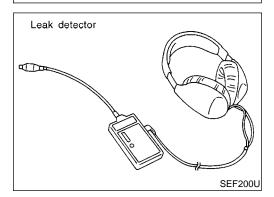

SU

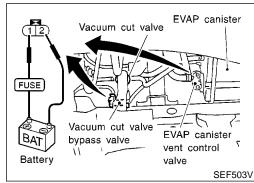
ST

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

BT

HA


SC


EL

KA24DE

Evaporative Emission System (Cont'd)

EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

How to Detect Fuel Vapor Leakage

NGEC0019S10

CALITION

- Never use compressed air or a high pressure pump.
- Do not start engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

NOTE:

Improper installation of adapter to the service port may cause a leak.

(P) With CONSULT-II

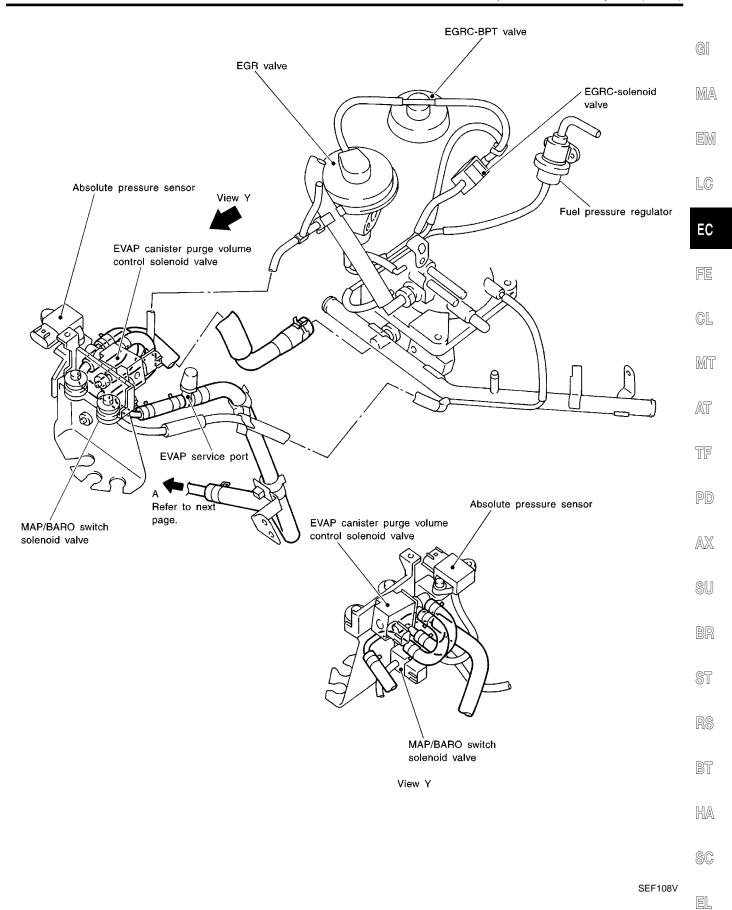
- 1) Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Also attach the pressure pump and hose.
- 3) Turn ignition switch "ON".
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5) Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7) Remove the EVAP service port adapter and hose with pressure pump.
- 8) Locate the leak using a leak detector. Refer to "Evaporative Emission Line Drawing", EC-36.

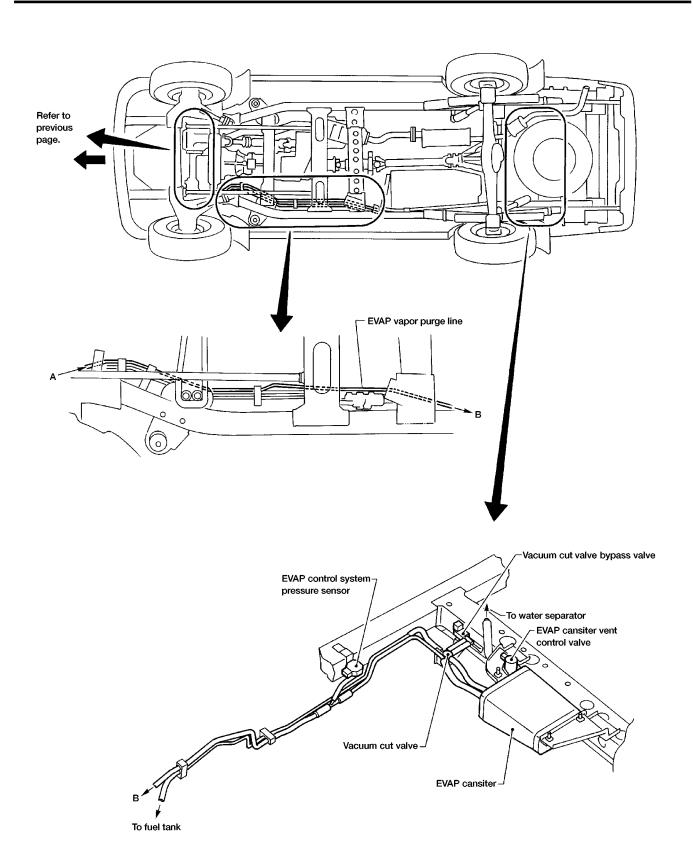
(R) Without CONSULT-II

- 1) Attach the EVAP service port adapter securely to the EVAP service port and pressure pump with pressure gauge to the EVAP service port.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- 3) To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- Remove the EVAP service port adapter and hose with pressure pump.
- 5) Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-36.

EVAPORATIVE EMISSION LINE DRAWING

NGEC0020


NOTE:


Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

KA24DE

Evaporative Emission System (Cont'd)

AEC869A

GI

MA

LC

EC

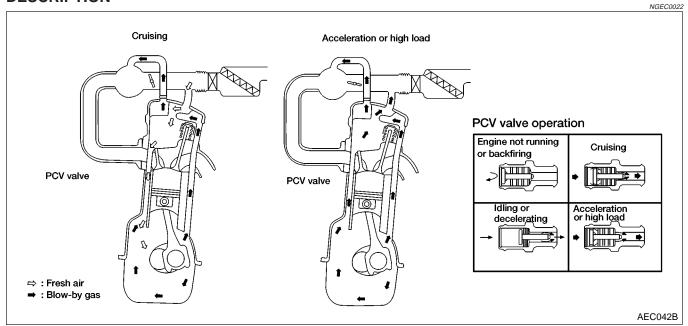
FE

MT

AT

TF

PD


NGEC0023

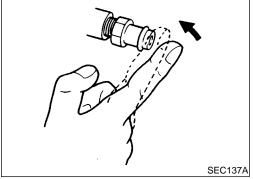
NGEC0023S02

Positive Crankcase Ventilation

Positive Crankcase Ventilation

DESCRIPTION

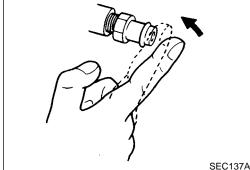
This system returns blow-by gas to the intake collector.


The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air duct into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

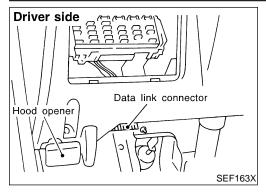

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

INSPECTION

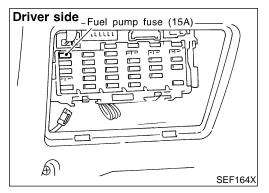
PCV (Positive Crankcase Ventilation) Valve

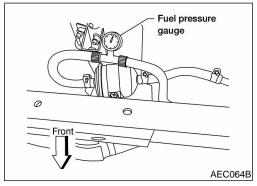
With engine running at idle, remove PCV valve from breather separator. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.

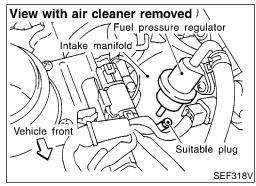
Ventilation Hose


Check hoses and hose connections for leaks.

Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.


HA


SC



FUEL PRES RELEASE FUEL PUMP WILL STOP BY TOUCHING START DURING IDLE. CRANK A FEW TIMES AFTER ENGINE STALL. PEF823K

Fuel Pressure Release

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) WITH CONSULT-II

NGEC0024S01

- Start engine.
- Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.

N WITHOUT CONSULT-II

NGEC0024S02

- 1. Remove fuse for fuel pump.
- Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF and reconnect fuel pump fuse.

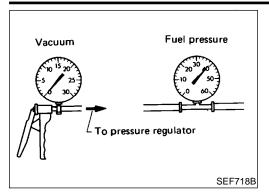
Fuel Pressure Check

NGEC0025

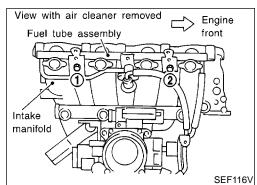
- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
- 1. Release fuel pressure to zero.
- 2. Disconnect fuel hose between fuel filter and fuel tube (engine side).
- 3. Install pressure gauge between fuel filter and fuel tube.
- 4. Start engine and check for fuel leakage.
- 5. Read the indication of fuel pressure gauge.

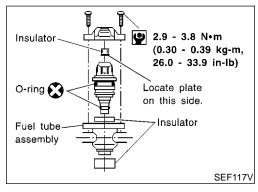
At idle speed:

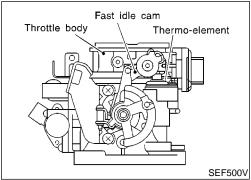
With vacuum hose connected


Approximately 235 kPa (2.4 kg/cm², 34 psi)

With vacuum hose disconnected


Approximately 294 kPa (3.0 kg/cm², 43 psi)


If results are unsatisfactory, perform Fuel Pressure Regulator Check, EC-41.


Fuel Pressure Regulator Check

View with air cleaner removed Rocker cover Fuel injector

Fuel Pressure Regulator Check

Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.

Plug intake manifold with a rubber cap.

Connect variable vacuum source to fuel pressure regulator.

Start engine and read indication of fuel pressure gauge as vacuum is changed.

Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

Injector

REMOVAL AND INSTALLATION

Release fuel pressure to zero.

Remove injector tube assembly with injectors from intake manifold.

3. Remove injectors from injector tube assembly.

Push injector tail piece.

Do not pull on the connector.

4. Install injector to fuel tube assembly.

Clean exterior of injector tail piece. a.

b. Use new O-rings.

Always replace O-rings with new ones. Lubricate O-rings with a smear of engine oil.

Install injectors with fuel tube assembly to intake manifold. Tighten in numerical order shown in the figure.

First, tighten all bolts to 9.3 to 10.8 N·m (0.95 to 1.1 kg-m, 6.9 to 8.0 ft-lb).

Then, tighten all bolts to 21 to 26 N·m (2.1 to 2.7 kg-m, 15 to 20 ft-lb).

Install fuel hoses to fuel tube assembly.

Reinstall any parts removed in reverse order of removal.

After properly connecting injectors to fuel tube assembly, check connections for fuel leakage.

Fast Idle Cam (FIC) COMPONENT DESCRIPTION

The FIC is installed on the throttle body to maintain adequate engine speed while the engine is cold. It is operated by a volumetric change in wax located inside the thermo-element. The thermoelement is operated by engine coolant temperature.

refer to "TROUBLE **DIAGNOSIS-BASIC** inspection INSPECTION", "Basic Inspection", EC-95.

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

AX

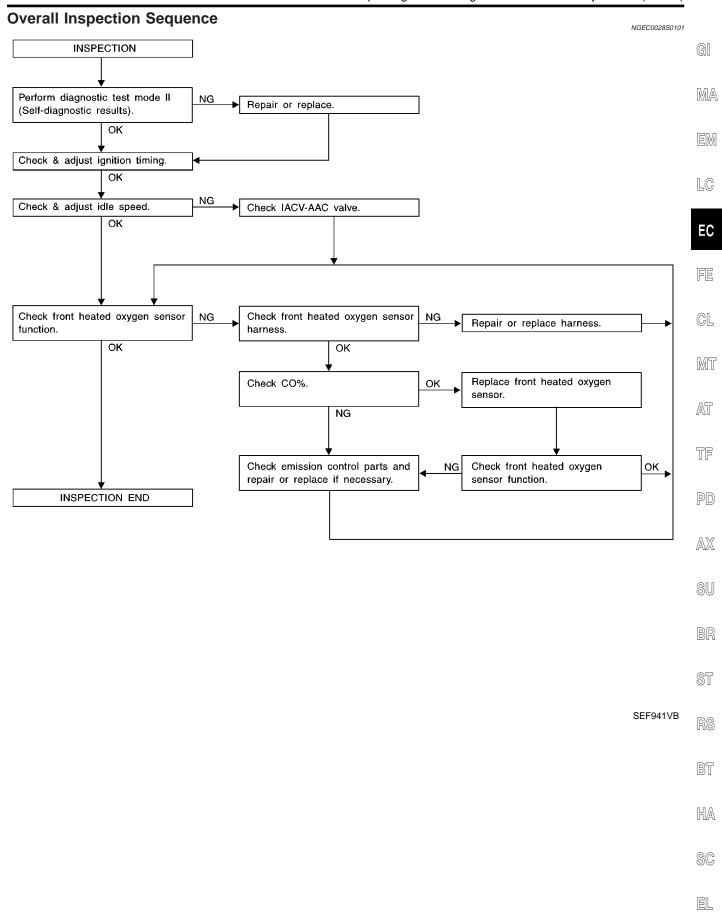
ST

BT

HA

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

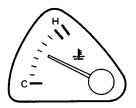

PREPARATION

NGEC0028 NGEC0028S01

- Make sure that the following parts are in good order.
- a) **Battery**
- b) Ignition system
- c) Engine oil and coolant levels
- d) Fuses
- e) ECM harness connector
- f) Vacuum hoses
- g) Air intake system (Oil filler cap, oil level gauge, etc.)
- h) Fuel pressure
- i) Engine compression
- j) EGR valve operation
- k) Throttle valve
- EVAP system
- On models equipped with air conditioner, checks should be carried out while the air conditioner is "OFF".
- On models equipped with automatic transaxle, when checking idle speed, ignition timing and mixture ratio, checks should be carried out while shift lever is in "P" or "N" position.
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear window defogger.
- Keep front wheels pointed straight ahead.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

INSPECTION PROCEDURE

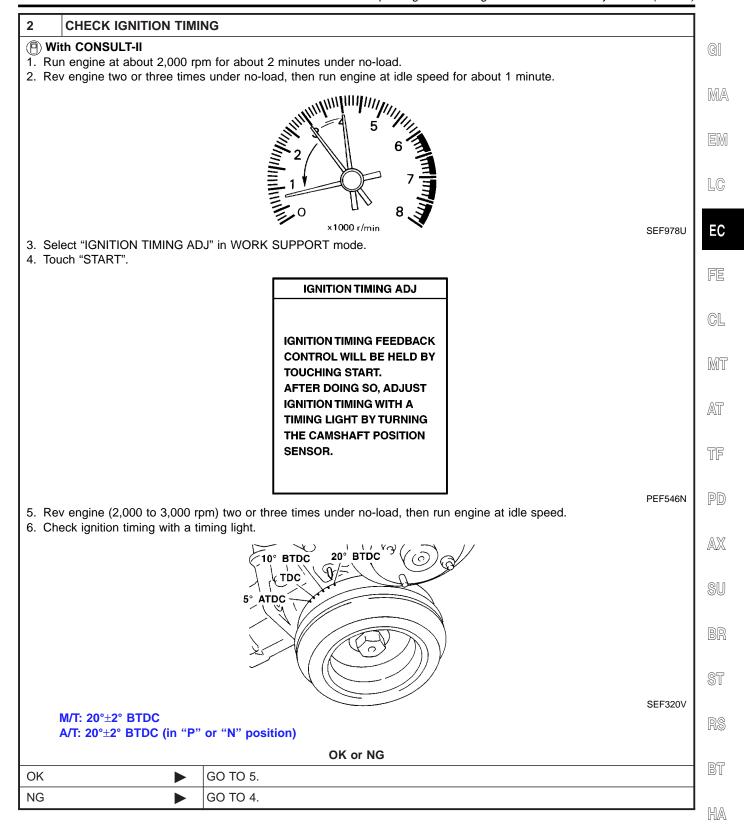
=NGEC0028S02

INSPECTION START

- 1. Visually check the following:
- Air cleaner clogging
- Hoses and duct for leaks
- EGR valve operation
- Electrical connectors
- Gasket (intake manifold, cylinder head, exhaust system)
- Throttle valve and throttle position sensor operation
- 2. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine speed stays below 1,000 rpm.

SEF810K

- 3. Open engine hood and run engine at about 2,000 rpm for about 2 minutes under no-load.
- 4. Perform the Diagnostic Test Mode II (Self-diagnostic results). Refer to EC-71.


SEF217U

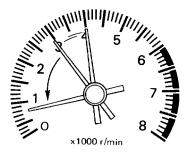
OK ►	GO TO 2. (With CONSULT-II) GO TO 3. (Without CONSULT-II)
NG ▶	 Repair or replace components as necessary. GO TO 2. (With CONSULT-II) GO TO 3. (Without CONSULT-II)

OK or NG

KA24DE

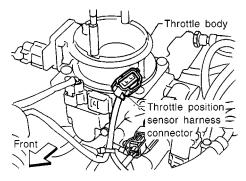
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

SC

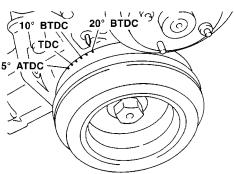

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK IGNITION TIMING

(X) Without CONSULT-II


3

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine two or three times under no-load, then run engine at idle speed for about 1 minute.


SEF978U

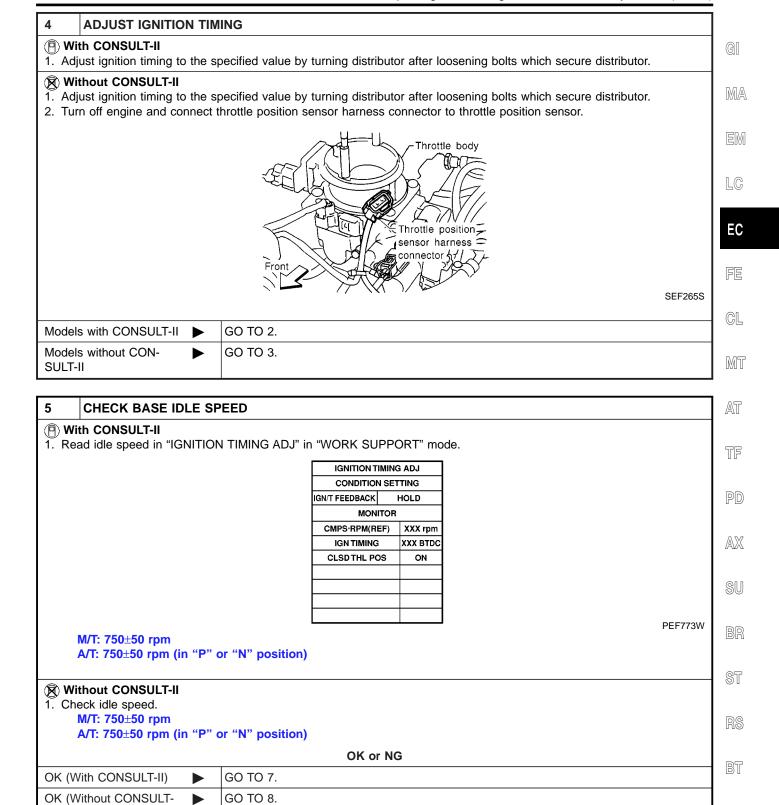
3. Turn off engine and disconnect throttle position sensor harness connector.

SEF265S

- 4. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 5. Check ignition timing with a timing light.

SEF320V

M/T: 20°±2° BTDC


A/T: 20°±2° BTDC (in "P" or "N" position)

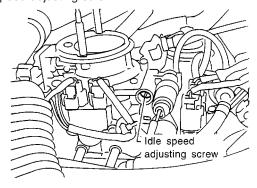
OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

HA


SC

GO TO 6.

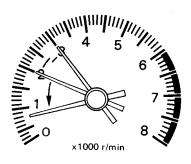
II) NG Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

6 ADJUST BASE IDLE SPEED

- 1. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 2. Adjust idle speed by turning idle speed adjusting screw.

SEF240SA

M/T: 750±50 rpm


A/T: 750±50 rpm (in "P" or "N" position)

l	Models with CONSULT-II		GO TO 7.
	Models without CON- SULT-II	•	GO TO 8.

7 CHECK TARGET IDLE SPEED

With CONSULT-II

- 1. Touch "BACK" on CONSULT-II.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

DATA MONITOR

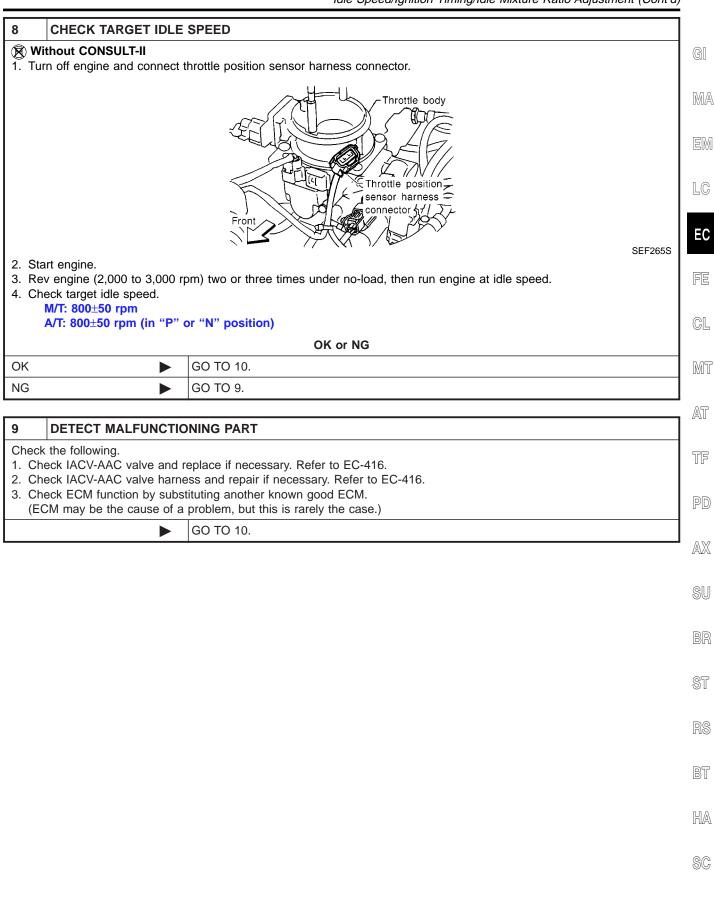
MONITORING NO FAIL

CMPS~RPM(REF) XXX rpm

PEF190P

SEF602K

M/T: 800±50 rpm


A/T: 800±50 rpm (in "P" or "N" position)

OK or NG

OK •	GO TO 10.
NG •	GO TO 9.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

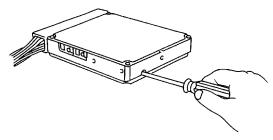
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

10 CHECK FRONT HEATED OXYGEN SENSOR SIGNAL

(P) With CONSULT-II

- 1. See "FR O2 MNTR" in "DATA MONITOR" mode.
- 2. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 3. Maintain engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature) and check that the monitor fluctuates between "LEAN" and "RICH" more than five times during 10 seconds.

DATA MONITOR						
MONITORING	NO FAIL					
CMPS~RPM(REF) X FR O2 MNTR	(XX rpm RICH					


PEF054P

1 cycle: RICH \rightarrow LEAN \rightarrow RICH

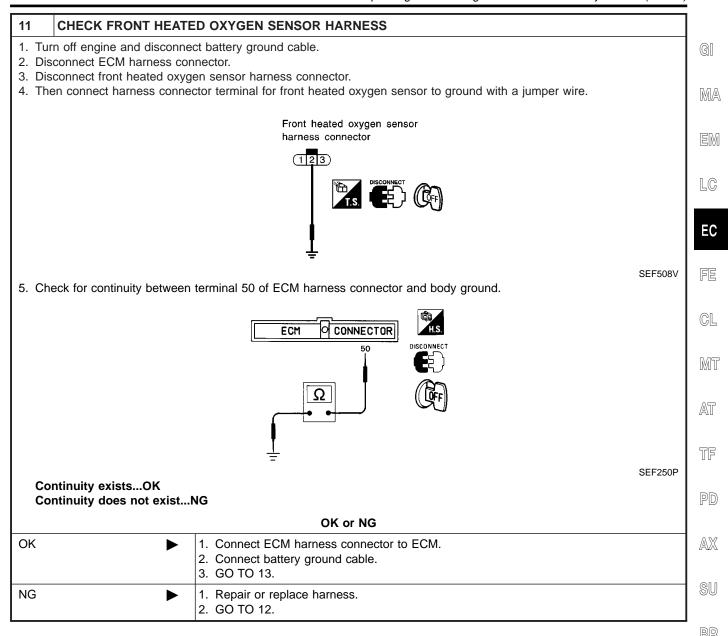
2 cycles: RICH ightarrow LEAN ightarrow RICH ightarrow LEAN ightarrow RICH

(R) Without CONSULT-II

1. Set "Front heated oxygen sensor monitor" in the Diagnostic Test Mode II. (See page EC-70.)

SEF979U

- 2. Run engine at about 2,000 rpm for about 2 minutes under no-load (engine is warmed up to normal operating temperature).
- 3. Maintain engine at 2,000 rpm under no-load and check that MIL goes on more than five times during 10 seconds.


SEF217U

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 11.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

ST

BT

HA

SC

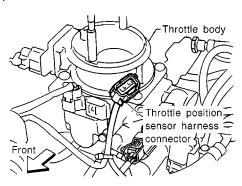
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

12 PREPARATION FOR IDLE SPEED ADJUSTING

(P) With CONSULT-II

- 1. Select "IGNITION TIMING ADJ" in "WORK SUPPORT" mode.
- 2. Touch "START".

IGNITION TIMING ADJ


IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING START.
AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CAMSHAFT POSITION SENSOR.

PEF546N

SEF265S

(R) Without CONSULT-II

1. Stop engine and disconnect throttle position sensor harness connector.

2. Start engine.

GO TO 6.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

13 PREPARATION FOR "CO" % CHECK

(P) With CONSULT-II

- 1. Select "ENGINE COOLANT TEMP" in "ACTIVE TEST" mode.
- 2. Set "COOLANT TEMP" to 5°C (41°F) by touching "Qu" and "Qd" and "UP", "DOWN".

ACTIVE TEST						
COOLANTTEMP	XXX					
MONITOR	1					
CMPS~RPM(REF)	XXX rpm					
INJ PULSE	XXX msec					
IGN TIMING	XXX BTDC					

PEF946W

- 1. Connect ECM harness connector to ECM.
- 2. Disconnect engine coolant temperature sensor harness connector.
- 3. Connect a resistor (4.4 k Ω) between terminals of engine coolant temperature sensor harness connector.

harness connector

4.4 kΩ resistor

4. Connect battery ground cable.

GO TO 14.

EC

GI

MA

EM

LC

GL

MT

AT

TF

PD

SEF053RA

U D/4

SU

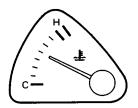
BR

ST

D@

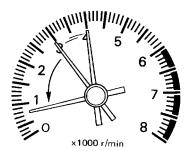
BT

HA


SC

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

14 CHECK "CO" %


(Without CONSULT-II

1. Start engine and warm it up until engine coolant temperature indicator points to middle of gauge. (Be sure to start engine after setting "COOLANT TEMP" or installing a 4.4 k Ω resistor.)

SEF810K

2. Rev engine two or three times under no-load, then run engine at idle speed.

SEF978U

3. Check "CO"%.

Idle CO: 2.9 - 10.8% and engine runs smoothly.

4. (P) With CONSULT-II

After checking CO%, touch "BACK".

5. Without CONSULT-II

After checking CO%,

- a. Disconnect the resistor from terminals of engine coolant temperature sensor harness connector.
- b. Connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

OK •	GO TO 15.
NG ►	GO TO 16.

15 CHECK FRONT HEATED OXYGEN SENSOR SIGNAL

(P) With CONSULT-II

- 1. Replace front heated oxygen sensor.
- 2. See "FR O2 MNTR" in "DATA MONITOR" mode.
- 3. Maintain engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.). Check that the monitor fluctuates between "LEAN" and "RICH" more than five times during 10 seconds.

1 cycle: RICH \rightarrow LEAN \rightarrow RICH

2 cycles: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

(R) Without CONSULT-II

- 1. Replace front heated oxygen sensor.
- Set "Front heated oxygen sensor monitor" in the Diagnostic Test Mode II. (See page EC-70.)
- 3. Maintain engine at 2,000 rpm under no-load. Check that the malfunction indicator lamp goes on and off more than five times during 10 seconds.

OK or NG

OK •	GO TO 12.
NG ►	GO TO 16.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

16 **DETECT MALFUNCTIONING PART**

- 1. Connect front heated oxygen sensor harness connector to front heated oxygen sensor.
- 2. Check fuel pressure regulator. Refer to EC-41.
- 3. Check mass air flow sensor and its circuit.

Refer to EC-136.

4. Check injector and its circuit.

Refer to EC-552.

- Clean or replace if necessary.
- 5. Check engine coolant temperature sensor and its circuit. Refer to EC-167, 186.
- 6. Check ECM function by substituting another known good ECM. (ECM may be the cause of a problem, but this is rarely the case.)

GO TO 12.

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

MA

LC

EC

FE

GL

MT

AT

TF

PD

ST

BT

HA

SC

Introduction

Introduction

NGEC0029

The ECM has an on board diagnostic system which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979
Freeze Frame data	Mode 2 of SAE J1979
System Readiness Test (SRT) code	Mode 1 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Mode 6 of SAE J1979

The above information can be checked using procedures listed in the table below.

X: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame 1st trip Free data Frame dat		SRT code	Test value
ECM*3	×	X*1	_	_	_	_
CONSULT-II	Х	Х	Х	Х	Х	_
GST	Х	X*2	Х	_	Х	X

^{*1:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-110.)

Two Trip Detection Logic

NGEC0030

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

	MIL			DTC		1st tri	p DTC	
Items	1st trip		2nd trip		4 -4 4-1-	On al tain	4 -4 4-1-	On al Arrin
	Blinking	Lighting up	Blinking	Lighting up	1st trip displaying	2nd trip displaying	1st trip displaying	2nd trip displaying
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 (0701, 0605 - 0608) is being detected	Х	_	_	_	_	_	X	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 (0701, 0605 - 0608) is being detected	_	_	Х	_	_	Х	_	_
Closed loop control — DTC: P1148 (0307)	_	X	_	_	X	_	х	_
Fail-safe items		Х	_	_	X*1		X*1	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except "ECM".

^{*2: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

^{*3:} In diagnostic test mode II (Self-diagnostic results)

Emission-related Diagnostic Information

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

NGEC0031

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed. If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-67.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-66. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to page EC-93. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

No Tools

The number of blinks of MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) Examples: 0101, 0201, 1003, 1104, etc.

These DTCs are controlled by NISSAN.

2) (P) With CONSULT-II

■ With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

1st trip DTC No. is the same as DTC No.

Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if avail-

able) is recommended.

A sample of CONSULT-II display for DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESU	JLTS		SELF DIAG RESI	JLTS	1
	FAILURE DETECTED	TIME		FAILURE DETECTED	TIME	
DTC	IACV-AAC VALVE [P0505]	0	1st trip	IACV-AAC VALVE [P0505]	1t	
display			DTC display			
						AEC

EC

GL

MT

AT

NGEC0031S0101

PD

AX

HA

SC

KA24DE

Emission-related Diagnostic Information (Cont'd)

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

ICEC0021602

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure sensor at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-81.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

_	Priority		Items			
	1	Freeze frame data Misfire — DTC: P0300 - P0304 (0701, 0605 - 0608) Fuel Injection System Function — DTC: P0171 (0115), P0172 (0114)				
_	2		Except the above items (Includes A/T related items)			
	3	1st trip freeze frame data				

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-67.

SYSTEM READINESS TEST (SRT) CODE

NGEC0031S03

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of enhanced emissions test for Inspection and Maintenance (I/M), certain states require that the status of srt be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "incomplete", use the information in this service manual to set the SRT to "complete".

In most cases, the ECM will automatically complete its self-diagnosis cycle during normal usage and the SRT status will indicate "complete" for each application system. Once set as "complete", the SRT status remains "complete" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern and the SRT will indicate "incomplete" for these items.

NOTE:

The SRT will also indicate "incomplete" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "complete" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "incomplete" for one or more of the SRT items, the vehicle is returned to the customer untested.

NOTE:

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "complete" for all test items. Therefore, it is important to check SRT ("complete") and DTC (No DTCs) before the inspection.

This service manual contains the service procedure and support information to perform a comprehensive road test that enables the ECM to complete the SRT.

KA24DE

GI

MA

MT

AT

TF

PD

SU

ST

BT

HA

Emission-related Diagnostic Information (Cont'd)

Self-diagnosis re	esult			Example		
		Diagnosis	Ignition OFF – ON – OFF			
All OK		P0400	OK (1)	- (1)	OK (2)	- (2)
	01	P0402	OK (1)	- (1)	- (1)	OK (2)
	Case 1	P1402	OK (1)	OK (2)	- (2)	- (2)
		SRT of EGR	"complete"	"complete"	"complete"	"complete"
	Case 2	P0400	OK (1)	- (1)	- (1)	– (1)
		P0402	- (0)	- (0)	OK (1)	- (1)
		P1402	OK (1)	OK (2)	- (2)	- (2)
	SRT of EGR	"incomplete"	"incomplete"	"complete"	"complete"	
NG exists		P0400	OK	ОК	_	_
		P0402	_	_	_	_
	Case 3	P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (=MIL "ON")
		SRT of EGR	"incomplete"	"incomplete"	"incomplete"	"complete"

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is OK.

SRT Set Timing

SRT Item

SRT is set as "complete" after self-diagnosis has been performed one or more times. Completion of SRT will occur if the result is OK or NG. The set timing is different between them and is shown in the following table. When all SRT related self-diagnoses showed OK results in a same cycle (Ignition OFF – ON – OFF), the SRT will indicate "complete".

→ Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "complete" at the time the respective self-diagnoses have at least one OK result.

→ Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "complete".

→ Case 3 above

The previous table shows that the minimum number of cycles for setting SRT as "incomplete" is one (1) for each self-diagnosis (Case 1 and 2) or two (2) for one self-diagnosis (Case 3). However, in preparation for the State emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) because of the following reasons;

- The SRT will indicate "complete" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "complete" of the SRT only with OK self-diagnosis result.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "complete" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "incomplete".

NOTE:

SRT can be set as "complete" together with the DTC(s). Therefore, DTC check must always be carried out prior to the State emission inspection even though the SRT indicates "complete".

How to Display SRT Code

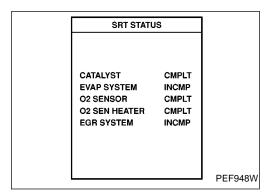
(a) With CONSULT-II
 Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

NGEC0031S0301

^{- :} Self-diagnosis is not carried out.

KA24DE

Emission-related Diagnostic Information (Cont'd)

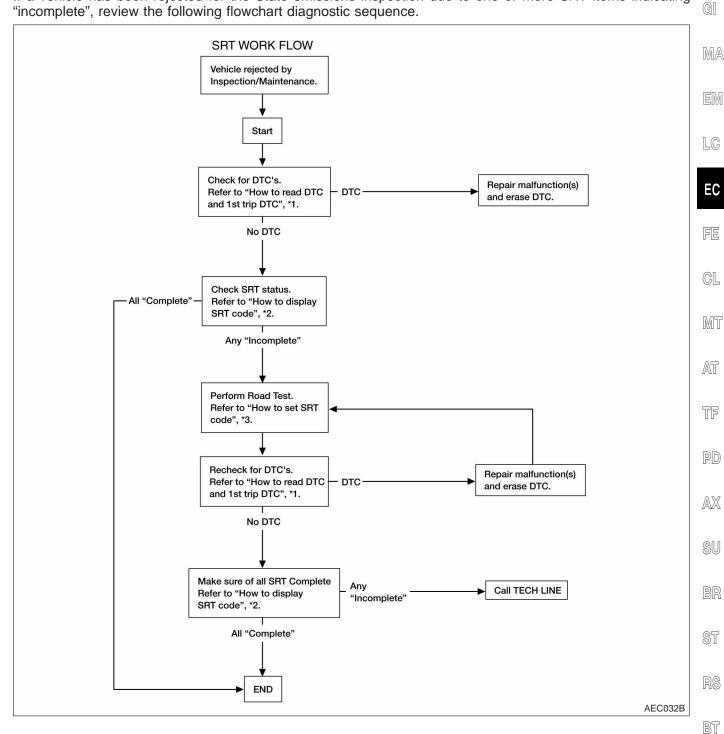

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

2. With GST

Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.



Emission-related Diagnostic Information (Cont'd)

SRT Service Procedure

If a vehicle has been rejected for the State emissions inspection due to one or more SRT items indicating "incomplete", review the following flowchart diagnostic sequence.

EC-57 *2 EC-59 *3 EC-62

HA

SC

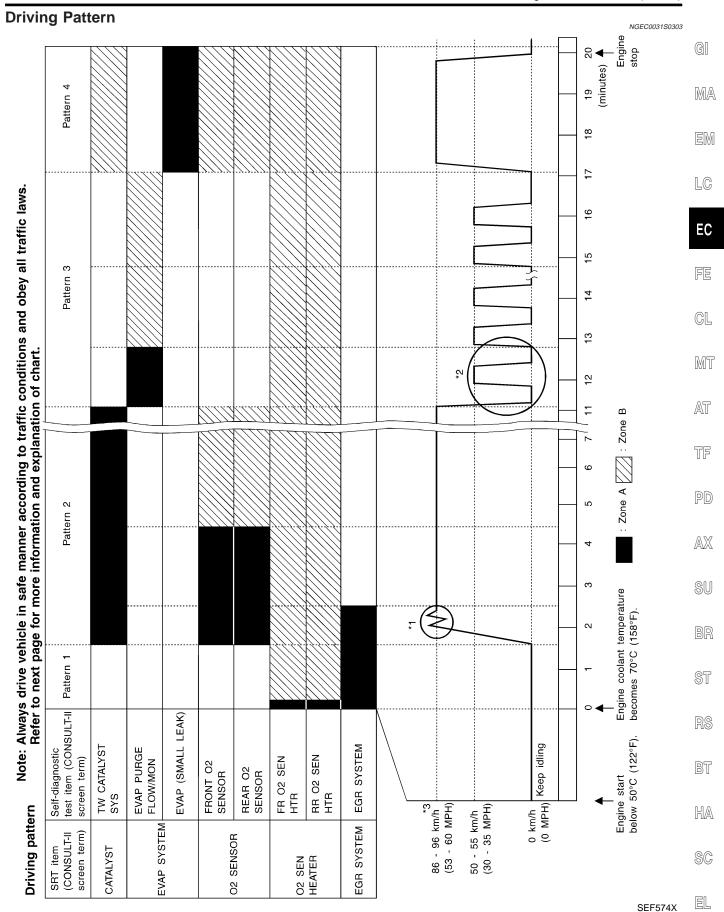
KA24DE

Emission-related Diagnostic Information (Cont'd)

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(II) With CONSULT-II


Perform corresponding DTC confirmation procedure one by one based on "Performance Priority" in the table on EC-59.

(R) Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on EC-63. The driving pattern should be performed one or more times to set all SRT codes.

KA24DE

Emission-related Diagnostic Information (Cont'd)

KA24DE

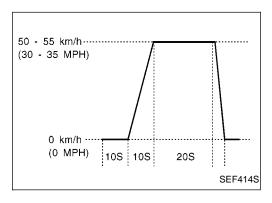
Emission-related Diagnostic Information (Cont'd)

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest.
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminals 59 and 43 is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminals 59 and 43 is lower than 1.4V).
- The engine is started at the tank fuel temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 60 and ground is less than 4.1V).

Pattern 2


• When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- 3) Repeat steps 1 and 2 until the EGR system SRT is set.

*3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

Emission-related Diagnostic Information (Cont'd)

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

A	Γ
((5)	
Cu	ш

	For normal accelerat [less than 1,2	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)	24 (15)
2nd to 3rd	40 (25)	29 (18)	40 (25)
3rd to 4th	58 (36)	48 (30)	64 (40)
4th to 5th	64 (40)	63 (39)	72 (45)

EC

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

FE

Items for which these data (test value and test limit) are displayed are the same as SRT code items (9 test

MIT

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

ΔU	

				A. Applicable —	Not applicable	
ODT #4	Calf diamondia toot itaas	Test value (GST display)	Test limit	A 1: 4:	772
SRT item	Self-diagnostic test item	TID CID		Test iiitiit	Application	TF
CATALYST	Three way catalyst function	01H	01H	Max.	Х	PD
CATALTST	Three way catalyst function	02H	81H	Min.	Х	
EVAD CVCTEM	EVAP control system (Small leak)	05H	03H	Max.	Х	AX
EVAP SYSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	Х	SU
		09H	04H	Max.	Х	
	Front heated oxygen sensor	0AH	84H	Min.	Х	BR
		0BH	04H	Max.	Х	
		0CH	04H	Max.	Х	ST
O2 SENSOR		0DH	04H	Max.	X	
		19H	86H	Min.	Х	RS
		1AH	86H	Min.	Х	
	Rear heated oxygen sensor	1BH	06H	Max.	Х	BT
		1CH	06H	Max.	Х	. ппл
	Front heated oxygen sensor	29H	08H	Max.	Х	HA
O2 SENSOR HEATER	heater	2AH	88H	Min.	Х	sc sc
UZ SENSUK FIERIER	Rear heated oxygen sensor	2DH	0AH	Max.	Х	96
	heater	2EH	8AH	Min.	Х	EL

KA24DE

Emission-related Diagnostic Information (Cont'd)

SRT item	Salf diagnostic test item	Test value (0	GST display)	Test limit	A 1: 4:	
SKT IIEM	Self-diagnostic test item	TID	CID	rest iimit	Application	
		31H	8CH	Min.	Х	
	EGR function	32H	8CH	Min.	Х	
		33H	8CH	Min.	Х	
EGR SYSTEM		34H	8CH	Min.	Х	
		35H	0CH	Max.	Х	
	ECDC BDT valve function	36H	0CH	Max.	Х	
	EGRC-BPT valve function	37H	8CH	Min.	Х	

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

					X: Applicable	—: Not applicable
Itama	DT	C*4		Test value/Test		Deference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	limit (GST only)	1st trip DTC*4	Reference page
NO SELF DIAGNOSTIC FAILURE INDICATED	P0000	0505	_	_	_	_
MAF SEN/CIRCUIT	P0100	0102	_	_	X	EC-136
ABSL PRES SEN/CIRC	P0105	0803	_	_	X	EC-146
AIR TEMP SEN/CIRC	P0110	0401	_	_	X	EC-161
COOLANT T SEN/CIRC	P0115	0103	_	_	Х	EC-167
THRTL POS SEN/CIRC	P0120	0403	_	_	Х	EC-172
*COOLAN T SEN/CIRC	P0125	0908	_	_	Х	EC-186
FRONT O2 SENSOR	P0130	0303	Х	Х	X*3	EC-190
FRONT O2 SENSOR	P0131	0411	Х	Х	X*3	EC-198
FRONT O2 SENSOR	P0132	0410	Х	Х	X*3	EC-205
FRONT O2 SENSOR	P0133	0409	Х	Х	X*3	EC-212
FRONT O2 SENSOR	P0134	0412	Х	Х	X*3	EC-223
FR O2 SEN HEATER	P0135	0901	Х	Х	X*3	EC-230
REAR O2 SENSOR	P0137	0511	Х	Х	X*3	EC-235
REAR O2 SENSOR	P0138	0510	Х	Х	X*3	EC-245
REAR O2 SENSOR	P0139	0707	Х	Х	X*3	EC-255
REAR O2 SENSOR	P0140	0512	Х	Х	X*3	EC-265
RR O2 SEN HEATER	P0141	0902	Х	Х	X*3	EC-273
FUEL SYS DIAG-LEAN	P0171	0115	_	_	Х	EC-278
FUEL SYS DIAG-RICH	P0172	0114	_	_	Х	EC-286
FUEL TEMP SEN/CIRC	P0180	0402	_	_	Х	EC-293
MULTI CYL MISFIRE	P0300	0701	_	_	Х	EC-299
CYL 1 MISFIRE	P0301	0608	_	_	Х	EC-299
CYL 2 MISFIRE	P0302	0607	_	_	Х	EC-299
CYL 3 MISFIRE	P0303	0606	_	_	Х	EC-299

Emission-related Diagnostic Information (Cont'd)

lta ma	DT	C*4		Test value/Test		Deferen
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	limit (GST only)	1st trip DTC*4	Reference page
CYL 4 MISFIRE	P0304	0605	_	_	Х	EC-299
KNOCK SEN/CIRCUIT	P0325	0304	_	_	_	EC-308
CPS/CIRCUIT (OBD)	P0335	0802	_	_	Х	EC-312
CAM POS SEN/CIRC	P0340	0101	_	_	Х	EC-318
EGR SYSTEM	P0400	0302	Х	Х	X*3	EC-326
EGRC-BPT VALVE	P0402	0306	Х	Х	X*3	EC-338
TW CATALYST SYSTEM	P0420	0702	Х	Х	X*3	EC-346
EVAP SMALL LEAK	P0440	0705	Х	Х	X*3	EC-351
PURG VOLUME CONT/V	P0443	1008	_	_	Х	EC-367
VENT CONTROL VALVE	P0446	0903	_	_	Х	EC-375
EVAP SYS PRES SEN	P0450	0704	_	_	Х	EC-383
EVAP GROSS LEAK	P0455	0715	Х	Х	X*3	EC-398
VEH SPEED SEN/CIRC	P0500	0104	_	_	Х	EC-412
IACV/AAC VLV/CIRC	P0505	0205	_	_	Х	EC-416
CLOSED TP SW/CIRC	P0510	0203	_	_	Х	EC-422
ECM	P0605	0301	_	_	Х	EC-429
MAP/BARO SW SOL/CIR	P1105	1302	_	_	Х	EC-431
CLOSED LOOP	P1148	0307	_	_	_	EC-447
IGN SIGNAL-PRIMARY	P1320	0201	_	_	Х	EC-449
CPS/CIRC (OBD) COG	P1336	0905	_	_	Х	EC-457
EGRC SOLENOID/V	P1400	1005	_	_	Х	EC-463
EGR TEMP SEN/CIRC	P1401	0305	_	_	Х	EC-470
EGR SYSTEM	P1402	0514	Х	Х	X*3	EC-476
EVAP SMALL LEAK	P1440	0213	Х	Х	X*3	EC-485
PURG VOLUME CONT/V	P1444	0214	_	_	Х	EC-487
VENT CONTROL VALVE	P1446	0215	_	_	Х	EC-499
EVAP PURG FLOW/MON	P1447	0111	Х	Х	X*3	EC-505
VENT CONTROL VALVE	P1448	0309	_	_	Х	EC-515
VC/V BYPASS/V	P1490	0801	_	_	Х	EC-523
VC CUT/V BYPASS/V	P1491	0311	_	_	Х	EC-530
P-N POS SW/CIRCUIT	P1706	1003	_	_	Х	EC-541

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

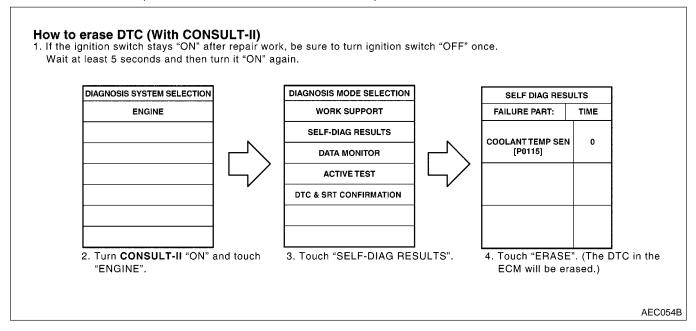
(I) How to Erase DTC (With CONSULT-II)

SC

NGEC0031S06

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} These are not displayed with GST.


^{*4: 1}st trip DTC No. is the same as DTC No.

^{1.} If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5

Emission-related Diagnostic Information (Cont'd)

seconds and then turn it ON (engine stopped) again.

- 2. Turn CONSULT-II "ON" and touch "ENGINE".
- Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". (The DTC in the ECM will be erased.)

The emission-related diagnostic information can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (With GST)

NGEC0031S0602

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.
- Select Mode 4 with GST (Generic Scan Tool).

The emission-related diagnostic information in the ECM can be erased by selecting Mode 4 with GST (Generic Scan Tool).

How to Erase DTC (No Tools)

NGEC0031S060

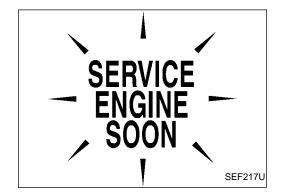
- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON again.
- 2. Change the diagnostic test mode from Mode II to Mode I by turning the mode selector on the ECM. (See EC-71.)

The emission-related diagnostic information in the ECM can be erased by changing the diagnostic test mode from Diagnostic Test Mode II to Mode I by turning the mode selector on the ECM. (Refer to EC-71.)

NOTE:

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx.
 24 hours.
- Erasing the emission-related diagnostic information using CONSULT-II or GST is easier and quicker than switching the mode selector on the ECM.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.


Malfunction Indicator Lamp (MIL)

Malfunction Indicator Lamp (MIL)

DESCRIPTION

MA

LC

EC

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to "WARNING LAMPS", *EL-87* or see EC-578.
- When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

GL

MT

AT

PD

TF

SU

BR

ST

BT

HA

SC

EL

KA24DE

=NGEC0032S01

Malfunction Indicator Lamp (MIL) (Cont'd)

On Board Diagnostic System Function

The on board diagnostic system has the following four functions.

Diagnostic Test Mode I

BULB CHECK:

This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit and ECM test mode selector. (See next page.)

2. MALFUNCTION WARNING:

This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip.

- "Misfire (Possible three way catalyst damage)"
- "Closed loop control"
- Fail-safe mode

(Refer to EC-71.)

Diagnostic Test Mode II

3. SELF-DIAGNOSTIC RESULTS:

This function allows DTCs and 1st trip DTCs to be read.

4. FRONT HEATED OXYGEN SENSOR MONITOR:

This function allows the fuel mixture condition (lean or rich), monitored by front heated oxygen sensor, to be read.

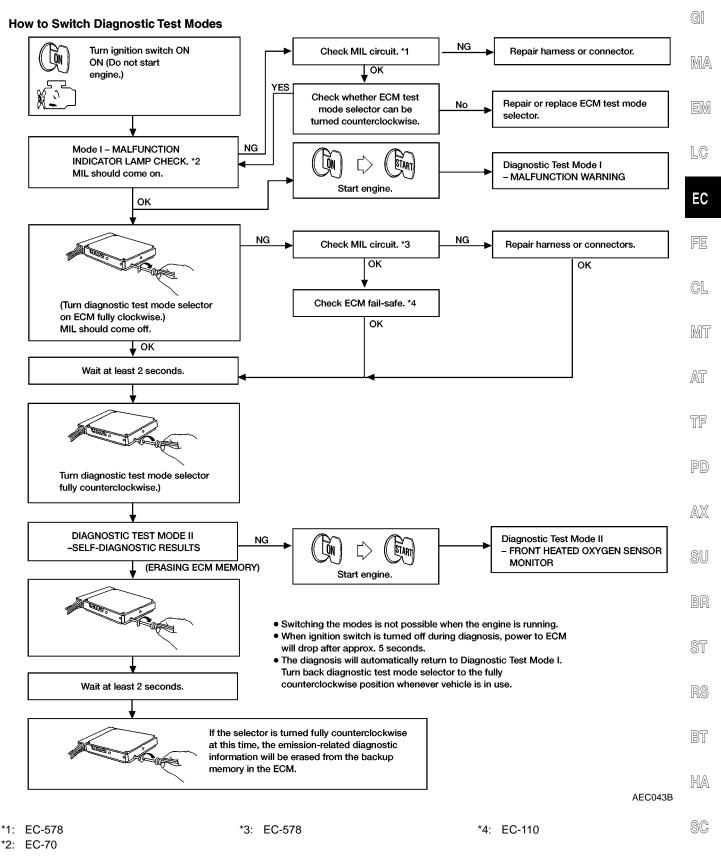
MIL Flashing without DTC

NGEC0032S010

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM test mode selector following "HOW TO SWITCH DIAGNOSTIC TEST MODES" on next page. How to switch the diagnostic test (function) modes, and details of the above functions are described later.

Cond	dition	Diagnostic Test Mode I	Diagnostic Test Mode II
Ignition switch in ON position	Engine stopped	BULB CHECK	SELF-DIAGNOSTIC RESULTS
(Con)	Engine running	MALFUNCTION WARNING	FRONT HEATED OXYGEN SENSOR MONITOR

The following emission-related diagnostic information is cleared when the ECM memory is erased.


- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

Malfunction Indicator Lamp (MIL) (Cont'd)

How to Switch Diagnostic Test Modes

NGEC0032S02

KA24DE

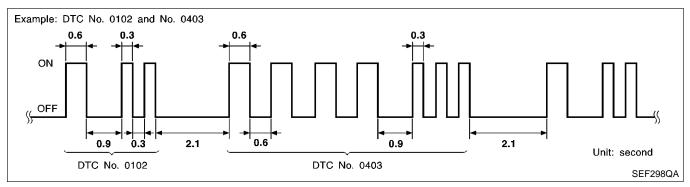
Malfunction Indicator Lamp (MIL) (Cont'd)

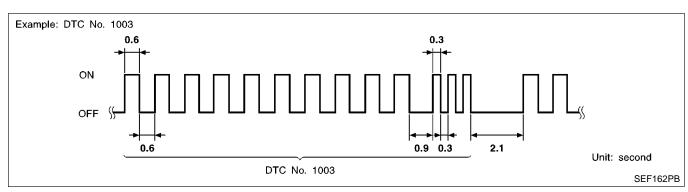
Diagnostic Test Mode I — Bulb Check

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the MIL bulb. Refer to "WARNING LAMPS", *EL-87* or see EC-578.

Diagnostic Test Mode I — Malfunction Warning

NGEC0032504


MIL	Condition			
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.			
OFF	No malfunction.			


These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS).

Diagnostic Test Mode II — Self-diagnostic Results

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL.

The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

Long (0.6 second) blinking indicates the two LH digits of number and short (0.3 second) blinking indicates the two RH digits of number. For example, the malfunction indicator lamp blinks 10 times for 6 seconds (0.6 sec x 10 times) and then it blinks three times for about 1 second (0.3 sec x 3 times). This indicates the DTC "1003" and refers to the malfunction of the park/neutral position (PNP) switch.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0505" refers to no malfunction. (See TROUBLE DIAGNOSIS — INDEX, EC-13.)

How to Erase Diagnostic Test Mode II (Self-diagnostic results)

The DTC can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "HOW TO SWITCH DIAGNOSTIC TEST MODES".)

- If the battery is disconnected, the DTC will be lost from the backup memory after approx. 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

KA24DE

Malfunction Indicator Lamp (MIL) (Cont'd)

Diagnostic Test Mode II — Front Heated Oxygen Sensor Monitor

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the front heated oxygen sensor.

condition

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	_ ,
ON	Lean	Closed loop system	- [
OFF	Rich	Closed loop system	ı
*Remains ON or OFF	Any condition	Open loop system	_

To check the front heated oxygen sensor function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

EC

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DETECTABLE ITEMS

NGEC0033

 When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.

GL

 When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-56.

MT

The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
the counter will reset.

AT

• The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.

TF

PD

• The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

NGEC0033S02

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

BR

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-75.

For details about patterns "A" and "B" under "Other", see EC-77.

ST

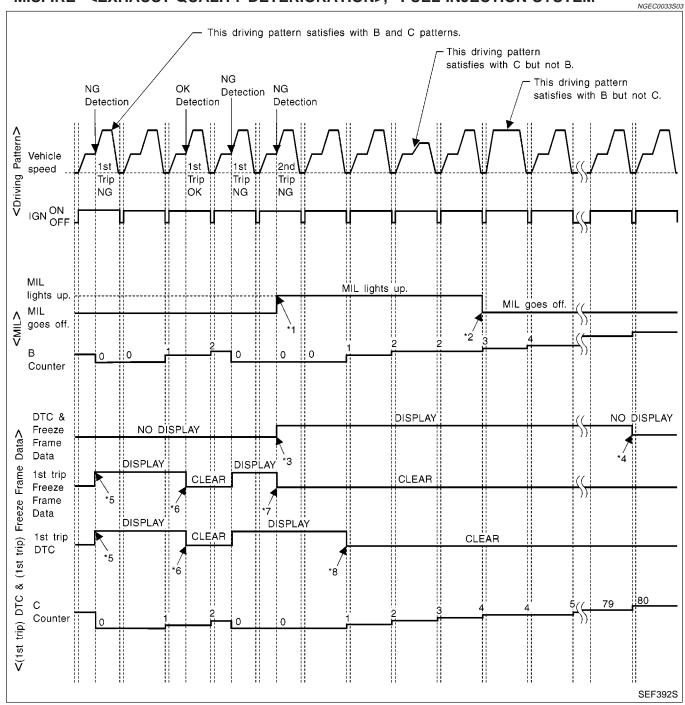
BT

HA

SC

EL

 \mathbb{N}


^{*:} Maintains conditions just before switching to open loop.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame

- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction.
- (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

KA24DE

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY **DETERIORATION>", "FUEL INJECTION SYSTEM"**

Driving Pattern B

NGEC0033S04

NGEC0033S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- MA
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

Driving Pattern C

Driving pattern C means the vehicle operation as follows:

NGEC0033S0402

1) The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) \times (1±0.1) [%] Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

GL

MT

EC

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

AT

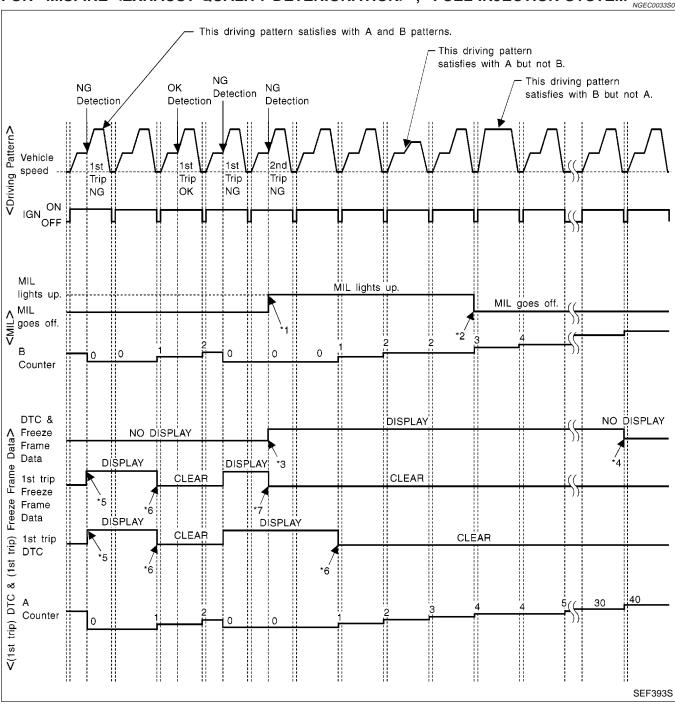
- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.

TF

The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

PD

ST

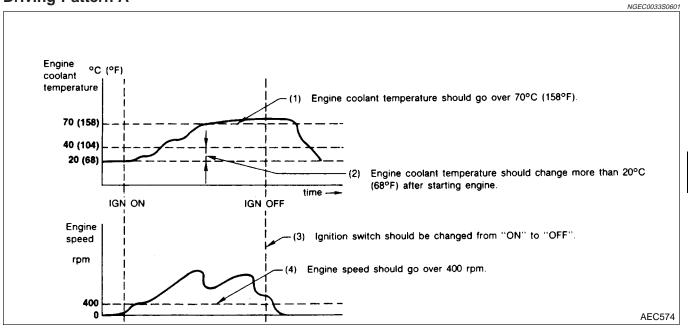

BT

HA

SC

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"...


- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame
 - data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

KA24DE

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

Driving Pattern B

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

NGEC0033S06 G

MA

LC

EC

FE

CL

MT

AT

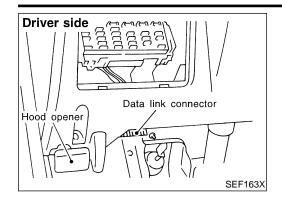
PD

TF

NGEC003350602

SU

ST

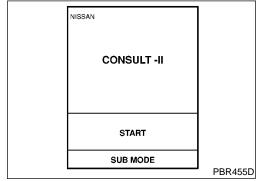

RS

BT

HA

SC

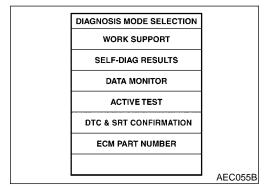
CONSULT-II


CONSULT-II

CONSULT-II INSPECTION PROCEDURE

=NGEC0034

NGEC0034S01


- 1. Turn ignition switch OFF.
- Connect "CONSULT-II" to data link connector for CONSULT-II. (Data link connector for CONSULT-II is located behind the fuse box cover.)

- 3. Turn ignition switch ON.
- 4. Touch "START".

DIAGNOSIS SYSTEM SELECTION	
ENGINE	
	PEF895K

5. Touch "ENGINE".

Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

KA24DE
CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

NGEC0034S02

	DIAGNOSTIC TEST MODE							
		WORK	1	AGNOSTIC ULTS	DATA		DTC 8	
	ltem		SUP- FREEZE M		DATA MONI- TOR	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Camshaft position sensor		Х	Х	Х			
	Mass air flow sensor		Х		Х			
	Engine coolant temperature sensor		Х	Х	Х	Х		
	Front heated oxygen sensor		Х		Х		Х	Х
	Rear heated oxygen sensor		Х		Х		Х	Х
	Vehicle speed sensor		Х	Х	Х			
	Throttle position sensor	Х	Х		Х			
	Fuel tank temperature sensor		Х		Х	Х		
ENGINE CONTROL COMPONENT PARTS Z Z C	EVAP control system pressure sensor		Х		Х			
	Absolute pressure sensor		Х	Х	Х			
MPO	EGR temperature sensor		Х		Х			
S INPUT	Intake air temperature sensor		Х		Х			
NTROL	Crankshaft position sensor (OBD)		Х					
8	Knock sensor		Х					
GINE	Ignition switch (start signal)				Х			
	Closed throttle position switch		Х		Х			
	Closed throttle position switch (throttle position sensor signal)				Х			
	Air conditioner switch				Х			
	Park/Neutral position (PNP) switch		х		Х			
	Power steering oil pressure switch				Х			
	Air conditioner pressure switch				Х			
	Battery voltage				Х			

 $\mathbb{H}\mathbb{A}$

SC

CONSULT-II (Cont'd)

lta.m.			DIAGNOSTIC TEST MODE							
			WORK		SELF-DIAGNOSTIC RESULTS			DTC & SRT CONFIRMATION		
ltem		SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT		
		Injectors				X	X			
		Power transistor (Ignition timing)	Х	X (Ignition signal)		Х	х			
		IACV-AAC valve	Х	Х		Х	Х			
ARTS		EVAP canister purge volume control solenoid valve		Х		Х	Х		X	
Ä		Air conditioner relay				Х				
ONE	Fuel pump relay		Х			Х	Х			
OMP		EGRC-solenoid valve		Х		Х	Х			
3OL CC	ОUТРUТ	Front heated oxygen sensor heater		Х		Х		Х		
CONT		Rear heated oxygen sensor heater		Х		Х		Х		
ENGINE CONTROL COMPONENT PARTS		Torque converter clutch solenoid valve		Х		Х			Х	
ш		EVAP canister vent control valve		Х		Х	Х			
		Vacuum cut valve bypass valve		Х		Х	Х		Х	
		MAP/BARO switch solenoid valve		Х		Х	Х			
		Calculated load value			Х	Х				

X: Applicable

FUNCTION

NGEC0034S03

	NOLCOUNTS
Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly. *1
Data monitor	Input/Output data in the ECM can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part number	ECM part numbers can be read.

- *1 The following emission-related diagnostic information is cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-58.

4) 1st trip freeze frame data

Freeze frame data

- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

WORK SUPPORT MODE

NGEC0034S04

GI

MA

WORK ITEM	CONDITION	USAGE	
IGNITION TIMING ADJ	IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING "START". AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CRANKSHAFT POSITION SENSOR.	When adjusting initial ignition timing	en Lo
IACV-AAC VALVE ADJ	SET ENGINE SPEED AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. • ENGINE WARMED UP • NO-LOAD	When adjusting idle speed	E(
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line	FE
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. • BATTERY VOLTAGE IS SUFFICIENT. • IGN SW "ON" • ENGINE NOT RUNNING • AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). • NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	When detecting EVAP vapor leak point of EVAP system	M'
	TEM TANK FUEL TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"		TF
	WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITIONS ABOVE, CONSULT-II WILL DISCONTINUE AND DISPLAY INSTRUCTIONS.		P
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY",		A
	EVEN WHEN USING A CHARGED BATTERY.		Sl

SELF DIAGNOSTIC MODE DTC and 1st Trip DTC

NGEC0034S05

GEC0034S0501

Regarding items of "DTC and 1st trip DTC", refer to "TROUBLE DIAGNOSIS — INDEX", EC-13.

ST

Freeze Frame Data and 1st Trip Freeze Frame Data

BT	

DIAG TROUBLE
CODE
[PXXXX]

Description

Description

Engine Control component part/control system has a trouble code, it is displayed as "PXXXX". [Refer to "Alphabetical & P No. Index for DTC" (EC-13).]

"Fuel injection system status" at the moment a malfunction is detected is displayed.

One mode in the following is displayed.

HA

One mode in the following is displayed.

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

"MODE 2": Open loop due to detected system malfunction

SG

"MODE 3": Open loop due to detected system maintriction"

"MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment)

"MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control

"MODE 5": Open loop - has not yet satisfied condition to go to closed loop

96

CAL/LD VALUE [%] • The calculated load value at the moment a malfunction is detected is displayed.

KA24DE

CONSULT-II (Cont'd)

Freeze frame data item*	Description
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
S-FUEL TRIM [%]	 "Short-term fuel trim" at the moment a malfunction is detected is displayed. The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
L-FUEL TRIM [%]	 "Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
ABSOL PRESS [kPa] or [kg/cm²] or [psi]	The absolute pressure at the moment a malfunction is detected is displayed.

 $[\]ensuremath{^{*:}}$ The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

NGEC0034S06

Monitored item [Unit]	ECM input signals	Main sig- nals	Description	Remarks
CMPS·RPM (REF) [rpm]	0	0	Indicates the engine speed computed from the REF signal (180° signal) of the camshaft position sensor.	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS AIR/FL SE [V]	0	0	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sen- sor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
FR O2 SENSOR [V]	0	0	The signal voltage of the front heated oxygen sensor is displayed.	
RR O2 SENSOR [V]	0	0	The signal voltage of the rear heated oxygen sensor is displayed.	
FR O2 MNTR [RICH/LEAN]	0	0	Display of front heated oxygen sensor signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mix- ture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
RR O2 MNTR [RICH/LEAN]	0		Display of rear heated oxygen sensor signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.

Monitored item [Unit]	ECM input signals	Main sig- nals	Description	Remarks
VHCL SPEED SE [km/h] or [mph]	0	0	The vehicle speed computed from the vehicle speed sensor signal is displayed.	
BATTERY VOLT [V]	0	0	The power supply voltage of ECM is displayed.	
THRTL POS SEN [V]	0	0	The throttle position sensor signal voltage is displayed.	
TANK F/TMP SE [°C] or [°F]	0		The fuel temperature judged from the fuel tank temperature sensor signal voltage is displayed.	
EGR TEMP SEN [V]	0		The signal voltage of the EGR temperature sensor is displayed.	
INT/A TEMP SE [°C] or [°F]	0		The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL/P SW [ON/OFF]			Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch.	
CLSD THL POS [ON/OFF]	0	0	Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal.	
AIR COND SIG [ON/OFF]	0	0	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioning signal.	
P/N POSI SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the PNP switch signal.	
PW/ST SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure switch signal.	
IGNITION SW [ON/OFF]	0		Indicates [ON/OFF] condition from ignition switch.	
INJ PULSE [msec]		0	Indicates the actual fuel injection pulse width compensated by ECM according to the input signals.	When the engine is stopped, a certain computed value is indicated.
B/FUEL SCHDL [msec]		0	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	
IACV-AAC/V [%]		0	Indicates the IACV-AAC valve control value computed by ECM according to the input signals.	

KA24DE

CONSULT-II (Cont'd)

Manitored items II I 22	ECM	Main sig-	December 15 to 15	Down
Monitored item [Unit]	input sig- nals	nals	Description	Remarks
PURG VOL C/V [step]		0	 Indicates the EVAP canister purge volume control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
A/F ALPHA [%]			Indicates the mean value of the airfuel ratio feedback correction factor per cycle.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
EVAP SYS PRES [V]		0	The signal voltage of EVAP control system pressure sensor is displayed.	
AIR COND RLY [ON/OFF]			Indicates the air conditioner relay control condition determined by ECM according to the input signals.	
FUEL PUMP RLY [ON/OFF]			 Indicates the fuel pump relay control condition determined by ECM accord- ing to the input signals. 	
EGRC SOL/V [ON/OFF] (FLOW/CUT)			 Indicates the control condition of the EGRC-solenoid valve determined by ECM according to the input signals. ON EGR valve is operational OFF EGR valve operation is cut-off 	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
FR O2 HEATER [ON/OFF]			 Indicates [ON/OFF] condition of front heated oxygen sensor heater deter- mined by ECM according to the input signals. 	
RR O2 HEATER [ON/OFF]			 Indicates [ON/OFF] condition of rear heated oxygen sensor heater deter- mined by ECM according to the input signals. 	
VC/V BYPASS/V [ON/OFF]			The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
ABSOL TH-P/S [%]			"Absolute throttle position sensor" indicates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.	
MASS AIRFLOW [gm/s]			Indicates the mass airflow computed by ECM according to the signal volt- age of the mass air flow sensor.	

Monitored item [Unit]	ECM input signals	Main sig- nals	Description	Remarks	GI
MAP/BARO SW/V	110.10		The control condition of the MAP/ BARO switch solenoid valve (determined by ECM according to the input		MA
[MAP/BARO]			signal) is indicated. MAP Intake manifold absolute pressure BARO Ambient barometric pressure		EM
ABSOL PRES/SE [V]			The signal voltage of the absolute pressure sensor is displayed.		LC
VOLTAGE [V]			Voltage measured by the voltage probe.		EC
PULSE [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured. 	FE CL

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

ACTIVE TEST WIDDE							
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)	AT			
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Fuel injectors Front heated oxygen sensor 	TF			
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening percent using CON- SULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorIACV-AAC valve	PD AX			
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature indication using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors 	SU BR			
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Adjust initial ignition timing	ST RS			
POWER BAL- ANCE	 Engine: After warming up, idle the engine. Air conditioner switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils 	BT HA			
FUEL PUMP RELAY	Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound.	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay	SC EL			

MT

KA24DE

CONSULT-II (Cont'd)

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
EGRC SOLENOID VALVE	Ignition switch: ON Turn EGRC-solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound.	EGRC-solenoid valve makes an operating sound.	Harness and connector EGRC-solenoid valve
SELF-LEARNING CONT	In this test, the coefficient of self- "CLEAR" on the screen.	learning control mixture ratio returns t	to the original coefficient by touching
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control valve opening step using CONSULT-II. 	Engine speed changes according to the opening step.	Harness and connector EVAP canister purge volume control valve
TANK F/TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
MAP/BARO SW/V	Ignition switch: ON (Engine stopped) Turn the MAP/BARO switch solenoid valve between "MAP" and "BARO" using CONSULT-II and listen to operating sound.	MAP/BARO switch solenoid valve makes an operating sound.	 Harness and connector MAP/BARO switch solenoid valve

KA24DE

CONSULT-II (Cont'd)

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

=NGEC0034S08

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-58.

G

MA

DTC Work Support Mode

NGEC0034S0802

TEST MODE	TEST ITEM	CONDITION	REFERENCE PAGE		
	EVAP SML LEAK P0440		EC-351	EM	
	EVAP SML LEAK P0440 EVAP SML LEAK P1440 PURG VOL CN/V P1444 PURGE FLOW P1447 VC CUT/V BP/V P1491 PURG CN/V & S/V P1493 FR O2 SENSOR P0130 FR O2 SENSOR P0131 FR O2 SENSOR P0132 FR O2 SENSOR P0133 RR O2 SENSOR P0137 RR O2 SENSOR P0138 RR O2 SENSOR P0139 EGR SYSTEM P0400 EGRC-BPT/VLV P0402		EC-485		
EVAPORATIVE SYSTEM	PURG VOL CN/V P1444		EC-487	· LC	
EVAPORATIVE STSTEM	PURGE FLOW P1447		EC-505	EC	
	VC CUT/V BP/V P1491		EC-530	EC	
	PURG CN/V & S/V P1493		EC-367	FE	
	FR O2 SENSOR P0130		EC-190		
FR O2 SENSOR	FR O2 SENSOR P0131	Refer to corresponding	EC-198	. GL	
FR UZ SENSUR	FR O2 SENSOR P0132	trouble diagnosis for DTC.	EC-205	. 00	
	FR O2 SENSOR P0133		EC-212	MT	
	RR O2 SENSOR P0137		EC-235		
RR O2 SENSOR	RR O2 SENSOR P0138		EC-245	AT	
	RR O2 SENSOR P0139		EC-255	-	
	EGR SYSTEM P0400		EC-326	TF	
EGR SYSTEM	EGRC-BPT/VLV P0402		EC-338	-	
	EGR SYSTEM P1402		EC-476	PD	

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

NGEC0034S10

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

SU

- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.

ا الك

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

T

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then the percentage reached 100%, "REALTIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

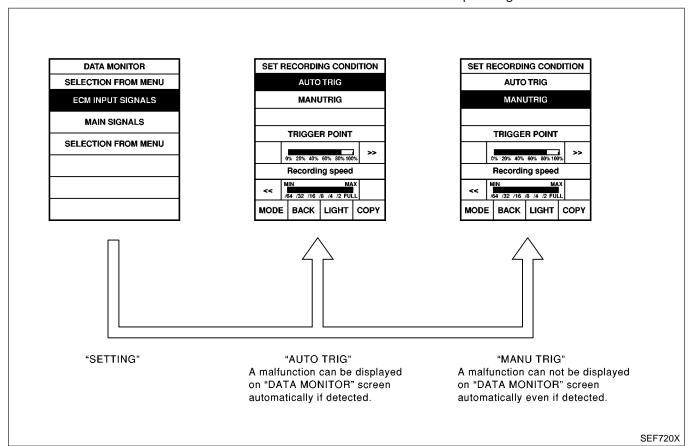
3

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "RECORDING Speed". Refer to CONSULT-II OPERATION MANUAL.

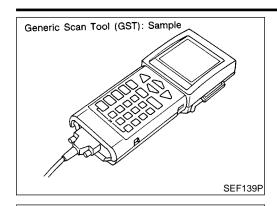
BT

2) "MANU TRIG" (Manual trigger):

SC


HA

 DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.

Use these triggers as follows:

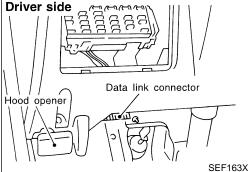
- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent. When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", GI-24.
- 2) "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

Generic Scan Tool (GST)

Generic Scan Tool (GST) DESCRIPTION

NGEC0035

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained on the next page.


ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

MA

GI

LC

GST INSPECTION PROCEDURE

NGEC0035S02

Turn ignition switch OFF.

Connect "GST" to data link connector for GST. (Data link connector for GST is located under LH dash panel near the fuse box cover.)

EC

FE

GL

MT

Turn ignition switch ON.

Enter the program according to instruction on the screen or in the operation manual.

(*: Regarding GST screens in this section, sample screens are shown.)

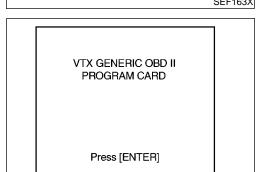
TF

PD

AX

Perform each diagnostic mode according to each service pro-

For further information, see the GST Operation Manual of the tool maker.


ST

BT

HA

SC

EL

OBD II FUNCTIONS

Sample screen*

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO

F5: O2 TEST RESULTS

F6: READINESS TESTS F7: ON BOARD TESTS

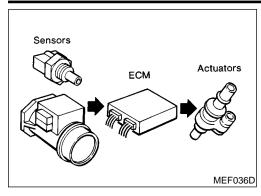
F8: EXPAND DIAG PROT

F9: UNIT CONVERSION

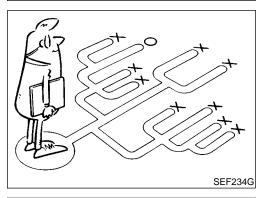
Sample screen*

SEF416S

SEF398S



Generic Scan Tool (GST) (Cont'd)


	FUNCTION				
Dia	gnostic test mode	Function			
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.			
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-81).]			
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.			
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)			
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.			
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.			
MODE 8		_			
MODE 9	(CALIBRATION ID)	This mode is to enable the off-board to request vehicle specific information such as Vehicle Identification Number (VIN) and Calibration ID.			

TROUBLE DIAGNOSIS — INTRODUCTION

KA24DE

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE..... Road conditions HOW Operating conditions,

Weather conditions,

SEF907L

Symptoms

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-93.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Examples:

Vehicle ran out of fuel, which caused the engine to misfire.

 Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for the models with EVAP (SMALL LEAK) diagnosis].

MA

П 🙈

EC

MT

AT

PD

TF

@\ \X

90

מוש

ST

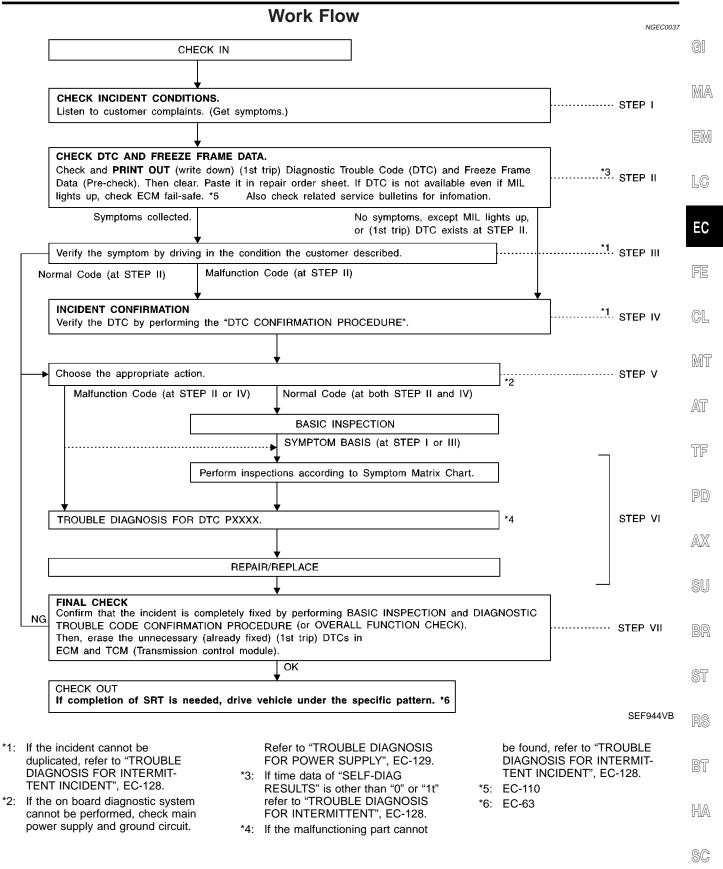
<u></u>

BT

HA

SC

Worksheet Sample


NGEC0036S0101

Customer name MR/MS		Model & Year	VIN	
Engine #		Trans.	Mileage	
Incident Date		Manuf. Date	In Service Date	
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly	y screwed on.	
☐ Startability		☐ Inpossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position d by throttle position	
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle	
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [
☐ Engine stall		☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece ☐ Just after stopping ☐ While loadi	elerating	
Incident occu	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night [☐ In the daytime	
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes		
Weather cond	ditions	☐ Not affected		
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold ☐ Humid °F	
		☐ Cold ☐ During warm-up ☐	After warm-up	
Engine conditions		Engine speed	4,000 6,000 8,000 rpm	
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway	
Driving conditions		☐ While accelerating ☐ While cruis ☐ While decelerating ☐ While turni	•	
		Vehicle speed 0 10 20	30 40 50 60 MPH	
Malfunction indicator lamp		☐ Turned on ☐ Not turned on		

MTBL0017

TROUBLE DIAGNOSIS — INTRODUCTION

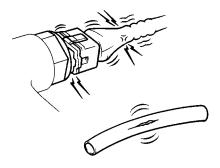
	DESCRIPTION FOR WORK FLOW
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-92.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or Generic Scan Tool) the (1st trip) Diagnostic Trouble Code (DTC) and the (1st trip) freeze frame data, then erase the code and the data. (Refer to EC-67.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-111.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) Diagnostic Trouble Code by driving in (or performing) the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or Generic Scan Tool. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) In case the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-95.) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-111.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-120. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection", <i>GI-26</i> . Repair or replace the malfunction parts.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" and confirm the normal code [Diagnostic trouble code No. P0000 or 0505] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM. (Refer to EC-67.)

Basic Inspection

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

al 🦫


NGEC0038

- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

INSPECTION START

1

- 1. Check service records for any recent repairs that may indicate a related problem, or the current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts

SEF142I

With CONSULT-II	>	GO TO 2.
With GST	>	GO TO 4.
No tools	>	GO TO 5.

Connect "CONSULT-II" to the data link connector and select "ENGINE" from the menu. Refer to EC-78. Driver side Data link connector Hood opener GO TO 3.

EC-95

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

SU

BR

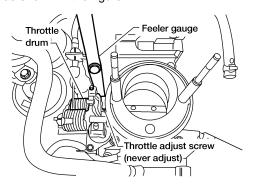
ST

RS

BT

HA

SC


Basic Inspection (Cont'd)

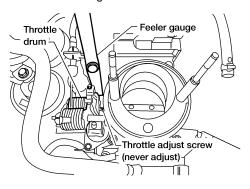
CHECK FI CAM FUNCTION

(P) With CONSULT-II

3

- 1. Adjust accelerator wire. Refer to "Adjust Accelerator Wire", FE-3.
- 2. Warm up engine to 75°C (167°F).
- 3. Stop engine and wait at least 5 seconds, then turn ignition switch ON.
- 4. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 5. When the engine coolant temp is 75 to 85°C (167 to 185°F), confirm the clearance is less than 0.05mm (0.002in), between stopper and throttle drum as shown in the figure.

AEC871A


OK or NG

OK •	•	GO TO 6.
NG ▶	•	Replace throttle body assembly. Refer to "OUTER COMPONENT PARTS", <i>EM-12</i> .

4 CHECK FI CAM FUNCTION

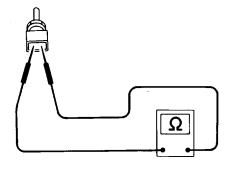
With GST

- 1. Adjust accelerator wire. Refer to "Adjust Accelerator Wire", FE-3.
- 2. Warm up engine to 75°C (167°F).
- 3. Stop engine and wait at least 10 seconds, then turn ignition switch ON.
- 4. Select "MODE 1" with GST.
- 5. When the engine coolant temp is 75 to 85°C (167 to 185°F), confirm the clearance is less than 0.05mm (0.002in), between stopper and throttle drum as shown in the figure.

AEC871A

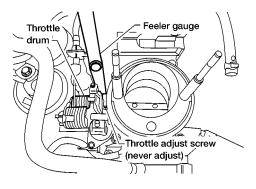
OK or NG

OK (With CONSULT-II)	>	GO TO 6.
OK (Without CONSULT-II)	>	GO TO 14.
NG	>	Replace throttle body assembly. Refer to "OUTER COMPONENT PARTS", EM-12.


Basic Inspection (Cont'd)

CHECK FI CAM FUNCTION

No Tools


5

- 1. Adjust accelerator wire. Refer to "Adjust Accelerator Wire", FE-3.
- 2. Disconnect engine coolant temperature sensor harness connector and check resistance as shown in the figure.

SEF536H

- 3. Warm up engine until the resistance of coolant temperature sensor is 0.26 to 0.39 k Ω .
- 4. Turn ignition switch OFF.
- 5. When engine coolant temperature is 75 to 85°C (167 to 185°F), with the voltage between 1.10 to 1.36V, make sure that the clearance is less than 0.05mm (0.002in), between stopper and throttle adjusting screw as shown in figure.

OK or NG

AEC871A

OK GO TO 14.

NG Replace throttle body assembly. Refer to "OUTER COMPONENT PARTS", *EM-12*.

MA

GI

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

Kið

BT

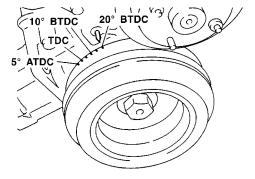
HA

SC

Basic Inspection (Cont'd)

6 CHECK IGNITION TIMING

(P) With CONSULT-II


- 1. Warm up engine to normal operating temperature.
- 2. Select "IGNITION TIMING ADJ" in "WORK SUPPORT" mode.
- 3. Touch "START".

IGNITION TIMING ADJ

IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING START.
AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CAMSHAFT POSITION SENSOR.

4. Check ignition timing at idle using timing light.

PEF546N

SEF320V

Ignition timing:

20°±2° BTDC (in "P" or "N" position)

OK or NG

OK •	GO TO 7.
NG ▶	 Adjust ignition timing by turning distributor. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-42. GO TO 7.

KA24DE

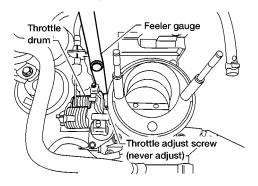
CHECK BASE IDLE SPEED With CONSULT-II Select "IGNITION TIMING ADJ" in "WORK SUPPORT" mode and touch "START". IACV-AACV ADJ					Basic Inspection (Cont
Select "IGNITION TIMING ADJ" in "WORK SUPPORT" mode and touch "START". IACV-AAC/V ADJ	CHECK I	BASE IDLE SPEED			
IACV-AAC/V ADJ ADJ MONITOR CMPS-RPM(POS) 700 rpm CONDITION SETTING IACV-ACC/V FIXED MONITOR COOLANTEMP/S XXX'C CLSDTHL POS XXX N CLSDTHL POS XXX N OK or NG OK or NG OK ADJ MONITOR COOLANTEMP/S XXX'C CLSDTHL POS XXX N PEF120W OK or NG OK or NG I. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.			ODV CUDDODT" mode	and touch "CTADT"	
ADJ MONITOR CMPS-RPM(POS) 700 rpm CONDITION SETTING IACV-ACC/V FIXED MONITOR COOLAN TEMP/S XXX'C CLSD THL POS XXX N PEF120W CND TO RG OK or NG I. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.	. Select "IGNIT	ON TIMING ADJ" IN "V			
CMPS-RPM(POS) 700 rpm CONDITION SETTING IACV-ACC/V FIXED MONITOR COOLANTEMP/S XXX'C CLSDTHL POS XXX N Check idle speed. 750±50 rpm (in "P" or "N" position) OK or NG K GO TO 8. G I. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.					
IACV-ACC/V FIXED MONITOR COOLAN TEMP/S XXX'C CLSD THL POS XXX N CLSD THL POS					
MONITOR COOLAN TEMP/S XXX C CLSD THL POS XXX N PEF120W Coolan TEMP/S XXX N OK or NG OK or NG OK GO TO 8. IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.			CONDITION SE	TTING	
COOLANTEMP/S XXX*C CLSDTHL POS XXX N PEF120W Check idle speed. 750±50 rpm (in "P" or "N" position) OK or NG OK IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.			IACV-ACC/V	FIXED	
COOLANTEMP/S XXX N CLSD THL POS XXX N PEF120W Check idle speed. 750±50 rpm (in "P" or "N" position) OK or NG OK GO TO 8. IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.					
CLSD THL POS XXX N PEF120W Check idle speed. 750±50 rpm (in "P" or "N" position) OK or NG OK IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.					
PEF120W Check idle speed. 750±50 rpm (in "P" or "N" position) OK or NG OK GO TO 8. IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.					
. Check idle speed. 750±50 rpm (in "P" or "N" position) OK or NG DK GO TO 8. IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.			0205 11121 00	AAA	
750±50 rpm (in "P" or "N" position) OK or NG OK ■ GO TO 8. IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.	. Check idle sp	eed.		<u></u>	PEF120V
DK GO TO 8. IG 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.			on)		
 1. Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-42. 			OK or N	G	
Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.	OK .	▶ GO TO	8.		
Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.				rning idle speed adiusti	ng screw. Refer to "Idle Speed/
2. GO TO 8.		Ign	ion Timing/Idle Mixture F		
		2. GC	TO 8.		

HA

SC

KA24DE

Basic Inspection (Cont'd)


8 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION (CHECK THROTTLE POSITION SEN-SOR IDLE POSITION)

(P) With CONSULT-II

NOTE:

Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 3.
- 3. Stop engine.
- 4. Turn ignition switch ON.
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- 6. Select "CLSD THL/P SW" from the menu.
- 7. Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.1 mm (0.004 in) and 0.3 mm (0.012 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure and check the signal.

AEC871A

DATA MONITOR		
MONITORING NO FAIL		
CLSD THL/P SW	OFF	

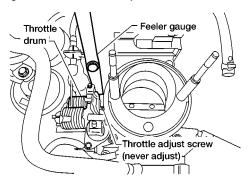
PEF122W

"CLSD THL/P SW" signal should remain "ON" while inserting 0.1 mm (0.004 in) feeler gauge. "CLSD THL/P SW" signal should remain "OFF" while inserting 0.3 mm (0.012 in) feeler gauge.

OK or NG

OK •	GO TO 12.
NG ►	GO TO 9.

Basic Inspection (Cont'd)


ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-1

(P) With CONSULT-II

NOTE:

9

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "CLSD THL/P SW" signal.
 Doing so may cause an incorrect adjustment.
- 1. Warm engine up to normal operating temperature.
- 2. Check FI cam. Refer to procedure 3.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.
- 5. Turn ignition switch ON.
- 6. Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 7. Insert a 0.1 mm (0.004 in) feeler gauge between throttle adjust screw and throttle drum as shown in the figure.

AEC871A

- 8. Open throttle valve and then close.
- 9. Check "CLSD THL/P SW" signal.

DATA MONITOR			
MONITORING NO FAIL			
CLSD THL/P SW	OFF		

PEF122W

"CLSD THL/P SW" signal should remain "OFF" when the throttle valve is closed.

If it is impossible to adjust closed throttle position switch, replace throttle position sensor.

OK or NG

OK >	GO TO 11.
NG •	GO TO 10.

G[

MA

LG

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

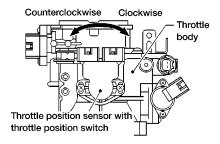
HA

SC

EL

 \mathbb{N}

Basic Inspection (Cont'd)


ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-2 (B) With CONSULT-II Turn throttle position sensor body counterclockwise until "CLSD THL/P SW" signal switches to "OFF". Counterclockwise Clockwise Throttle body Throttle position sensor with throttle position switch AEC872A

11 ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-3

GO TO 11.

(P) With CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON" when tightening sensor body fixing bolts.

AEC872A

- 2. Make sure two or three times that the signal is "ON" when the throttle valve is closed and "OFF" when it is opened.
- 3. Remove 0.1 mm (0.004 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge.
- 4. Make sure two or three times that the signal remains "OFF" when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check "CLSD THL/P SW" signal again.

The signal remains "OFF" while closing throttle valve.

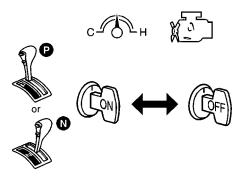
OK or NG

OK ▶	1. Remove 0.3 mm (0.012 in) feeler gauge. 2. GO TO 12.
NG ▶	GO TO 9.

KA24DE

Basic Inspection (Cont'd)

RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY


(P) With CONSULT-II

NOTE:

12

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine.
- 2. Warm up engine to normal operating temperature.
- 3. Select "CLSD THL POS" in "DATA MONITOR" mode manual trigger.
- 4. Stop engine. (Turn ignition switch OFF.)
- 5. Turn ignition switch ON and wait at least 5 seconds.

SEF864V

6. Turn ignition switch OFF and wait at least 5 seconds.

7. Repeat steps 5 and 6 until "CLSD THL POS" in "DATA MONITOR" mode with CONSULT-II changes to "ON".

DATA MONITOR		
MONITORING NO FAIL		
CLSD THL POS	ON	

PEF123W

▶ GO TO 13.

13 CHECK TARGET IDLE SPEED

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "CMPS-RPM (REF)" in "DATA MONITOR" mode.
- 3. Check idle speed.

800±50 rpm (in "P" or "N" position)

OK or NG

OK	INSPECTION END
NG ►	Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-42.

G

MA

LC

EC

FE

CL

MT

AT

5 05

PD

TF

AX

0.1.1

ST

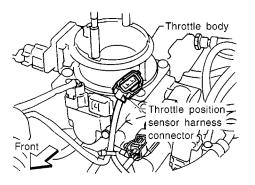
RS

BT

HA

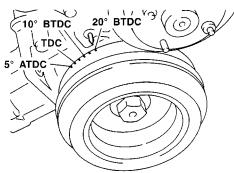
\$C

EL


 $\mathbb{D}\mathbb{X}$

Basic Inspection (Cont'd)

14 CHECK IGNITION TIMING


(X) Without CONSULT-II

- 1. Warm up engine to normal operating temperature.
- 2. Stop engine and disconnect throttle position sensor harness connector.

SEF265S

- 3. Start engine.
- 4. Rev engine (2,000 to 3,000 rpm) two or three times under no-load and then run engine at idle speed.
- 5. Check ignition timing at idle using timing light.

SEF320V

Ignition timing:

20°±2° BTDC (in "P" or "N" position)

OK or NG

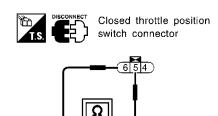
OK •	GO TO 15.
NG ►	 Adjust ignition timing by turning distributor. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-42. GO TO 15.

15	15 CHECK BASE IDLE SPEED		
Without CONSULT-II Make sure that engine speed falls to the following speed. M/T: 750±50 rpm A/T: 750±50 rpm (in "P" or "N" position)			
OK or NG			
OK	>	GO TO 16.	
NG	>	 Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-42. GO TO 16. 	

KA24DE

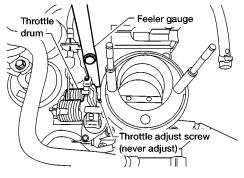
Basic Inspection (Cont'd)

CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION (CHECK THROTTLE POSITION SENSOR IDLE POSITION)


(R) Without CONSULT-II

NOTE:

16


Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 5.
- 3. Stop engine.
- 4. Disconnect closed throttle position switch harness connector .
- 5. Connect the tester probe to closed throttle position switch terminals 5 and 6.
- 6. Check harness continuity under the following conditions.

SEF862V

• Insert the 0.1 mm (0.004 in) and 0.3 mm (0.012 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure.

AEC871A

OK or NG

OK •	GO TO 18.
NG ►	GO TO 17.

G[

MA

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

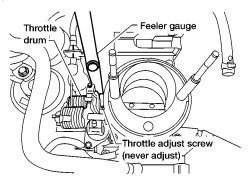
BT

HA

SC

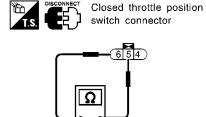
[&]quot;Continuity should exist" while inserting 0.1 mm (0.004 in) feeler gauge.

[&]quot;Continuity should not exist" while inserting 0.3 mm (0.012 in) feeler gauge.


ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-1

(R) Without CONSULT-II

NOTE:


17

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "continuity".
 Doing so may cause an incorrect adjustment.
- 1. Warm engine up to normal operating temperature.
- 2. Check FI cam. Refer to procedure 5.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.
- 5. Disconnect closed throttle position sensor harness connector.
- 6. Insert 0.1 mm (0.004 in) feeler gauge between the throttle adjust screw and throttle drum as shown in the figure.

AEC871A

- 7. Open throttle valve then close.
- 8. Check continuity between closed throttle position switch terminal 5 and 6.

SEF862V

The continuity should not exist while closing the throttle position sensor body.

If it is impossible to adjust closed throttle position switch, replace throttle position sensor.

OK or NG

OK •	GO TO 19.
NG ▶	GO TO 18.

Throttle body

Counterclockwise

Throttle position sensor with throttle position switch

Basic Inspection (Cont'd)

18 ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-2 (R) Without CONSULT-II Turn throttle position sensor body counterclockwise until continuity does not exist.

GI

MA

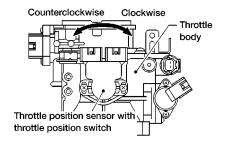
EC

MT

AT

TF

PD


AEC872A

GO TO 19.

19 ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-3

(R) Without CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then tighten sensor body fixing bolts.

AEC872A

- 2. Make sure two or three times that the continuity exists when the throttle valve is closed and continuity does not exist when it is opened.
- 3. Remove 0.1 mm (0.004 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge.
- 4. Make sure two or three times that continuity does not exist when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check the continuity again.

Continuity does not exist while closing the throttle valve.

ОК	>	GO TO 20.
NG	•	GO TO 17.

20 REINSTALLATION

(R) Without CONSULT-II

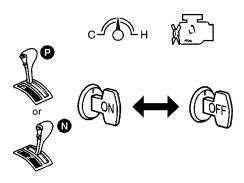
- 1. Remove 0.3 mm (0.012 in) feeler gauge.
- 2. Reconnect throttle position sensor harness connector and closed throttle position switch harness connector.
- 3. Rev engine (2,000 to 3,000 rpm) two or three times under no-load and then run engine at idle speed.

GO TO 21.

HA

KA24DE

Basic Inspection (Cont'd)


21 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(R) Without CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine.
- 2. Warm up engine to normal operating temperature.
- 3. Stop engine. (Turn ignition switch "OFF".)
- 4. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

- 5. Turn ignition switch "OFF" and wait at least 5 seconds.
- 6. Repeat steps 4 and 5, 20 times.

▶ GO TO 22.

22	CHECK TARGET IDLE	SPEED		
Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. 800±50 rpm (in "P" or "N" position)				
OK or NG				
OK	•	GO TO 23.		
NG	>	 Adjust target idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-42. GO TO 23. 		

23	ERASE UNNECESSARY DTC		
After this inspection, unnecessary DTC No. might be displayed. Erase the stored memory in ECM and TCM.			
Refer	efer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", (EC-67).		
	•	INSPECTION END	

DTC Inspection Priority Chart

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

,000	
r-	G[

Priority	Detected items (DTC)	п
1	P0100 Mass air flow sensor (0102) P0110 Intake air temperature sensor (0401)	N
	 P0115, P0125 Engine coolant temperature sensor (0103) (0908) P0120 Throttle position sensor (0403) P0180 Fuel tank temperature sensor (0402) 	
	P0325 Knock sensor (0304) P0340 Camshaft position sensor (0101) P0500 Vehicle speed sensor (0104)	
	 P0605 ECM (0301) P1320 Ignition signal (0201) P1400 EGRC-solenoid valve (1005) P1706 Park/neutral position switch (1003) 	E
2	 P0105 Absolute pressure sensor (0803) P0130 - P0134 Front heated oxygen sensor (0303 - 0412) 	
	 P0135 Front heated oxygen sensor heater (0901) P0137 - P0140 Rear heated oxygen sensor (0510 - 0707) P0141 Rear heated oxygen sensor heater (0902) 	(
	 P0335, P1336 Crankshaft position sensor (OBD) (0802) (0905) P0443, P1444 EVAP canister purge volume control solenoid valve (1008), (0214) P0446, P1446, P1448 EVAP canister vent control valve (0903), (0215), (0309) 	
	 P0450 EVAP control system pressure sensor (0704) P0510 Closed throttle position switch (0203) P1105 MAP/BARO switch solenoid valve (1302) P1401 ECR temporature sensor (0305) 	Ĺ
	 P1401 EGR temperature sensor (0305) P1447 EVAP control system purge flow monitoring (0111) P1490, P1491 Vacuum cut valve bypass valve (0801) (0311) 	ī.
3	 P0172, P0171 Fuel injection system function (0114), (0115) P0300 - P0304 Misfire (0701 - 0605) P0400, P1402 EGR function (0302) (0514) 	
	 P0402 EGRC-BPT valve function (0306) P0420 Three way catalyst function (0702) P0440, P1440, P0445 EVAP control system (SMALL LEAK) (0705) (0213), (GROSS LEAK) (0715) P0505 IACV-AAC valve (0205) 	I
	 P0505 IACV-AAC Valve (0205) P1148 Closed loop control (0307) 	

ST

RS

BT

HA

SC

EL

Fail-safe Chart

The ECM enters fail-safe mode if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MIL illuminates.

DTC	No.								
CON- SULT-II GST	ECM*1	Detected items	Engine operating condition in fail-safe mode						
P0100	0102	Mass air flow sensor circuit	Engine speed will not rise more	than 2,400 rpm due to the fuel cut.					
P0110	0401	Intake air temperature sensor	The ECM functions on the assumption that the intake air temperature 25°C (77°F).						
P0115	0103	Engine coolant tempera- ture sensor circuit	Engine coolant temperature will be determined by ECM based on the after turning ignition switch to ON or START. CONSULT-II displays the engine coolant temperature decided by ECM						
			Condition	Engine coolant temperature decided (CON-SULT-II display)					
			Just as ignition switch is turned to ON or Start	40°C (104°F)					
			More than approx. 4 minutes after ignition ON or Start	80°C (176°F)					
			Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)					
P0120	0403	Throttle position sensor circuit	Throttle position will be determined based on the injected fuel a the engine speed. Therefore, acceleration will be poor.						
			Condition	Driving condition					
			When engine is idling	Normal					
			When accelerating	Poor acceleration					
Unable to access ECM	Unable to access Diagnostic Test Mode II	ECM	When the fail-safe system active condition in the CPU of ECM), warn the driver. However it is not possible to act Engine control with fail-safe When ECM fail-safe is operatin	ition ECM was judged to be malfunctioning. ates (i.e., if the ECM detects a malfunction the MIL on the instrument panel lights to cess ECM and DTC cannot be confirmed. g, fuel injection, ignition timing, fuel pump operation are controlled under certain limita-					
				ECM fail-safe operation					
			Engine speed	Engine speed will not rise more than 3,000 rpm					
			Fuel injection	Simultaneous multiport fuel injection system					
			Ignition timing Ignition timing is fixed at t						
			Fuel pump Fuel pump relay is "ON" when running and "OFF" when eng						
			IACV-AAC valve	Full open					
			Replace ECM, if ECM fail-safe condition is confirmed.						

^{*:} In Diagnostic Test Mode II (Self-diagnostic results)

KA24DE

Symptom Matrix Chart

Symptom Matrix Chart SYSTEM — ENGINE CONTROL SYSTEM

NGEC0041 NGEC0041S01

GEC0041S01 G

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

							SY	MPT	MC							
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-561	
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-41	
	Injector circuit	1	1	2	3	2		2	2			2			EC-553	
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-34	
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-39	
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-42	
	IACV-AAC valve circuit	1	1	2	3	3	2	2	2	2		2		2	EC-416	
	IACV-FICD solenoid valve circuit	2	2	3	3	3	3	3	3	3		3			EC-573	
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-42	
	Ignition circuit	1	1	2	2	2		2	2			2			EC-449	
EGR	EGRC-solenoid valve circuit		2	2	3	3						3			EC-463	
EGR system			1	2	3	3	3	2	2	3		3			EC-326, 338, 476	
Main pow	2	2	3	3	3		3	3		2	3		2	EC-129		
Air condit	ioner circuit	2	2	3	3	3	3	3	3	3		3		2	HA-22	

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

RS

BT

HA

SC

EL

Symptom Matrix Chart (Cont'd)

Symptom waths Chart (Cont d)														T
		SYMPTOM												
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Camshaft position sensor circuit	2	2	3	3	3		3	3			3			EC-318
Mass air flow sensor circuit	1	1	2	2	2		2	2			2			EC-136
Front heated oxygen sensor circuit		1	2	3	2		2	2			2			EC-190, 198
Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-167, 186
Throttle position sensor circuit		1	2		2	2	2	2	2		2			EC-172
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-95
Vehicle speed sensor circuit		2	3		3						3			EC-412
Knock sensor circuit			2								3			EC-308
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-429, 110
Start signal circuit	2													EC-558
PNP switch circuit			3		3		3	3			3			EC-541
Power steering oil pressure switch circuit		2					3	3						EC-569

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

KA24DE

Symptom Matrix Chart (Cont'd)

		S	YST	EM	—	ENG	SINE	ME	ECH	AN	ICA	L &	ОТ	HEF	NGEC0041S03	
							SY	MPT	ОМ							GI
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	MA EM LC FE
Warranty s	symptom code	AA	АВ	AC	AD	AE	AF	AG	= AH	AJ	AK		АМ	НА	_	GL
Fuel	Fuel tank	1		-				-		- 10					FE-4	
	Fuel piping	5		5	5	5	-	5	5			5				MT
	Vapor lock		5												-	
	Valve deposit															AT
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_	TF
Air	Air duct														-	
	Air cleaner															PD
	Air leakage from air duct (Mass air flow sensor — throttle body)		5	5		5		5	5			5				AX
	Throttle body, Throttle wire	5			5		5			5					FE-3	
	Air leakage from intake manifold/ Collector/Gasket														_	SU
Cranking	Battery	1	1	1		1		1	1					1		BR
	Alternator circuit	'												<u>'</u>	SC-2	
	Starter circuit	3										1				ST
	Flywheel/Drive plate	6													EM-52	De
	PNP switch	4														RS

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

HA

BT

SC

EL

Symptom Matrix Chart (Cont'd)

							SY	MPT	MC	ı						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
-	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Engine	Cylinder head	5	5	5	5	5		5	5			5				
	Cylinder head gasket										4		3			
	Cylinder block Piston	-											4			
	Piston ring	+											4		EM-29, EM-44	
	Connecting rod	6	6	6	6	6		6	6			6				
	Bearing	1														
	Crankshaft	-														
Valve	Timing chain															
mecha- nism	Camshaft	-														
mom	Intake valve	5	5	5	5	5		5	5			5			EM-18, EM-29	
	Exhaust valve	1											3			
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			FE-8	
	Three way catalyst															
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5			MA-21, LC-6	
	Oil level (Low)/Filthy oil															
Cooling	Radiator/Hose/Radiator filler cap															
	Thermostat									5					LC-11	
	Water pump	5	5	5	5	5		5	5		4	5			20-11	
	Water gallery							5			4					
	Coolant level (low)/Contaminated coolant														MA-18	

^{1 - 6:} The numbers refer to the order of inspection.

KA24DE

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

NGEC0042

MA

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

(i.e., Adjust ignition timing with a timing light before monitoring IGN TIMING. Specification data might be displayed even when ignition timing is not adjusted to specification. This IGN TIMING monitors the data calculated by the ECM according to the input signals from the camshaft position sensor and other ignition timing related sensors.)

• If the real-time diagnosis results are NG, and the on board diagnostic system results are OK, when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CONI	SPECIFICATION				
CMPS·RPM (REF)	Tachometer: Connect Run engine and compare tachometer value.	ter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.			
MAS AIR/FL SE	Engine: After warming up Air conditioner switch: "OFF"	Idle	0.9 - 1.8V			
WIAG AIIVI L GL	Shift lever: "N"No-load	2,500 rpm	1.9 - 2.3V			
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)			
FR O2 SENSOR			0 - 0.3V ←→ Approx. 0.6 - 1.0V			
FR O2 MNTR	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.			
RR O2 SENSOR	Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V			
RR O2 MNTR		rpm quickly	LEAN ←→ RICH			
VHCL SPEED SE	Turn drive wheels and compare spin SULT-II value	drive wheels and compare speedometer indication with the CON- F-II value				
BATTERY VOLT	Ignition switch: ON (Engine stopped)	on switch: ON (Engine stopped)				
	Engine: After warming up	0.2 - 0.8V				
THRTL POS SEN	Ignition switch: ON (Engine stopped)	Throttle valve fully opened	3.5 - 4.5V			
EGR TEMP SEN	Engine: After warming up		Less than 4.5V			
START SIGNAL	• Ignition switch: ON → START → O	N	$OFF \to ON \to OFF$			
	Engine: After warming up	Throttle valve: Idle position	ON			
CLSD THL/P SW	Ignition switch: ON (Engine stopped)	Throttle valve: Slightly open	OFF			
0.05 7 500	Engine: After warming up	Throttle valve: Idle position	ON			
CLSD THL POS	Ignition switch: ON (Engine stopped)	Throttle valve: Slightly open	OFF			
	F	A/C switch: OFF	OFF			
AIR COND SIG	Engine: After warming up, idle the engine	A/C switch: ON (Compressor operates.)	ON			
	- Ignition quitable CAI	Shift lever: "P" or "N"	ON			
P/N POSI SW	Ignition switch: ON	Except above	OFF			
PW/ST SIGNAL	Engine: After warming up, idle the	Steering wheel in neutral position (forward direction)	OFF			
-	engine	The steering wheel is turned	ON			

KA24DE

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION				
IGNITION SW	Ignition switch: ON → OFF → ON	$ON \to OFF \to ON$					
INJ PULSE	Engine: After warming up Air conditioner switch: OFF	Idle	2.5 - 3.3 msec				
	Shift lever: "N" No-load	2,000 rpm	2.4 - 3.2 msec				
B/FUEL SCHDL	Engine: After warming upAir conditioner switch: OFF	Idle	0.8 - 1.2 msec				
	Shift lever: "N" No-load	2,000 rpm	0.8 - 1.2 msec				
GN TIMING	Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 20° BTDC				
	Shift lever: "N" No-load	2,000 rpm	More than 25° BTDC				
ACV-AAC/V	Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 30%				
	Shift lever: "N" No-load	2,000 rpm	_				
	Engine: After warming up	Idle	0%				
PURG VOL C/V	Air conditioner switch: OFF No-load	2,000 rpm (More than 200 seconds after starting engine)	_				
A/F ALPHA	Engine: After warming up	50 - 159%					
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V					
AIR COND RLY	Air conditioner switch: OFF → ON	OFF → ON					
FUEL PUMP RLY	Ignition switch is turned to ON (Ope Engine running and cranking	erates for 5 seconds)	ON				
	Except as shown above		OFF				
	Engine: After warming up	Idle	ON (Cut)				
EGRC SOL/V	Air conditioner switch: OFFShift lever: "N"No-load	Engine speed: Revving engine from idle to 3,000 rpm quickly.	OFF (Flow)				
/ENT CONT/V	Ignition switch: ON		OFF				
	Engine speed: Below 3,000 rpm (A For 6 seconds after engine speed 6	II models) exceeds 3,000 rpm (4WD models only)	ON				
FR O2 HEATER	Engine speed: Above 3,000 rpm (2' More than 6 seconds after engine sels)	WD models) speed exceeds 3,000 rpm (4WD mod-	OFF				
RR O2 HEATER	Engine speed: Idle after driving 2 m	• Engine speed: Idle after driving 2 minutes at 70 km/h (43 MPH) or more					
NI OZ HEATEK	Ignition switch: ON (Engine stopped)	OFF					
/C/V BYPASS/V	Ignition switch: ON	OFF					
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF	Idle	9.5 - 34.0%				
	Shift lever: "N" No-load	2,500 rpm	13.9 - 24.9%				
	Engine: After warming up, engine	Throttle valve: fully closed	0.0%				
ABSOL TH-P/S	stopped						

KA24DE

GI

MA

EC

FE

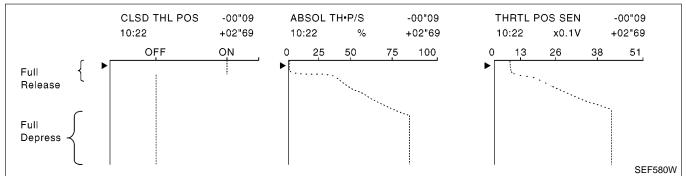
GL

MT

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	SPECIFICATION				
MASS AIRFLOW	Engine: After warming upAir conditioner switch: OFF	Idle	0.9 - 5.8 g·m/s			
WASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	7.5 - 13.2 g·m/s			
	Engine: For 5 seconds after starting	g engine	BARO			
MAP/BARO SW/V	Ignition switch: More than 5 secondEngine: More than 5 seconds after	5 5	MAP			
ABSOL PRES/SE	Ignition switch: ONEngine: For 5 seconds after stating	Approx. 4.4V				
Engine: More than 5 seconds after starting engine (After warming up) Approx. 1.2V						

Major Sensor Reference Graph in Data Monitor Mode


NGEC0043

The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "MANU TRIG" in "DATA MONITOR" with CONSULT-II. "Trigger Point" is set to 100%, "Recording Speed" is set to MAX..)

THRTL POS SEN, ABSOL TH-P/S, CLSD THL POS

Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL POS" when depressing the accelerator pedal with the ignition switch ON.

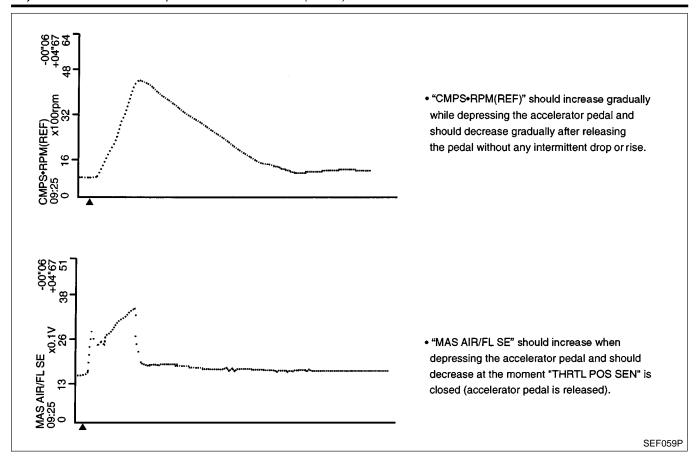
The signal of "THRTL POS SEN" and "ABSOL TH-P/S" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".

CMPS-RPM (REF), MAS AIR/FL SE, THRTL POS SEN, RR O2 SEN, FR O2 SEN, INJ PULSE

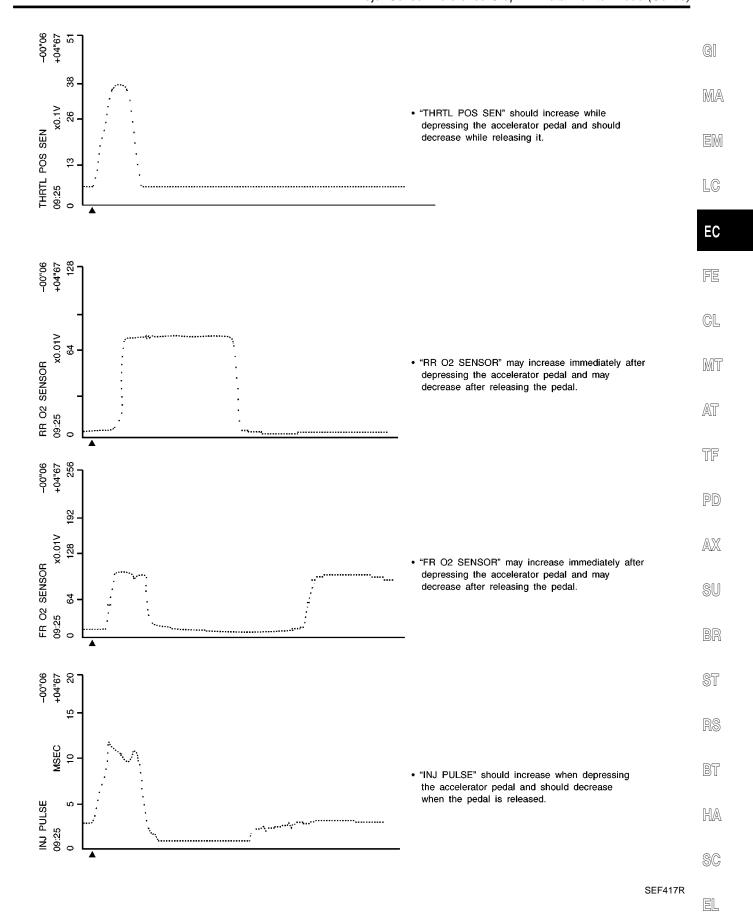
Below is the data for "CMPS-RPM (REF)", "MAS AIR/FL SE", "THRTL POS SEN", "RR O2 SEN", "FR O2 SEN" and "INJ PULSE" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.

Each value is for reference, the exact value may vary.

. . . .

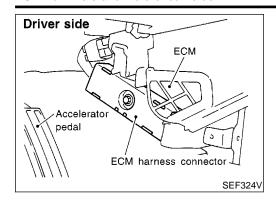

HA

SC


EL

ST

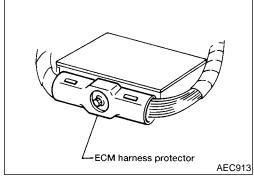
Major Sensor Reference Graph in Data Monitor Mode (Cont'd)



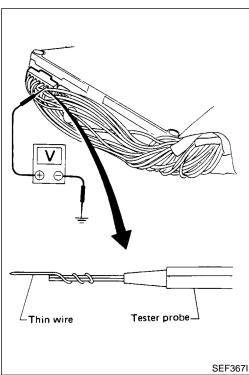
Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

KA24DE

ECM Terminals and Reference Value



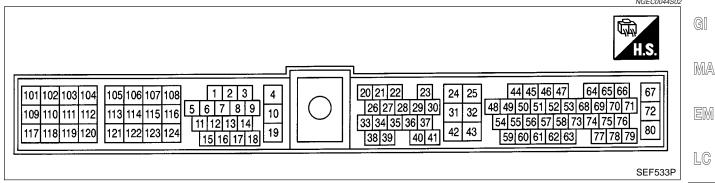
ECM Terminals and Reference Value PREPARATION


NGEC0044

NGEC0044S01

- ECM is located behind the instrument lower cover. For this inspection:
- Remove instrument lower cover.

2. Remove ECM harness protector.



- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
- Open harness securing clip to make testing easier.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

KA24DE

ECM Terminals and Reference Value (Cont'd)

ECM HARNESS CONNECTOR TERMINAL LAYOUT

ECM INSPECTION TABLE

NGEC0044S0

EC

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

			each terminal and 32 (ECM ground).		FE
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	CL
	DUAM		[Engine is running] • Warm-up condition • Idle speed	0 - 0.5V (V) 4 2 0 20ms	MT AT TF
1	PU/W	Ignition signal	[Engine is running] ● Engine speed is 2,000 rpm	0.2 - 1.0V (V) 4 2 0 20ms	PD AX SU
			[Engine is running] • Warm-up condition • Idle speed	12 - 14V (V) 40 20 0	BR ST RS
2	В	Ignition check	[Engine is running] • Engine speed is 2,000 rpm	12 - 13V (V) 40 20 0 20ms	BT HA SC

EL

TED		<u> </u>		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	D/I	Tachamatar	[Engine is running] • Warm-up condition • Idle speed	0 - 1V (V) 10 5 0 20ms
3	3 P/L Tachometer		[Engine is running] ◆ Engine speed is 2,000 rpm	0.5 - 2V (V) 10 5 0
4	LG/R	ECM relay (Self shut-	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1V
		off)	[Ignition switch OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
5	R/Y	EVAP canister purge volume control sole-	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
		noid valve	 [Engine is running] Engine speed is 2,000 rpm (More than 200 seconds after starting engine) 	12 - 13V (V) 20 10 0 50 ms
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
11	W/R	Fuel pump relay	[Ignition switch ON] • For 5 seconds after turning ignition switch ON. [Engine is running]	0 - 1V
		. so, partip rolay	[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

KA24DE

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
12	Р	Air conditioner relay	[Engine is running] • Both A/C switch and blower switch are ON* *: Any mode except "OFF", ambient air temperature above 10°C (50°F).	 Both A/C switch and blower switch are ON* *: Any mode except "OFF", ambient air tempera- 	Approximately 0V
			[Engine is running] • A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)	
		Malfordina in France	[Ignition switch ON]	0 - 1V	
18	R/W	Malfunction indicator lamp	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground	
			[Ignition switch ON]	Approximately 0V	
20	L/OR	Start signal	[Ignition switch START]	BATTERY VOLTAGE (11 - 14V)	
21	G/R	Air conditioner dual-	[Engine is running] ● Both air conditioner switch and blower switch are ON (Compressor operates)	Approximately 0V	
		pressure switch [Engine is running] • Air conditioner switch is OFF	BATTERY VOLTAGE (11 - 14V)		
22		Park/neutral position (PNP) switch	[Ignition switch ON] • Gear position is "N" or "P"	Approximately 0V	
22	L/B		[Ignition switch ON] • Except the above gear position	Approximately 5V	
23	23 L	Throttle position sensor	[Ignition switch ON] • Warm-up condition • Accelerator pedal fully released	0.2 - 0.8V	
			[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.5V	
			[Ignition switch OFF]	OV	
24	W/G	Ignition switch	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	
25	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground	
28	BR/W	Throttle position switch (Closed position) R/W Throttle position switch (Closed position) [Ignition switch ON] • Warm-up condition • Accelerator pedal released [Ignition switch ON] • Accelerator pedal depressed	Warm-up condition	BATTERY VOLTAGE (11 - 14V)	
				Approximately 0V	
29	G/B	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 2nd gear position 40 km/h (25 MPH) 	1 - 4V (V) 10 5 0 50 ms	

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
32	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground (Probe this terminal with (–) tester probe when measuring)	
39	GY/R	Power steering oil	[Engine is running] • Steering wheel is fully turned	Approximately 0V	
39	GI/K	pressure switch	[Engine is running]Steering wheel is not turned	Approximately 5V	
42	BR	Sensors' power supply	[Ignition switch ON]	Approximately 5V	
43	B/W	Sensors' ground	[Engine is running] ■ Idle speed	Approximately 0V	
44	PU	Camshaft position sensor (Reference signal)	[Engine is running] • Warm-up condition • Idle speed	0.2 - 0.5V (V) 10 5 0 10 ms	
48	PU		[Engine is running] ● Engine speed is 2,000 rpm	0 - 0.5V (V) 10 5 0	
45	B/R	Absolute pressure	[Ignition switch ON] ● Engine is not running [Engine is running] ● For 5 seconds after starting engine	Approximately 4.4V	
		sensor	 [Engine is running] Warm-up condition More than 5 seconds after starting engine 	Approximately 1.2V	
				Approximately 0V	
47		Crankshaft position	[Engine is running] • Warm-up condition • Idle speed	5	
	L	sensor (OBD)		Approximately 0V	
			[Engine is running] ● Engine speed is 2,000 rpm	10 5 0 0.2 ms	

KA24DE

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Camshaft position	[Engine is running] • Warm-up condition • Idle speed	5
49	LG	sensor (Position signal)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5 - 2.6V (V) 10 5 0.2ms
50	В	Front heated oxygen sensor	 [Engine is running] After warning up to normal operating temperature and engine speed is 2,000 rpm. 	0 - Approximately 1.0V (V) 2 1 0
54	4 R N	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed [Engine is running] • Warm-up condition • Engine speed is 2,500 rpm	0.9 - 1.8V
				1.8 - 2.3V
55	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
56	OR	Rear heated oxygen sensor	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly 	0 - Approximately 1.0V
59	LG/R	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature
60	Y/B	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel temperature
61	PU/R	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V

KA24DE

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	G/OR	EGR temperature sen-	[Engine is running] • Warm-up condition • Idle speed	Less than 4.5V
03	G/OK	sor	[Engine is running] ■ Warm-up condition ■ EGR system is operating	0 - 1.5V
64	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.4V
67	B/P			BATTERY VOLTAGE
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)
69	LG/R	Data link connector for GST	[Engine is running] • Idle speed (GST is disconnected)	0.2 - 14V
75	Y/R	Data link connector for	[Engine is running] • Idle speed (CONSULT-II is connected and turned)	3 - 10V
76	GY/L	CONSULT-II	ON)	0 - 4V
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)
404	OD#	LACVAAC value	[Engine is running]Warm-up conditionIdle speed	10.5 - 11.5V (V) 10 5 0 2 ms
101	OR/L	IACV-AAC valve	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	1 - 13V (V) 10 5 0 2 ms
102	W/B	Injector No. 1	[Engine is running] ■ Warm-up condition	BATTERY VOLTAGE (11 - 14V)
104	W/R	Injector No. 3	Idle speed	20 0 20ms

KA24DE

					=
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	G
109	W/L	Injector No. 2	[Engine is running] • Warm-up condition	BATTERY VOLTAGE (11 - 14V) (V) 40	- M
111	W/PU	Injector No. 4	Engine speed is 2,000 rpm	20 0 20ms	L(
103	G/W	EGRC-solenoid valve	[Engine is running] • Warm-up condition • Idle speed	0 - 1V	Ε
103	G/VV	EGRC-solellold valve	 [Engine is running] Warm-up condition Revving engine from idle to 3,000 rpm quickly 	BATTERY VOLTAGE (11 - 14V)	
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	- C
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground	_ M
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	_
			[Ignition switch ON] • For 5 seconds after turning ignition switch ON [Engine is running] • Idle speed • For 5 seconds after starting engine	0 - 1V	- T P
118	LG/B	MAP/BARO switch solenoid valve	[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON [Engine is running] ■ Idle speed ■ More than 5 seconds after starting engine	BATTERY VOLTAGE (11 - 14V)	- A
			[Engine is running] • Engine speed is below 3,000 rpm. (All models)	Approximately 0.4V	_
119	BR/Y	Front heated oxygen sensor heater	 [Engine is running] Engine speed is above 3,000 rpm. (2WD models) More than 6 seconds after engine speed exceeds 3,000 rpm (4WD models) 	BATTERY VOLTAGE (11 - 14V)	_
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	- [
122	R/B	Rear heated oxygen sensor heater	[Engine is running]Idle speed after driving 2 minutes at 70 km/h (43 MPH) or more	Approximately 0.4V	_
		Sensor neater	[Ignition switch ON] • Engine is not running	BATTERY VOLTAGE (11 - 14V)	- -
124	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground	- %

Description

IGEC0045

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

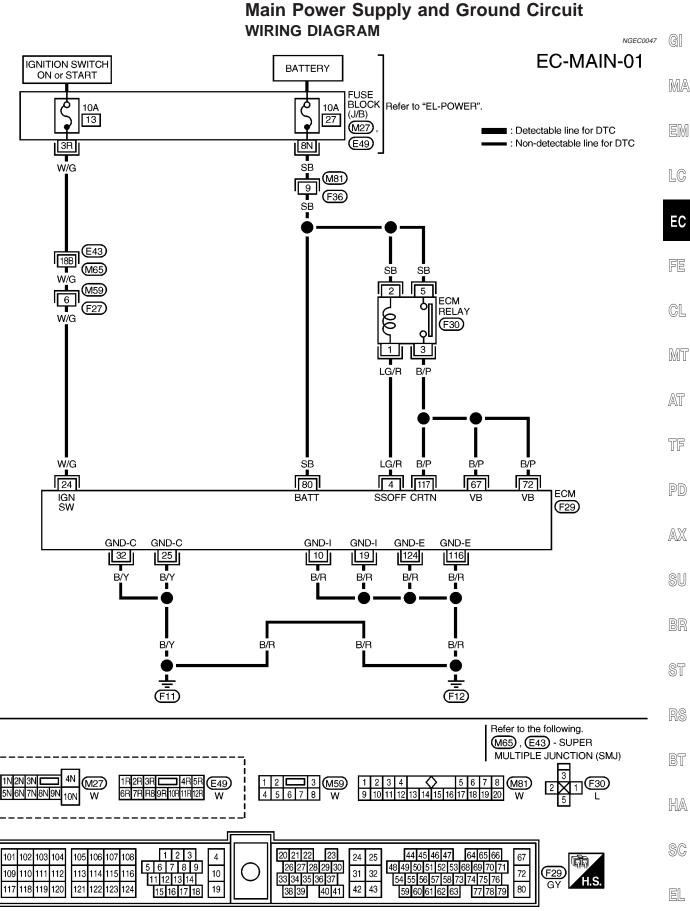
COMMON I/I REPORT SITUATIONS

NGEC0045S01

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.
VI	The TROUBLE DIAGNOSIS for PXXXX does not indicate the problem area.

Diagnostic Procedure

NGEC0046


1	INSPECTION START	
Erase	Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION-RELATED INFORMATION", EC-67.	
	▶ GO TO 2.	

2	CHECK GROUND TERMINALS		
Check	Check ground terminals for corroding or loose connection. Refer to "Circuit Inspection", "GROUND INSPECTION", GI-29.		
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	•	Repair or replace.	

3	SEARCH FOR ELECTRICAL INCIDENT		
Perfor	Perform "Incident Simulation Tests", <i>GI-24</i> .		
	OK or NG		
OK	OK ▶ GO TO 4.		
NG	>	Repair or replace.	

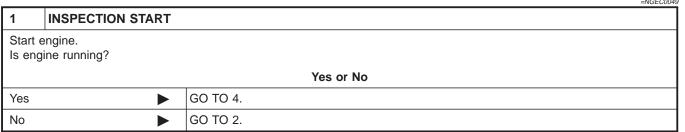
4	CHECK CONNECTOR TERMINALS		
Refer	Refer to "How to Check Enlarged Contact Spring of Terminal", <i>GI-21</i> .		
	OK or NG		
OK	OK INSPECTION END		
NG	NG Repair or replace connector.		

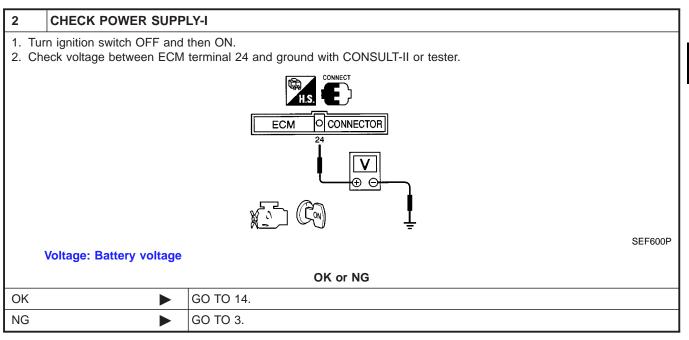
Main Power Supply and Ground Circuit

KA24DE

Main Power Supply and Ground Circuit (Cont'd)

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values and are measured between each terminal and 32 (ECM ground).


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	G/R ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1V
			[Ignition switch OFF] ● A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
		G Ignition switch	[Ignition switch OFF]	OV
24	W/G		[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
25	В/Ү	ECM ground	[Engine is running] • Idle speed	Engine ground
32	B/Y	ECM ground	[Engine is running] ● Idle speed	Engine ground (Probe this terminal with (–) tester probe when measuring)
67	B/P	Davis and the FOM	Floreitien envited ONI	BATTERY VOLTAGE
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
124	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground

Main Power Supply and Ground Circuit (Cont'd)

DIAGNOSTIC PROCEDURE

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M65, E43
- Harness connectors M59, F27
- 10A fuse
- Harness for open or short between ECM and ignition switch
 - Repair harness or connectors.

GI

MA

EC

FE

GL

MT

AT

TF

PD

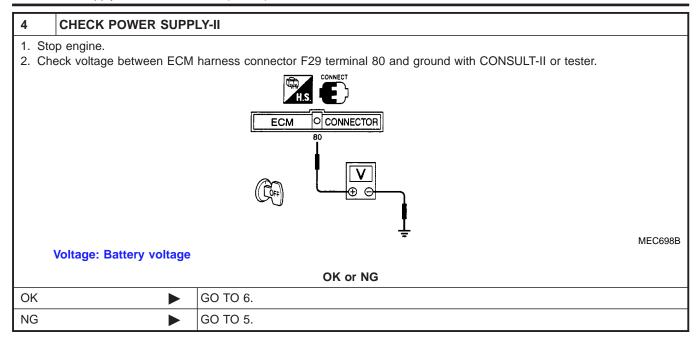
MΥ

SU

ST

6M

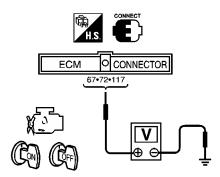
BT


HA

SC

 \mathbb{N}

KA24DE


Main Power Supply and Ground Circuit (Cont'd)

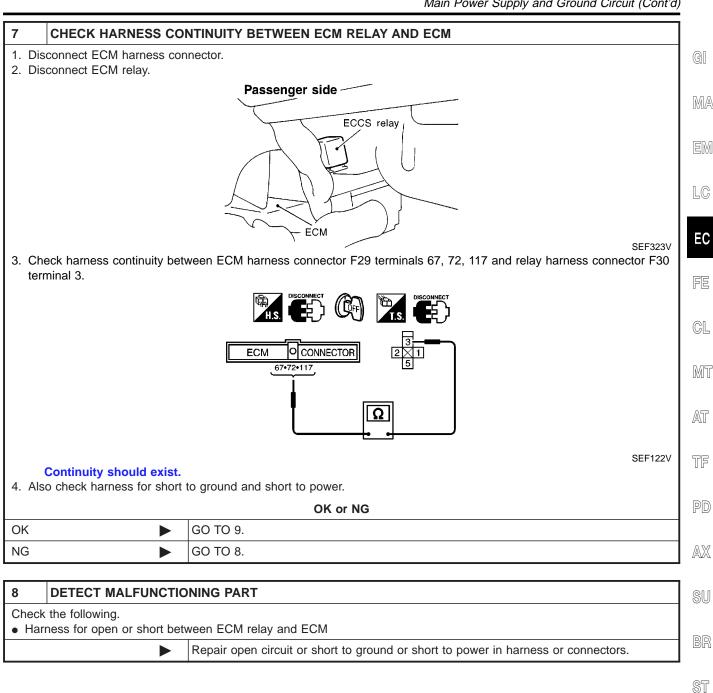
5	DETECT MALFUNCTIONING PART		
	Check the following. • Harness connectors F27, M59		
• 10A	 10A fuse Harness for open or short between ECM and fuse 		
	Repair harness or connectors.		

6 CHECK POWER SUPPLY-III

- 1. Turn ignition switch ON and then OFF.
- 2. Check voltage between ECM harness connector F29 terminals 67, 72, 117 and ground with CONSULT-II or tester.

SEF121V

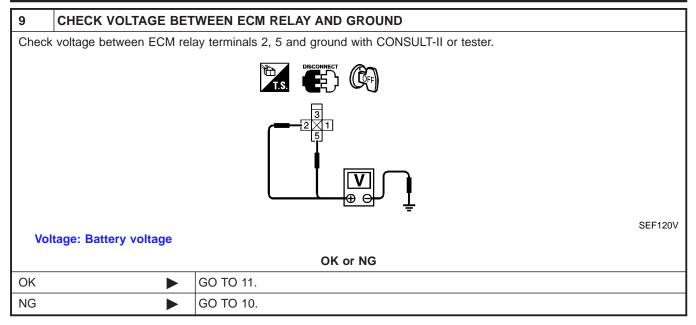
Voltage:


After turning ignition switch OFF, battery voltage will exist for a few seconds, then drop to approximately 0V.

OK	or	NG
----	----	----

OK		GO TO 14.
NG (Battery voltage does not exist.)		GO TO 7.
NG (Battery voltage exists for more than a few seconds.)	•	GO TO 13.

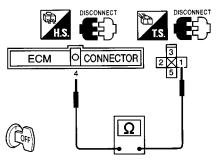
Main Power Supply and Ground Circuit (Cont'd)


BT

HA

SC

KA24DE


Main Power Supply and Ground Circuit (Cont'd)

10	DETECT MALFUNCTIONING PART		
• Har	Check the following. • Harness connectors F27, M59 • 10A fuse		
Har	Harness for open or short between ECM relay and fuse		
	•	Repair harness or connectors.	

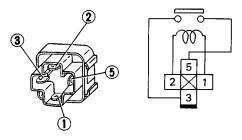
11 CHECK OUTPUT SIGNAL CIRCUIT

1. Check harness continuity between ECM harness connector F29 terminal 4 and relay harness connector F30 terminal 1.

SEF605P

Continuity should exist.

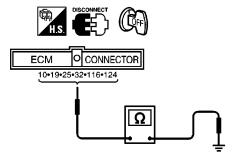
2. Also check harness for short to ground and short to power.


OK or NG

OK •	GO TO 12.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

Main Power Supply and Ground Circuit (Cont'd)

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between ECM relay terminals 3 and 5.


12V (1 - 2) applied: Continuity exists. No voltage applied: No continuity

OK or NG

OK •	GO TO 13.
NG ►	Replace ECM relay.

13 **CHECK GROUND CIRCUIT**

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM harness connector F29 terminals 10, 19, 25, 32, 116, 124 and engine ground.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 14.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

14	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	INSPECTION END		

GI

MA

LC

EC

FE

GL

SEF511P

MT

AT

TF

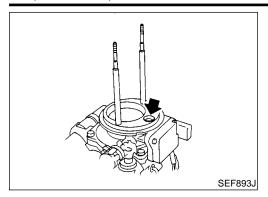
PD

AX

SU

SEF119V

ST


BT

HA

SC

EL

Component Description

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0051

MONITOR ITEM	CONDITION		SPECIFICATION
MAS AIR/FL SE	 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	0.9 - 1.8V
WAS AIIVI L SL		2,500 rpm	1.9 - 2.3V
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	9.5 - 34.0%
		2,500 rpm	13.9 - 24.9%
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	0.9 - 5.8 g·m/s
		2,500 rpm	7.5 - 13.2 g·m/s

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

Opcomod	Specification data are reference values and are measured between each terminal and 16 (Lein ground).			
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
<i>54</i>	Б	Mana sir flow some	[Engine is running] • Warm-up condition • Idle speed	0.9 - 1.8V
54			[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm	1.9 - 2.3V
55	G	Mass air flow sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0053

DTC No.		Malfunction is detected when	Check Items (Possible Cause)	G[
P0100 0102	A)	An excessively high voltage from the sensor is sent to ECM when engine is not running.	(The sensor circuit is open or shorted.)	 M.
	C)	A high voltage from the sensor is sent to ECM under light load driving condition.	Mass air flow sensor	
	В)	An excessively low voltage from the sensor is sent to ECM* when engine is running.	Harness or connectors (The sensor circuit is open or shorted.)	E)
	D)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Intake air leaks Mass air flow sensor	L

*: When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

EC

GL

MT

PD

AX

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MAL-FUNCTION C". If there is no problem on "PROCEDURE FOR MALFUNCTION C", perform "PROCEDURE FOR MALFUNC-TION D".

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

ST

HA

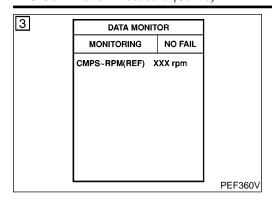
PROCEDURE FOR MALFUNCTION A

NGEC0054S01

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-141.

With GST

Follow the procedure "With CONSULT-II".


3 DATA MONITOR MONITORING NO FAIL CMPS~RPM(REF) XXX rpm PEF360V

EL

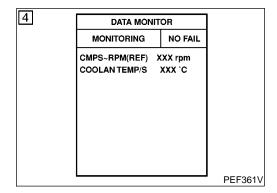
KA24DE

NGEC0054S02

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait 5 seconds at most.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-141.

With GST

Follow the procedure "With CONSULT-II".

NOTE:

If 1st trip DTC is confirmed after more than 5 seconds, there may be malfunction C.

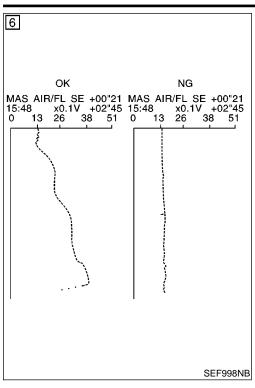
PROCEDURE FOR MALFUNCTION C

NGEC0054S03

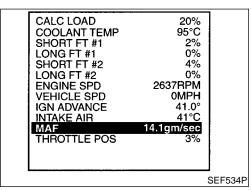
NOTE:

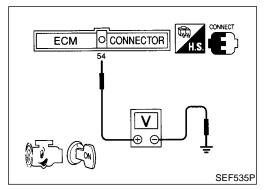
If engine will not start or stops soon wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.

(P) With CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- 4) Run engine for at least 10 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-141.

With GST


Follow the procedure "With CONSULT-II".


NGEC0054S04

DTC Confirmation Procedure (Cont'd)

7	DATA MONIT	DATA MONITOR		
	MONITORING	NO FAIL		
	CMPS~RPM(REF) : VHCL SPEED SE >> THRTL POS SEN	XX km/h		
			PEF723W	

PROCEDURE FOR MALFUNCTION D

(P) With CONSULT-II

Turn ignition switch ON.

Start engine and warm it up to normal operating temperature. If engine cannot be started, go to "Diagnostic Procedure", EC-141.

Select "DATA MONITOR" mode with CONSULT-II.

- Check the voltage of MAS AIR/FL SE with "DATA MONITOR".
- Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to "Diagnostic Procedure", EC-141. If OK, go to following step.

Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (REF)	More than 2,000 rpm
THRTL POS SEN	More than 3V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-141.

Overall Function Check

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION D

With GST

1) Turn ignition switch ON.

- Start engine and warm it up to normal operating temperature.
- 3) Select "MODE 1" with GST.
- 4) Check the mass air flow sensor signal with "MODE 1".
- Check for linear mass air flow rise in response to increases to about 4,000 rpm in engine speed.
- If NG, go to "Diagnostic Procedure", EC-141. 6)

No Tools

- Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.
- Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- If NG, go to "Diagnostic Procedure", EC-141.

GI

LC

EC

FE

GL

MT

TF

PD

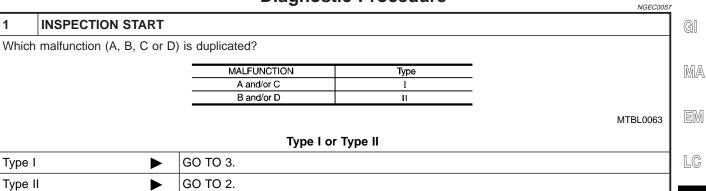
AX

NGEC0055S01

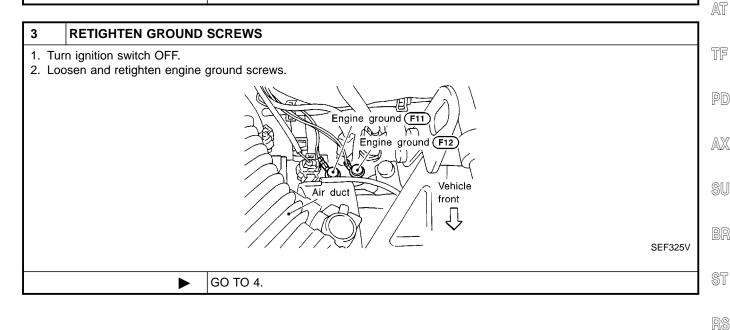
HA

SC

AEC981A


EC

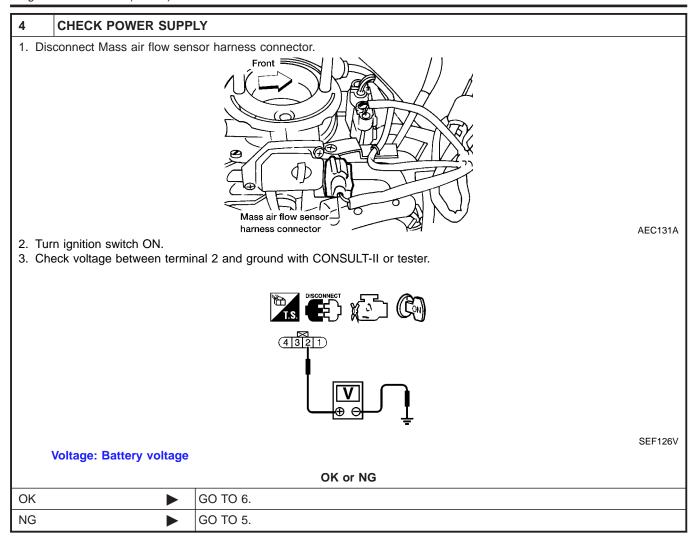
FE


GL

MT

Diagnostic Procedure

2	CHECK INTAKE SYST	
Check the followings for connection. • Air duct • Air cleaner • Vacuum hoses • Intake air passage between air duct to collector		
OK or NG		
OK	•	GO TO 3.
NG	•	Reconnect the parts.


BT

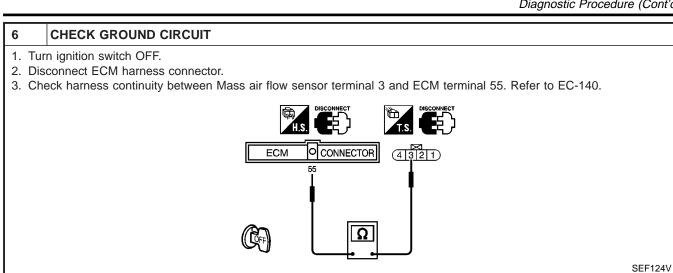
HA

SC

EL

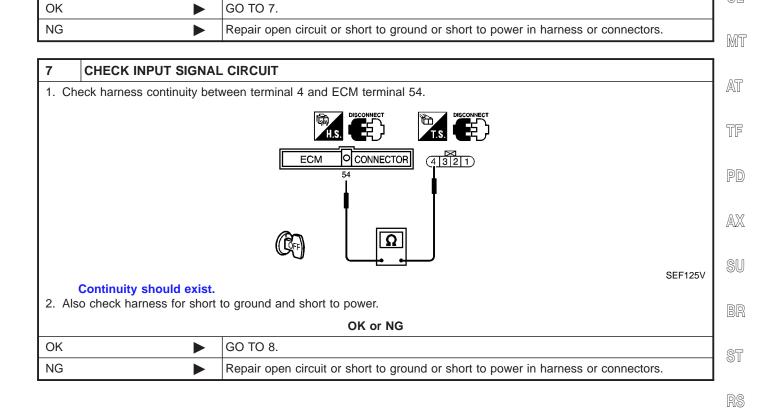
Diagnostic Procedure (Cont'd)

5	DETECT MALFUNCTIONING PART	
Check the following. Harness for open or short between ECM relay and mass air flow sensor Harness for open or short between Mass air flow sensor and ECM		
	•	Repair harness or connectors.


GI

MA

EC

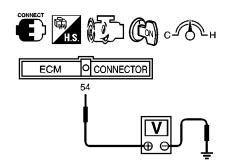

GL

Diagnostic Procedure (Cont'd)

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

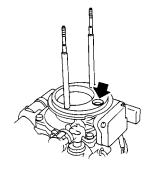

BT

HA

SC

8 **CHECK MASS AIR FLOW SENSOR**

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF326V

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, disconnect Mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove Mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

OK •	GO TO 9.
NG ►	Replace mass air flow sensor.

CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-2.
- 3. Check the following.
- Continuity between joint connector-2 terminal 1 and ground
- Joint connector-2

(Refer to "HARNESS LAYOUT", EL-272.)

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK ►	GO TO 10.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

KA24DE

Diagnostic Procedure (Cont'd)

10	10 CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

G[

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

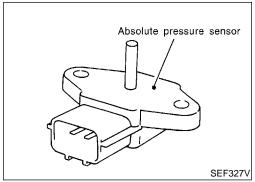
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

SEF327V 4.5 A.5 A.5 Ambient barometic pressure Vacuum Vacuum 106.6 (100, 3.94) (800, 31.50) Pressure kPa (mmHg, inHg)

(Absolute pressure)

SEF946S

Component Description

The absolute pressure sensor is connected to the MAP/BARO switch solenoid valve by a hose. The sensor detects ambient barometric pressure and intake manifold pressure and sends the voltage signal to the ECM. As the pressure increases, the voltage rises.

On Board Diagnosis Logic

NGEC0060

DTC No.		Malfunction is detected when	Check Items (Possible Cause)
P0105 0803	A)	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (Absolute pressure sensor circuit is open or shorted.) Absolute pressure sensor
	B)	A high voltage from the sensor is sent to ECM under light load driving conditions.	Hoses (Hoses between the intake manifold and absolute pressure sensor are disconnected or clogged.) Intake air leaks MAP/BARO switch solenoid valve Absolute pressure sensor
	C)	A low voltage from the sensor is sent to ECM under heavy load driving conditions.	Absolute pressure sensor

DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If the 1st trip DTC is not confirmed on "PROCEDURE FOR MALFUNCTION B", perform "PROCE-DURE FOR MALFUNCTION C".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

LC

EC

FE

GL

MT

AT

3 **DATA MONITOR** MONITORING NO FAIL COOLAN TEMP/S XXX ℃

DATA MONITOR

CMPS~RPM(REF) XXX rpm

COOLAN TEMP/S XXX °C

NO FAIL

MONITORING

4

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

NGEC0061S01

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-150.

- Turn ignition switch ON and wait at least 6 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-150.

No Tools

PEF002P

PEF361V

- 1) Turn ignition switch ON and wait at least 6 seconds.
- Turn ignition switch OFF, wait at least 5 seconds and then turn TF ON.
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-150.

AX

PD

PROCEDURE FOR MALFUNCTION B

NGEC0061S02

SU

ST

- (P) With CONSULT-II
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.

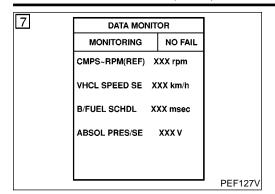
Start engine and let it idle.

- 5) Wait at least 10 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-150.

With GST

Follow the procedure "With CONSULT-II".

HA


BT

SC

KA24DE

NGEC0061S03

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION C

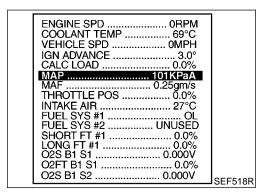
CAUTION:

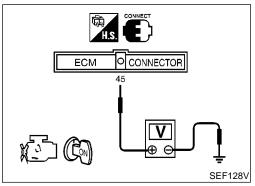
Always drive vehicle at a safe speed.

(P) With CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II and check "ABSOL PRES/SE" signal.

The voltage of "ABSOL PRES/SE" should be more than 1.74 IVI.


If the check result is NG, go to "Diagnostic Procedure", EC-150.


If the check result is OK, go to following step.

- 3) Start engine and warm it up to normal operating temperature.
- 4) Turn ignition switch OFF and wait at least 5 seconds.
- 5) Start engine and let it idle for at least 10 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- Drive the vehicle at least 3 consecutive seconds under the following conditions,

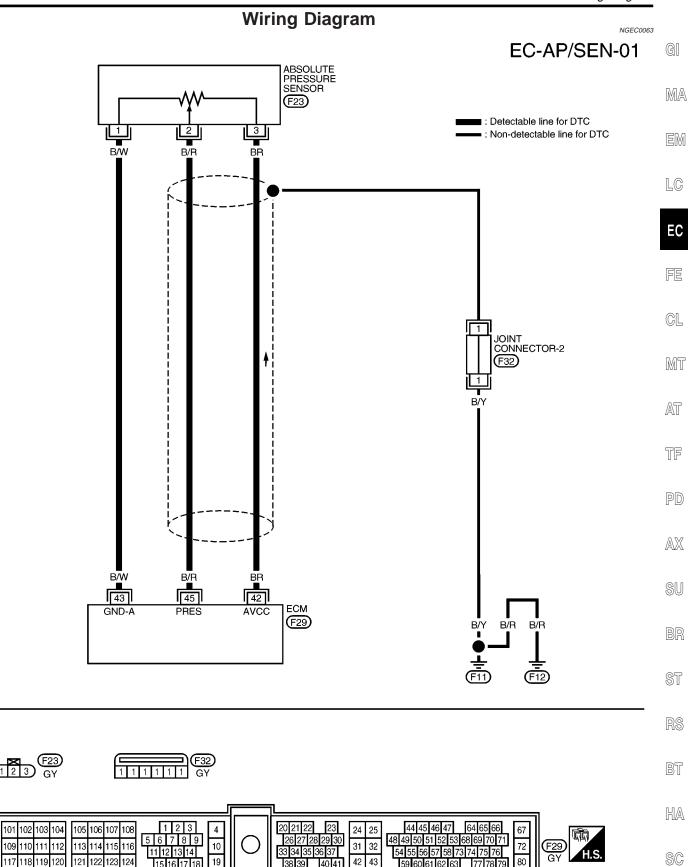
B/FUEL SCHDL	More than 4 msec	
CMPS-RPM (REF)	3,000 - 4,800 rpm	
Selector lever	Suitable position	
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.	

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-150.

Overall Function Check PROCEDURE FOR MALFUNCTION C

NGEC0062

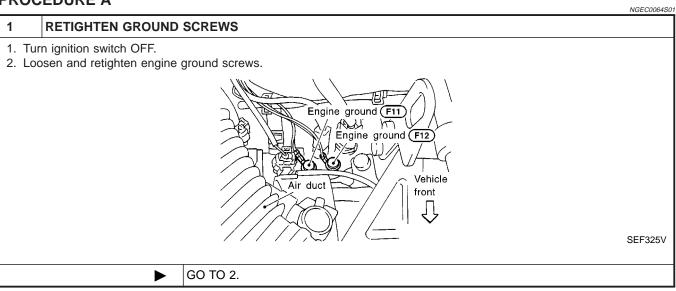
Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

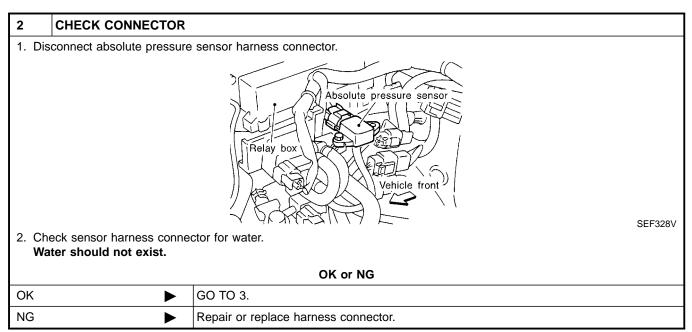


- 1) Turn ignition switch ON.
- Select absolute pressure sensor signal in "MODE 1" with GST.
- Make sure that the pressure of absolute pressure sensor signal is more than 46 kPa (0.47 kg/cm², 6.7 psi).
- 4) If NG, go to "Diagnostic Procedure", EC-150.

No Tools

- 1) Turn ignition switch ON.
- 2) Make sure that the voltage between ECM terminal 45 (Absolute pressure sensor signal) and ground is more than 1.74 [V].
- 3) If NG, go to "Diagnostic Procedure", EC-150.




AEC982A

Diagnostic Procedure

If the trouble is duplicated after "PROCEDURE FOR MALFUNCTION A or C", perform "PROCEDURE A" below. If the trouble is duplicated after "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE B" EC-154.

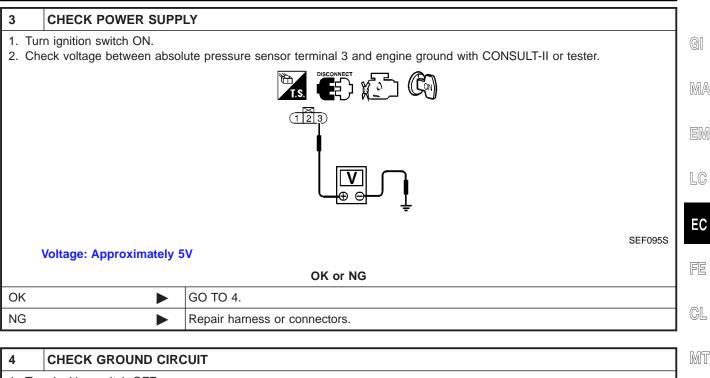
PROCEDURE A

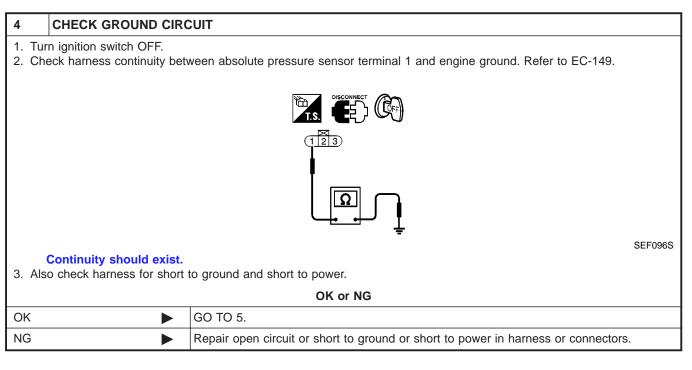
EC

AT

TF

PD

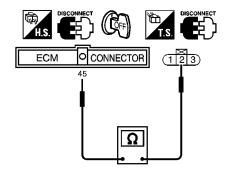

ST


BT

HA

SC

Diagnostic Procedure (Cont'd)



KA24DE

Diagnostic Procedure (Cont'd)

5 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM harness connector F29 terminal 45 and absolute pressure sensor harness connector F23 terminal 2.

SEF129V

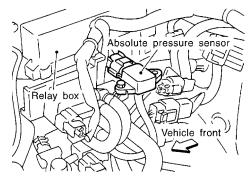
Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG	GO TO 6.

6 DETECT MALFUNCTIONING PART


Check the following.

- Harness for open or short between ECM and absolute pressure sensor
- Harness for open or short between absolute pressure sensor and TCM (Transmission control module)
 - Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

CHECK ABSOLUTE PRESSURE SENSOR

1. Remove absolute pressure sensor with its harness connector connected.

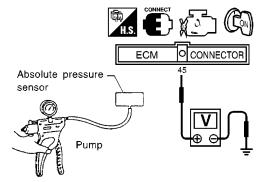
SEF328V

MA

EC

FE

MT


AT

TF

PD

2. Remove hose from absolute pressure sensor.

3. Turn ignition switch ON and check output voltage between ECM harness connector terminal 45 (Absolute pressure sensor signal) and engine ground.

SEF132V

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3. CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –93.3 kPa (–700 mmHg, –27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK or NG

OK •	GO TO 8.
NG ▶	Replace absolute pressure sensor.

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-2.
- 3. Check the following.
- Continuity between joint connector-2 terminal 1 and ground
- Joint connector-2

(Refer to "HARNESS LAYOUT" EL-263.)

Continuity should exist.

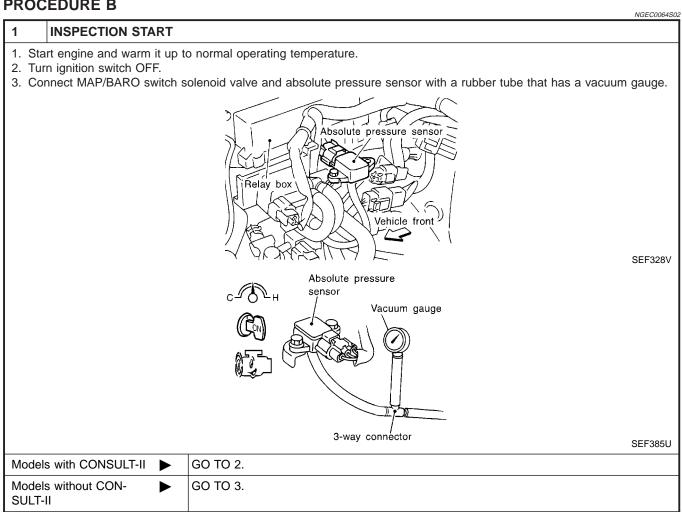
- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect joint connector-2.

OI		or I	NG	
	` [и .	M (-	

OK ►	GO TO 9.
NG 🕨	Repair open circuit or short to ground or short to power in harness or connectors.

EL

HA


SC

KA24DE

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	INSPECTION END		

PROCEDURE B

KA24DE

GI

MA

EC

MT

AT

TF

PD

ST

HA

SC

Diagnostic Procedure (Cont'd)

CHECK VACUUM SOURCE TO ABSOLUTE PRESSURE SENSOR

(P) (With CONSULT-II)

- 1. Start engine and let it idle.
- 2. Select "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "MAP" and "BARO" alternately and check for vacuum.

ACTIVE TEST		
MAP/BARO SW/V	MAP	
MONITOR		
CMPS~RPM (REF)	XXX rpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxx v	

ACTIVE TEST		
SW/V BARO		
XXX rpm		
BARO		
xxx v		

MAP/BARO SW/V	Vacuum
BARO	Should not exist
MAP	Should exist

SEF174X

OK or NG

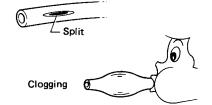
OK	>	GO TO 9.
NG	•	GO TO 4.

3 CHECK VACUUM SOURCE TO ABSOLUTE PRESSURE SENSOR

(Without CONSULT-II)

- 1. Start engine and let it idle.
- 2. Check for vacuum under the following condition.

Condition	Vacuum
For 5 seconds after starting engine	Should not exist
More than 5 seconds after starting engine	Should exist


MTBL0080

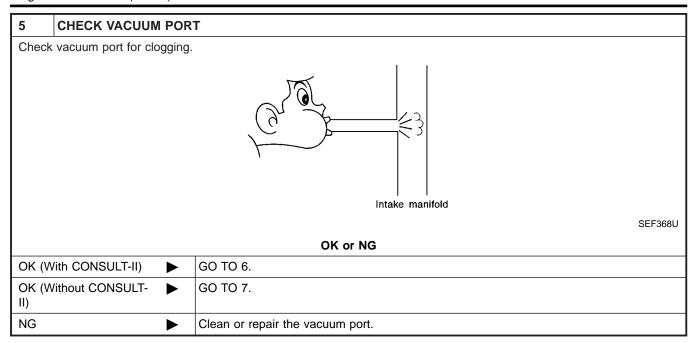
OK or NG

OK	•	GO TO 9.
NG	•	GO TO 4.

4 CHECK VACUUM HOSE

- 1. Turn ignition switch OFF.
- 2. Check vacuum hose for clogging, cracks, disconnection or improper connection.

SEF109L


OK	>	GO TO 5

NG Clean, repair or replace the hose.

 $\mathbb{D}X$

OK or NG

Diagnostic Procedure (Cont'd)

KA24DE

Diagnostic Procedure (Cont'd)

CHECK MAP/BARO SWITCH SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
- Condition: At idle under no-load
- CONSULT-II display
- Time for voltage to change

ACTIVE TEST	
MAP/BARO SW/V	MAP
MONITOR	
CMPS~RPM (REF)	XXX rpm
MAP/BARO SW/V	MAP
ABSOL PRES/SE	xxx v

MAP/BARO	AVSOL PRES/SE (Voltage)	
BARO	More than 2.6V	
MAP	Less than the voltage at BARO	

ACTIVE TEST	
MAP/BARO SW/V	BARO
MONITOR	
CMPS~RPM (REF)	XXX rpm
MAP/BARO SW/V	BARO
ABSOL PRES/SE	xxx v

MAP/BARO SW/V	Required time to switch	
BARO to MAP	Less than 1 second	
MAP to BARO	Less than 1 second	

SEF170X

OK or NG

OK •	GO TO 8.
NG ►	GO TO 7.(Without CONSULT-II)

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR ST

RS

BT

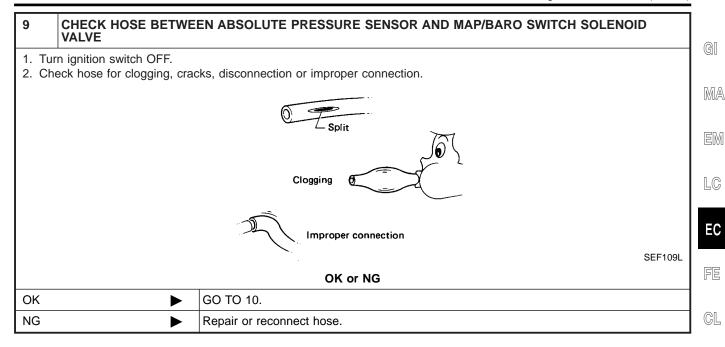
HA

SC

EL

Diagnostic Procedure (Cont'd)

NG


CHECK MAP/BARO SWITCH SOLENOID VALVE (X) Without CONSULT-II 1. Turn ignition switch OFF and remove MAP/BARO switch solenoid valve. Vehicle front MAP/BARO switch solenoid valve harness connector Power steering oil reservoir SEF338V 2. Check air passage continuity. (FUSE BATTERY MEC488B Air passage continuity between A and B Air passage continuity between **A** and **C** Condition 12V direct current supply between terminals 1 and 2 Yes No No supply No Yes MTBL0283 3. Check the time required for the solenoid valve to switch. It should be less than 1 second. OK or NG OK GO TO 8.

8	CHECK INTAKE SYSTEM		
Check	Check intake system for air leaks.		
	OK or NG		
OK	>	GO TO 12.	
NG		Repair it.	

Replace MAP/BARO switch solenoid valve.

KA24DE

Diagnostic Procedure (Cont'd)

10	CHECK HARNESS CO	NNECTOR
 Disconnect absolute pressure sensor harness connector. Check sensor harness connector for water. Water should not exist. 		
OK or NG		
OK	>	GO TO 11.
NG	>	Repair or replace harness connector.

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

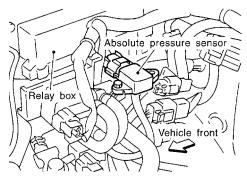
SU

BR

ST

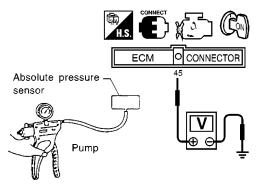
RS

BT


HA

SC

Diagnostic Procedure (Cont'd)


11 CHECK ABSOLUTE PRESSURE SENSOR

1. Remove absolute pressure sensor with its harness connector connected.

SEF328V

- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 (Absolute pressure sensor signal) and engine ground.

SEF132V

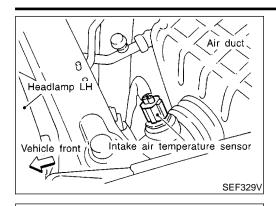
The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3. CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –93.3 kPa (–700 mmHg, –27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK	or	NG
----	----	----


OK •	GO TO 12.
NG •	Replace absolute pressure sensor.

12	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	•	INSPECTION END	

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

KA24DE

Component Description

Component Description

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

GI

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

MA

EM

LG

20 | Acceptable |

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

*: These data are reference values and are measured between ECM terminal 61 (Intake air temperature sensor) and ECM terminal 32 (ECM ground).

EC

@I

FE

MT

On Board Diagnosis Logic

				NGEC0067	AT
DTC No.	Malfunction is detected when		Check Items (Possible Cause)		<i>D</i> -77 II
P0110 0401	A)	An excessively low or high voltage from the sensor is sent to ECM.	(TF
	В)	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Intake air temperature sensor		PD

Engine operating condition in fail-safe mode

The ECM functions on the assumption that the intake air temperature is 25°C (77°F).

SEF012P

SU

BK

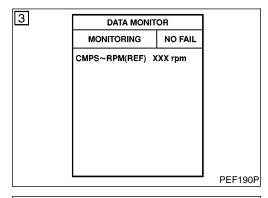
ST

RS

BT

HA

SC

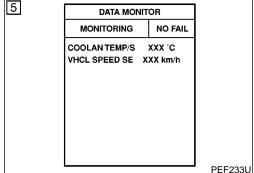

DTC Confirmation Procedure

NGEC0068

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.



PROCEDURE FOR MALFUNCTION A

NGEC0068S01

- (A) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-164.
- With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B

NGEC0068S02

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) With CONSULT-II

- Wait until engine coolant temperature is less than 90°C (194°F).
- a) Turn ignition switch ON.
- b) Select "DATA MONITOR" mode with CONSULT-II.
- c) Check the engine coolant temperature.
- d) If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- Turn ignition switch ON.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine.
- 5) Hold vehicle speed more than 70 km/h (44 MPH) for 105 consecutive seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-164.

With GST

Follow the procedure "With CONSULT-II".

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

NGEC0069

GI

MA

LC

EC

GL

MT

AT

TF

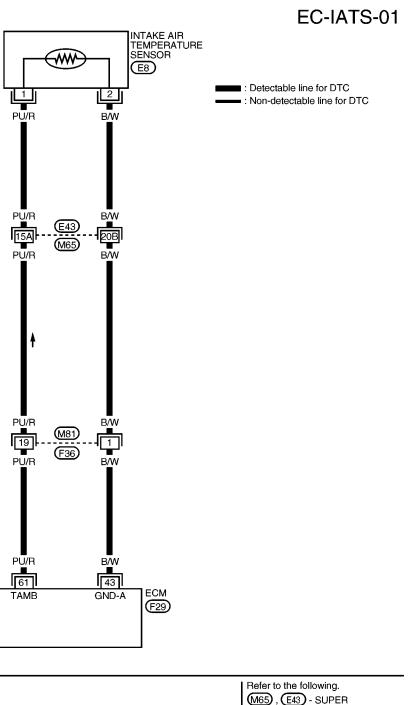
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

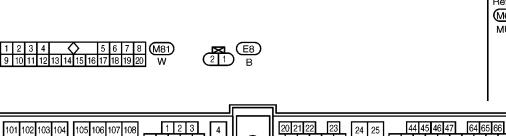
ST


RS

BT

HA

SC


EL

48 49 50 51 52 53 68 69 70 71

54 55 56 57 58 73 74 75 76

59 60 61 62 63 77 78 79

10

19

5 6 7 8 9

11 12 13 14

15 16 17 18

113 114 115 116

121 122 123 124

109 110 111 112

(F29)

72

MULTIPLE JUNCTION (SMJ)

AEC983A

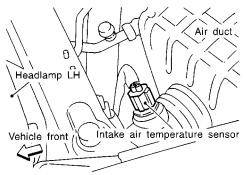
26 27 28 29 30 33 34 35 36 37

40 41

38 39

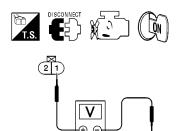
31 32

42 43


Diagnostic Procedure

NGEC0070

SEF329V


1 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect intake air temperature sensor harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

AEC570A

Voltage: Approximately 5V

OK or NG

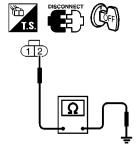
OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M58, F28
- Harness connectors M59, F27
- Harness for open or short between ECM and intake air temperature sensor

Repair harness or connectors.


DTC P0110 INTAKE AIR TEMPERATURE SENSOR

KA24DE

Diagnostic Procedure (Cont'd)

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between intake air temperature sensor terminal 2 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

_				_
\sim	v	or	NI	~

OK	•	GO TO 5.
NG	•	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M58, F28
- Harness connectors M59, F27
- Harness for open or short between ECM and intake air temperature sensor
 - Repair open circuit or short to ground or short to power in harness or connectors.

G[

MA

EM

LC

EC

FE

SEF102S

CL

MT

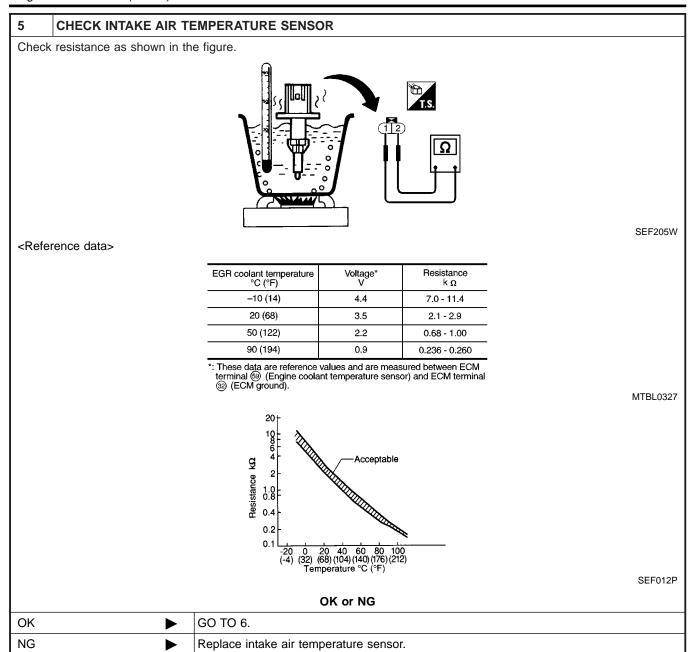
AT

TF PD

SU

BR

ST

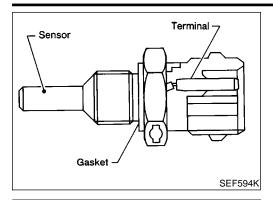

D@

BT

HA

SC

FI



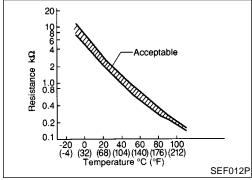
6	CHECK INTERMITTENT INCIDENT			
Perform	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END			

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

KA24DE

Component Description

Component Description


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

EM

LC

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

*: These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ECM terminal 32 (ECM ground).

EC

FE

GL

MT

AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode

NGEC0073

MONITOR ITEM	CONDITION	SPECIFICATION
COOLAN TEMP/S • Engine: After warming up		More than 70°C (158°F)

On Board Diagnosis Logic

NGEC0074	

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0115 0103	An excessively high or low voltage from the sensor is sent to ECM.*	Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor

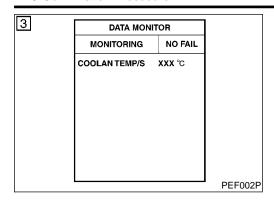
ST

BT

SU

*: When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode			
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch to ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.			
Engine coolant tempera-	Condition	Engine coolant temperature decided (CONSULT-II display)		
ture sensor circuit	Just as ignition switch is turned to ON or Start	40°C (104°F)		
	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)		
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)		


HA

SC

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

KA24DE

DTC Confirmation Procedure

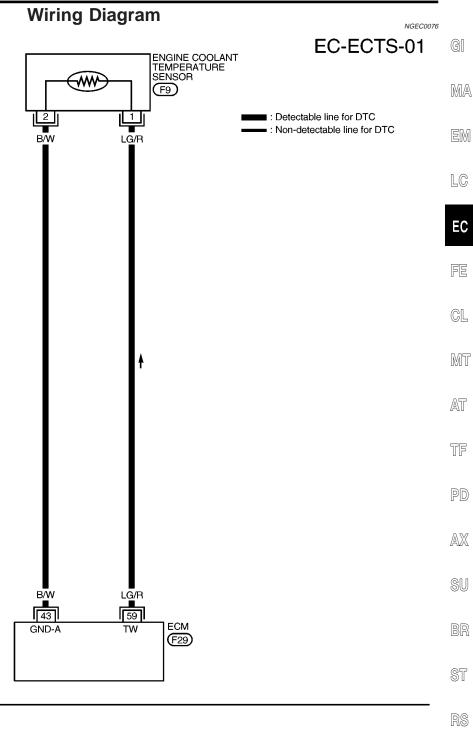
DTC Confirmation Procedure

NGEC0075

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-170.

With GST

Follow the procedure "With CONSULT-II".

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

			1
101 102 103 104 105 106 107 108 1 5 6 7 8 9 10 117 118 119 120 121 122 123 124 15 16 17 18 19 19	0	20 21 22 23 24 25 44 45 46 47 64 65 66 67 67	F29 GY

AEC984A

BT

HA

SC

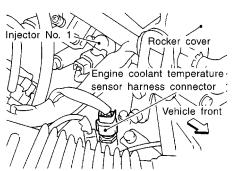
DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

Diagnostic Procedure

KA24DE

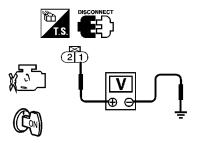
NGEC0077

SEF330V


SEF206W

Diagnostic Procedure

ostic Procedure


1 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.

3. Turn ignition switch ON.

4. Check voltage between engine coolant temperature sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK ▶	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair harness or connectors.

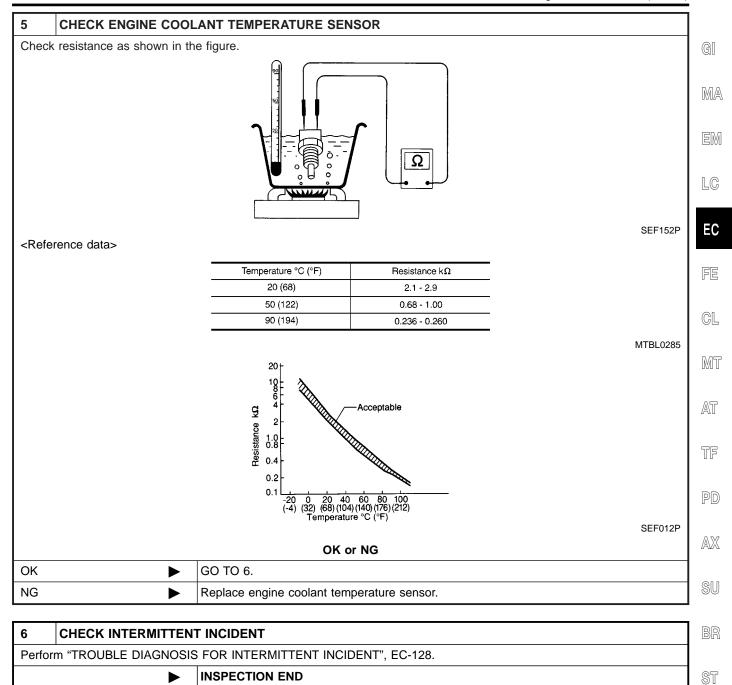
3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- Check harness continuity between engine coolant temperature sensor terminal 2 and engine ground. Refer to *EL-141*. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART


Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

KA24DE

Diagnostic Procedure (Cont'd)

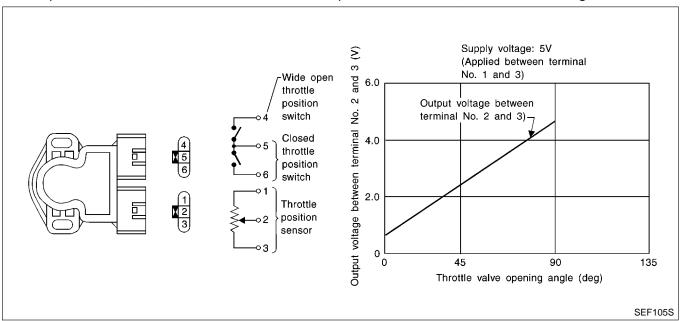
BT

HA

SC

NGEC0079

NGEC0080


Component Description

NOTE:

If DTC P0120 (0403) is displayed with DTC P0510 (0203), first perform trouble diagnosis for DTC P0510, EC-422.

The throttle position sensor responds to the accelerator pedal movement. This sensor is a type of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL POS SEN	Ignition switch: ON (Engine stopped)	Throttle valve: fully closed	0.2 - 0.8V
• Engine: After warming up	Throttle valve: fully opened	3.5 - 4.5V	
-	Throttle valve: fully closed	0.0%	
ABSOL TH-P/S (Engine stopped) • Engine: After warming up		Throttle valve: fully opened	Approx. 80%

DTC P0120 THROTTLE POSITION SENSOR

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23	L	Throttle position sensor	 [Ignition switch ON] Warm-up condition Accelerator pedal fully released 	0.2 - 0.8V
		·	[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.5V
42	BR	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	B/W	Sensors' ground	[Engine is running] • Idle speed	Approximately 0V

On	Board	Diagnosis	Logic
----	--------------	------------------	-------

Throttle position sensor

			NGEC008.	2
DTC No.		Malfunction is detected when	Check Items (Possible Cause)	
P0120 0403	A)	An excessively low or high voltage from the sensor is sent to ECM.*	Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor	
	В)	A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor Fuel injector Camshaft position sensor Mass air flow sensor 	
	C)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Harness or connectors (The throttle position sensor circuit is open or shorted.) Intake air leaks	-

*: When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Throttle position will be determined based on the injected fuel amount and the engine speed. Therefore, acceleration will be poor.		
Throttle position sensor circuit	Condition	Driving condition	
	When engine is idling	Normal	
	When accelerating	Poor acceleration	

GI

MA

EM

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

HA

SC

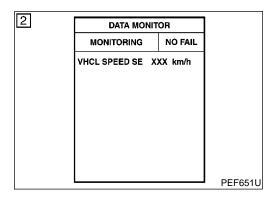
DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A


NGEC0083S01

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and maintain the following conditions for at least 5 consecutive seconds.

VHCL SPEED SE	More than 4 km/h (2 MPH)
	Suitable position except "P" or "N" position

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-178.

With GST

Follow the procedure "With CONSULT-II".

No Tools

 Start engine and maintain the following conditions for at least 5 consecutive seconds.

Vehicle speed	More than 4 km/h (2 MPH)
	Suitable position except "P" or "N" position

- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON and perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-178.

DTC P0120 THROTTLE POSITION SENSOR

KA24DE

DTC Confirmation Procedure (Cont'd)

DATA MONITOR

MONITORING NO FAIL

CMPS~RPM(REF) XXX rpm

PEF357V

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle for at least 10 seconds.
 If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

Selector lever	Suitable position except "N" (Higher gear position such as 3rd or 4th is better to keep low engine rpm.)
Accelerator pedal	Released
Vehicle speed	As slow as possible

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-178.

With GST

Follow the procedure "With CONSULT-II".

No Tools

Start engine and let it idle for at least 10 seconds.
 If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

Selector lever	Suitable position except "N" (Higher gear position such as 3rd or 4th is better to keep low engine rpm.)
Accelerator pedal	Released
Vehicle speed	As slow as possible

- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON and perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-178.

NGEC0083S02

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

Λ\ \V7

PD

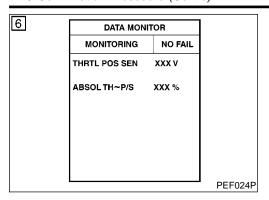
@11

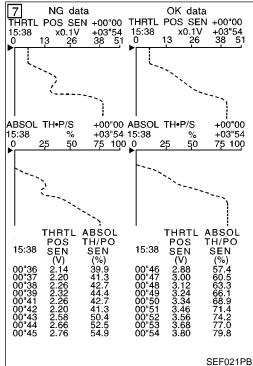
ST

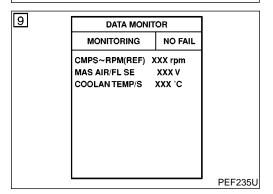
RS

BT

HA


SC


DTC P0120 THROTTLE POSITION SENSOR


KA24DE

NGEC0083S03

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION C

CAUTION:

Always drive vehicle at a safe speed.

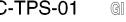
(P) With CONSULT-II

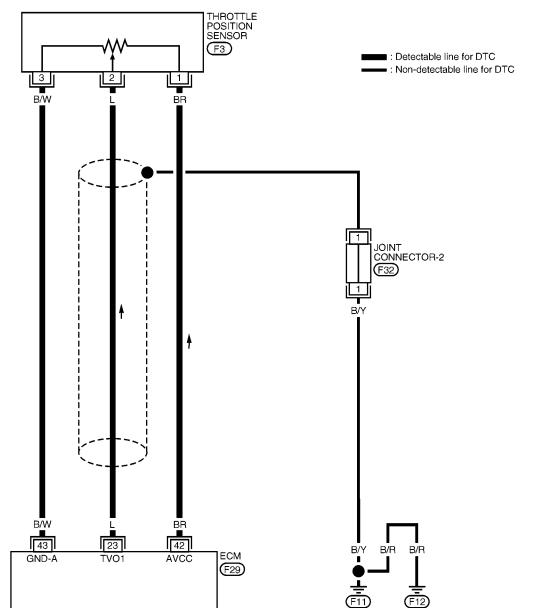
- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "MANU TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 5) Select "THRTL POS SEN" and "ABSOL TH-P/S" in "DATA MONITOR" mode with CONSULT-II.
- 6) Press RECORD on CONSULT-II SCREEN at the same time accelerator pedal is depressed.
- 7) Print out the recorded graph and check the following:
- The voltage rise is linear in response to accelerator pedal depression.
- The voltage when accelerator pedal is fully depressed is approximately 4V.
 - If NG, go to "Diagnostic Procedure", EC-178.
 - If OK, go to following step.
- 8) Select "AUTO TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (REF)	More than 2,000 rpm
MAS AIR/FL SE	More than 3V
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

10) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-178.

® With GST


Follow the procedure "With CONSULT-II".



Wiring Diagram

NGEC0084

EM

LC

MA

EC

FE

GL

MT

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR


ST

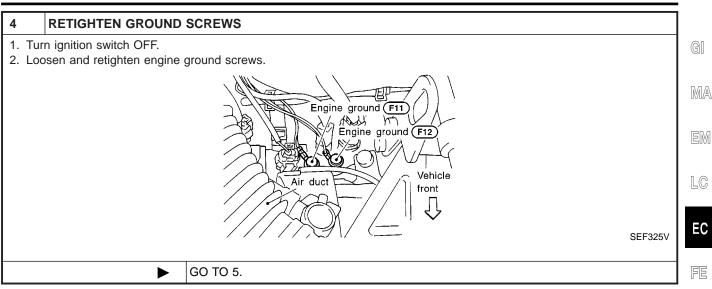
RS

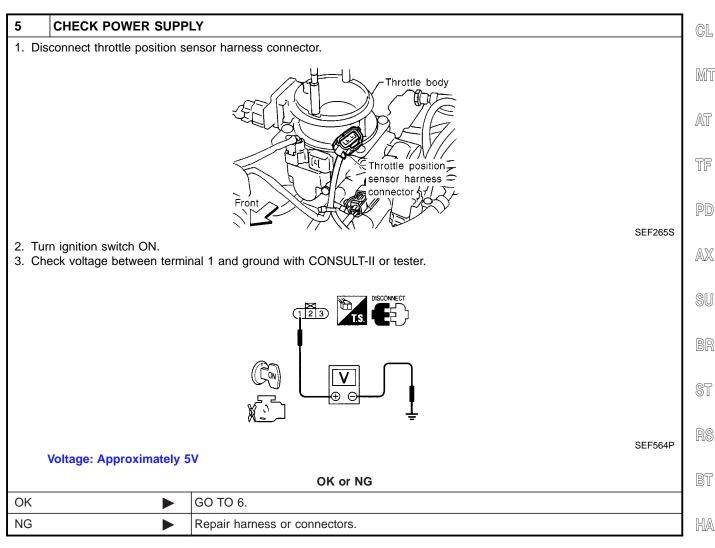
BT

HA

SC

Diagnostic Procedure


NGEC0085 **INSPECTION START** Which malfunction A, B or C is duplicated? MALFUNCTION Type Α В В С С MTBL0066 Type A, B or C GO TO 4. Type A or B Type C GO TO 2.

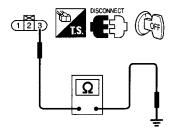

ADJUST THROTTLE POSITION SENSOR 1. Check the following items. Refer to "Basic Inspection", EC-95. Items Specifications Ignition timing 20° ± 2° BTDC Base idle speed 750 ± 50 rpm (in "P" or "N" position) Closed throttle position switch Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF idle position adjustment Target idle speed 800 ± 50 rpm (in "P" or "N" position) MTBL0328 OK or NG GO TO 3. OK

Check the following for connection. Air duct Air cleaner Vacuum hoses Intake air passage between air duct to intake manifold collector OK or NG OK Reconnect the parts.

DTC P0120 THROTTLE POSITION SENSOR

Diagnostic Procedure (Cont'd)

SC


DTC P0120 THROTTLE POSITION SENSOR

KA24DE

Diagnostic Procedure (Cont'd)

6 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between throttle position sensor terminal 3 and engine ground. Refer to the wiring diagram.

SEF565P

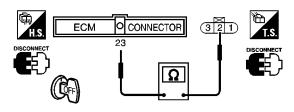
Continuity should exist.

3. Also check harness for short to ground and short to power.

α	or	NG
UN	OI	NG

OK		GO TO 8.
NG	•	GO TO 7.

7 DETECT MALFUNCTIONING PART


Check the following.

• Harness for open or short between ECM and throttle position sensor

Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 23 and terminal 2.

SEF211W

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)		GO TO 9.
OK (Without CONSULT-II)	•	GO TO 10.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

KA24DE

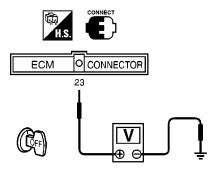
Diagnostic Procedure (Cont'd) 9 **CHECK THROTTLE POSITION SENSOR** (P) With CONSULT-II GI 1. Start engine and warm it up to normal operating temperature. 2. Stop engine and turn ignition switch ON. 3. Select "DATA MONITOR" mode with CONSULT-II. MA 4. Check voltage of "THRTL POS SEN" under the following conditions. DATA MONITOR MONITORING NO FAIL CMPS~RPM(REF) XXX rpm COOLAN TEMP/S XXX °C THRTL POS SEN XXX V EC PEF765W NOTE: Voltage measurement must be made with throttle position sensor installed in vehicle. Throttle valve conditions Voltage V Completely closed 0.15 - 0.85 (a) MT Partially open Between (a) and (b) Completely open 3.5 - 4.7 (b) AT MTBL0329 If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-95. OK or NG TF GO TO 11. OK (Type B in step 1) OK (Type A or C in step GO TO 14. PD NG Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-95. SU

ST

BT

HA

SC


KA24DE

Diagnostic Procedure (Cont'd)

10 CHECK THROTTLE POSITION SENSOR

(X) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground under the following conditions.

SEF767W

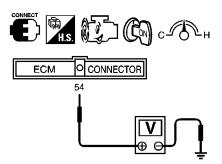
NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V
Completely closed	0.15 - 0.85 (a)
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7 (b)

MTBL0329

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-95.

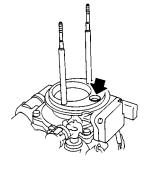

OK or NG

OK (Type B in step 1)	>	GO TO 11.
OK (Type A or C in step 1)	•	GO TO 14.
NG	>	Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-95.

Diagnostic Procedure (Cont'd)

11 **CHECK MASS AIR FLOW SENSOR**

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF326V

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

OK •	•	GO TO 12.
NG •	•	Replace mass air flow sensor.

GI

MA

EM

EC

GL

MT

AT

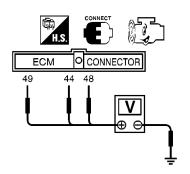
PD

TF

SU

ST

BT


HA

SC

Diagnostic Procedure (Cont'd)

12 CHECK CAMSHAFT POSITION SENSOR

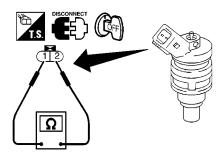
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check voltage between ECM terminals 49 and engine ground, ECM terminal 44 or 48 and ground.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm	
Voltage	0.2 - 0.5V	0 - 0.5V	
Pulse signal	(V) 10 5 0	(V) 10 5 0	

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.6V	Approximately 2.5 - 2.6V
Pulse signal	(V) 10 5 0	(V) 10 5 0 10 0.2 ms


SEF893W

OK or NG

OK ►	GO TO 13.
NG >	Replace distributor assembly with camshaft position sensor.

13 CHECK FUEL INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

SEF273W

Resistance: 10 - 14 Ω [at 25°C (77°F)]

OK or NG

OK •	GO TO 14.
NG •	Replace fuel injector.

KA24DE

Diagnostic Procedure (Cont'd)

14	CHECK SHIELD CIRCUIT			
1. Tur	n ignition switch OFF.		GI	
	move joint connector-2.			
	eck the following.			
	itinuity between joint coni it connector-2	nector-2 terminal 1 and ground	MA	
4. Als	fer to "HARNESS LAYOL Continuity should exist. o check harness for shor en reconnect joint connec	t to ground and short to power.	EM	
		OK or NG	LC	
OK	•	GO TO 15.		
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	EC	
15	CHECK INTERMITTEN	NT INCIDENT		

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.

INSPECTION END

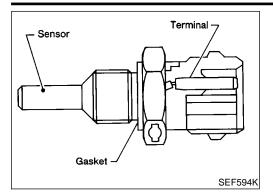
EC FE CL MT AT TF PD $\mathbb{A}\mathbb{X}$ SU BR ST RS BT HA

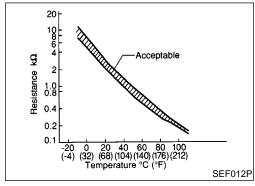
SC

EL

DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

KA24DE


NGEC0087


Component Description

DTC No.

P0125

0908

Component Description

NOTE:

If DTC P0125 (0908) is displayed with P0115 (0103), first perform trouble diagnosis for DTC P0115, EC-167.

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ECM terminal 32 (ECM ground).

On Board Diagnosis Logic

Malfunction is detected when ...

• Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine.

• Engine coolant temperature is insufficient for closed loop fuel control.

**Thermostat*

Check Items (Possible Cause)

• Harness or connectors (High resistance in the circuit)

• Engine coolant temperature sensor

• Thermostat

বি			ı
<u> </u>	DATA MON	DATA MONITOR	
	MONITORING	NO FAIL	
	COOLAN TEMP/S	XXX ℃	
			PEF002F

DTC Confirmation Procedure

NGEC0090

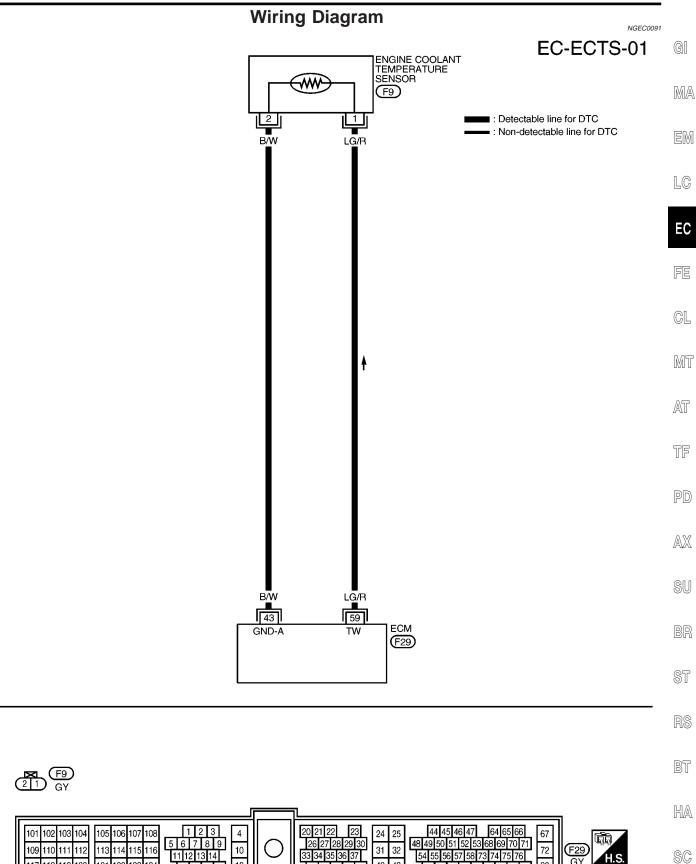
CAUTION:

Be careful not to overheat engine.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II


- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-188.

With GST

Follow the procedure "With CONSULT-II".

DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

AEC984A

EL

38 39

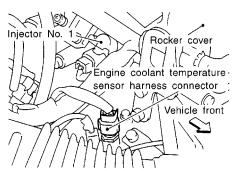
42 43

117 118 119 120

124

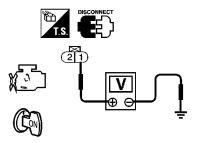
DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

Diagnostic Procedure


KA24DE

Diagnostic Procedure

NGEC0092


1 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.

SEF330V

- 3. Turn ignition switch ON.
- 4. Check voltage between coolant temperature sensor connector F9 terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

SEF206W

OK ►	GO TO 3.
NG ►	GO TO 2.

OK or NG

2 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair harness or connectors.

3 CHECK GROUND CIRCUIT

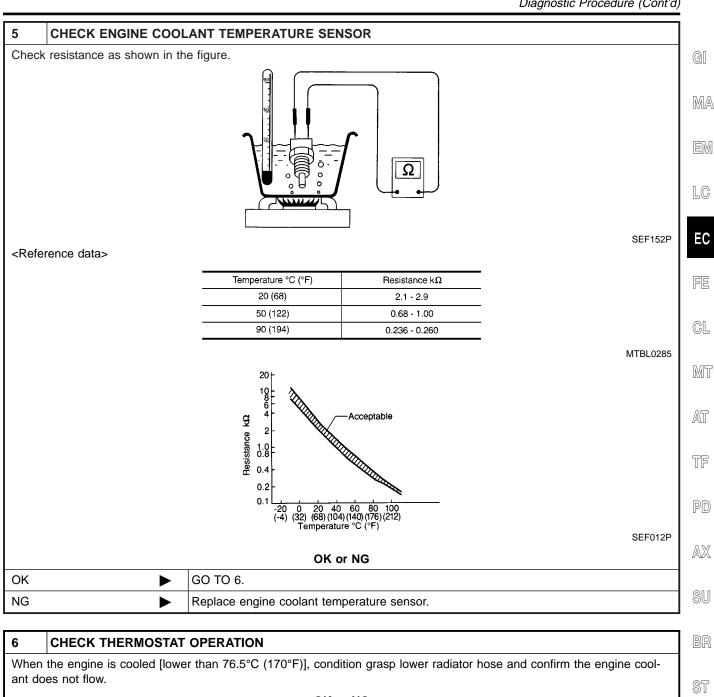
- 1. Turn ignition switch OFF.
- 2. Check harness continuity between engine coolant temperature sensor connector F9 terminal 2 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

O	K	or	N	G

OK •	GO TO 5.
NG ►	GO TO 4.


4 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

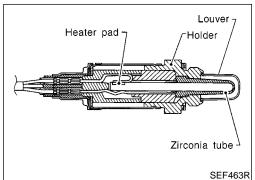
Diagnostic Procedure (Cont'd)

When the engine is cooled [lower than 76.5°C (170°F)], condition grasp lower radiator hose and confirm the engine coolant does not flow.			
OK or NG			
OK	>	GO TO 7.	
NG	>	Repair or replace thermostat. Refer to "Thermostat", "ENGINE COOLING SYSTEM", <i>LC-13</i> .	

7	CHECK INTERMITTENT INCIDENT			
Perforr	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END			

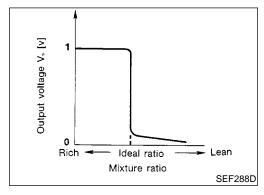
EL

RS


BT

HA

SC


KA24DE

Component Description

Component Description

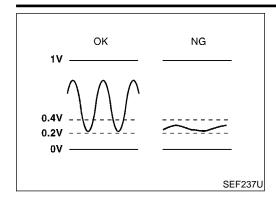
The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0095

MONITOR ITEM	CONE	SPECIFICATION	
FR O2 SENSOR			0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.


ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				\
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W

KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic

Under the condition in which the front heated oxygen sensor signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

@I
(GIII
000

MA

LC

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0130 0303	The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors (The sensor circuit is open or shorted.) Front heated oxygen sensor

EC

GL

AT

MT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

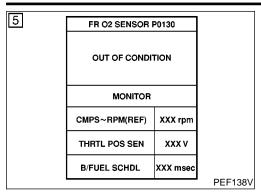
BR

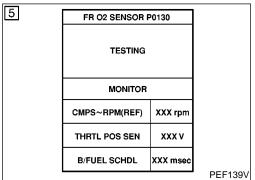
ST

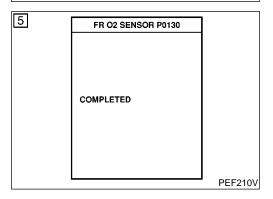
RS

BT

HA


SC


EL


KA24DE

=NGEC0098

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

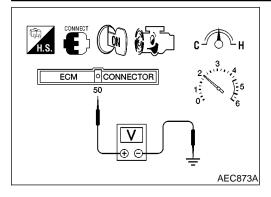
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "FR O2 SENSOR P0130" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 4) Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 4.

5) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

CMPS-RPM (REF)	1,400 - 3,200 rpm
Vehicle speed	70 - 100 km/h (43 - 62 MPH)
B/FUEL SCHDL	1.0 - 5.2 msec
Selector lever	Suitable position


If "TESTING" is not displayed after 5 minutes, retry from step 2.

6) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-195.

During this test, P1148 may be displayed on CONSULT-II screen.

KA24DE

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- If NG, go to "Diagnostic Procedure", EC-195.

MA

LC

EC

FE

GL

MT

AT

TF PD

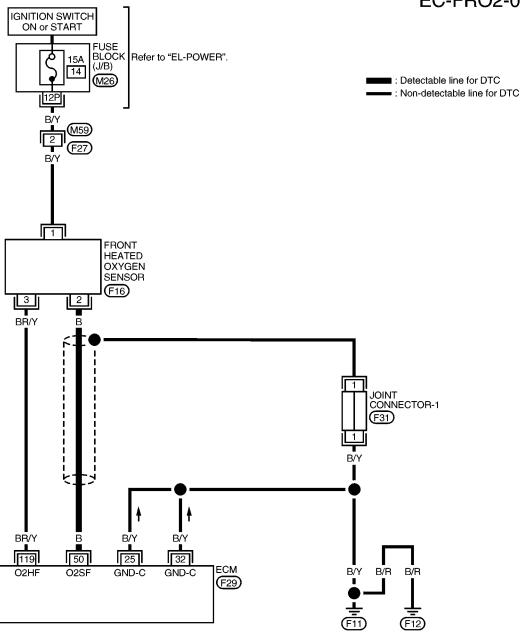
SU

ST

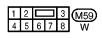
BT

HA

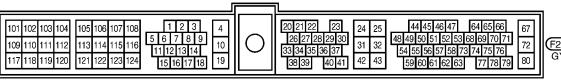
SC


EL

KA24DE


Wiring Diagram

NGEC0100



AEC986A

MA

EC

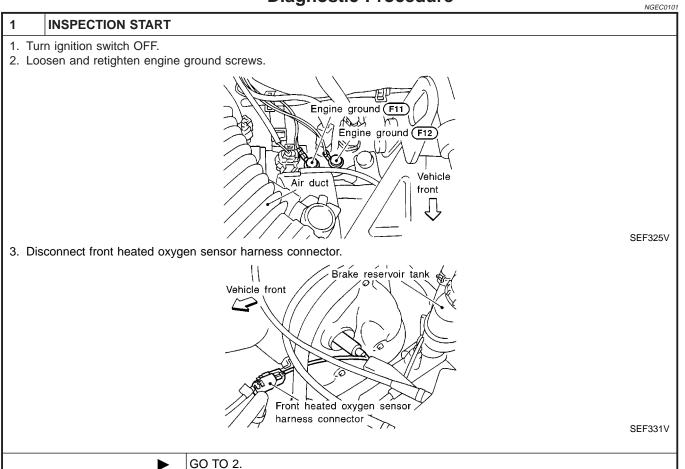
FE

MT

AT

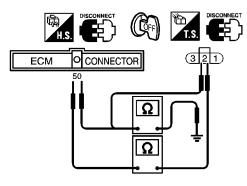
TF

PD


ST

HA

SC


SEF141V

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM harness connector F29 terminal 50 and terminal 2.

Continuity should exist.

- 3. Check harness continuity between ECM harness connector F29 terminal 50 (or terminal 2) and ground.

 Continuity should not exist.
- 4. Also check harness for short to power.

OK or NG			
OK (With CONSULT-II)	•	GO TO 3.	
OK (Without CONSULT- II)		GO TO 4.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

KA24DE

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

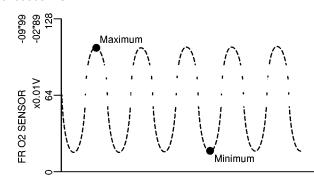
3

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "FR O2 SENSOR" AND "FR O2 MNTR" in Item Selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MONITOR				
MONITORING	NO FAIL			
CMPS-RPM(REF)	XXX rpm			
MAS AIR/FL SE	XXX V			
COOLAN TEMP/S	XXX °C			
FR O2 SENSOR	XXX V			
FR O2 MNTR	LAEN			
INJ PULSE	XXX msec			

PEF084P

- 6. Check the following.
- "FR O2 MNTR" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:


cycle | 1 | 2 | 3 | 4 | 5 |
FR O2 MNTR R-L-R-L-R-L-R-L-R

SEF947V

R = "FR O2 MNTR", "RICH" L = "FR O2 MNTR", "LEAN"

- "FR O2 SENSOR" voltage goes above 0.6V at least once.
- "FR O2 SENSOR" voltage goes below 0.3V at least once.
- "FR O2 SENSOR" voltage never exceeds 1.0V.

	SPREADSHEET				
REPLA	Y MODE	REPLAY	MODE		
NUMERICAL		SHOWT	RIGGER		
	CMPS-RPM	FR O2 SEN			
	rpm	٧			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

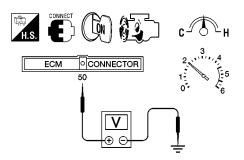
PEF736W

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NO
----	----	----

ľ	OK		GO TO 5.
Г	NG		Replace front heated oxygen sensor.


KA24DE

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.

AEC873A

MA

EC

GL

MT

AT

TF

PD

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 5.
NG ►	Replace front heated oxygen sensor.

5 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-1.
- 3. Check the following.
- Continuity between joint connector-1 terminal 1 and ground
- Joint connector-1

(Refer to "HARNESS LAYOUT", EL-272.)

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect joint connector.

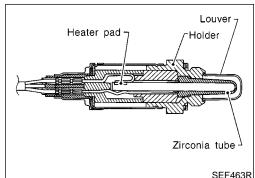
O	K	or	N	G

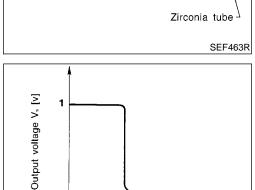
OK •	GO TO 6.
NG ►	Repair open circuit, short to ground or short to power in harness or connectors.

6	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

- - -

HA


SC


EC-197

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT MONITORING) KA24DE

Component Description

Rich

Component Description

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

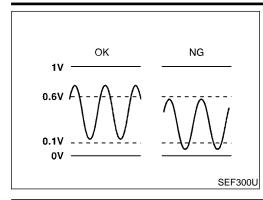
Specification data are reference values.

Ideal ratio
 Mixture ratio

Lean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION
FR O2 SENSOR	Engine: After warming up		0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR		Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.


ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				, ,
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor	[Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 SEF008W

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT MONITORING)

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the output from the front heated oxygen sensor is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

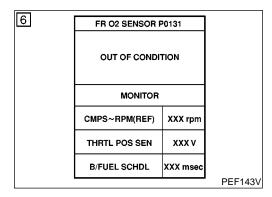
UI!

MA

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0131 0411	The maximum and minimum voltages from the sensor are not reached to the specified voltages.	 Front heated oxygen sensor Front heated oxygen sensor heater Fuel pressure Injectors Intake air leaks

EC

FE


GL

MT

AT

TF

NGEC0107

FR O2 SENSOR P0131

TESTING

MONITOR

XXX rpm

XXX V

XXX msec

PEF144V

CMPS~RPM(REF)

THRTL POS SEN

B/FUEL SCHDL

6

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PD

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

ΔM

(P) With CONSULT-II

SU

- 2) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "FR O2 SENSOR P0131" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.

Start engine and warm it up to normal operating temperature.

ST

4) Touch "START".

5) Start engine and let it idle for at least 3.0 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

BT

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

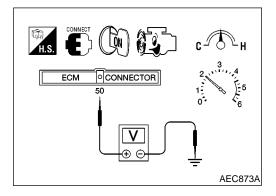
HA

SC

CMPS-RPM (REF)	1,700 - 3,000 rpm
Vehicle speed	80 - 100 km/h (50 - 62 MPH)
B/FUEL SCHDL	1.0 - 4.9 msec
Selector lever	Suitable position
<u> </u>	<u>. </u>

6 FR 02 SENSOR P0131

COMPLETED


PEF211V

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT MONITORING)

DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-200.

Overall Function Check

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- If NG, go to "Diagnostic Procedure", EC-200.

Diagnostic Procedure

NGEC0109 RETIGHTEN FRONT HEATED OXYGEN SENSOR 1. Turn ignition switch OFF. 2. Loosen and retighten front heated oxygen sensor. Front heated oxygen sensor Vehicle front 40 - 60 : N·m (kg-m, ft-lb) SEF332V **Tightening torque:** 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb) GO TO 2.

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

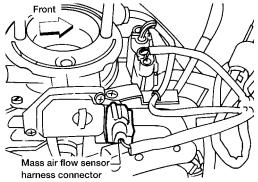
CLEAR THE SELF-LEARNING DATA.

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TES	ST .
SELF-LEARN CONTROL	100 %
MONITOR	1
CMPS~RPM	XXX rpm
COOLAN TEMP/S	xxx .c
FR 02 SENSOR	xxx v
A/F ALPHA	XXX %


SEF165X

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-67.
- 7. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0115 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171. Refer to EC-278.
No	GO TO 3.

GI

MA

1 @

EC

CL

MT

AT

TF

PD

66

BR

ST

11 II (C

BT

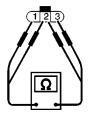
HA

SC

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT MONITORING) KA24DE

Diagnostic Procedure (Cont'd)

3


CHECK FRONT HEATED OXYGEN SENSOR HEATER

Check resistance between terminals 3 and 1.

SEF220W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK (With CONSULT-II)	•	GO TO 4.
OK (Without CONSULT-II)	•	GO TO 5.
NG	•	Replace front heated oxygen sensor.

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT **MONITORING**)

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "FR O2 SENSOR" AND "FR O2 MNTR" in Item Selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MONITOR		
MONITORING		NO FAIL
CMPS-RPM(REF)	х	XX rpm
MAS AIR/FL SE		XXX V
COOLAN TEMP/S)	CXX °C
FR O2 SENSOR XXX V		XXX V
FR O2 MNTR		LAEN
INJ PULSE	X	(X msec

PEF084P

MA

LC

EC

FE

GL

MT

AT

TF

PD

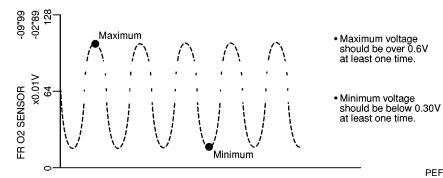
ST

HA

SC

EL

- 6. Check the following.
- "FR O2 MNTR" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:


cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR R-L-R-L-R-L-R-L-R

SEF947V

R = "FR O2 MNTR", "RICH" L = "FR O2 MNTR", "LEAN"

- "FR O2 SENSOR" voltage goes above 0.6V at least once.
- "FR O2 SENSOR" voltage goes below 0.3V at least once.
- "FR O2 SENSOR" voltage never exceeds 1.0V.

	SPREADSHEET		
REPLAY MODE		REPLAY	MODE
NUME	RICAL	SHOWT	RIGGER
	CMPS-RPM	FR O2 SEN	
	rpm	٧	
XXX	XXX	XXX	

PEF736W

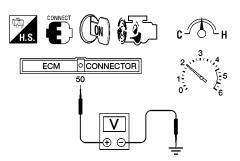
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	N	G
----	----	---	---

OK ►	GO TO 6.
NG •	Replace front heated oxygen sensor.

DTC P0131 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (LEAN SHIFT MONITORING)


Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(R) Without CONSULT-II

5

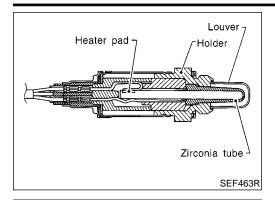
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 6.
NG 🕨	Replace front heated oxygen sensor.

6	CHECK INTERMITTENT INCIDENT		
	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128. Refer to "Wiring Diagram", EC-194, for circuit.		
	► INSPECTION END		

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT **MONITORING**)

Component Description

Component Description

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

EM

LC

EC

GL

MT

AT

TF

PD

AX

ST

CONSULT-II Reference Value in Data Monitor Mode

NGEC0112

Specification data are reference values.

Ideal ratio

Mixture ratio

Lean

SEF288D

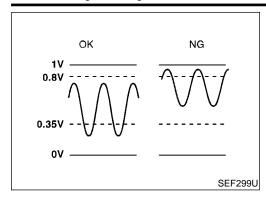
Output voltage V, [v]

Rich

MONITOR ITEM	CONDITION		SPECIFICATION
FR O2 SENSOR			0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

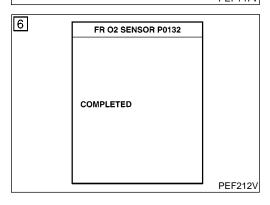

TERMI-WIRE **ITEM** CONDITION DATA (DC Voltage) NAL COLOR NO. 0 - Approximately 1.0V 2 [Engine is running] Front heated oxygen 50 В • After warming up to normal operating temperature sensor and engine speed is 2,000 rpm SEF008W

HA

SC

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT MONITORING) KA24DE

On Board Diagnosis Logic


On Board Diagnosis Logic

To judge the malfunction, the output from the front heated oxygen sensor is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0132 0410	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Front heated oxygen sensor Front heated oxygen sensor heater Fuel pressure Injectors 	

6	FR O2 SENSOR P0132		
	OUT OF CONDITION		
	MONITOR		
	CMPS~RPM(REF)	XXX rpm	
	THRTL POS SEN	xxx v	
	B/FUEL SCHDL	XXX msec	
			PEF146V

6	FR O2 SENSOR P0132		
	TESTING		
	MONITOR		
	CMPS~RPM(REF)	XXX rpm	
	THRTL POS SEN	xxx v	
	B/FUEL SCHDL	XXX msec	
			PEF147V

DTC Confirmation Procedure

NGEC0115

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "FR O2 SENSOR P0132" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.0 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

CMPS-RPM (REF)	1,700 - 3,000 rpm
Vehicle speed	80 - 100 km/h (50 - 62 MPH)
B/FUEL SCHDL	1.0 - 4.9 msec
Selector lever	Suitable position

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT MONITORING)

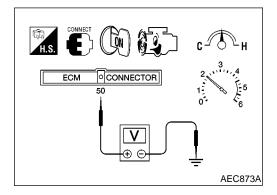
DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-207.

MA

LC


EC

FE

GL

MT

AT

Overall Function Check

NGEC0116

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

N Without CONSULT-II

1) Start engine and warm it up to normal operating temperature.

- 2) Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and ECM ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-207.

TF

PD

 $\mathbb{A}\mathbb{X}$

Diagnostic Procedure

40 - 60

Front heated oxygen sensor

BF ST

NGEC0117

Turn ignition switch OFF.
 Loosen and retighten front heated oxygen sensor.

RETIGHTEN FRONT HEATED OXYGEN SENSOR

Vehicle front

BT

32V HA

SC

Tightening torque:
40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

GO TO 2.

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

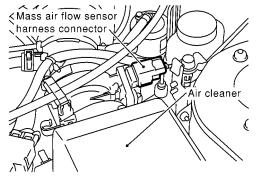
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST				
SELF~LEARINCONTROL	100 %			
MONITOR				
CMPS~RPM	XXX rpm			
COOLAN TEMP/S	xxx .c			
FR O2 SENSOR	xxx v			
A/F ALPHA	XXX %			


SEF165X

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

SEF293W

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". EC-67.
- 7. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0114 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0172. Refer to EC-286.
No •	GO TO 3.

3 CHECK HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect front heated oxygen sensor harness connector.
- 3. Check harness connector for water.

Water should not exit.

OK or NG

OK •	GO TO 4.
NG ►	Repair or replace harness connector.

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT MONITORING) KA24DE

		Diagnostic Procedure (Cont'd)
4 CHECK FRONT	HEAT	ED OXYGEN SENSOR HEATER	1
Check resistance between	en term	inals 3 and 1.	
		1.5.	
		DISCONNECT	
			١.
D. 14.	0.46	SEF220W	
Resistance: 2.3 - 4.3 Check continuity between	n termi	nals 2 and 1, 3 and 2.	<u>'</u>
Continuity should not AUTION:		sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a	
hard surface such as	a con	crete floor; use a new one. en sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool	
		and approved anti-seize lubricant.	
OK (With CONSULT-II)	—	OK or NG GO TO 5.	
OK (Without CONSULT-	•	GO TO 6.	
I) NG	•	Replace front heated oxygen sensor.	
			ı

EL

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

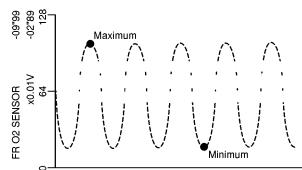
5

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "FR O2 SENSOR" and "FR O2 MNTR" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	NITOR
MONITORING	NO FAIL
CMPS-RPM(REF)	XXX rpm
MAS AIR/FL SE	XXX V
COOLAN TEMP/S	XXX °C
FR O2 SENSOR	XXX V
FR O2 MNTR	LAEN
INJ PULSE	XXX msec

PEF084P

- 6. Check the following.
- "FR O2 MNTR" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:


cycle | 1 | 2 | 3 | 4 | 5 |
FR O2 MNTR R-L-R-L-R-L-R-L-R-

SEF947V

R = "FR O2 MNTR", "RICH" L = "FR O2 MNTR", "LEAN"

- "FR O2 SENSOR" voltage goes above 0.6V at least once.
- "FR O2 SENSOR" voltage goes below 0.3V at least once.
- "FR O2 SENSOR" voltage never exceeds 1.0V.

	SPREADSHEET				
REPLA	Y MODE	REPLAY	MODE		
NUME	RICAL	SHOWT	RIGGER		
	CMPS-RPM	FR O2 SEN			
	rpm	٧			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			
XXX	XXX	XXX			

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

PEF736W

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK ►	GO TO 7.
NG •	Replace front heated oxygen sensor.

DTC P0132 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RICH SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR 6 (Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground. MA CONNECTOR EC AEC873A 3. Check the following with engine speed held at 2,000 rpm constant under no load. FE Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). The maximum voltage is over 0.6V at least one time. GL • The minimum voltage is below 0.3V at least one time. • The voltage never exceeds 1.0V. **CAUTION:** MT • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner AT tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. OK or NG TF GO TO 7. OK NG Replace front heated oxygen sensor. PD 7 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128. Refer to "Wiring Diagram", EC-194, for circuit. **INSPECTION END** SW

ST

BT


HA

SC

DTC P0133 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RESPONSE MONITORING) KA24DE

Component Description

Component Description

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

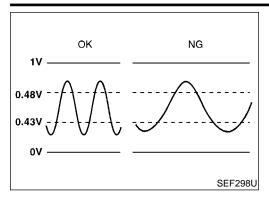
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

Mixture ratio

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION
FR O2 SENSOR			0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.


ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor	 [Engine is running] ◆ After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W

DTC P0133 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RESPONSE MONITORING)

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction of front heated oxygen sensor, this diagnosis measures response time of front heated oxygen sensor signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and front heated oxygen sensor temperature index. Judgment is based on whether the compensated time (front heated oxygen sensor cycling time index) is inordinately long or not.

\otimes I	
(GIII	
000	

MA

			_
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0133	The response of the voltage signal from the sensor takes	Harness or connectors	EC
0409	more than the specified time.	(The sensor circuit is open or shorted.)	
	·	Front heated oxygen sensor	
		Front heated oxygen sensor heater	FE
		Fuel pressure	
		Injectors	0.5
		Intake air leaks	GL
		Exhaust gas leaks	
		• PCV	
		Mass air flow sensor	MT

6 FR O2 SENSOR P0133 **OUT OF CONDITION** MONITOR CMPS~RPM(REF) XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec PEF148V

DTC Confirmation Procedure

Always drive vehicle at a safe speed.

NGEC0123

AT

TF If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before

PD

conducting the next test. TESTING CONDITION:

CAUTION:

NOTE:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

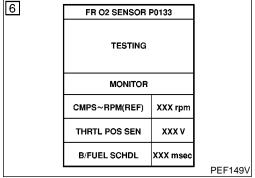
SU

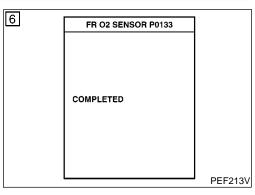
ST

HA

SC

- Start engine and warm it up to normal operating temperature. Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "FR O2 SENSOR P0133" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.

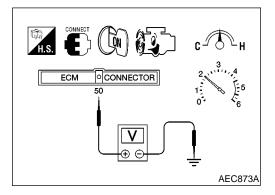

- Touch "START".
- Start engine and let it idle for at least 3.0 minutes.


NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 20 seconds.)

CMPS·RPM (REF)	1,700 - 3,600 rpm
Vehicle speed	80 - 120 km/h (50 - 75 MPH)
B/FUEL SCHDL	1.1 - 4.9 msec
Selector lever	Suitable position



DTC P0133 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RESPONSE MONITORING)

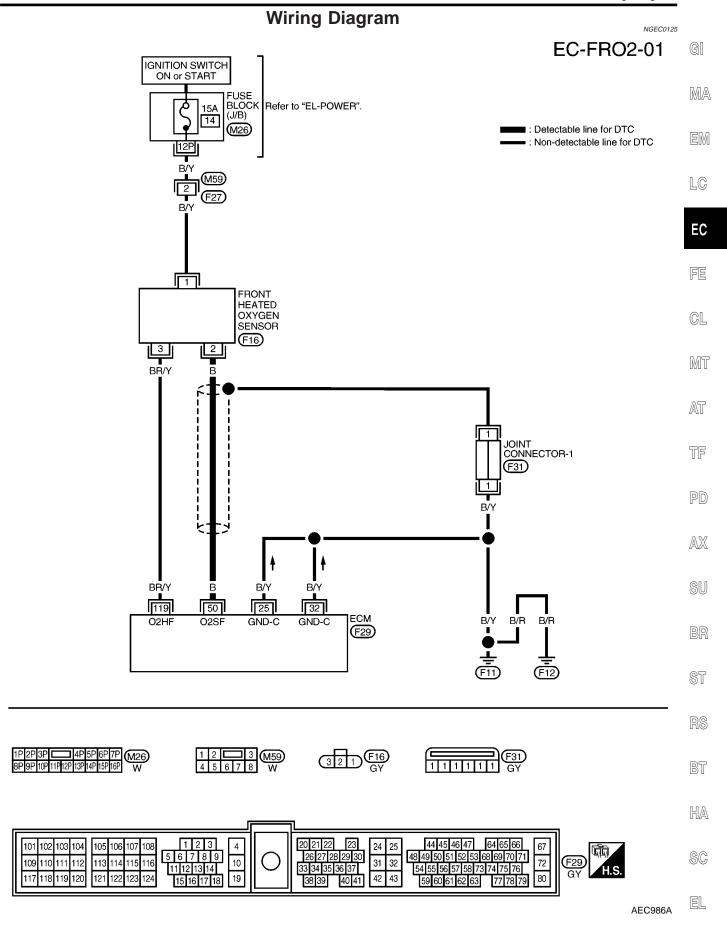
DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-216.

Overall Function Check

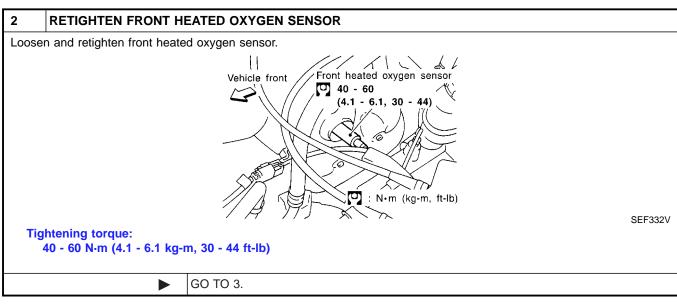
VGEC0

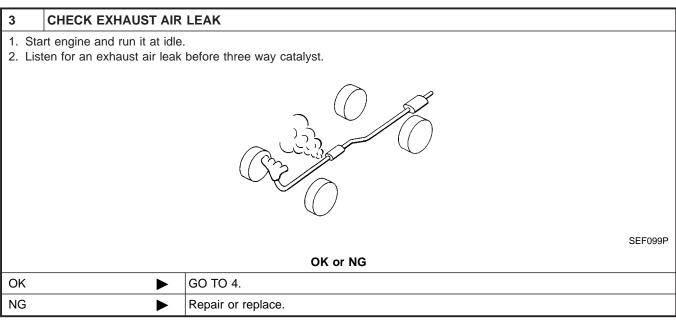

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

N Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXY-GEN SENSOR MONITOR).
- 4) If NG, go to "Diagnostic Procedure", EC-216.

DTC P0133 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RESPONSE MONITORING) KA24DE


Wiring Diagram



DTC P0133 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (RESPONSE MONITORING) KA24DE

Diagnostic Procedure

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground F11 Engine ground F12 Vehicle front SEF325V GO TO 2.

Diagnostic Procedure (Cont'd)

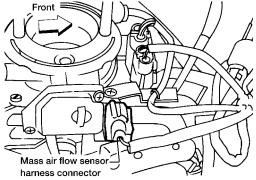
4	CHECK FOR INTAKE A	IR LEAK]
Listen for an intake air leak between the mass air flow sensor and the intake manifold.			
	OK or NG		
OK	>	GO TO 5.	1
NG	>	Repair or replace.	

5 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TE	ST
SELF-LEARN CONTROL	100 %
MONITOR	}
CMPS~RPM	XXX rpm
COOLAN TEMP/S	xxx .c
FR 02 SENSOR	xxx v
A/F ALPHA	XXX %


SEF165X

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-67.
- 7. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0114 or 0115 detected? Is it difficult to start engine?

Yes or No

Yes		Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-278, 286.
No	>	GO TO 6.

GI

MA

EM

1 @

EC

FE

GL

MT

AT

TF

PD

D 0D 0

BK

ST

91

RS

BT

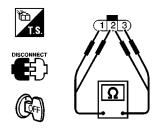
. . . .

HA

SC

Diagnostic Procedure (Cont'd)

6 CHECK INPUT SIGNAL CIRCUIT 1. Disconnect front heated oxygen sensor harness connector and ECM harness connector. 2. Check harness continuity between ECM terminal 50 and terminal 2. | Continuity should exist. | Continuity should exist. | 3. Check harness continuity between ECM terminal 50 (or terminal 2) and ground. | Continuity should not exist. | 4. Also check harness for short to power.


OK or NG

Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK FRONT HEATED OXYGEN SENSOR HEATER

GO TO 7.

Check resistance between terminals 3 and 1.

SEF220W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

OK

NG

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK (With CONSULT-II)		GO TO 8.
OK (Without CONSULT-II)	•	GO TO 9.
NG	•	Replace front heated oxygen sensor.

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

8

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "FR O2 SENSOR" and "FR O2 MNTR" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MON	NITOR
MONITORING	NO FAIL
CMPS-RPM(REF)	XXX rpm
MAS AIR/FL SE	XXX V
COOLAN TEMP/S	XXX °C
FR O2 SENSOR	XXX V
FR O2 MNTR	LAEN
INJ PULSE	XXX msec

PEF084P

MA

LC

EC

FE

GL

MT

AT

TF

PD

ST

BT

HA

SC

EIL

- 6. Check the following.
- "FR O2 MNTR" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:


cycle | 1 | 2 | 3 | 4 | 5 |
FR O2 MNTR R-L-R-L-R-L-R-L-R

SEF947V

R = "FR O2 MNTR", "RICH" L = "FR O2 MNTR", "LEAN"

- "FR O2 SENSOR" voltage goes above 0.6V at least once.
- "FR O2 SENSOR" voltage goes below 0.3V at least once.
- "FR O2 SENSOR" voltage never exceeds 1.0V.

SPREADSHEET			
REPLA	Y MODE	REPLAY	MODE
NUME	RICAL	SHOWT	RIGGER
	CMPS-RPM	FR O2 SEN	
	rpm	٧	
XXX	XXX	XXX	

 Maximum voltage should be over 0.6V at least one time.

 Minimum voltage should be below 0.30V at least one time.

PEF736W

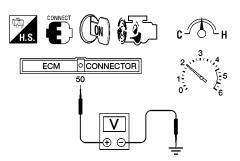
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 10.
NG •	Replace front heated oxygen sensor.

IDX


Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

Without CONSULT-II

9

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 10.
NG ▶	Replace front heated oxygen sensor.

Diagnostic Procedure (Cont'd)

10 **CHECK MASS AIR FLOW SENSOR** 1. Turn ignition switch ON. GI 2. Start engine and warm it up to normal operating temperature. 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground. MA CONNECTOR EC SEF326V Voltage V Conditions Ignition switch "ON" (Engine stopped.) Less than 1.0 Idle (Engine is warmed-up to normal operating temperature.) CL 0.9 - 1.8 2,500 rpm (Engine is warmed-up to normal operating temperature.) 1.9 - 2.3 MT Idle to about 4,000 rpm* 1.3 - 1.7 to Approx. 3.0 *: Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed. AT 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check. 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust. TF PD SU SEF893J

ST

BT

HA

SC

OK or NG

GO TO 11.

Replace mass air flow sensor.

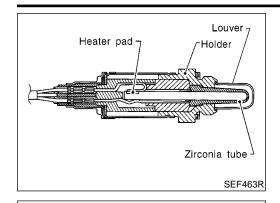
OK

NG

Diagnostic Procedure (Cont'd)

NG

1. With engine running at idle, remove PCV valve from breather separator. 2. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet. SEC137A OK or NG Repair or replace PCV valve.


12	CHECK SHIELD CIRC	UIT		
1. Tur	1. Turn ignition switch OFF.			
2. Rei	2. Remove joint connector-1.			
3. Ch	3. Check the following.			
• Con	Continuity between joint connector-1 terminal 1 and ground			
Join	• Joint connector-1			
(Re	(Refer to "HARNESS LAYOUT", <i>EL-272</i> .)			
	Continuity should exist.			
4. Als	4. Also check harness for short to ground and short to power.			
5. The	5. Then reconnect joint connector.			
	OK or NG			
OK	•	GO TO 13.		

13	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

Repair open circuit, short to ground or short to power in harness or connectors.

DTC P0134 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (HIGH **VOLTAGE)**

Component Description

Component Description

The front heated oxygen sensor is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closedend tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

MT

AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode

NGEC0129

Specification data are reference values.

Ideal ratio

Mixture ratio

Lean

SEF288D

Output voltage V_s [v]

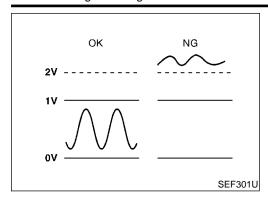
Rich

MONITOR ITEM	CONE	SPECIFICATION	
FR O2 SENSOR			0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

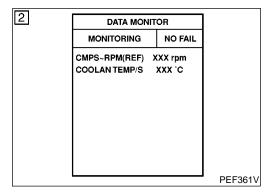
TERMI-WIRE **ITEM** CONDITION DATA (DC Voltage) NAL COLOR NO. 0 - Approximately 1.0V 2 [Engine is running] Front heated oxygen 50 В • After warming up to normal operating temperature sensor and engine speed is 2,000 rpm SEF008W



HA

SC

DTC P0134 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (HIGH VOLTAGE) KA24DE


On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the front heated oxygen sensor output is not inordinately high.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0134	 An excessively high voltage from the sensor is sent to	 Harness or connectors
0412	ECM.	(The sensor circuit is open or shorted.) Front heated oxygen sensor

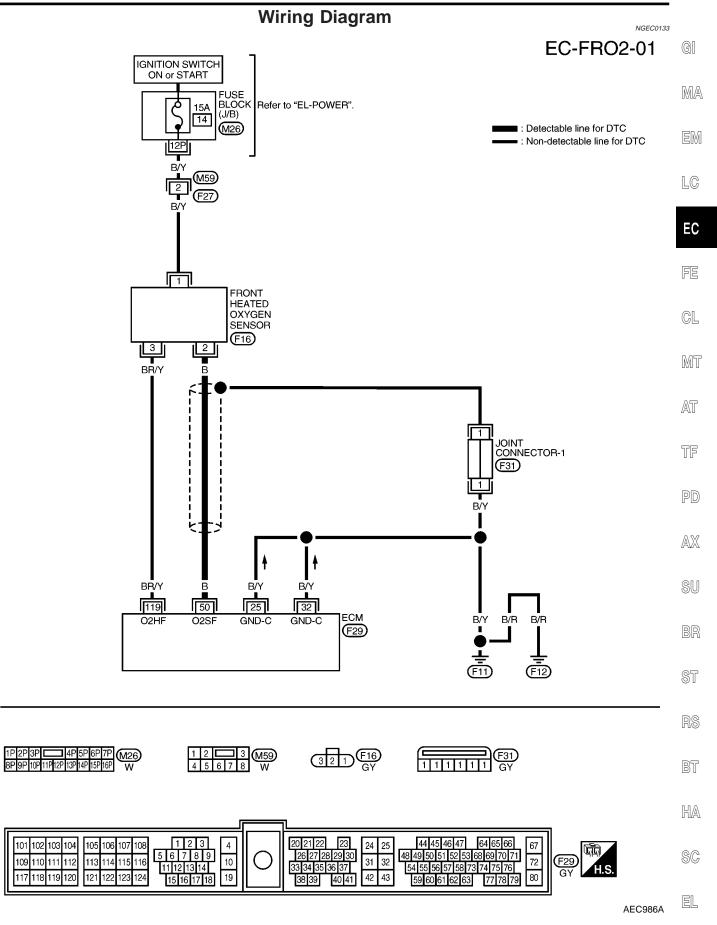
DTC Confirmation Procedure

NOTOMA

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(II) With CONSULT-II

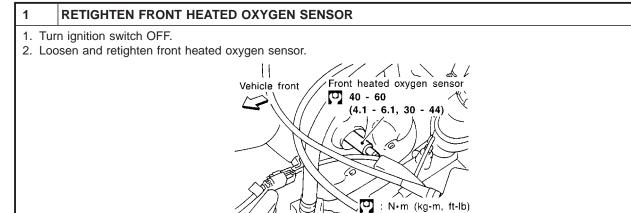

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Restart engine and let it idle for 35 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-226.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Restart engine and let it idle for 35 seconds.
- 4) Turn ignition switch OFF and wait at least 5 seconds.
- 5) Restart engine and let it idle for 35 seconds.
- 6) Select "MODE 3" with GST.
- 7) If DTC is detected, go to "Diagnostic Procedure", EC-226.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

DTC P0134 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (HIGH VOLTAGE) KA24DE

Wiring Diagram

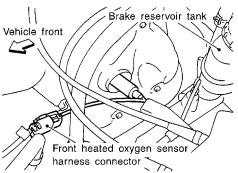


EC-225

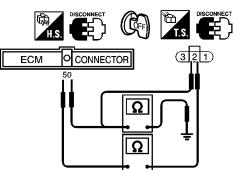
Diagnostic Procedure

NGEC0134

SEF332V


Tightening torque:

40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)


GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

1. Disconnect front heated oxygen sensor harness connector and ECM harness connector.

2. Check harness continuity between ECM terminal 50 and terminal 2.

SEF141V

SEF331V

Continuity should exist.

- 3. Check harness continuity between ECM terminal 50 (or terminal 2) and ground. Continuity should not exist.
- 4. Also check harness for short to power.

OK or NG

OK		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0134 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (HIGH VOLTAGE) KA24DE

Diagnostic Procedure (Cont'd)

3	CHECK HARNES	s co	NNECTOR		
Check front heated oxygen sensor harness connector for water. Water should not exist.		GI			
			OK or NG		ממו
OK (V	Vith CONSULT-II)	•	GO TO 4.		M
OK (W	Vithout CONSULT-	•	GO TO 5.		EN
NG		•	Repair or replace harness connector.		1
					LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

DTC P0134 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (HIGH VOLTAGE)

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

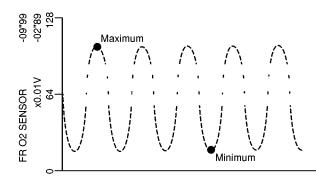
4

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "FR O2 SENSOR" and "FR O2 MNTR" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MON	NITOR
MONITORING	NO FAIL
CMPS-RPM(REF)	XXX rpm
MAS AIR/FL SE	XXX V
COOLAN TEMP/S	XXX °C
FR O2 SENSOR	XXX V
FR O2 MNTR	LAEN
INJ PULSE	XXX msec

PEF084P

- 6. Check the following.
- "FR O2 MNTR" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:


cycle | 1 | 2 | 3 | 4 | 5 |
FR O2 MNTR R-L-R-L-R-L-R-L-R

SEF947V

R = "FR O2 MNTR", "RICH" L = "FR O2 MNTR", "LEAN"

- "FR O2 SENSOR" voltage goes above 0.6V at least once.
- "FR O2 SENSOR" voltage goes below 0.3V at least once.
- "FR O2 SENSOR" voltage never exceeds 1.0V.

SPREADSHEET						
REPLAY MODE		REPLAY	MODE			
NUMERICAL		SHOWT	RIGGER			
	CMPS-RPM	FR O2 SEN				
	rpm	٧				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				
XXX	XXX	XXX				

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

PEF736W

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NO
----	----	----

	OK •	•	GO TO 6.
N	IG 🕨	•	Replace front heated oxygen sensor.

DTC P0134 FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (HIGH VOLTAGE)

Diagnostic Procedure (Cont'd)

5 CHECK FRONT HEATED OXYGEN SENSOR (R) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground. MA CONNECTOR EC AEC873A 3. Check the following with engine speed held at 2,000 rpm constant under no load. Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). The maximum voltage is over 0.6V at least one time. GL • The minimum voltage is below 0.3V at least one time. • The voltage never exceeds 1.0V. **CAUTION:** MT • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner AT tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. OK or NG TF GO TO 6. OK NG Replace front heated oxygen sensor. PD 6 **CHECK SHIELD CIRCUIT** 1. Turn ignition switch OFF. 2. Remove joint connector-1. 3. Check the following. • Continuity between joint connector-1 terminal 1 and ground Joint connector-1 (Refer to "HARNESS LAYOUT", EL-272.) Continuity should exist. 4. Also check harness for short to ground and short to power. Then reconnect joint connector. OK or NG GO TO 7. OK NG Repair open circuit, short to ground or short to power in harness or connectors. 7 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128. **INSPECTION END** HA SC

Description

Description

SYSTEM DESCRIPTION

NGEC0136

NGEC0136S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed	Front heated oxygen sensor heater con- trol	Front heated oxygen sensor heater

The ECM performs ON/OFF control of the front heated oxygen sensor heater corresponding to the engine operating condition.

OPERATION

NGEC0136S02

Engine speed	Front heated oxygen sensor heater
Above 3,000 rpm	OFF
Below 3,000 rpm	ON

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0137

MONITOR ITEM	CONDITION	SPECIFICATION
ED O2 HEATED	Engine speed: Below 3,000 rpm	ON
FR O2 HEATER	Engine speed: Above 3,000 rpm	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
119	IBR/Y I	Front heated oxygen sensor heater	[Engine is running] • Engine speed is below 3,000 rpm.	Approximately 0.4V
119			[Engine is running] • Engine speed is above 3,000 rpm.	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0139

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0135 0901	The current amperage in the front heated oxygen sensor heater circuit is out of the normal range. (An improper voltage drop signal is sent to ECM through the front heated oxygen sensor heater.)	Harness or connectors (The front heated oxygen sensor heater circuit is open or shorted.) Front heated oxygen sensor heater

DTC P0135 FRONT HEATED OXYGEN SENSOR HEATER

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NGEC0140

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(P) With CONSULT-II

EC

LC

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 6 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-233.

EC-233.

With GST

- 1) Start engine and run it for at least 6 seconds at idle speed.
- 2) Turn ignition switch OFF and wait least 6 seconds at idle speed.

3) Select "MODE 3" with GST.

- 4) If DTC is detected, go to "Diagnostic Procedure", EC-233.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

C

ΛSZ

MT

GL

TF

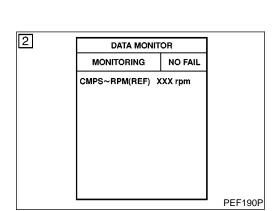
PD

SU

BR

ST

D@

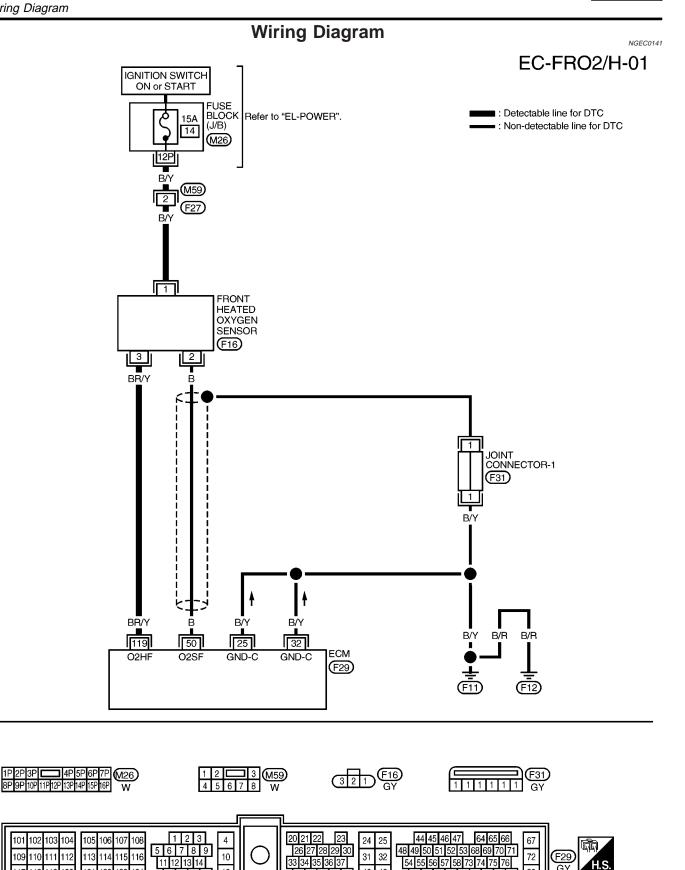

BT

HA

SC

EL

EC-231



112

120

110 111

AEC987A

43

DTC P0135 FRONT HEATED OXYGEN SENSOR HEATER

Diagnostic Procedure

NGEC0142

MA

LC

EC

FE

MT

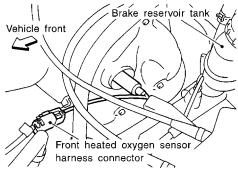
AT

TF

PD

ST

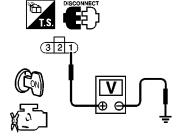
BT


HA

SC

CHECK POWER SUPPLY

2. Disconnect front heated oxygen sensor harness connector.



SEF331V

SEF213W

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- 15A fuse
- Harness for open or short between front heated oxygen sensor and 15A fuse

Repair harness or connectors.

CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between front heated oxygen sensor terminal 3 and ECM terminal 119. Refer to the wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

		NIO
UK	or	NG

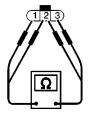
OK		GO TO 4.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

EL

DTC P0135 FRONT HEATED OXYGEN SENSOR HEATER

KA24DE

Diagnostic Procedure (Cont'd)


CHECK FRONT HEATED OXYGEN SENSOR HEATER

Check resistance between terminals 3 and 1.

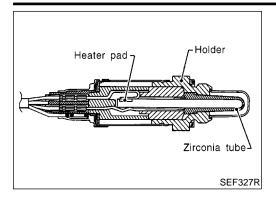
SEF220W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 5.
NG •	Replace front heated oxygen sensor.

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

Component Description

Component Description

The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

NOFCO445

MA

LC

EC

FE

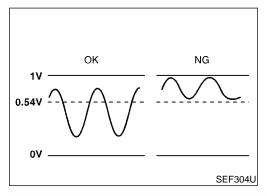
MT

AT

TF

PD

AX


Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
RR O2 SENSOR	Engine: After warming up	rnm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
RR O2 MNTR			LEAN ←→ RICH

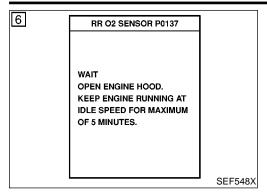
ECM Terminals and Reference Value

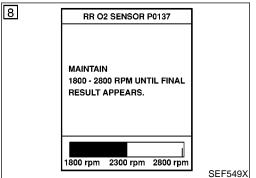
Specification data are reference values and are measured between each terminal and 43 (ECM ground).

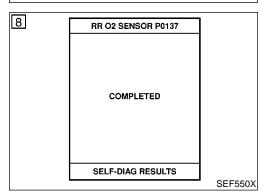
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Rear heated oxygen sensor	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly 	0 - Approximately 1.0V

On Board Diagnosis Logic

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the minimum voltage of the sensor is sufficiently low during various driving conditions such as fuel-cut.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)	BT
P0137 0511	The minimum voltage from the sensor does not reach the specified voltage.	Harness or connectors (The sensor circuit is open or shorted.) Rear heated oxygen sensor	HA
		Fuel pressure Injectors	SC


ĒĻ


 \mathbb{N}

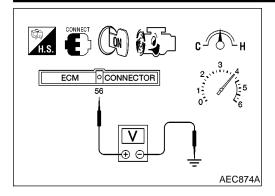
EC-235

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0148

NOTE:


If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure the "COOLANT TEMP/S" is more then 70°C (158°F).
- Select "RR O2 SEN P0137", of "REAR O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- Make sure the "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-239.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less then 70°C 158°F.
- b) Turn ignition switch ON
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Perform from step 6) again when the "COOLANT TEMP/S" reach to 70°C 158°F.

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
- (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running. Set voltmeter probes between ECM terminals 56 (Rear heated oxygen sensor signal) and ECM ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)
 - The voltage should be below 0.54V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.
 - The voltage should be below 0.54V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-239.

MA

EC

GL

MT

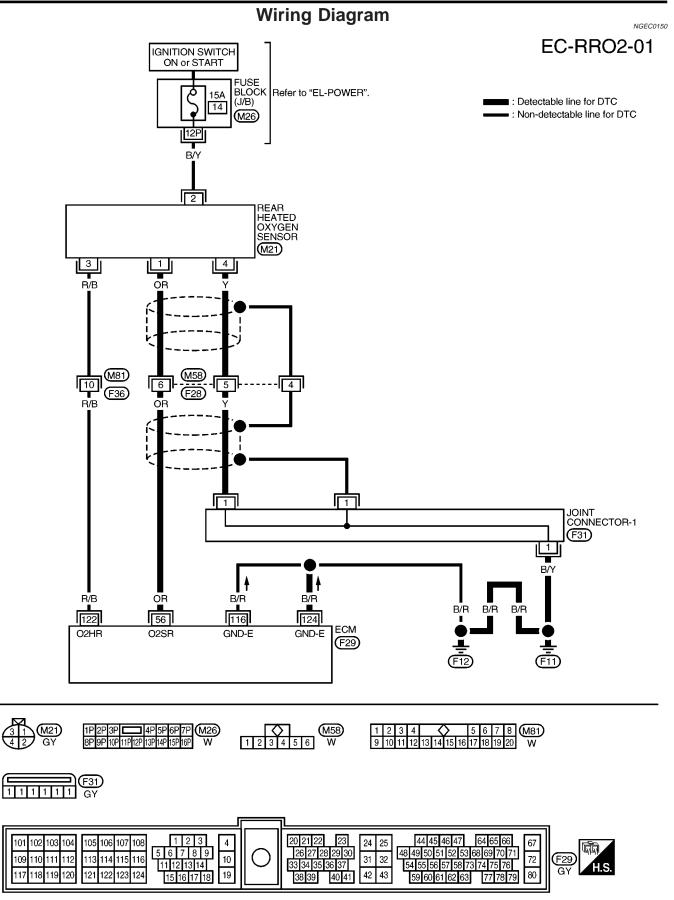
AT

PD

TF

AX

SU


ST

BT

HA

SC

EL

Diagnostic Procedure

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground F12 Engine ground F12 Vehicle front SEF325V

GO TO 2.

Diagnostic Procedure (Cont'd)

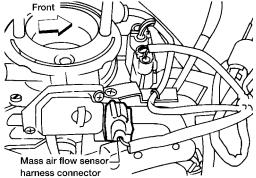
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST		
100 %		
ì		
XXX rpm		
xxx .c		
xxx v		
XXX %		


SEF165X

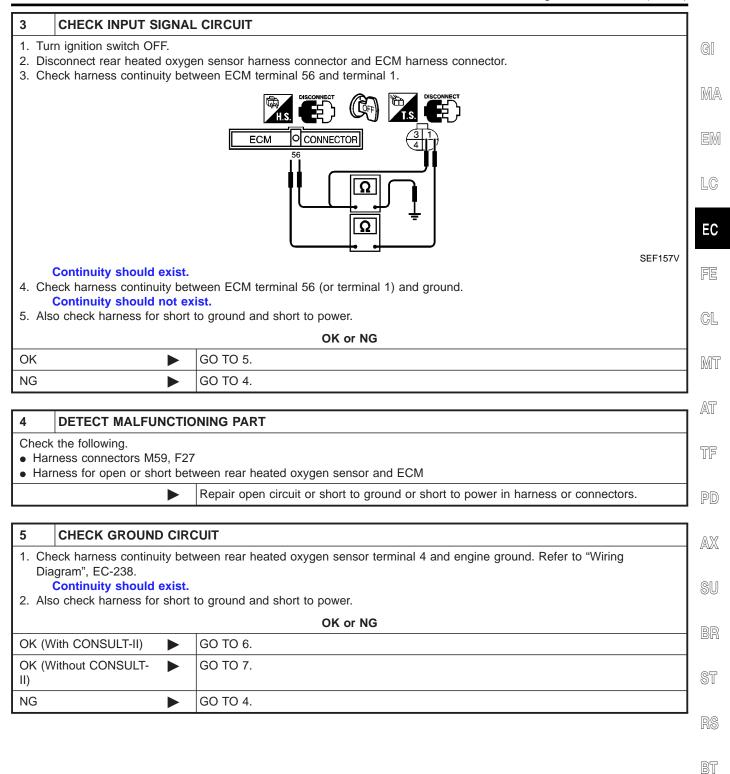
4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A


- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-67.
- 7. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0114 detected? Is it difficult to start engine?

Yes or No

ı	Yes	Perform trouble diagnosis for DTC P0172. Refer to EC-286.
	No •	GO TO 3.

Diagnostic Procedure (Cont'd)

HA

SC

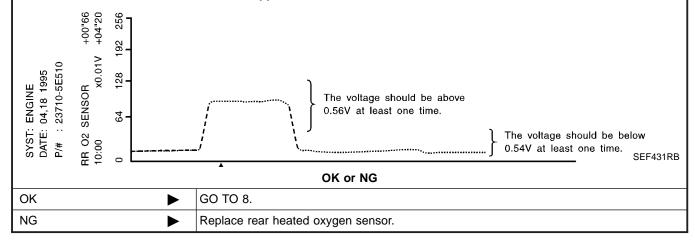
Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR

(P) With CONSULT-II

6

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SENSOR" as the monitor item with CONSULT-II.
- 4. Check "RR O2 SENSOR" at idle speed when adjusting "FUEL INJECTION" to ±25%.


ACTIVE TEST		
FUEL INJECTION	25 %	
MONITOR		
CMPS~RPM(REF)	XXX rpm	
FR O2 SENSOR	xxx v	
RR O2 SENSOR	xxx v	
FR O2 MNTR	RICH	
RR O2 MNTR	RICH	

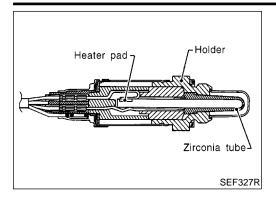
PEF102P

"RR O2 SENSOR" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SENSOR" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

Diagnostic Procedure (Cont'd)


7 CHECK REAR HEATED OXYGEN SENSOR (R) Without CONSULT-II 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. 2. Stop vehicle with engine running. 3. Set voltmeter probes between ECM terminals 56 (Rear heated oxygen sensor signal) and ECM ground. MA OCONNECTOR EC AEC874A 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.56V at least once. If the voltage is above 0.56V at step 4, step 5 is not necessary. 5. Check the voltage when revving up to 5,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position. MT The voltage should be below 0.54V at least once. **CAUTION:** Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto AT a hard surface such as a concrete floor; use a new one. Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. TF OK or NG GO TO 8. OK PD NG Replace rear heated oxygen sensor. AX **CHECK SHIELD CIRCUIT** 8 1. Turn ignition switch OFF. 2. Disconnect harness connectors F27. 3. Check harness continuity between harness connector F27 terminal 14 and ground. SEF158V Continuity should exist. 4. Also check harness for short to ground and short to power. HA 5. Then reconnect harness connectors. OK or NG SC OK GO TO 10. NG GO TO 9.

Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIO	TECT MALFUNCTIONING PART	
Join	Check the following. • Joint connector-1 (Refer to "HARNESS LAYOUT", <i>EL-272</i> .) • Harness for open or short between harness connector F27 and engine ground		
	•	Repair open circuit, short to ground or short to power in harness or connectors.	

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	>	INSPECTION END	

Component Description

Component Description

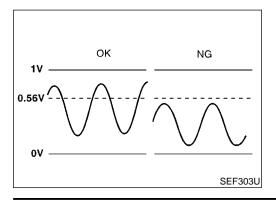
The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode


Specification data are reference values.

MONITOR ITEM	ONITOR ITEM CONDITION		SPECIFICATION
RR O2 SENSOR	- Engine: After warming up	rom	0 - 0.3V ←→ Approx. 0.6 - 1.0V
RR O2 MNTR	Engine: After warming up		LEAN ←→ RICH

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Rear heated oxygen sensor	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly 	0 - Approximately 1.0V

On Board Diagnosis Logic

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the maximum voltage of the sensor is sufficiently high during various driving conditions such as fuel-cut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	Ē
P0138	The maximum voltage from the sensor does not reach	 Harness or connectors (The sensor circuit is open or shorted.) Rear heated oxygen sensor Fuel pressure Injectors Intake air leaks 	
0510	the specified voltage.		K

G[

MA

EM

LC

EC

NGEC0154

FE

CL

MT

AT

PD

TF

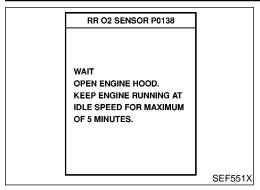
; SU

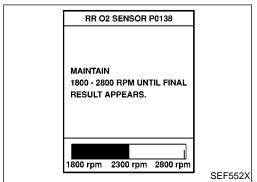
BR

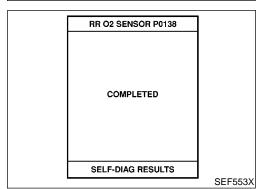
ST

RS

RT


BI


HA


00

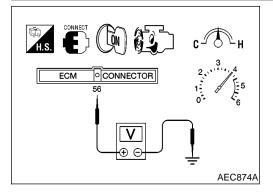
EL

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0157

NOTE:


If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure the "COOLANT TEMP/S" is more then 70°C (158°F).
- Select "RR O2 SEN P0138", of "REAR O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- Make sure the "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-249.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less then 70°C 158°F.
- b) Turn ignition switch ON.
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Perform from step 6) again when the 'COOLANT TEMP/S' reach to 70°C 158°F.

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

G[

CAUTION:

Always drive vehicle at a safe speed.

N Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 56 (Rear heated oxygen sensor signal) and ECM ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as possible.)
 - The voltage should be above 0.56V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position .
 - The voltage should be above 0.56V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-249.

EM

MA

EC

○□

CL

MT

AT

TF

PD

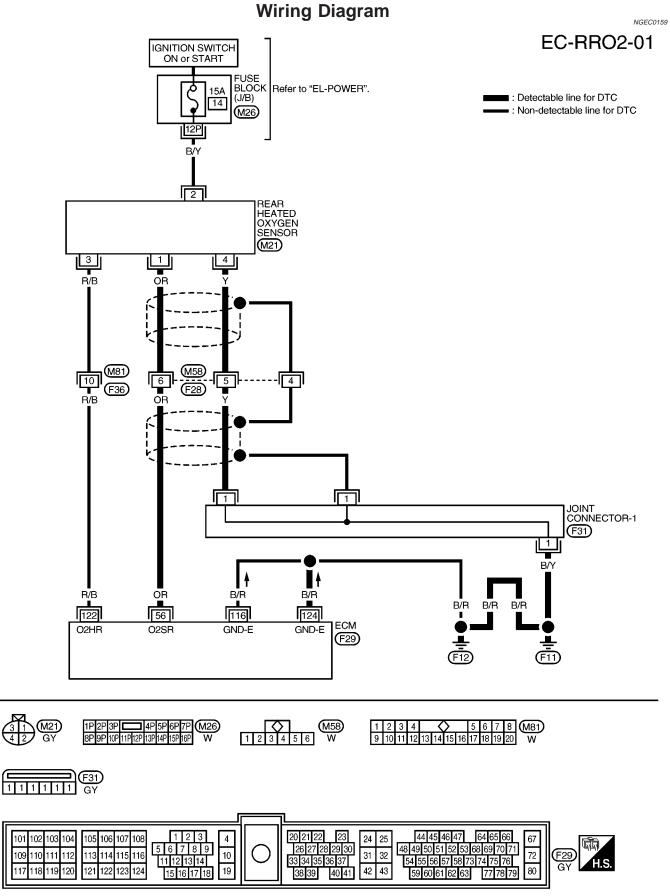
AX

SU

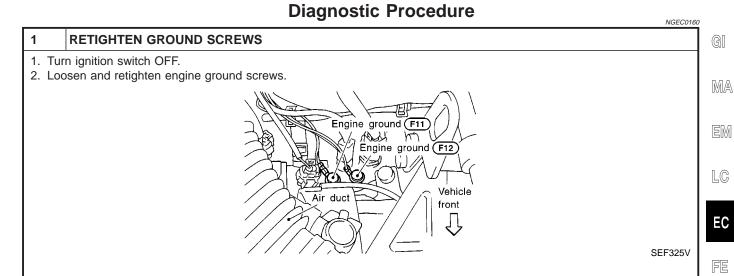
BR

ST

RS


BT

HA


SC

EL

 $\mathbb{D}\mathbb{X}$

Diagnostic Procedure

GO TO 2.

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

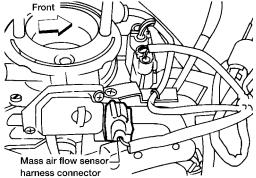
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST		
SELF-LEARN CONTROL	100 %	
MONITOR		
CMPS~RPM	XXX rpm	
COOLAN TEMP/S	XXX °C	
FR O2 SENSOR	xxx v	
A/F ALPHA	XXX %	


SEF165X

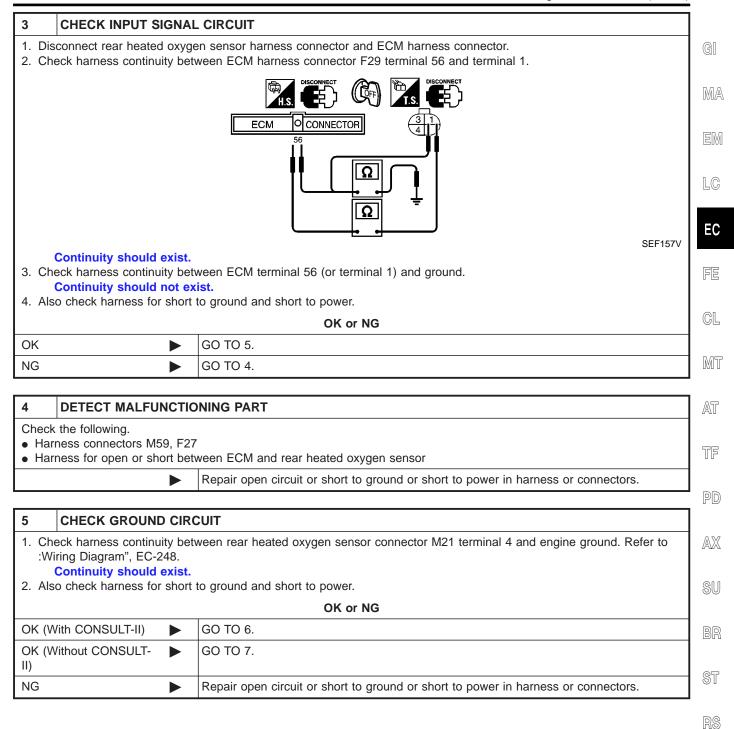
4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A


- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-67.
- 7. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0115 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171. Refer to EC-278.
No •	GO TO 3.

Diagnostic Procedure (Cont'd)

BT

HA

SC

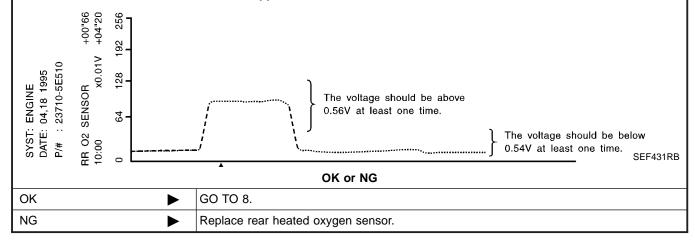
Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR

(P) With CONSULT-II

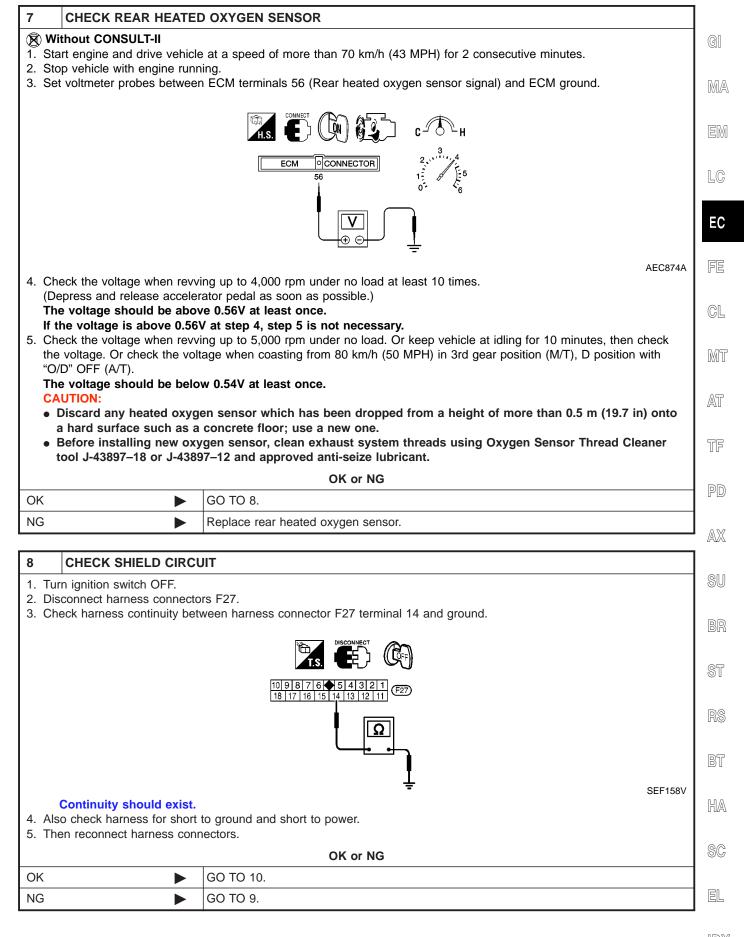
6

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SENSOR" as the monitor item with CONSULT-II.
- 4. Check "RR O2 SENSOR" at idle speed when adjusting "FUEL INJECTION" to ±25%.


25 %
XX rpm
(XX V
(XX V
RICH
RICH

PEF102P

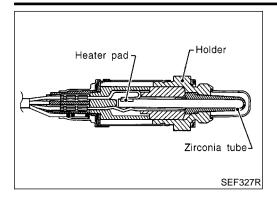
"RR O2 SENSOR" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SENSOR" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

DTC P0138 REAR HEATED OXYGEN SENSOR (REAR HO2S) (MAX. VOLTAGE MONITORING)

Diagnostic Procedure (Cont'd)


DTC P0138 REAR HEATED OXYGEN SENSOR (REAR HO2S) (MAX. VOLTAGE MONITORING) KA24DE

Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIONING PART		
Check the following.			
 Joint connector-1 (Refer to "HARNESS LAYOUT", <i>EL-262</i>.) Harness for open or short between harness connector F27 and engine ground 			
	•	Repair open circuit, short to ground or short to power in harness or connectors.	

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

Component Description

Specification data are reference values.

Component Description

The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas.

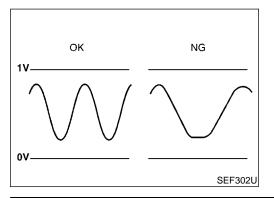
Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor

Mode


NGEC0163

21						
MONITOR ITEM	CON	DITION	SPECIFICATION			
RR O2 SENSOR	Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V			
RR O2 MNTR	Engine. After warming up	rpm	LEAN ←→ RICH			

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Rear heated oxygen sensor	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic

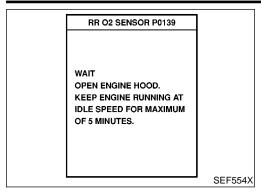
The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the switching response of the sensor's voltage is faster than specified during various driving conditions such as fuel-cut.

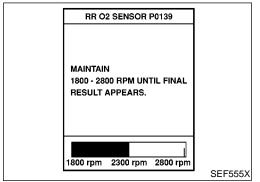
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	<u> </u>
P0139 0707	It takes more than the specified time for the sensor to respond between rich and lean.	 Harness or connectors (The sensor circuit is open or shorted.) Rear heated oxygen sensor Fuel pressure 	 H <i>P</i>
		Injectors Intake air leaks	\$(

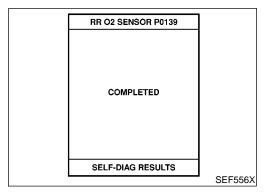
LC

EC

MT


AT


TF


PD

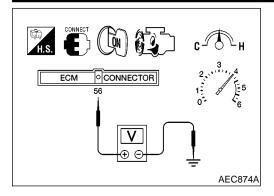
AX

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0166

NOTE:


If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure the "COOLANT TEMP/S" is more then 70°C (158°F).
- Select "RR O2 SEN P0139", of "REAR O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- Make sure the "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-259.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less then 70°C 158°F.
- b) Turn ignition switch ON
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Perform from step 6) again when the 'COOLANT TEMP/S" reach to 70°C 158°F.

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

GI

CAUTION:

Always drive vehicle at a safe speed.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 56 (Rear heated oxygen sensor signal) and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
- (Depress and release accelerator pedal as soon as possible.)
 The voltage should change at more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.
 - The voltage should change at more than 0.06V for 1 second during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-259.

CL

MT

AT

PD

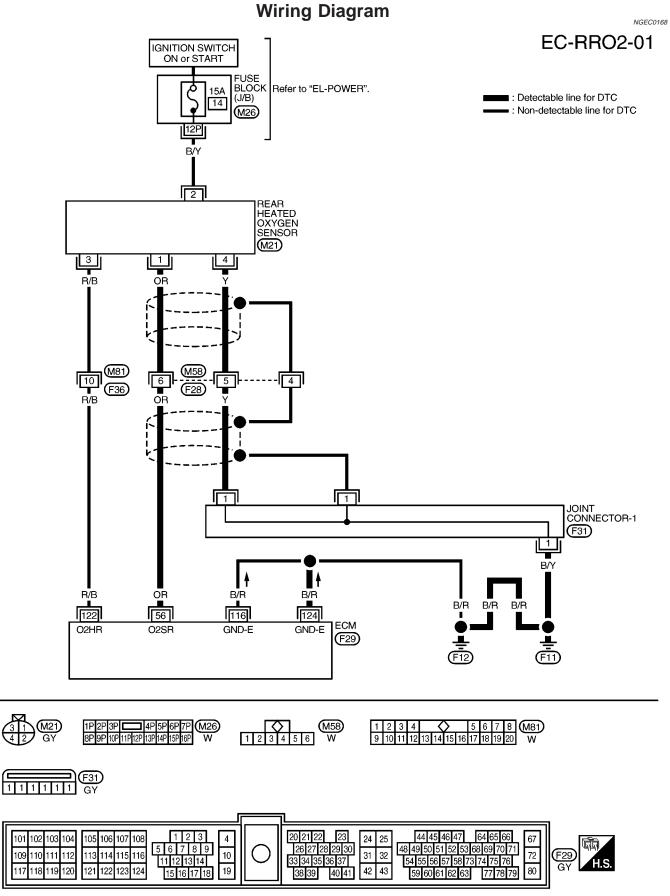
TF

SU

BR

ST

RS


BT

HA

SC

EL

Wiring Diagram

Diagnostic Procedure

Diagnostic Procedure

NGEC0169

MA

EM

LC

EC

FE

CL

MT

AT

TF

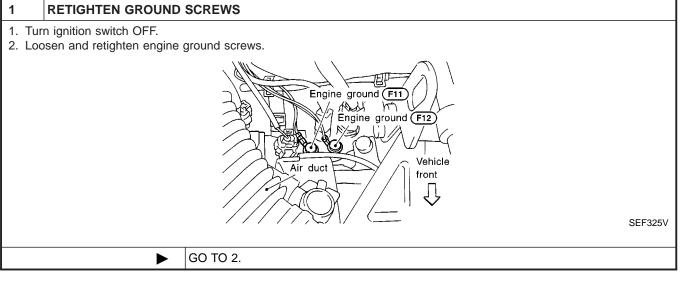
PD

AX

SU

BR

ST


RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

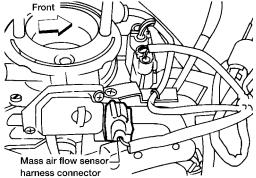
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST			
100 %			
1			
XXX rpm			
xxx .c			
xxx v			
XXX %			


SEF165X

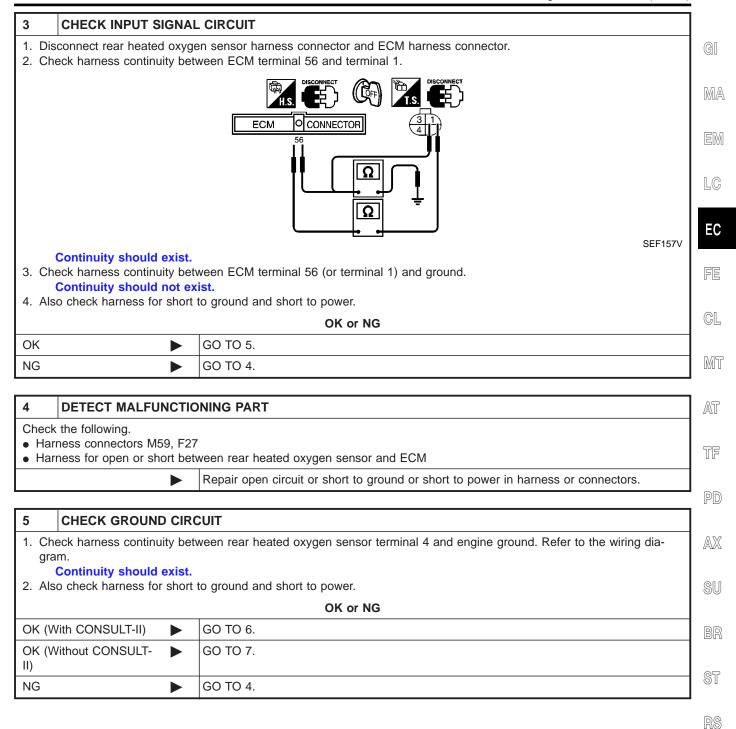
4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A


- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure diagnostic trouble code No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-67.
- 7. Make sure diagnostic trouble code No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0114 or 0115 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171 or P0172. Refer to EC-278 or EC-286.
No •	GO TO 3.

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

BT

HA

SC

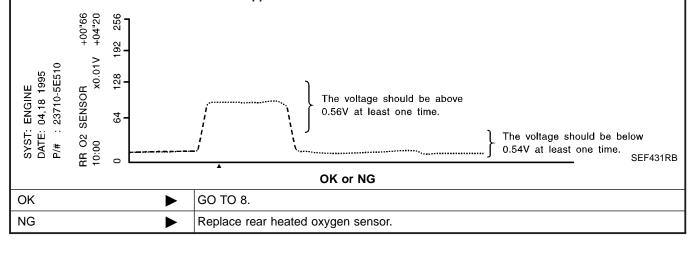
Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR

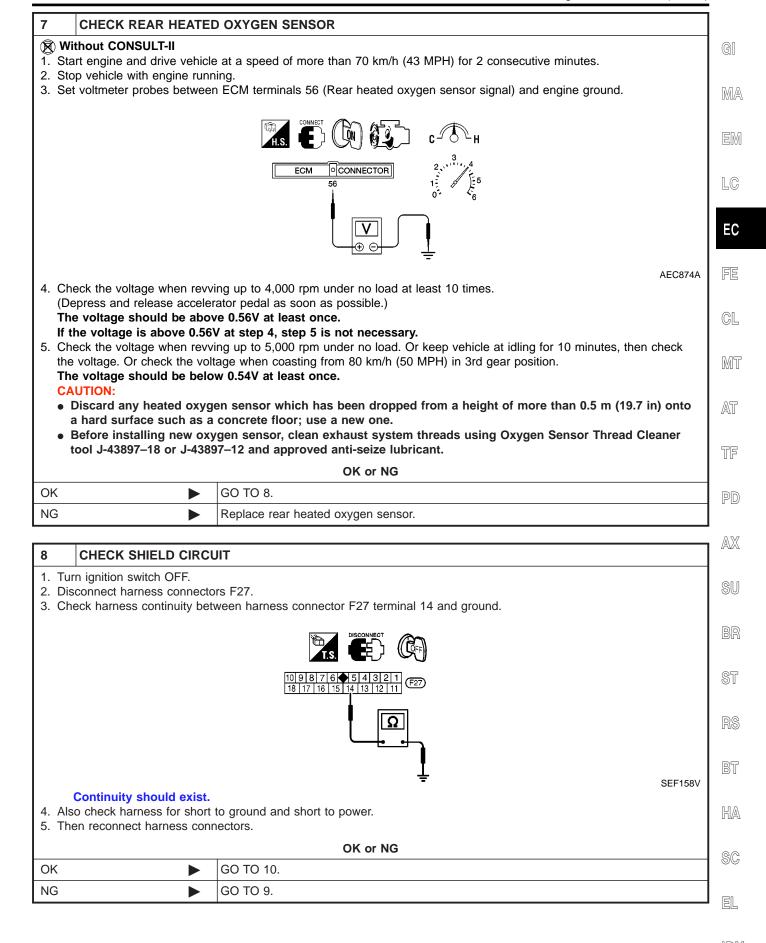
(P) With CONSULT-II

6

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SENSOR" as the monitor item with CONSULT-II.
- 4. Check "RR O2 SENSOR" at idle speed when adjusting "FUEL INJECTION" to ±25%.


n

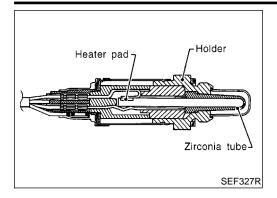
PEF102P


"RR O2 SENSOR" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SENSOR" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Diagnostic Procedure (Cont'd)



Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIONING PART		
Check the following. Joint connector-1 (Refer to "HARNESS LAYOUT", <i>EL-272</i> .) Harness for open or short between harness connector F27 and engine ground			
	•	Repair open circuit, short to ground or short to power in harness or connectors.	

10	CHECK INTERMITTENT INCIDENT			
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.				
	► INSPECTION END			

KA24DE Component Description

Component Description

The rear heated oxygen sensor (Rear HO2S), after three way catalyst, monitors the oxygen level in the exhaust gas.

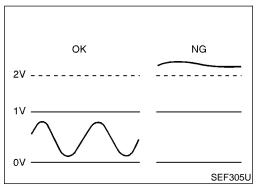
Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

110500170


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
RR O2 SENSOR	i ● Engine: Aiter warming up	rom	0 - 0.3V ←→ Approx. 0.6 - 1.0V
RR O2 MNTR			LEAN ←→ RICH

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Rear heated oxygen sensor	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether or not the voltage is too high during various driving conditions such as fuel-cut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	•
P0140 0512	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Rear heated oxygen sensor 	

IVII

LC

EC

GL

FE

MT

AT

TF

PD

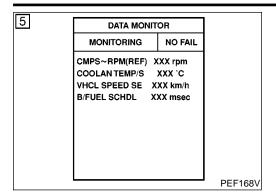
AX

SU

BR

ST

BT


HA

SC

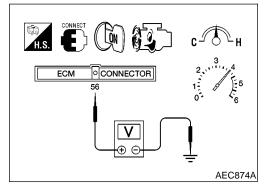
KA24DE

NGEC0175

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

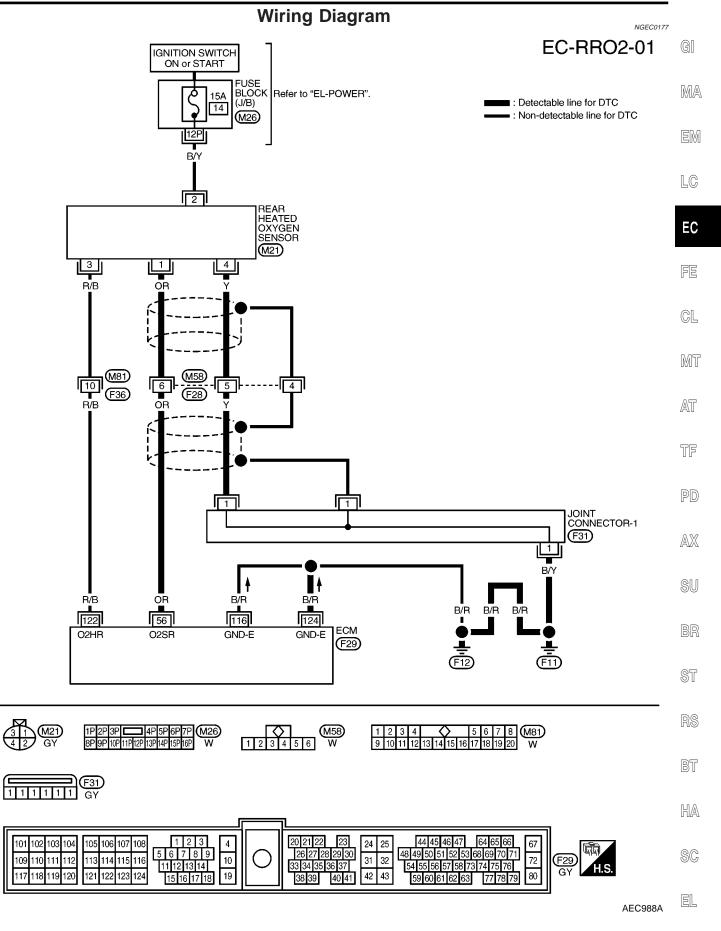
(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Maintain the following conditions for at least 5 consecutive seconds.

CMPS-RPM (REF)	1,400 - 3,200 rpm
VHCL SPEED SE	64 - 120 km/h (40 - 75 MPH)
B/FUEL SCHDL	0.5 - 4.8 msec (A/T) 0.5 - 5.2 msec (M/T)
COOLAN TEMP/S	70 - 100°C (158 - 212°F)
Selector lever	Suitable position

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-268.

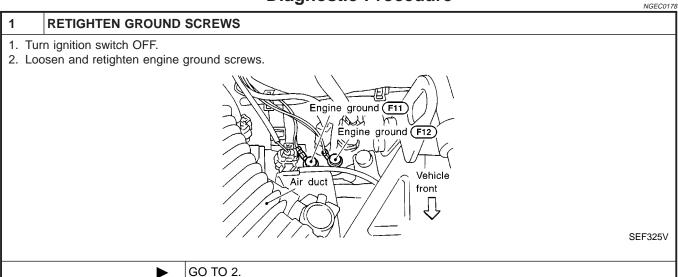
Overall Function Check


NGEC017

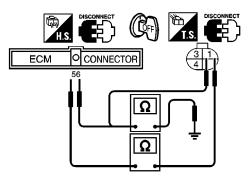
Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 56 (Rear heated oxygen sensor signal) and ECM ground.
- 4) Check the voltage after revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)


 The voltage should be below 2V during this procedure.
- 5) If NG, go to "Diagnostic Procedure", EC-268.

Diagnostic Procedure


KA24DE

Diagnostic Procedure

2 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect rear heated oxygen sensor harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal 56 and terminal 1.

SEF157V

Continuity should exist.

- 3. Check harness continuity between ECM terminal 56 (or terminal 1) and ground.

 Continuity should not exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between rear heated oxygen sensor and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

KA24DE

Diagnostic Procedure (Cont'd)

4	CHECK GROUND CIRC	UIT]
Dia	gram", EC-267. Continuity should exist.	veen rear heated oxygen sensor terminal 4 and engine ground. Refer to "Wiring o ground and short to power.	GI MA
		OK or NG	0000
OK	•	GO TO 5.	l em
NG	>	GO TO 4.	

5	CHECK HARNES	s co	DNNECTOR	l ^{LC}
	k rear heated oxygen r should not exist.	sens	sor harness connector for water.	EC
			OK or NG	
OK (V	Vith CONSULT-II)		GO TO 6.	FE
OK (V II)	Vithout CONSULT-	>	GO TO 7.	Cl
NG			Repair or replace harness connector.	

MT

AT

TF PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

KA24DE

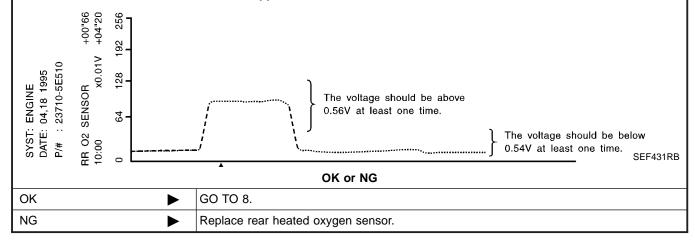
Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR

(P) With CONSULT-II

6

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SENSOR" as the monitor item with CONSULT-II.
- 4. Check "RR O2 SENSOR" at idle speed when adjusting "FUEL INJECTION" to ±25%.

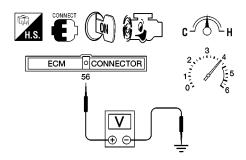

%
rpm
χV
χV
СН
СН

PEF102P

"RR O2 SENSOR" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SENSOR" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.


KA24DE

Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR

(Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminals 56 (Rear heated oxygen sensor signal) and ECM ground.

AEC874A

4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

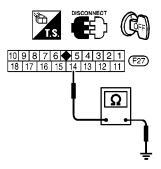
The voltage should be above 0.56V at least once.

If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Check the voltage when revving up to 5,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.

The voltage should be below 0.54V at least once.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 8.
NG ►	Replace rear heated oxygen sensor.

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors F27.
- 3. Check harness continuity between harness connector F27 terminal 14 and ground.

SEF158V

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect harness connectors.

	V	0 F	Ν	C
U	n	or	IN	G

OK •	GO TO 10.
NG ►	GO TO 9.

 $\mathbb{D}\mathbb{X}$

EC-271

(6

MA

EM

LC

EC

|-

FE

GL

MT

AT

TF

PD

и w ч

5U

١١١١

51

RS

BT

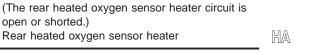
ппΔ

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)


9	DETECT MALFUNCTIO	NING PART
Check	the following.	
	`	ARNESS LAYOUT", <i>EL-272</i> .)
• Har	ness for open or short bety	ween harness connector F27 and engine ground
		Renair open circuit, short to ground or short to power in harness or connectors

10	CHECK INTERMITTENT	INCIDENT
Perfor	rm "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-128.
	•	INSPECTION END

DTC P0141 REAR HEATED OXYGEN SENSOR HEATER

SYSTE	M DESC	RIPTION	Descript	ion			NGEC01.
	S	ensor	Input Signa	al to ECM	ECM func-		Actuator
Camshaft position sensor		Engine speed		Rear heated oxygen sensor heater con- trol	heat	heated oxygen sensor er	
speed.		ns ON/OFF control of	of the rear heate	ed oxygen s	sensor heater	corre	sponding to the engine
OPERA	TION			Г			NGEC0180Si
		Engine condition			Rear heated ox	ygen s	ensor heater
		Ignition switch ON Engine stopped		OFF			
		Engine is running.		ON			
Specifica	ation data						
	OR ITEM	are reference value Engine speed: Idle [Af (43 MPH) or more]	CONDITION	utes at a spee	nd of 70 km/h)N	SPECIFICATION NGECO1.
MONITO			CONDITION ter driving for 2 min	utes at a spee)N)FF	
RR 02 H	IEATER	Engine speed: Idle [Af (43 MPH) or more]	CONDITION ter driving for 2 min gine stopped) ECM Ter	minals a	and Refere	nce	SPECIFICATION Value
RR O2 H	IEATER	 Engine speed: Idle [Af (43 MPH) or more] Ignition switch ON (En 	CONDITION ter driving for 2 min gine stopped) ECM Ter	minals a	and Refere	nce	SPECIFICATION Value
RR O2 H Specifica TERMI- NAL	ation data	Engine speed: Idle [Af (43 MPH) or more] Ignition switch ON (En are reference value) ITEM Rear heated oxygen sen	condition ter driving for 2 min gine stopped) ECM Ter s and are meas [Engine is run • After driving	condition of the condit	and Refere	nce nal an	Value d 32 (ECM ground).
RR O2 H Specifica TERMI- NAL NO.	ation data WIRE COLOR	Engine speed: Idle [Af (43 MPH) or more] Ignition switch ON (En are reference value) ITEM	condition ter driving for 2 min gine stopped) ECM Ter s and are meas [Engine is run • After driving	conditions and a conditions are conditions and conditions are conditionally conditions are conditionally conditions are conditionally conditionally conditions are conditionally conditionally conditions are conditionally conditionally conditions are conditionally condintionally conditionally conditionally conditionally conditionally	and Refere en each termin	nce nal an	Value d 32 (ECM ground). DATA (DC Voltage)
RR O2 H Specifica TERMI- NAL NO.	ation data WIRE COLOR	Engine speed: Idle [Af (43 MPH) or more] Ignition switch ON (En are reference value) ITEM Rear heated oxygen sen	CONDITION ter driving for 2 min gine stopped) ECM Ter s and are meas [Engine is run • After driving (43 MPH) or [Ignition switc • Engine stopp	conditions and conditions are conditions and conditions are conditional conditions.	and Refere en each termin	nce nal an	Value d 32 (ECM ground). DATA (DC Voltage) Approximately 0.4V BATTERY VOLTAGE

BT

SC

• Harness or connectors

• Rear heated oxygen sensor heater

open or shorted.)

• The current amperage in the rear heated oxygen sensor

(An improper voltage drop signal is sent to ECM through

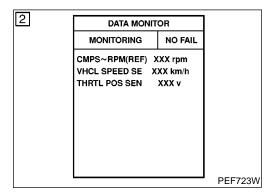
heater circuit is out of the normal range.

the rear heated oxygen sensor heater.)

P0141

0902

DTC Confirmation Procedure


NGEC0184

NOTE:

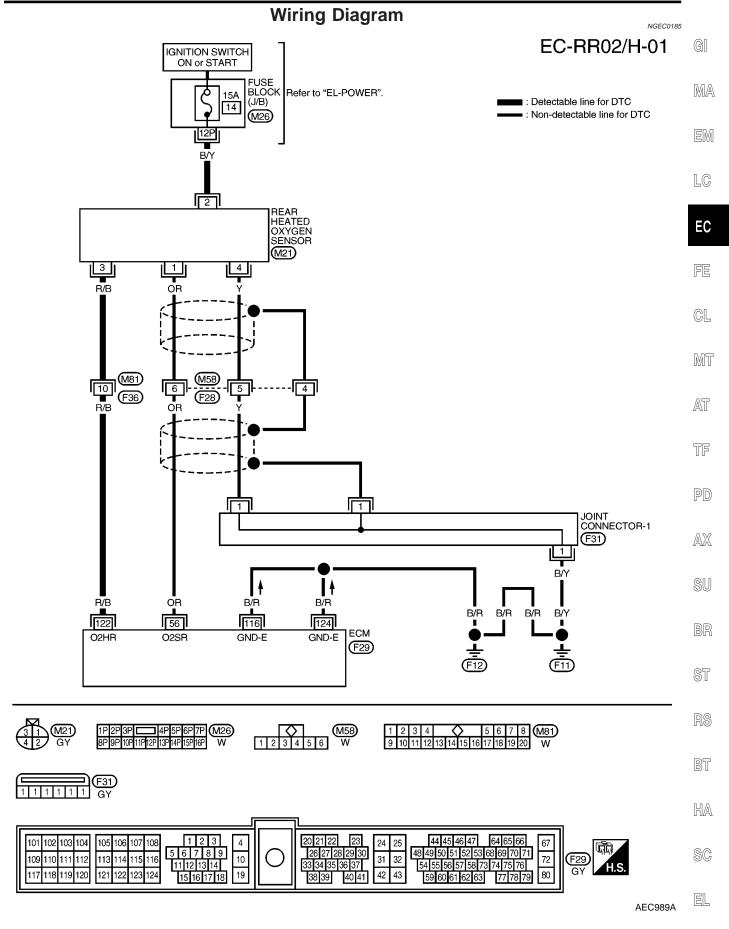
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is in between 10.5V at idle.

(P) With CONSULT-II

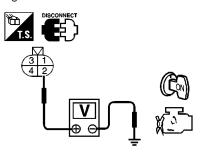
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-276.


With GST

- 1) Start engine.
- Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) Stop vehicle and let engine idle for at least 6 seconds.
- 4) Turn ignition switch OFF and wait at least 10 seconds.
- 5) Start engine.
- 6) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes
- Stop vehicle and let engine idle for at least 6 seconds.
- 8) Select "MODE 3" with GST.
- 9) If DTC is detected, go to "Diagnostic Procedure", EC-276.

When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

DTC P0141 REAR HEATED OXYGEN SENSOR HEATER


Diagnostic Procedure

Diagnostic Procedure

NGEC0186

1 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect rear heated oxygen sensor harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 2 and ground.

OK or NG

Voltage: Battery voltage

SEF218W

OK	GO TO 3.	

NG GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- 15A fuse
- Harness for open or short between rear heated oxygen sensor and 15A fuse

Repair harness or connectors.

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between rear heated oxygen sensor terminal 3 and ECM terminal 122. Refer to the wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

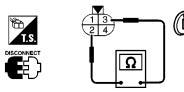
OK or NG

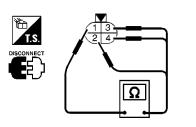
OK •	GO TO 5.
NG ▶	GO TO 4.

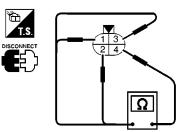
4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- Harness for open or short between rear heated oxygen sensor heater and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.


DTC P0141 REAR HEATED OXYGEN SENSOR HEATER


Diagnostic Procedure (Cont'd)


5 CHECK REAR HEATED OXYGEN SENSOR HEATER

Check the following.

1. Check resistance between terminals 2 and 3.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

2. Check continuity.

Terminal No.	Continuity
1 and 2, 3, 4	No
4 and 1, 2, 3	140

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG	
----	----	----	--

OK •	GO TO 6.
NG •	Replace rear heated oxygen sensor.

6	CHECK INTERMITTENT	T INCIDENT	R
Perforr	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-128.	
	•	INSPECTION END	B

EC-277

GI

MA

LC

EC

FE

GL

MT

AT

SEF221W

MTBL0330

TF

PD

AX

SU

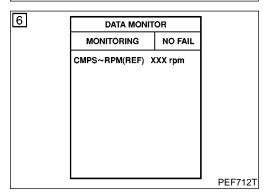
ST

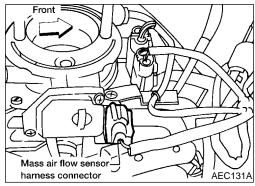
3T

HA

SC

EL


On Board Diagnosis Logic


With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the front heated oxygen sensor. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Front heated oxygen sensor	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection & mixture ratio	Injectors

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0171 0115	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Front heated oxygen sensor Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor

[4]	ACTIVE TES	Т	
	SELF~LEARN CONTROL	100 %	
	MONITOR		
	COMP~LEARN	XXX rpm	
	COOLAN TEMP/S	XXX °C	
	FR O2 SENSOR	xxx v	
	A/F ALPHA	XXX %	
			PEF737W

DTC Confirmation Procedure

NGEC0189

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(II) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "ACTIVE TEST" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-281.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-281. If engine does not start, visually check for exhaust and intake air leak.

® With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- S) Select "MODE 4" with GST and erase the 1st trip DTC P0100.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

DTC Confirmation Procedure (Cont'd)

- Start engine again and run it for at least 10 minutes at idle speed.
- Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-281.

- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-281. If engine does not start, visually check for exhaust and intake air leak.

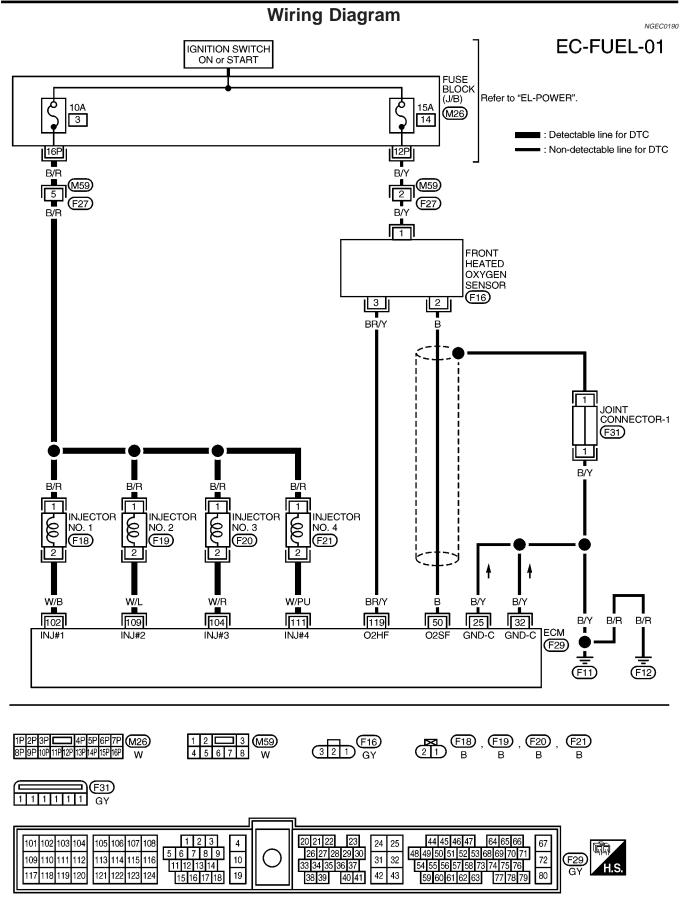
No Tools

- LC
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- EC
- Stop engine and reconnect mass air flow sensor harness connector.
- 5) Turn ignition switch OFF.
- Perform Diagnostic Test Mode II (Self-diagnostic results) with ECM. Make sure 1st trip DTC 0102 is detected.
- Erase the 1st trip DTC 0102 by changing from Diagnostic Test Mode II to Diagnostic Test Mode I. Refer to "How to Erase DTC (No Tools)", EC-68.
 - MT
- 8) Perform Diagnostic Test Mode II (Self-diagnostic results) with ECM. Make sure DTC 0505 is detected.

TF

- Start engine again and run it for at least 10 minutes at idle speed. The 1st trip DTC 0115 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-281.
- 10) If it is difficult to start engine at step 9, the fuel injection sys-
- tem also has a malfunction. 11) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-281. If engine does not start, visually check for exhaust and intake air leak.

ST


BT

HA

SC

EL

KA24DE

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE Diagnostic Procedure

Diagnostic Procedure

NGEC0191

GI

MA

EM

LC

EC

FE

CL

PD

 $\mathbb{A}\mathbb{X}$

SU

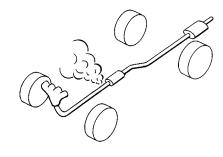
BR

ST

RS

BT

HA


SC

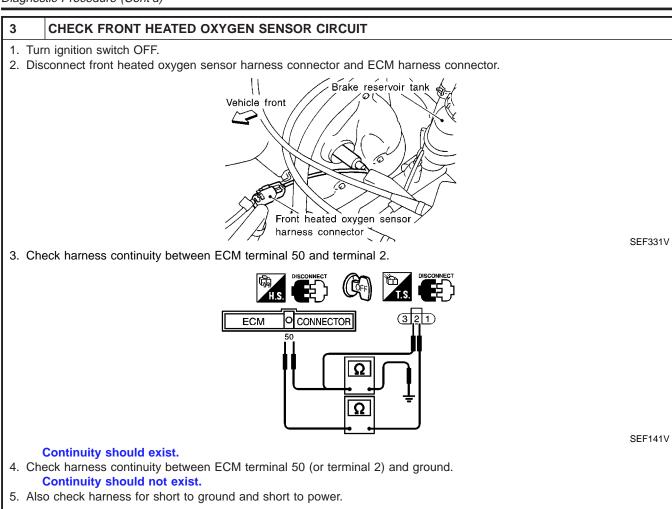
EL

 Start engine and run it at idle 	1.	Start	engine	and	run	it	at idle	٠.
---	----	-------	--------	-----	-----	----	---------	----

2. Listen for an exhaust air leak before three way catalyst.

CHECK EXHAUST AIR LEAK

	SEF099P
OK or NG	


OK •	GO TO 2.
NG ►	Repair or replace.

2	CHECK FOR INTAKE A	IR LEAK	MT
Listen	for an intake air leak betw	een the mass air flow sensor and the intake manifold.	AST
		OK or NG	AT
OK	•	GO TO 3.	l
NG	>	Repair or replace.	TF

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

Diagnostic Procedure (Cont'd)

	J	•
		OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4	CHECK FUEL PRESSU	RE		
Re 2. Ins	 Release fuel pressure to zero. Refer to EC-40. Install fuel pressure gauge and check fuel pressure. At idling: When fuel pressure regulator valve vacuum hose is connected. 235 kPa (2.4 kg/cm², 34 psi) 			
	When fuel pressure regulator valve vacuum hose is disconnected. 294 kPa (3.0 kg/cm², 43 psi)			
	OK or NG			
OK	>	GO TO 6.		
NG	•	GO TO 5.		

5	DETECT MALFUNCTIO	NING PART
Check the following. Fuel pump and circuit Refer to EC-561. Fuel pressure regulator Refer to EC-41. Fuel lines Refer to "ENGINE MAINTENANCE", MA-20. Fuel filter for clogging		
	•	Repair or replace.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

Diagnostic Procedure (Cont'd)

6	CHECK MASS AIR FLOW SENSOR			
	th CONSULT-II	1 (
	ort engine and warm it up to normal operating temperature. eck "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.	ı		
	at idling: 0.9 - 5.8 g-m/sec			
	at 2,500 rpm: 7.5 - 13.2 g·m/sec			
⊕ Wi	th GST	1		
1. Sta	art engine and warm it up to normal operating temperature.	l		
	eck mass air flow sensor signal in MODE 1 with GST.			
	at idling: 0.9 - 5.8 g·m/sec at 2,500 rpm: 7.5 - 13.2 g·m/sec			
NOS NO	Tools			
	art engine and warm it up to normal operating temperature.	▮▝		
	eck voltage between ECM terminal 47 (Mass air flow sensor signal) and ground. at idling: 0.9 - 1.8V			
	at 2,500 rpm: 1.9 - 2.3V			
	OK or NG			
OK	▶ GO TO 7.			
NG	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-136.			
	·	- //		

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

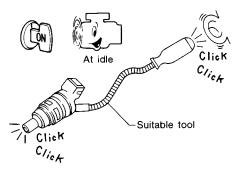
SEF167X

MEC703B

Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II


- 1. Install all parts removed.
- 2. Start engine.
- 3. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TEST				
XXX rpm				
xxx v				
XXX %				

4. Make sure that each circuit produces a momentary engine speed drop.

(R) Without CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK ▶	GO TO 8.
NG ►	Perform trouble diagnosis for "INJECTORS", EC-553.

8 REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- Remove injector with fuel tube assembly. Refer to EC-41.
 Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors should remain connected.

▶ GO TO 9.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

GI

MA

Diagnostic Procedure (Cont'd)

9 **CHECK INJECTOR** 1. Disconnect all ignition coil harness connectors. 2. Place pans or saucers under each injector. 3. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors. Fuel should be sprayed evenly for each cylinder.

		one.	
10	CHECK INTERMITTENT	T INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	•	INSPECTION END	

OK or NG

GO TO 10.

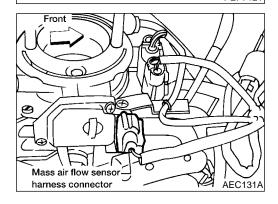
OK

NG

LC EC SEF595Q GL Replace injectors from which fuel does not spray out. Always replace O-ring with new MT AT TF PD $\mathbb{A}\mathbb{X}$ SU BR ST RS BT HA SC EL

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the front heated oxygen sensor. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).


Sensor	Input Signal to ECM	ECM func- tion	Actuator
Front heated oxygen sensor	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection & mixture ratio	Injectors

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0172 0114	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Front heated oxygen sensor Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

4	ACTIVE TES	Т	
	SELF~LEARN CONTROL	100 %	
	MONITOR		
	COMP~LEARN	XXX rpm	
	COOLAN TEMP/S	XXX °C	
	FR O2 SENSOR	xxx v	
	A/F ALPHA	XXX %	
			PEF737W

DATA MONITOR
MONITORING NO FAIL
CMPS~RPM(REF) XXX rpm

PEF712T

DTC Confirmation Procedure

NGEC0193

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(II) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "ACTIVE TEST" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-289.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-289. If engine does not start, remove ignition plugs and check for fouling, etc.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)

KA24DE

DTC Confirmation Procedure (Cont'd)

- 7) Start engine again and run it for at least 10 minutes at idle speed.
 8) Select "MODE 7" with GST. The 1st trip DTC P0172 should be
- 8) Select "MODE 7" with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-289.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-289. If engine does not start, remove ignition plugs and check for fouling, etc.

No Tools

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector. Then restart engine and run it for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- 5) Turn ignition switch ON.
- 6) Perform Diagnostic Test Mode II (Self-diagnostic results) with ECM. Make sure 1st trip DTC 0102 is detected.
- 7) Erase the 1st trip DTC 0102 by changing from Diagnostic Test Mode II to Diagnostic Test Mode I. Refer to "How to Erase DTC (No Tools)", EC-68.
- Perform Diagnostic Test Mode II (Self-diagnostic results) with ECM. Make sure DTC 0505 is detected.
- Start engine again and run it for at least 10 minutes at idle speed. The 1st trip DTC 0114 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-289.
- If it is difficult to start engine at step 9, the fuel injection system also has a malfunction.
- Crank engine while depressing accelerator pedal.
 If engine starts, go to "Diagnostic Procedure", EC-289. If engine does not start, remove ignition plugs and check for fouling, etc.

EM

GL

MT

AT

TF

PD

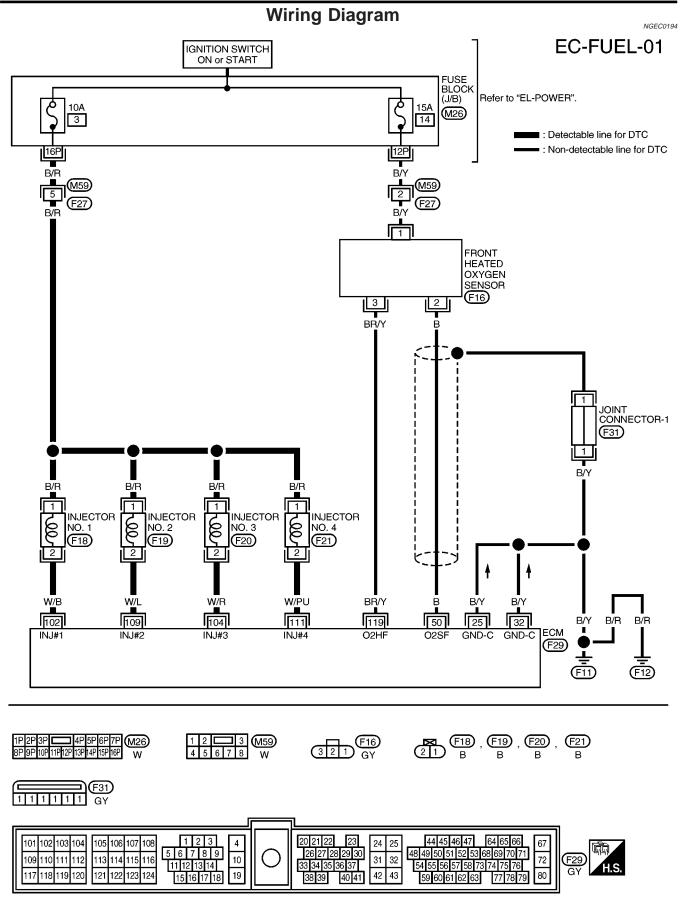
AX

BR

ST

RS

BT


HA

SC

EL

Wiring Diagram

KA24DE

KA24DEDiagnostic Procedure

Diagnostic Procedure

NGEC0195

GI

MA

EC

GL

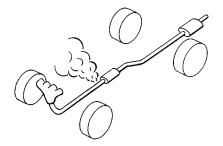
MT

AT

TF

PD

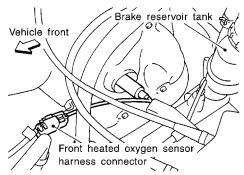
ST


BT

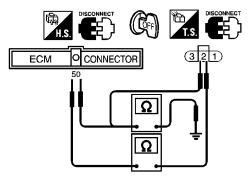
HA

SC

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before the warm-up three way catalyst (California model), the three way catalyst (Non-California model).


SEF099P

OK or NG


OK ▶	GO TO 2.
NG ▶	Repair or replace.

2 CHECK FRONT HEATED OXYGEN SENSOR CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect front heated oxygen sensor harness connector and ECM harness connector.

3. Check harness continuity between ECM terminal 50 and terminal 2.

SEF141V

SEF331V

Continuity should exist.

- Check harness continuity between ECM terminal 50 (or terminal 2) and ground.
 Continuity should not exist.
- 5. Also check harness for short to ground and short to power.

OK	or	NG

OK		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

 \mathbb{N}

KA24DE

Diagnostic Procedure (Cont'd)

3	CHECK FUEL PRESSU	RE	
1. Rel	lease fuel pressure to zero		
Ref	fer to EC-40.		
2. Inst	tall fuel pressure gauge an	d check fuel pressure.	
	At idling:		
	When fuel pressure regulator valve vacuum hose is connected.		
	Approximately 235 kPa (2.4 kg/cm ² , 34 psi)		
	When fuel pressure regulator valve vacuum hose is disconnected.		
	Approximately 294 kPa (3.0 kg/cm ² , 43 psi)		
OK or NG			
ОК	>	GO TO 5.	
NG	>	GO TO 4.	

4	DETECT MALFUNCTIO	NING PART
• Fue	the following. I pump and circuit (Refer to I pressure regulator (Refer	
	•	Repair or replace.

5 CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling: 0.9 - 5.8 g·m/sec at 2,500 rpm: 7.5 - 13.2 g·m/sec

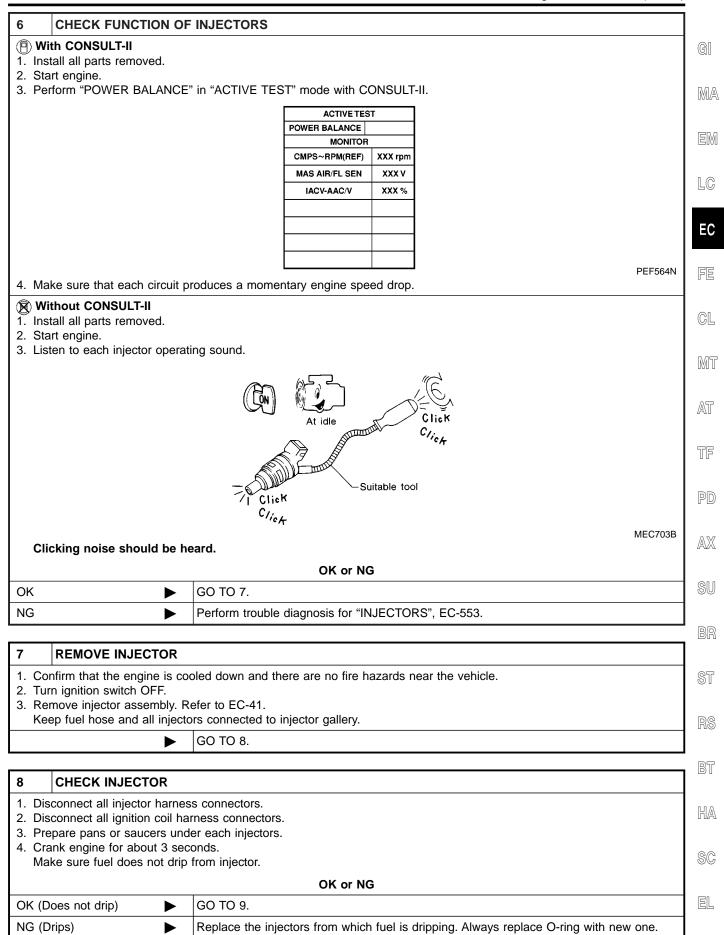
With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check mass air flow sensor signal in MODE 1 with GST.

at idling: 0.9 - 5.8 g-m/sec at 2,500 rpm: 7.5 - 13.2 g-m/sec

No Tools

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check voltage between ECM terminal 47 (Mass air flow sensor signal) and ground.

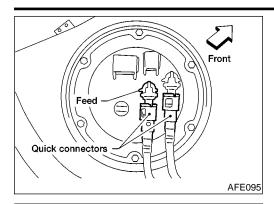

at idling: 0.9 - 1.8V at 2,500 rpm: 1.9 - 2.3V

OK or NG

OK	GO TO 6.
NG	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-141.

KA24DE

Diagnostic Procedure (Cont'd)


KA24DE

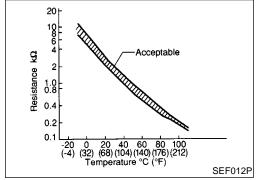
Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT	INCIDENT
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	•	INSPECTION END

KA24DE

Component Description

Component Description


The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

EM

LC

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

*: These data are reference values and are measured between ECM terminal 60 (Fuel tank temperature sensor) and ECM terminal 32 (ECM ground).

MT

On Board Diagnosis Logic

			NGEC0197
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0180 0402	 An excessively high or low voltage is sent to ECM. Rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor. 	Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor	

AT

PD

TF

AX

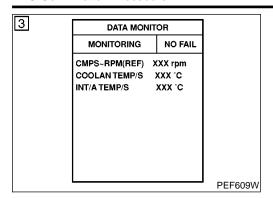
SU

BR

ST

RS

BT


HA

SC

EL

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0198

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-296.

If the result is OK, go to following step.

NOTE:

If "COOLAN TEMP/S" is already less than 60°C (140°F) before step 4), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.

- 4) Check "COOLAN TEMP/S" signal.

 If the signal is less than 60°C (140°F), the result will be OK.

 If the signal is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" signal is less than 60°C (140°F).
- Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-296.

With GST

Follow the procedure "With CONSULT-II".

Wiring Diagram

Y/B 14 Y/B

Y/B 5 Y/B

Y/B

60

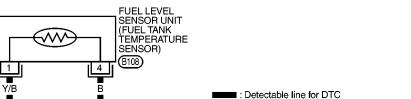
TFUEL

ECM (F29)

(B101) (M67)

(M58) (F28) NGEC0199

EC-TFTS-01


: Non-detectable line for DTC

EM

GI

MA

LC

EC

GL

MT

AT

TF

PD

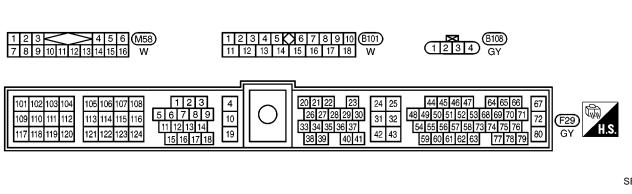
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

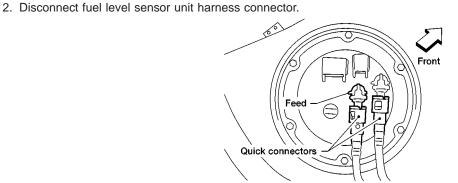
SEF841W

В

(B106)

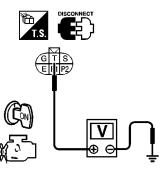
В

(B116)


1. Turn ignition switch OFF.

Diagnostic Procedure CHECK POWER SUPPLY

NGEC0200


AFE095

SEF170V

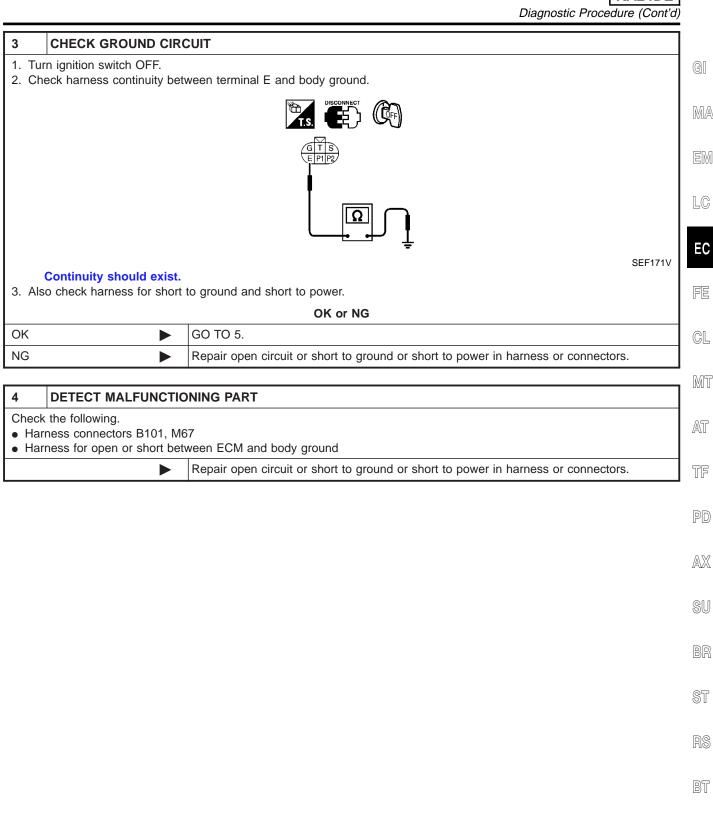
3. Turn ignition switch ON.

4. Check voltage between terminal T and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

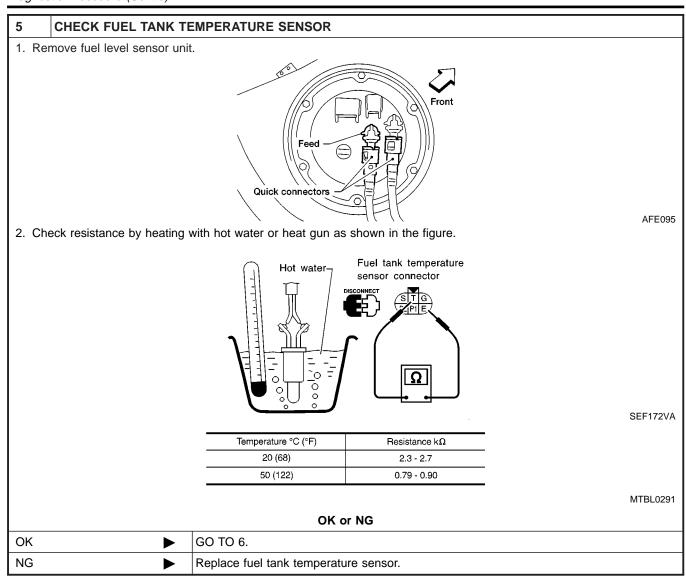
OK		GO TO 3.
NG	•	GO TO 2.


2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, M67
- Harness connectors M81, F36
- Harness for open or short between ECM and fuel tank temperature sensor

Repair harness or connector.



HA

SC

Diagnostic Procedure (Cont'd)

6	CHECK INTERMITTENT	T INCIDENT
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	>	INSPECTION END

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, the engine speed will fluctuate. If the engine speed fluctuates enough to cause the CKP sensor signal to vary, ECM can determine that a misfire is occurring.

Sensor Input Signal to ECM		ECM function
Crankshaft position sensor (OBD)	Engine speed	On board diagnosis of misfire

MA

GI

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink. When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change. When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

EC

Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emission), the MIL will only light when the misfire is detected on a second trip. During this condition, ECM monitors the CKP sensor signal every 1000 revolutions. A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

NGEC0203

FE

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	MT
P0300 (0701)	Multiple cylinders misfire.	Improper spark plug Insufficient compression	AT
P0301 (0608)	No. 1 cylinder misfires.	 Incorrect fuel pressure EGR valve The injector circuit is open or shorted 	
P0302 (0607)	No. 2 cylinder misfires.	Injectors Intake air leak The ignition secondary circuit is open or shorted	TF
P0303 (0606)	No. 3 cylinder misfires.	Lack of fuelDrive plate/Flywheel	PD
P0304 (0605)	No. 4 cylinder misfires.	Front heated oxygen sensor Incorrect distributor rotor	

[4]	DATA MONITOR		
	MONITORING	NO FAIL	
	CMPS~RPM(REF) X	XX rpm	
			PEF190P

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Start engine again and drive at 1,500 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

NOTE:

Refer to the freeze frame data for the test driving conditions.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-300.

With GST

Follow the procedure "With CONSULT-II".

BT

HA

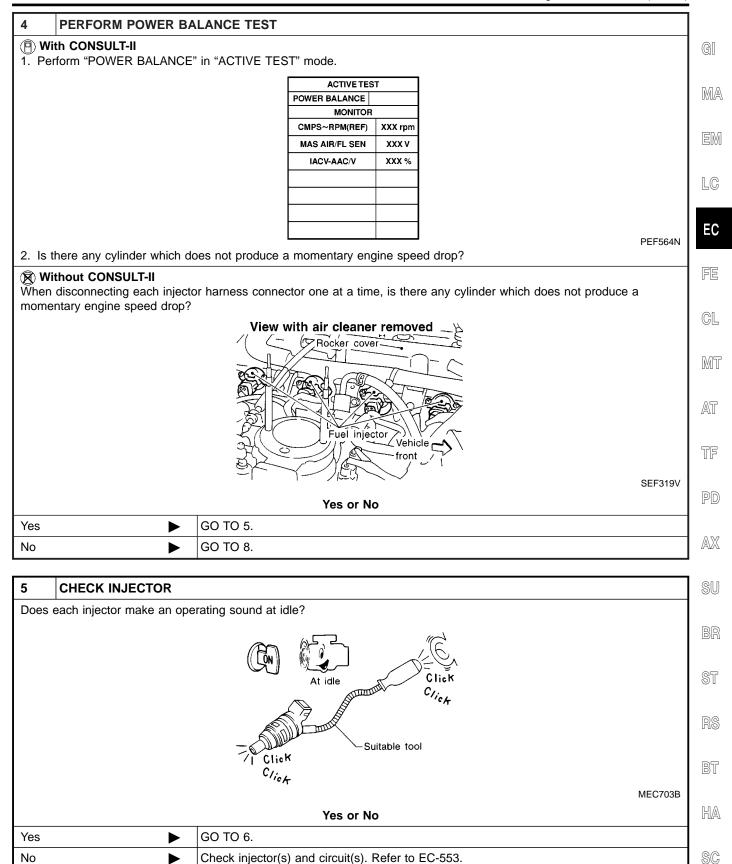
SC

EL

EC-299

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE KA24DE

Diagnostic Procedure


Diagnostic Procedure 1 CHECK FOR INTAKE AIR LEAK 1. Start engine and run it at idle speed. 2. Listen for the sound of the intake air leak. OK or NG OK Discover air leak location and repair.

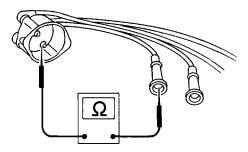
2	CHECK FOR EXHAUST SYSTEM CLOGGING		
Stop	Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.		
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	>	Repair or replace it.	

3	CHECK EGR FUNCTION		
	Perform DTC Confirmation Procedure for DTC P1402 EGR FUNCTION (OPEN). Refer to EC-476.		
	OK or NG		
OK	>	GO TO 4.	
NG	•	Repair EGR system.	

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

Diagnostic Procedure (Cont'd)

EL


DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE KA24

Diagnostic Procedure (Cont'd)

6 CHECK IGNITION SPARK 1. Turn ignition switch OFF. 2. Disconnect ignition wire from spark plug. 3. Connect a known good spark plug to the ignition wire. 4. Place end of spark plug against a suitable ground and crank engine. 5. Check for spark. Ignition wire Spark plug OK GO TO 8. NG GO TO 7.

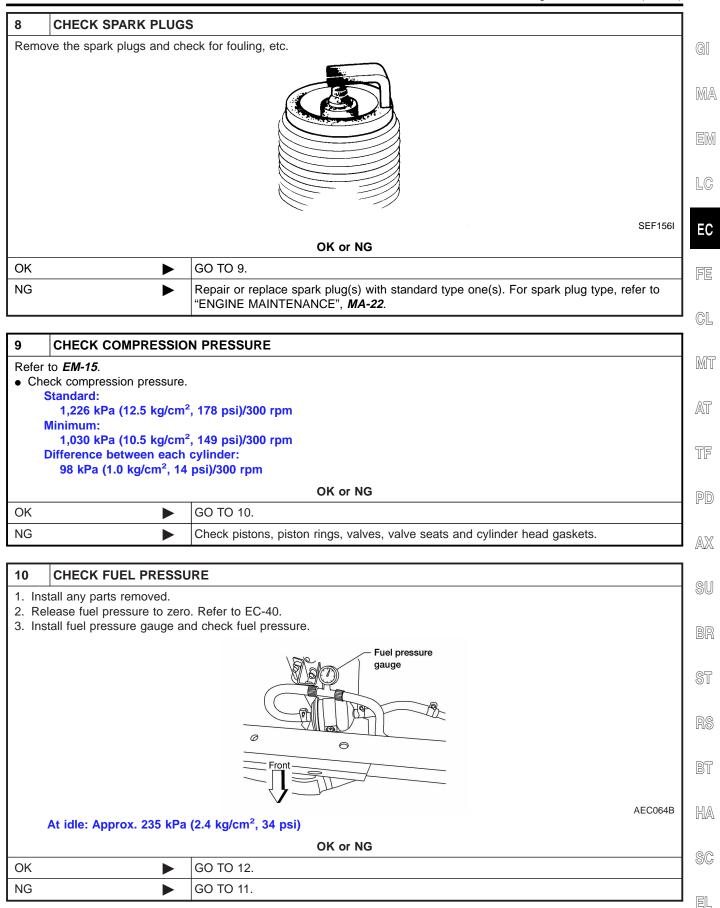
7 CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

SEF174P

Resistance:

13.6 - 18.4 kΩ/m (4.15 - 5.61 kΩ/ft) at 25°C (77°F)


If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK or NG

OK •		Check distributor rotor head for incorrect parts. Check ignition coil, power transistor and their circuits. Refer to EC-449.
NG	>	Replace.

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

Diagnostic Procedure (Cont'd)

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE KA240

Diagnostic Procedure (Cont'd)

11	DETECT MALFUNCTIONING PART	
Check	the following.	
Fue	I pump and circuit Refer to	EC-561.
Fue	Fuel pressure regulator Refer to EC-41.	
Fue	• Fuel lines Refer to "ENGINE MAINTENANCE", MA-20.	
Fue	Fuel filter for clogging	
	•	Repair or replace.

12	CHECK IGNITION TIMING				
1. Ch	1. Check the following items. Refer to "Basic Inspection", EC-95.				
		Items	Specifications	•	
		Ignition timing	20° ± 2° BTDC	•	
		Base idle speed	750 ± 50 rpm (in "P" or "N" position)	•	
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF	•	
		Target idle speed	800 ± 50 rpm (in "P" or "N" position)		
		_		MTBL0328	
		0	K or NG		
OK (V	Vith CONSULT-II)	GO TO 13.			
OK (V II)	Vithout CONSULT-	GO TO 14.			
NG	>	Adjust ignition timing.			

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

13

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "FR O2 SENSOR" and "FR O2 MNTR" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MONITOR		
MONITORING NO FAIL		
CMPS-RPM(REF)	XXX rpm	
MAS AIR/FL SE	XXX V	
COOLAN TEMP/S	XXX °C	
FR O2 SENSOR	xxx v	
FR O2 MNTR	LAEN	
INJ PULSE	XXX msec	

PEF084P

MA

LC

EC

FE

GL

MT

AT

TF

PD

ST

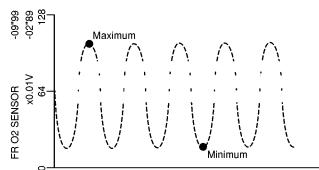
BT

HA

SC

EIL

- 6. Check the following.
- "FR O2 MNTR" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:


cycle | 1 | 2 | 3 | 4 | 5 |
FR O2 MNTR R-L-R-L-R-L-R-L-R

SEF947V

R = "FR O2 MNTR", "RICH" L = "FR O2 MNTR", "LEAN"

- "FR O2 SENSOR" voltage goes above 0.6V at least once.
- "FR O2 SENSOR" voltage goes below 0.3V at least once.
- "FR O2 SENSOR" voltage never exceeds 1.0V.

SPREADSHEET			
REPLAY MODE		REPLAY	MODE
NUMERICAL		SHOWT	RIGGER
	CMPS-RPM	FR O2 SEN	
	rpm	٧	
XXX	XXX	XXX	

 Maximum voltage should be over 0.6V at least one time.

 Minimum voltage should be below 0.30V at least one time.

PEF736W

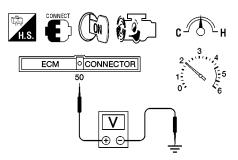
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 15.
NG •	Replace front heated oxygen sensor.

IDX


DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE KA24D

Diagnostic Procedure (Cont'd)

14 CHECK FRONT HEATED OXYGEN SENSOR

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and ECM ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 15.
NG 🕨	Replace front heated oxygen sensor.

15 CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling: 0.9 - 5.8 g·m/sec at 2,500 rpm: 7.5 - 13.2 g·m/sec

With GST

Check mass air flow sensor signal in MODE 1 with GST.

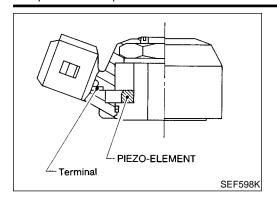
at idling: 0.9 - 5.8 g-m/sec at 2,500 rpm: 7.5 - 13.2 g-m/sec

No Tools

Check voltage between ECM terminal 47 (Mass air flow sensor signal) and ground.

at idling: 0.9 - 1.8V at 2,500 rpm: 1.9 - 2.3V

OK or NG


OK •	GO TO 17.
NG ►	GO TO 16.

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

Diagnostic Procedure (Cont'd)

	Diagnostic Procedure (Co	nt'a)
16 CHECK CONNECTOR	s	一
Check connectors for rusted ter Refer to EC-136.	minals or loose connections in the mass air flow sensor circuit or engine grounds.	\neg
Refer to EC-136.	OK or NG	
NG •	Repair or replace it.	\dashv
17 CHECK SYMPTOM MA	ATRIX CHART	
Check items on the rough idle s	symptom in "Symptom Matrix Chart", EC-111.	
	OK or NG	
OK •	GO TO 18.	
NG •	Repair or replace.	
18 ERASE THE 1ST TRIP	DITC	\neg
Some tests may cause a 1st trip		\dashv
Erase the 1st trip DTC from the	ECM memory after performing the tests. Refer to EC-67.	
•	GO TO 19.	
		_
19 CHECK INTERMITTEN		_
	S FOR INTERMITTENT INCIDENT", EC-128.	_
<u> </u>	INSPECTION END	

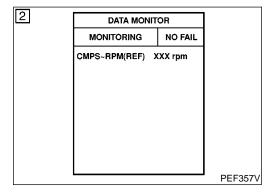
Component Description

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction. The knock sensor has one trip detection logic.

ECM Terminals and Reference Value

NGEC0207


Specification data are reference values and are measured between each terminal and 43 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
64	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.4V

On Board Diagnosis Logic

NGEC0208

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0325 0304	An excessively low or high voltage from the knock sensor is sent to ECM.	Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor

DTC Confirmation Procedure

NGEC0209

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 5 seconds at idle speed.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-310.

® With GST

Follow the procedure "With CONSULT-II".

NGEC0210

LC

GI

MA

EM

EC

FE

CL

MT

AT

TF

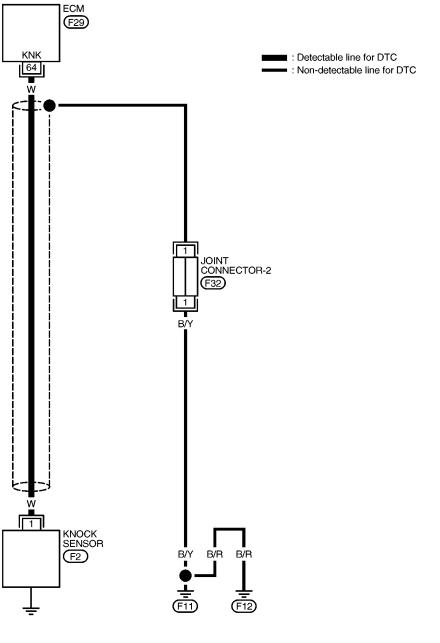
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

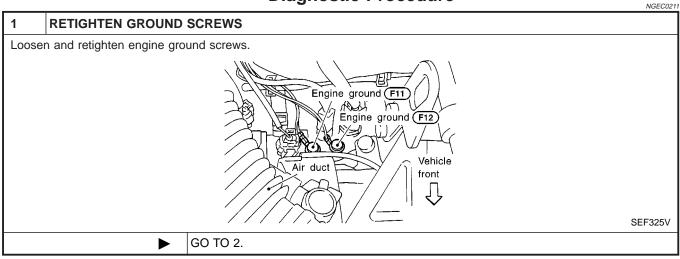

RS

BT

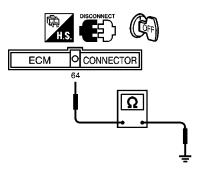
HA

SC

EL



101 102 103 104 105 106 107 108 1 5 6 7 8 9 10 107 118 119 120 121 122 123 124 15 16 17 18 19 19	0	20 21 22 23	(F29 GY
	<u></u>		<u>J</u>



Diagnostic Procedure

2 **CHECK INPUT SIGNAL CIRCUIT-1** 1. Turn ignition switch OFF.

- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 64 and ground.

SEF173V

Resistance: Approximately 500 - 620 kΩ [at 25°C (77°F)]

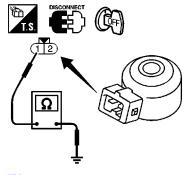
It is necessary to use an ohmmeter which can measure more than 10 $\text{M}\Omega.$

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 4.
NG		GO TO 3.

3	DETECT MALFUNCTIONING PART		
Check	Check the harness for open or short between knock sensor and ECM.		
OK or NG			
OK	OK GO TO 4.		
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	


DTC P0325 KNOCK SENSOR (KS)

Diagnostic Procedure (Cont'd)

CHECK KNOCK SENSOR

Use an ohmmeter which can measure more than 10 M Ω .

- 1. Disconnect knock sensor harness connector.
- 2. Check resistance between terminal 1 and ground.

SEF174V

MA

EC

FE

MT

TF

PD

SW

Resistance: 500 - 620 k Ω [at 25°C (77°F)]

CAUTION:

Discard any knock sensors that have been dropped or physically damaged. Use only new ones.

0	K	or	N	G

OK ►	GO TO 5.
NG ►	Replace knock sensor.

5 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-2.
- 3. Check the following. Refer to the wiring diagram.
- Continuity between joint connector-2 terminal 1 and ground
- Joint connector-2 (Refer to "HARNESS LAYOUT", EL-272.)
 - Continuity should exist.
- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect harness connectors.

OK (or NG
------	-------

OK •	GO TO 7.
NG •	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the joint connector-2. (Refer to "HARNESS LAYOUT", EL-272.)

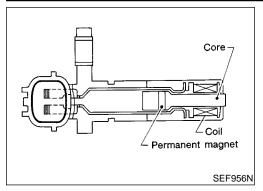
Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK INTERMITTENT INCIDENT

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.

► INSPECTION END

RS


SC


HA

EL

 \mathbb{N}

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transaxle housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

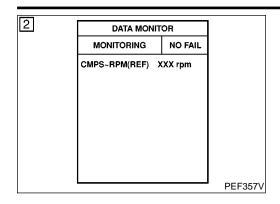
The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

ECM Terminals and Reference Value

NGEC021

Specification data are reference values and are measured between each terminal and 32 (ECM ground).


-				
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
		Cynnighoff position	[Engine is running] • Warm-up condition • Idle speed	(V) 10 5 0 0.2 ms
47	L	Crankshaft position sensor (OBD)	[Engine is running] • Engine speed is 2,000 rpm	(V) 10 5 0 0.2 ms

On Board Diagnosis Logic

NGEC0215

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0335 0802	The proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed.	

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 15 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-315.

With GST

Follow the procedure "With CONSULT-II".

d G

NGEC0216

Q11

MA

EM

LC

EC

FE

GL

MT

AT

TF

AX

PD

SU

BR

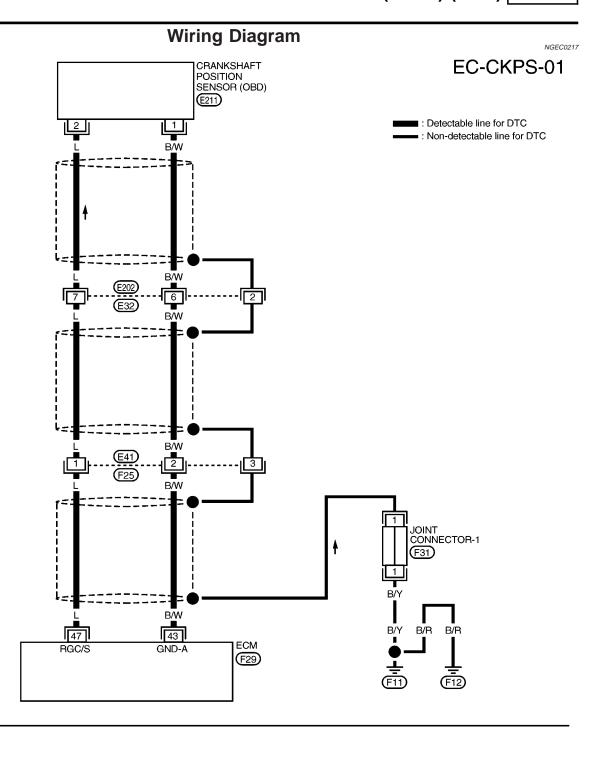
ST

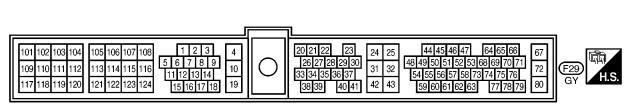
D@

BT

HA

SC


EL


 \mathbb{N}

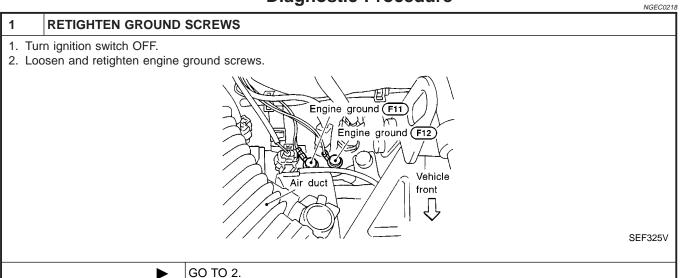
2 3 4 5 6 7 8 9 GY

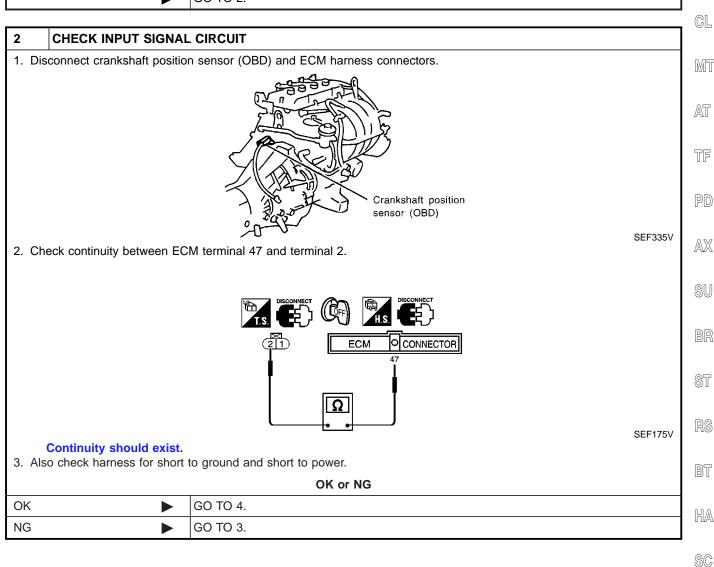
(2 1) (E211) (2 1) GY

123 GY

AEC993A

Diagnostic Procedure


GI


MA

LC

EC

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E202, E32
- Harness connectors E41, F25
- Harness for open or short between crankshaft position sensor (OBD) and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK GROUND CIRCUIT

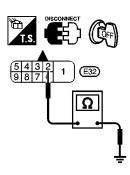
- 1. Reconnect ECM harness connector.
- 2. Check harness continuity between crankshaft position sensor (OBD) terminal 1 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 6.
NG	GO TO 5.


5 DETECT MALFUNCTIONING PART

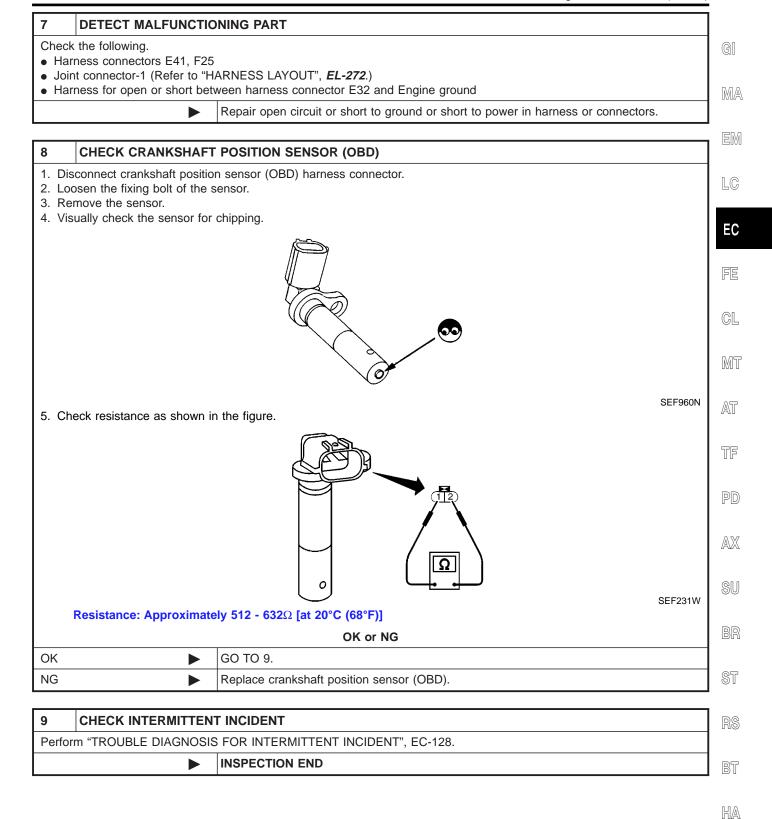
Check the following.

- Harness connectors E202, E32
- Harness connectors E41, F25
- Harness for open or short between crankshaft position sensor (OBD) and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK SHIELD CIRCUIT

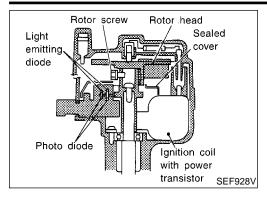
- 1. Turn ignition switch OFF.
- 2. Disconnect harness connector E32.
- 3. Check harness continuity between harness connector E32 terminal 2 and ground.

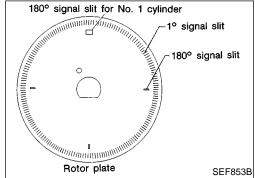
SEF177V


Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect harness connectors.

OK or NG


OK •	GO TO 8.
NG •	GO TO 7.


Diagnostic Procedure (Cont'd)

SC

Component Description

Component Description

The camshaft position sensor is a basic component of the engine control system. It monitors engine speed and piston position. These input signals to the engine control system are used to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for a 1° (POS) signal and 4 slits for a 180° (REF) signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

ECM Terminals and Reference Value

NGEC022

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

			-	. ,
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	ECCS relay (Self shut-off)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1V
			[Ignition switch OFF] ■ More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
44	PU	Camshaft position sensor (Reference signal)	[Engine is running] (Warm-up condition) ● Idle speed	0.2 - 0.5V (V) 10 5 0 10 ms
48	PU		[Engine is running] • Engine speed is 2,000 rpm	0 - 0.5V (V) 10 5 0 10ms

KA24DE

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
10		Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.6V (V) 10 5 0 0.2ms	MA EM LC
49	LG	sor (Position signal)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5 - 2.6V (V) 10 5 0.2ms	EC FE
67	B/P	Dower oupply for ECM	Figurition quitab ONI	BATTERY VOLTAGE	0.055
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)	MT
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	AT

On Board Diagnosis Logic

		On Board Diagr	NGEC0222	TF
DTC No.		Malfunction is detected when	Check Items (Possible Cause)	
P0340 0101	A)	Either 1° or 180° signal is not sent to ECM for the first few seconds during engine cranking.	Harness or connectors (The camshaft position sensor circuit is open or	PD
	В)	Either 1° or 180° signal is not sent to ECM often enough while the engine speed is higher than the specified engine speed.	 shorted.) Camshaft position sensor Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.) 	AX
	C)	The relation between 1° and 180° signal is not in the normal range during the specified engine speed.	Dead (Weak) battery	SU
		1		BR

ST

RS

BT

HA

SC

EL

DTC Confirmation Procedure

-NGEC0223

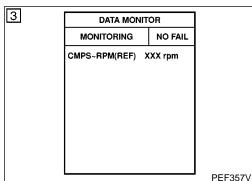
Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B and C".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

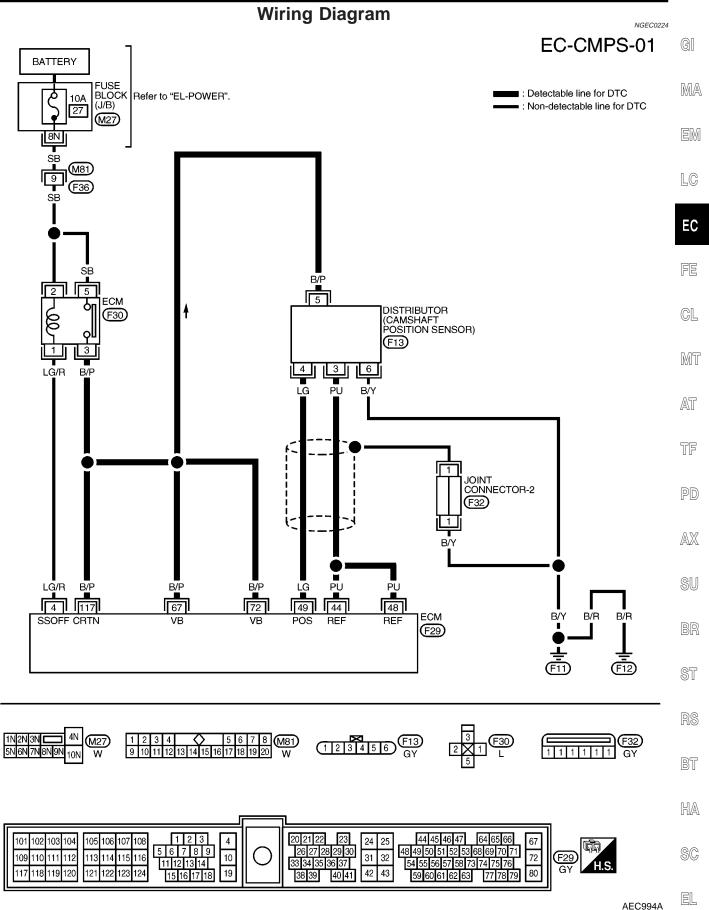


PROCEDURE FOR MALFUNCTION A

NGEC0223S01

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-322.
- ₩ith GST

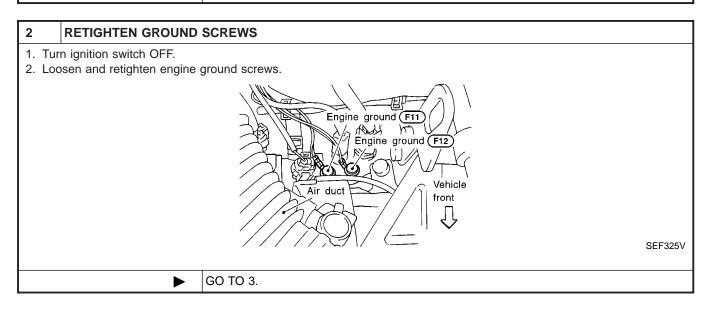
Follow the procedure "With CONSULT-II".


PROCEDURE FOR MALFUNCTION B AND C

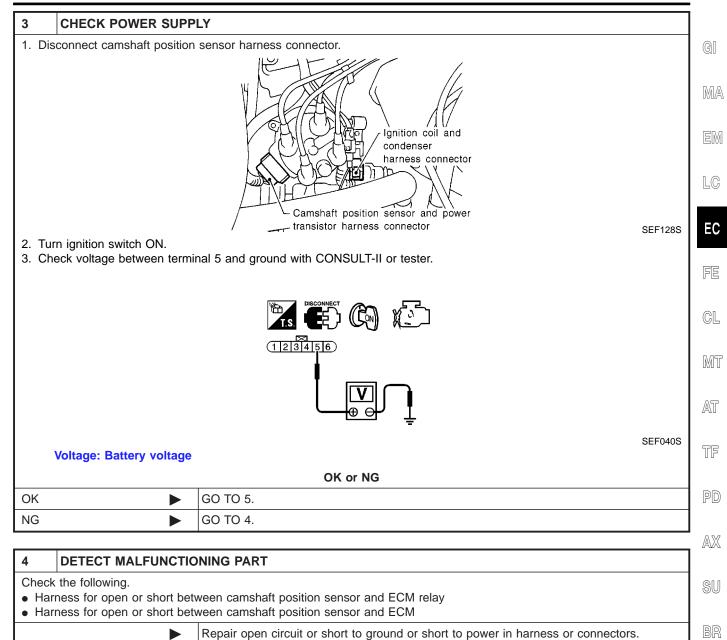
NGEC0223S02

- (II) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-322.
- With GST

Follow the procedure "With CONSULT-II".



KA24DE


Diagnostic Procedure

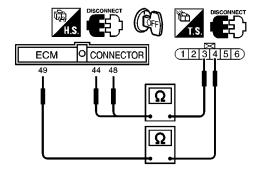
KA24DE

Diagnostic Procedure (Cont'd)

ST

BT

HA


SC

Diagnostic Procedure (Cont'd)

5 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between sensor terminal 4 and ECM terminal 49, sensor terminal 3 and ECM terminals 44, 48.

SEF178V

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
\sim 1 $^{\circ}$	VI.	110

OK ►	GO TO 6.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between distributor (camshaft position sensor) terminal 6 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 7.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

KA24DE

GI

MA

LC

EC

FE

GL

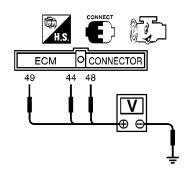
MT

AT

TF

PD

AX


SU

ST

Diagnostic Procedure (Cont'd)

CHECK CAMSHAFT POSITION SENSOR

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check voltage between ECM terminal 49 and engine ground, ECM terminal 44 or 48 and ground.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm	
Voltage	0.2 - 0.5V	0 - 0.5V	
Pulse signal	(V) 10 5 0	(V) 10 5 0	

Terminal 49 and engine ground

		2,000 rpm
Voltage	Approximately 2.6V	Approximately 2.5 - 2.6V
Pulse signal	(V) 10 5 0	(V) 10 5 0.2 ms

OK or NG

OK •	GO TO 8.
NG ►	Replace camshaft position sensor.

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-2.
- 3. Check the following.
- Continuity between joint connector-2 terminal 1 and ground
- Joint connector-2

(Refer to "HARNESS LAYOUT", EL-272.)

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect joint connector-1.

OK or NG

OK •	GO TO 9.
NG 🕨	Repair open circuit, short to ground or short to power in harness or connectors.

9	CHECK INTERMITTENT INCIDENT	
Perfo	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
	► INSPECTION END	

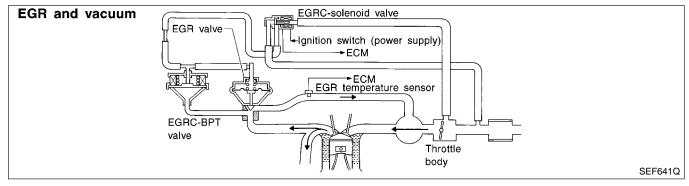
EL

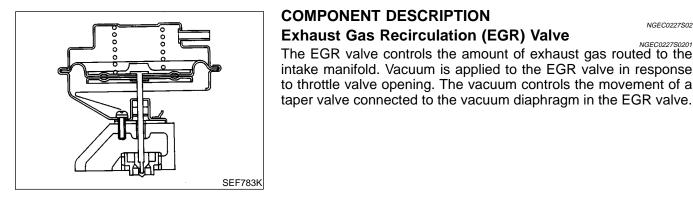
HA

SC

 \mathbb{N}

Description SYSTEM DESCRIPTION

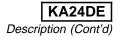

NGEC0227

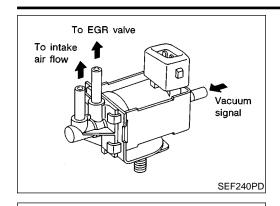

NGEC0227S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Camshaft position sensor	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Intake air temperature sensor	Intake air temperature	EGR control	EGRC-solenoid valve	
Ignition switch	Start signal			
Throttle position sensor	Throttle position			
Vehicle speed sensor	Vehicle speed			

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current flows through the solenoid valve is cut. This causes the vacuum to be discharged into the atmosphere. The EGR valve remains closed.

- Low engine coolant temperature
- **Engine starting**
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low intake air temperature




COMPONENT DESCRIPTION Exhaust Gas Recirculation (EGR) Valve

NGEC0227S02 NGEC0227S0201

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a

DTC P0400 EGR FUNCTION (CLOSE)

EGR temperature

ECM

EGR

temperature

SEF073P

sensor

EGRC-Solenoid Valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold collector to the EGR valve.

MA

EM

LC

On Board Diagnosis Logic

NGEC022

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

FE

CL

MT

AT

TF

PD

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0400 0302	No EGR flow is detected under conditions that call for EGR.	 EGR valve stuck closed EGRC-BPT valve Vacuum hose EGRC-solenoid valve EGR passage EGR temperature sensor Exhaust gas leaks

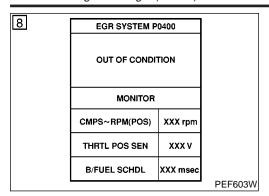
SU

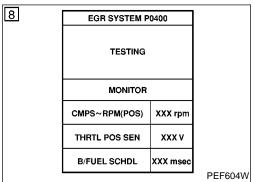
ST

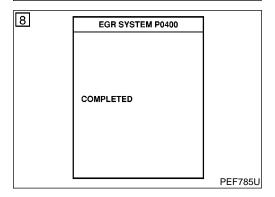
D@

BT

HA


SC


EL


 \mathbb{N}

NGEC0229

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.
- P0400 will not be displayed at "SELF-DIAG RESULTS" mode with CONSULT-II even though DTC work support test result is "NG".

TESTING CONDITION:

For best results, perform the test at a temperature above 5°C (41°F).

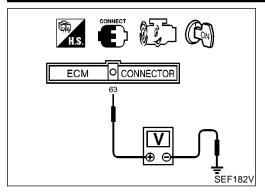
(P) With CONSULT-II

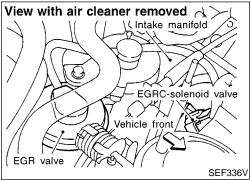
- 1) Turn ignition switch ON.
- 2) Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II and confirm it is within the range listed below.

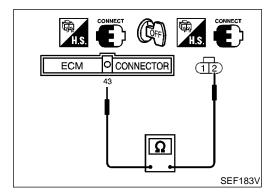
COOLAN TEMP/S: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- 3) Start engine and let it idle monitoring "COOLAN TEMP/S" value. When the "COOLAN TEMP/S" value reaches 70°C (158°F), immediately go to the next step.
- 4) Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".
- 6) Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle with engine running. If "COMPLETED" appears on CONSULT-II screen, go to step 9.
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds or more.)


CMPS-RPM (REF)	2,000 - 2,600 rpm
Vehicle speed	10 km/h (6 MPH) or more
B/FUEL SCHDL	2.5 - 3.5 msec
THRTL POS SEN	(X + 0.23) - (X + 0.74) V X = Voltage value measured at step 7
Selector lever	Suitable position


If "TESTING" is not displayed after 5 minutes, retry from step 2.


9) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-331.

DTC P0400 EGR FUNCTION (CLOSE)

DTC Confirmation Procedure (Cont'd)

x1000r/min

Overall function check

Overall Function Check

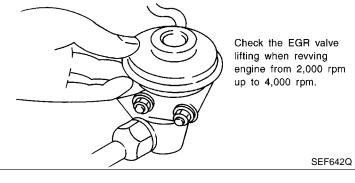
Use this procedure to check the overall EGR function. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Check the EGR valve lifting when revving engine from 2,000 rpm to 4,000 rpm quickly under no load using the following methods.
- Disconnect EGRC-solenoid valve harness connector. (The DTC for EGRC-solenoid valve will be displayed, however, ianore it.)

EGR valve should lift up and down without sticking. If NG, go to "Diagnostic Procedure", EC-331.

3) Check voltage between ECM terminal 63 (EGR temperature sensor signal) and ground at idle speed.


Less than 4.5V should exist. If NG, go to next step.

Turn ignition switch OFF.

- Check harness continuity between EGR temperature sensor harness connector terminal 2 and ECM terminal 43 (ECM ground).

Continuity should exist.

Check "EGR TEMPERATURE SENSOR". Refer to "CHECK EGR TEMPERATURE SENSOR" in "Diagnostic Procedure".

EC

GI

MA

EM

LC

FE

MT

AT

PD

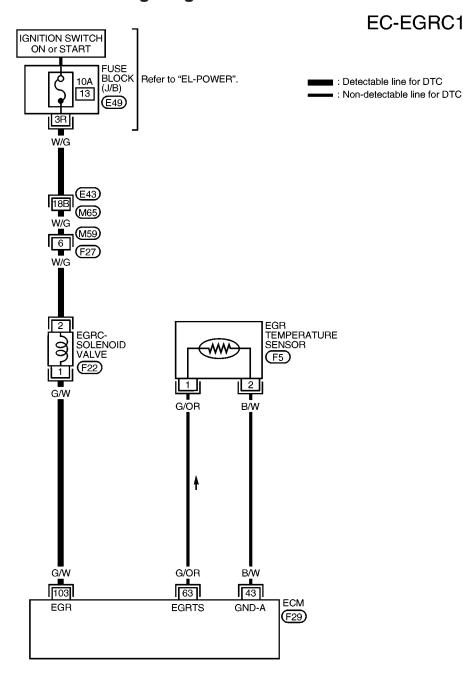
TF

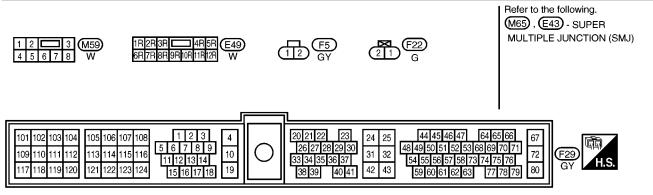
AX

BT

HA

SC


EL



Wiring Diagram

NGEC0231

EC-EGRC1-01

AEC995A

DTC P0400 EGR FUNCTION (CLOSE)

			NGEC0232	
1	CHECK EXHAUST	SYSTEM		GI
	tart engine.			
2. C	heck exhaust pipes and	muffler for leaks.		MA
				EM
				LC
				EC
			SEF099P	FE
		OK or NG		
OK (With CONSULT-II)	▶ GO TO 2.		CL
OK (Without CONSULT-	► GO TO 3.		
NG	•	Repair or replace exhaust system.		MT

AT

TF PD

 $\mathbb{A}\mathbb{X}$

SU

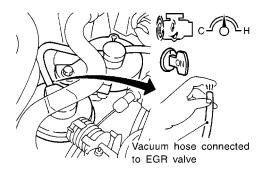
BR

ST

RS

BT

HA


SC

EL

2 CHECK VACUUM SOURCE TO EGR VALVE

(P) With CONSULT-II

- 1. Warm engine up to normal operating temperature.
- 2. Disconnect vacuum hose to EGR valve.
- 3. Check for vacuum existence at idle.

SEF337V

Vacuum should not exist at idle.

- 4. Select "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode with CONSULT-II and turn the solenoid valve ON.
- 5. Check for vacuum existence when revving engine from 2,000 rpm up to 4,000 rpm.

ACTIVE TEST			
EGRC SOL/V	ON		
(EGR)	FLOW		
MONITO	₹		
CMPS·RPM(REF)	XXX rpm		
_			

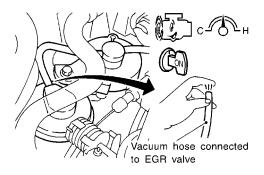
PEF788U

Vacuum should exist when revving engine.

OK or NG

OK •	GO TO 4.
NG •	GO TO 5.

DTC P0400 EGR FUNCTION (CLOSE)


Diagnostic Procedure (Cont'd)

CHECK VACUUM SOURCE TO EGR VALVE

(R) Without CONSULT-II

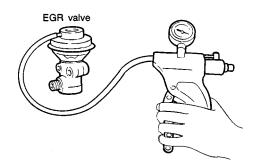
3

- 1. Warm engine up to normal operating temperature.
- 2. Disconnect vacuum hose to EGR valve.
- 3. Check for vacuum existence at idle.

SEF337V

Vacuum should not exist at idle.

- 4. Disconnect EGRC-solenoid valve harness connector. (The 1st trip DTC for EGRC-solenoid valve will be displayed, but ignore it.)
- 5. Check for vacuum existence when revving engine from 2,000 rpm up to 4,000 rpm.


Vacuum should exist when revving engine.

OK or NG

OK •	GO TO 4.	
NG ▶	GO TO 5.	

4 CHECK EGR VALVE

• Apply vacuum to EGR vacuum port with a hand vacuum pump.

MEF137D

EGR valve spring should lift.

· Check for sticking.

OK or N	١G
---------	----

NG	>	Repair or replace EGR valve.
OK	>	GO TO 11.

G[

MA

EM

LC

EC

0.5

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

D@

BT

HA

SC

EL

5 CHECK VACUUM HOSE 1. Turn ignition switch OFF. 2. Check vacuum hose for clogging, cracks or improper connection. Clogging Improper connection OK or NG OK (With CONSULT-II) OK OT OF. OK (Without CONSULT- GO TO 7. II) NG Repair or replace vacuum hose.

6 CHECK EGRC-SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TE	S	Т
EGRC SOL/V		ON
(EGR)		FLOW
MONITOI	₹	
CMPS·RPM(REF)		XXX rpm

PEF788U

Clicking noise should be heard.

OK or NG

OK ►	GO TO 8.
NG •	Repair or replace EGRC-solenoid valve or repair circuit.

7 CHECK EGRC-SOLENOID VALVE OPERATION

(R) Without CONSULT-II

Check operating sound of the solenoid valve when disconnecting and reconnecting EGRC-solenoid valve harness connector. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

Clicking noise should be heard.

OK or NG

NO.		GO TO 9.
		GO TO 8.

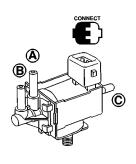
DTC P0400 EGR FUNCTION (CLOSE)

Diagnostic Procedure (Cont'd)

8 **DETECT MALFUNCTION PART**

Check the following.

- Harness connectors E43, M65
- Harness connectors M59, F27
- 10A fuse
- Harness for open or short between fuse block and EGRC-solenoid valve
- Harness for open or short between ECM and EGRC-solenoid valve

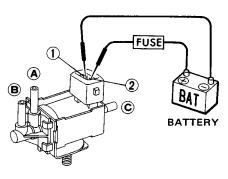

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.


ACTIVE TES	Т
EGRC SOL/V (EGR)	ON CUT
MONITOR	
CMPS~RPM (REF)	XXX rpm

Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C	
ON	Yes	No	
OFF	No	Yes	

SEF169X

(X) Without CONSULT-II

Check air passage continuity shown in the figure.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0283

If NG or operation takes more than 1 second, replace solenoid valve.

OK	or	NG
----	----	----

OK •	•	GO TO 10.
NG	•	If NG or operation takes more than 1 second, replace solenoid valve.

GI

MA

EC

FE

GL

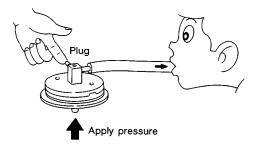
MT

AT

TF

PD

ST


HA

SC

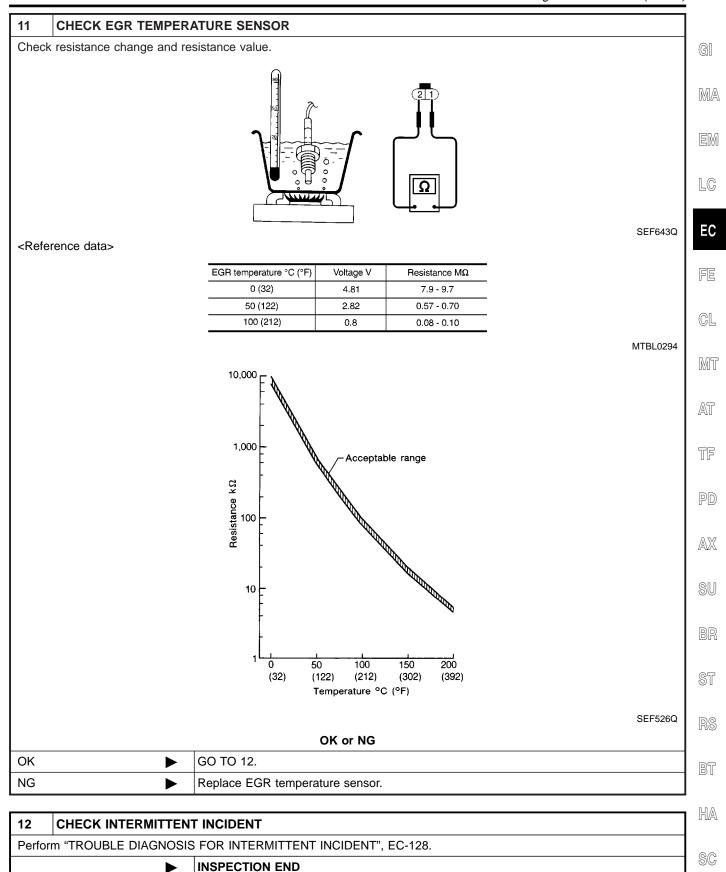
Diagnostic Procedure (Cont'd)

10 CHECK EGRC-BPT VALVE

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mm H_2O , 3.94 in H_2O) from under EGRC-BPT valve.

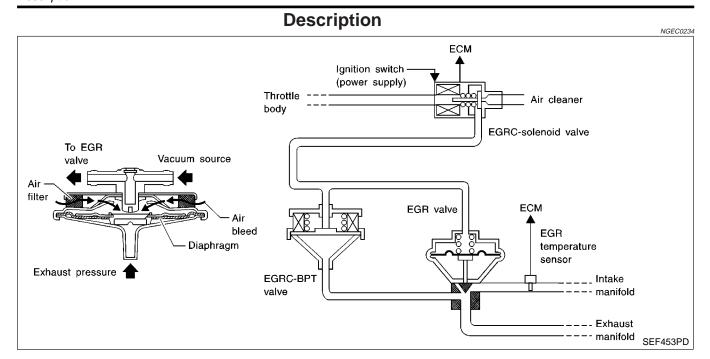
SEF083P

3. If a leakage is noted, replace the valve.


OK or NG

OK •	GO TO 11.
NG •	Replace EGRC-BPT valve.

DTC P0400 EGR FUNCTION (CLOSE)

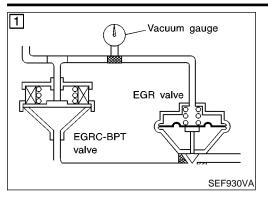

KA24DE

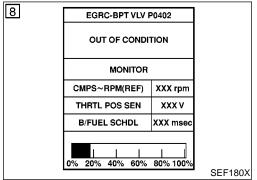
Diagnostic Procedure (Cont'd)

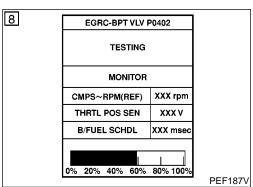
EL

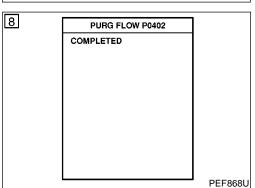
SYSTEM DESCRIPTION

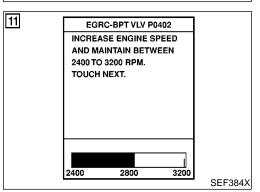
The EGRC-BPT valve monitors exhaust pressure to activate the diaphragm, controlling throttle body vacuum applied to the EGR valve. In other words, recirculated exhaust gas is controlled in response to positioning of the EGR valve or to engine operation.


On Board Diagnosis Logic


If too much EGR flow exists due to an EGRC-BPT valve malfunction, off idle engine roughness will increase. If the roughness is large, then the vacuum to the EGR valve is interrupted through the EGRC-solenoid valve. If the engine roughness is reduced at that time, the EGRC-BPT valve malfunction is indicated.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0402 0306	The EGRC-BPT valve does not operate properly.	EGRC-BPT valve EGR valve Loose or disconnected rubber tube Blocked rubber tube Camshaft position sensor Blocked exhaust system Orifice Mass air flow sensor EGRC-solenoid valve


NGEC0236


On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform at a temperature above 5°C (41°F).

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.

Start engine and warm it up to normal operating temperature.

Stop engine and wait at least 5 seconds.

Turn ignition switch ON and select "EGRC-BPT/V P0402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.

5) Start engine and let it idle.

6) Touch "START".

Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen and the bar chart may increase. Maintain the conditions many times until "COM-PLETED" appears.

Selector lever	Suitable position
CMPS·RPM (REF)	1,400 - 1.800 rpm
Vehicle speed	30 - 100 km/h (19 - 62 MPH)
B/FUEL SCHDL	2.0 - 2.8 msec
THRTL POS SEN	(X-(X+0.88) V X = Voltage value measured at step 7

NOTE:

The bar chart on CONSULT-II screen indicates the status of this test. However, the test may be finished before the bar chart becomes full scale.

If the bar chart indication does not continue to progress, completely release accelerator pedal once and try to meet the conditions again.

If "TESTING" does not appear on CONSULT-II screen, retry from step 2.

If CONSULT-II instructs to carry out "Overall Function Check", go to next step. If "NG" is displayed, refer to "Diagnostic Procedure", EC-341.

10) Open engine hood.

11) Raise engine speed to 2,400 to 3,200 rpm under no-load and hold it. Then touch "NEXT" on CONSULT-II screen.

GI

LC

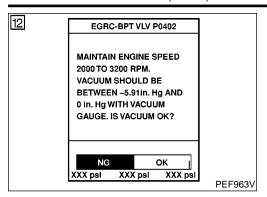
EC

MT

AT

TF

PD


SW

HA

SC

KA24DE

DTC Confirmation Procedure (Cont'd)

12) Check vacuum gauge while keeping engine speed at 2,400 to 3.200 rpm.

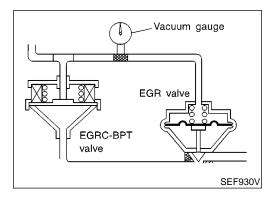
Vacuum should be 0 to -20 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

If NG, go to "Diagnostic Procedure", EC-341.

If OK, touch "YES" on the CONSULT-II screen.

13) Check the EGR valve lifting when revving from 2,000 rpm to 4,000 rpm quickly under no load.

EGR valve should lift up, and go down without sticking when the engine is returned to idle.


If NG, check EGR valve.

If OK, touch "YES" or the CONSULT-II screen.

14) Check the rubber tube between intake manifold collector, EGRC-solenoid valve, EGR valve and EGRC-BPT valve for cracks, blockages or twisting.

If NG, repair or replace.

If OK, touch "YES" on the CONSULT-II screen.

Overall Function Check

Use this procedure to check the overall function of the EGRC-BPT valve. During this check, a 1st trip DTC might not be confirmed.

Nithout CONSULT-II

- Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.
- 2) Lift up vehicle.
- 3) Start engine and shift to 1st gear position.
- Check vacuum gauge while keeping engine speed at 2,400 to 3,200 rpm.

Vacuum should be 0 to -20 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

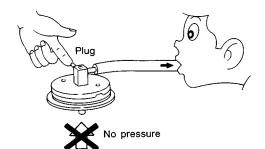
If NG, go to "Diagnostic Procedure", EC-341.

If OK, go to next step.

- 5) Check the EGR valve lifting when revving from 2,000 rpm to 4,000 rpm quickly under no load.
 - EGR valve should lift up, and go down without sticking when the engine is returned to idle.
- 6) Check rubber tube between intake manifold collector, EGRC-solenoid valve, EGR valve and EGRC-BPT valve for misconnection, cracks or blockages.
- 7) If NG, go to "Diagnostic Procedure", EC-341.

Diagnostic Procedure

			=NGEC0238
1	CHECK HOSE		
Check	Check vacuum hose for clogging and improper connection.		
	OK or NG		
OK	•	GO TO 2.	
NG	•	Repair or replace vacuum hose.	


2	2 CHECK EXHAUST SYSTEM		
Check	Check exhaust system for collapse.		
	OK or NG		
OK	OK GO TO 3.		
NG	•	Repair or replace exhaust system.	

3	3 CHECK ORIFICE			
Check if orifice is installed in vacuum hose between EGRC-BPT valve and EGRC-solenoid valve.				
OK or NG				
OK	OK			
NG	NG Replace vacuum hose.			

4 CHECK EGRC-BPT VALVE

1. Plug one of two ports of EGRC-BPT valve.

2. Vacuum from the other port and check leakage without applying any pressure from under EGR-BPT valve. **Leakage should exist.**

SEF172P

OK or NG			
OK ▶ GO TO 5.			
NG	Replace EGRC-BPT valve.		

MA

EM

GI

LC

EC

FE

CL

MT

AT

PD

TF

AX

SU

BR

ST

RS

BT

HA

SC

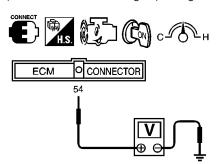
EL

 $\mathbb{D}\mathbb{X}$

Diagnostic Procedure (Cont'd)

OK NG

CHECK CAMSHAFT POSITION SENSOR 5 1. Start engine and warm it up to normal operating temperature. 2. Check voltage between ECM terminals 49 and engine ground ECM terminal 44 or 48 and ground. Terminal 44 or 48 and engine ground Condition Idle 2,000 rpm ECM CONNECTOR 0 - 0.5V 0.2 - 0.5V Voltage 10 10 5 5 Pulse signal 0 10 ms 10 ms Terminal 49 and engine ground 2,000 rpm Condition Idle Voltage Approximately 2.6V Approximately 2.5 - 2.6V 10 10 5 5 Pulse signal 0 0.2 ms 0.2 ms SEF893W OK or NG GO TO 6.

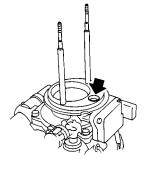

Replace camshaft position sensor.

	2	1	1
٠.	5	4	_

Diagnostic Procedure (Cont'd)

CHECK MASS AIR FLOW SENSOR

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF326V

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

OK •	GO TO 7.
NG Replace mass air flow sensor.	

GI

MA

EM

EC

GL

MT

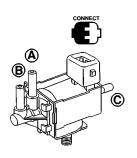
AT

PD

TF

ST

BT

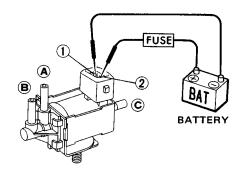

HA

SC

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity.
Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.



ACTIVE TEST		
ON CUT		
XXX rpm		

Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

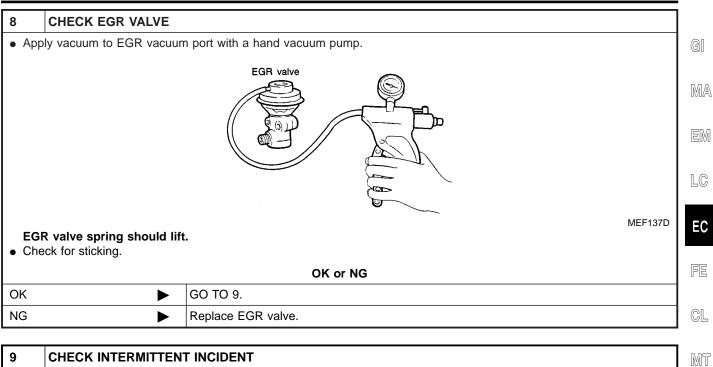
SEF169X

Without CONSULT-II
Check air passage continuity shown in the figure.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0283


If NG or operation takes more than 1 second, replace solenoid valve.

OK or NG

OK •	GO TO 8.
NG ►	Replace EGRC-solenoid valve.

KA24DE

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
	► INSPECTION END	

AT

TF

PD

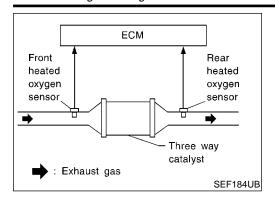
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

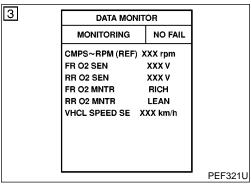
SC

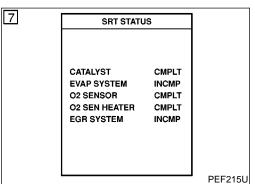
EL

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of front and rear heated oxygen sensors.


A three way catalyst* with high oxygen storage capacity will indicate a low switching frequency of rear heated oxygen sensor. As oxygen storage capacity decreases, the rear heated oxygen sensor switching frequency will increase.


When the frequency ratio of front and rear heated oxygen sensors approaches a specified limit value, the three way catalyst* malfunction is diagnosed.

*: Warm-up three way catalyst (For California)

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0420 0702	Three way catalyst does not operate properly. Three way catalyst does not have enough oxygen storage capacity.	 Three way catalyst* Exhaust tube Intake air leaks Injectors Injector leaks Spark plug Improper ignition timing

^{*:} Warm-up three way catalyst (For California)

DTC Confirmation Procedure

NGEC0241

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set "MANU TRIG" and "HI SPEED", then select "FR O2 SENSOR", "RR O2 SENSOR", "FR O2 MNTR", "RR O2 MNTR" in "DATA MONITOR" mode with CONSULT-II.
- 4) Touch "RECORD" on CONSULT-II screen with engine speed held at 2,000 rpm constantly under no load.
- 5) Make sure that the switching frequency between "RICH" and "LEAN" of "RR O2 MNTR" is much less than that of "FR O2 MNTR" as shown below.

Switching frequency ratio = A/B

A: Rear heated oxygen sensor switching frequency B: Front heated oxygen sensor switching frequency This ratio should be less than 0.75.

If the ratio is greater than above, the warm-up three way catalyst (models for California) is not operating properly.

If the "FR O2 MNTR" does not indicate "RICH" and "LEAN" periodically more than 5 times within 10 seconds at step 4, perform trouble diagnoses for DTC P0133 first. (See EC-212.)

If the result is NG, go to "Diagnostic Procedure", EC-348. If the result is OK, go to following step.

- 6) Select "AUTO TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 7) Drive vehicle (with transmission in 5th position) at a speed of approximately 84 to 96 km/h (52 to 60 MPH) with the following for at least 10 consecutive minutes.

DTC P0420 THREE WAY CATALYST FUNCTION

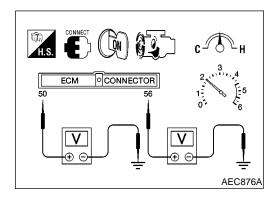
CONSULT-II.

KA24DE

DTC Confirmation Procedure (Cont'd)

(Drive the vehicle in an area where vehicle speed and accelerator pressure can be held steady and constant.)

If 1st trip DTC is detected, go to "Diagnostic Procedure"


If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-348.

8) Select "SRT STATUS" in "DTC CONFIRMATION" mode with

9) Verify that "CATALYST" is "CMPLT". If not "CMPLT", repeat the test from step 6.

LC

Overall Function Check

GEC0242

Use this procedure to check the overall function of the three way catalyst. During this check, a 1st trip DTC might not be confirmed.

R Without CONSULT-II

72

EC

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeters probes between ECM terminals 50 (Front heated oxygen sensor signal), 56 (Rear heated oxygen sensor signal) and engine ground.

MT

- 4) Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminal 56 and engine ground is much less than that of ECM terminal 50 and engine ground.

AT

Switching frequency ratio = A/B

A: Rear heated oxygen sensor voltage switching frequency

· TF

B: Front heated oxygen sensor voltage switching frequency

PD

This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly.

 $\mathbb{A}\mathbb{X}$

NOTE:

If the voltage at terminal 50 does not switch periodically more than 5 times within 10 seconds at step 4, perform trouble diagnosis for DTC P0133 first. (See EC-190.)

RR

ST

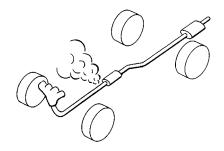
RS

BT

HA

SC

EL


Diagnostic Procedure

=NGEC0243

1	1 CHECK EXHAUST SYSTEM			
Visual	Visually check exhaust tubes and muffler for dent.			
	OK or NG			
OK	OK 🕨 GO TO 2.			
NG	•	Repair or replace.		

2 CHECK EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before the warm-up three way catalyst (California model), the three way catalyst (Non-California model).

SEF099P

OK or NG

OK ►	GO TO 3.
NG ►	Repair or replace.

3 CHECK INTAKE AIR LEAK Listen for an intake air leak after the mass air flow sensor. OK or NG OK GO TO 4.

NG Repair or replace.

4 CHECK IGNITION TIMING

1. Check the following items. Refer to "Basic Inspection", EC-95.

Items	Specifications
Ignition timing	20°± 2° BTDC
Base idle speed	750 ± 50 rpm (in "P" or "N" position)
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF
Target idle speed	800 ± 50 rpm (in "P" or "N" position)

MTBL0328

OK or NG

OK •	GO TO 5.
NG ►	Adjust ignition timing.

DTC P0420 THREE WAY CATALYST FUNCTION

KA24DE

GI

MA

EM

LC

EC

GL

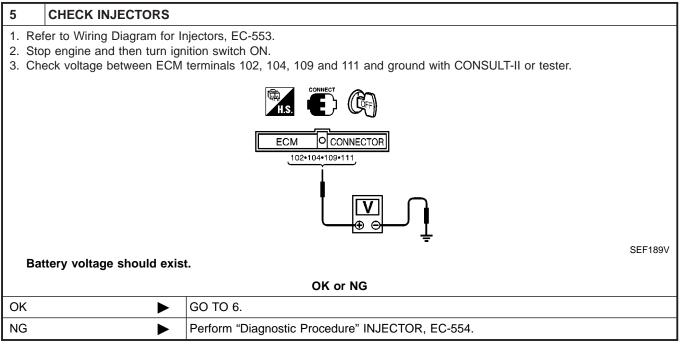
MT

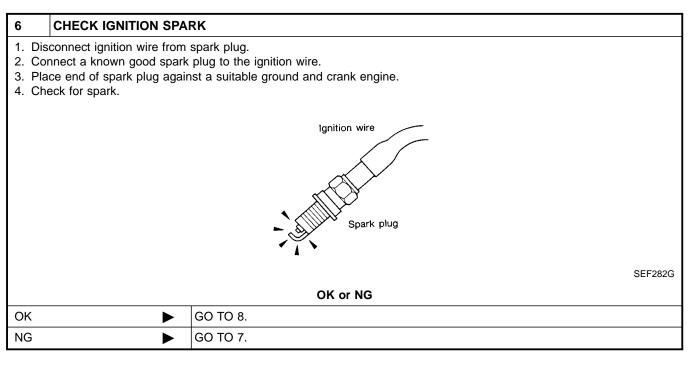
AT

TF

PD

SU


ST

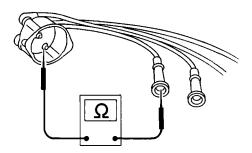

BT

HA

SC

Diagnostic Procedure (Cont'd)

 \mathbb{Z}


DTC P0420 THREE WAY CATALYST FUNCTION

KA24DE

Diagnostic Procedure (Cont'd)

CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

SEF174P

Resistance:

13.6 - 18.4 kΩ/m (4.15 - 5.61 kΩ/ft) at 25°C (77°F)

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK or NG

OK ►	Check ignition coil, power transistor and their circuits. Refer to EC-449.
NG •	Replace.

8	CHECK INJECTOR		
1. Tur	1. Turn ignition switch OFF.		
	2. Remove injector assembly. Refer to EC-41.		
		ors connected to injector gallery.	
	3. Disconnect camshaft position sensor harness connector.		
	4. Turn ignition switch ON.		
Ma	Make sure fuel does not drip from injector.		
	OK or NG		
OK (D	OK (Does not drip.) GO TO 9.		
NG (D	NG (Drips.) Replace the injector(s) from which fuel is dripping.		

9	CHECK INTERMITTEN	IT INCIDENT
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
Troubl	e is fixed.	INSPECTION END
Trouble	e is not fixed.	Replace warm-up three way catalyst*. *: Three way catalyst (For Non-California)

KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic

NOTE:

NGEC0244

MA

EC

FE

GL

MT

If DTC P0440 OR P1440 is displayed with DTC P1448, perform trouble diagnosis for DTC P1448 first. (See EC-515.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0440 0705	 EVAP control system has a leak. EVAP control system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent con-
		trol valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent.
		 Blocked or bent rubber tube to EVAP control system pressure sensor
		 Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit
		 Absolute pressure sensor Fuel tank temperature sensor MAP/BARO switch solenoid valve and the circuit
		 Blocked or bent rubber tube to MAP/BARO switch solenoid valve O-ring of EVAP canister vent control valve is
		missing or damaged.Water separatorEVAP canister is saturated with water.
		EVAP control system pressure sensorFuel level sensor

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DV.

EL

KA24DE

NGEC0245

On Board Diagnosis Logic (Cont'd)

1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F) -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON,STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.

02.1

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

OK

SELF-DIAG RESULTS

NO DTC DETECTED.
FURTHER TESTING
MAY BE REQUIRED.

SEF567X

DTC Confirmation Procedure

NOTE:

• If DTC P0440 or P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. Refer to EC-515.

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(I) With CONSULT-II TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- It is better that the fuel level is low.
- 1) Turn ignition switch ON.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 60°C (32 - 140°F)

5) Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

- If the engine cannot be maintained within the range on CONSULT-II screen, go to "Basic Inspection", EC-95.
- Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-354.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

With GST

- 1) Start engine.
- 2) Drive vehicle according to "Driving pattern", EC-63.

NOTE:

Be sure to read the explanation of "Driving pattern" on EC-63 before driving vehicle.

- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch OFF and wait at least 5 seconds.
- 6) Start engine

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving pattern", EC-63.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure", EC-507.
- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-354.

KA24DE

DTC Confirmation Procedure (Cont'd)

- If P1440 is displayed on the screen, go to "Diagnostic Procedure", EC-486.
- If P0440, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 5.

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

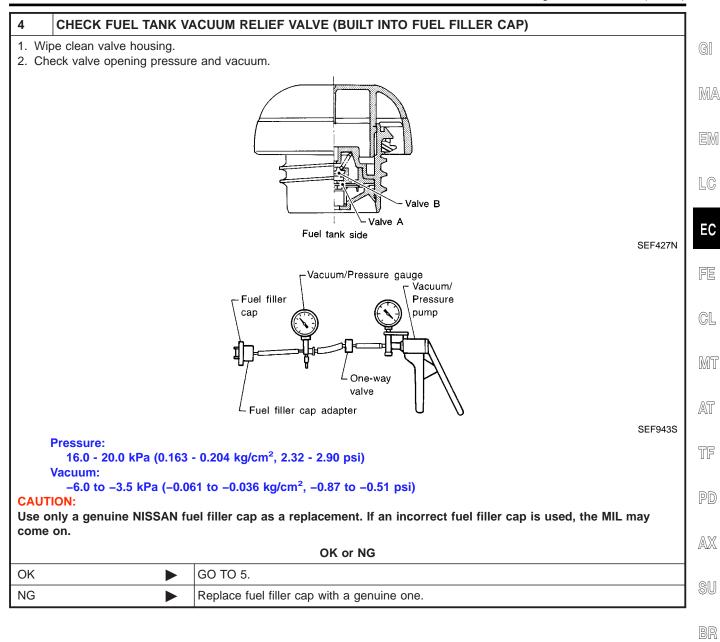
EL

KA24DE

Diagnostic Procedure

NG

Diagnostic Procedure 1 CHECK FUEL FILLER CAP DESIGN 1. Turn ignition switch OFF. 2. Check for genuine NISSAN fuel filler cap design. SEF915U OK or NG OK


2	CHECK FUEL FILLER CAP INSTALLATION				
Check that the cap is tightened properly rotating the cap clockwise.					
OK or NG					
OK	OK ▶ GO TO 3.				
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 			

Replace with genuine NISSAN fuel filler cap.

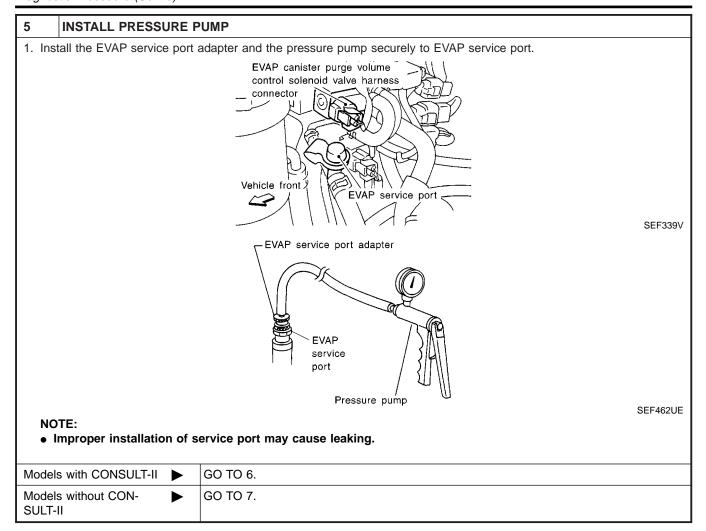
3	CHECK FUEL FILLER CAP FUNCTION			
Check for air releasing sound while opening the fuel filler cap.				
OK or NG				
OK ▶ GO TO 5.				
NG	>	GO TO 4.		

KA24DE

Diagnostic Procedure (Cont'd)

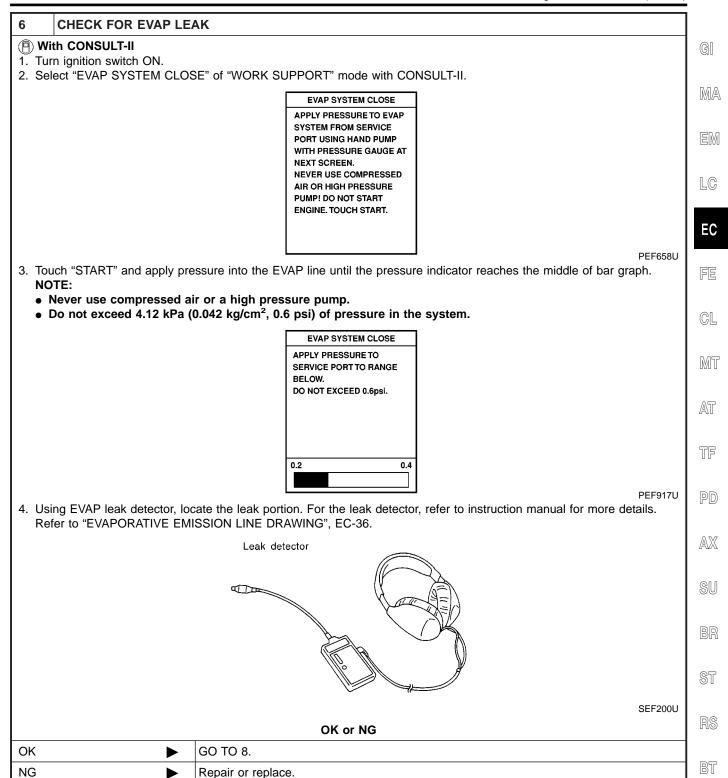
ST

BT


HA

SC

EL


KA24DE

Diagnostic Procedure (Cont'd)

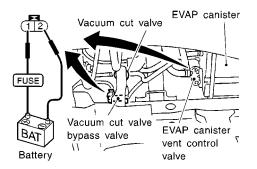
KA24DE

Diagnostic Procedure (Cont'd)

 \mathbb{N}

HA

SC

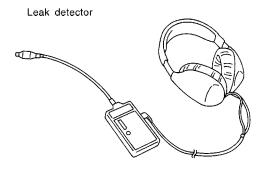

KA24DE

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

(R) Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

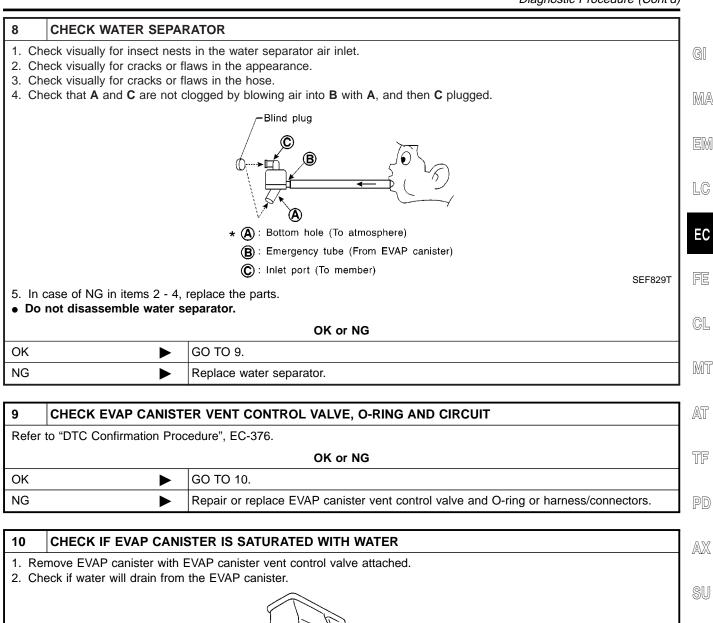


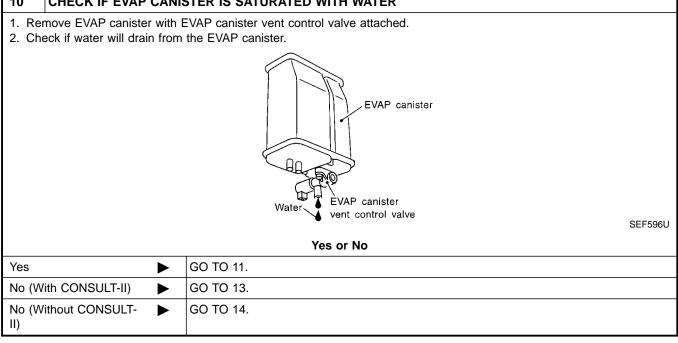
SEF503V

- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.) Shown in the above figure.
- 4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg).

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the leak. For the leak detector, refer to instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-36.


SEF200U


OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

KA24DE

Diagnostic Procedure (Cont'd)

KA24DE

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER				
_	Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).				
	OK or NG				
OK (V	/ith CONSULT-II)		GO TO 13.		
OK (W	OK (Without CONSULT- GO TO 14.				
NG			GO TO 12.		

12 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.

▶ Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.

ACTIVE TEST				
PURG VOL CONT/V	XXX %			
MONITOR				
CMPS~RPM(REF)	XXX rpm			
FR O2 MNTR	RICH			
A/F ALPHA	XXX %			
THRTL POS SEN	xxx v			

PEF190V

- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum.

Vacuum should exist.

OK or NG

OK		GO TO 17.
NG	>	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 60 seconds.
- 5. Check vacuum hose for vacuum.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ▶	GO TO 15.

KA24DE

Diagnostic Procedure (Cont'd)

15	CHECK VACUUM	/ HOS	SE .		
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-27.			GI	
			OK or NG		
OK (W	/ith CONSULT-II)	•	GO TO 16.		M.
OK (W	/ithout CONSULT-	•	GO TO 17.		
NG			Repair or reconnect the hose.		EN

LC 16 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (I) With CONSULT-II 1. Start engine. EC 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step. ACTIVE TEST PURG VOL CONT/V XXX % GL MONITOR CMPS~RPM(REF) XXX rpm FR O2 MNTR RICH MT A/F ALPHA XXX % THRTL POS SEN XXX V AT PEF190V TF 3. Check air passage continuity. Condition PURG VOL CONT/V value Air passage continuity between **A** and **B** PD 100.0% Yes 0.0% No AX MTBL0302 OK or NG

Replace EVAP canister purge volume control solenoid valve.

GO TO 18.

OK

NG

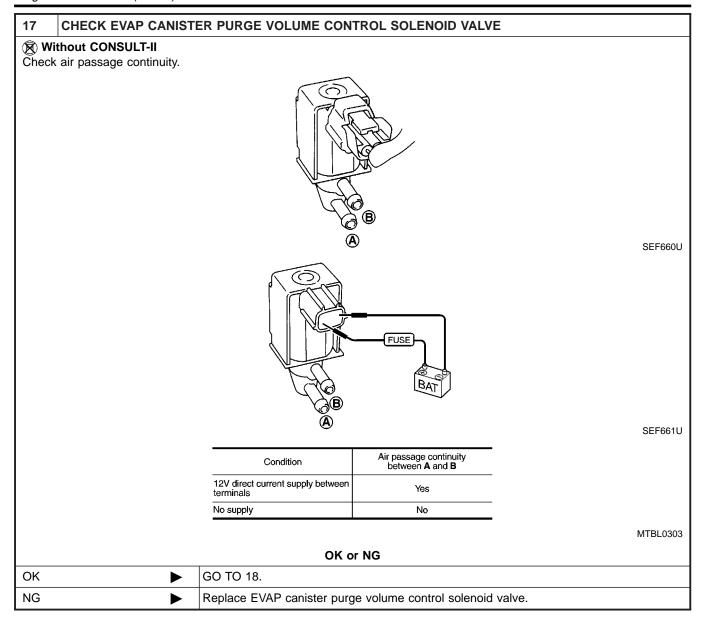
BR

SU

ST

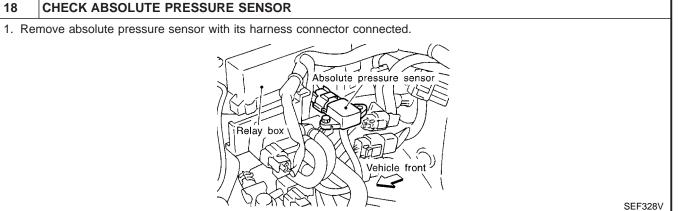
RS

BT

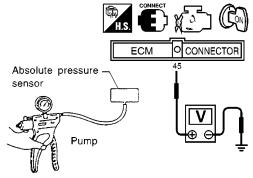

HA

SC

EL


 $\mathbb{D}\mathbb{X}$

KA24DE


KA24DE

Diagnostic Procedure (Cont'd)

2. Remove hose from absolute pressure sensor.

3. Turn ignition switch ON and check output voltage between ECM terminal 45 (Absolute pressure sensor signal) and engine ground.

SEF132V

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

- **CAUTION:**
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –93.3 kPa (–700 mmHg, –27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK (or NG
------	-------

OK •	GO TO 19.
NG •	Replace absolute pressure sensor.

GI

MA

ren a

LC

EC

FE

GL

MT

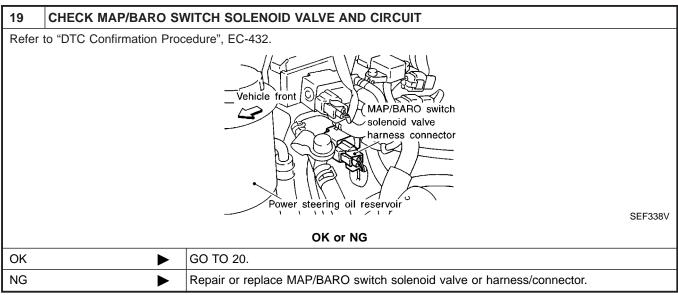
AT

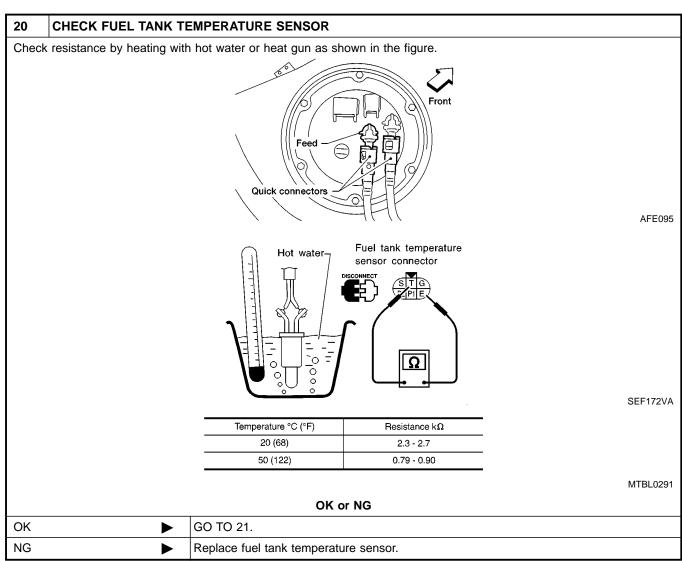
TF

PD

MΜ

ை


ST


BT

HA

SC

KA24DE

KA24DE

GI

MA

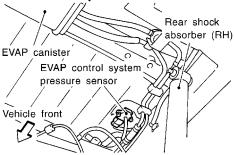
EC

GL

MT

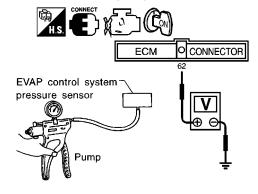
AT

TF


PD

Diagnostic Procedure (Cont'd)

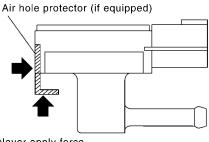
CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


1. Remove EVAP control system pressure sensor with its harness connector connected.

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 4. Check output voltage between ECM terminal 62 and engine ground.

Pressure (Relative to atomospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6


MTBL0295

SEF198V

CAUTION:

21

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.

Never apply force.

SEF799W

- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG

OK •	GO TO 22.
NG ►	Replace EVAP control system pressure sensor.

كاكا

HA

SC

KA24DE

22	22 CHECK EVAP PURGE LINE			
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-36.				
OK or NG				
OK	OK ▶ GO TO 23.			
NG	•	Repair or reconnect the hose.		

23	23 CLEAN EVAP PURGE LINE				
Clean EVAP purge line (pipe and rubber tube) using air blower.					
	▶ GO TO 24.				

24	CHECK FUEL LEVEL S	ENSOR			
	1. Remove fuel level sensor assembly. Refer to <i>FE-4</i> .				
Z. Rei	2. Refer to "FUEL LEVEL SENSOR CHECK", <i>EL-86</i>				
	OK or NG				
OK	•	GO TO 25.			
NG	•	Replace fuel level sensor.			

25	CHECK INTERMITTENT INCIDENT			
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.				
	► INSPECTION END			

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

Input Signal to ECM

Engine speed

Start signal

Throttle position

Vehicle speed

Closed throttle position

Density of oxygen in exhaust gas

(Mixture ratio feedback signal)

Fuel temperature in fuel tank

air flow changes.

Amount of intake air

Engine coolant temperature

Description

Description SYSTEM DESCRIPTION

NGEC0248 NGEC0248S01

Actuator	MA
	EM

EVAP canister purge volume

control solenoid valve

EC

FE

ter. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by consider-

TF

PD

AX

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

ECM

function

EVAP can-

ister purge

flow control

This system controls flow rate of fuel vapor from the EVAP canis-

ing various engine conditions. When the engine is operating, the

flow rate of fuel vapor from the EVAP canister is regulated as the

Specification data are reference values.

SEF337U

Sensor

Camshaft position sensor

Engine coolant temperature sensor

Mass air flow sensor

Throttle position sensor

Throttle position switch

Vehicle speed sensor

Front heated oxygen sensors

Fuel tank temperature sensor

Ignition switch

NGEC0249

HA

SC

BT

MONITOR ITEM	CONE	SPECIFICATION	
PURG VOL C/V	Engine: After warming up Air conditioner switch "OFF"	Idle (Vehicle stopped)	0%
FORG VOL C/V	Shift lever: "N"No-load	2,000 rpm	_

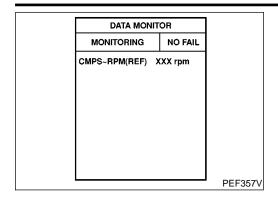
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

-1				
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	ECCS relay (Self-shutoff)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1V
			[Ignition switch OFF] ● A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
5	R/Y	EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
5	R/Y	noid valve	[Engine is running] ● Engine speed is 2,000 rpm (More than 200 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
67	В/Р	Power supply for	Hanitian quitab ONI	BATTERY VOLTAGE
72	B/P	ECM	[Ignition switch ON]	(11 - 14V)
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)


On Board Diagnosis Logic

NGEC0251

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0443 1008	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

=NGEC0252

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

MA

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle for at least 30 seconds.

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-371

LC

Follow the procedure "With CONSULT-II".

EC

FE

GL

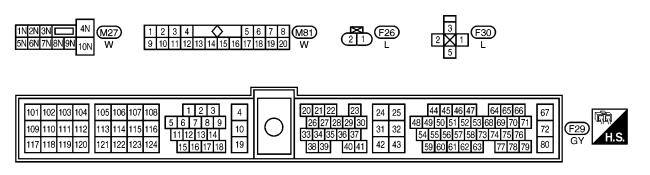
MT

AT

PD

TF

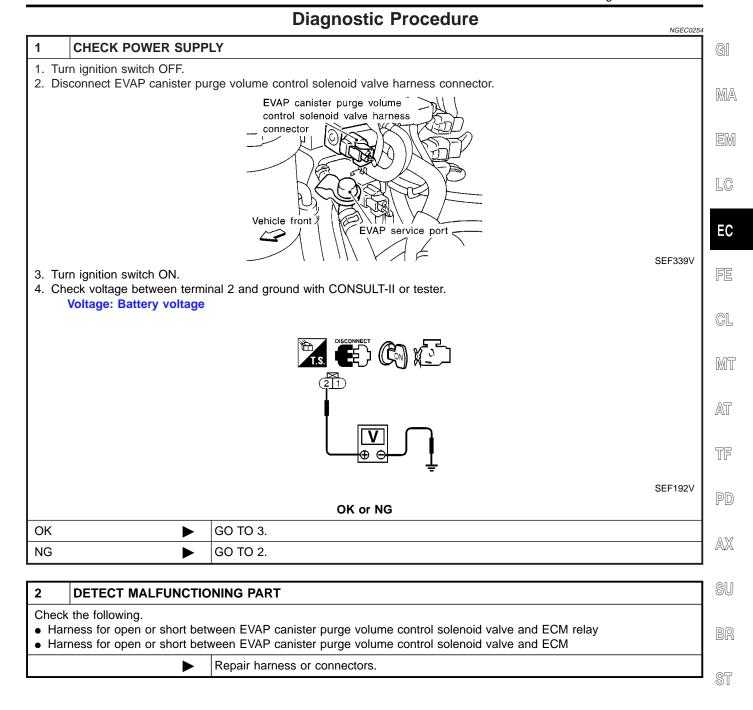
SU


ST

BT

HA

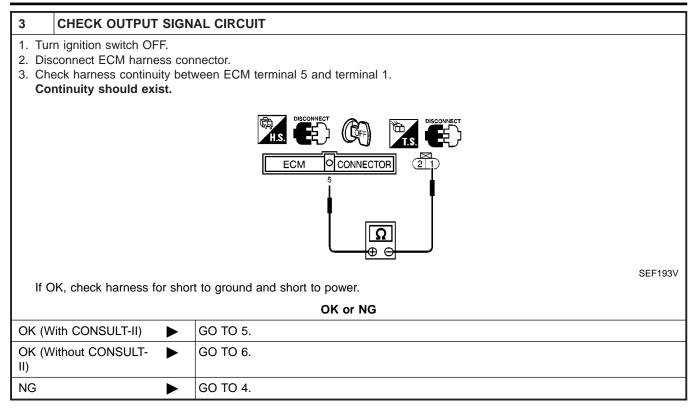
SC


Wiring Diagram NGEC0253 EC-PGC/V-01 **BATTERY** FUSE BLOCK (J/B) Refer to "EL-POWER". 10A 27 (M27) : Detectable line for DTC : Non-detectable line for DTC SB 6 SB (F27) ECM RELAY (F30) LG/R B/P B/P EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE R/Y (F26) LG/R B/P B/P B/P 5 4 72 117 67 **ECM** VΒ EVAP (F29)

AEC996A

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

Diagnostic Procedure

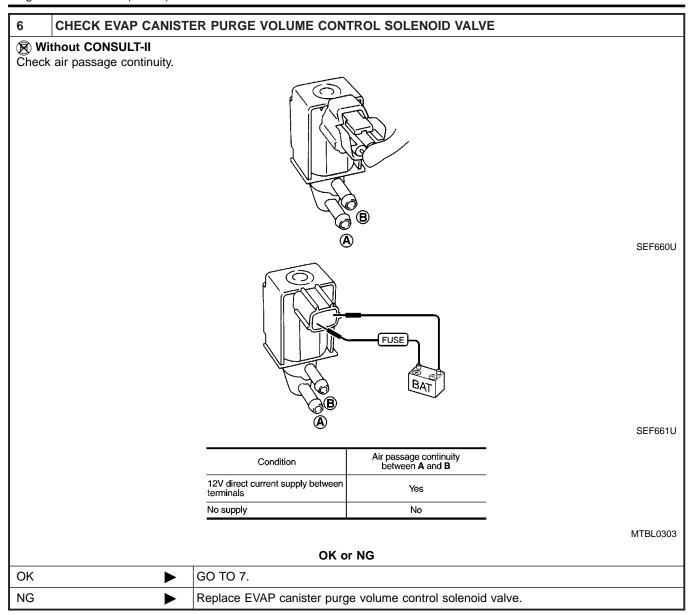


BT

HA

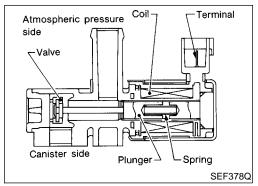
SC

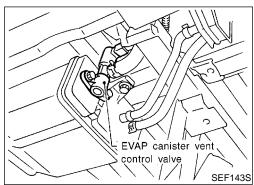
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)


4	DETECT MALFUNCTIONING PART			
Check	Check the harness for open or short between EVAP canister purge volume control solenoid valve and ECM.			
	► Repair open circuit or short to ground or short to power in harness or connectors.			

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT) KA24DE

					Diagnostic i i	rocedure (Cont'd)
5 CHECK EVAP CAN	NISTER PURGE VOI	_UME CONT	ROL SOLI	ENOID VALV		
(P) With CONSULT-II						
1. Start engine.				- 11 OL 1 41		
Perform "PURG VOL CO to the valve opening.	ONT/V" in "ACTIVE TE	SI" mode wi	th CONSUL	.I-II. Check th	nat engine speed var	
If OK, inspection end. If I	NG, go to following st	ер.				
		ACTIVE	TEST]		
		PURG VOL CON				
		MONI CMPS~RPM(R				
		FR O2 MNTF	· · · ·			
		A/F ALPHA	XXX %			
		THRTL POS S	EN XXX V	ļ		
				-		
10.01				J		PEF190V
3. Check air passage contin	nuity.				_	
	Condi PURG VOL CO	tion ONT/V value	Air passag	ge continuity n A and B		
	100.0%	Sivi7 value		/es	-	
	0.0%		1	Vo	-	
		•			•	MTBL0302
		OK or	· NG			
OK I	■ GO TO 7.					
NG I	Replace EVAP	canieter nura	a voluma co	ntrol colenoic	l valve	
NO	Replace L VAI	- Janister purg	e volume co		vaive.	


SC


DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

7	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END			

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

LC

GI

MA

EC

FE

GL

MT

AT

TF

PD

CONSULT-II Reference Value in Data Monitor Mode

NGEC0257

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

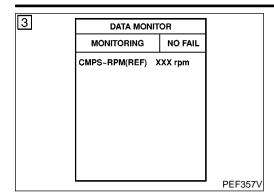
Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0259

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0446 0903	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	Harness or connectors (EVAP canister vent control valve circuit is open or shorted.) EVAP canister vent control valve



ST

HA

SC

DTC Confirmation Procedure

DTC Confirmation Procedure

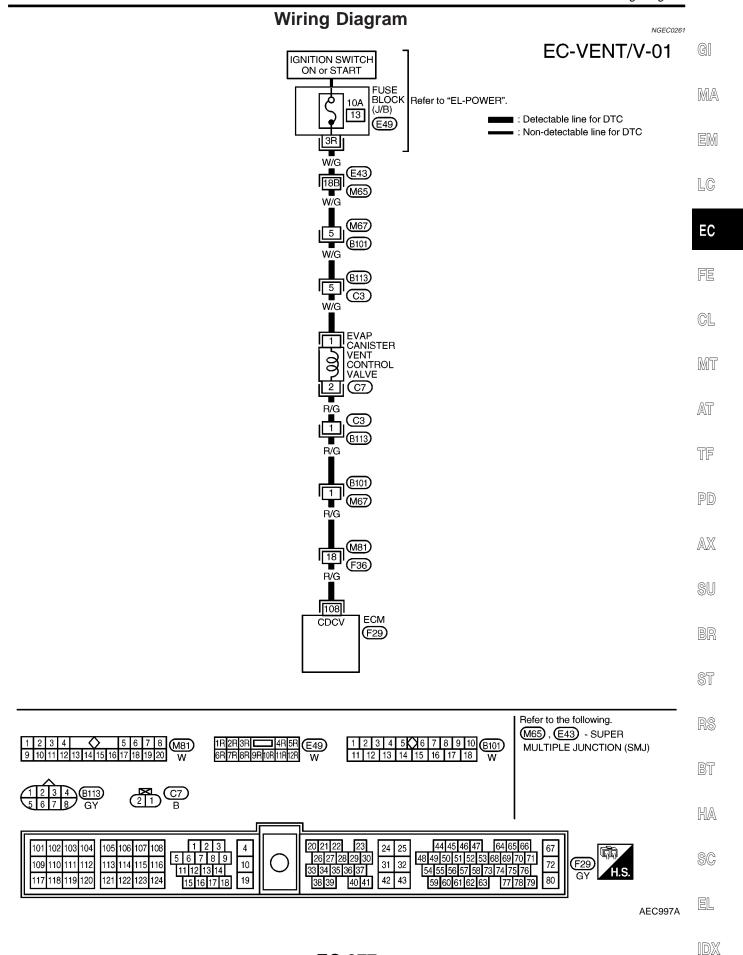
NGEC0260

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

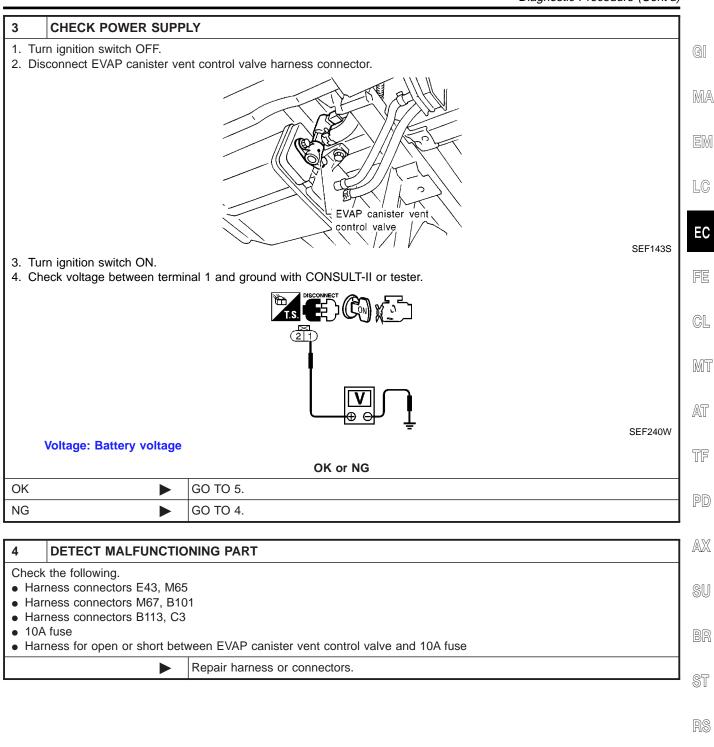

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-378.

With GST

Follow the procedure "With CONSULT-II".

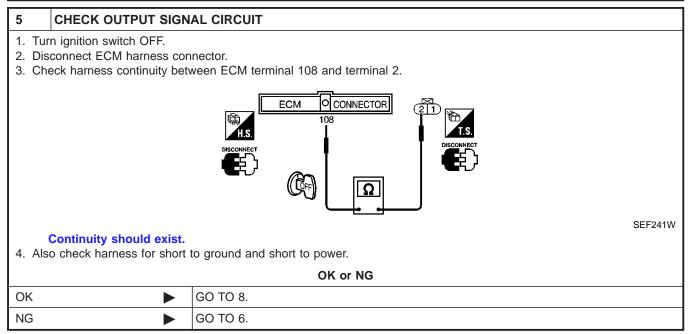
Wiring Diagram



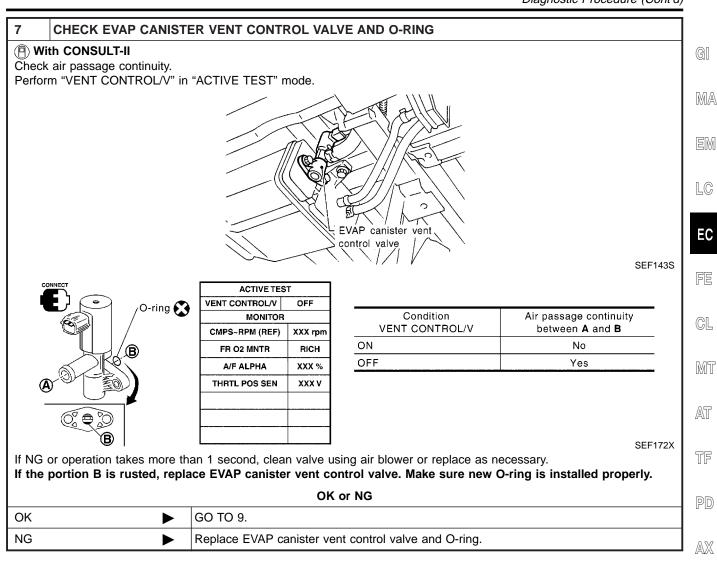
Diagnostic Procedure

Diagnostic Procedure NGEC0262 **INSPECTION START** Do you have CONSULT-II? Yes or No GO TO 2. Yes GO TO 3. No 2 **CHECK CIRCUIT** 1. Turn ignition switch ON. 2. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode. ACTIVE TEST VENT CONTROL/V MONITOR CMPS~RPM(REF) XXX rpm FR O2 MNTR A/F ALPHA XXX % THRTL POS SEN xxx v PEF361U 3. Make sure that ratcheting sound is heard from the vent control valve. OK or NG

OK •	GO TO 7.
NG ►	GO TO 3.


Diagnostic Procedure (Cont'd)

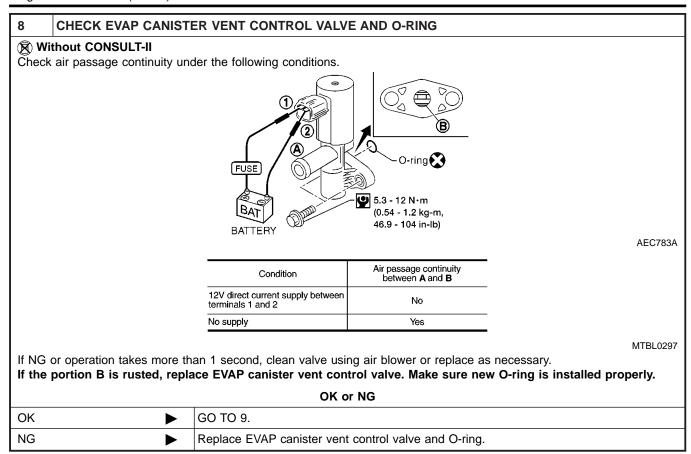
BT


HA

SC

6	ETECT MALFUNCTIONING PART			
Check the following.				
Har	Harness connectors B101, M67			
Har	Harness connectors M81, F36			
Har	Harness connectors B113, C3			
Har	 Harness for open or short between EVAP canister vent control valve and ECM 			
	Repair open circuit or short to ground or short to power in harness or connectors.			

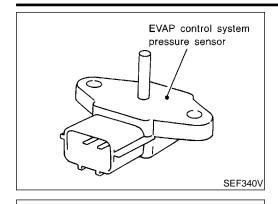
Diagnostic Procedure (Cont'd)


SU

ST

BT

HA


SC

9	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END			

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE **SENSOR**

Component Description

4.5

3.5 3 2.5

1.5 0.5

-9.3

(-70, -2.76, -1.35)

Output voltage

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

SU

CONSULT-II Reference Value in Data Monitor Mode

NGEC0265

Specification data are reference values.

Pressure kPa (mmHg, inHg, psi)

(Relative to atmospheric pressure)

+4.0

(+30, +1.18, +0.58)

SEF954S

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 3.4V

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground). AX

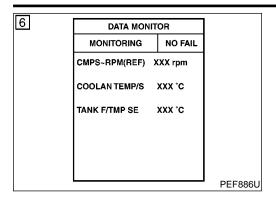
TERMI-WIRE NAL **ITEM** CONDITION DATA (DC Voltage) COLOR NO. BR 42 Sensors' power supply [Ignition switch ON] Approximately 5V [Engine is running] B/W 43 Sensors' ground Warm-up condition Approximately 0V Idle speed EVAP control system pres-Υ 62 [Ignition switch ON] Approximately 3.4V sure sensor

ST

BT

HA

SC


DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR KA24DE

On Board Diagnosis Logic

	On Board Diagnosis Logic			
DTC No.	Malfunction is detected when	Check Items (Possible Cause)		
P0450 0704	An improper voltage signal from EVAP control system pressure sensor is sent to ECM.	Harness or connectors (The EVAP control system pressure sensor circuit is open or shorted.) Rubber hose to EVAP control system pressure is clogged, vent, kinked, disconnected or improper connection. EVAP control system pressure sensor EVAP canister vent control valve EVAP canister purge volume control solenoid valve EVAP canister Rubber hose from EVAP canister vent control valve to water separator		

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

ted, G

=NGEC0268

TESTING CONDITION:

- Always perform test at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm battery voltage is more than 11V at idle.

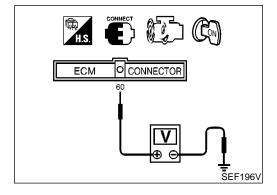
MA

LC

EC

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "TANK F/TEMP SE" is more than 0°C (32°F).
- 6) Start engine and wait at least 20 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-387.


MT

TF

PD

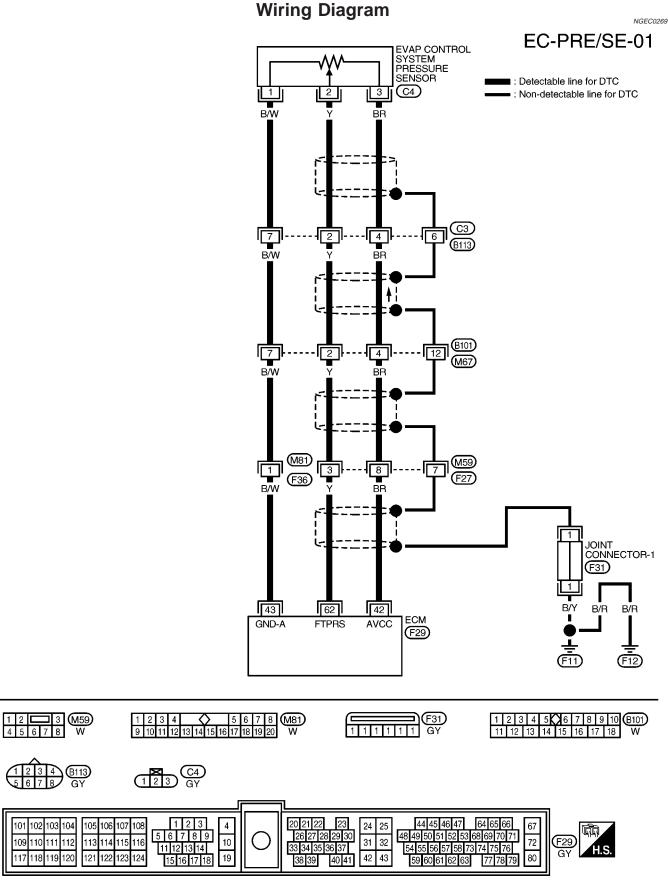
SU

FE

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine and wait at least 11 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-387.

No Tools


- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine and wait at least 11 seconds.
- Turn ignition switch OFF, wait at least 5 seconds and then turn ON.
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-387.

SI

BT

HA

SC

AEC998A

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

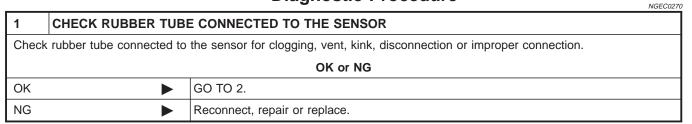
Diagnostic Procedure

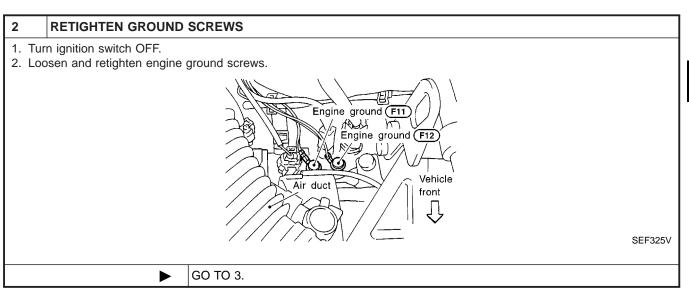
GI

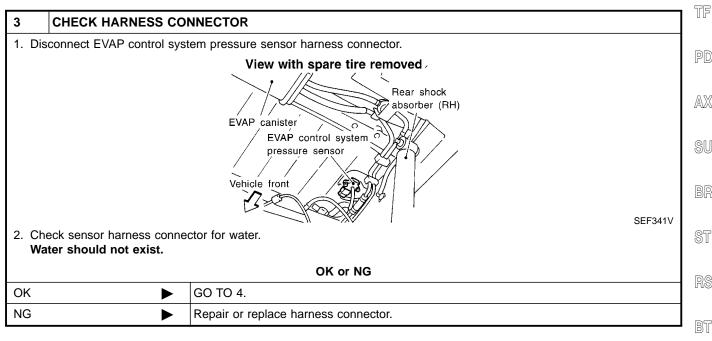
MA

EM

EC

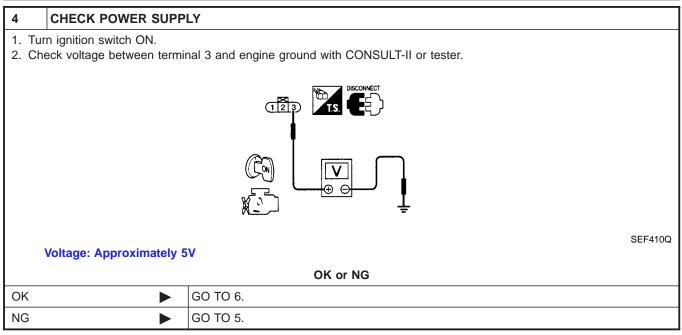

FE


GL

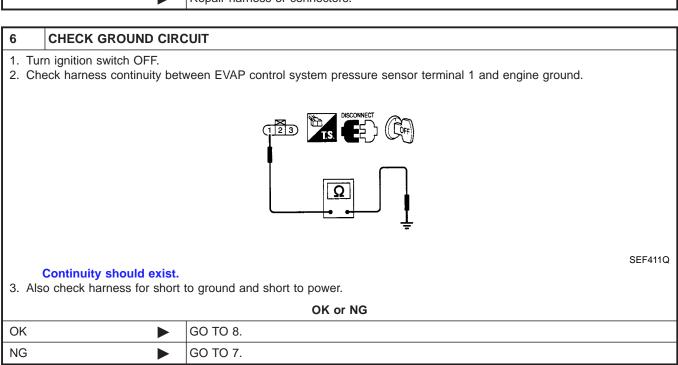

MT

AT

Diagnostic Procedure

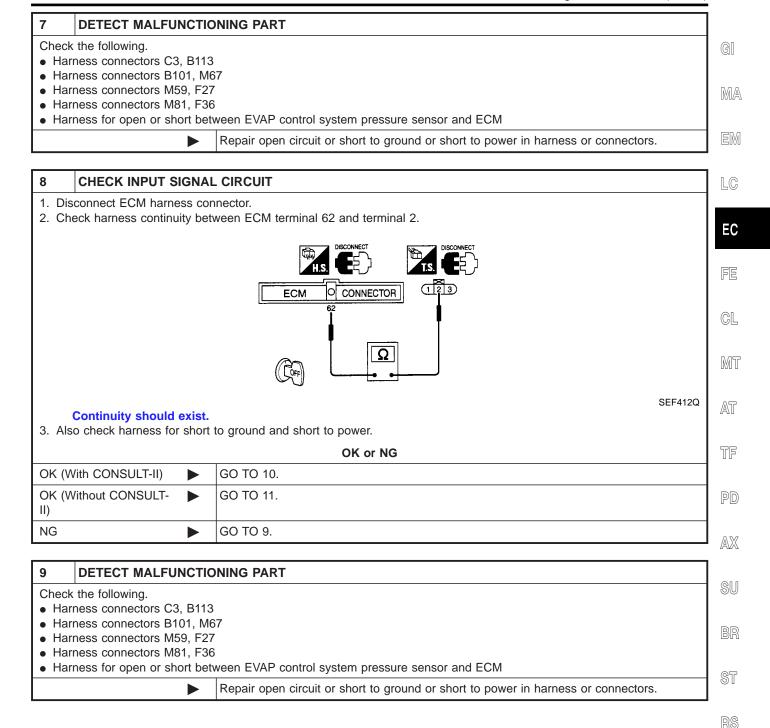


 $\mathbb{D}\mathbb{X}$


HA

SC

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR



5	DETECT MALFUNCTIO	NING PART		
Check	the following.			
Har	ness connectors C3, B113			
Har	ness connectors B101, M6	7		
Har	Harness connectors M59, F27			
Harness connectors M81, F36				
• Har	 Harness for open or short between EVAP control system pressure sensor and ECM 			
	•	Repair harness or connectors.		

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR KA24DE

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

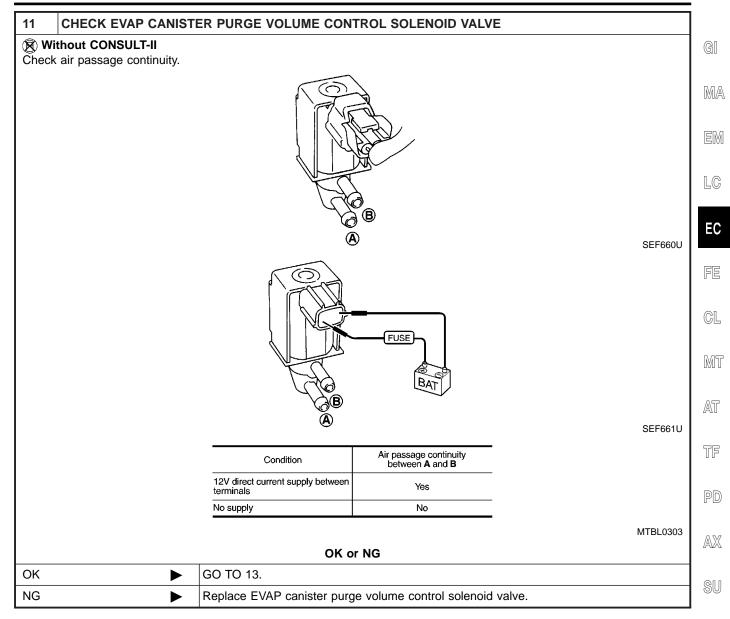
BT

HA

SC

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR KA24DE

Diagnostic Procedure (Cont'd)


NG

10	CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE					
1. Sta 2. Per to t	th CONSULT-II rt engine. form "PURG VOL CONT/V he valve opening. Check a vK, inspection end. If NG, g	ir passage conti	nuity.	h CONSUL	.T-II. Check tl	that engine speed varies according
			ACTIVE .	TEST	1	
			PURG VOL CONT.	/V XXX %]	
			MONIT	OR		
			CMPS~RPM(RE	F) XXX rpm		
			FR O2 MNTR	RICH		
			A/F ALPHA	XXX %		
			THRTL POS SE	N XXX V		
3. Che	eck air passage continuity.					PEF190
			I	A*		_
		Condi PURG VOL CO		Air passag betweei	ge continuity n A and B	
		100.0%		١	/es	_
		0.0%		I	Vo	<u> </u>
			OK or	NG		MTBL030
ОК	•	GO TO 12.				

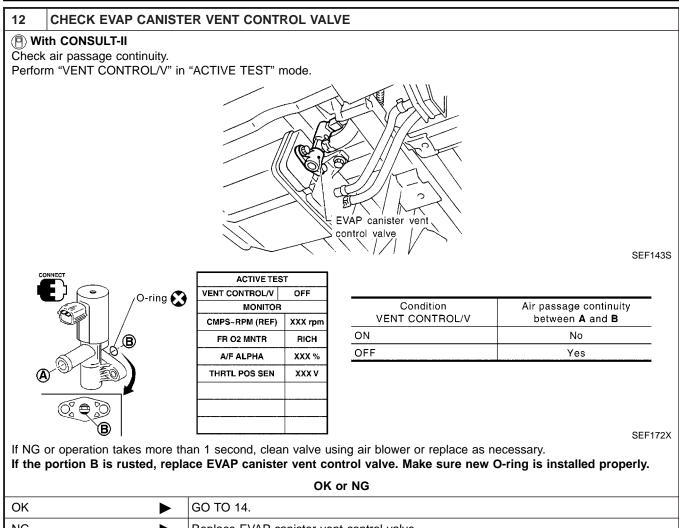
Replace EVAP canister purge volume control solenoid valve.

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

BR

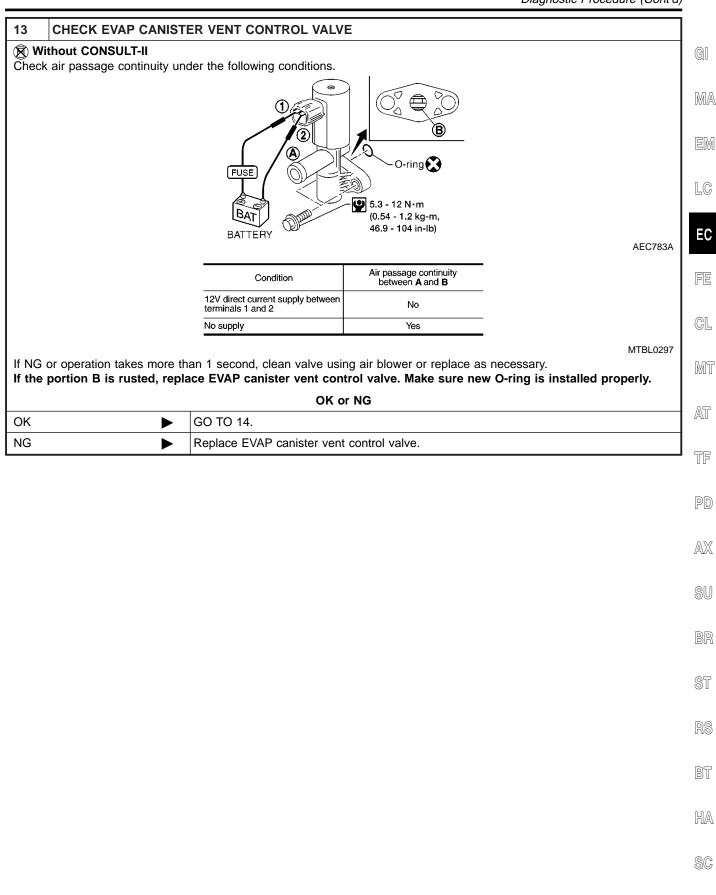
ST


RS

BT

HA

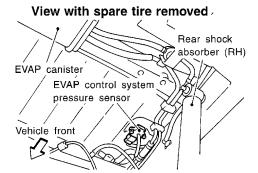
SC


DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE

OK •	GO TO 14.
NG •	Replace EVAP canister vent control valve.

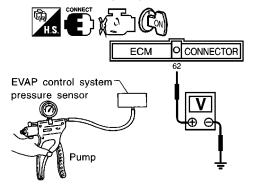
DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

Diagnostic Procedure (Cont'd)



DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR KA24DE

Diagnostic Procedure (Cont'd)


14 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

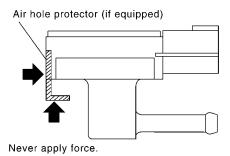
1. Remove EVAP control system pressure sensor with its harness connector connected.

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 4. Check output voltage between ECM terminal 62 and engine ground.

 Pressure (Relative to atomospheric pressure)
 Voltage (V)

 0 kPa (0 mmHg, 0 inHg)
 3.0 - 3.6


 -9.3 kPa (-70 mmHg, -2.76 inHg)
 0.4 - 0.6

SEF198V

MTBL0295

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.

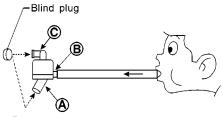
SEF799W

- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
UIN	UI.	140

OK ▶	GO TO 15.
NG •	Replace EVAP control system pressure sensor.

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR KA24DE


Diagnostic Procedure (Cont'd)

15 CHECK RUBBER TUBE FOR CLOGGING

Check obstructed water separator and rubber tube to EVAP canister vent control valve and clean the rubber tube using air blower.

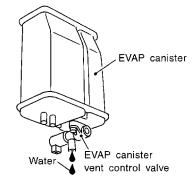
Check water separator.

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.


0	Κ	or	Ν	G

OK ▶	GO TO 16.
NG ▶	Clean, repair or replace rubber tube and/or water separator.

1. Remove EVAP canister with EVAP canister vent control valve attached.

2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes	GO TO 17.
No •	GO TO 19.

17 CHECK EVAP CANISTER

Weigh the EVAP canister with EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK	>	GO TO 19.
NG	•	GO TO 18.

GI

MA

C

EC

FF

' | [©]

MT

AT

TF

PD

SU

BR

ST

RS

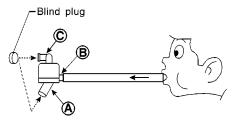
RT

B

HA

. . .

SC

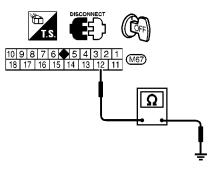

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

18 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.
- 3. Check water separator.
- a. Check visually for insect nests in the water separator air inlet.
- b. Check visually for cracks or flaws in the appearance.
- c. Check visually for cracks or flaws in the hose.
- d. Check that A and C are not clogged by blowing air into B with A, and then C plugged.


- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

- e. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.
 - Repair hose or replace EVAP canister or water separator.

19 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Reconnect disconnected harness connectors.
- 3. Disconnect harness connectors M67.
- 4. Check harness continuity between harness connector M67 terminal 12 and ground.

SEF197V

Continuity should exist.

- 5. Also check harness for short to power.
- 6. Then reconnect harness connectors.

OK or NG	ı
----------	---

OK	•	GO TO 21.
NG	•	GO TO 20.

20 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Joint connector-1 (Refer to "HARNESS LAYOUT", EL-272.)
- Harness for open or short between harness connector M67 and engine ground
 - Repair open circuit, short to ground or short to power in harness or connectors.

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR KA24DE

Diagnostic Procedure (Cont'd)

21 CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
► INSPECTION END		

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

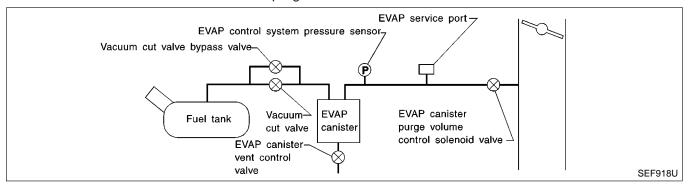
BT

HA

SC

EL

NGEC0951


On Board Diagnosis Logic

On Board Diagnosis Logic

NOTE

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-506.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a very large leak, such as fuel filler cap fell off, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

NGEC0951S01

- Fuel filler cap remains open or fails to close.
- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Absolute pressure sensor
- Tank fuel temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- EVAP control system pressure sensor

NGEC0952

DTC Confirmation Procedure

CAUTION:

Never remove fuel filter cap during the DTC confirmation procedure.

1 🕮

MA

LC

EC

FE

GL

MIT

AT

TF

PD

SU

BT

HA

SC

EIL

1)FOR BEST RSLT,PERFORM
AT FOLLOWING CONDITIONS.
-FUEL LEVEL: 1/4-3/4
-AMBIENT TEMP: 0-30 C(32-86F)
-OPEN ENGINE HOOD.
2)START ENG WITH VHCL
STOPPED. IF ENG IS ON,STOP
FOR 5 SEC. THEN RESTART.
3)TOUCH START.

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

MAINTAIN
1600 - 2100 RPM UNTIL FINAL
RESULT APPEARS.
(APPROX. 3 MINUTES)

1600 rpm 1850 rpm 2100 rpm

6 EVAP SML LEAK P0440/P1440

OK

SELF-DIAG RESULTS

NO DTC DETECTED.
FURTHER TESTING
MAY BE REQUIRED.

SEF567X

NOTE:

- If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-516.)
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.
- It is better that the fuel level is low.
- (P) With CONSULT-II
- 1) Tighten fuel filter cap securely until ratcheting sound is heard.
- Turn ignition switch ON.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-95.

7) Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455] is displayed. If it is displayed, refer to "Diagnostic Procedure", EC-400.

If P0440 is displayed, perform "Diagnostic Procedure" for DTC P0440.

With GST

NOTE:

- Be sure to read the explanation of "Driving Pattern" on EC-63 before driving vehicle.
- It is better that the fuel level is low.
- 1) Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-63.
- Stop vehicle.

DW

- Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving Pattern", EC-63.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P0455 is displayed on the screen, go to "Diagnostic Procedure", EC-400.
- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-354.
- If P1440 is displayed on the screen, go to "Diagnostic Procedure", EC-486.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure", EC-507.
- If P0440, P0455, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

1. Turn ignition switch OFF.
2. Check for genuine NISSAN fuel filler cap design.

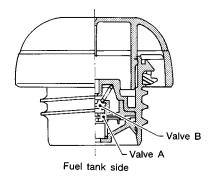
SEF915U

OK or NG

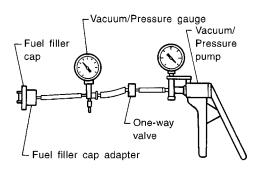
OK

Replace with genuine NISSAN fuel filler cap.

KA24DE


Diagnostic Procedure (Cont'd)

2	CHECK FUEL FILLER CAP INSTALLATION	
Check	Check that the cap is tightened properly by rotating the cap clockwise.	
OK or NG		
OK	>	GO TO 3.
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.


3	3 CHECK FUEL FILLER CAP FUNCTION		
Check	Check for air releasing sound while opening the fuel filler cap.		
		OK or NG	
OK	>	GO TO 6.	
NG	>	GO TO 4.	

4 CHECK FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF427N

SEF943S

Pressure:

16.0 - 20.0 kPa (0.163 - 0.204 kg/cm², 2.32 - 2.90 psi)

Vacuum:

-6.0 to -3.5 kPa (-0.061 to -0.036 kg/cm², -0.87 to -0.51 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

$\alpha \nu$		NG
UN	or	NG

OK		GO TO 5.
NG		Replace fuel filler cap with a genuine one.

G[

MA

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

© I

RS

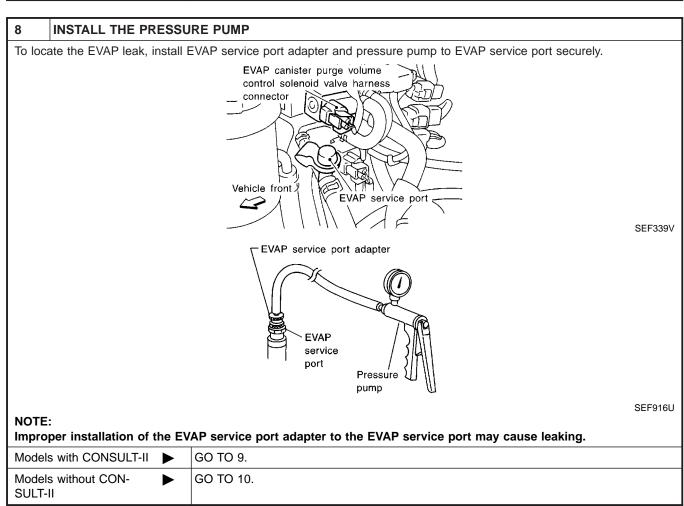
BT

ппΔ

HA

SC

EL


KA24DE

Diagnostic Procedure (Cont'd)

5	CHECK EVAP PURGE LINE		
tion.	Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection or disconnection. Refer to "Evaporative Emission System", EC-34.		
		OK or NG	
ОК	>	GO TO 6.	
NG	>	Repair or reconnect the hose.	

6	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	▶ GO TO 7.		

7	7 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT		
Refer	Refer to "DTC Confirmation Procedure", EC-376.		
	OK or NG		
ОК	>	GO TO 8.	
NG	>	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.	

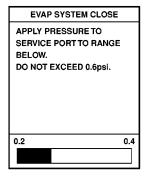
KA24DE

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

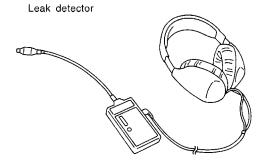
(P) With CONSULT-II

9


- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.

EVAP SYSTEM CLOSE

APPLY PRESSURE TO EVAP
SYSTEM FROM SERVICE
PORT USING HAND PUMP
WITH PRESSURE GAUGE AT
NEXT SCREEN.
NEVER USE COMPRESSED
AIR OR HIGH PRESSURE
PUMP! DO NOT START
ENGINE. TOUCH START.


PEF658U

- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. **NOTE:**
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-36.

SEF200U

OK c	r NG
------	------

OK	>	GO TO 11.
NG	>	Repair or replace.

GI

MA

1 @

EC

GL

FE

MT

AT

TF PD

ST

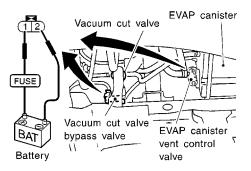
RS

BT

HA

SC

EL

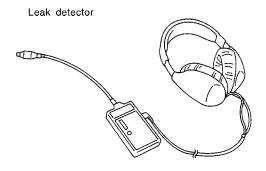

KA24DE

Diagnostic Procedure (Cont'd)

10 CHECK FOR EVAP LEAK

(Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEF503V

 Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-36.

SEF200U

OK or NG

OK •	GO TO 12.
NG ►	Repair or replace.

KA24DE

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

SU

BR

ST

Diagnostic Procedure (Cont'd) 11 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION (B) With CONSULT-II 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 2. Start engine. 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode. 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR	₹		
CMPS~RPM(REF)	XXX rpm		
FR O2 MNTR-B2	RICH		
FR O2 MNTR-B1	RICH		
A/F ALPHA-B2	XXX %		
A/F ALPHA-B1	XXX %		
THRTL POS SEN	xxx v		

PEF882U

Vacuum should exist.

OK or NG

OK •	GO TO 14.
NG ▶	GO TO 13.

12	CHECK EVAP CANIST	ER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION
(R) Wi	ithout CONSULT-II	
		o normal operating temperature.
2. Sto	op engine.	
3. Dis	sconnect vacuum hose to E	EVAP canister purge volume control solenoid valve at EVAP service port.
4. Sta	art engine and let it idle for	at least 80 seconds.
5. Ch	eck vacuum hose for vacu	um when revving engine up to 2,000 rpm.
Va	cuum should exist.	
		OK or NG
OK	>	GO TO 14.
NG	•	GO TO 13.
NG	>	GO TO 13.

13	CHECK VACUUM	I HOS	SE CONTRACTOR OF THE CONTRACTO	
Check	vacuum hoses for	cloggii	ng or disconnection. Refer to "Vacuum Hose Drawing", EC-27.	
			OK or NG	
OK (V	Vith CONSULT-II)		GO TO 14.	
OK (V II)	Vithout CONSULT-	>	GO TO 15.	
NG			Repair or reconnect the hose.	

HA

BT

SC

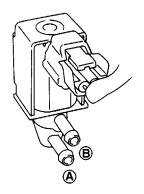
EL

 $\mathbb{D}X$

Diagnostic Procedure (Cont'd)

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II


- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR	₹		
CMPS~RPM(REF)	XXX rpm		
FR O2 MNTR-B2	RICH		
FR O2 MNTR-B1	RICH		
A/F ALPHA-B2	XXX %		
A/F ALPHA-B1	XXX %		
THRTL POS SEN	xxx v		

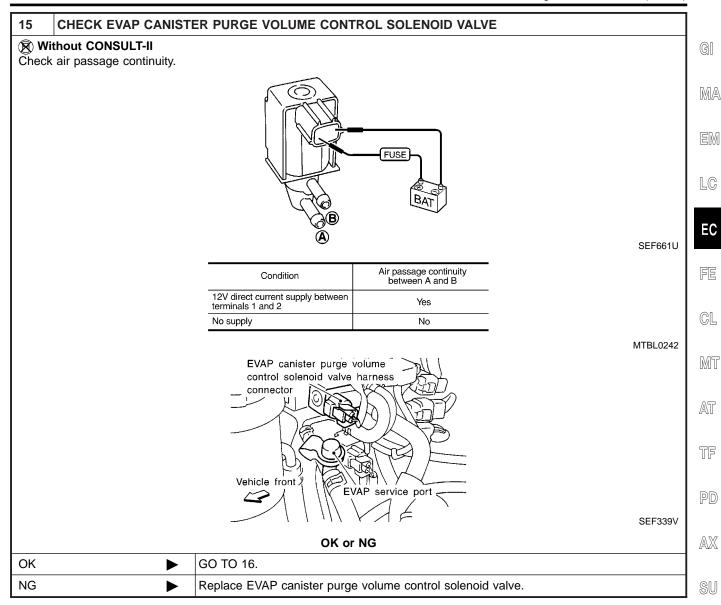
PEF882U

If OK, inspection end. If NG, go to following step.

3. Check air passage continuity.

SEF660U

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No


MTBL0241

ΟK	or	NG
----	----	----

OK ►	GO TO 16.
NG ►	Replace EVAP canister purge volume control solenoid valve.

KA24DE

Diagnostic Procedure (Cont'd)

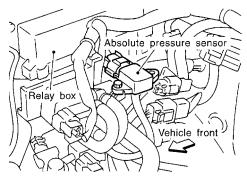
BR

ST

RS

BT

HA

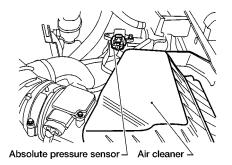

SC

EL

Diagnostic Procedure (Cont'd)

16 CHECK ABSOLUTE PRESSURE SENSOR

1. Remove absolute pressure sensor with its harness connector connected.

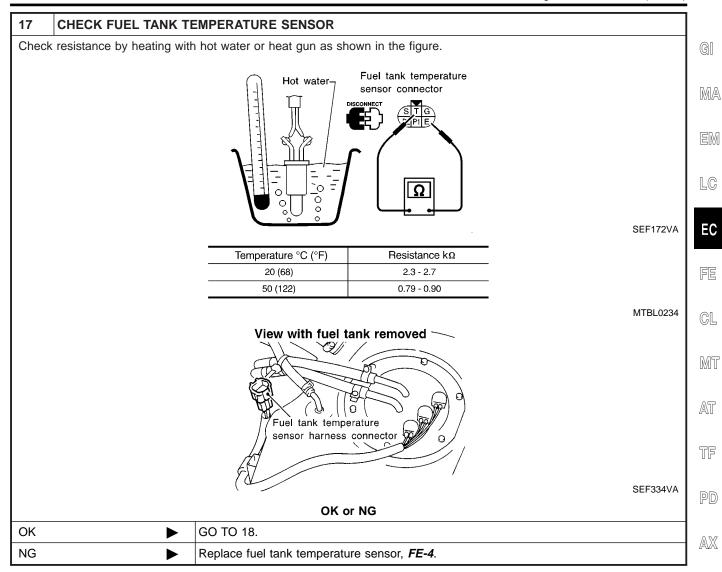

SEF328V

- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 and engine ground. The voltage should be 3.2 to 4.8V.
- 4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.


AEC642A

OK or NG

OK ►	GO TO 17.
NG ►	Replace absolute pressure sensor.

KA24DE

Diagnostic Procedure (Cont'd)

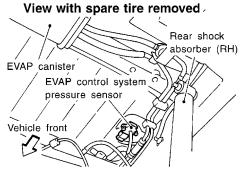
SU

BR

ST

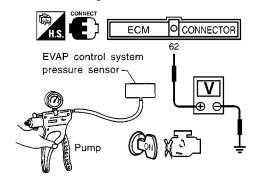
RS

BT


HA

SC

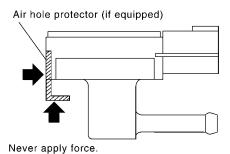
EL


18 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


SEF894U

Pressure (Relative to atmosphericpressure)	Voltage (V)	
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6	
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6	

MTBL0246

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
 CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

SEF799W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NO
----	----	----

ОК		GO TO 19.
NG		Replace EVAP control system pressure sensor.

KA24DE

Diagnostic Procedure (Cont'd)

19	CHECK FUEL LEVEL S	ENSOR	
Ref	move fuel level sensor ass fer to <i>FE-5</i> . fer to "FUEL LEVEL SENS	embly. OR UNIT CHECK", <i>EL-86</i> .	GI
	OK or NG		MA
OK	>	EC-411	
NG	>	Replace fuel level sensor.	EM

20	CHECK INTERMITTENT INCIDENT		
Refer 1	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

LC

EC

FE

GL

MT

AT

TF

PD

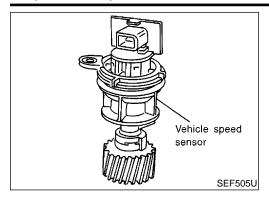
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

Component Description

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
29	G/B	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 2nd gear position Vehicle speed is 40 km/h (25 MPH) 	1 - 4V (V) 10 5 0 50 ms SEF003W

On Board Diagnosis Logic

NGEC0274

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0500 0104	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor

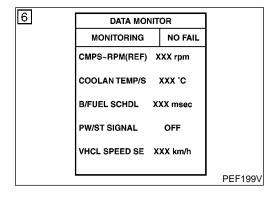
DTC Confirmation Procedure

NGEC0275

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

This procedure may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) With CONSULT-II

- Start engine
- Read vehicle speed sensor signal in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 3) If NG, go to "Diagnostic Procedure", EC-415. If OK, go to following step.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Warm engine up to normal operating temperature.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

DTC Confirmation Procedure (Cont'd)

6) Maintain the following conditions for at least 10 consecutive seconds.

CMPS·RPM (REF)	1,450 - 2,550 rpm (A/T) 1,800 - 3,000 rpm (2WD M/T) 2,150 - 3,000 rpm (4WD M/T)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.1 - 4.8 msec (A/T) 2.5 - 5.3 msec (M/T)
Selector lever	Suitable position
PW/ST SIGNAL	OFF

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-415.

EC

LC

GI

MA

FE

GL

MT

AT

TF

PD

FUEL SYS #1 CLOSED FUEL SYS #2 CALC LOAD CLOSED 19% COOLANT TEMP 93°C SHORT FT #1 0% LONG FT #1 SHORT FT #2 LONG FT #2 2037RPM ENGINE SPD VEHICLE SPD IGN ADVANCE 43°C INTAKE AIR

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a 1st trip DTC might not be confirmed.

® With GST

SEF568P

1) Lift up drive wheels.

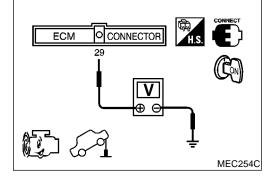
Start engine.

Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

4) If NG, go to "Diagnostic Procedure", EC-415.

SU

ST

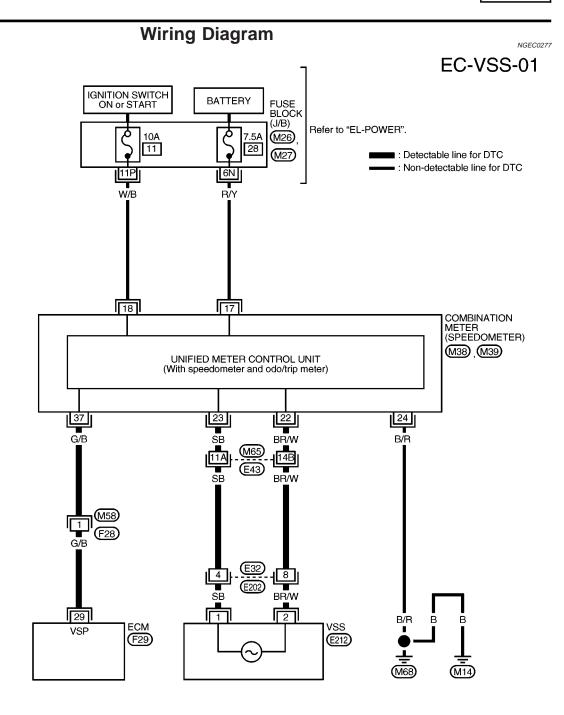

BT

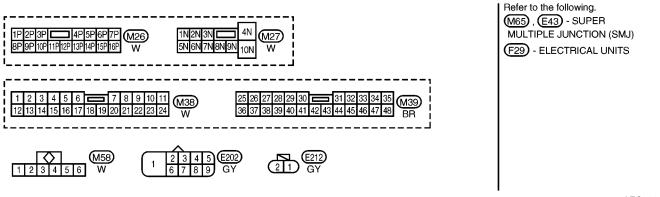
HA

SC

EL

No Tools


Lift up drive wheels. 1)


Start engine.

Read the voltage signal between ECM terminal 29 (Vehicle speed sensor signal) and ground with oscilloscope.

Verify that the oscilloscope screen shows the signal wave as shown at "ECM Terminals and Reference Value", EC-412.

If NG, go to "Diagnostic Procedure", EC-415.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

Diagnostic Procedure NGEC0278 **CHECK INPUT SIGNAL CIRCUIT** 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector and combination meter harness connector M39. MA 3. Check harness continuity between ECM terminal 29 and meter terminal 37. CONNECTOR EC SEF200V Continuity should exist. 4. Also check harness for short to ground and short to power. CL OK or NG GO TO 3. OK MT NG GO TO 2. AT 2 **DETECT MALFUNCTIONING PART** Check the following. Harness connectors M58, F28 TF Harness for open or short between ECM and combination meter Repair open circuit or short to ground or short to power in harness or connectors. PD **CHECK SPEEDOMETER FUNCTION** 3 Make sure that speedometer functions properly. OK or NG OK GO TO 5. NG GO TO 4. **DETECT MALFUNCTIONING PART** Check the following. Harness connectors E43, M65 Harness connectors E32, E202 Harness for open or short between combination meter and vehicle speed sensor

5	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

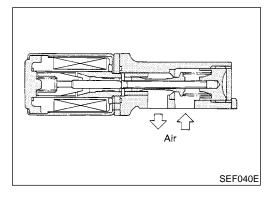
Repair harness or connectors. Check vehicle speed sensor and its circuit. Refer to EL-82.

BT

HA

SC

Description


Description SYSTEM DESCRIPTION

NGEC0279

NGEC0279S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position		
PNP switch	Park/Neutral position	ECM	IACV AAC valva
Air conditioner switch	Air conditioner operation	ECIVI	IACV-AAC valve
Power steering oil pressure switch	Power steering load signal		
Battery	Battery voltage		
Vehicle speed sensor	Vehicle speed		
Absolute pressure sensor	Ambient barometric pressure		
Intake air temperature sensor	Intake air temperature		

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which bypasses the throttle valve via IACV-AAC valve. The IACV-AAC valve repeats ON/OFF operation according to the signal sent from the ECM. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the ON/OFF time of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering and cooling fan operation).

COMPONENT DESCRIPTION

NGEC02795

The IAC valve-AAC valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of air that will flow through the valve. The more air that flows through the valve, the higher the idle speed.

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

	10101		NGECO	280 G
MONITOR ITEM	CONE	DITION	SPECIFICATION	_
IACV-AAC/V	Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 30%	MA
IAC V-AAC/V	Shift lever: "N"No-load	2,000 rpm	_	- EM

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

	1	ı			
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
			[Engine is running] • Warm-up condition • Idle speed	10.5 - 11.5V (V)	FE
				5 0	CL
				2 ms SEF015W	MT
101	OR/L	[Engine is running] ■ Warm-up condition		1 - 13V (V) 10	AT
				5 0 2 ms	TF
				SEF016W	PD
			On Poord Diagnosis Logic		$\mathbb{A}\mathbb{X}$

On Board Diagnosis Logic

NGEC0282 DTC No. Malfunction is detected when ... Check Items (Possible Cause) P0505 A) The IACV-AAC valve does not operate properly. • Harness or connectors 0205 (The IACV-AAC valve circuit is open.) IACV-AAC valve B) The IACV-AAC valve does not operate properly. Harness or connectors (The IACV-AAC valve circuit is shorted.) IACV-AAC valve

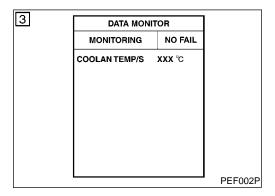
SU

ST

BT

HA

SC


DTC Confirmation Procedure

DTC Confirmation Procedure

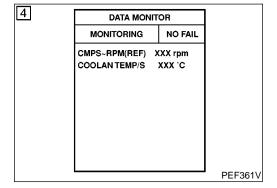
NOTE:

=NGEC0283

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.
- Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

PROCEDURE FOR MALFUNCTION A

NGEC0283S01


TESTING CONDITION:

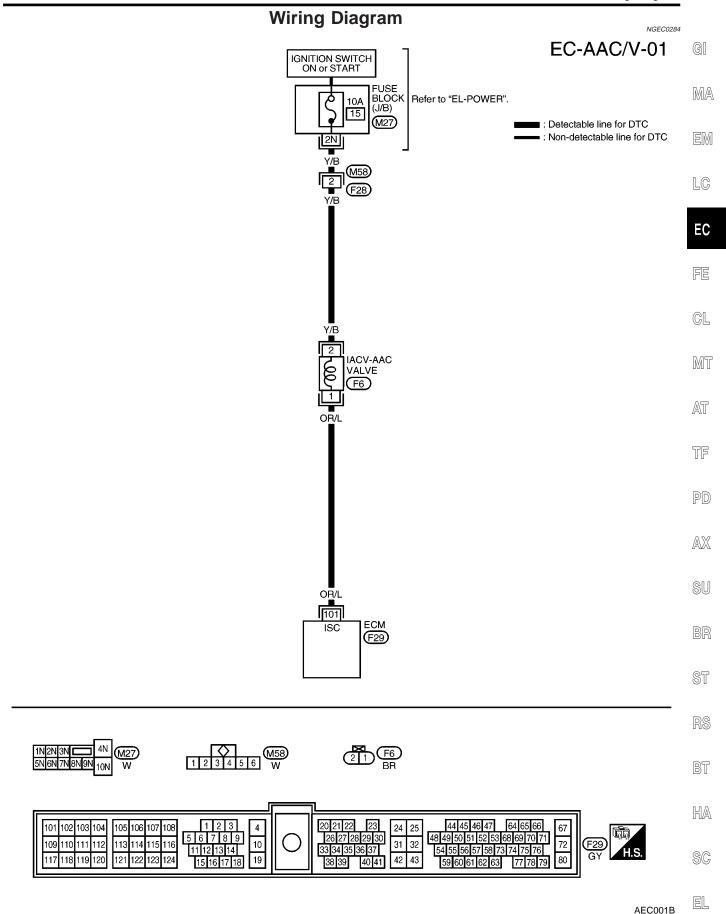
Before performing the following procedure, confirm battery voltage is more than 10.5V with ignition switch ON.

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it at idle at least 2 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-420.

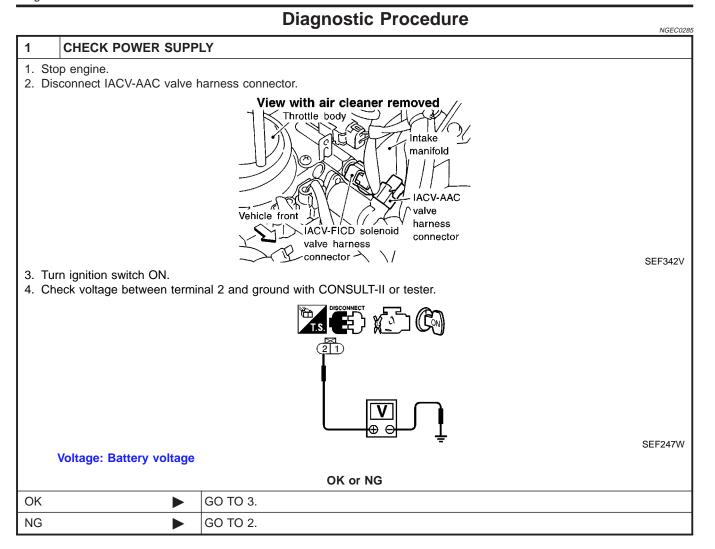
With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B

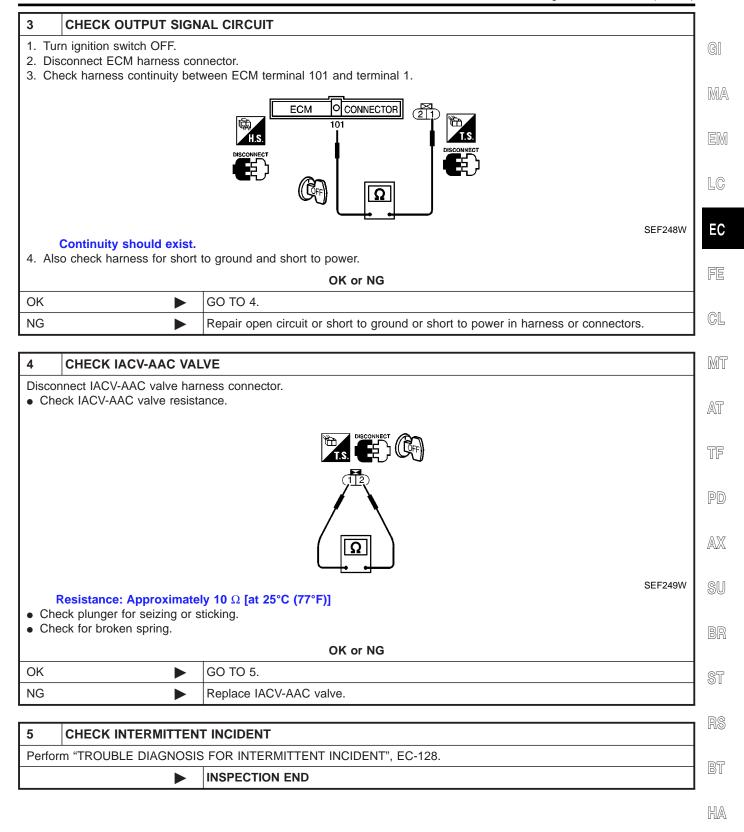

NGEC0283S02

- **TESTING CONDITION:**
- Before performing the following procedure, make sure battery voltage is more than 11V at idle.
- Always perform at a temperature above -10°C (14°F).
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 6 minute at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-420.


® With GST

Follow the procedure "With CONSULT-II".

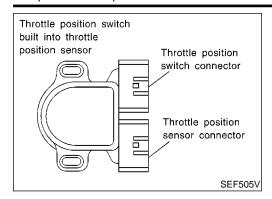
Wiring Diagram



Diagnostic Procedure

2 DETECT MALFUNCTIONING PART Check the following. • Harness connectors M58, F28 • 10A fuse • Harness for open or short between IACV-AAC valve harness connector and 10A fuse Repair harness or connectors.

Diagnostic Procedure (Cont'd)


 $\mathbb{D}\mathbb{X}$

SC

EL

KA24DE

Component Description

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge control valve when the throttle position sensor is malfunctioning.

ECM Terminals and Reference Value

NGEC0288

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
28	BR/W	Throttle position switch	[Ignition switch ON] • Warm-up condition • Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)
		(Closed position)	[Ignition switch ON] • Accelerator pedal depressed	Approximately 0V

On Board Diagnosis Logic

NGEC028

		NGEC0209
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0510 0203	Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.	 Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor

KA24DE

DTC Confirmation Procedure

DATA MONITOR

MONITORING NO FAIL

COOLAN TEMP/S XXX °C

VHCL SPEED SE XXX km/h

THRT POS SEN XXX V

DTC Confirmation Procedure

CAUTION:

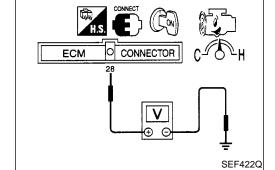
Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(A) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "CLSD THL/P SW" in "DATA MONITOR" mode with CONSULT-II and check the value under the following conditions.


Condition	Voltage
At idle	ON
At 2,000 rpm	OFF

If the result is NG, go to "Diagnostic Procedure", EC-425. If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4) Drive the vehicle for at least 5 consecutive seconds under the following condition.

THRTL POS SEN	More than 2.5V
VHCL SPEED SE	More than 4 km/h (2 MPH)
Selector lever	Suitable position
Driving pattern	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-425.

Overall Function Check

Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

N Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 28 (Closed throttle position switch signal) and ground under the following conditions.

Condition	Voltage
At idle	Battery voltage
At 2,000 rpm	Approximately 0 - 1V

3) If NG, go to "Diagnostic Procedure", EC-425.

GI

=NGEC0290

MA

EC

FE

CL

MT

AT

TF

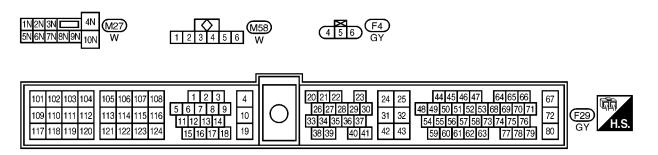
PD

SU

ST

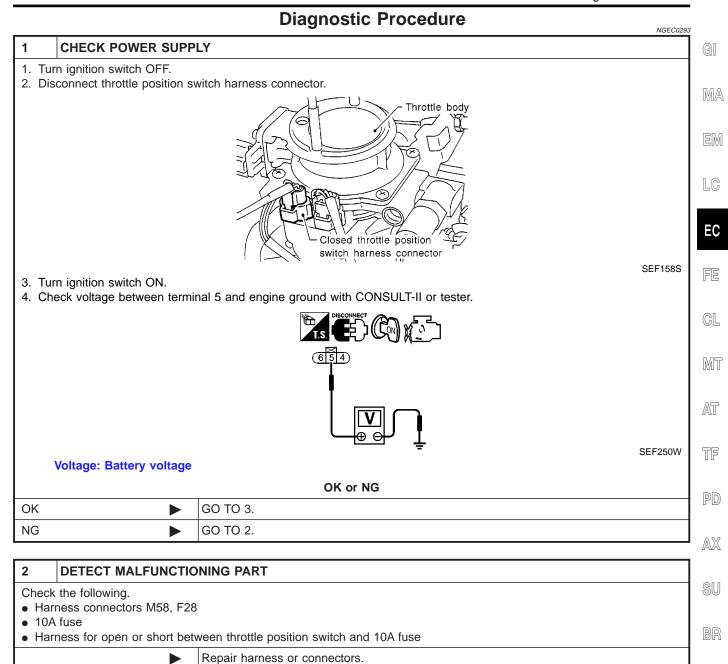
RS

BT


HA

SC

EL

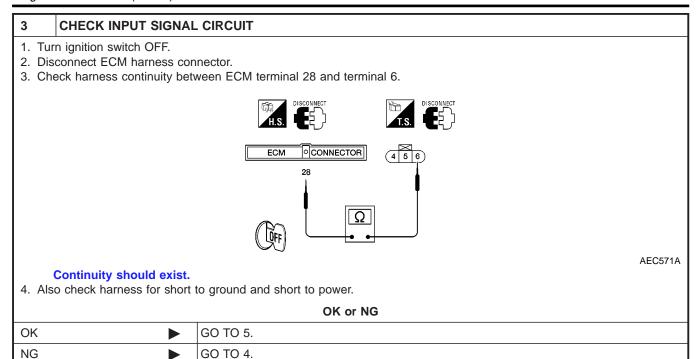


Wiring Diagram NGEC0292 EC-TP/SW-01 IGNITION SWITCH ON or START FUSE BLOCK ■: Detectable line for DTC Refer to "EL-POWER". 10A : Non-detectable line for DTC (J/B) 15 (M27) (F28) Y/B THROTTLE POSITION SWITCH (CLOSED THROTTLE POSITION SWITCH AND WIDE OPEN THROTTLE POSITION SWITCH) WOTP TP SWITCH SWITCH WIDE OTHER OPEN (F4) CLOSED OTHER 6 4 BR/W BR/W 28 ECM IDLE (F29)

AEC002B

Diagnostic Procedure

ST


BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

4	4 DETECT MALFUNCTIONING PART		
Check	Check the harness for open or short between throttle position switch and ECM.		
	▶ Repair open circuit or short to ground or short to power in harness or connectors.		

5	ADJUST THROTTLE POSITION SWITCH IDLE POSITION			
1. Ch	neck the following items. Re	fer to "Basic Inspection",	EC-95.	
		Items	Specifications	•
		Ignition timing	20°± 2° BTDC	•
		Base idle speed	750 ± 50 rpm (in "P" or "N" position)	•
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF	•
		Target idle speed	800 ± 50 rpm (in "P" or "N" position)	•
				MTBL0328
	>	GO TO 6.		

Diagnostic Procedure (Cont'd)

CHECK CLOSED THROTTLE POSITION SWITCH

(P) With CONSULT-II

6

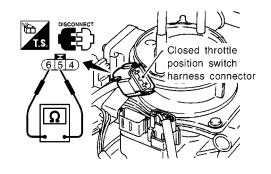
- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check indication of "CLSD THL/P SW" under the following conditions.

DATA MON	ITOR
MONITORING	NO FAIL
CMPS~RPM (REF)	XXX rpm
COOLAN TEMP/S	XXX °C
CLSD THL/P SW	ON

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

SEF173X

NOTE:


Measurement must be made with closed throttle position switch installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-95.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect throttle position switch harness connector.
- 4. Check continuity between terminals 5 and 6 under the following conditions.

SEF159S

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

MTBL0299

NOTE:

Continuity measurement must be made with closed throttle position switch installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-95.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK c	or N	G
------	------	---

OK	>	GO TO 7.
NG	>	Replace throttle position switch.

MA

GI

EC

GL

MT

AT

TF

PD

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

7 CHECK THROTTLE POSITION SENSOR

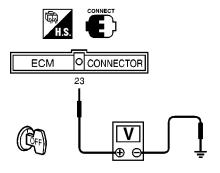
(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check voltage of "THRTL POS SEN" under the following conditions.

DATA MONI	TOR
MONITORING	NO FAIL
CMPS~RPM(REF)	XXX rpm
COOLAN TEMP/S	xxx °c
THRTL POS SEN	XXX V

PEF765W

NOTE:


Voltage measurement must be made with throttle position sensor installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-95.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground under the following conditions.

SEF767W

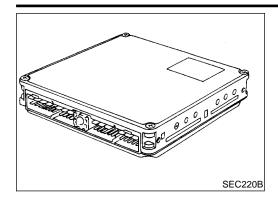
Throttle valve conditions	Voltage V
Completely closed	0.15 - 0.85 (a)
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7 (b)

MTBL0329

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-95.


4. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

OK	or	NG
----	----	----

OK •	GO TO 8.
NG ▶	Replace throttle position sensor.

8	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	>	INSPECTION END	

DTC P0605 ECM

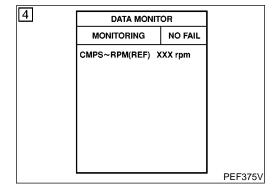
Component Description

The ECM consists of a microcomputer, diagnostic test mode selector, and connectors for signal input and output and for power supply. The ECM controls the engine.

MA

EM

LC


EC

On Board Diagnosis Logic

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0605 0301	ECM calculation function is malfunctioning.	• ECM

GL

MT

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TF

PD

AT

(P) With CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- Run engine for at least 30 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-430.

SU

With GST

Follow the procedure "With CONSULT-II".

ST

BT

HA

SC

EL

Diagnostic Procedure

NGEC0298

1 INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See previous page.

5. Is the 1st trip DTC P0605 displayed again?

- 1. Turn ignition switch ON.
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See previous page.

5. Is the 1st trip DTC P0605 displayed again?

No Tools

- 1. Turn ignition switch ON.
- 2. Erase the Diagnostic Test Mode II (Self-diagnostic results) memory. Refer to EC-68.
- 3. Perform "DTC Confirmation Procedure".

See previous page.

4. Is the 1st trip DTC 0301 displayed again?

Yes or No

Yes	Replace ECM.
No	INSPECTION END

DTC P1105 MAP/BARO SWITCH SOLENOID VALVE

Description SYSTEM DESCRIPTION

NGEC0299

NGEC0299S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Camshaft position sensor	Engine speed	On board diagnosis MAP/BARO switch solenoid	MAP/BARO switch solenoid	
Ignition switch	Start signal	of EVAP valve system		

MA

This system allows the absolute pressure sensor to monitor either ambient barometric pressure or intake manifold pressure. The MAP/BARO switch solenoid valve switches between two passages by ON-OFF pulse signals from the ECM. (One passage is from the intake air duct, the other is from the intake manifold.) Either ambient barometric pressure or intake manifold pressure is applied to the absolute pressure sensor.

EC

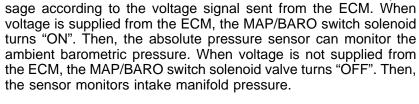
FE

Solenoid Conditions • For 5 seconds after turning ignition switch "ON" (Engine is not running) · For 5 seconds after starting engine ON More than 5 minutes after the solenoid valve shuts OFF. • Engine running

GL

MT

AT


TF

PD

COMPONENT DESCRIPTION

The MAP/BARO switch solenoid valve switches its air flow pas-

ST

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

Absolute pressure sensor

0

Intake

manifold

vacuum

SEF417Q

signal

From air duct 1

NGEC0300

-	HA

BT

MONITOR ITEM	CONDITION	SPECIFICATION
	For 5 seconds after starting engine	BARO
MAP/BARO SW/V	 More than 5 seconds after turning ignition switch "ON" More than 5 seconds after starting engine 	МАР

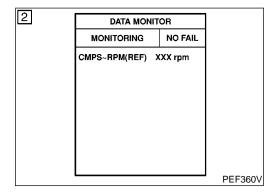
SC

DTC P1105 MAP/BARO SWITCH SOLENOID VALVE

KA24DE

ECM Terminals and Reference Value

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and 43 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		MAP/BARO switch sole- noid valve	[Ignition switch "ON"] ■ For 5 seconds after turning ignition switch "ON" [Engine is running] ■ For 5 seconds after starting engine	0 - 1V
118	LG/B		[Ignition switch "ON"] ■ More than 5 seconds after turning ignition switch "ON" [Engine is running] ■ More than 5 seconds after starting engine	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0302

DTC No.	No. Malfunction is detected when		Check Items (Possible Cause)	
P1105 1302	A)	MAP/BARO switch solenoid valve receives the voltage supplied though ECM does not supply the voltage to the valve.		
	В)	There is little difference between MAP/BARO switch solenoid valve input voltage at ambient barometric pressure and voltage at intake manifold pressure.	 Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.) Hoses (Hoses are clogged, vent, kinked, disconnected or improper connection.) Absolute pressure sensor MAP/BARO switch solenoid valve 	

DTC Confirmation Procedure

Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NGEC0303S01

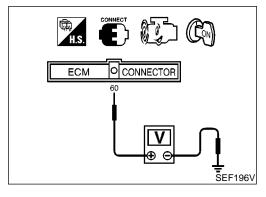
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

- (II) With CONSULT-II
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-435.

DTC Confirmation Procedure (Cont'd)


With GST


Follow the procedure "With CONSULT-II".

MA

LC

PROCEDURE FOR MALFUNCTION B

NGEC0303S02

TESTING CONDITION:

Always perform at a temperature above 5°C (41°F).

(II) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "TANK/F/TEMP SE" is more than 0°C (32°F).
- Start engine and let it idle for at least 10 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-435.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON. 3)
- Check that voltage between ECM terminal 60 and ground is less than 4.2V.
- 5) Start engine and let it idle for at least 10 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", 7) EC-435.

No Tools

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- Check that voltage between ECM terminal 60 and ground is less than 4.2V.
- 5) Start engine and let it idle for at least 10 seconds.
- Turn ignition switch OFF, wait at least 5 seconds and then turn ignition ON.
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-435.

EC

MT

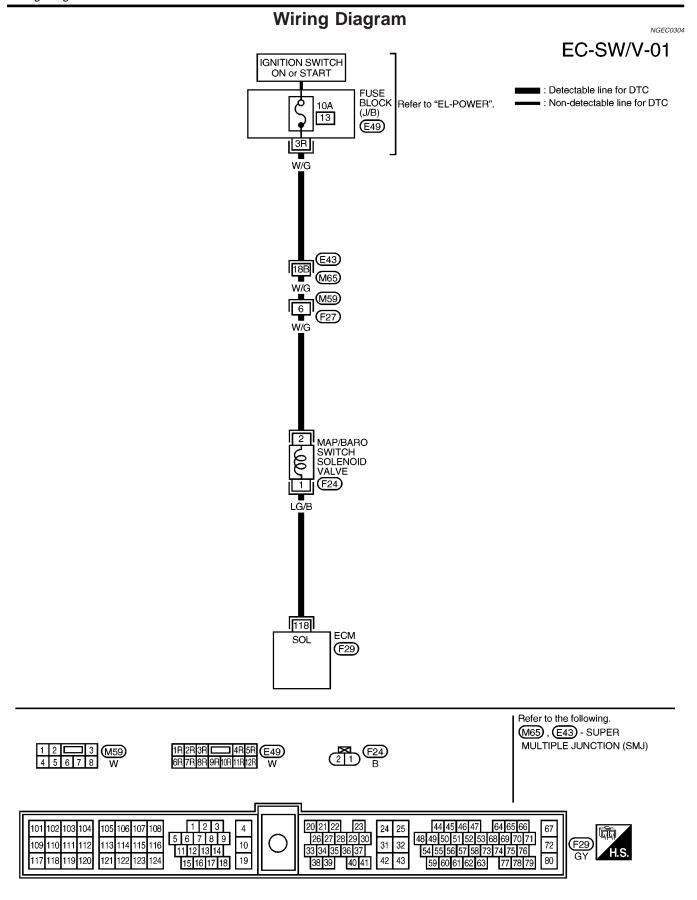
AT

TF

PD

SU

ST


HA

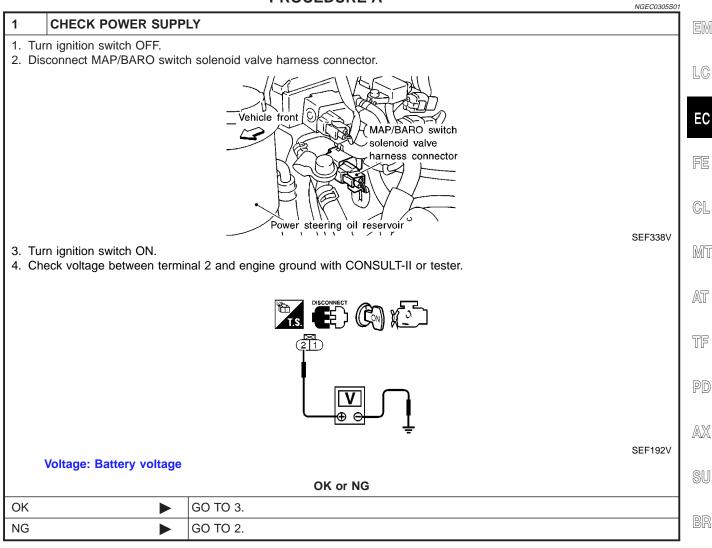
SC

EL

EC-433

AEC003B

Diagnostic Procedure


Diagnostic Procedure

If the trouble is duplicated after "PROCEDURE FOR MAL-FUNCTION A", perform "PROCEDURE A" below. If the trouble is duplicated after "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE B" on EC-439.

G[

MA

PROCEDURE A

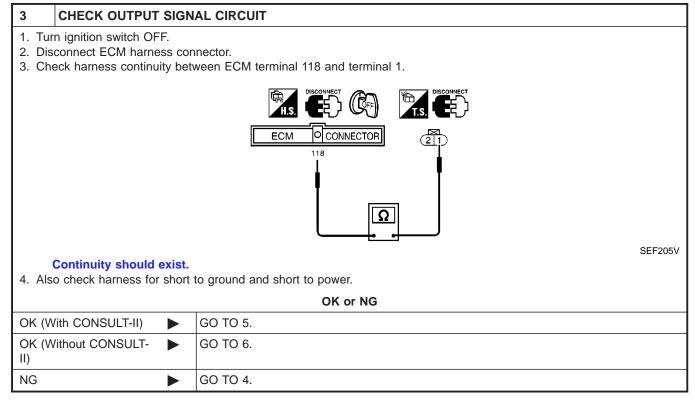
2 DETECT MALFUNCTIONING PART Check the following. • Harness connectors E43, M65 • Harness connectors M59, F27 • 10A fuse • Harness for open or short between MAP/BARO switch solenoid valve and 10A fuse Repair harness or connectors.

RS

ST

BT

HA


SC

ΞL

 $\mathbb{D}\mathbb{X}$

KA24DE

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIONING PART		
Check the harness for open or short between MAP/BARO switch solenoid valve and ECM.			
Repair open circuit or short to ground or short to power in harness or connectors.			

KA24DE

Diagnostic Procedure (Cont'd)

CHECK MAP/BARO SWITCH SOLENOID VALVE

(P) With CONSULT-II

5

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
- Condition: At idle under no-load
- CONSULT-II display
- Time for voltage to change

ACTIVE TES	Т	
MAP/BARO SW/V MAP		
MONITOR		
CMPS~RPM (REF)	XXX rpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxx v	

MAP/BARO	AVSOL PRES/SE (Voltage)	
BARO	More than 2.6V	
MAP	Less than the voltage at BARO	

ACTIVE TES	Т
MAP/BARO SW/V	BARO
MONITOR	
CMPS~RPM (REF)	XXX rpm
MAP/BARO SW/V	BARO
ABSOL PRES/SE	xxx v

MAP/BARO SW/V	Required time to switch
BARO to MAP	Less than 1 second
MAP to BARO	Less than 1 second

SEF170X

OK or NG

OK •	GO TO 7.
NG •	GO TO 6.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

ST

BR

RS

BT

HA

SC

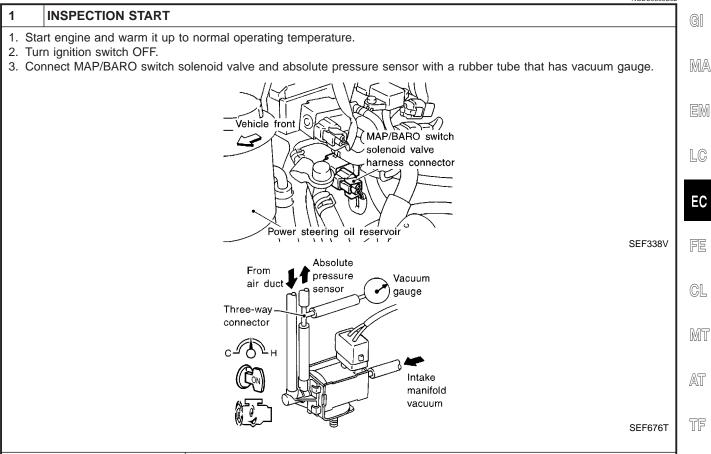
EL

KA24DE

Diagnostic Procedure (Cont'd)

6 CHECK MAP/BARO SWITCH SOLENOID VALVE (X) Without CONSULT-II 1. Turn ignition switch OFF and remove MAP/BARO switch solenoid valve. Vehicle front MAP/BARO switch solenoid valve harness connector Power steering oil reservoir SEF338V 2. Check air passage continuity. (FUSE BATTERY MEC488B Air passage continuity between **A** and **B** Air passage continuity between **A** and **C** Condition 12V direct current supply between terminals 1 and 2 Yes No No supply No Yes MTBL0283 3. Check the time required for the solenoid valve to switch. It should be less than 1 second. OK or NG

OK ►	GO TO 7.
NG ►	Replace MAP/BARO switch solenoid valve.


7	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	>	INSPECTION END

KA24DE

Diagnostic Procedure (Cont'd)

PROCEDURE B

NGEC0305S02

Models with CONSULT-II

Models without CON-

SULT-II

GO TO 2.

GO TO 3.

 $\mathbb{A}\mathbb{X}$

SU

PD

BR

ST

RS

BT

HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd) 2 CHECK VACUUM SOURCE TO MAP/BARO SWITCH SOLENOID VALVE AND CIRCUIT (P) With CONSULT-II 1. Turn ignition switch ON. 2. Select "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II. 3. Start engine and let it idle. 4. Touch "MAP" and "BARO" alternately and check for vacuum. **ACTIVE TEST** MAP/BARO SW/V MONITOR CMPS~RPM(REF) XXX rpm MAP/BARO SW/V ABSOL PRES/SE XXX V PEF396V ACTIVE TEST MAP/BARO SW/V BARO MONITOR CMPS~RPM(REF) XXX rpm MAP/BARO SW/V **BARO** ABSOL PRES/SE xxx v PEF397V MAP/BARO SW/V Vacuum BARO Should not exist MAP Should exist

MTBL0079

3	CHECK VACUUM SOUR	RCE TO ABSOLUTE PR	ESSURE SENSOR		
Without CONSULT-II 1. Start engine and let it idle. 2. Check for vacuum under the following condition.					
		Condition	Vacuum		
		For 5 seconds after starting engine	Should not exist		
		More than 5 seconds after starting engine	Should exist		
		_			MTBL0080
	OK or NG				
OK	•	GO TO 13.			
NG	>	GO TO 4.			

OK or NG

KA24DE

GI

MA

LC

EC

GL

MT

AT

TF

PD

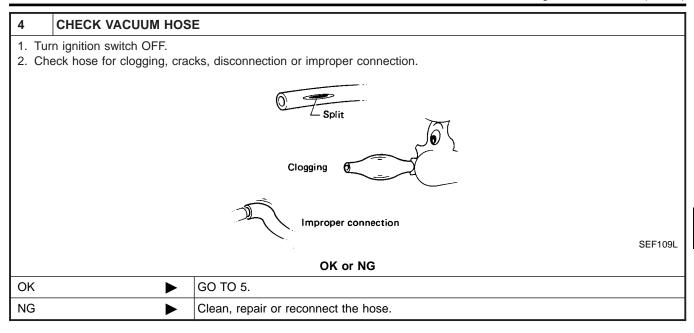
AX

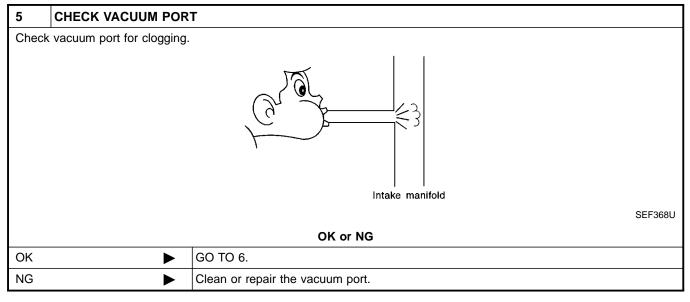
SU

BR

ST

RS

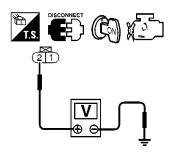

BT


HA

SC

EL

Diagnostic Procedure (Cont'd)



KA24DE

Diagnostic Procedure (Cont'd)

6 CHECK POWER SUPPLY

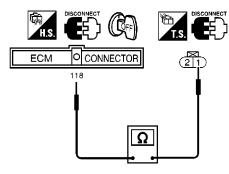
- 1. Turn ignition switch OFF.
- 2. Disconnect MAP/BARO switch solenoid valve harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 2 and ground with CONSULT-II or tester.

SEF192V

Voltage: Battery voltage

Οŀ	(r I	NG
----	----------	-----	----

OK		GO TO 8.
NG	•	GO TO 7.


7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M59, F27
- 10A fuse
- Harness for open or short between MAP/BARO switch solenoid valve and 10A fuse
 - Repair harness or connectors.

8 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 118 and terminal 1 with CONSULT-II or tester.

SEF205V

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II) OK (Without CONSULT-		GO TO 10. GO TO 11.
II)		GO 10 11.
NG		GO TO 9.

			Diagnostic Procedure (Cont a)	
9 DETECT MALFUNCTIO	NING PART			
Check the harness for open or s	hort between MAP/BAR	O switch solenoid valve and ECM.		GI
•	Repair open circuit or s	short to ground or short to power in		GIII
·				D/J/W
10 CHECK MAP/BARO SV	VITCH SOLENOID VAI	LVE		MA
(P) With CONSULT-II				
 Start engine and warm it up t Perform "MAP/BARO SW/V" 	o normal operating temp in "ACTIVE TEST" mode	erature. e with CONSULT-II.		EM
		ACTIVE TEST		LC
	MAP/BA	ARO SW/V MAP		
		MONITOR		
	CMPS ⁻	RPM(REF) XXX rpm		EC
	MAP/B	ARO SW/V MAP		
	ABSO	L PRES/SE XXX V		
				FE
				CL
			PEF396V	
		ACTIVE TEST		MT
	MAP/BA	ARO SW/V BARO		
		MONITOR		. —
		~RPM(REF) XXX rpm		AT
	MAP/B	ARO SW/V BARO		
	ABSO	L PRES/SE XXX V		576
				TF
				PD
3. Check the following.			PEF397V	
 Condition: At idle under no-loa 	nd			$\mathbb{A}\mathbb{X}$
CONSULT-II display	iu			
		·		@n n
	MAP/BARO	ABSOL PRES/SE (Voltage)		SU
	BARO	More than 2.6V		
	MAP	Less than the voltage at BARO		BR
			MTBL0281	
Time for voltage to change			WITDLOZOT	
a time to transfer to entange				ST
	MAP/BARO SW/V	Required time to switch		<u> </u>
	BARO to MAP	Less than 1 second		
	MAP to BARO			RS
			MTBL0282	
4. If NG, check solenoid valve a	s shown below.			65
2, 2 22 22 22 22 22 22 22 22 22 22 22 22		OK or NC		BT
	1	OK or NG		
OK •	GO TO 12.			HA

EL

SC

Replace MAP/BARO switch solenoid valve.

NG

KA24DE

Diagnostic Procedure (Cont'd)

NG

11 CHECK MAP/BARO SWITCH SOLENOID VALVE (X) Without CONSULT-II 1. Turn ignition switch OFF and remove MAP/BARO switch solenoid valve. Vehicle front MAP/BARO switch solenoid valve harness connector Power steering oil reservoir SEF338V 2. Check air passage continuity. (FUSE BATTERY MEC488B Air passage continuity between A and B Air passage continuity between **A** and **C** Condition 12V direct current supply between terminals 1 and 2 Yes No No supply No Yes MTBL0283 3. Check the time required for the solenoid valve to switch. It should be less than 1 second. OK or NG OK GO TO 12.

12	CHECK INTAKE SYSTE	·M	
-			
Chec	k intake system for air leaks	4.	
	OK or NG		
ОК	>	GO TO 16.	
NG	•	Repair it.	

Replace MAP/BARO switch solenoid valve.

KA24DE

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

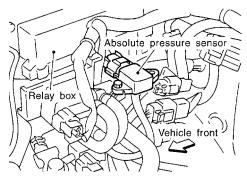
BT

HA

SC

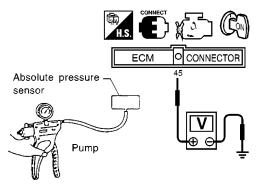
EL

Diagnostic Procedure (Cont'd)


13	CHECK HOSE BETWEEN ABSOLUTE PRESSURE SENSOR AND MAP/BARO SWITCH SOLENOID VALVE		
Chec	k hose for clogging, cracks, disconnection or improper connection.		
	Clogging 6		
	Improper connection SEF109L		
	OK or NG		
OK	▶ GO TO 14.		
NG	Repair or reconnect hose.		

14	CHECK HARNESS CONNECTOR		
2. Ch	Disconnect absolute pressure sensor harness connector. Check sensor harness connector for water. Water should not exist. OK or NG		
OK	OK ▶ GO TO 15.		
NG	NG Repair or replace harness connector.		

Diagnostic Procedure (Cont'd)


15 CHECK ABSOLUTE PRESSURE SENSOR

1. Remove absolute pressure sensor with its harness connector connected.

SEF328V

- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 (Absolute pressure sensor signal) and engine ground.

SEF132V

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3. CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –93.3 kPa (–700 mmHg, –27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK or NG

OK •	GO TO 16.
NG ►	Replace absolute pressure sensor.

16	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

DTC P1148 CLOSED LOOP CONTROL

On Board Diagnosis Logic

On Board Diagnosis Logic

★ The closed loop control has the one trip detection logic.

NGEC0307

A THE Closed	A The closed loop control has the one trip detection logic.		
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	. GI
P1148 0307	The closed loop control function does not operate even when vehicle is driving in the specified condition.	 The front heated oxygen sensor circuit is open or shorted. Front heated oxygen sensor 	MA
		Front heated oxygen sensor heater	

LC

EC

3	DATA MON	TOR	
	MONITORING	NO FAIL	
	CMPS~RPM(REF)	XXX rpm	
	FR O2 SENSOR	xxx °C	
	VHCL SPEED SE	XXX km/h	
	B/FUEL SCHDL	XXX msec	
			PEF

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

GL

TESTING CONDITION:

Never raise engine speed above 3,000 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 4.

MT

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

AT

(P) With CONSULT-II

Start engine and warm it up to normal operating temperature.

- Select "DATA MONITOR" mode with CONSULT-II. Hold engine speed at 2,000 rpm and check the following.
- "FR O2 SENSOR" voltage should go above 0.70V at least PD once.

"FR O2 SENSOR" voltage should go below 0.21V at least

AX

If the result is NG, perform "Diagnosis Procedure", EC-448. If the result is OK, perform the following step.

Let engine idle at least 3 minutes.

SU

Maintain the following condition at least 50 consecutive seconds.

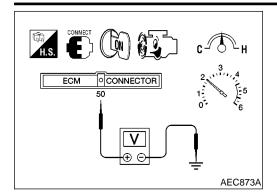
B/FUEL SCHDL	1.3 msec or more
CMPS·RPM (REF)	1,650 - 3,000 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 70 km/h (44 MPH)

ST

During this test, P0130 DTC may be displayed on CON-

BT

6) If DTC is detected, go to "Diagnostic Procedure", EC-448.


HA

SC

EL

SULT-II screen.

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (Front heated oxygen sensor signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- If NG, go to "Diagnostic Procedure", EC-448.

Diagnostic Procedure

NGEC0310

Refer to "Diagnostic Procedure" for DTC P0133, EC-216.

DTC P1320 IGNITION SIGNAL

Component Description IGNITION COIL & POWER TRANSISTOR

NGEC0319

0319801

The ignition signal from the ECM is sent to the power transistor. The power transistor switches the ignition coil primary circuit on and off. As the primary circuit is turned on and off, the proper high voltage is induced in the coil secondary circuit.

MA

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

EM

NOTE:

The rotor screw which secures the distributor rotor head to the distributor shaft must be tightened properly.

LC

(a) : 3.3 - 3.9 N·m (0.34 - 0.40 kg-m, 29.5 - 34.7 in-lb)

EC

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0320

MONITOR ITEM	CONDITION		SPECIFICATION	76
Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 20° BTDC	U U	
IGN TIMING	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC	PD

ECM Terminals and Reference Value

NGEC0321

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI-SU WIRE ITEM DATA (DC Voltage) CONDITION NAL COLOR NO. 0 - 0.5V ST [Engine is running] 2 • Warm-up condition Idle speed 20 ms SEF996V 1 PU/W Ignition signal BT 0.2 - 1.0V HA [Engine is running] • Engine speed is 2,000 rpm SC 20 ms SEF997V EL

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	12 - 14V (V) 40 20 0 20 ms SEF998V
2	В	Ignition check	[Engine is running] ● Engine speed is 2,000 rpm	12 - 13V (V) 40 20 0 20 ms SEF999V

On Board Diagnosis Logic

NGEC0322

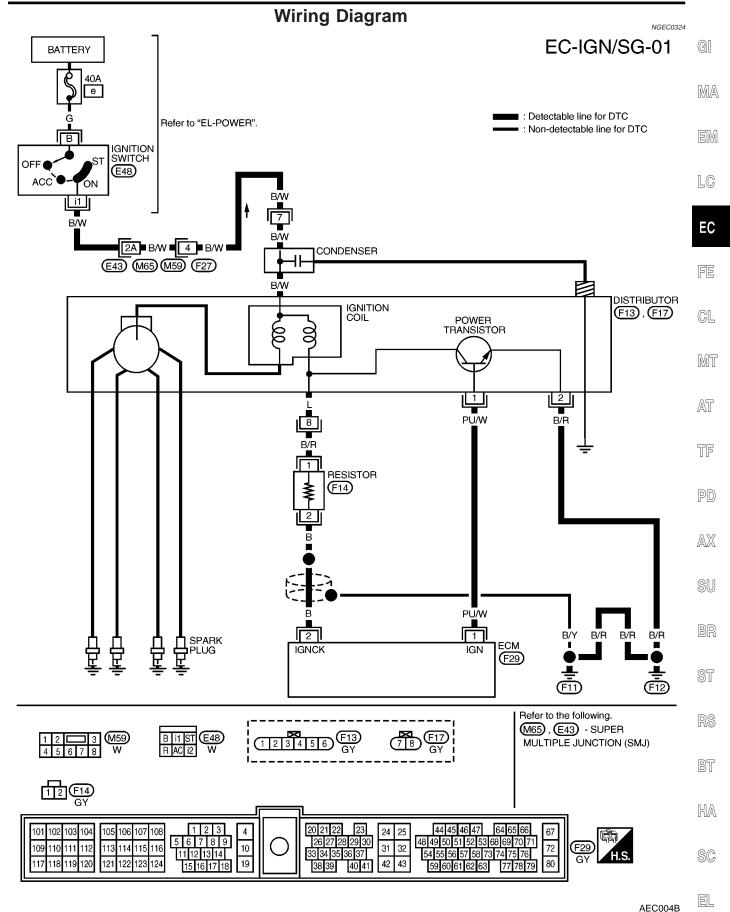
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1320 0201	The ignition signal in the primary circuit is not sent to ECM during engine cranking or running.	 Harness or connectors (The ignition primary circuit is open or shorted.) Power transistor unit. Resistor Camshaft position sensor Camshaft position sensor circuit

DTC Confirmation Procedure

NGEC0323

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.
- If DTC P1320 (0201) is displayed with P0340 (0101), perform trouble diagnosis for DTC P0340 first. Refer to EC-318.

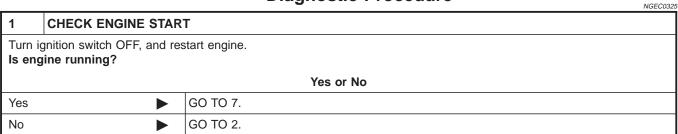

DATA MONITOR MONITORING NO FAIL CMPS~RPM(REF) XXX rpm PEF357V

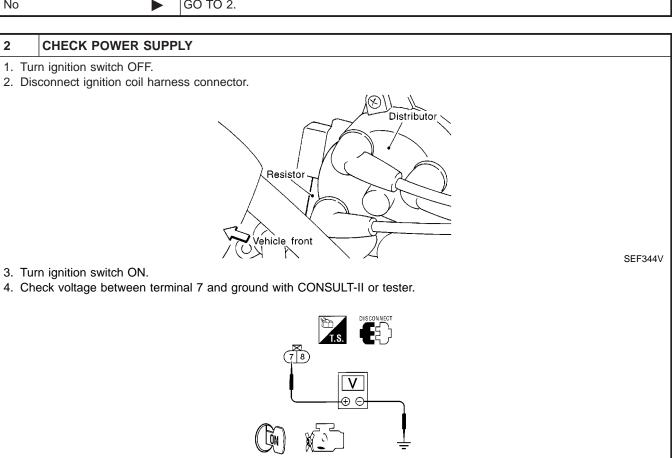
(I) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait at least 4 seconds. (If engine does not run, turn ignition switch to "START" at least 5 seconds.)
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-452.

With GST

Follow the procedure "With CONSULT-II".

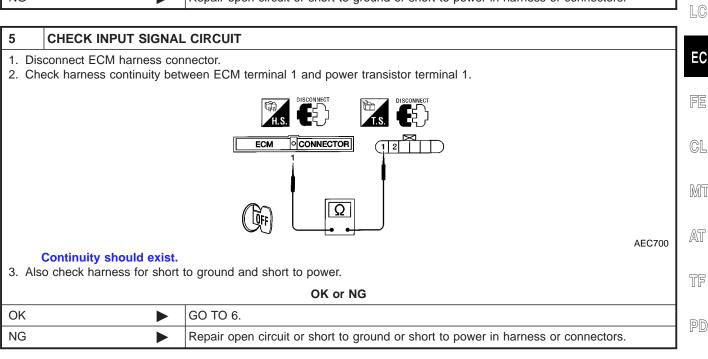



EC-451

AEC698

Diagnostic Procedure

Voltage: Battery voltage


OK or NG		
OK ►	GO TO 4.	
NG ▶	GO TO 3.	

3 DETECT MALFUNCTIONING PART Check the following. • Harness connectors E43, M65 • Harness connectors M59, F27 • Harness for open or short between ignition coil and ignition switch Repair harness or connectors.

DTC P1320 IGNITION SIGNAL

Diagnostic Procedure (Cont'd)

4	CHECK GROUND CIRCUIT				
	1. Turn ignition switch OFF.				
3. Ch	 Disconnect power transistor harness connector. Check harness continuity between power transistor terminal 2 and engine ground. Refer to the wiring diagram. Continuity should exist. Also check harness for short to ground and short to power. 				
	OK or NG				
OK	•	GO TO 5.			
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.			

EC

GI

MA

EM

GL

MT

AT

TF

PD

AX

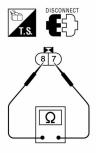
SU

BR

ST

RS

BT


HA

SC

EL

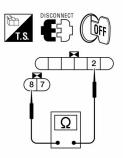
6 CHECK IGNITION COIL

- 1. Disconnect ignition coil harness connector.
- 2. Remove distributor cap.
- 3. Check resistance as shown in the figure.

AEC150A

Terminal	Resistance [at 25°C (77°F)]
7 - 8	Less than 1Ω
7 - 9	7 - 13Ω

MTBL0300


If NG, replace distributor assembly as a unit.

OK or NG

OK •	GO TO 7.
NG ►	Replace distributor assembly as a unit.

7 CHECK POWER TRANSISTOR

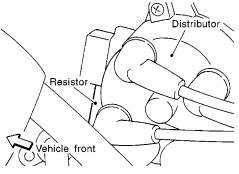
- 1. Disconnect camshaft position sensor & power transistor harness connector and ignition coil harness connector.
- 2. Check power transistor resistance between terminals 2 and 8.

AEC151A

Terminals	Resistance	Result
2 and 8	Except 0Ω	ОК
	0Ω	NG

MTBL0301

OK or NG


OK •	GO TO 8.
NG ►	Replace distributor assembly.

DTC P1320 IGNITION SIGNAL

Diagnostic Procedure (Cont'd)

CHECK INPUT SIGNAL CIRCUIT

- 1. Stop engine.
- 2. Disconnect ignition coil harness connector.
- 3. Strip tape covering resistor.
- 4. Disconnect resistor harness connector.

SEF344V

- 5. Disconnect ECM harness connector.
- 6. Check harness continuity between ignition coil terminal 8 and resistor terminal 1, resistor terminal 2 and ECM terminal 2.

Continuity should exist.

7. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 9.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

 \mathbb{G}

MA

LC

EC

ls

CL

MT

AT

TF

PD

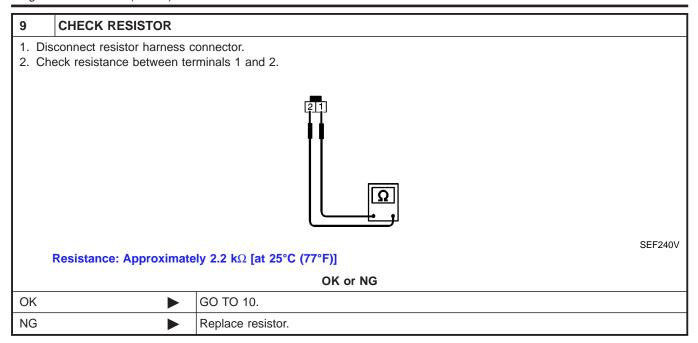
SEF179X

SU

BR

ST

RS

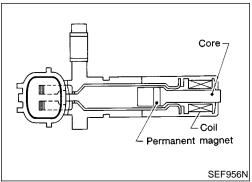

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)



10	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	•	INSPECTION END

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

KA24DE

Component Description

Crankshaft position sensor (OBD)

SEF335V

Component Description

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

EC

FE

GL

MT

AT

ECM Terminals and Reference Value

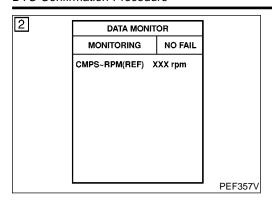
Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)	TF
43	B/W	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	PD
				Approx. 0V	$\mathbb{A}\mathbb{X}$
			[Engine is running] • Warm-up condition • Idle speed	(V) 10 5 0	SU
				0.2 ms	BR
53	L	Crankshaft position sensor (OBD)		Approx. 0V	ST
			[Engine is running]	10 5 0 0 0 0 0 0 0 0	RS
			• Engine speed is 2,000 rpm	0.2 ms	BT
					HA

On Board Diagnosis Logic

NGEC0329

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1336 0905	 A chipping of the flywheel or drive plate gear tooth (cog) is detected by the ECM. 	 Harness or connectors Crankshaft position sensor (OBD) Drive plate/Flywheel


SC

EIL

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

KA24DE

DTC Confirmation Procedure

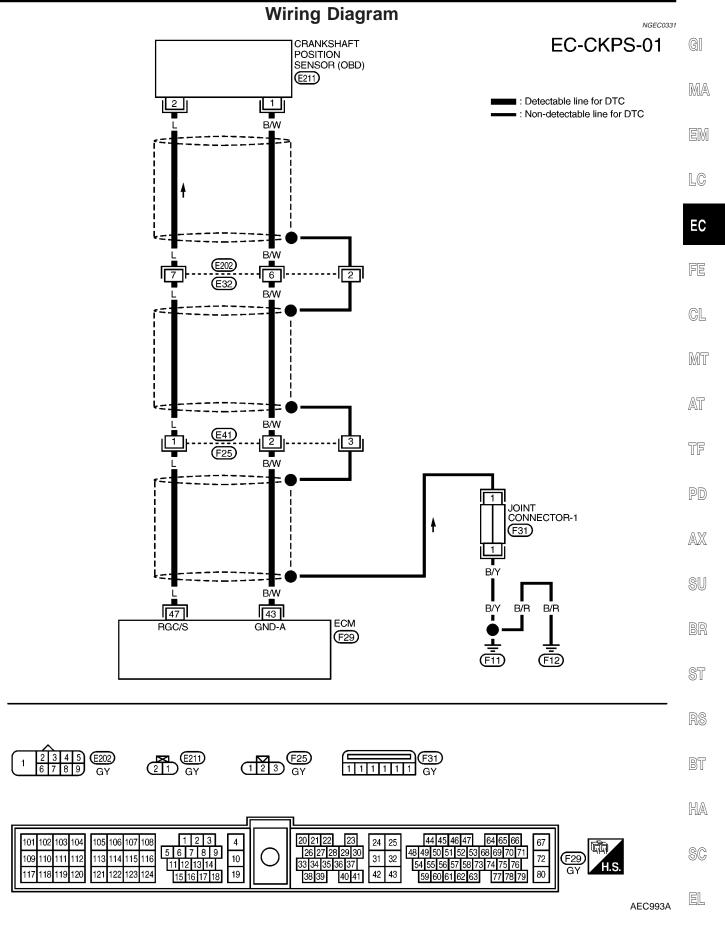
DTC Confirmation Procedure

NGEC0330

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(II) With CONSULT-II

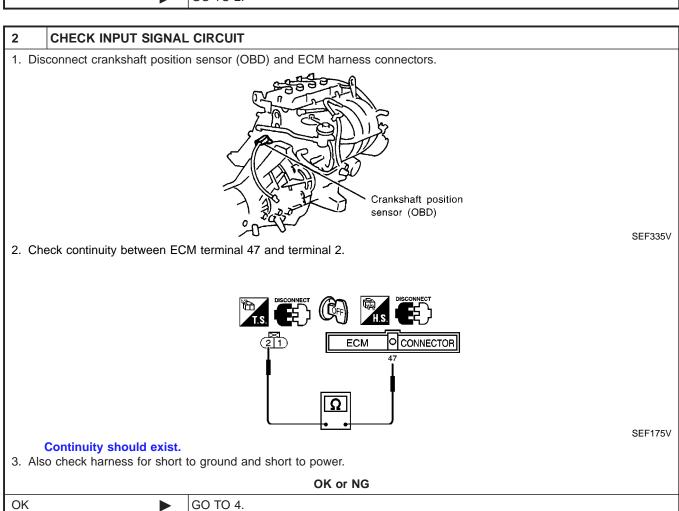

- 1) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 2 minutes at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-460.

With GST

Follow the procedure "With CONSULT-II".

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)


KA24DE

Diagnostic Procedure

NG

Diagnostic Procedure

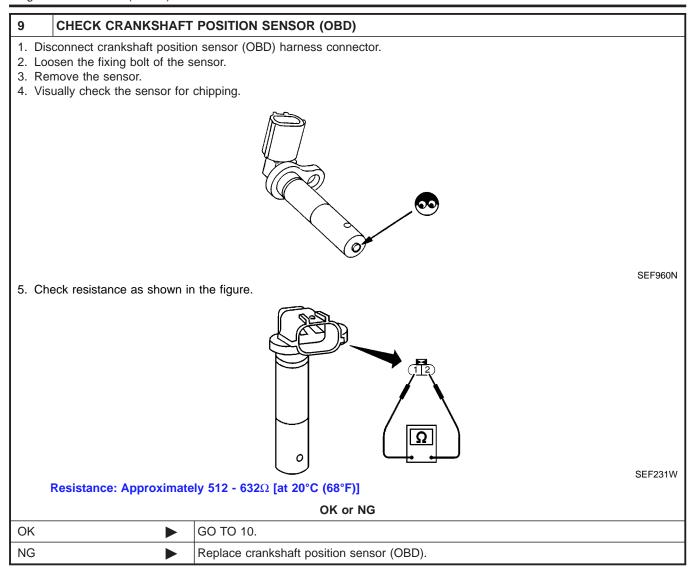
NGEC0332 **RETIGHTEN GROUND SCREWS** 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. GO TO 2.

3 **DETECT MALFUNCTIONING PART** Check the following. Harness connectors E202, E32 Harness connectors E41, F25 Harness for open or short between crankshaft position sensor (OBD) and ECM Repair open circuit or short to ground or short to power in harness or connectors.

GO TO 3.

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

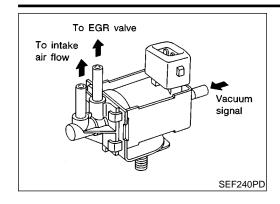
KA24DE


Diagnostic Procedure (Cont'd)

		Diagnostic Procedure (Cont
4 CHECK	GROUND CIRC	CUIT
Check harned diagram.	ty should exist.	nectors. ween crankshaft position sensor (OBD) terminal 1 and engine ground. Refer to the wiring to ground and short to power.
		OK or NG
OK	•	GO TO 6.
NG	•	GO TO 5.
5 DETEC	T MALFUNCTIO	NING DART
Check the follo Harness con Harness con	wing. nectors E202, E3. nectors E41, F25	
	<u> </u>	Repair open circuit or short to ground or short to power in harness or connectors.
	<u> </u>	
6 CHECK	SHIELD CIRCU	IIT
Continui 4. Also check I	ty should exist	ween harness connector E32 terminal 2 and ground. Septiment
		OK or NG
OK	<u> </u>	GO TO 8.
NG		GO TO 7.
Check the followork Harness con Joint connec	nectors E41, F25 tor-1 (Refer to "H	ARNESS LAYOUT", <i>EL-272</i> .) ween harness connector E32 and engine ground
	<u> </u>	Repair open circuit or short to ground or short to power in harness or connectors.
	IMPROPER IN	STALLATION oolt of the crankshaft position sensor (OBD). Then retest.
Trouble is not f		GO TO 9.
TIOUDIE IS HULL	indu.	00 10 0.

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

KA24DE


Diagnostic Procedure (Cont'd)

10	0 CHECK GEAR TOOTH		
Visual	Visually check for chipping flywheel or drive plate gear tooth (cog).		
	OK or NG		
OK	•	GO TO 11.	
NG	>	Replace the flywheel or drive plate.	

11	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END		

DTC P1400 EGRC-SOLENOID VALVE

Component Description

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an ON signal, a plunger will then move to cut the vacuum signal from the throttle body to the EGR valve.

G]

MA

EM

LC

EC

FE

CONSULT-II Reference Value in Data Monitor Mode

GEC0335

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
	Engine: After warming up Air conditioner switch: "OFF"	Idle	ON
EGRC SOL/V		Rev engine up from idle to 3,000 rpm quickly.	OFF

ECM Terminals and Reference Value

MT

GL

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· · · · · · · · · · · · · · · · · · ·	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	AT TF
			[Engine is running] • Warm-up condition • Idle speed	0 - 1V	PD
103	G/W	EGRC-solenoid valve	 [Engine is running] Warm-up condition M/T models: Lift up drive wheels and shift to 1st gear position. Rev engine up from 2,000 to 4,000 rpm. 	BATTERY VOLTAGE (11 - 14V)	AX
					SU

On Board Diagnosis Logic

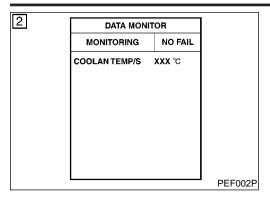
NGEC0337

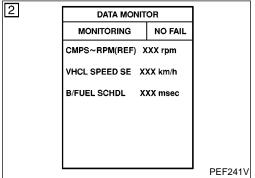
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1400 1005	The improper voltage signal is sent to ECM through EGRC-solenoid valve.	Harness or connectors (The EGRC-solenoid valve circuit is open or shorted.) EGRC-solenoid valve

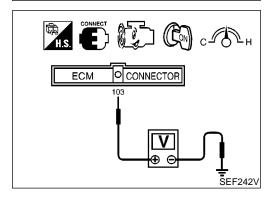
29

ST

BT


HA


SC


EL

 \mathbb{N}

DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0338

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform at a temperature above -10°C (14°F).

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Maintain the following conditions for at least 5 consecutive seconds.

CMPS-RPM (REF): 1,000 - 3,400 rpm B/FUEL SCHDL: 2 msec or more VHCL SPEED SE: Suitable speed

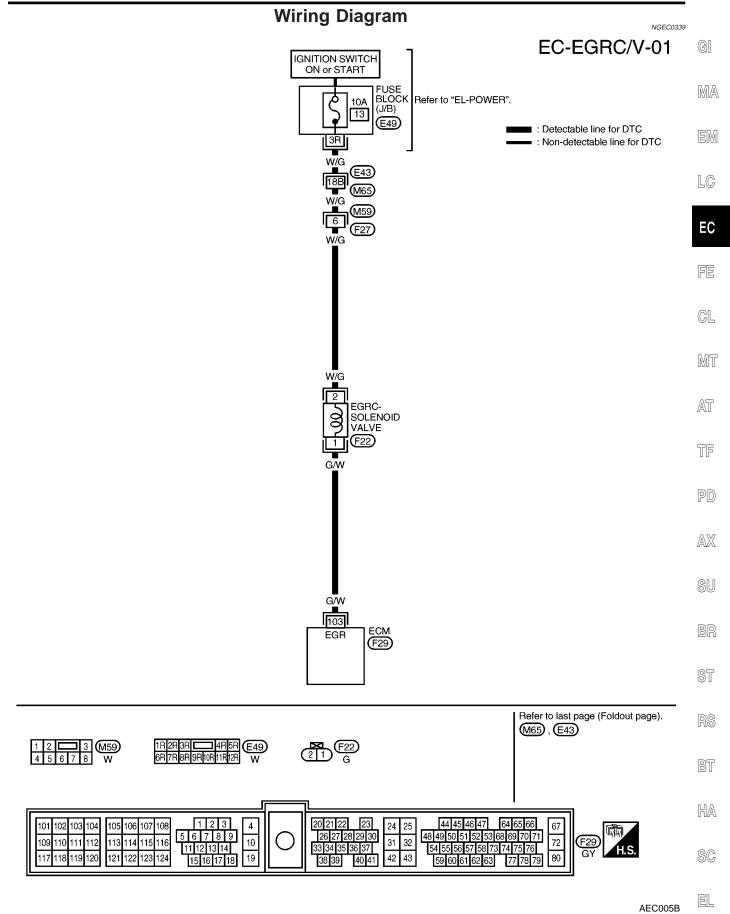
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-466.
- ® With GST
- Follow the procedure with "CONSULT-II".

Overall Function Check

NGEC0521

Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

N Without CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 103 and ground at idle

Voltage: 0 - 1V

- 3) Check that the voltage changes to battery voltage and returns to 0 1V when revving the engine from idle to 3,000 rpm quickly.
- 4) If NG, go to "DIAGNOSTIC PROCEDURE", EC-466.

DTC P1400 EGRC-SOLENOID VALVE

Diagnostic Procedure

NGEC0340

1	CHECK	EGRC-SOLENOID	VALVE
---	-------	----------------------	--------------

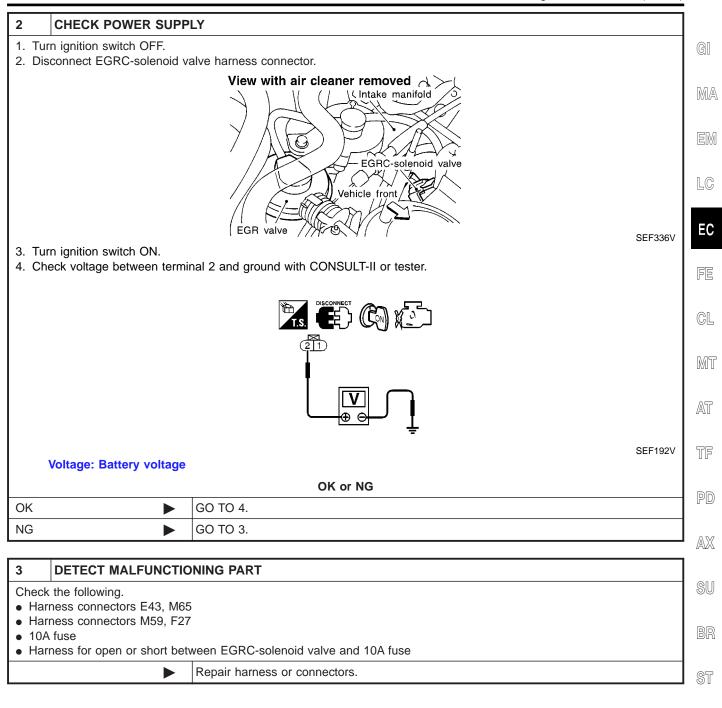
(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST			
EGRC SOL/V	ON		
MONITOR	1		
CKPS~RPM(POS)	XXX rpm		

PEF594P

(R) Without CONSULT-II


- 1. Start engine and rev engine up to 3,000 rpm quickly.
- 2. When disconnecting and reconnecting the EGRC-solenoid valve harness connector, make sure that the EGRC-solenoid valve makes operating sound. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

OK or NG

OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	>	GO TO 6.
NG	>	GO TO 2.

DTC P1400 EGRC-SOLENOID VALVE

Diagnostic Procedure (Cont'd)

BT

HA

SC

4 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 103 and terminal 1.

SEF243V

Continuity should exist.

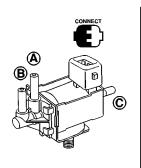
4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)		GO TO 6.
OK (Without CONSULT-II)	•	GO TO 7.
NG		GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the harness for open or short between EGRC-solenoid valve and ECM.


Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.

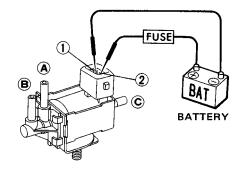
ACTIVE TEST		
EGRC SOL/V (EGR)	ON CUT	
MONITOR		
CMPS~RPM (REF)	XXX rpm	
	,	

Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF169X

OK or NG

OK •	GO TO 8.
NG ►	Replace EGRC-solenoid valve.


DTC P1400 EGRC-SOLENOID VALVE

Diagnostic Procedure (Cont'd)

CHECK EGRC-SOLENOID VALVE

(X) Without CONSULT-II

Check air passage continuity shown in the figure.

Air passage continuity between **A** and **B** Air passage continuity between A and C Condition 12V direct current supply between terminals 1 and 2 No No No supply

Yes

If NG or operation takes more than 1 second, replace solenoid valve.

OK or NG

GO TO 8. OK NG Replace EGRC-solenoid valve.

8 **CHECK INTERMITTENT INCIDENT** Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128. **INSPECTION END**

GI

MA

EM

LC

EC

AEC919

MTBL0283

GL

MT

AT

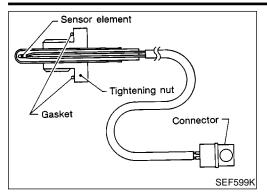
PD

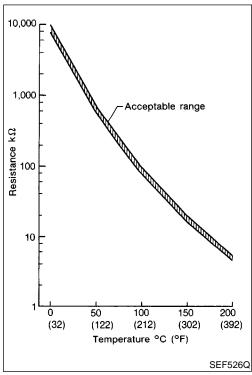
TF

AX

SU

BR


ST


BT

HA

SC

Component Description

Component Description

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases. This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance MΩ
0 (32)	4.81	7.9 - 9.7
50 (122)	2.82	0.57 - 0.70
100 (212)	0.8	0.08 - 0.10

^{*:} These data are reference values and are measured between ECM terminal 63 (EGR temperature sensor) and ECM terminal 32 (ECM ground).

When EGR system is operating.

Voltage: 0 - 1.5V

On Board Diagnosis Logic

NGEC0343

			NGEC0343
DTC No.		Malfunction is detected when	Check Items (Possible Cause)
P1401 0305	A)	An excessively low voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is low.	Harness or connectors (The EGR temperature sensor circuit is shorted.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve
	В)	An excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.	Harness or connectors (The EGR temperature sensor circuit is open.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve

DTC P1401 EGR TEMPERATURE SENSOR

DTC Confirmation Procedure

4 DATA MONITOR MONITORING NO FAIL CMPS~RPM(REF) XXX rpm COOLAN TEMP/S XXX °C PEF779U

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MAL-FUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

LC

EC

FE

MT

AT

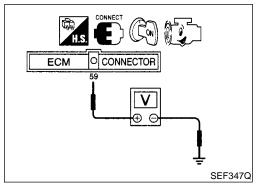
TF

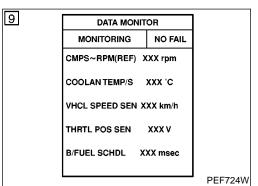
PD

PROCEDURE FOR MALFUNCTION A

(A) With CONSULT-II

NGEC0344S01


- Turn ignition switch ON. Select "DATA MONITOR" mode with CONSULT-II.
- Verify that engine coolant temperature is less than 50°C (122°F).


If the engine coolant temperature is above the range, cool

- the engine down. Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-474.

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B

NGEC0344S02

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature above 5°C (41°F).

- (P) With CONSULT-II
- Start engine and warm it up to normal operating temperature.
- Run engine at idle for at least 2 minutes.
- Confirm that EGR valve is not lifting. If the result is NG, perform trouble diagnosis for DTC P1402. Refer to EC-476.
- Select "DATA MONITOR" mode with CONSULT-II.
- Read "EGR TEMP SEN" at about 1,500 rpm while holding the EGR valve in full open position by hand.

Voltage should decrease to less than 1.0V.

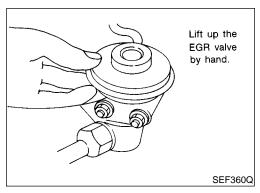
If the result is NG, go to "Diagnostic Procedure", EC-474. If the result is OK, go to following step.

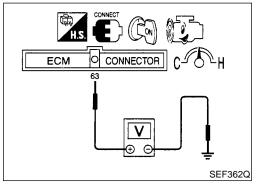
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- Start engine.

BT

HA

SC


EL


EC-471

10) Maintain	the	following	conditions	for	at	least	5	consecutive
seconds								

CMPS-RPM (REF)	2,000 - 2,600 rpm
VHCL SPEED SE	10 km/h (6 MPH) or more
B/FUEL SCHDL	2.5 - 3.5 msec
THRTL POS SEN	(X + 0.23) - (X + 0.74) V X = Voltage value measured at step 7
Selector lever	Suitable position

¹¹⁾ If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-474.

Overall Function Check

NGEC0345

Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION B

N Without CONSULT-II

NGEC0345S01


- 1) Start engine and warm it up to normal operating temperature.
- 2) Run engine at idle for at least 2 minutes.
- 3) Confirm that EGR valve is not lifting. If NG, perform trouble diagnosis for DTC P1402. Refer to EC-477.
- 4) Check voltage between ECM terminal 63 (EGR temperature sensor signal) and ground at about 1,500 rpm with EGR valve lifted up to the full position by hand.

Voltage should decrease to less than 1.0V.

5) If NG, go to "Diagnostic Procedure", EC-474. If OK, perform trouble diagnoses for DTC P0400 and P1400. Refer to EC-326, 463.

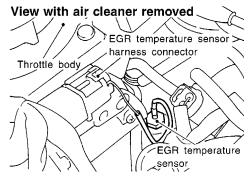
DTC P1401 EGR TEMPERATURE SENSOR

AEC006B

116

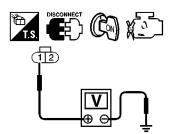
123 124

118 119 120



Diagnostic Procedure

NGEC0347


1 CHECK POWER SUPPLY

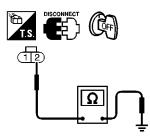
- 1. Turn ignition switch OFF.
- 2. Disconnect EGR temperature sensor harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

SEF263W


SEF345V

OK ►	GO TO 2.
NG ►	Repair harness or connectors.

OK or NG

2 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between EGR temperature sensor terminal 2 and engine ground. Refer to the wiring diagram.

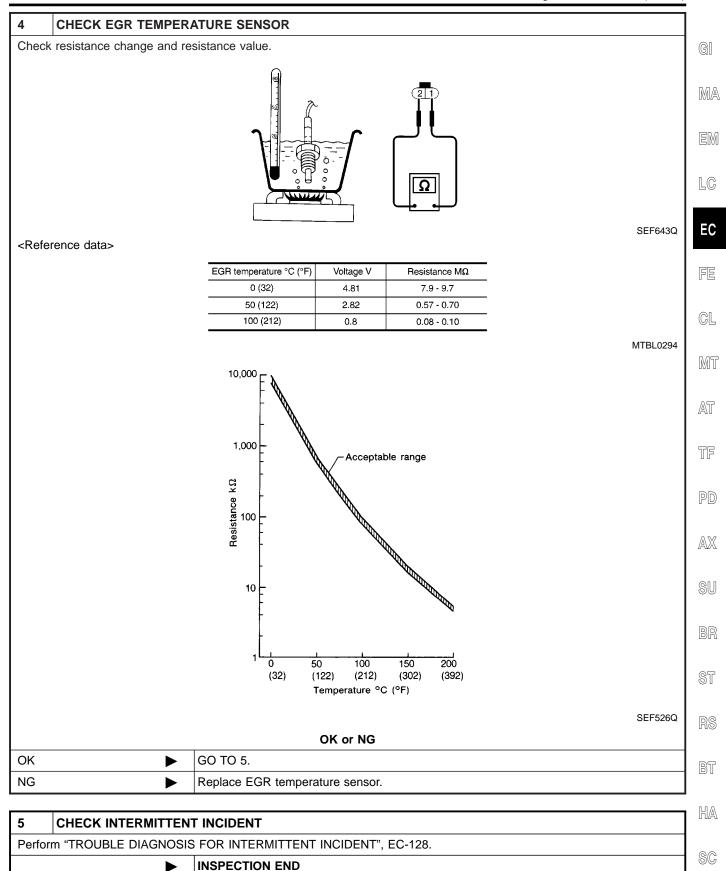
SEF264W

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 4.
NG ►	GO TO 3.


3 DETECT MALFUNCTIONING PART

Check the harness for open or short between EGR temperature sensor and ECM.

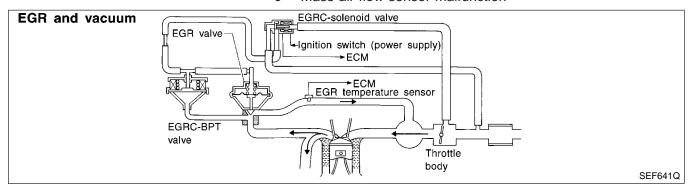
Repair open circuit or short to ground or short to power in harness or connector.

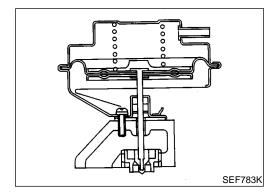
DTC P1401 EGR TEMPERATURE SENSOR

Diagnostic Procedure (Cont'd)

EL

Description SYSTEM DESCRIPTION

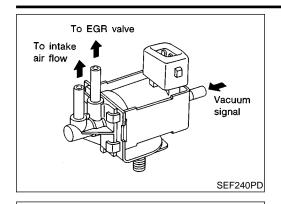

NGEC0349


NGEC0349S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature	EGR control	EGRC-solenoid valve
Ignition switch	Start signal		
Throttle position sensor	Throttle position		

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current through the solenoid valve is cut. This causes the vacuum to be cut. The EGR valve remains closed.

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction


COMPONENT DESCRIPTION Exhaust Gas Recirculation (EGR) Valve

NGEC0349S02

NGEC0349S0201

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

DTC P1402 EGR FUNCTION (OPEN)

EGR temperature

ECM

EGR.

EGR

temperature

SEF073P

Malfunction is detected when ...

sensor

DTC No.

P1402

0514

EGRC-solenoid Valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. A plunger will then move to cut the vacuum signal (from the throttle body to the EGR valve).

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the throttle body to the EGR valve.

MA

LC

On Board Diagnosis Logic

If EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.

EC

Diagnosis for this DTC will occur when engine coolant temperature is approx. 50 to 60°C (122 to 140°F). Therefore, it will be better to turn ignition switch "ON" (Start engine) at the engine coolant temperature below 40°C (104°F) when starting DTC confirmation procedure.

MT

use)	AT
	TF

Check Items (Possible Cau • EGR flow is detected under conditions that do not call for • EGRC-solenoid valve EGR valve leaking or stuck open • EGR temperature sensor EGRC-BPT valve

PD

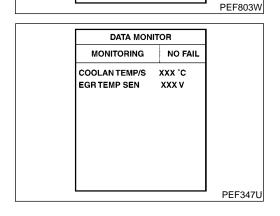
EGR SYSTEM P1402 CHECK ENGINE COOLANT TEMP WITH DATA MONITOR. IS COOLANT TEMP BETWEEN -10°C - 40°C (14°F - 104°F)?

DTC Confirmation Procedure

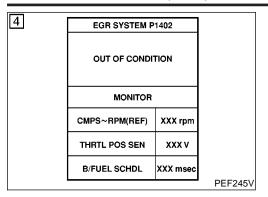
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

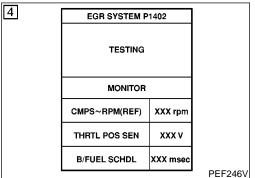
TESTING CONDITION:

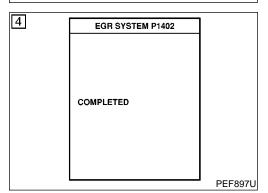
Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.

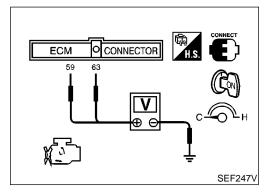

COOLAN TEMP/S: -10 to 40°C (14 to 104°F)*

EGR TEMP SEN: Less than 4.8V


If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the engine coolant or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.


*: Although CONSULT-II screen displays "-10 to 40°C (14 to 104°F)" as a range of engine coolant temperature, ignore it.


SC



DTC Confirmation Procedure (Cont'd)

(II) With CONSULT-II

- 1) Turn ignition switch OFF and wait at least 5 seconds, then turn ignition switch ON.
- Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3) Touch "START". Follow instruction of CONSULT-II.
- Start engine and let it idle until "TESTING" on CONSULT-II screen is turned to "COMPLETED". (It will take 60 seconds or more.)

If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 40°C (14 to 104°F). Retry from step 1.

5) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-480.

With GST

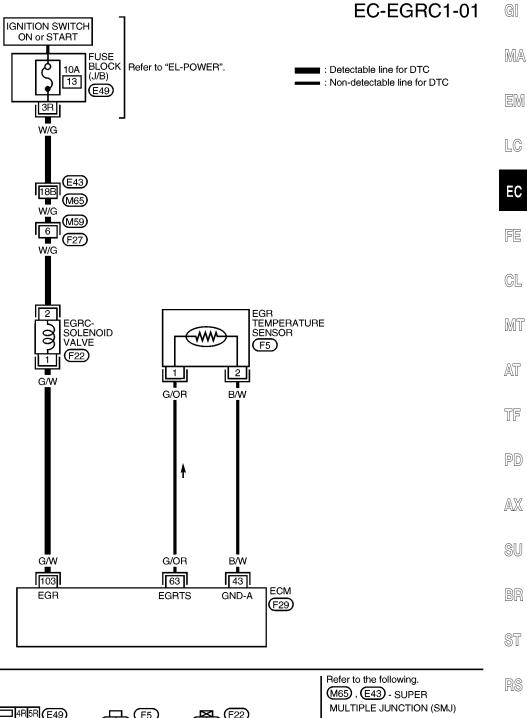
- Turn ignition switch ON and select "MODE 1" with GST.
- 2) Check that engine coolant temperature is within the range of -10 to 35°C (14 to 95°F).
- Check that voltage between ECM terminal 63 (EGR temperature sensor signal) and ground is less than 4.8V.
- 4) Start engine and let it idle for at least 60 seconds.
- 5) Stop engine.
- 6) Perform from step 1 to 4.
- 7) Select "MODE 3" with GST.
- 8) If DTC is detected, go to "Diagnostic Procedure", EC-480.

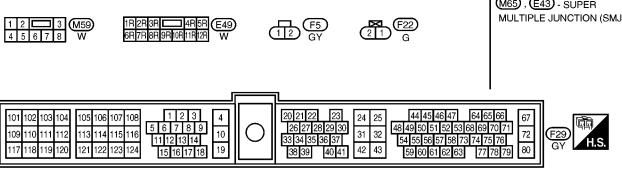
No Tools

- 1) Turn ignition switch ON.
- 2) Check the following voltages.

ECM terminal 59 (Engine coolant temperature sensor signal) and ground: 2.7 - 4.4V

ECM terminal 63 (EGR temperature sensor signal) and ground: Less than 4.8V


- 3) Start engine and let it idle for at least 60 seconds.
- Turn ignition switch OFF, wait at least 5 seconds and then turn ON.
- 5) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM
- 6) If DTC is detected, go to "Diagnostic Procedure", EC-480.


When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

NGEC0352

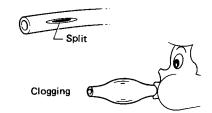
AEC995A

BT

HA

SC

EL



NGEC0353

Diagnostic Procedure

CHECK VACUUM HOSE

Check vacuum hose for clogging, cracks or improper connection. Refer to "Vacuum Hose Drawing", EC-27.

SEF109L

OK or NG

OK (With CONSULT-II)	>	GO TO 2.
OK (Without CONSULT-II)	•	GO TO 3.
NG	>	Repair or replace vacuum hose.

CHECK EGRC-SOLENOID VALVE CIRCUIT 2

(I) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST				
EGRC SOL/V		ON		
(EGR)	FLOW			
MONITO	₹			
CMPS·RPM(REF)		XXX rpm		

PEF788U

Clicking noise should be heard.

OK or NG

OK	>	GO TO 5.
NG		GO TO 4.

3 **CHECK EGRC-SOLENOID VALVE CIRCUIT**

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Turn ignition switch ON.
- 4. Check operating sound of the solenoid valve when disconnecting and reconnecting EGRC-solenoid valve harness connector. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

OK or NG

OK •	GO TO 6.
NG 🕨	GO TO 4.

DTC P1402 EGR FUNCTION (OPEN)

KA24DE

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIO	NING PART				
	Check the following.					
	Harness connectors E43, M65 Harness connectors ME0, E37					
	Harness connectors M59, F2710A fuse					
	 Harness for open or short between fuse block and EGRC-solenoid valve Harness for open or short between ECM and EGRC-solenoid valve 					
OK or NG						
OK	DK					
NG	•	Repair open circuit or short to power in harness or connector.	LC			

C	HECK EGRC-SO	LENOID VALVE	Ē			
heck a	CONSULT-II ir passage continui "EGRC SOLENOII		ON CUT	T" mode.		
B		CMPS~RPM (REF)	XXX rpm	Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C
	C			ON	Yes	No
				OFF	No	Yes
						SEF16

	OK or NG				
ОК	>	GO TO 7.			
NG	>	Replace EGRC-solenoid valve.			

GL

MT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

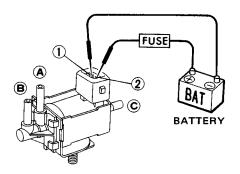
BR

ST

RS

BT

HA


SC

EL

6 CHECK EGRC-SOLENOID VALVE

(X) Without CONSULT-II

Check air passage continuity shown in the figure.

Condition

Air passage continuity between A and B

Air passage continuity between A and C

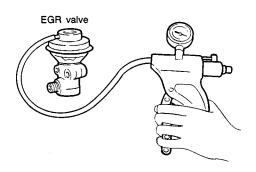
12V direct current supply between terminals 1 and 2

No supply

No Yes

MTBL0283

AEC919


If NG or operation takes more than 1 second, replace solenoid valve.

OK or NG

OK ▶	GO TO 7.
NG ►	Replace EGRC-solenoid valve.

7 CHECK EGR VALVE

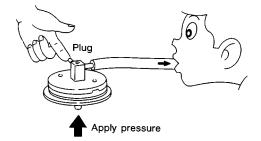
• Apply vacuum to EGR vacuum port with a hand vacuum pump.

MEF137D

EGR valve spring should lift.

· Check for sticking.

OK or NG


ОК	>	GO TO 8.
NG	>	Replace EGR valve.

DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure (Cont'd)

8 CHECK EGRC-BPT VALVE

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mm H_2O , 3.94 in H_2O) from under EGRC-BPT valve.

3. If a leakage is noted, replace the valve.

OK or NG

OK •	GO TO 9.
NG ►	Replace EGRC-BPT valve.

GI

MA

EM

LC

EC

SEF083P

FE

GL

MT

AT

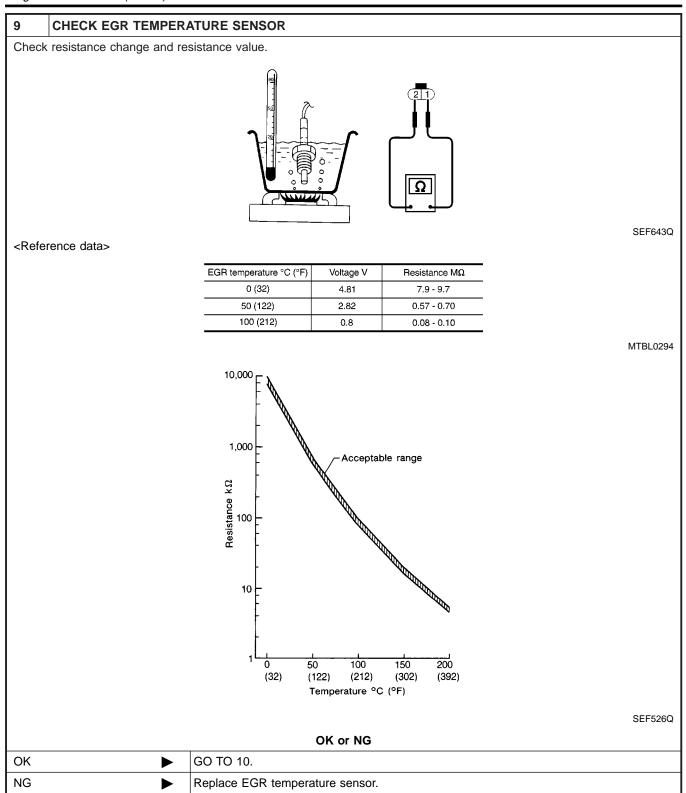
TF PD

AX

SU

BR

ST


RS

BT

HA

SC

EL

10	CHECK INTERMITTENT INCIDENT				
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.				
	► INSPECTION END				

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

KA24DE

NGEC0355

MA

LC

EC

FE

GL

On Board Diagnosis Logic

On Board Diagnosis Logic


NOTE:

If DTC P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. Refer to EC-515.

This diagnosis detects leaks in the EVAP purge line using vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge control valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge control valve.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1440 0213	 EVAP control system has a leak. EVAP control system does not operate properly. 	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used
		 Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
		 Foreign matter caught in EVAP canister vent control valve.
		 EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent.
		 Blocked or bent rubber tube to EVAP control system pressure sensor EVAP control system pressure sensor
		 Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid
		valveAbsolute pressure sensor
		 Fuel tank temperature sensor MAP/BARO switch solenoid valve Blocked or bent rubber tube to MAP/BARO switch
		 olenoid valve O-ring of EVAP canister vent control valve is missing or damaged.
		 Water separator EVAP canister is saturated with water. Fuel level sensor

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

EL

HA

SC

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NGEC0356

Refer to"P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-352.

Diagnostic Procedure

NGEC0357

NOTE:

Refer to"P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-354.

Description SYSTEM DESCRIPTION

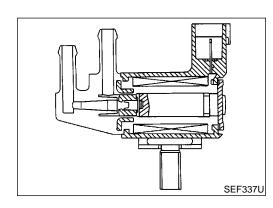
NGEC0359

MA

EC

FE

TF


PD

AX

NGEC0359S01

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume	
Throttle position switch	Closed throttle position	flow control	control solenoid valve	
Front heated oxygen sensors	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Vehicle speed sensor	Vehicle speed			

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

NGEC0359S02

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

ST

BT

HA

SC

EL

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0360

MONITOR ITEM	CONE	DITION	SPECIFICATION
	Engine: After warming up Air conditioner switch "OFF"	Idle (Vehicle stopped)	0%
PURG VOL C/V	Air conditioner switch "OFF"Shift lever: "N"No-load	2,000 rpm (200 seconds after starting engine)	_

KA24DE

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECCS ground).

				(3 /
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	ECCS relay (Self-shut-off)	[Engine is running] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	0 - 1V
			[Ignition switch "OFF"] ■ A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
	EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms	
5	R/Y	volume control sole- noid valve	[Engine is running] • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
67	B/P	Dower cumby for ECM	Hanitian quitab "ON"	BATTERY VOLTAGE
72	B/P	Power supply for ECM	[Ignition switch "ON"]	(11 - 14V)
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC036

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1444 0214	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0363

If "DTC Confirmation Procedure" has been previously conducted,

always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

LC

EC

FE

TF

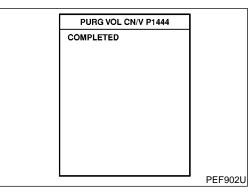
PD

AX

DATA MONIT	OR	
MONITORING	NO FAIL	
CMPS~RPM(REF)	KXX rpm	
COOLAN TEMP/S	XXX °C	
TANK F/TMP SE XXX °C		
		PEF195

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 5) Check that TANK F/TEMP SE is 0°C (32°F) or more.
- Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - Touch "START".
- Start engine and let it idle until "TESTING" on CONSULT-II MT changes to "COMPLETED". (It will take for at least 10 seconds.)

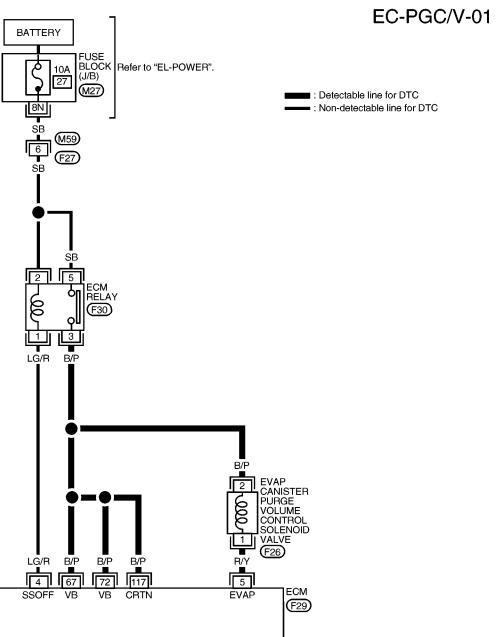

If "TESTING" is not displayed after 5 minutes, retry from AT step 2.

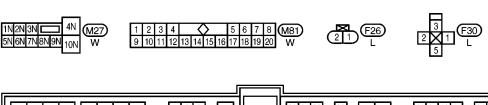
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-491.
- With GST Follow the procedure "With CONSULT-II".

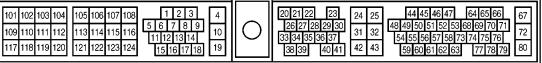
PURG VOL CN/V P1444 **OUT OF CONDITION** MONITOR CMPS~RPM(REF) XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec

PEF900U

PURG VOL CN/V	P1444	
TESTING		
MONITOR		
CMPS~RPM(REF)	XXX rpm	
THRTL POS SEN	xxx v	
B/FUEL SCHDL	XXX msec	
		PEF901U

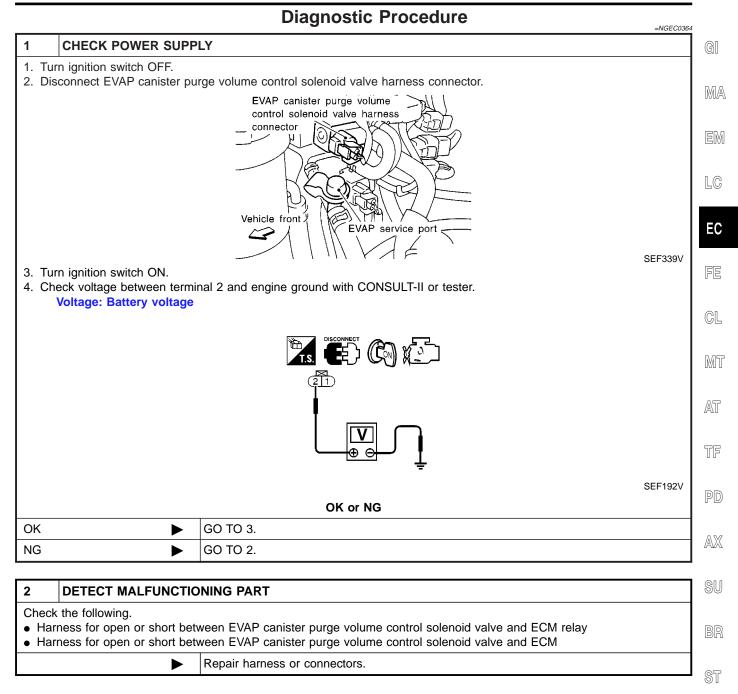

ST BT HA


SC


KA24DE

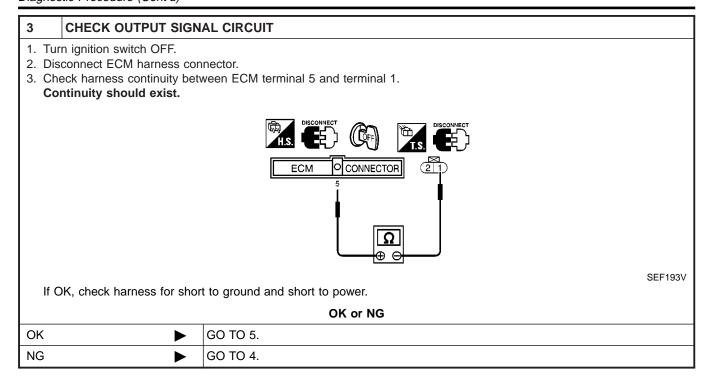
Wiring Diagram

NGEC0504



KA24DE

Diagnostic Procedure


BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIONING PART	
Check the harness for open or short between EVAP canister purge volume control solenoid valve and ECM.		
	Repair open circuit or short to ground or short to power in harness or connectors.	

KA24DE

GI

MA

LC

EC

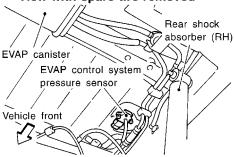
FE

GL

MT

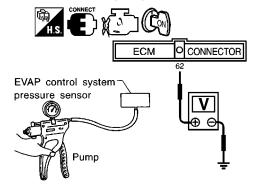
AT

TF


PD

Diagnostic Procedure (Cont'd)

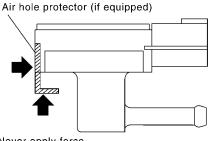
CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


1. Remove EVAP control system pressure sensor with its harness connector connected.

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 4. Check output voltage between ECM terminal 62 and engine ground.

Pressure (Relative to atomospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6


MTBL0295

SEF198V

CAUTION:

5

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.

Never apply force.

SEF799W

- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG

OK (With CONSULT-II)	>	GO TO 6.
OK (Without CONSULT-II)	>	GO TO 7.
NG	>	Replace EVAP control system pressure sensor.

 $\mathbb{D}\mathbb{X}$

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)


CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (P) With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. Check air passage continuity. If OK, inspection end. If NG, go to following step. ACTIVE TEST PURG VOL CONT/V MONITOR CMPS~RPM(REF) XXX rpm FR O2 MNTR A/F ALPHA XXX % THRTL POS SEN XXX V PEF190V 3. Check air passage continuity. Condition PURG VOL CONT/V value Air passage continuity between **A** and **B** 100.0% Yes 0.0% No MTBL0302

OK or NG

OK •	GO TO 8.
NG •	Replace EVAP canister purge volume control solenoid valve.

KA24DE

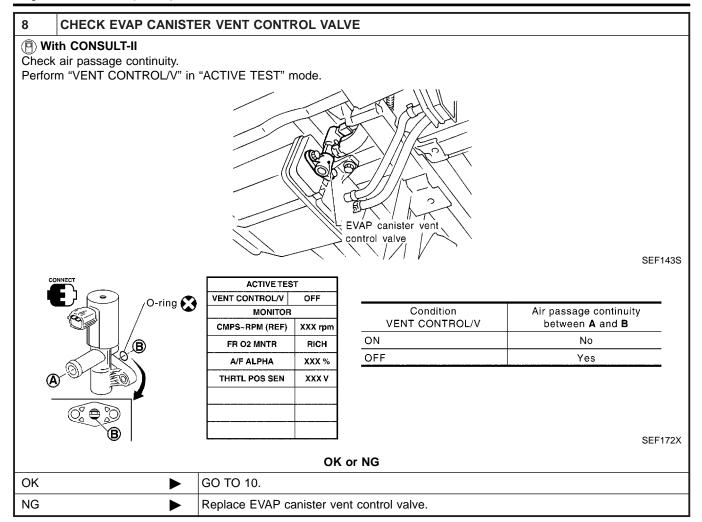
Diagnostic Procedure (Cont'd)

BR

ST

RS

BT


HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

KA24DE

GI

MA

LC

EC

FE

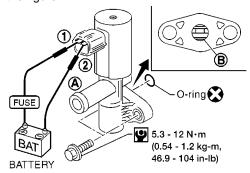
GL

MT

AT

TF

PD


Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER VENT CONTROL VALVE

(R) Without CONSULT-II

9

Check air passage continuity shown in the figure.

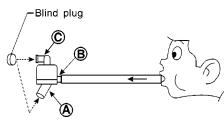
AEC783A

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
No supply	Yes	

MTBL0297

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion B is rusted, replace EVAP canister vent control valve. Make sure new O-ring is installed properly.


OK or NG

OK •	GO TO 10.
NG •	Replace EVAP canister vent control valve.

10 CHECK RUBBER TUBE

Check for obstructed water separator and rubber tube connected to EVAP canister vent control valve and clean the rubber tube using air blower. Check water separator.

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

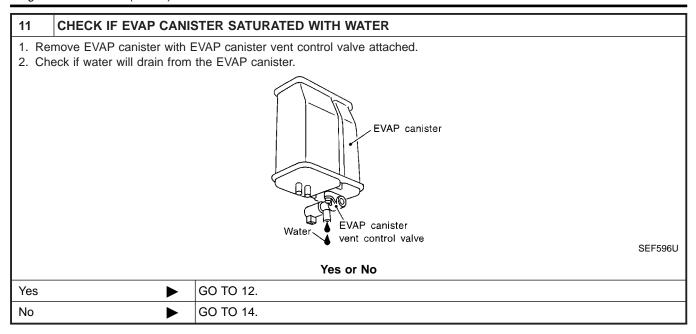
- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - C: Inlet port (To member)

SEF829T

- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

ok	or	NG
----	----	----

OK •	GO TO 11.
NG ►	Clean, repair or replace rubber tube and/or water separator.

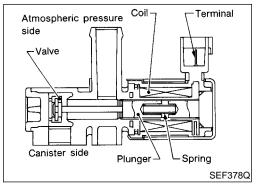

EL

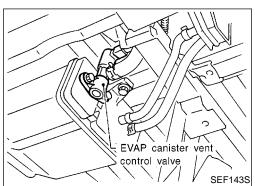
HA

SC

KA24DE

Diagnostic Procedure (Cont'd)




12	2 CHECK EVAP CANISTER			
	Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). OK or NG			
OK ▶ GO TO 14.				
NG	>	GO TO 13.		

13	DETECT MALFUNCTIONING PART	
• EVA	Check the following. EVAP canister for damage EVAP hose between EVAP canister and water separator for clogging or poor connection	
	>	Repair hose or replace EVAP canister.

14	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
	► INSPECTION END	

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

LC

GI

MA

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

CONSULT-II Reference Value in Data Monitor

NGEC0367

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

Mode

ECM Terminals and Reference Value

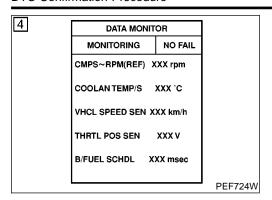
Specification data are reference values and are measured between each terminal and 32 (ECM ground).

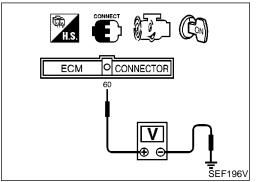
TERMI-WIRE NAL **ITEM** CONDITION DATA (DC Voltage) COLOR NO. **BATTERY VOLTAGE** EVAP canister vent control R/G [Ignition switch "ON"] 108 (11 - 14V)valve

On Board Diagnosis Logic

NGEC0369

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1446 0215	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water.


HA


BT

SC

EL

DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0370

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform at a temperature above 0°C (32°F).

- (A) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Check that TANK F/TMP SE is 0°C (32°F) or more.
- 6) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE" on EC-501.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

With GST

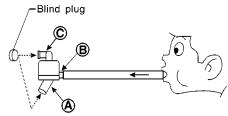
- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for 15 minutes.
- 4) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE" on EC-501.

No Tools

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for 15 minutes.
- 4) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE" on next page.

Diagnostic Procedure

Diagnostic Procedure


=NGEC0371

1 CHECK RUBBER TUBE FOR CLOGGING

Check obstructed water separator and rubber tube to EVAP canister vent control valve and clean the rubber tube using air blower.

Check water separator.

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A): Bottom hole (To atmosphere)

B: Emergency tube (From EVAP canister)

(C): Inlet port (To member)

SEF829T

- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

OK	or	NG

OK (With CONSULT-II)	>	GO TO 2.
OK (Without CONSULT-II)	>	GO TO 3.
NG	>	Clean, repair or replace rubber tube and/or water separator.

GI

MA

1 @

EC

FE

GL

Mī

- 1

AT

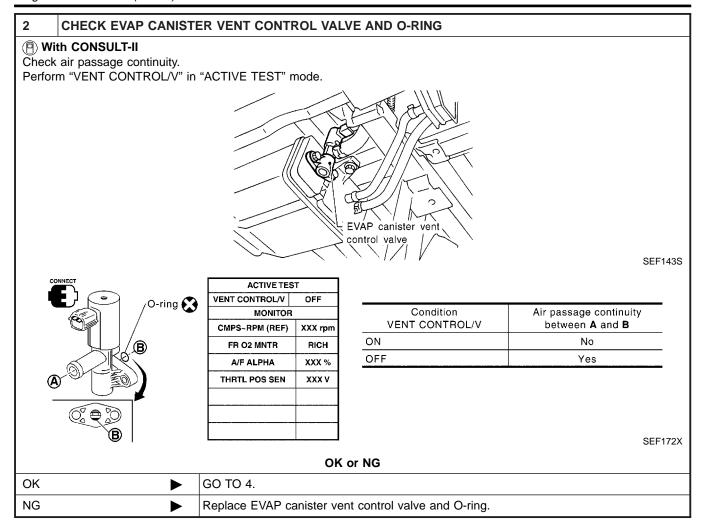
TF

PD

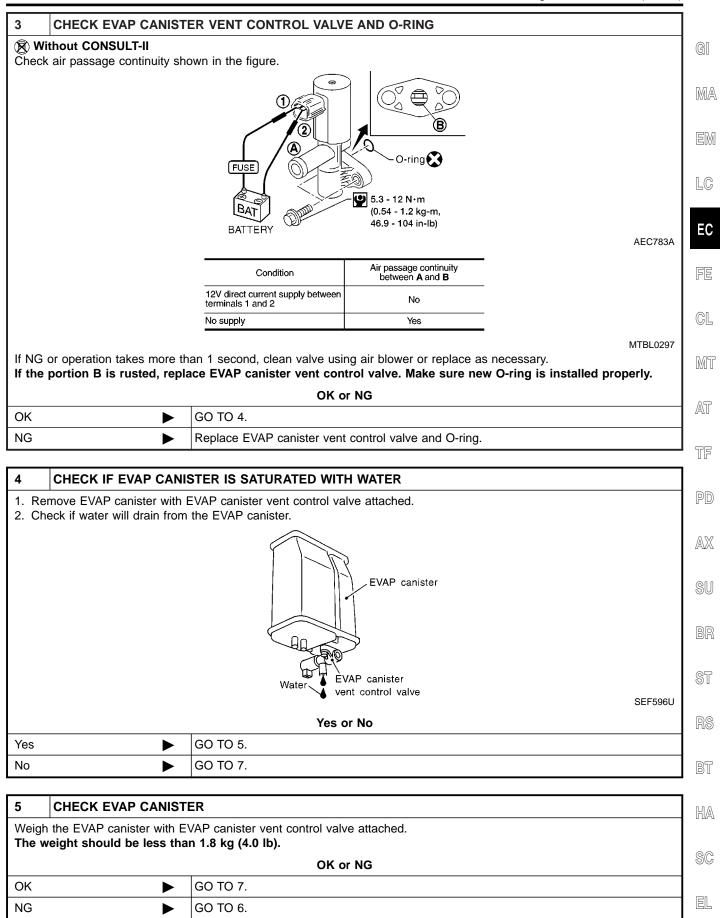
SU

BR

ST


BT

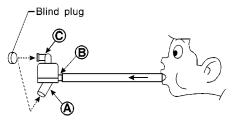
HA


SC

 \mathbb{N}

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)



Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.
- 3. Check water separator.
- a. Check visually for insect nests in the water separator air inlet.
- b. Check visually for cracks or flaws in the appearance.
- c. Check visually for cracks or flaws in the hose.
- d. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

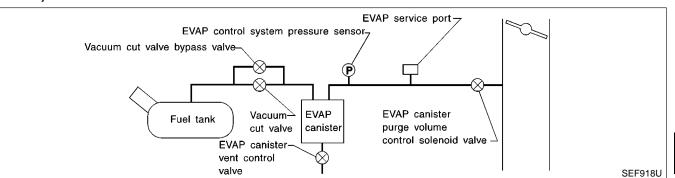
SEF829T

- e. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.
 - Repair hose or replace EVAP canister or water separator.

7	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
Check	Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
	OK or NG		
ОК	OK ▶ GO TO 8.		
NG	•	Install hose properly or replace it.	

8	CHECK HARNESS COM	NNECTOR		
2. Ch	 Disconnect EVAP control system pressure sensor harness connector. Check harness connector for water. Water should not exist. 			
	OK or NG			
ОК	OK ▶ GO TO 9.			
NG	>	Replace EVAP control system pressure sensor.		

9	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR AND CIRCUIT	
Refer to "DTC Confirmation Procedure", EC-385.		
OK or NG		
OK	>	GO TO 10.
NG	>	Replace EVAP control system pressure sensor and repair or replace harness and connector.


10	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
	► INSPECTION END	

System Description

System Description

NOTE:

If both DTC P0510 and P1447 are displayed, perform trouble diagnosis for "DTC P0510" first. (See EC-422.)

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	AT
P1447 0111	EVAP control system does not operate properly. EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	 EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube Blocked rubber tube Blocked or bent rubber tube to MAP/BARO switch solenoid valve Cracked EVAP canister Closed throttle position switch Blocked purge port EVAP canister vent control valve 	TF PC AX

MA

NGEC0373

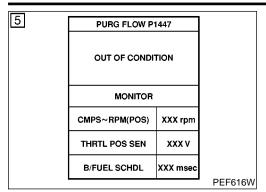
LC

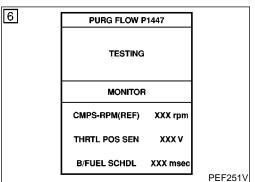
EC

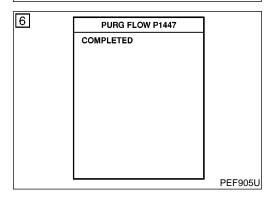
MT

CL

T


ST


BT


HA

SC

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

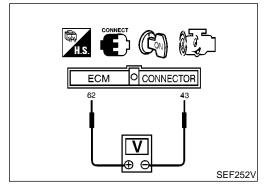
CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

NGEC0375


TESTING CONDITION:

- For best results perform test at a temperature of 5°C (41°F) or more.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (II) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Start engine and let it idle for at least 60 seconds.
- Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- 5) Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
CMPS-RPM (POS)	500 - 3,600 rpm
Engine coolant temperature	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure".

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Lift up drive wheels.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF, wait at least 5 seconds.
- Start engine and wait at least 60 seconds.
- Set voltmeter probes to ECM terminals 62 (EVAP control system pressure sensor signal) and 43 (ground).

Overall Function Check (Cont'd)

6)	Check	EVAP	control	system	pressure	sensor	value	at	idle
	speed	and no	te it.						

Establish and maintain the following conditions for at least 1

Air conditioner switch: ON Steering wheel: Fully turned

Headlamp switch: ON

Rear window defogger switch: ON Engine speed: Approx. 3,000 rpm

Gear position:

Any position other than "Neutral" or "Reverse"

Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.

EC

MA

LC

GL

MT

AT

TF

PD

FE

Diagnostic Procedure

CHECK EVAP CANISTER 1. Turn ignition switch OFF. 2. Check EVAP canister for cracks. OK or NG GO TO 2. OK (With CONSULT-II) OK (Without CONSULT-GO TO 3. NG Replace EVAP canister.

SU

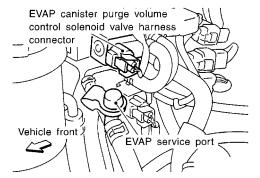
AX

ST

BT

HA

SC


Diagnostic Procedure (Cont'd)

CHECK PURGE FLOW

(P) With CONSULT-II

2

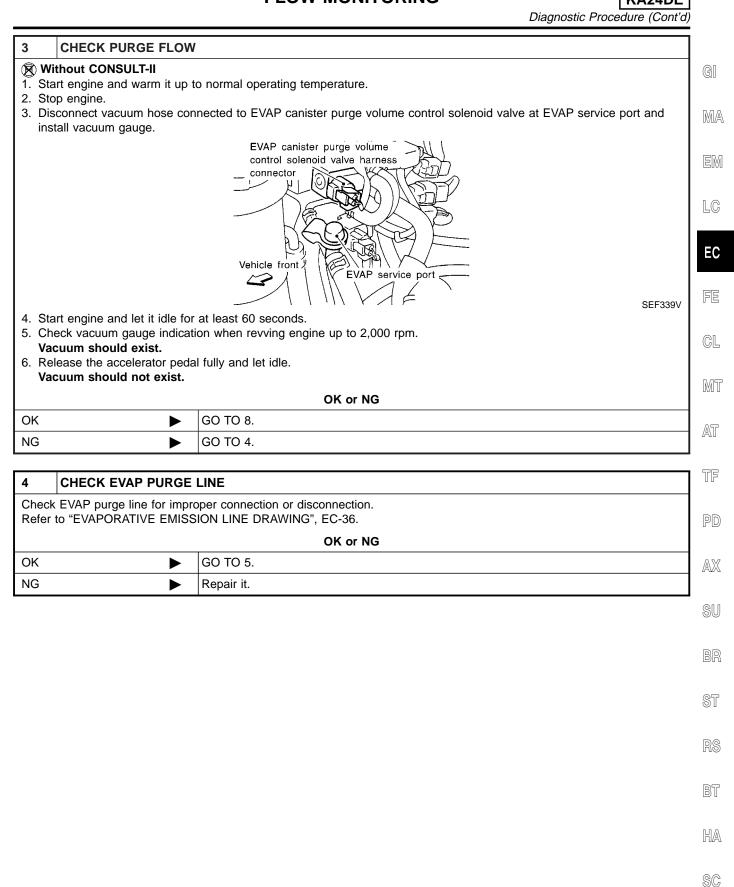
1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

SEF339V

- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TEST			
PURG VOL CONT/V 0.0%			
MONITOR	1		
CMPS~RPM(REF)	XXX rpm		
FR O2 MNTR-B2	LEAN		
FR O2 MNTR-B1	LEAN		
A/F ALPHA-B2	XXX %		
A/F ALPHA-B1	XXX %		
THRTL POS SEN	xxx v		

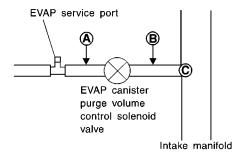
PEF908U


- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening.

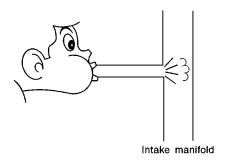
100.0%: Vacuum should exist.

0.0%: Vacuum should not exist.

OK or NG


C	oK •	GO TO 8.
Ν	G	GO TO 4.

Diagnostic Procedure (Cont'd)


CHECK EVAP PURGE HOSE AND PURGE PORT

1. Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.

SEF367U

- 2. Blow air into each hose and EVAP purge port C.
- 3. Check that air flows freely.

SEF368U

OK	or	NG

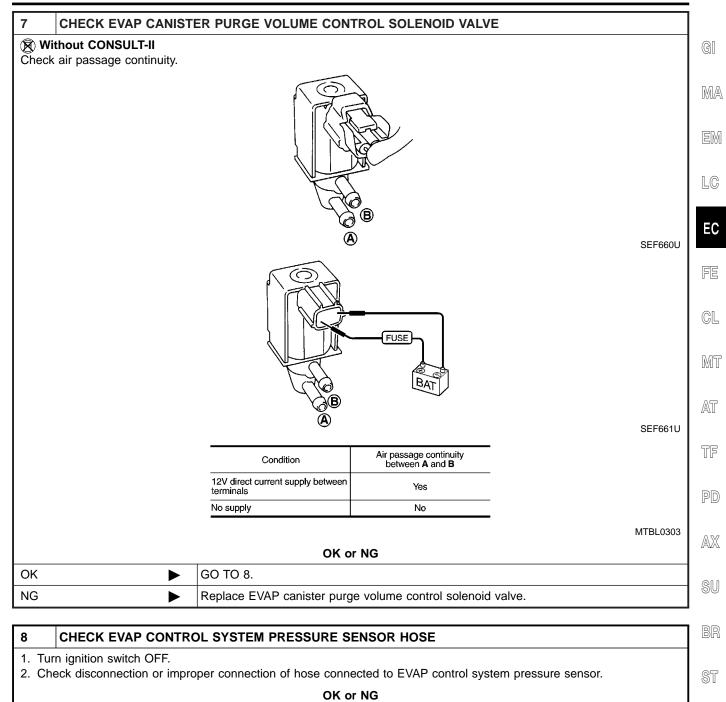
OK (With CONSULT-II)	>	GO TO 6.
OK (Without CONSULT-II)	>	GO TO 7.
NG	>	Repair or clean hoses and/or purge port.

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.
 - If OK, inspection end. If NG, go to following step.
- 3. Check air passage continuity.

ACTIVE TEST					
PURG VOL CONT/V 0.0 %					
MONITOR	ł				
CMPS~RPM (REF)	XXX rpm				
FR O2 MNTR	RICH				
A/F ALPHA	XXX %				
THRTL POS SEN	xxx v				


Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

SEF175X

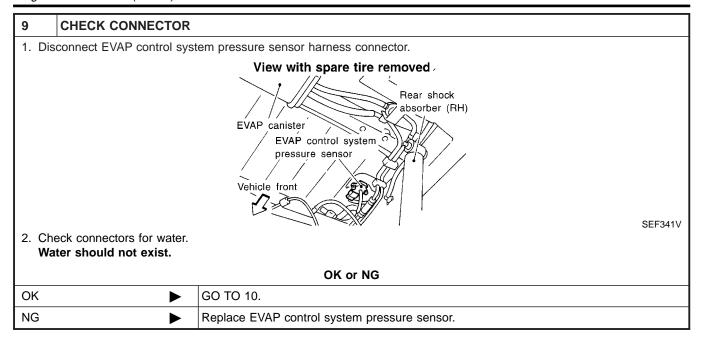
ΩK	or	NG

OK	>	GO TO 8.
NG		Replace EVAP canister purge volume control solenoid valve.

Diagnostic Procedure (Cont'd)

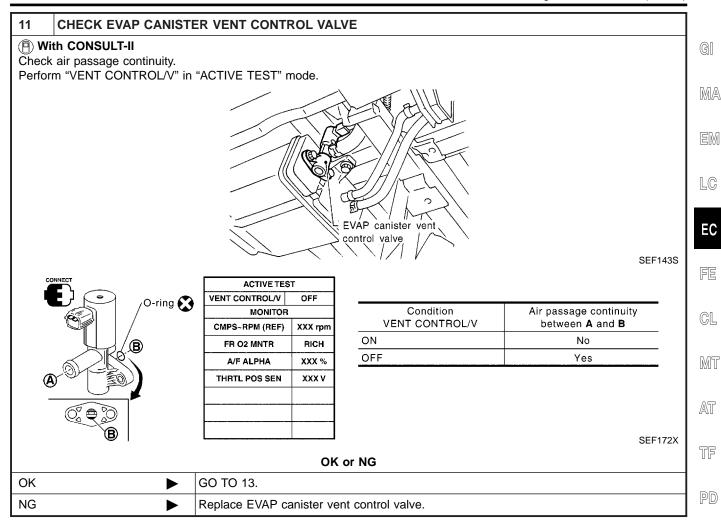
SC EL IDX

BT


HA

GO TO 9.

Repair it.


OK NG

Diagnostic Procedure (Cont'd)

10	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR AND CIRCUIT		
Refer	Refer to "DTC Confirmation Procedure" for DTC P0450, EC-385.		
	OK or NG		
OK (V	Vith CONSULT-II)	>	GO TO 11.
OK (V II)	Vithout CONSULT-	>	GO TO 12.
NG			Replace EVAP control system pressure sensor.

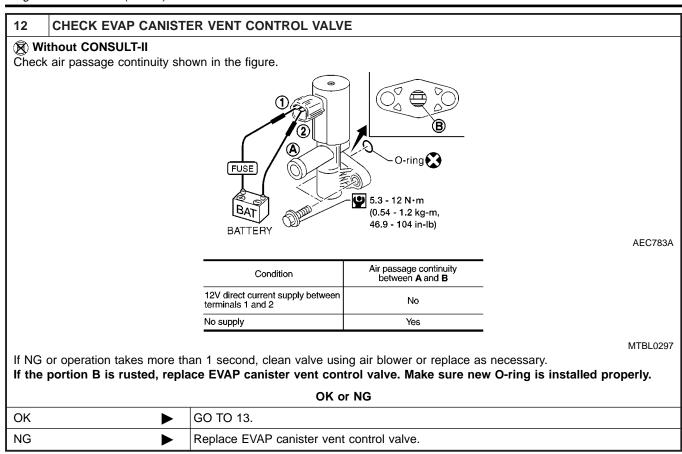
Diagnostic Procedure (Cont'd)

AX

SU

BR

ST

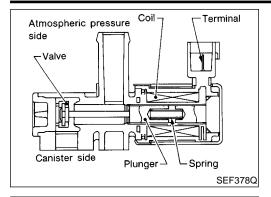

RS

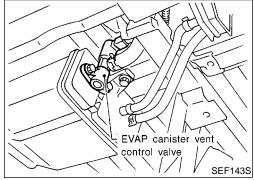
BT

HA

SC

Diagnostic Procedure (Cont'd)


13	CHECK EVAP PURGE	LINE	
	Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-36.		
	OK or NG		
ОК	>	GO TO 14.	
NG	>	Replace it.	


14	14 CLEAN EVAP PURGE LINE	
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.	
	>	GO TO 15.

15	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.	
	► INSPECTION END	

Component Description

NGEC0379

Component Description

NOTE:

If DTC P1448 is displayed with P0440 or P1440, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

EM

FE

CL

MT

AT

TF

PD

SW

ST

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM CONDITION SPECIFICATION

VENT CONT/V • Ignition switch: ON OFF

_

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

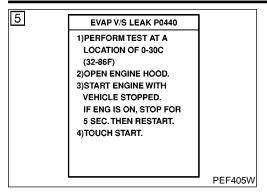
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

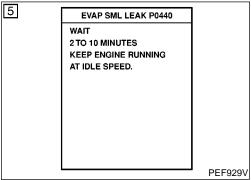
On Board Diagnosis Logic

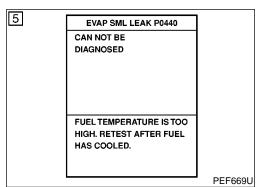
NGEC0382

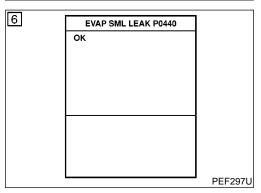
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P1448 0309	EVAP canister vent control valve remains opened under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve 	

HA


BT


SC


EL


 $\mathbb{D}\mathbb{X}$

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NOTE:

If DTC P1448 is displayed with P0440 or P1440, perform

NGEC0383

- trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

(II) With CONSULT-II **TESTING CONDITION:**

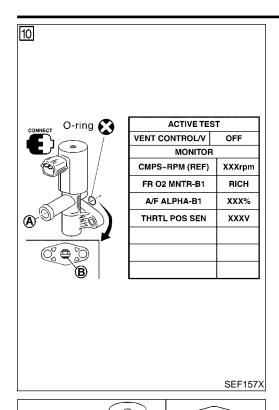
- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- It is better that the fuel level is low.
- 1) Turn ignition switch ON.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

- If the CONSULT-II screen shown at left is displayed, stop the engine and stabilize the vehicle temperature at 25°C (77°F) or cooler. After "TANK F/TMP SE" becomes less than 30°C (86°F), retest. (Use a fan to reduce the stabilization time.)
- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to Inspection", EC-95.
- The engine idle portion of this test (See illustration at left.) will take approximately 5 minutes.
- Make sure that "OK" is displayed. If "NG" is displayed, go to following step.


NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- Stop engine and wait at least 5 seconds, then turn "ON".
- 8) Disconnect hose from water separator.
- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch "ON" and "OFF" alternately.

11) Make sure of the following.

DTC Confirmation Procedure (Cont'd)

,g.		
Condition	Air passage continuity between A and B	
Touching "ON"	No	
Touching "OFF"	Yes	

If the result is NG, go to "Diagnostic Procedure", EC-518. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-354.

MA

GI

LC

EC

FE

GL

MT

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

TF

AT

Nithout CONSULT-II

B)

AEC783A

·O-ring 🔀

5.3 - 12 N·m (0.54 - 1.2 kg-m,

46.9 - 104 in-lb)

- 1) Disconnect hose from water separator.
- Disconnect EVAP canister vent control valve harness connector.

3) Verify the following.

, ,	
Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If the result is NG, go to "Diagnostic Procedure", EC-518. If the result is OK, perform trouble diagnosis for DTC P0440. Refer to EC-351.

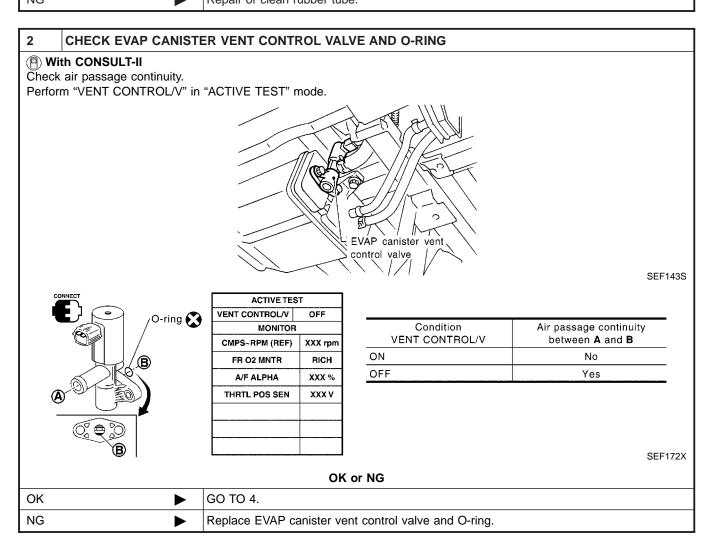
PD

SU

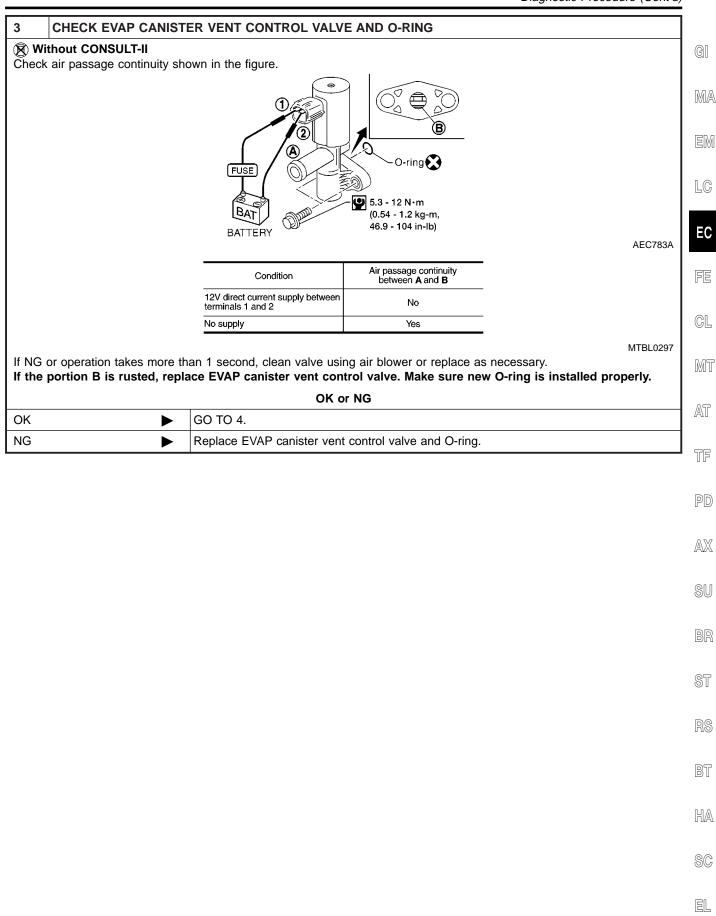
מוש

ST

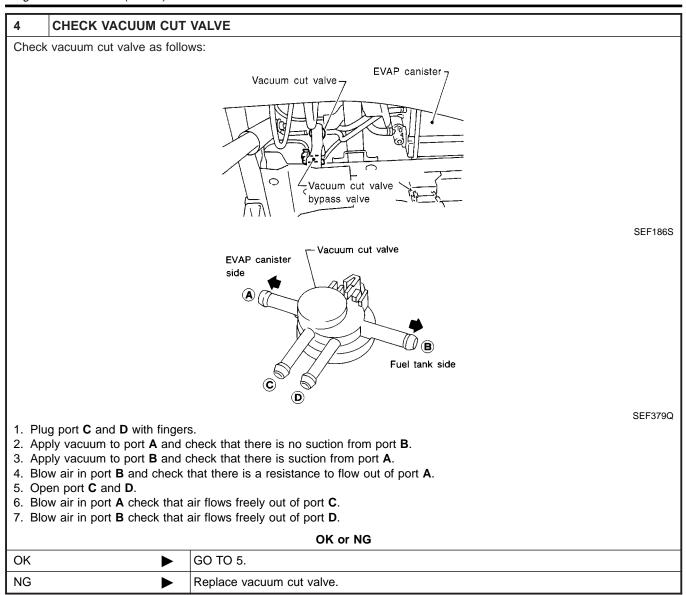
_ _

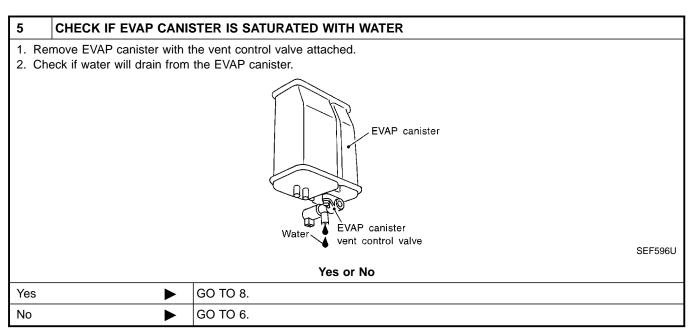

BT

HA


SC

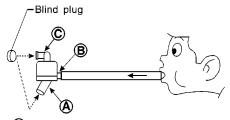
Diagnostic Procedure


1 CHECK RUBBER TUBE 1. Turn ignition switch OFF. 2. Check disconnection or obstruction of rubber tube connected to EVAP canister vent control valve. OK or NG OK (With CONSULT-II) GO TO 2. OK (Without CONSULT- GO TO 3. II) NG Repair or clean rubber tube.



Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)


Diagnostic Procedure (Cont'd)

6	CHECK EVAP CANISTI	:D	1
<u> </u>			1
Weigh	Weigh the EVAP canister with EVAP canister vent control valve attached.		
The w	The weight should be less than 1.8 kg (4.0lb).		GI
		OK or NG	Ma
OK	•	GO TO 8.	
NG	•	GO TO 7.	en a

7 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.
- 3. Check water separator.
- a. Check visually for insect nests in the water separator air inlet.
- b. Check visually for cracks or flaws in the appearance.
- c. Check visually for cracks or flaws in the hose.
- d. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

EC

CL.

MT

AT

TF

PD

SU

ST

BT

HA

SC

- e. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.
- Repair hose or replace EVAP canister or water separator.

8	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR HOSE	
Check	Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
	OK or NG		
OK	OK ▶ GO TO 9.		
NG	>	Install hose property or replace it.	

9	CHECK HARNESS COI	NNECTOR	
2. Ch	 Disconnect EVAP control system pressure sensor harness connector. Check harness connector for water. Water should not exist. 		
	OK or NG		
OK	>	GO TO 10.	
NG	•	Replace EVAP control system pressure sensor.	

Diagnostic Procedure (Cont'd)

10	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR
Perform "DTC Confirmation Procedure", EC-385.		
OK or NG		
OK	>	GO TO 11.
NG	>	Replace EVAP control system pressure sensor and repair or replace harness and connector.

11	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END			

EVAP canister -Vacuum cut valve-Vacuum cut valve bypass valve **SEF186S**

Description COMPONENT DESCRIPTION

NGEC0387

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

MA

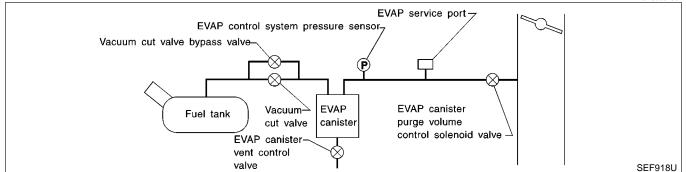
The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

EM

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EC


FE

GL

MT

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NGEC0387S02

AT

TF

PD

CONSULT-II Reference Value in Data Monitor Mode

SW

Specification data are reference values.

TERMI-

NAL

NO.

120

WIRE

COLOR

P/B

NGEC0388

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 43 (ECM ground).

ITEM	CONDITION	DATA (DC Voltage)	BT
Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE	

līJ/A\

SC

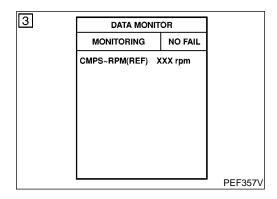
On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0390

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P1490 0801	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	 Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.) Vacuum cut valve bypass valve 	

DTC Confirmation Procedure

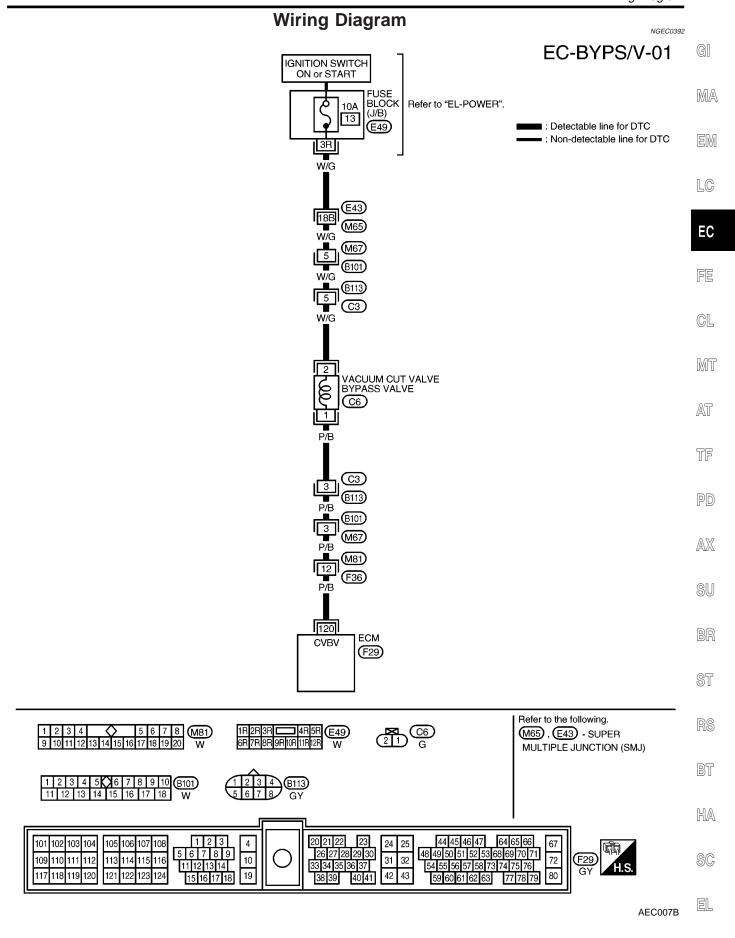

NGEC0391

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.


(P) With CONSULT-II

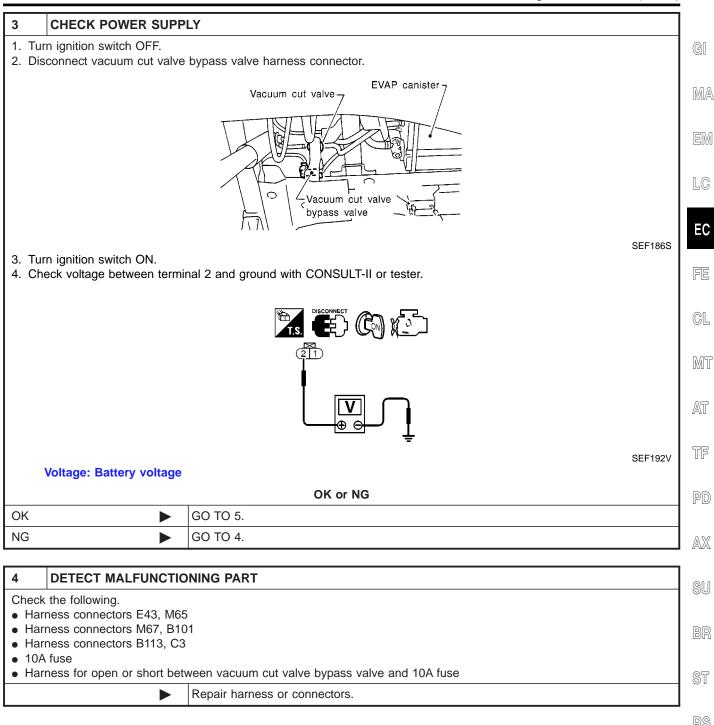
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-526.

With GST

Follow the procedure "With CONSULT-II".

) KA24DEWiring Diagram

Diagnostic Procedure


NG

Diagnostic Procedure NGEC0393 1 INSPECTION START Do you have CONSULT-II? Yes or No Yes GO TO 2. No GO TO 3.

2 CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT 1. Turn ignition switch ON. 2. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode. ACTIVE TEST VC/V BYPASS/V MONITOR CMPS~RPM(REF) XXX rpm FR O2 MNTR A/F ALPHA XXX % THRTL POS SEN xxx v PEF364U 3. Make sure that clicking sound is heard from the vacuum cut valve bypass valve. OK or NG GO TO 7. OK

GO TO 3.

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

BT

HA

SC

Diagnostic Procedure (Cont'd)

CHECK OUTPUT SIGNAL CIRCUIT 5 1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminal 120 and terminal 1. H.S. DISCONNECT CF T.S. DISCONNECT CF O CONNECTOR Ω SEF253V Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG GO TO 7. OK GO TO 6. NG

6	DETECT MALFUNCTIONING PART			
Check the following.				
Har	Harness connectors E43, M65			
Har	Harness connectors M67, B101			
Har	Harness connectors B113, C3			
• Har	 Harness for open or short between vacuum cut valve bypass valve and ECM 			
	•	Repair open circuit or short to ground or short to power in harness or connectors.		

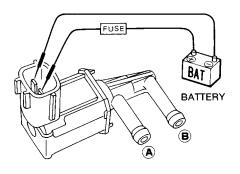

Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

Check air passage continuity.

Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.


ACTIVE TEST			
VC/V BYPASS/V	OFF		
MONITOR			
CMPS~RPM (REF)	XXX rpm		
FR O2 MNTR	RICH		
A/F ALPHA	XXX %		
THRTL POS SEN	xxx v		

Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

SEF171X

(Without CONSULT-II

Check air passage continuity shown in the figure.

SEF351Q

Condition	Air passage continuity between A and B	
12V direct current supply between terminals	Yes	
No supply	No	

MTBL0303

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

OK	or	NG
----	----	----

	DK ▶	GO TO 8.
١	IG 🕨	Replace vacuum cut valve bypass valve.

8	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
	► INSPECTION END			

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

AX

SU

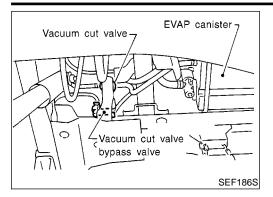
BR

ST

0 1

RS

BT


HA

SC

EL

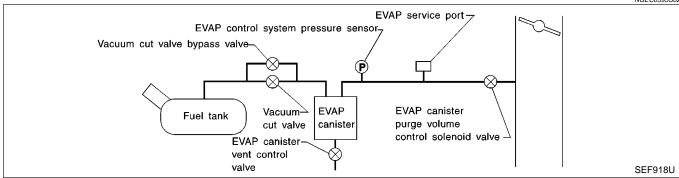
KA24DE

Description

Description **COMPONENT DESCRIPTION**

NGEC0395

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NGEC0395S02

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0396

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

NGEC0397

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0398

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	G[
P1491 0311	Vacuum cut valve bypass valve does not operate properly.	 Vacuum cut valve bypass valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor EVAP canister vent control valve Hose between fuel tank and vacuum cut valve 	MA EM
		clogged • Hose between vacuum cut valve and EVAP canister clogged • EVAP canister • EVAP purge port of fuel tank for clogging	LG

EC

6L

MT

AT

TF

7	VC CUT/V BP/V F		
	OUT OF CONDITION		
	MONITOR		
	CMPS~RPM(POS)	XXX rpm	
	THRTL POS SEN	xxx v	
	B/FUEL SCHDL	XXX msec	
			PEF618W

DTC Confirmation Procedure

NGEC0399

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

PD

TESTING CONDITION:

 Always perform test at a temperature of 5 to 30°C (41 to 86°F).

 This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle. .π**Σ**ΛΣ

expected to be easier, it is unnecessary to lift the vehicle.
Before performing the following procedure, confirm that

.

battery voltage is more than 11V at idle. (F) With CONSULT-II

@T

- 1) Turn ignition switch ON.
- 2) Start engine and warm it up to normal operating temperature.

e. 🔊 🛮

3) Turn ignition switch OFF and wait at least 5 seconds.4) Start engine and let it idle for at least 60 seconds.

RS

5) Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

BT

6) Touch "START".

HA

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

SC

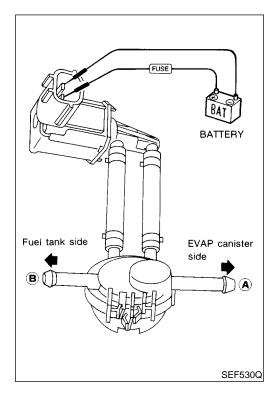
CMPS-RPM (POS)	1,000 - 3,200 rpm
Selector lever	Suitable position
Vehicle speed	36 - 120 km/h (22 - 75 MPH)
B/FUEL SCHDL	Less than 4.5 msec

TESTING

MONITOR

CMPS~RPM(POS) XXX rpm

THRTL POS SEN XXX V

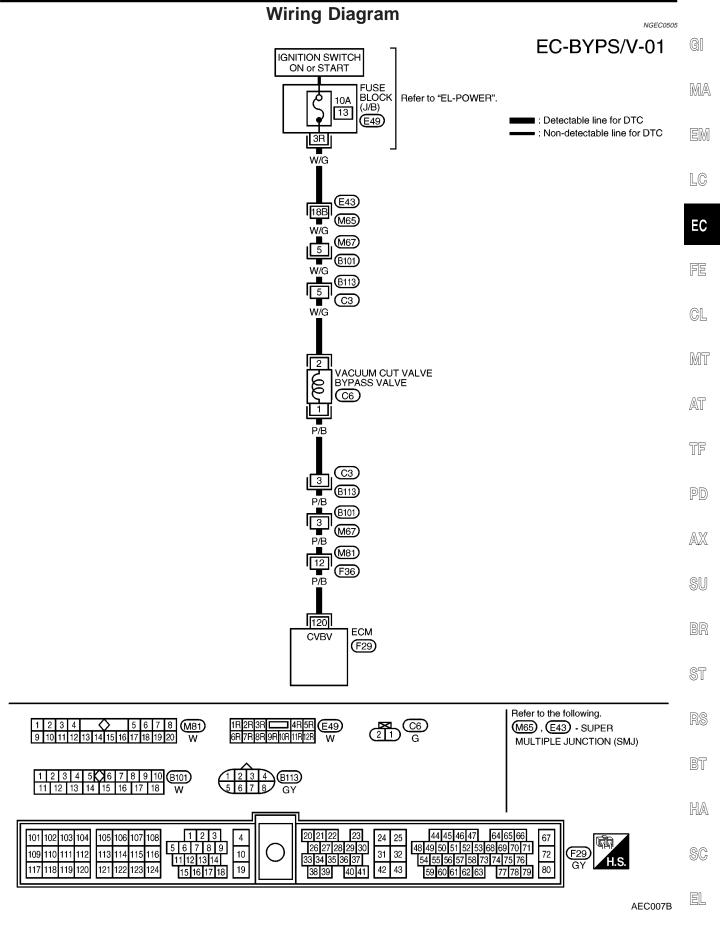

B/FUEL SCHDL XXX msec

PEF619W

VC CUT/V BP/V P1491
COMPLETED
PEF912U

If "TESTING" is not displayed after 5 minutes, retry from step 3.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure".


Overall Function Check

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- Apply vacuum to port **A** and check that there is no suction from port **B**.
- Apply vacuum to port **B** and check that there is suction from port A.
- Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- Supply battery voltage to the terminal.
- Blow air in port **A** and check that air flows freely out of port **B**.
- Blow air in port **B** and check that air flows freely out of port **A**.
- If NG, go to "DIAGNOSTIC PROCEDURE" on EC-534.

Diagnostic Procedure

OK

NG

Diagnostic Procedure

2 **CHECK COMPONENT** (P) With CONSULT-II 1. Turn ignition switch OFF. 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly. 3. Apply vacuum to port A and check that there is no suction from port B. 4. Apply vacuum to port B and check that there is suction from port A. 5. Blow air in port B and check that there is a resistance to flow out of port A. 6. Turn ignition switch ON. 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON". 8. Blow air in port A and check that air flows freely out of port B. 9. Blow air in port B and check that air flows freely out of port A. Fuel tank side ACTIVE TEST VC/V BYPASS/V ON MONITOR CMPS~RPM(REF) XXX rpm FR O2 MNTR-B2 LEAN FR O2 MNTR-B1 LEAN A/F ALPHA-B2 XXX % A/F ALPHA-B1 XXX % THRTL POS SEN XXX V **A** EVAP canister side PEF913U OK or NG

GO TO 4.

GO TO 5.

GI

MA

LC

EC

FE

GL

MT

AT

TF

SEF914U

Diagnostic Procedure (Cont'd)

3 **CHECK COMPONENT** (R) Without CONSULT-II 1. Turn ignition switch OFF. 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly. 3. Apply vacuum to port A and check that there is no suction from port B. 4. Apply vacuum to port B and check that there is suction from port A. 5. Blow air in port B and check that there is a resistance to flow out of port A. 6. Disconnect vacuum cut valve bypass valve harness connector. 7. Supply battery voltage to the terminal. 8. Blow air in port A and check that air flows freely out of port B. 9. Blow air in port B and check that air flows freely out of port A. 🛖 Fuel tank side FUSE EVAP canister side (A)

4	CHECK EVAP F	PURGE	LINE	
 Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection. Check EVAP purge port of fuel tank for clogging. Check EVAP canister. Refer to EC-34. 				
	OK or NG			
OK		>	GO TO 8.	
NG (S	Step 1)	•	Repair it.	
NG (S	Step 2)	•	Clean EVAP purge port.	
NG (S	Step 3)		Replace EVAP canister.	

OK or NG

GO TO 4.

GO TO 5.

OK

NG

5	CHECK BYPASS HOSE			
Check bypass hoses for clogging.				
OK or NG				
OK	>	GO TO 6.		
NG	>	Repair or replace hoses.		

PD

AX

SU

ST

BT

HA

SC

KA24DE

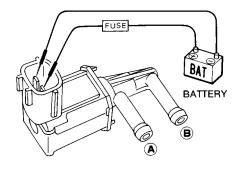
Diagnostic Procedure (Cont'd)

6 CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

Check air passage continuity.
Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR	1	
CMPS~RPM(REF)	XXX rpm	
FR O2 MNTR	RICH	
A/F ALPHA	XXX %	
THRTL POS SEN	xxx v	


PEF395V

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

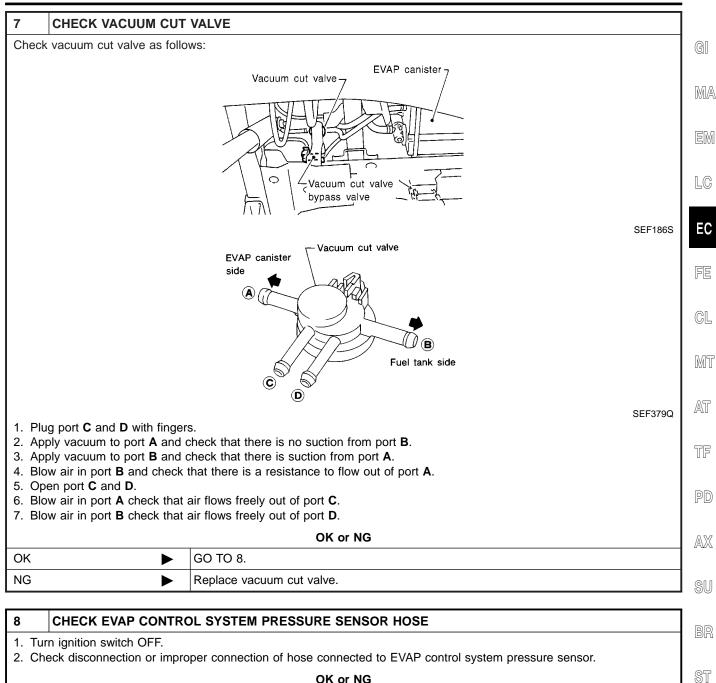
MTBL0304

(R) Without CONSULT-II

Check air passage continuity shown in the figure.

SEF351Q

Condition	Air passage continuity between A and B
12V direct current supply between terminals	Yes
No supply	No


MTBL0303

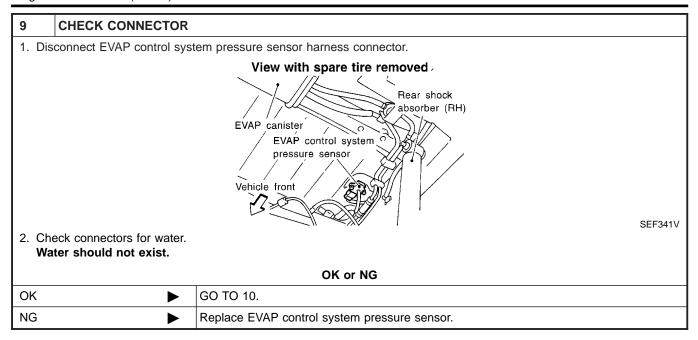
If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

OK	or	NG

OK •	GO TO 7.
NG ▶	Replace vacuum cut valve bypass valve.

Diagnostic Procedure (Cont'd)

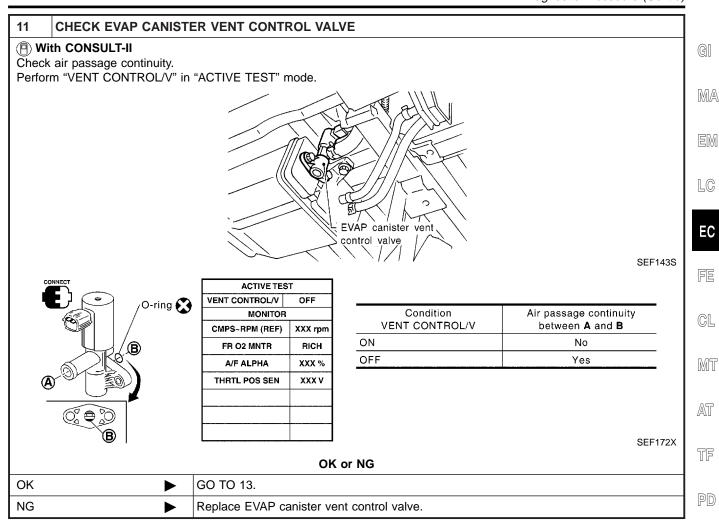
8	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE				
	rn ignition switch OFF.	per connection of hose connected to EVAD control evetem proceurs concer			
2. Cn	eck disconnection of impro	per connection of hose connected to EVAP control system pressure sensor.	Ι.		
		OK or NG	7		
OK	>	GO TO 9.	1		
NG	•	Repair it	7 [


BT

HA

SC

KA24DE


Diagnostic Procedure (Cont'd)

10	CHECK COMPONENT AND CIRCUIT					
(EVAP control system pressure sensor) Refer to "DTC Confirmation Procedure" for DTC P0450, EC-385.						
OK or NG						
OK (V	/ith CONSULT-II)	>	GO TO 11.			
OK (W II)	Vithout CONSULT-	>	GO TO 12.			
NG		>	Replace EVAP control system pressure sensor.			

KA24DE

Diagnostic Procedure (Cont'd)

AX

SU

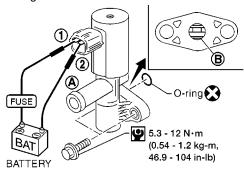
BR

ST

RS

BT

HA


SC

Diagnostic Procedure (Cont'd)

12 CHECK EVAP CANISTER VENT CONTROL VALVE

(X) Without CONSULT-II

Check air passage continuity shown in the figure.

AEC783A

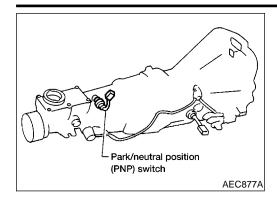
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
No supply	Yes

MTBL0297

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion B is rusted, replace EVAP canister vent control valve. Make sure new O-ring is installed properly.

OK or NG


OK •	GO TO 13.
NG ►	Replace EVAP canister vent control valve.

13	CHECK INTERMITTENT INCIDENT				
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.					
	>	INSPECTION END			

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

Component Description

Component Description

When the gear position is "N", park/neutral position (PNP) switch is "ON".

ECM detects the park/neutral position when continuity with ground exists.

GI

MA

LC

EC

MT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0425

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	a lanition switch: ON	Shift lever: "N"	ON
F/N FO3I 3W	1 2 1 1 1	Except above	OFF

ECM Terminals and Reference Value

NGEC0426

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	AT
22	I /D	PNP switch	[Ignition switch "ON"] ■ Gear position is "Neutral position"	Approximately 0V	TF
	L/B	PINE SWILCH	[Ignition switch "ON"] ■ Except the above gear position	Approximately 5V	PD

On Board Diagnosis Logic

NGEC0427

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1706 1003	The signal of the PNP switch is not changed in the process of engine starting and driving.	 Harness or connectors (The PNP switch circuit is open or shorted.) PNP switch

ST

SU

B.O.

BT

HA

SC

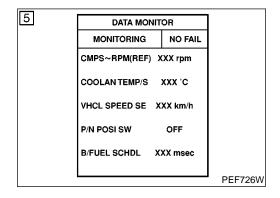
EL

 \mathbb{N}

=NGEC0428

DTC Confirmation Procedure

CAUTION:


Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

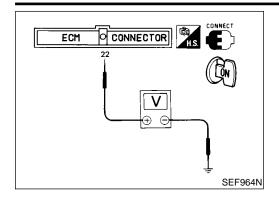
1) Turn ignition switch ON.

 Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known good signal
"N"	ON
Except the above position	OFF

If NG, go to "Diagnostic Procedure", EC-545.

- If OK, go to following step.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.


CMPS-RPM (REF)	1,800 - 3,200 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	1.0 - 5.3 msec
VHCL SPEED SE	70 - 100 km/h (43 - 62 MPH)
Selector lever	Suitable position

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-545.

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

KA24DE

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the park/neutral position switch circuit. During this check, a 1st trip DTC might not be confirmed.

Name of the Name of the Name

- 1) Turn ignition switch ON.
- 2) Check voltage between ECM terminal 22 (PNP switch signal) and body ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known good data)
"N" position	Approx. 0
Except the above position	Approx. 5

3) If NG, go to "Diagnostic Procedure", EC-545.

G[

MA

UVU*U*~\1

EM

LC

EC

FE

CL

MT

AT

TF

PD

SU

BR

ST

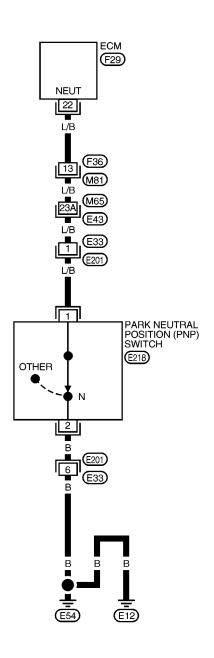
RS

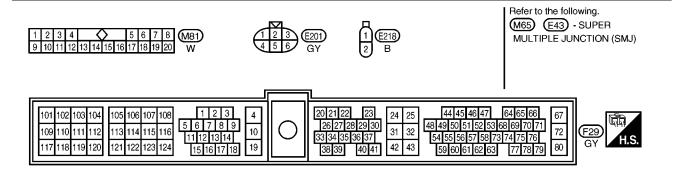
BT

HA

SC

EL

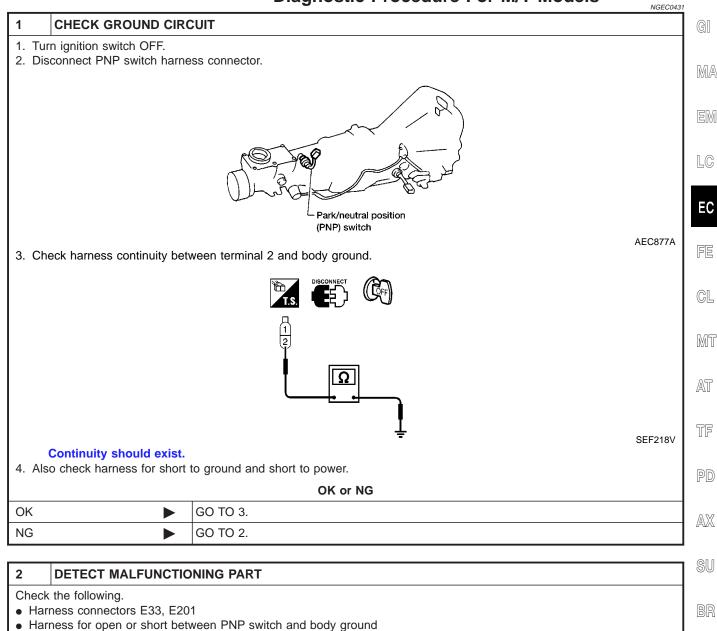



Wiring Diagram

NGEC0430

EC-PNP/SW-01

: Detectable line for DTC
: Non-detectable line for DTC


AEC008B

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

KA24DE

Diagnostic Procedure For M/T Models

Diagnostic Procedure For M/T Models

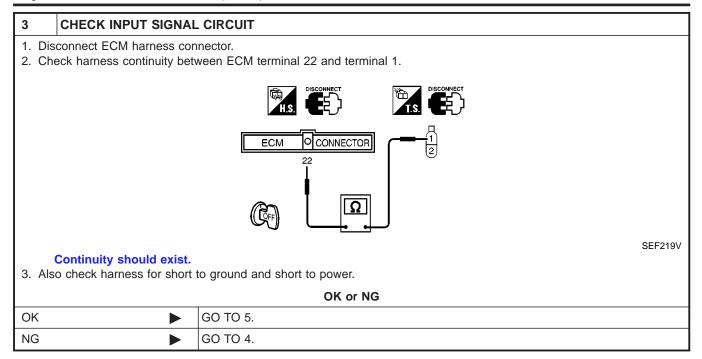
Repair open circuit or short to ground or short to power in harness or connectors.

RS

ST

BT

HA


SC

ΞL

DTC P1706 PARK/NEUTRAL POSITION (PNP) SWITCH

KA24DE

Diagnostic Procedure For M/T Models (Cont'd)

4	DETECT MALFUNCTIONING PART		
Check the following.			
Hari	Harness connectors F36, M81		
Hari	Harness connectors M65, E43		
Hari	Harness connectors E33, E201		
Hari	Harness for open or short between ECM and PNP switch		
		Repair open circuit or short to ground or short to power in harness or connectors.	

5	CHECK PNP SWITCH		
Refer	Refer to MT-8.		
	OK or NG		
OK	>	GO TO 6.	
NG	•	Replace PNP switch.	

6	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

TROUBLE DIAGNOSIS FOR OVERHEAT

On Board Diagnosis Logic

On Board Diagnosis Logic

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

GI

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
OVERHEAT 0208	Engine coolant temperature reaches an abnormally high temperature.	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-551. 	

MA

EC

GL

CAUTION:

When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA section ("Changing Engine Coolant", "ENGINE MAINTENANCE"). Also, replace the engine oil.

MT

- 1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA section ("Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS").
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

AT

TF

PD

1 MAX. OK MIN. SEF621W

Overall Function Check

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(A) With CONSULT-II

Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-548.

2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-548.

HA

SC

EL

NG

Diagnostic Procedure

1 CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:
Higher than the specified pressure may cause radiator damage.

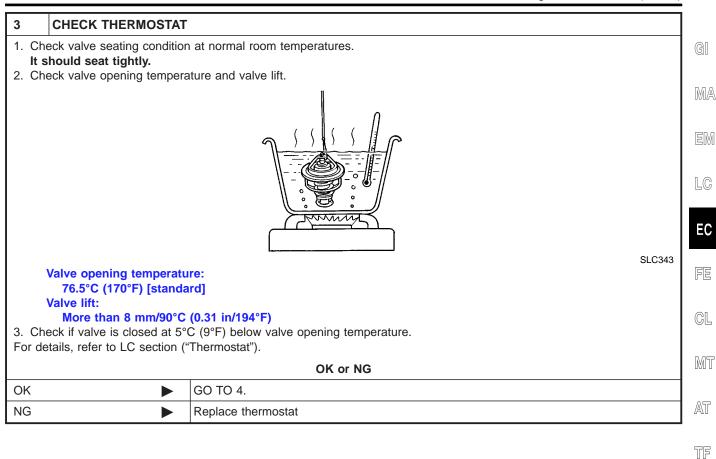
Hose adapter

Fressure should not drop.

OK or NG

GO TO 2.

Check the following for leak.


Hose Radiator Water pump

2	CHECK RADIATOR CAP	
Apply	ly pressure to cap with a tester.	
	_EG17650301	
	(J33984-A)	SLC75

TROUBLE DIAGNOSIS FOR OVERHEAT

KA24DE

Diagnostic Procedure (Cont'd)

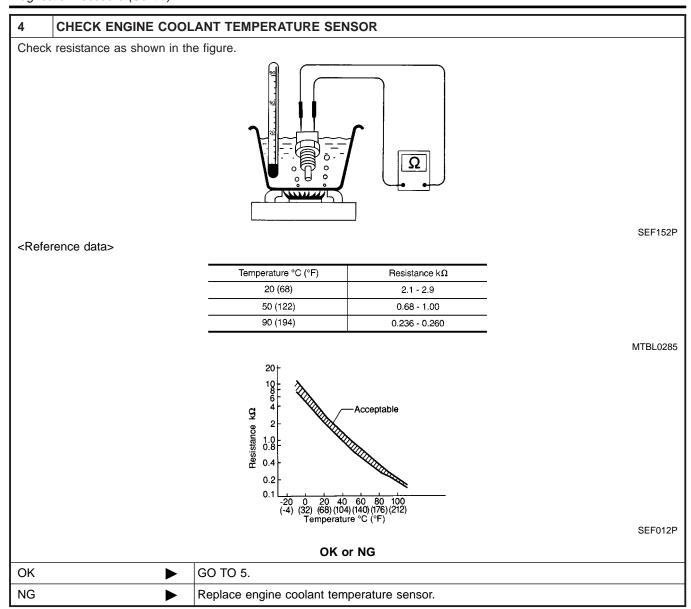
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

5	CHECK MAIN 12 CAUSES		
If the	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-551.		
	► INSPECTION END		

Perform FINAL CHECK by the following procedure after repair is completed.

- 1. Warm up engine. Run the vehicle for at least 20 minutes. Pay attention to engine coolant temperature gauge on the instrument panel. If the reading shows an abnormally high temperature, another part may be malfunctioning.
- 2. Stop vehicle and let engine idle. Check the intake and exhaust systems for leaks by listening for noise or visually inspecting the components.
- 3. Allow engine to cool and visually check for oil and coolant leaks. Then, perform "OVERALL FUNCTION CHECK".

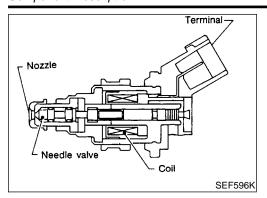
TROUBLE DIAGNOSIS FOR OVERHEAT

Main 11 Causes of Overheating

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS" in MA section.
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in MA section.
	4	Radiator cap	Pressure tester	78 - 98 kPa (0.8 - 1.0 kg/cm², 11 - 14 psi) 59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM" in LC section.
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM" in LC section.
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in LC section.
OFF	7	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON*3	8	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in MA section.
OFF*4	9	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in MA section.
OFF	10	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYLIN- DER HEAD" in EM sec- tion.
	11	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYLIN- DER BLOCK" in EM sec- tion.

^{*1:} Turn the ignition switch ON.

For more information, refer to "OVERHEATING CAUSE ANALYSIS" in LC section.


HA

SC

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102 104	W/B W/R	Injector No. 1	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF011W
109 111	W/L W/PU	Injector No. 3 Injector No. 2 Injector No. 4	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 20 ms SEF012W

INJECTOR

NGEC0434

GI

MA

EM

LC

EC

GL

MT

AT

TF

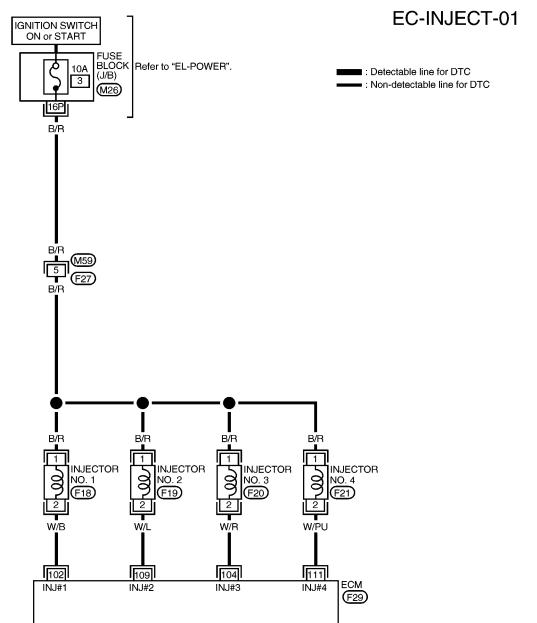
PD

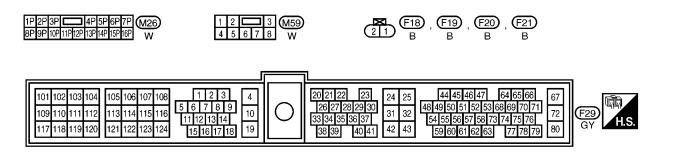
 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS


BT

HA

SC

EL

AEC009B

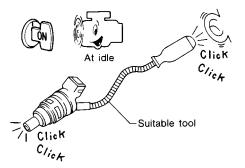
Diagnostic Procedure

NGEC0438

1 CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

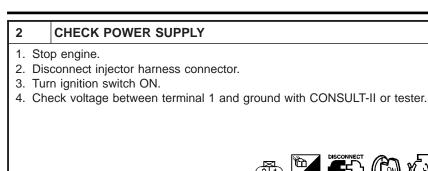

ACTIVE TEST				
SELF-LEARN CONTROL	XXX %			
MONITOR	₹			
CMPS~RPM (REF)	XXX rpm			
COOLAN TEMP/S	XXX .C			
FR 02 SENSOR	XXX V			
A/F ALPHA	XXX %			

3. Make sure that each circuit produces a momentary engine speed drop.

PEF839V

(Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.


MEC703B

Clicking noise should be heard.

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 2.

INJECTOR

IS PROCESSION RECT

SEF271W

MA

LC

EC

FE

MT

AT

TF

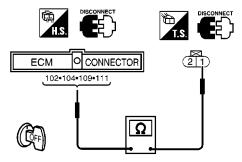
PD

AX

Voltage: Battery voltage

OK or NG

OK		GO TO 4.
NG	•	GO TO 3.


3 DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Harness connectors F27, M59
- 10A fuse
- Harness for open or short between injector and fuse
 - Repair harness or connectors.

4 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between injector harness connector terminal 1 and ECM terminals 102, 104, 109, 111.

SEF223V

Continuity should exist.

4. Also check harness for short to ground and short to power.

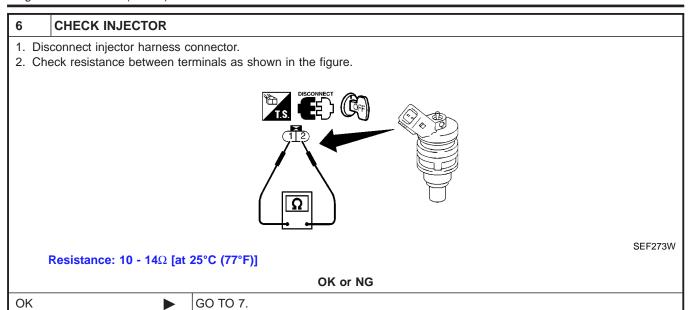
		NIC
Un	Or.	NG

OK •		GO TO 6.			
NG		GO TO 5.			

5 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and injector.

Repair open circuit or short to ground or short to power in harness or connectors.


BT

HA

SC

EL

NG

7	CHECK INTERMITTENT	T INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.				
	•	INSPECTION END		

Replace injector.

START SIGNAL

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0441

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	Ignition switch: ON → START → ON	$OFF \to ON \to OFF$

MA

GI

ECM Terminals and Reference Value Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO. WIRE COLOR ITEM CONDITION DATA (DC Voltage)				[lanition switch ON]	Approximately 0V
	NAL	WIRE	ITEM	CONDITION	DATA (DC Voltage)

EC

NAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch ON]	Approximately 0V
20	L/OR	Start signal	[Ignition switch START]	BATTERY VOLTAGE (11 - 14V)

GL

MT

AT

TF

PD $\mathbb{A}\mathbb{X}$

SU

BR

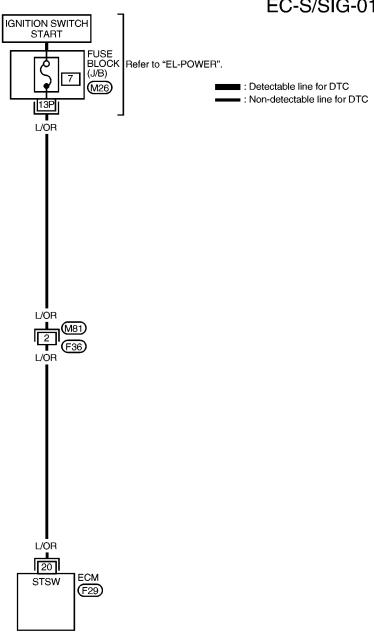
ST

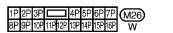
RS

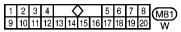
BT

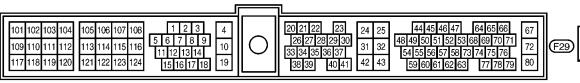
HA

SC


EL




Wiring Diagram


NGEC0440

EC-S/SIG-01

AEC010B

START SIGNAL

Yes or No

Diagnostic Procedure

=NGEC0443 GI

Yes GO TO 2. No GO TO 3.

INSPECTION START

MA

EC

GL

MT

AT

TF

PD

SU

BR

ST

2 **CHECK OVERALL FUNCTION**

(P) With CONSULT-II

1. Turn ignition switch ON.

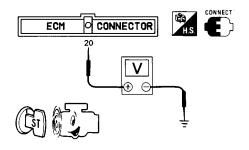
Do you have CONSULT-II?

2. Check "START SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions.

DATA MONITOR				
MONITORING	NO FAIL			
START SIGNAL	OFF			
CLSD TH/P SW	ON			
AIR COND SIG	OFF			
P/N POSI SW	ON			

Condition	"START SIGNAL"
IGN "ON"	OFF
IGN "START"	ON

SEF176X


OK or NG

OK •	INSPECTION END
NG •	GO TO 4.

3 **CHECK OVERALL FUNCTION**

Without CONSULT-II

- 1. Turn ignition switch to START.
- 2. Check voltage between ECM terminal 20 and ground under the following conditions.

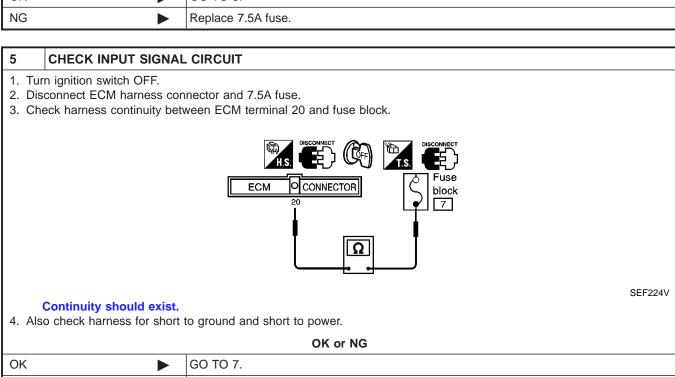
SEF109P

Condition	Voltage	
Ignition switch "START"	Battery voltage	
Except above	Approximately 0V	

MTBL0143

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 4.


EL

HA

SC

NG

4	DETECT MALFUNCTIONING PART			
Check	Check the 7.5A fuse.			
	OK or NG			
OK	OK			
NG	>	Replace 7.5A fuse.		

6	DETECT MALFUNCTIO	NING PART
Check the following. • Harness connectors M81, F36 • Harness for open or short between ECM and fuse block		
OK or NG		
OK	OK ▶ GO TO 7.	
NG Repair open circuit or short to ground or short to power in harness or connectors.		

GO TO 6.

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.		
	► INSPECTION END		

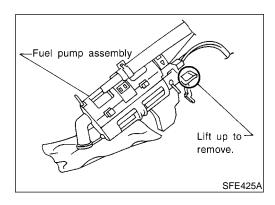
FUEL PUMP

System Description

NGEC0444

Sensor	Input Signal to ECM	ECM func- tion	Actuator	G
Camshaft position sensor	Engine speed	ECM Fuel pump relay		M
Ignition switch	Start signal	ECIVI	Fuel pullip relay	001

MA


The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 180° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to perform. If the 180° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 5 seconds.	
Engine running and cranking	Operates.	
Except as shown above	Stops.	

EC

FE

MT

Component Description

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

TF

AT

PD

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

NGEC0445

MONITOR ITEM	CONDITION	SPECIFICATION	BR
FUEL PUMP RLY	 Ignition switch is turned to ON (Operates for 5 seconds) Engine running and cranking 	ON	ST
	Except as shown above	OFF	0 I

ECM Terminals and Reference Value

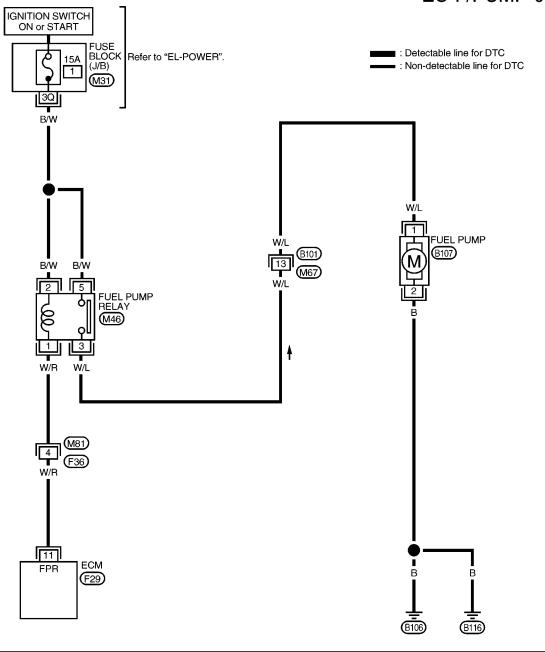
BT

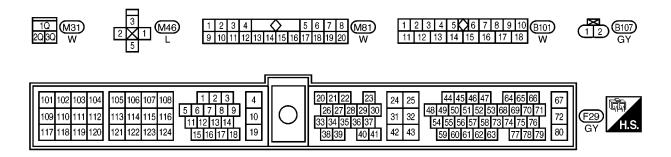
HA

SC

EL

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

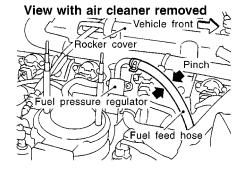

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
44	11 W/R Fuel pump relay		[Engine is running]		0 - 1V
			[Ignition switch "ON"] ■ More than 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	


Wiring Diagram

Wiring Diagram

NGEC0447

EC-F/PUMP-01



Diagnostic Procedure

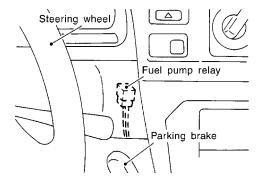
NGEC0448

- 1. Turn ignition switch ON.
- 2. Pinch fuel feed hose with two fingers.

CHECK OVERALL FUNCTION

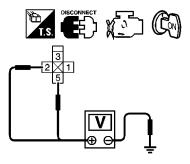
SEF348V

Fuel pressure pulsation should be felt on the fuel feed hose for 5 seconds after ignition switch is turned "ON".


OK or NG

OK	>	INSPECTION END

NG GO TO 2.



- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.

3. Turn ignition switch ON.

4. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK		GO TO 4.
NG	•	GO TO 3.

Gl

MA

LC

EC

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

SEF349V

SEF225V

BR

ST

RS

BT

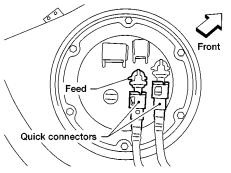
HA

II II*I*∕∕7

SC

EL

3 DETECT MALFUNCTIONING PART


Check the following.

- 15A fuse
- Harness for open or short between fuse and fuel pump relay

Repair harness or connectors.


4 CHECK POWER GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump harness connector.

AFE095

3. Check harness continuity between terminal P2 and body ground, terminal P1 and fuel pump relay connector terminal 3.

SEF226V

Continuity should exist.

4. Also check harness for short to ground and short to power.

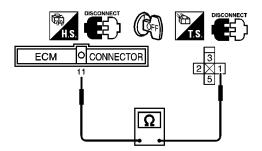
OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

FUEL PUMP

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors B101, M67
- Harness for open or short between fuel pump and body ground
- Harness for open or short between fuel pump and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 11 and fuel pump relay connector terminal 1.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 8.
NG	•	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F36, M81
- Harness for open or short between ECM and fuel pump relay

NG Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

LC

EC

FE

○□

GL

MT

AT

SEF227V

TF

PD

r L

 $\mathbb{A}\mathbb{X}$

SU

ST

D@

BT

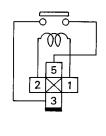
HA

SC

EL

8 **CHECK FUEL PUMP RELAY**

(P) With CONSULT-II


- 1. Reconnect fuel pump relay, fuel pump harness connector and ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Turn fuel pump relay "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

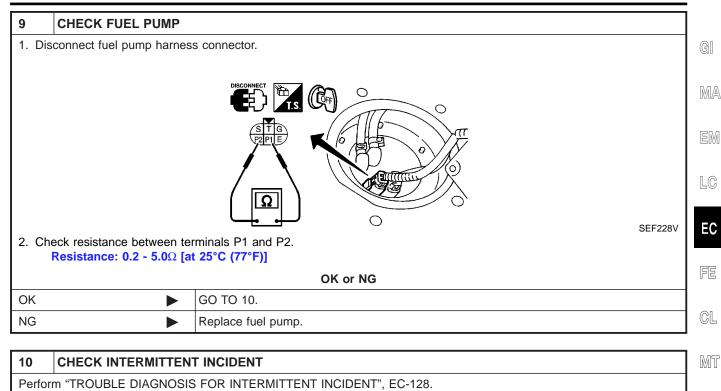
ACTIVE TEST		
ON		
XXX rpm		

SEF385X

Without CONSULT-II
Check continuity between terminals 3 and 5.

SEF511P

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No


MTBL0306

OK or NG

OK ►	GO TO 9.
NG ►	Replace fuel pump relay.

FUEL PUMP

Diagnostic Procedure (Cont'd)

INSPECTION END

TF PD

 $\mathbb{A}\mathbb{X}$

AT

SU

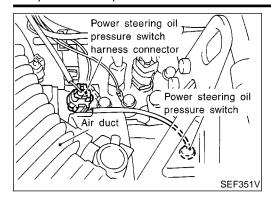
ST

BR

RS

BT

HA


SC

EL

POWER STEERING OIL PRESSURE SWITCH

KA24DE

Component Description

Component Description

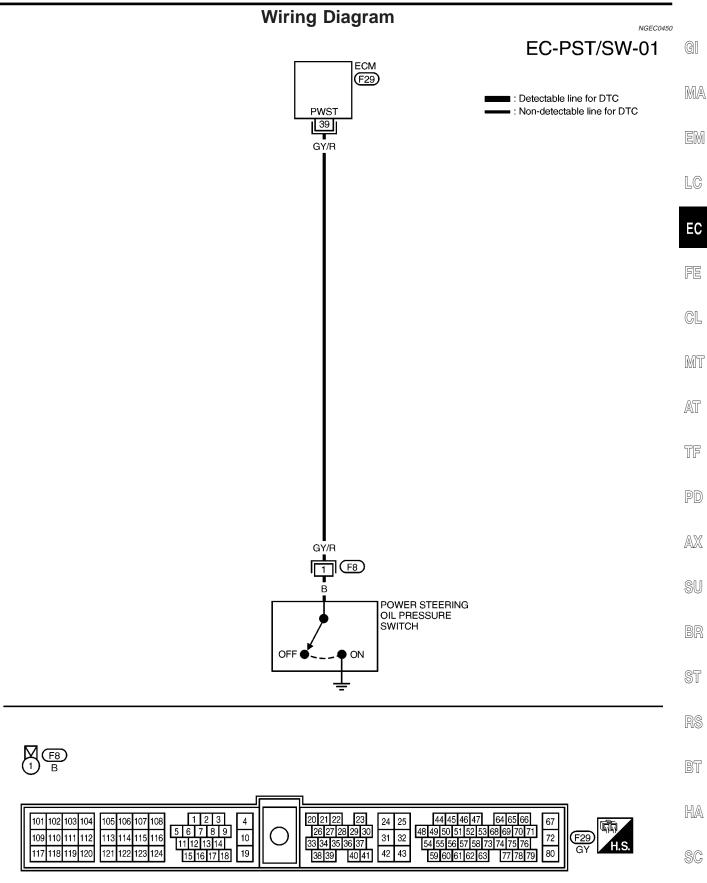
The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

CONSULT-II Reference Value in Data Monitor Mode NGEC0452

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle	Steering wheel in neutral position (forward direction)	OFF
	the engine	The steering wheel is fully turned	ON

ECM Terminals and Reference Value


NGEC0453

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
39	GY/R	Power steering oil pressure	[Engine is running] • Steering wheel is fully turned	Approximately 0V
39	G I/K	switch	[Engine is running] • Steering wheel is not turned	Approximately 5V

POWER STEERING OIL PRESSURE SWITCH

AEC012B

EL

Diagnostic Procedure

2 CHECK OVERALL FUNCTION (A) With CONSULT-II 1. Start engine.

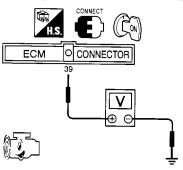
2. Check "PW/ST SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions.

DATA MONITOR		
MONITORING	NO FAIL	
PW/ST SIGNAL	OFF	

Steering is in neutral position	OFF
Steering is turned	ON

SEF177X

OK or NG


OK •	INSPECTION END
NG ►	GO TO 4.

3 CHECK OVERALL FUNCTION

(Without CONSULT-II

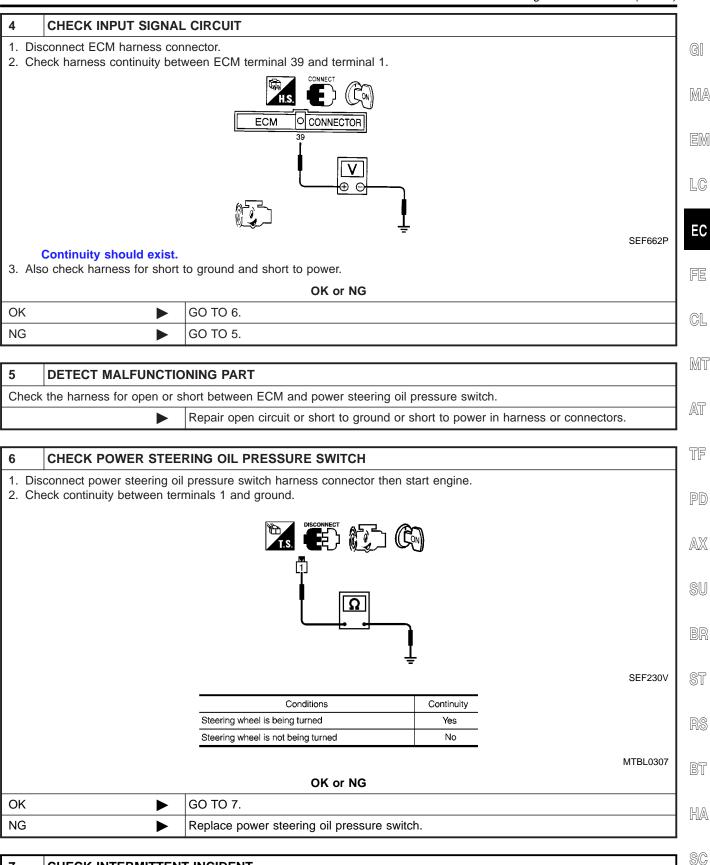
1. Start engine.

2. Check voltage between ECM terminal 39 and ground under the following conditions.

SEF662P

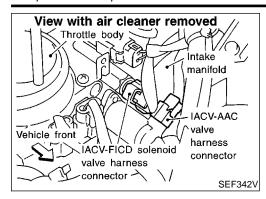
Condition	Voltage
When steering wheel is turned quickly	Approximately 0V
Except above	Approximately 5V

MTBL0142


OK or NG

OK •	INSPECTION END
NG ►	GO TO 4.

POWER STEERING OIL PRESSURE SWITCH


KA24DE

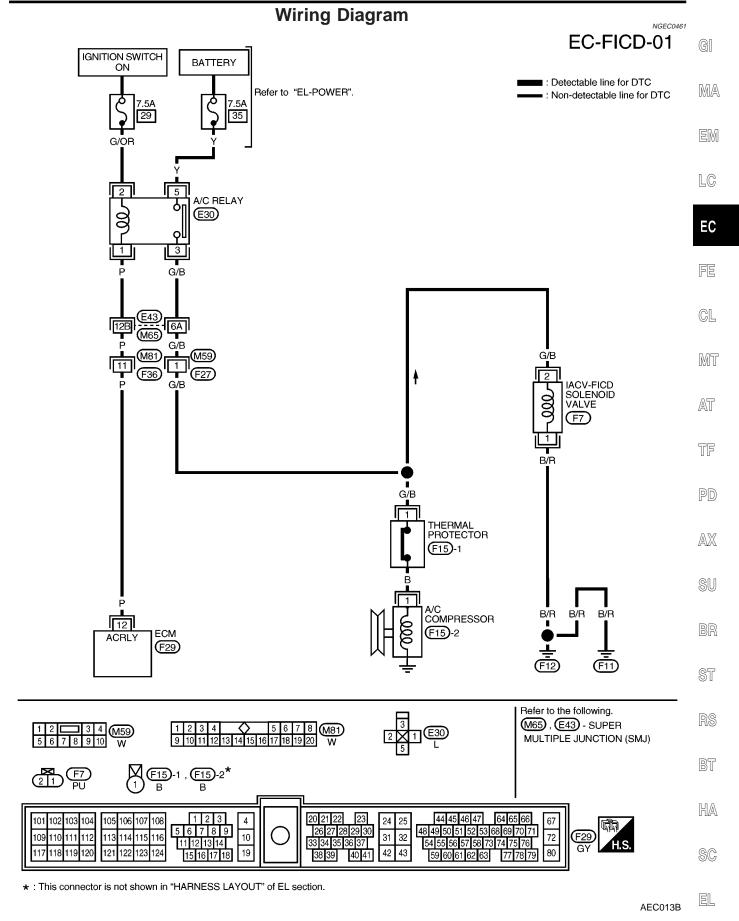
Diagnostic Procedure (Cont'd)

7	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.			
► INSPECTION END			

Component Description

Component Description

When the air conditioner is on, the IAC valve-FICD solenoid valve supplies additional air to adjust to the increased load.


ECM Terminals and Reference Value

NGEC0463

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

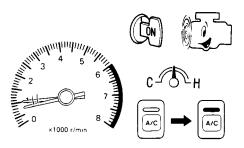
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	Р	Air conditioner relev	[Engine is running] ■ Both A/C switch and blower switch are ON★	Approximately 0V
12	٢	Air conditioner relay	[Engine is running] ■ A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)
21 G/R	G/R	Air conditioner dual-pres-	[Engine is running] ■ Both air conditioner switch and blower switch are ON (Compressor operates)	Approximately 0V
		sure switch	[Engine is running] • Air conditioner switch is OFF	BATTERY VOLTAGE (11 - 14V)

[★] Ambient air temperature above 10°C (50°F) and in any mode except OFF.

Diagnostic Procedure

=NGEC0464

MEF634E


1 CHECK OVERALL FUNCTION

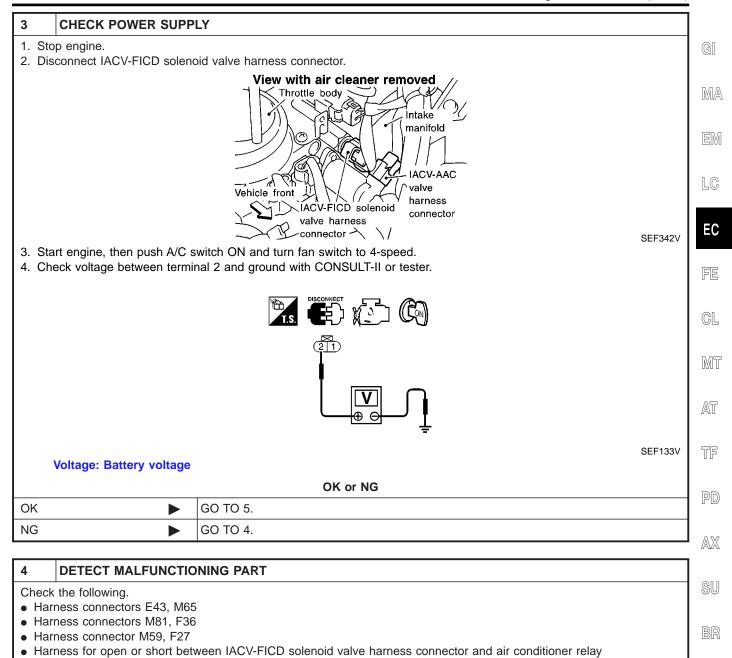
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

800±50 rpm

If NG, adjust idle speed.

- 3. Push air conditioner switch ON and turn fan switch to 4-speed.
- 4. Recheck idle speed.

875 rpm or more


OK or NG

OK •	•	INSPECTION END
NG •	>	GO TO 2.

2	CHECK AIR CONDITIONER FUNCTION		
Check if air conditioner compressor functions normally.			
OK or NG			
OK	•	GO TO 3.	
NG	•	Refer to "Symptom Table" in "TROUBLE DIAGNOSIS", <i>HA-26</i> .	

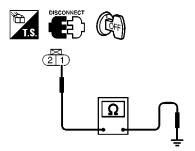
IACV-FICD SOLENOID VALVE

Diagnostic Procedure (Cont'd)

Repair open circuit, short to ground or short to power in harness or connectors.

ST

BT


HA

SC

Diagnostic Procedure (Cont'd)

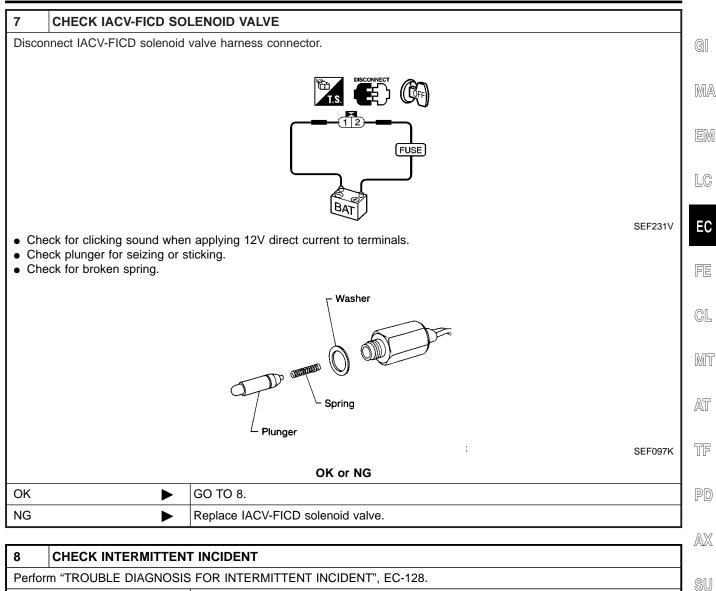
5 CHECK GROUND CIRCUIT

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect ambient air temperature switch harness connector.
- 4. Check harness continuity between solenoid valve terminal 1 and body ground.

SEF134V

Continuity should exist.

5. Also check harness for short to ground and short to power.


\sim 14	7	NG
	Or	

OK		GO TO 7.
NG		GO TO 6.

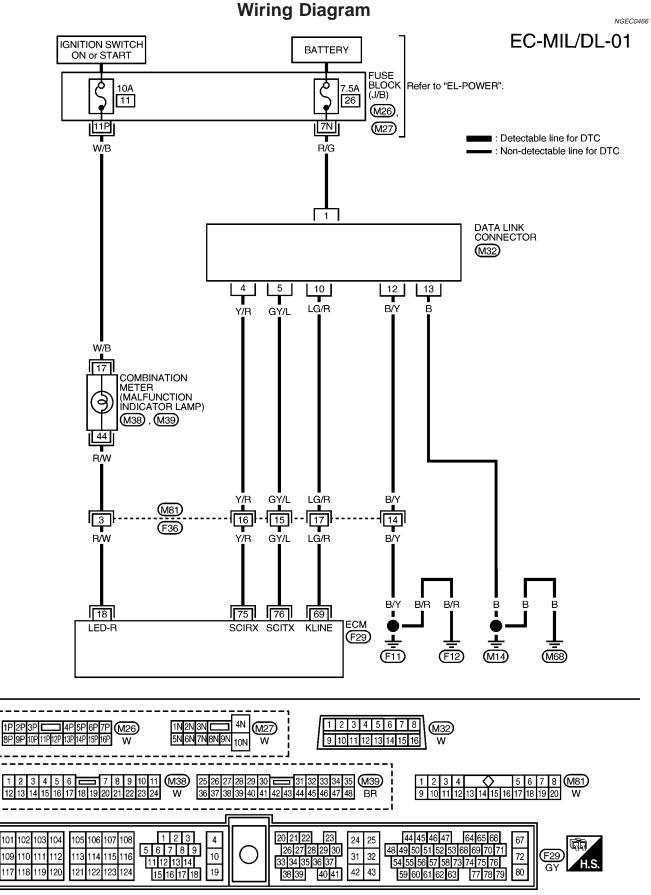
6	DETECT MALFUNCTIONING PART		
Check the harness for open or short between IACV-FICD solenoid valve and body ground.			
Repair open circuit or short to ground or short to power in harness or connectors.			

IACV-FICD SOLENOID VALVE

Diagnostic Procedure (Cont'd)

8	CHECK INTERMITTENT INCIDENT				
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-128.				
	>	INSPECTION END	. SI		

BR


ST

RS

BT

HA

SC

SERVICE DATA AND SPECIFICATIONS (SDS)

KA24DE

Fuel Pressure Regulator

		Fuel Pressure	e Regulator
	Fuel Pressu	ure Regulator	NGEC0467
Fuel pressure at idling	Vacuum hose is connected	Approximately 235 (2.4, 34)	
kPa (kg/cm², psi)	Vacuum hose is disconnected	Approximately 294 (3.0, 43)	
	Idle Speed	and Ignition Timing	NGEC0468
Base idle speed*1 rpm	No-load*4 (in "P" or "N" positi	ion) 750±50	NGECU468
Target idle speed*2 rpm	No-load*4 (in "P" or "N" positi	ion) 800±50	
Air conditioner: ON rpm	In "P" or "N" position	875 or more	
Ignition timing*1	In "P" or "N" position	20°±2° BTDC	
2: Throttle position sensor harness or 3: Throttle position sensor harness or 4: Under the following conditions: Air conditioner switch: OFF Electrical load: OFF (Lights, heat Steering wheel: Kept in straight-a	onnector disconnected ter fan & rear window defogger)	il	
	19		NGEC0469
Primary voltage V		Battery voltage 12	
Primary resistance [at 20°C (68°F)] Ω		Approximately 1.0	
Secondary resistance [at 20°C (68°F)]		Approximately 10	
	Mass Air Fl	low Sensor	NGEC0470
Supply voltage V		Battery voltage (11 - 14)	
Output voltage V		0.9 - 1.8*	
Mass air flow (Using CONSULT-II or GST) g·m/sec		0.9 - 5.8 at idle* 7.5 - 13.2 at 2,500 rpm*	
Engine is warmed up to normal ope	erating temperature and idling und	ler no-load.	
	Engine Cod	olant Temperature Sensor	NGEC0471
Temperature °	°C (°F)	Resistance $k\Omega$	
20 (68)		2.1 - 2.9	
50 (122)		0.68 - 1.00	
90 (194)		0.236 - 0.260	
	EGR Tempe	erature Sensor	
EGR temperature	Voltage	Resistance	NGEC0472
°C (°F)	(V)	(ΜΩ)	
0 (32)	4.81	7.9 - 9.7	
50 (122)	2.82	0.57 - 0.70	
100 (212)	0.8	0.08 - 0.10	
	Fuel Pump		NGEC0473

SERVICE DATA AND SPECIFICATIONS (SDS)

IACV-AAC Valve

	ACV-AAC Valve
Resistance [at 25°C (77°F)] Ω	Approximately 10.0
1	njector
	NGEC04.
Resistance [at 25°C (77°F)] Ω	10 - 14
F	Resistor
Resistance [at 25°C (77°F)] Ω	Approximately 2.2
1	Γhrottle Position Sensor
Throttle valve conditions	Voltage (at normal operating temp., engine off, ignition switch on)
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V
F	Front Heated Oxygen Sensor Heater
Resistance [at 25°C (77°F)] Ω	2.3 - 4.3
	Calculated Load Value
	Calculated load value % (Using CONSULT or GST)
At idle	9.5 - 34.0%
At 2,500 rpm	13.9 - 24.9%
I	ntake Air Temperature Sensor
Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38
F	Rear Heated Oxygen Sensor Heater
Resistance [at 25°C (77°F)] Ω	2.3 - 4.3
	Crankshaft Position Sensor (OBD)
Resistance [at 20°C (68°F)] Ω	512 - 632
F	Fuel Tank Temperature Sensor
Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

TROUBLE DIAGNOSIS — INDEX

VG33E

Alphabetical & P No. Index for DTC

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

NGEC0522

·	D		
Items (CONSULT-II screen terms)	ECM*1	CONSULT-II GST*2	Reference page
Unable to access ECM	_	_	EC-687
ABSL PRES SEN/CIRC	0803	P0105	EC-722
AIR TEMP SEN/CIRC	0401	P0110	EC-734
A/T 1ST GR FNCTN	1103	P0731	AT-120
A/T 2ND GR FNCTN	1104	P0732	AT-126
A/T 3RD GR FNCTN	1105	P0733	AT-132
A/T 4TH GR FNCTN	1106	P0734	AT-138
A/T COMM LINE	_	P0600	EC-1006
A/T DIAG COMM LINE	0804	P1605	EC-1121
A/T TCC S/V FNCTN	1107	P0744	AT-152
ATF TEMP SEN/CIRC	1208	P0710	AT-105
CAM POS SEN/CIRC	0101	P0340	EC-912
CLOSED LOOP-B1	0307	P1148	EC-1026
CLOSED LOOP-B2	0308	P1168	EC-1026
CLOSED TP SW/CIRC	0203	P0510	EC-998
COOLANT T SEN/CIRC*3	0103	P0115	EC-739
*COOLANT T SEN/CIRC	0908	P0125	EC-758
CPS/CIRC (OBD) COG	0905	P1336	EC-1036
CPS/CIRCUIT (OBD)	0802	P0335	EC-906
CYL 1 MISFIRE	0608	P0301	EC-893
CYL 2 MISFIRE	0607	P0302	EC-893
CYL 3 MISFIRE	0606	P0303	EC-893
CYL 4 MISFIRE	0605	P0304	EC-893
CYL 5 MISFIRE	0604	P0305	EC-893
CYL 6 MISFIRE	0603	P0306	EC-893
ECM	0301	P0605	EC-1011
EGR SYSTEM (If so equipped)	0302	P0400	EC-919
EGR SYSTEM (If so equipped)	0514	P1402	EC-1055
EGR TEMP SEN/CIRC (If so equipped)	0305	P1401	EC-1048
EGRC SOLENOID/V (If so equipped)	1005	P1400	EC-1043
EGRC-BPT VALVE (If so equipped)	0306	P0402	EC-933

Harra	DT			
Items (CONSULT-II screen terms)	ECM*1	CONSULT-II GST*2	Reference page	
ENGINE SPEED SIG	1207	P0725	AT-116	
ENG OVER TEMP	0211	P0217	EC-880	
EVAP GROSS LEAK	0715	P0455	EC-974	
EVAP PURG FLOW/MON	0111	P1447	EC-1086	
EVAP SYS PRES SEN	0704	P0450	EC-963	
EVAP SMALL LEAK	0705	P0440	EC-947	
EVAP SMALL LEAK	0213	P1440	EC-1065	
FR O2 SE HEATER-B1	0901	P0135	EC-809	
FR O2 SE HEATER-B2	1001	P0155	EC-809	
FRONT O2 SENSOR-B1	0503	P0130	EC-763	
FRONT O2 SENSOR-B1	0415	P0131	EC-772	
FRONT O2 SENSOR-B1	0414	P0132	EC-780	
FRONT O2 SENSOR-B1	0413	P0133	EC-788	
FRONT O2 SENSOR-B1	0509	P0134	EC-801	
FRONT O2 SENSOR-B2	0303	P0150	EC-763	
FRONT O2 SENSOR-B2	0411	P0151	EC-772	
FRONT O2 SENSOR-B2	0410	P0152	EC-780	
FRONT O2 SENSOR-B2	0409	P0153	EC-788	
FRONT O2 SENSOR-B2	0412	P0154	EC-801	
FUEL SYS LEAN/BK1	0115	P0171	EC-860	
FUEL SYS LEAN/BK2	0210	P0174	EC-860	
FUEL SYS RICH/BK1	0114	P0172	EC-868	
FUEL SYS RICH/BK2	0209	P0175	EC-868	
FUEL TEMP SEN/CIRC	0402	P0180	EC-875	
IACV/AAC VLV/CIRC	0205	P0505	EC-992	
IGN SIGNAL-PRIMARY	0201	P1320	EC-1028	
KNOCK SENSOR	0304	P0325	EC-902	
L/PRES SOL/CIRC	1205	P0745	AT-160	
MAP/BARO SW SOL/CIR	1302	P1105	EC-1013	
MAF SEN/CIRCUIT*3	0102	P0100	EC-713	
MULTI CYL MISFIRE	0701	P0300	EC-893	
NO SELF DIAGNOSTIC FAILURE INDICATED	0505	P0000	_	
NO SELF DIAGNOSTIC FAILURE INDICATED	Flashing*5	No DTC	EC-643	
OVER HEAT	0208	_	EC-1132	
O/R CLTCH S/CIRC	1203	P1760	AT-184	
P-N POS SW/CIRCUIT	1003	P0705	EC-1124	

TROUBLE DIAGNOSIS — INDEX

VG33E

Alphabetical & P No. Index for DTC (Cont'd)

Items	D.	TC*6		_
(CONSULT-II screen terms)	ECM*1	CONSULT-II GST*2	Reference page	
PNP SW/CIRC	1101	P0705	AT-99	
PURG VOLUME CONT/V	1008	P0443	EC-950	_
PURG VOLUME CONT/V	0214	P1444	EC-1067	
REAR O2 SENSOR-B1	0511	P0137	EC-815	_
REAR O2 SENSOR-B1	0510	P0138	EC-825	_
REAR O2 SENSOR-B1	0707	P0139	EC-835	_
REAR O2 SENSOR-B1	0512	P0140	EC-845	
REAR O2 SENSOR-B2	0314	P0157	EC-815	
REAR O2 SENSOR-B2	0313	P0158	EC-825	_
REAR O2 SENSOR-B2	0708	P0159	EC-835	_
REAR O2 SENSOR-B2	0315	P0160	EC-845	_
RR O2 SE HEATER-B1	0902	P0141	EC-853	_
RR O2 SE HEATER-B2	1002	P0161	EC-853	_
SFT SOL A/CIRC*3	1108	P0750	AT-165	_
SFT SOL B/CIRC*3	1201	P0755	AT-170	_
TCC SOLENOID/CIRC	1204	P0740	AT-147	_
TP SEN/CIRC A/T*3	1206	P1705	AT-175	_
TRTL POS SEN/CIRC*3	0403	P0120	EC-744	
TW CATALYST SYS-B1	0702	P0420	EC-941	_
TW CATALYST SYS-B2	0703	P0430	EC-941	
VC CUT/V BYPASS/V	0311	P1491	EC-1112	
VC/V BYPASS/V	0801	P1490	EC-1106	
VEH SPEED SEN/CIRC*4	0104	P0500	EC-988	_
VEH SPD SEN/CIRC*4	1102	P0720	AT-111	_
VENT CONTROL VALVE	0903	P0446	EC-957	_
VENT CONTROL VALVE	0215	P1446	EC-1079	_
VENT CONTROL VALVE	0309	P1448	EC-1098	

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

NOTE:

Regarding D22 models, "-B1" and "BK1" indicate right bank and "-B2" and "BK2" indicate left bank.

RS

HA

SC

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

P NO. INDEX FOR DTC

=NGEC0522S02

DTC*6		No	
CONSULT-II GST*2	ECM*1	Items (CONSULT-II screen terms)	Reference page
_	_	Unable to access ECM	EC-687
No DTC	Flashing*5	NO SELF DIAGNOSTIC FAILURE INDICATED	EC-643
P0000	0505	NO SELF DIAGNOSTIC FAILURE INDICATED	_
P0100	0102	MAF SEN/CIRCUIT*3	EC-713
P0105	0803	ABSL PRES SEN/CIRC	EC-722
P0110	0401	AIR TEMP SEN/CIRC	EC-734
P0115	0103	COOLANT T SEN/CIRC*3	EC-739
P0120	0403	THRTL POS SEN/CIRC*3	EC-744
P0125	0908	*COOLANT T SEN/CIRC	EC-758
P0130	0503	FRONT O2 SENSOR-B1	EC-763
P0131	0415	FRONT O2 SENSOR-B1	EC-772
P0132	0414	FRONT O2 SENSOR-B1	EC-780
P0133	0413	FRONT O2 SENSOR-B1	EC-788
P0134	0509	FRONT O2 SENSOR-B1	EC-801
P0135	0901	FR O2 SE HEATER-B1	EC-809
P0137	0511	REAR O2 SENSOR-B1	EC-815
P0138	0510	REAR O2 SENSOR-B1	EC-825
P0139	0707	REAR O2 SENSOR-B1	EC-835
P0140	0512	REAR O2 SENSOR-B1	EC-845
P0141	0902	RR O2 SE HEATER-B1	EC-853
P0150	0303	FRONT O2 SENSOR-B2	EC-763
P0151	0411	FRONT O2 SENSOR-B2	EC-772
P0152	0410	FRONT O2 SENSOR-B2	EC-780
P0153	0409	FRONT O2 SENSOR-B2	EC-788
P0154	0412	FRONT O2 SENSOR-B2	EC-801
P0155	1001	FR O2 SE HEATER-B2	EC-809
P0157	0314	REAR O2 SENSOR-B2	EC-815
P0158	0313	REAR O2 SENSOR-B2	EC-825
P0159	0708	REAR O2 SENSOR-B2	EC-835
P0160	0315	REAR O2 SENSOR-B2	EC-845
P0161	1002	RR O2 SE HEATER-B2	EC-853
P0171	0115	FUEL SYS LEAN/BK1	EC-860
P0172	0114	FUEL SYS RICH/BK1	EC-868
P0174	0210	FUEL SYS LEAN/BK2	EC-860
P0175	0209	FUEL SYS RICH/BK2	EC-868

TROUBLE DIAGNOSIS — INDEX

VG33E

Alphabetical & P No. Index for DTC (Cont'd)

DTC	*6	14	
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page
P0180	0402	FUEL TEMP SEN/CIRC	EC-875
P0217	0211	ENG OVER TEMP	EC-880
P0300	0701	MULTI CYL MISFIRE	EC-893
P0301	0608	CYL 1 MISFIRE	EC-893
P0302	0607	CYL 2 MISFIRE	EC-893
P0303	0606	CYL 3 MISFIRE	EC-893
P0304	0605	CYL 4 MISFIRE	EC-893
P0305	0604	CYL 5 MISFIRE	EC-893
P0306	0603	CYL 6 MISFIRE	EC-893
P0325	0304	KNOCK SENSOR	EC-902
P0335	0802	CPS/CIRCUIT (OBD)	EC-906
P0340	0101	CAM POS SEN/CIRC	EC-912
P0400	0302	EGR SYSTEM (If so equipped)	EC-919
P0402	0306	EGRC-BPT VALVE (If so equipped)	EC-933
P0420	0702	TW CATALYST SYS-B1	EC-941
P0430	0703	TW CATALYST SYS-B2	EC-941
P0440	0705	EVAP SMALL LEAK	EC-947
P0443	1008	PURG VOLUME CONT/V	EC-950
P0455	0715	EVAP GROSS LEAK	EC-974
P0446	0903	VENT CONTROL VALVE	EC-957
P0450	0704	EVAP SYS PRES SEN	EC-963
P0455	0715	EVAP GROSS LEAK	EC-974
P0500	0104	VEH SPEED SEN/CIRC*4	EC-988
P0505	0205	IACV/AAC VLV/CIRC	EC-992
P0510	0203	CLOSED TP SW/CIRC	EC-998
P0600	_	A/T COMM LINE	EC-1006
P0605	0301	ECM	EC-1011
P0705	1101	PNP SW/CIRC	AT-99
P0710	1208	ATF TEMP SEN/CIRC	AT-105
P0720	1102	VEH SPD SEN/CIRC A/T*4	AT-111
P0725	1207	ENGINE SPEED SIG	AT-116
P0731	1103	A/T 1ST GR FNCTN	AT-120
P0732	1104	A/T 2ND GR FNCTN	AT-126
P0733	1105	A/T 3RD GR FNCTN	AT-132
P0734	1106	A/T 4TH GR FNCTN	AT-138

Alphabetical & P No. Index for DTC (Cont'd)

DTC*6		- Items	
CONSULT-II GST*2	ECM*1	(CONSULT-II screen terms)	Reference page
P0740	1204	TCC SOLENOID/CIRC	AT-147
P0744	1107	A/T TCC S/V FNCTN	AT-152
P0745	1205	L/PRESS SOL/CIRC	AT-160
P0750	1108	SFT SOL A/CIRC*3	AT-165
P0755	1201	SFT SOL B/CIRC*3	AT-170
P1105	1302	MAP/BARO SW SOL/CIR	EC-1013
P1148	0307	CLOSED LOOP-B1	EC-1026
P1168	0308	CLOSED LOOP-B2	EC-1026
P1320	0201	IGN SIGNAL-PRIMARY	EC-1028
P1336	0905	CPS/CIRC (OBD) COG	EC-1036
P1400	1005	EGRC SOLENOID/V (If so equipped)	EC-1043
P1401	0305	EGR TEMP SEN/CIRC (If so equipped)	EC-1048
P1402	0514	EGR SYSTEM (If so equipped)	EC-1055
P1440	0213	EVAP SMALL LEAK	EC-1065
P1444	0214	PURG VOLUME CONT/V	EC-1067
P1446	0215	VENT CONTROL VALVE	EC-1079
P1447	0111	EVAP PURG FLOW/MON	EC-1086
P1448	0309	VENT CONTROL VALVE	EC-1098
P1490	0801	VC/V BYPASS/V	EC-1106
P1491	0311	VC CUT/V BYPASS/V	EC-1112
P1605	0804	A/T DIAG COMM LINE	EC-1121
P1705	1206	TP SEN/CIRC A/T*3	AT-175
P1706	1003	P-N POS SW/CIRCUIT	EC-1124
P1760	1203	O/R CLUTCH SOL/CIRC	AT-184
_	0208	OVER HEAT	EC-1132

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

NOTE

Regarding D22 models, "-B1" and "BK1" indicate right bank and "-B2" and "BK2" indicate left bank.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*5:} While engine is running.

^{*6: 1}st trip DTC No. is the same as DTC No.

PRECAUTIONS

VG33E

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, a crash zone sensor (4WD models), warning lamp, wiring harness and spiral cable.

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses (except "SEAT BELT PRE-TENSIONER") covered with yellow insulation either just before the harness connectors or for the complete harness are related to the SRS.

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL section, "Description", "HARNESS CONNECTOR".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EGR system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

EC

FE

⊘I

MT

AT

Ä11

TF

AX

SU

שש

ST

RS

BT

HA

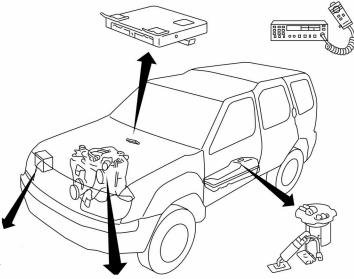
SC

EL

 $\mathbb{D}\mathbb{X}$

Engine Fuel & Emission Control System

NGEC0525


ECM

- Do not disassemble ECM.
- Do not turn on board diagnostic test mode selector forcibly.
- If a battery terminal is disconnected, the memory will return to the ECM value.

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WIRELESS EQUIPMENT

- When installing CB ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far away as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- Be sure to ground the radio to vehicle body.

BATTERY

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.

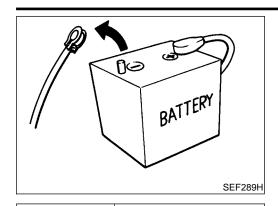
WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

ECM PARTS HANDLING

- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor or crankshaft position sensor (OBD).

FUEL PUMP


- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque. (Refer to MA section.)

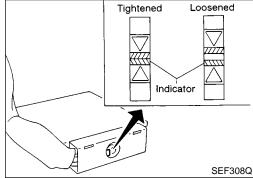
ECM HARNESS HANDLING

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in.) away from adjacent harnesses to prevent an ECM system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

AEC045B

PRECAUTIONS

Precautions


Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

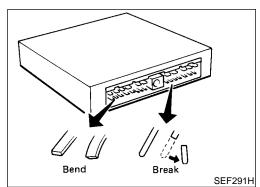
MA

EM

LC

When connecting ECM harness connector, tighten securing bolt until the gap between orange indicators disappears.

: 3 - 5 N·m (0.3 - 0.5 kg-m, 26 - 43 in-lb)



FE

GL

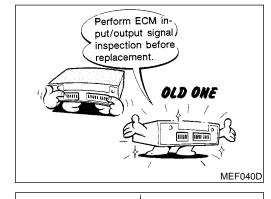
MT

AT

When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.

PD


AX

Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions

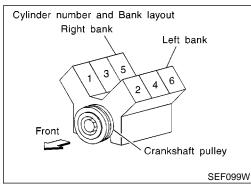
ST

SERVICE

After performing each TROUBLE DIAGNOSIS, perform "DTC Confirmation Procedure" or "Overall Function Check".

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

SC



SEF217U

properly. Refer to EC-697.

 When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.

Regarding model D22, "-B1" indicates the right bank and "-B2" indicates the left bank as shown in the figure.

Wiring Diagrams and Trouble Diagnosis

NGEC0527

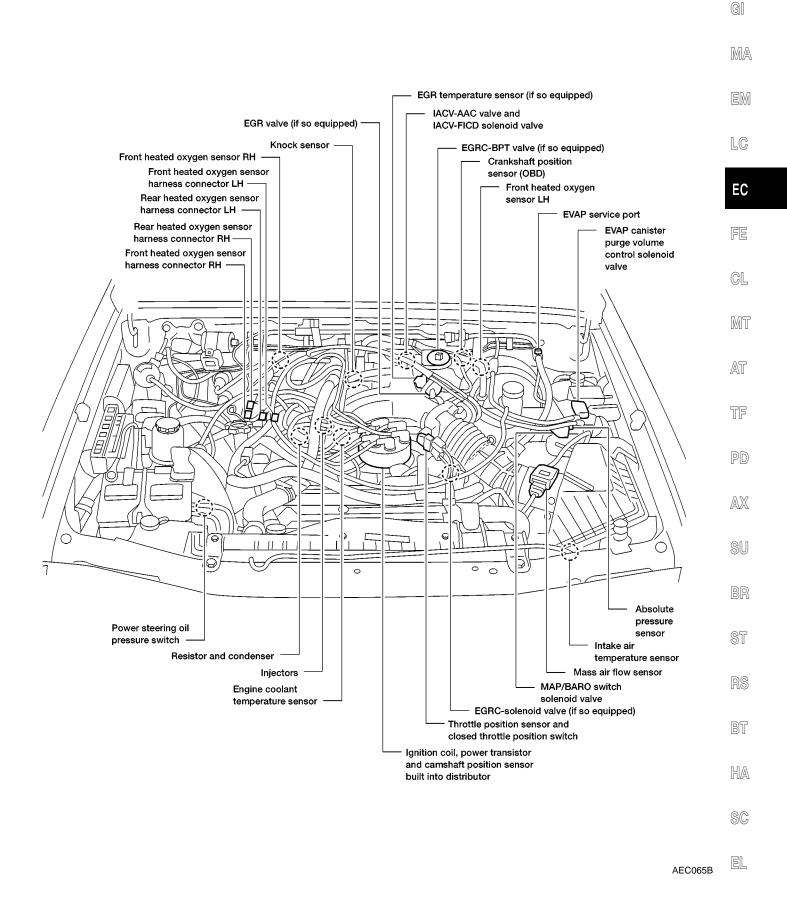
When you read Wiring diagrams, refer to the followings:

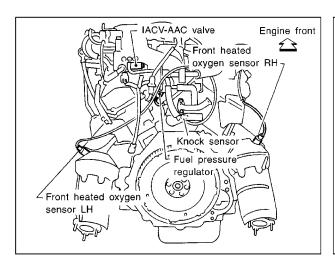
- "HOW TO READ WIRING DIAGRAMS" in GI section
- "POWER SUPPLY ROUTING" for power distribution circuit in EL section

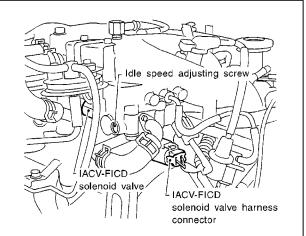
When you perform trouble diagnosis, refer to the followings:

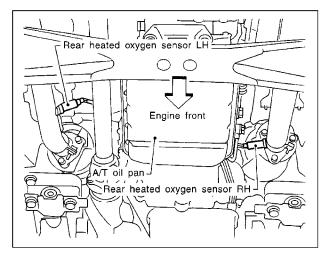
- "HOW TO FOLLOW TEST GROUP IN TROUBLE DIAGNOSIS" in GI section
- "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT" in GI section

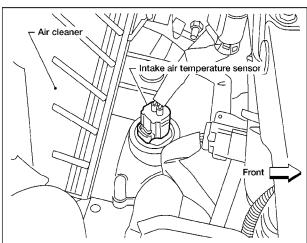
PREPARATION

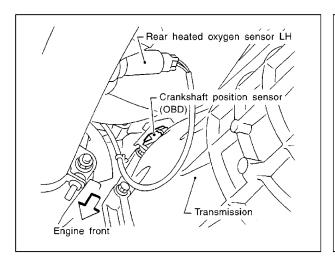

he actual shapes of Ken	Special Service t-Moore tools may differ from those of special service	NGEC052
Tool number (Kent-Moore No.) Tool name	Description	
KV10117100 (J36471-A) Heated oxygen sensor wrench		Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut
KV10114400 (J-38365) Heated oxygen sensor wrench	NT379	Loosening or tightening rear heated oxygen sensor a: 22 mm (0.87 in)
	NT636	
	Commercial S	ervice Tools
Tool name (Kent-Moore No.)	Description	
Leak detector (J41416)		Locating the EVAP leak
EVAP service port adapter (J41413-OBD)	NT703	Applying positive pressure through EVAP service port
	NT704	
Hose clipper		Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [EVAP control system (small leak-positive pressure)]
	Approx. 20 mm (0.79 in)	

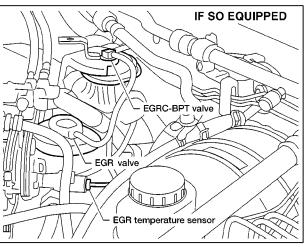

Tool name (Kent-Moore No.)	Description	
Fuel filler cap adapter		Checking fuel tank vacuum relief valve opening pressure
	NT653	
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)	Mating surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown in "Commercial Service Tools". a: J-43897-18 18 mm diameter, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter, for Titania Oxygen Sensor
Anti-seize lubricant (Permatex [®] 133AR or equivalent meeting MIL specification MIL-A-907)	AEM488	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.
	AEM489	

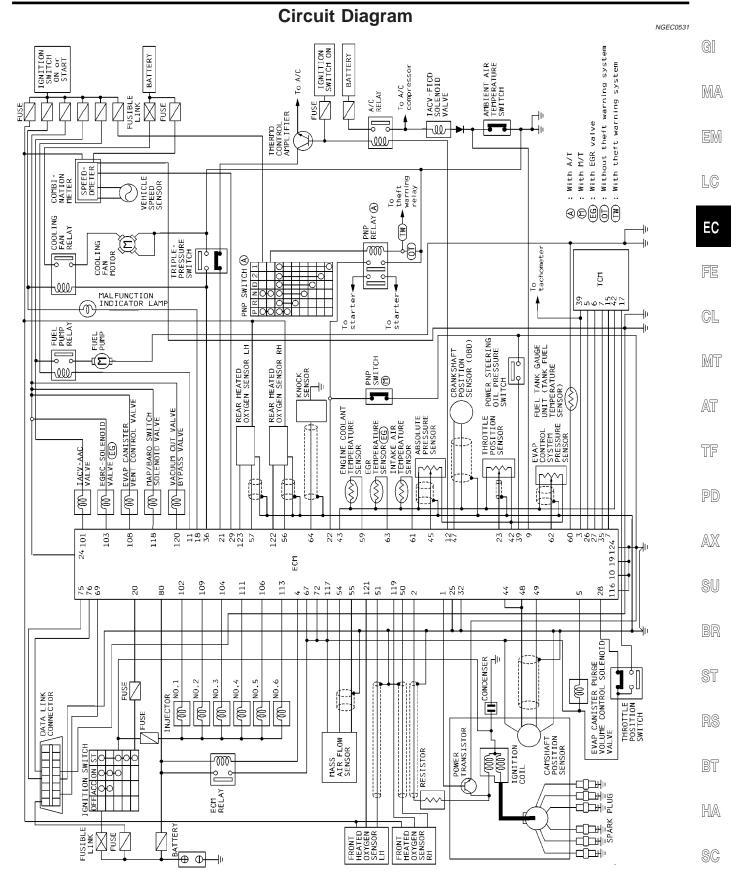

Engine Control Component Parts Location


Engine Control Component Parts Location


NGEC0530







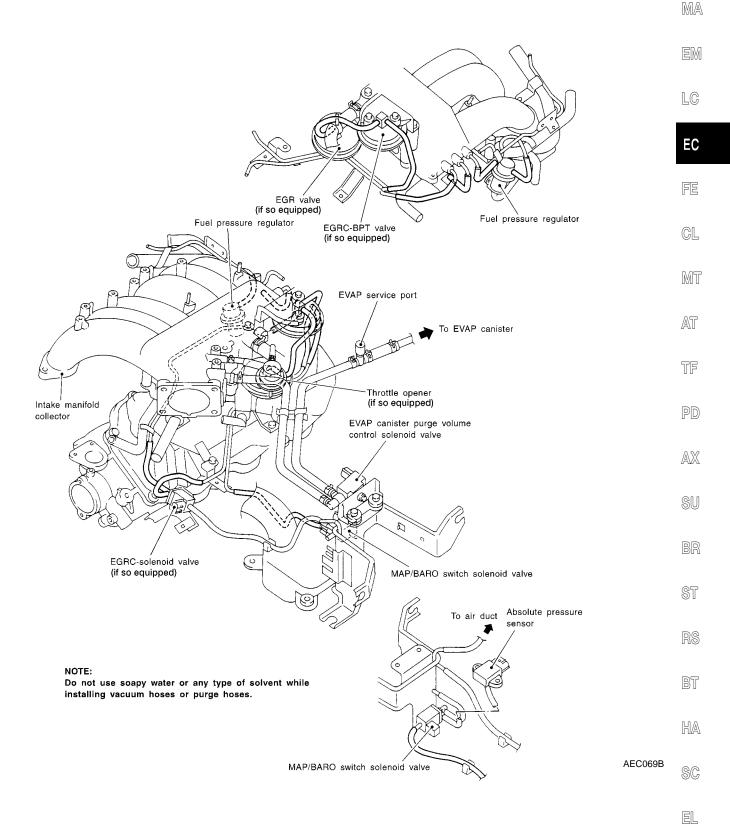
AEC066B

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

AEC067B

AEC068B

System Diagram NGEC0532 position (PNP) switch 4 EVAP control system Park/neutral EVAP canister vent control valve pressure sensor Throttle position sensor & closed throttle position switch $_{\it J}$ Malfunction indicator lamp Ambient air temperature Cooling fan Vehicle MAP/BARO switch sbeed sensor **(** temperature Absolute pressure sensor switch oil pressure switch Intake air solenoid valve Fuel pump Fuel tank temperature sensor sensor Power steering Air conditioner volume control solenoid valve control module) (Transmission switch Air cleaner 3 EVAP canister purge valve bypass valve 2 Vacuum cut valve TCM Vacuum cut Throttle opener (if so equipped) † † Mass air flow sensor tank Fuel Fuel pressure regulator Fast idle cam EVAP canister Battery ECM ❷₿ Front heated oxygen sensor valve (if so equipped) Rear heated oxygen sensor ÉGRC-solenoid Injector (P) (For California models) ூ Three way catalyst Warm-up three way catalyst Crankshaft position sensor (OBD) IACV-AAC valve IACV-FICD solenoid valve <u>ල</u> Engine coolant temperature sensor Knock sensor Three way catalyst (For California models) Front heated oxygen sensor Rear heated oxygen sensor EGR temperature sensor camshaft position sensor built into distributor three way catalyst PCV valve-EGR valve (if so equipped) Spark plug : Exhaust air flow Ignition switch ☐: Intake air flow EGRC-BPT valve (if so equipped) Ignition coil, power (if so equipped) Muffler Warm-up PS C transistor and


Vacuum Hose Drawing

Vacuum Hose Drawing

Refer to "System Diagram", EC-596 for Vacuum Control System.

NGEC0533

GI

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

VG33E

System Chart

	System Chart	NGEC0534
Input (Sensor)	ECM Function	Output (Actuator)
Camshaft position sensor	Fuel injection & mixture ratio control	Injectors
Mass air flow sensorEngine coolant temperature sensor	Distributor ignition system	Power transistor
Front heated oxygen sensorIgnition switchThrottle position sensor	Idle air control system	IACV-AAC valve and IACV-FICD solenoid valve
 Closed throttle position switch *4 	Fuel pump control	Fuel pump relay
Park/neutral position (PNP) switchAir conditioner switchKnock sensor	Front heated oxygen sensor monitor & on board diagnostic system	MIL (On the instrument panel)
 EGR temperature sensor *1 (If so equipped) Intake air temperature sensor 	EGR control (If so equipped)	EGRC-solenoid valve (If so equipped)
 Absolute pressure sensor EVAP control system pressure sensor *1 	Front heated oxygen sensor heater control	Front heated oxygen sensor heater
Battery voltagePower steering oil pressure switchVehicle speed sensor	Rear heated oxygen sensor heater control	Rear heated oxygen sensor heater
 Fuel tank temperature sensor *1 Crankshaft position sensor (OBD) *1 Rear heated oxygen sensor *3 	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve
 TCM (Transmission control module) *2 Ambient air temperature switch 	Air conditioning cut control	Air conditioner relay
Ambient all temperature switch	Cooling fan control	Cooling fan relays
	ON BOARD DIAGNOSIS for EVAP system	EVAP canister vent control valve Vacuum cut valve bypass valve MAP/BARO switch solenoid valve

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} The DTC related to A/T will be sent to ECM.

^{*3:} This sensor is not used to control the engine system under normal conditions.

^{*4:} This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

VG33E

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION Input/Output Signal Chart

NGEC0535

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed and piston position			
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature	Fuel injection & mixture ratio		LC
Front heated oxygen sensor	Density of oxygen in exhaust gas			LV
Throttle position sensor	Throttle position Throttle valve idle position			
Park/neutral position (PNP) switch	Gear position		mix- tio Injectors	
Vehicle speed sensor	Vehicle speed			FE
Ignition switch	Start signal			CL
Air conditioner switch	Air conditioner operation			
Knock sensor	Engine knocking condition			MT
Battery	Battery voltage			
Absolute pressure sensor	Manifold absolute pressure Ambient air barometric pressure			AT
Power steering oil pressure switch	Power steering operation			
Rear heated oxygen sensor*	Density of oxygen in exhaust gas			

^{*} Under normal conditions, this sensor is not for engine control operation.

Basic Multiport Fuel Injection System

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

SU

PD

Various Fuel Injection Increase/Decrease Compensation

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

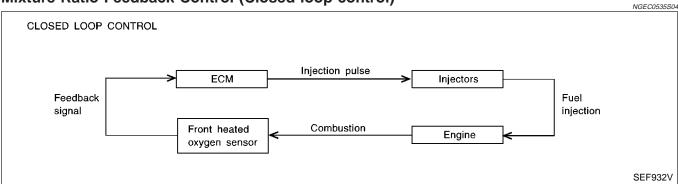
- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from "N" to "D"
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

ST

BT


HA

SC

VG33E

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The warm-up three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a front heated oxygen sensor in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the front heated oxygen sensor, refer to EC-763. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Rear heated oxygen sensor is located downstream of the warm-up three way catalyst. Even if the switching characteristics of the front heated oxygen sensor shift, the air-fuel ratio is controlled to stoichiometric by the signal from the rear heated oxygen sensor.

Open Loop Control

NGEC0535St

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

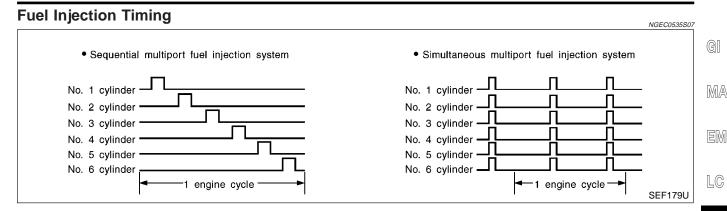
- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of front heated oxygen sensor or its circuit
- Insufficient activation of front heated oxygen sensor at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

Mixture Ratio Self-learning Control

NGEC0535S0

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the front heated oxygen sensor. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.


"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the front heated oxygen sensor indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

VG33E

Multiport Fuel Injection (MFI) System (Cont'd)

Two types of systems are used.

Sequential Multiport Fuel Injection System

GEC0535S0701

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

BT

HA

SC

EL

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

GEC0535S0702

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

NGEC0535S08

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

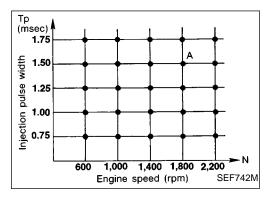
Distributor Ignition (DI) System

DESCRIPTION Input/Output Signal Chart

NGEC0536

NGEC0536S0

				NGEC0536S01
Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Camshaft position sensor	Engine speed and piston position		n- Power transistor	
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position Throttle valve idle position	Ignition		
Vehicle speed sensor	Vehicle speed	timing con-		
Ignition switch	Start signal			
Knock sensor	Engine knocking			
Park/neutral position (PNP) switch	Gear position			
Battery	Battery voltage			


D)X

Distributor Ignition (DI) System (Cont'd)

VG33E

System Description

NGEC0536S02

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NGEC0537

NGEC0537S01

Sensor	Input Signal to ECM	ECM function	Actuator	
Air conditioner switch	Air conditioner "ON" signal			
Throttle position sensor	Throttle valve opening angle			
Camshaft position sensor	Engine speed			
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner cut control	Air conditioner relay	
Ignition switch	Start signal			
Vehicle speed sensor	Vehicle speed			
Power steering oil pressure switch	Power steering operation			

System Description

NGEC0537S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned OFF.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.

Fuel Cut Control (at no load & high engine speed)

Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

NGEC0538

				NGEC0538S01	MA
Sensor	Input Signal to ECM	ECM func- tion	Actuator		
Vehicle speed sensor	Vehicle speed	Fuel cut control			EM
Park/neutral position (PNP) switch	Neutral position		Injectors		
Throttle position sensor	Throttle position				LC
Engine coolant temperature sensor	Engine coolant temperature				F 0
Camshaft position sensor	Engine speed				EC

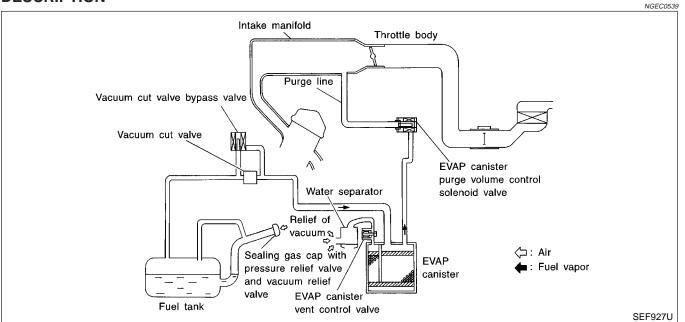
GI

If the engine speed is above 2,500 rpm with no load (for example, in neutral and engine speed over 2,500 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 2,000 rpm, then fuel cut is cancelled.

FE

GL

MT


AT

TF

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-599.

Evaporative Emission System

DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

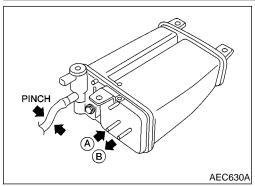
The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

PD

AX

ST

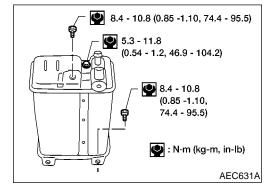

BT

HA

SC

VG33E

Evaporative Emission System (Cont'd)

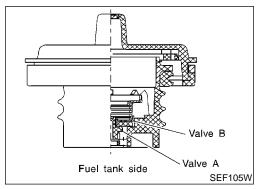

INSPECTION **EVAP Canister**

NGEC0540

NGEC0540S01

Check EVAP canister as follows:

- Pinch the fresh air hose.
- Blow air into port **A** and check that it flows freely out of port **B**.



Tightening Torque

NGEC0540S02

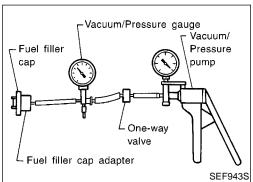
Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

Fuel Tank Vacuum Relief Valve (Built into fuel filler cap)

- Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure:


15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi) Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come ON

Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-1112.

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

Refer to EC-950.


NGEC0540S05

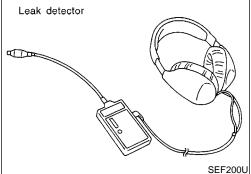
Tank Fuel Temperature Sensor

Refer to EC-875.

NGEC0540S06

Evaporative Emission System (Cont'd)

Evap Service Port


Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

GI

MA

LC

EC

How to Detect Fuel Vapor Leakage

Never use compressed air or a high pressure pump. Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure

FE

NOTE:

CAUTION:

Do not start engine.

in EVAP system.

Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

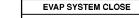
MT

(P) With CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- Also attach the pressure pump and hose to the EVAP service port adapter.
- Turn ignition switch ON.
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- Touch "START". A bar graph (Pressure indicating display) will 5) appear on the screen.
- Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- Remove EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-607.

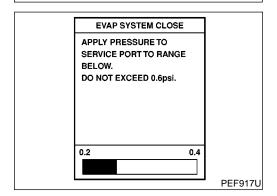
TF

AX

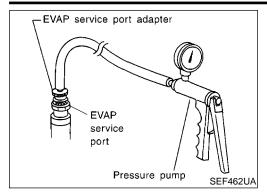

ST

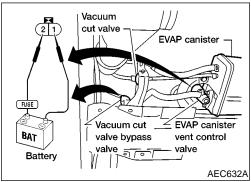
BT

HA


SC

EL

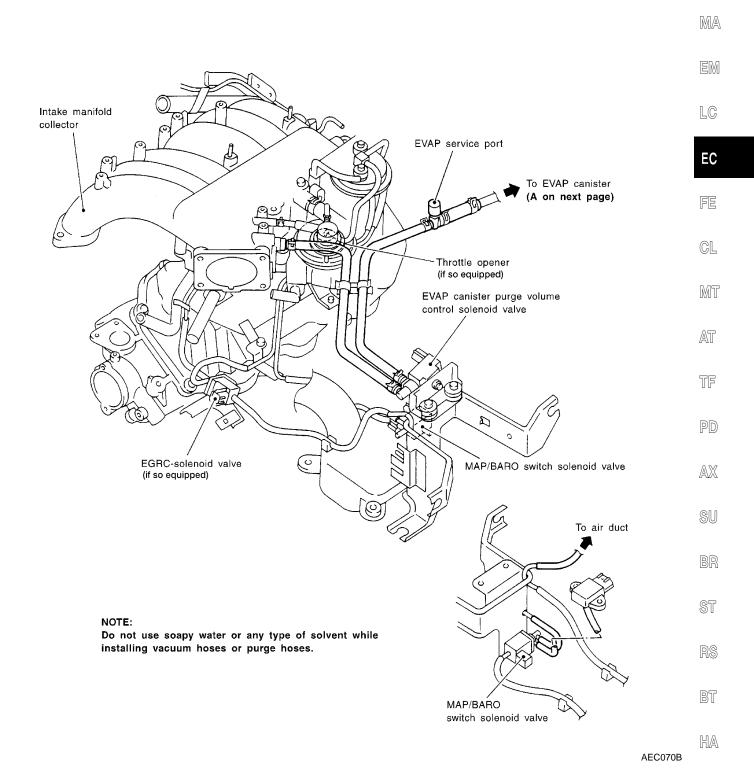

APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. **NEVER USE COMPRESSED** AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.


PEF838U

VG33E

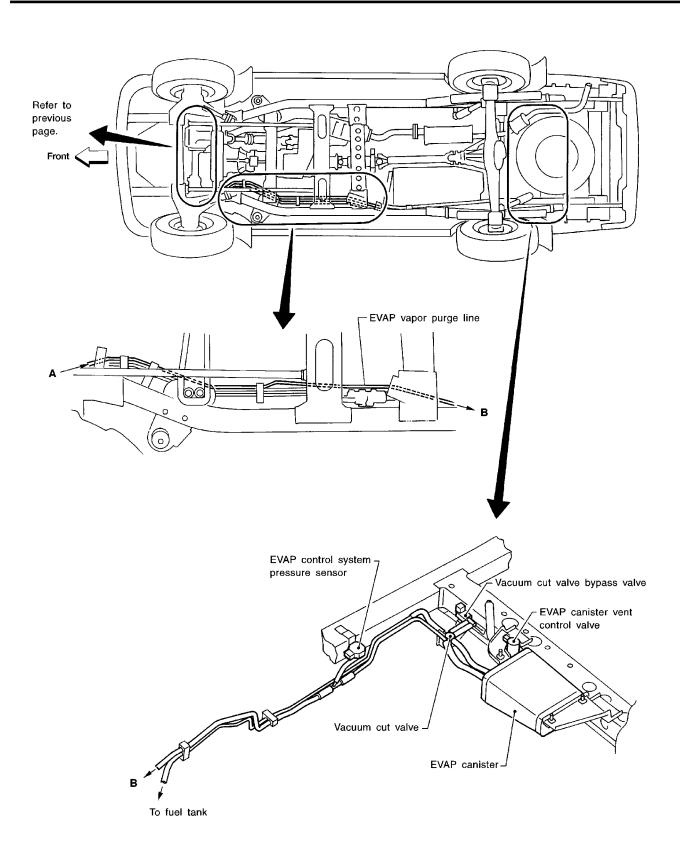
Evaporative Emission System (Cont'd)

Without CONSULT-II


- Attach the EVAP service port adapter securely to the EVAP service port.
- Also attach the pressure pump with pressure gauge to the EVAP service port adapter.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- 4) To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 2.76 kPa (0.014 0.028 kg/cm², 0.2 0.4 psi).
- 5) Remove EVAP service port adapter and hose with pressure pump.
- 6) Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-607.

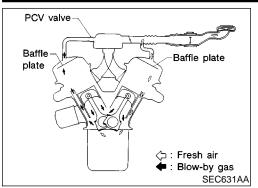
Evaporative Emission System (Cont'd)

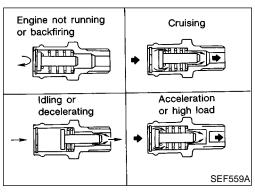
EVAPORATIVE EMISSION LINE DRAWING

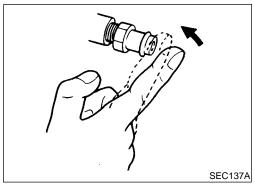

NGEC0541

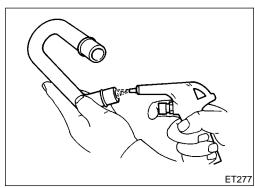
GI

SC


VG33E




AEC886A


VG33E

Positive Crankcase Ventilation

Positive Crankcase Ventilation DESCRIPTION

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.

INSPECTION

PCV (Positive Crankcase Ventilation) Valve

With engine running at idle, remove PCV valve ventilation hose from PCV valve; if the valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.

PCV Valve Ventilation Hose

1. Check hoses and hose connections for leaks.

2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

con-

MA

GI

ren a

LC

EC

GL

MT

AT TF

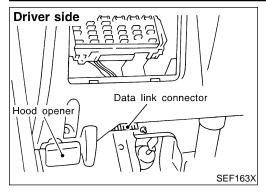
NGEC0543

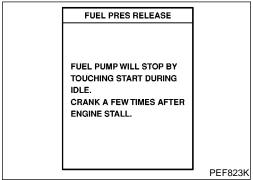
PD

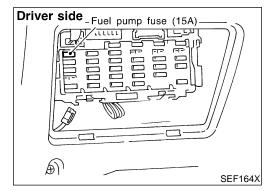
AX

@n n

NGEC0543S02 SU


ST


D@


BT

HA

SC

Fuel Pressure Release

NGEC0544

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) WITH CONSULT-II

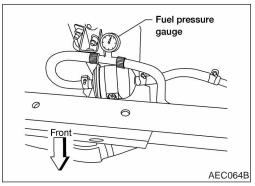
NGEC0544S01

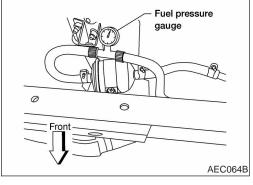
- 1. Turn ignition switch ON.
- Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.

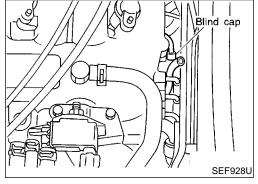
® WITHOUT CONSULT-II

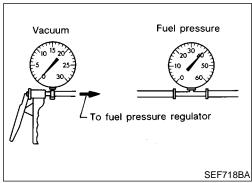
NGEC0544S02

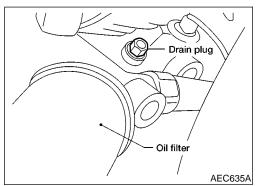
- 1. Remove fuel pump fuse located in fuse box.
- Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- 5. Reinstall fuel pump fuse after servicing fuel system.

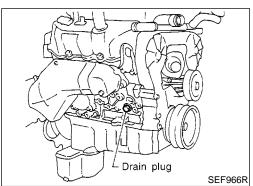

Fuel Pressure Check


NGEC0545


- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
- 1. Release fuel pressure to zero.
- Disconnect fuel hose between fuel filter and fuel tube (engine side).


BASIC SERVICE PROCEDURE


Fuel Pressure Check (Cont'd)



Install pressure gauge between fuel filter and fuel tube.

Start engine and check for fuel leakage.

Read the indication of fuel pressure gauge.

At idling:

With vacuum hose connected

Approximately 235 kPa (2.4 kg/cm², 34 psi)

With vacuum hose disconnected

Approximately 294 kPa (3.0 kg/cm², 43 psi)

If results are unsatisfactory, perform Fuel Pressure Regulator Check.

Fuel Pressure Regulator Check

Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.

Plug intake manifold with a blind cap.

Connect variable vacuum source to fuel pressure regulator.

Start engine and read indication of fuel pressure gauge as vacuum is changed.

Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

Injector

REMOVAL AND INSTALLATION

Release fuel pressure to zero. Refer to EC-610.

Drain coolant by removing drain plugs from both sides of cylinder block.

Separate ASCD and accelerator control wire from intake manifold collector.

Remove intake manifold collector from engine. 4. The following parts should be disconnected or removed.

Harness connectors for

IACV-AAC valve

IACV-FICD solenoid valve

Throttle position sensor and closed throttle position switch assembly

EGRC-solenoid valve (If so equipped)

EGR temperature sensor (If so equipped)

Ground harness

PCV valve ventilation hoses b.

Vacuum hoses for C

Brake booster

EGRC-solenoid valve (If so equipped)

GI

MA

LC

EC

FE

GL

MT

AT

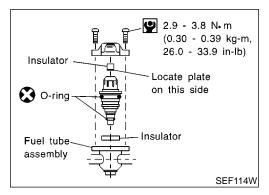
TF

PD

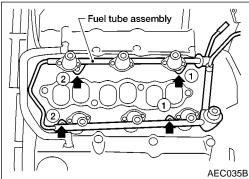
SW

NGEC0547

ST


BT

HA


SC

- Fuel pressure regulator
- EGRC-BPT valve (If so equipped)
- d. Air hoses from
- Air duct
- IACV-AAC valve
- e. Water hoses for
- Throttle body
- Air relief plug
- f. EVAP canister purge hose
- g. EGR flare tube (If so equipped)
- 5. Remove injector fuel tube assembly.

 The following parts should be disconnected or removed.
- Vacuum hose for fuel pressure regulator
- Fuel feed and return hose
- All injectors harness connectors
- Push injector tail piece.
- Do not pull on connector.
- Do not extract injector by pinching.

- 6. Push out any malfunctioning injector from injector fuel tube.
- 7. Replace or clean injector as necessary.
- Always replace O-rings with new ones.
- Lubricate O-rings with engine oil.
- Install injector to injector fuel tube assembly.

- Install injectors with fuel tube assembly to intake manifold.
 Tighten in numerical order shown in the figure.
- a. First, tighten all bolts to 4.9 to 6.0 N⋅m (0.5 to 0.61 kg-m, 3.6 to 4.4 ft-lb).
- b. Then, tighten all bolts to 10.8 to 14.7 N·m (1.1 to 1.5 kg-m, 8 to 11 ft-lb).
- 10. Reinstall any part removed in reverse order of removal.

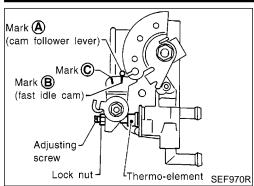
CAUTION:

After properly connecting fuel hose to injector and fuel tube, check connection for fuel leakage.

DATA MONITOR MONITORING NO FAIL COOLAN TEMP/S XXX °C

Fast Idle Cam (FIC) INSPECTION AND ADJUSTMENT

(P) With CONSULT-II


NGEC0548

NGEC0548S01

- 1. Turn ignition switch ON.
- See "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 3. When engine coolant temperature is 20 to 30°C (68 to 86°F), make sure that the center of mark **A** is aligned with mark **B** as shown in the figure.

PEF002P

Fast Idle Cam (FIC) (Cont'd)

If NG, adjust by turning adjusting screw.

Lock nut:

(a) : 0.98 - 1.96 N·m (10 - 20 kg-cm, 8.7 - 17.4 in-lb)

MA

GI

LC

Start engine and warm it up.

When engine coolant temperature is 75 to 85°C (167 to 185°F), check the following.

The center of mark A is aligned with mark C.

The cam follower lever's roller is not touching the fast idle cam.

If NG, replace thermo-element and perform the above inspection and adjustment again.

EC

GL

MT

₩ Without CONSULT-II

Turn ignition switch ON.

Lock nut:

NGEC0548S02 AT

Check voltage between ECM terminal 59 (Engine coolant temperature sensor signal) and ground.

TF

When the voltage is between 3.12 to 3.52V, make sure that the center of mark A is aligned with mark B as shown in the figure.

PD

AX

If NG, adjust by turning adjusting screw.

SU

: 0.98 - 1.96 N·m (10 - 20 kg-cm, 8.7 - 17.4 in-lb)

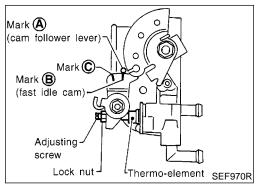
ST

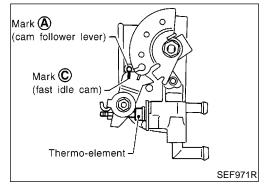
Start engine and warm it up.

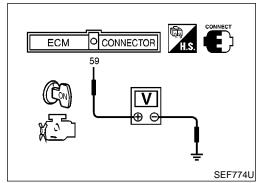
BT

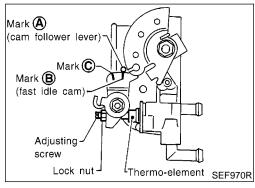
5. When the voltage is between 1.10 to 1.36V, check the follow-

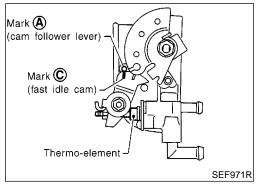
HA


SC


The center of mark **A** is aligned with mark **C**.


The cam follower lever's roller is not touching the fast idle cam.


If NG, replace thermo-element and perform the above inspection and adjustment again.


EIL

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment NGEC0549

PREPARATION

NGEC0549S01

- 1) Make sure that the following parts are in good order.
- Battery
- Ignition system
- Engine oil and coolant levels
- **Fuses**
- ECM harness connector
- Vacuum hoses
- Air intake system (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- EGR valve operation (If so equipped)
- Throttle valve
- Evaporative emission system
- 2) On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
- 3) On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "N" position.
- 4) When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5) Turn off headlamps, heater blower, rear defogger.
- 6) Keep front wheels pointed straight ahead.
- 7) Make the check after the cooling fan has stopped.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

Overall Inspection Sequence

NGEC0549S0101

GI

MA

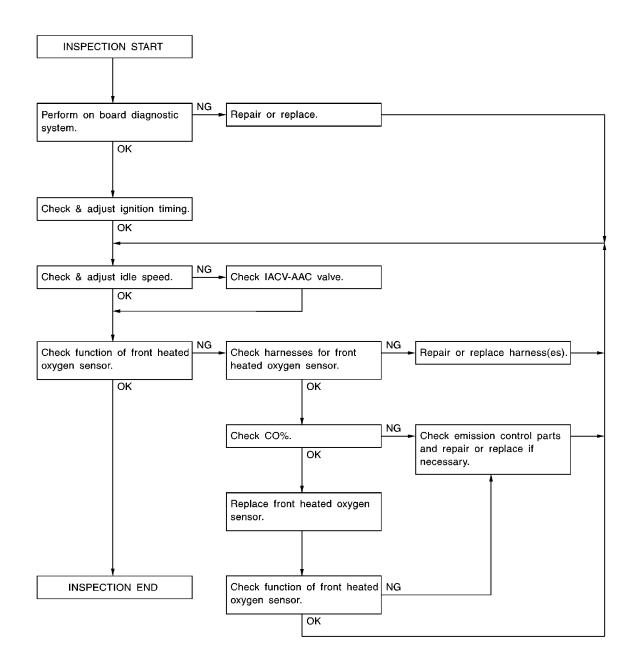
EC

FE

GL

MT

AT


TF

PD

AX

SU

ST

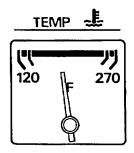
SEF117W

NOTE:

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

SC

HA


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

INSPECTION PROCEDURE

=NGEC0549S02

INSPECTION START

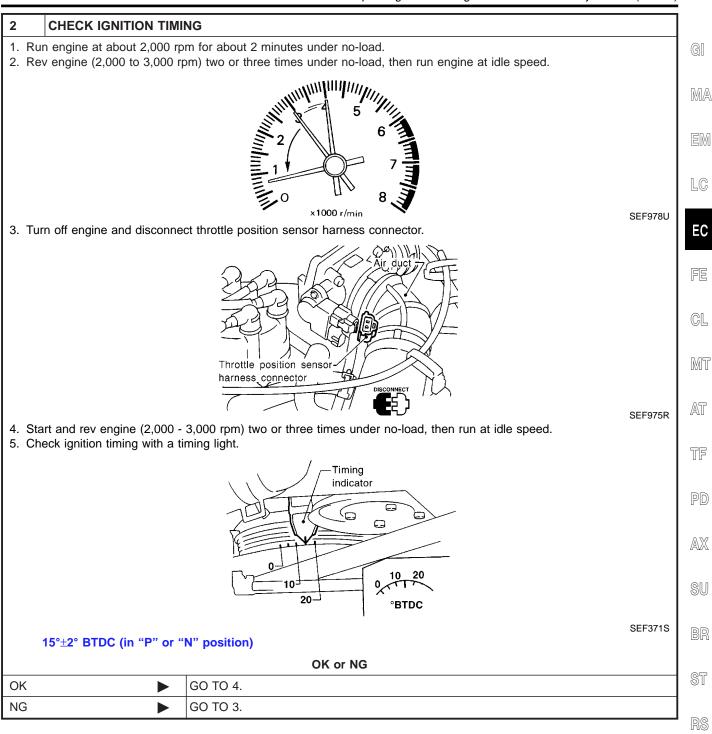
- 1. Visually check the following:
- · Air cleaner clogging
- Hoses and ducts for leaks
- EGR valve operation (If so equipped)
- Electrical connectors
- Gasket
- Throttle valve and throttle position sensor operation
- 2. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine stays below 1,000 rpm.

SEF976U

3. Open engine hood and run engine at about 2,000 rpm for about 2 minutes under no-load.

SEF977U

4. Perform diagnostic test mode II (Self-diagnostic results). Refer to EC-644.



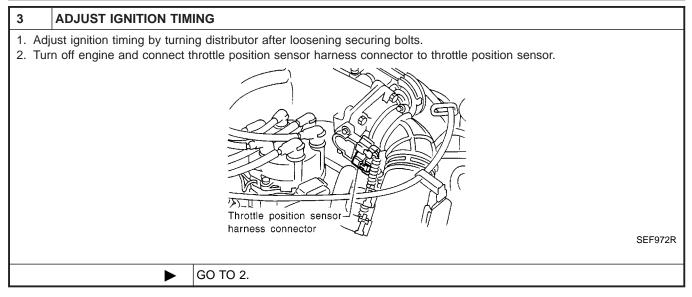
SEF217U

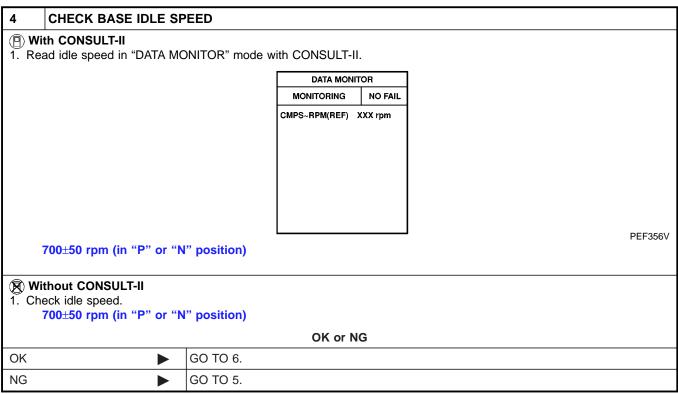
OK ▶	GO TO 2.
NG ►	Repair or replace components as necessary. GO TO 2.

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

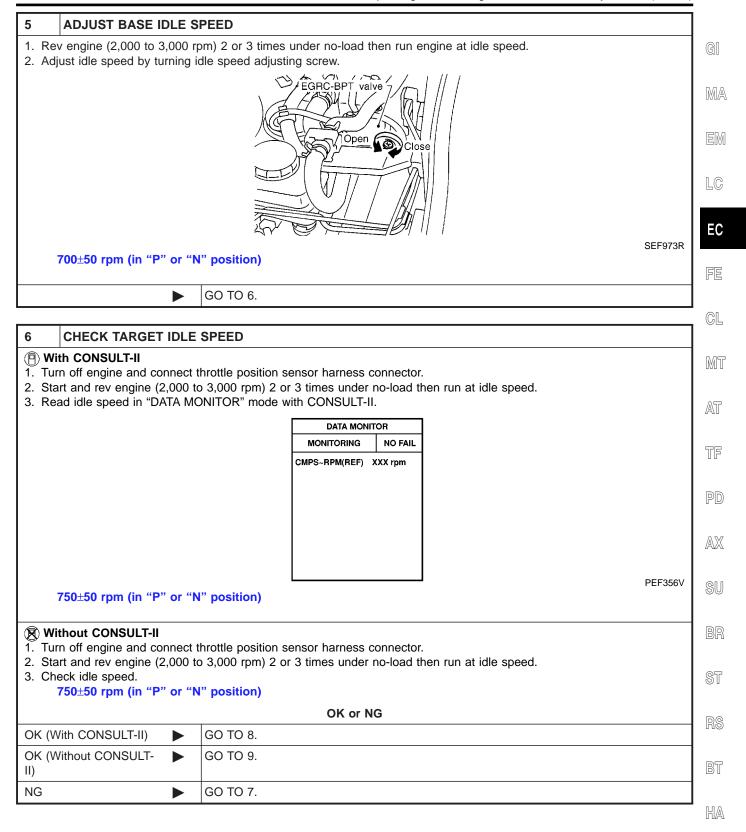
BT


HA


SC

EL

VG33E


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

SC

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

7	DETECT MALFUNCTIO	NING PART		
1. Ch 2. Ch 3. Ch	Check the following. 1. Check IACV-AAC valve and replace if necessary. Refer to EC-992. 2. Check IACV-AAC valve harness and repair if necessary. Refer to EC-992. 3. Check ECM function by substituting another known good ECM. (ECM may be the cause of a problem, but this is rarely the case.)			
With CONS	SULT-II	GO TO 8.		
Witho	ut >	GO TO 9.		

8 CHECK FRONT HEATED OXYGEN SENSOR LH SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "FR O2 MNTR-B2" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

DATA MONITOR					
MONITORING NO FA					
CMPS~RPM(REF) XXX rpm					
FR O2 MNTR-B1	LEAN				
FR O2 MNTR-B2	RICH				

PEF358V

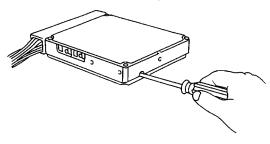
1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

ОК	>	GO TO 12.
NG (Monitor does not fluctuate.)	>	GO TO 17.
NG (Monitor fluctuates less than 5 times.)	>	 Replace front heated oxygen sensor LH. GO TO 10.

VG33E


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR LH SIGNAL

(Without CONSULT-II

9

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Set "Left bank front heated oxygen sensor monitor" in the Diagnostic Test Mode II. Refer to EC-644.

3. Make sure that MIL goes on more than 5 times during 10 seconds at 2,000 rpm.

SEF217U

SEF979U

OK	>	GO TO 12.
NG (MIL does not blink.)	•	GO TO 17.
NG (MIL blinks less than 5 times.)		 Replace front heated oxygen sensor LH. GO TO 10.

OK or NG

10 CHECK FRONT HEATED OXYGEN SENSOR LH SIGNAL

(P) With CONSULT-II

- 1. Warm engine to normal operating temperature.
- 2. Run engine at approx. 2000 rpm for approx. 2 minutes under no-load.
- 3. See "FR O2 MNTR-B2" in "DATA MONITOR" mode.
- 4. Running engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.
 - 1 time: RICH \rightarrow LEAN \rightarrow RICH
 - 2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

(R) Without CONSULT-II

- 1. Warm engine to normal operating temperature.
- 2. Run engine at approx. 2000 rpm for approx. 2 minutes under no-load.
- 3. Set "Left bank front heated oxygen sensor monitor" in the Diagnostic Test Mode II. Refer to EC-644.
- 4. Make sure that MIL goes on more than 5 times during 10 seconds at 2,000 rpm.

ΟK	or	NG
$\mathbf{v}_{\mathbf{i}}$	VI.	110

OK (With CONSULT-II)		GO TO 12.
OK (Without CONSULT-II)	>	GO TO 13.
NG	>	GO TO 11.

MA

GI

LG

EC

FE

GL

MT

AT

TF

PD

AX

@nn

SI

DS.

RT

HA

SC

El

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

11 DETECT MALFUNCTIONING PART

Check the following.

- 1. Check fuel pressure regulator. Refer to EC-611.
- 2. Check mass air flow sensor and its circuit. Refer to EC-713.
- 3. Check injector and its circuit. Refer to EC-1145. Clean or replace if necessary.
- 4. Check engine coolant temperature sensor and its circuit. Refer to EC-758.
- 5. Check ECM function by substituting another known good ECM. (ECM may be the cause of a problem, but this is rarely the case.)

▶ GO TO 2.

12 CHECK FRONT HEATED OXYGEN SENSOR RH SIGNAL

With CONSULT-II

- 1. See "FR O2 MNTR-B1" in "DATA MONITOR" mode.
- 2. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

DATA MONITOR					
MONITORING NO FAIL					
CMPS~RPM(REF) XXX rpm					
FR O2 MNTR-B1	LEAN				
FR O2 MNTR-B2	RICH				

PEF358V

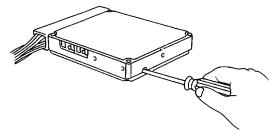
1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH ightarrow LEAN ightarrow RICH ightarrow LEAN ightarrow RICH

OK or NG

OK	>	INSPECTION END
NG (Monitor does not fluctuate.)	>	GO TO 16.
NG (Monitor fluctuates less than 5 times.)	•	 Replace front heated oxygen sensor RH. GO TO 14.

SEF979U


SEF217U

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR RH SIGNAL 13

(R) Without CONSULT-II

1. Set "Right bank front heated oxygen sensor monitor" in the Diagnostic Test Mode II. Refer to EC-644.

2. Make sure that MIL goes on more than 5 times during 10 seconds at 2,000 rpm.

OK or NG

ОК	>	INSPECTION END
NG (MIL does not blink.)		GO TO 16.
NG (MIL blinks less than 5 times.)	>	 Replace front heated oxygen sensor RH. GO TO 14.

CHECK FRONT HEATED OXYGEN SENSOR RH SIGNAL 14

(P) With CONSULT-II

- 1. Warm engine to normal operating temperature.
- 2. Run engine at approx. 2000 rpm for approx. 2 minutes under no-load.
- 3. See "FR O2 MNTR-B1" in "DATA MONITOR" mode.
- 4. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.
 - 1 time: RICH \rightarrow LEAN \rightarrow RICH
 - 2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

(R) Without CONSULT-II

- 1. Warm engine to normal operating temperature.
- 2. Run engine at approx. 2000 rpm for approx. 2 minutes under no-load.
- 3. Set "Right bank front heated oxygen sensor monitor" in the Diagnostic Test Mode II. Refer to EC-644.
- 4. Make sure that MIL goes on more than 5 times during 10 seconds at 2,000 rpm.

OK or NG

OK •	INSPECTION END
NG ►	GO TO 15.

EC-623

GI

MA

EC

GL

MT

AT

TF

PD

AX

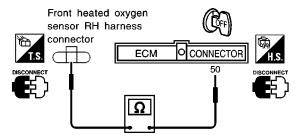
HA

SC

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

15 DETECT MALFUNCTIONING PART


Check the following.

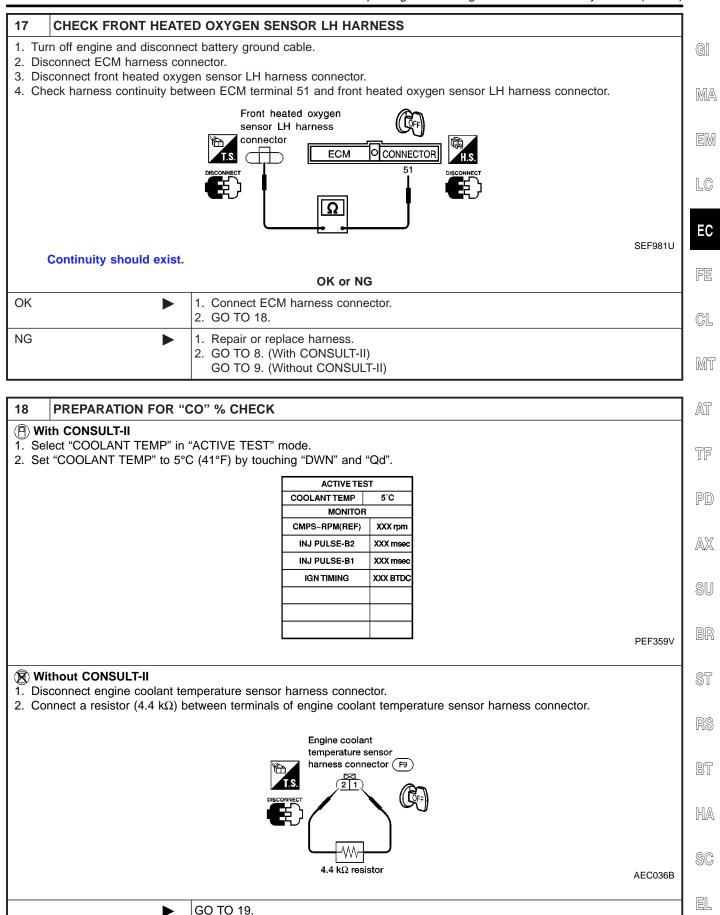
- 1. Check fuel pressure regulator. Refer to EC-611.
- 2. Check mass air flow sensor and its circuit. Refer to EC-713.
- 3. Check injector and its circuit. Refer to EC-1145. Clean or replace if necessary.
- 4. Check engine coolant temperature sensor and its circuit. Refer to EC-758.
- 5. Check ECM function by substituting another known good ECM. (ECM may be the cause of a problem, but this is rarely the case.)

■ GO TO 2.

CHECK FRONT HEATED OXYGEN SENSOR RH HARNESS Turn off engine and disconnect battery ground cable. Disconnect ECM harness connector.

- 3. Disconnect front heated oxygen sensor RH harness connector.
- 4. Check harness continuity between ECM terminal 50 and front heated oxygen sensor RH harness connector.

SEF980U

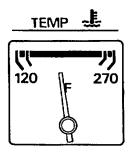

Continuity should exist.

ok	or	NG
----	----	----

OK •	 Connect ECM harness connector. GO TO 18.
NG	1. Repair or replace harness. 2. GO TO 8. (With CONSULT-II) GO TO 9. (Without CONSULT-II)

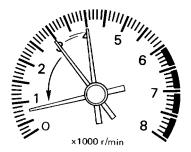
VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)



VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


19 CHECK "CO" %

1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.

SEF976U

2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.

SEF978U

3. Check "CO" %.

Idle CO: 1.5 - 9%

4. N Without CONSULT-II

After checking CO%,

- a. Disconnect the resistor from terminals of engine coolant temperature sensor.
- b. Connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

•	 Replace front heated oxygen sensor LH. GO TO 10.
NG ►	GO TO 20.

20 DETECT MALFUNCTIONING PART

Check the following.

- 1. Connect front heated oxygen sensor harness connectors to front heated oxygen sensors.
- 2. Check fuel pressure regulator. Refer to EC-611.
- 3. Check mass air flow sensor and its circuit. Refer to EC-713.
- 4. Check injector and its circuit. Refer to EC-1145.

Clean or replace if necessary.

- 5. Check engine coolant temperature sensor and its circuit. Refer to EC-758.
- 6. Check ECM function by substituting another known good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

■ GO TO 2.

GI

MA

EC

GL

MT

AT

PD

Introduction

NGEC0550

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

SAE Mode		
Mode 3 of SAE J1979		
Mode 2 of SAE J1979		
Mode 1 of SAE J1979		
Mode 7 of SAE J1979		
Mode 6 of SAE J1979		

The above information can be checked using procedures listed in the table below.

					7 11 7 11 P 11 C C C C C	
	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
ECM*3	X	X*1	_	_	_	_
CONSULT-II	X	Х	X	X	Х	_
GST	Х	X*2	X	_	Х	Х

^{*1:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-687.)

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

X: Applicable —: Not applicable

	ı					7t. 7tpp		от арриоавто
		М	IL		DTC 1st trip D		p DTC	
Items	1st	1st trip 2nd trip		4.1.1.1.		On al trin		
	Blinking	Lighting up	Blinking	Lighting up	1st trip 2nd trip displaying	1st trip displaying	2nd trip displaying	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 (0701, 0603 - 0608) is being detected	Х	-	_	_	_	_	X	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 (0701, 0603 - 0608) is being detected	_	_	Х	_	_	Х	_	_
Closed loop control — DTC: P1148 (0307)	_	Х	_	_	х	_	Х	_
Fail-safe items	_	Х	_	_	X*1	_	X*1	_
Except above	_	-	_	Х	_	Х	Х	_

^{*1:} Except "ECM".

 $\mathbb{D}\mathbb{X}$

BT

HA

SC

^{*2: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

^{*3:} In diagnostic test mode II (Self-diagnostic results)

Emission-related Diagnostic Information

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

NGEC0552

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-638. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-667. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

NGEC0552S0101

DTC and 1st trip DTC can be read by the following methods.

1) No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) Examples: 0101, 0201, 1003, 1104, etc.

These DTCs are controlled by NISSAN.

- 2) (a) With CONSULT-II
 - ® With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether the
 malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II
 can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESU	ILTS	SELF DIAG RE		JLTS
	FAILURE DETECTED	TIME	FAILURE DETECTE		TIME
DTC	IACV-AAC VALVE [P0505]	0	IACV-AAC VALVE [P0505]	1st trip	1t
display			ay	DTC display	

Emission-related Diagnostic Information (Cont'd)

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-654.

MA

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

	Priority	Items			
	1	1	Misfire — DTC: P0300 - P0306 (0701, 0603 - 0608) Fuel Injection System Function — DTC: P0171 (0115), P0172 (0114)		
	2		Except the above items (Includes A/T related items)		
_	3	1st trip freeze frame data	a		

EC

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

MIT

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.

TF

SYSTEM READINESS TEST (SRT) CODE

NGEC0552S03

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of enhanced emissions test for Inspection and Maintenance (I/M), certain states require that the status of srt be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "incomplete", use the information in this service manual to set the SRT to "complete".

In most cases, the ECM will automatically complete its self-diagnosis cycle during normal usage and the SRT status will indicate "complete" for each application system. Once set as "complete", the SRT status remains "complete" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern and the SRT will indicate "incomplete" for these items.

NOTE:

The SRT will also indicate "incomplete" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "complete" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "incomplete" for one or more of the SRT items, the vehicle is returned to the customer untested.

HA

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "complete" for all test items. Therefore, it is important to check SRT ("complete") and DTC (No DTCs) before the inspection.

This service manual contains the service procedure and support information to perform a comprehensive road test that enables the ECM to complete the SRT.

The following table shows required self-diagnostic items to set the SRT to "complete".

VG33E

Emission-related Diagnostic Information (Cont'd)

SRT item (CONSULT-II indication)	Perfor- mance Priority *1	Required self-diagnostic items to set the SRT to "complete"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420, P0430
EVAP SYSTEM	2	EVAP control system (small leak) (negative pressure)	P0440
	_	EVAP control system (small leak) (positive pressure)	P1440 *2
	3	EVAP control system purge flow monitoring	P1447
O2 SENSOR	3	Front heated oxygen sensor (circuit)	P0130, P0150
		Front heated oxygen sensor (lean shift monitoring)	P0131, P0151
		Front heated oxygen sensor (rich shift monitoring)	P0132, P0152
		Front heated oxygen sensor (response monitoring)	P0133, P0153
		Front heated oxygen sensor (high voltage)	P0134, P0154
		Rear heated oxygen sensor (min. voltage monitoring)	P0137, P0157
		Rear heated oxygen sensor (max. voltage monitoring)	P0138, P0158
		Rear heated oxygen sensor (response monitoring)	P0139, P0159
		Rear heated oxygen sensor (high voltage)	P0140, P0160
O2 SEN HEATER	3	Front heated oxygen sensor heater	P0135, P0155
		Rear heated oxygen sensor heater	P0141, P0161
EGR SYSTEM	3	EGR function (close)	P0400
(If so equipped)		EGRC-BPT valve function	P0402
	1	EGR function (open)	P1402

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure) one by one based on the priority for models with CONSULT-II.

SRT Set Timing

SRT is set as "complete" after self-diagnosis has been performed one or more times. Completion of SRT will occur if the result is OK or NG. The set timing is different between them and is shown in the following table.

^{*2:} P1440 [EVAP control system (small leak) (positive pressure) diagnosis] is a kind of the SRT related diagnosis. This diagnosis, however, does not contribute to setting the SRT as "complete" when no malfunction exists in the EVAP system. Therefore, P0440 must be used instead of P1440.

VG33E

GI

MA

EC

GL

MT

AT

TF

PD

ST

BT

HA

SC

EL

NGEC0552S0303

Emission-related Diagnostic Information (Cont'd)

Self-diagnosis result				Example		
		Diagnosis	Ignition OFF – ON – OFF			
All OK		P0400	OK (1)	- (1)	OK (2)	- (2)
	01	P0402	OK (1)	- (1)	- (1)	OK (2)
	Case 1	P1402	OK (1)	OK (2)	- (2)	- (2)
		SRT of EGR	"complete"	"complete"	"complete"	"complete"
		P0400	OK (1)	- (1)	- (1)	– (1)
	Case 2	P0402	- (0)	- (0)	OK (1)	– (1)
Case 2		P1402	OK (1)	OK (2)	- (2)	- (2)
		SRT of EGR	"incomplete"	"incomplete"	"complete"	"complete"
NG exists		P0400	ОК	ОК	_	_
		P0402	_	_	_	_
	Case 3	P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	-	1st trip DTC	DTC (=MIL "ON")
		SRT of EGR	"incomplete"	"incomplete"	"incomplete"	"complete"

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is OK.

When all SRT related self-diagnoses showed OK results in a same cycle (Ignition OFF – ON – OFF), the SRT will indicate "complete".

→ Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "complete" at the time the respective self-diagnoses have at least one OK result.

→ Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "complete".

→ Case 3 above

The previous table shows that the minimum number of cycles for setting SRT as "incomplete" is one (1) for each self-diagnosis (Case 1 and 2) or two (2) for one self-diagnosis (Case 3). However, in preparation for the State emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) because of the following reasons;

- The SRT will indicate "complete" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "complete" of the SRT only with OK self-diagnosis result.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "complete" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "incomplete".

NOTE:

SRT can be set as "complete" together with the DTC(s). Therefore, DTC check must always be carried out prior to the State emission inspection even though the SRT indicates "complete".

How to Display SRT Code

1. (P) With CONSULT-II

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

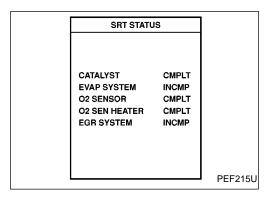
For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

2.

With GST

Selecting Mode 1 with GST (Generic Scan Tool)

 $\mathbb{D}\mathbb{X}$


^{-:} Self-diagnosis is not carried out.

VG33E

Emission-related Diagnostic Information (Cont'd)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

SRT Service Procedure

NGEC0552S0302

If a vehicle has been rejected for the State emissions inspection due to one or more SRT items indicating "incomplete", review the following flowchart diagnostic sequence.

EC

Emission-related Diagnostic Information (Cont'd)

*3 EC-633

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

*2 EC-631

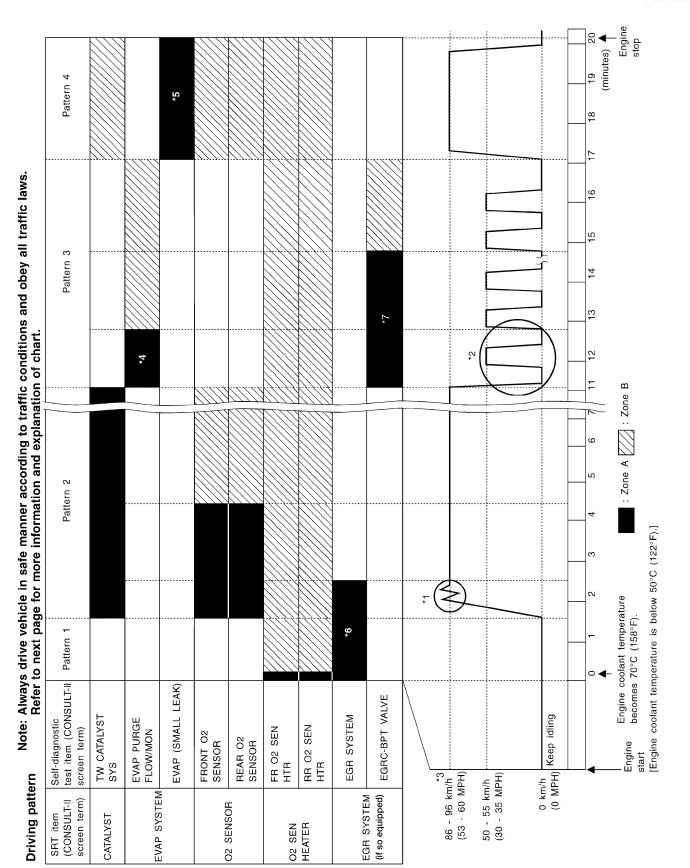
(I) With CONSULT-II

*1 EC-628

Perform corresponding DTC confirmation procedure one by one based on "Performance Priority" in the table on EC-629.

N Without CONSULT-II

How to Set SRT Code


The most efficient driving pattern in which SRT codes can be properly set is explained on EC-634. The driving pattern should be performed one or more times to set all SRT codes.

HA

SC

EL

Driving Pattern

VG33E

Emission-related Diagnostic Information (Cont'd)

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest.

Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

MA

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

LC

EC

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminals 59 and 43 is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminals 59 and 43 is lower than 1.4V).
- The engine is started at the tank fuel temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 60 and ground is less than 4.1V).

Itage GL

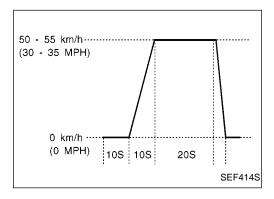
Pattern 2:

• When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

MT AT

TF

PD


SU

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- 3) Repeat steps 1 and 2 until the EGR system SRT is set.

BR

ST

D.O.

BT

HA

*3: Checking the vehicle speed with CONSULT-II or GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

SC

EL

 \mathbb{N}

VG33E

Emission-related Diagnostic Information (Cont'd)

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

	For normal accelerat [less than 1,2	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)	24 (15)
2nd to 3rd	40 (25)	29 (18)	40 (25)
3rd to 4th	58 (36)	48 (30)	64 (40)
4th to 5th	64 (40)	63 (39)	72 (45)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

	km/h (MPH) 2WD (AUTO mode)
1st	50 (30)
2nd	95 (60)

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

NGEC0552S04

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (30 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

SRT item	Calé dia ana actio to at itama	Test value (0	GST display)	Test limit	Application	
SKI ilem	Self-diagnostic test item	TID	CID	rest iimit	Application	
CATALVOT	Three way catalyst function (Right bank)	01H	01H	Max.	X	
CATALYST	Three way catalyst function (Left bank)	03H	02H	Max.	X	
EVAD SVSTEM	EVAP control system (Small leak)	05H	03H	Max.	X	
EVAP SYSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	Х	

VG33E

Emission-related Diagnostic Information (Cont'd)

SRT item	Self-diagnostic test item	Test value (GST display)	Test limit	Application
OKT Rem	Gen-diagnostic test item	TID	CID	Test iiitiit	Арріїсаціон
		09H	04H	Max.	X
		0AH	84H	Min.	X
	Front heated oxygen sensor (Right bank)	0BH	04H	Max.	Х
	(3,111,	0CH	04H	Max.	Х
		0DH	04H	Max.	Х
		11H	05H	Max.	Х
		12H	85H	Min.	Х
	Front heated oxygen sensor (Left bank)	13H	05H	Max.	Х
O2 CENCOD	,	14H	05H	Max.	Х
O2 SENSOR		15H	05H	Max.	Х
		19H	86H	Min.	Х
	Rear heated oxygen sensor	1AH	86H	Min.	Х
	(Right bank)	1BH	06H	Max.	Х
		1CH	06H	Max.	Х
	Rear heated oxygen sensor (Left bank)	21H	87H	Min.	Х
		22H	87H	Min.	Х
		23H	07H	Max.	Х
		24H	07H	Max.	Х
	Front heated oxygen sensor heater (Right bank)	29H	08H	Max.	Х
		2AH	88H	Min.	Х
	Front heated oxygen sensor heater	2BH	09H	Max.	Х
20 051000 1154750	(Left bank)	2CH	89H	Min.	Х
02 SENSOR HEATER	Rear heated oxygen sensor heater	2DH	0AH	Max.	Х
	(Right bank)	2EH	8AH	Min.	Х
	Rear heated oxygen sensor heater	2FH	0BH	Max.	Х
	(Left bank)	30H	8BH	Min.	Х
		31H	8CH	Min.	Х
		32H	8CH	Min.	Х
	EGR function	33H	8CH	Min.	Х
EGR SYSTEM (If so equipped)		34H	8CH	Min.	Х
(55 34aippou)		35H	0CH	Max.	Х
	FORO PRT 1 ("	36H	0CH	Max.	Х
	EGRC-BPT valve function	37H	8CH	Min.	Х

EL

VG33E

Emission-related Diagnostic Information (Cont'd)

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

					A. Applicable	—: Not applicable
Items	DTC*4			Test value/		Reference
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)	1st trip DTC*4	page
NO SELF DIAGNOSTIC FAILURE INDICATED	P0000	0505	_	_	_	_
MAF SEN/CIRCUIT	P0100	0102	_	_	Х	EC-713
ABSL PRES SEN/CIRC	P0105	0803	_	_	Х	EC-722
AIR TEMP SEN/CIRC	P0110	0401	_	_	Х	EC-734
COOLANT T SEN/CIRC	P0115	0103	_	_	Х	EC-739
THRTL POS SEN/CIRC	P0120	0403	_	_	Х	EC-744
*COOLAN T SEN/CIRC	P0125	0908	_	_	Х	EC-758
FRONT O2 SENSOR-B1	P0130	0503	Х	Х	X*3	EC-763
FRONT O2 SENSOR-B1	P0131	0415	Х	Х	X*3	EC-772
FRONT O2 SENSOR-B1	P0132	0414	Х	Х	X*3	EC-780
FRONT O2 SENSOR-B1	P0133	0413	Х	Х	X*3	EC-788
FRONT O2 SENSOR-B1	P0134	0509	Х	Х	X*3	EC-801
FR O2 SE HEATER-B1	P0135	0901	Х	Х	X*3	EC-809
REAR O2 SENSOR-B1	P0137	0511	Х	Х	X*3	EC-815
REAR O2 SENSOR-B1	P0138	0510	Х	Х	X*3	EC-825
REAR O2 SENSOR-B1	P0139	0707	Х	Х	X*3	EC-835
REAR O2 SENSOR-B1	P0140	0512	Х	Х	X*3	EC-845
RR O2 SE HEATER-B1	P0141	0902	Х	Х	X*3	EC-853
FRONT O2 SENSOR-B2	P0150	0303	Х	Х	X*3	EC-763
FRONT O2 SENSOR-B2	P0151	0411	Х	Х	X*3	EC-772
FRONT O2 SENSOR-B2	P0152	0410	Х	Х	X*3	EC-780
FRONT O2 SENSOR-B2	P0153	0409	Х	Х	X*3	EC-788
FRONT O2 SENSOR-B2	P0154	0412	Х	Х	X*3	EC-801
FR O2 SE HEATER-B2	P0155	1001	Х	Х	X*3	EC-809
REAR O2 SENSOR-B2	P0157	0314	Х	Х	X*3	EC-815
REAR O2 SENSOR-B2	P0158	0313	Х	Х	X*3	EC-825
REAR O2 SENSOR-B2	P0159	0708	Х	Х	X*3	EC-835
REAR O2 SENSOR-B2	P0160	0315	Х	Х	X*3	EC-845
RR O2 SE HEATER-B2	P0161	1002	Х	Х	X*3	EC-853
FUEL SYS LEAN/BK1	P0171	0115	_	_	Х	EC-860
FUEL SYS RICH/BK1	P0172	0114	_	_	Х	EC-868
FUEL SYS LEAN/BK2	P0174	0210	_	_	Х	EC-860
FUEL SYS RICH/BK2	P0175	0209	_	_	Х	EC-868
FUEL TEMP SEN/CIRC	P0180	0402	_	_	Х	EC-875

VG33E

Emission-related Diagnostic Information (Cont'd)

	DT	C*4			eu Diagnostic Imic		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*4	Reference page	GI
ENG OVER TEMP	P0217	0211	_	_	Х	EC-880	- _ MA
MULTI CYL MISFIRE	P0300	0701	_	_	Х	EC-893	
CYL 1 MISFIRE	P0301	0608	_	_	Х	EC-893	– EM
CYL 2 MISFIRE	P0302	0607	_	_	Х	EC-893	
CYL 3 MISFIRE	P0303	0606	_	_	Х	EC-893	- LG
CYL 4 MISFIRE	P0304	0605	_	_	Х	EC-893	_
CYL 5 MISFIRE	P0305	0604	_	_	Х	EC-893	EC
CYL 6 MISFIRE	P0306	0603	_	_	Х	EC-893	
KNOCK SEN/CIRC	P0325	0304	_	_	_	EC-902	FE
CPS/CIRCUIT (OBD)	P0335	0802	_	_	Х	EC-906	_
CAM POS SEN/CIRC	P0340	0101	_	_	Х	EC-912	- GL
EGR SYSTEM (If so equipped)	P0400	0302	Х	Х	X*3	EC-919	- MT
EGRC-BPT VALVE (If so equipped)	P0402	0306	Х	Х	X*3	EC-933	- - AT
TW CATALYST SYS-B1	P0420	0702	X	Х	X*3	EC-941	_ 1/7/1
TW CATALYST SYS-B2	P0430	0703	Х	Х	X*3	EC-941	- _ TF
EVAP SMALL LEAK	P0440	0705	Х	Х	X*3	EC-947	_ 00
PURG VOLUME CONT/V	P0443	1008	_	_	Х	EC-950	– PD
VENT CONTROL VALVE	P0446	0903	_	_	Х	EC-957	
EVAP SYS PRES SEN	P0450	0704	_	_	Х	EC-963	- AX
EVAP GROSS LEAK	P0455	0715	Х	Х	Х	EC-974	_
VEH SPEED SEN/CIRC	P0500	0104	_	_	Х	EC-988	- SU
IACV/AAC VLV/CIRC	P0505	0205	_	_	Х	EC-992	_
CLOSED TP SW/CIRC	P0510	0203	_	_	Х	EC-998	BR
A/T COMM LINE	P0600	_	_	_	_	EC-1006	_
ECM	P0605	0301	_	_	Х	EC-1011	ST
PNP SW/CIRC	P0705	1101	_	_	Х	AT-99	_
ATF TEMP SEN/CIRC	P0710	1208	_	_	Х	AT-105	RS
VEH SPD SEN/CIR AT	P0720	1102	_	_	Х	AT-111	_
ENGINE SPEED SIG	P0725	1207	_	_	Х	AT-116	- BT
A/T 1ST GR FNCTN	P0731	1103	_	_	Х	AT-120	
A/T 2ND GR FNCTN	P0732	1104	_	_	Х	AT-126	- HA
A/T 3RD GR FNCTN	P0733	1105	_	_	Х	AT-132	_ @@
A/T 4TH GR FNCTN	P0734	1106	_	_	Х	AT-138	– SC
TCC SOLENOID/CIRC	P0740	1204	_	_	Х	AT-147	- _ EL
A/T TCC S/V FNCTN	P0744	1107	_	_	Х	AT-152	– 1515

Emission-related Diagnostic Information (Cont'd)

Items	DT	C*4		Test value/	1st trip DTC*4	Deference
(CONSULT-II screen terms)	CONSULT-II GST*2	ECM*1	SRT code	Test limit (GST only)		Reference page
L/PRESS SOL/CIRC	P0745	1205	_	_	Х	AT-160
SFT SOL A/CIRC	P0750	1108	_	_	Х	AT-165
SFT SOL B/CIRC	P0755	1201	_	_	Х	AT-170
MAP/BARO SW SOL/CIR	P1105	1302	_	_	Х	EC-1013
CLOSED LOOP-B1	P1148	0307	_	_	Х	EC-1026
CLOSED LOOP-B2	P1168	0308	_	_	Х	EC-1026
IGN SIGNAL-PRIMARY	P1320	0201	_	_	Х	EC-1028
CPS/CIRC (OBD) COG	P1336	0905	_	_	Х	EC-1036
EGRC SOLENOID/V (If so equipped)	P1400	1005	_	_	Х	EC-1043
EGR TEMP SEN/CIRC (If so equipped)	P1401	0305	_	_	×	EC-1048
EGR SYSTEM (If so equipped)	P1402	0514	Х	х	X*3	EC-1055
EVAP SMALL LEAK	P1440	0213	Х	Х	X*3	EC-1065
PURG VOLUME CONT/V	P1444	0214	_	_	Х	EC-1067
VENT CONTROL VALVE	P1446	0215	_	_	Х	EC-1079
EVAP PURG FLOW/MON	P1447	0111	Х	Х	X*3	EC-1086
VENT CONTROL VALVE	P1448	0309	_	_	Х	EC-1098
VC/V BYPASS/V	P1490	0801	_	_	Х	EC-1106
VC CUT/V BYPASS/V	P1491	0311	_	_	Х	EC-1112
A/T DIAG COMM LINE	P1605	0804	_	_	Х	EC-1121
TP SEN/CIRC A/T	P1705	1206	_	_	Х	AT-175
P-N POS SW/CIRCUIT	P1706	1003	_	_	Х	EC-1124
O/R CLTCH SOL/CIRC	P1760	1203	_	_	Х	AT-184

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results). These numbers are controlled by NISSAN.

NOTE

Regarding D22 models, "-B1" and "BK1" indicate right bank and "-B2" and "BK2" indicate left bank.

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC (With CONSULT-II) NOTE:

NGEC0552S06

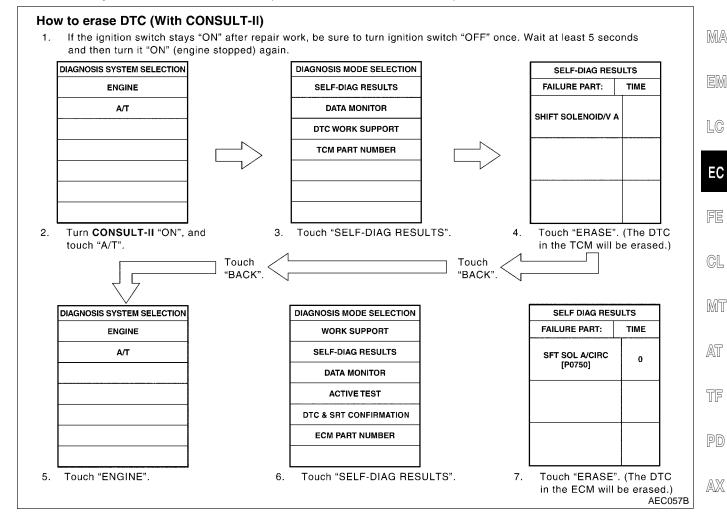
NGEC0552S0601

If the DTC is not for A/T related items (see EC-581), skip steps 2 through 4.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} These are not displayed with GST.


^{*4: 1}st trip DTC No. is the same as DTC No.

VG33E

GI

Emission-related Diagnostic Information (Cont'd)

- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (With GST)

NGEC0552S0602

If the DTC is not for A/T related items (see EC-581), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.
- 2. Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

How to Erase DTC (No Tools)

NGEC0552S0603

If the DTC is not for A/T related items (see EC-581), skip step 2.

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it "ON" again.
- 2. Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis".

(The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)

DW.

EL

BT

HA

VG33E

Emission-related Diagnostic Information (Cont'd)

Change the diagnostic test mode from Mode II to Mode I by turning the mode selector on the ECM. (See EC-644.)

The emission related diagnostic information in the ECM can be erased by changing the diagnostic test mode from Diagnostic Test Mode II to Mode I by turning the mode selector on the ECM.

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx.
 24 hours.
- Erasing the emission-related diagnostic information using CONSULT-II or GST is easier and quicker than switching the mode selector on the ECM.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL)

DESCRIPTION

NGEC0553

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to EL section ("WARNING LAMPS") or see EC-1170.
- 2. When the engine is started, the MIL should go OFF.

 If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

VG33E

Malfunction Indicator Lamp (MIL) (Cont'd)

On Board Diagnostic System Function

The on board diagnostic system has the following four functions.

=NGEC0553S01

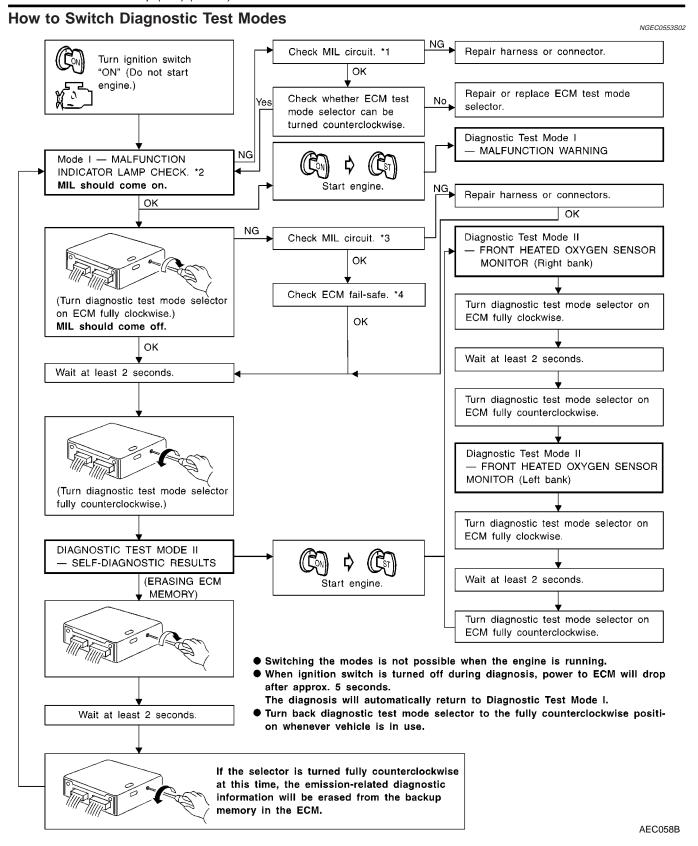
Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function	- (
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit and ECM test mode selector. (See EC-644.)	- [
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in	
			the 1st trip. • "Misfire (Possible three way catalyst damage)" • "Closed loop control" • Fail-safe mode	
lode II	Ignition switch in ON position	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.	_
	Engine stopped			
				_
	Engine running	FRONT HEATED OXYGEN SENSOR MONITOR	This function allows the fuel mixture condition (lean or rich), monitored by front heated oxygen sensor, to be read.	

MIL Flashing without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM test mode selector following "How to Switch Diagnostic Test Modes", EC-644.

How to switch the diagnostic test (function) modes, and details of the above functions are described later. (Refer to EC-644.)

The following emission-related diagnostic information is cleared when the ECM memory is erased.


- 1) Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- Test values
- 7) Others

ST

BT

HA

SC

*1 EC-1170 *2 EC-642 *3 EC-1170

4 EC-687

VG33E

Malfunction Indicator Lamp (MIL) (Cont'd)

Diagnostic Test Mode I — Bulb Check

VGEC0553S03

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to "WARNING LAMPS", *EL-87* or see EC-1170.

GI

Diagnostic Test Mode I — Malfunction Warning

MIL	Condition	
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.	Į.
OFF	No malfunction.	L

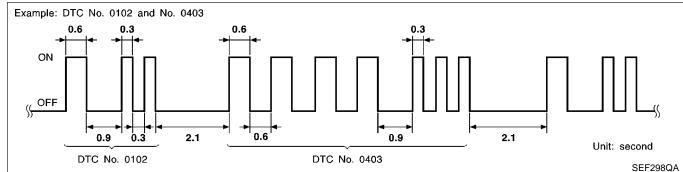
MA

These DTC Numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS).

LC

Diagnostic Test Mode II — Self-diagnostic Results

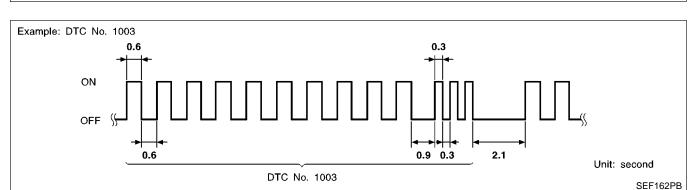
ICECNEE3SNE


In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL.

E

EC

The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTC's. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTC's or 1st trip DTC's. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.



MT

AT

TF

AX

PD

Long (0.6 second) blinking indicates the two LH digits of number and short (0.3 second) blinking indicates the two RH digits of number. For example, the MIL blinks 10 times for 6 seconds (0.6 sec x 10 times) and then it blinks three times for about 1 second (0.3 sec x 3 times). This indicates the DTC "1003" and refers to the malfunction of the park/neutral position (PNP) switch.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0505" refers to no malfunction. (See TROUBLE DIAGNOSIS — INDEX, EC-581.)

._

HA

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

0553S0501

The DTC can be erased from the backup memory in the ECM when the diagnostic test mode is changed from Diagnostic Test Mode II to Diagnostic Test Mode I. (Refer to "How to Switch Diagnostic Test Modes", EC-644.)

- If the battery is disconnected, the DTC will be lost from the backup memory after approx. 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

VG33E

Malfunction Indicator Lamp (MIL) (Cont'd)

Diagnostic Test Mode II — Front Heated Oxygen Sensor Monitor

VGEC05538

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the front heated oxygen sensor.

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean	Closed leep system	
OFF	Rich	Closed loop system	
*Remains ON or OFF	Any condition	Open loop system	

^{*:} Maintains conditions just before switching to open loop.

To check the front heated oxygen sensor function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

OBD System Operation Chart

NGEC0554

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-627.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

NGEC0554S02

			110200001002
Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-648.

For details about patterns "A" and "B" under "Other", see EC-650.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

VG33E

GI

MA

LC

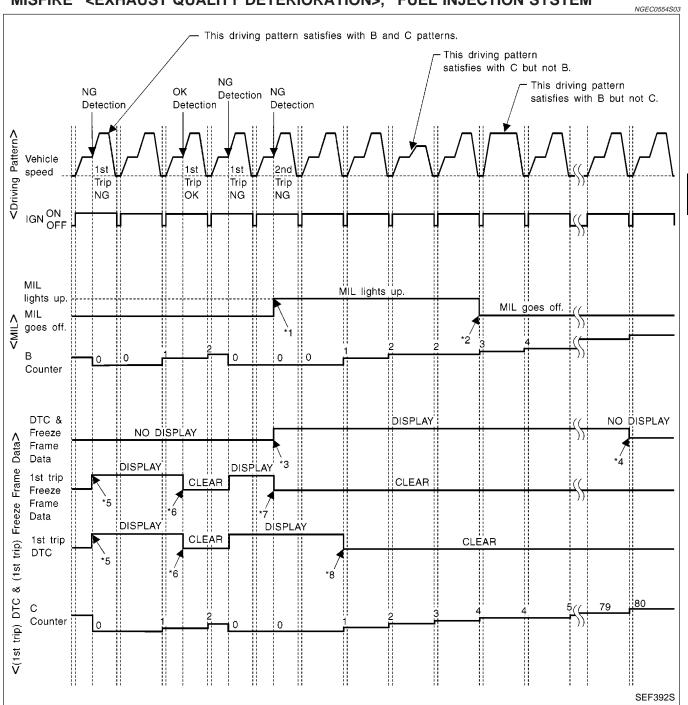
EC

FE

GL

MT

AT


TF

PD

AX

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame
- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

ST

HA

SC

EL

VG33E

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

NGEC0554S04

NGEC0554S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

NGEC0554S0402

Driving pattern C means the vehicle operation as follows:

- The following conditions should be satisfied at the same time:
 Engine speed: (Engine speed in the freeze frame data) ±375 rpm
 Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]
 Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

VG33E

GI

MA

LC

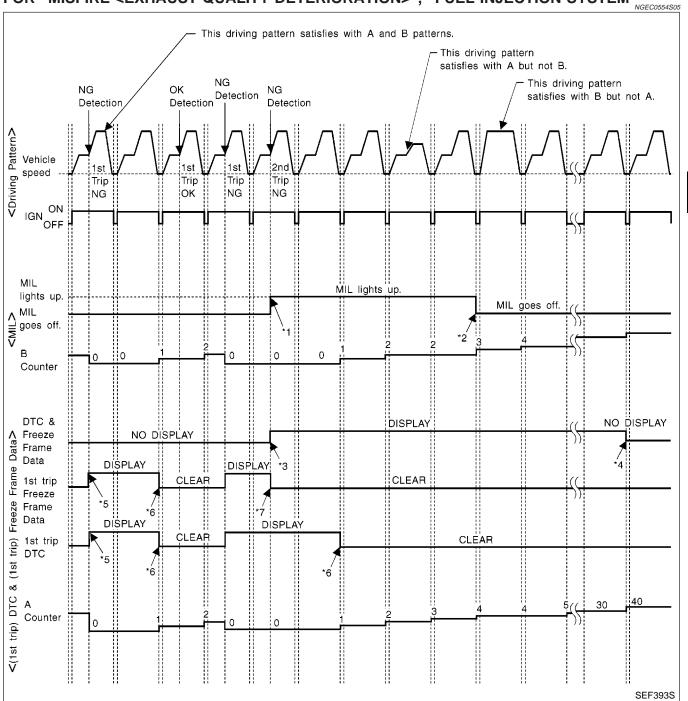
EC

FE

GL

MT

AT


TF

PD

AX

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

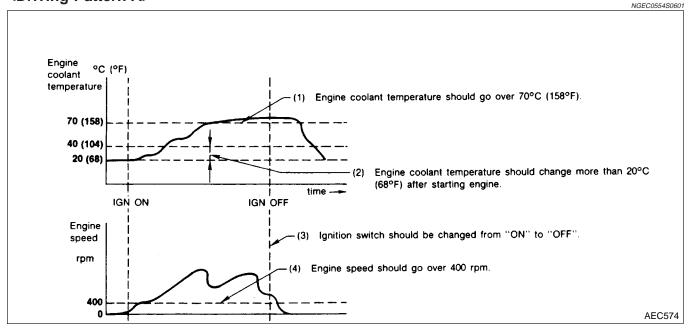
- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.

 (The DTC and the freeze frame)
 - (The DTC and the freeze frame data still remain in ECM.)
- 5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

50

ST

BT


HA

SC

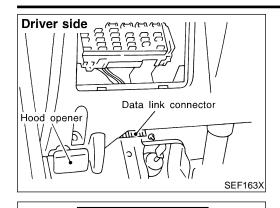
OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>


NGEC0554S0602

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

CONSULT-II

CONSULT-II INSPECTION PROCEDURE

panel near the fuse box cover.)

(Data link connector for CONSULT-II is located under LH dash

=NGEC0555

NGEC0555S01

Connect "CONSULT-II" to data link connector for CONSULT-II.

MA

GI

LC

Turn ignition switch ON.

Turn ignition switch OFF.

Touch "START".

EC

FE

GL

MT

AT

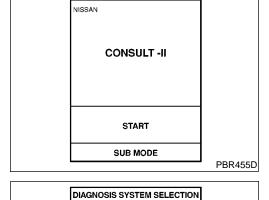
TF

PD

AX

SU

For further information, see the CONSULT-II Operation


ST

BT

HA

SC

EL

ENGINE

Touch "ENGINE".

SELECT DIAG MODE WORK SUPPORT **SELF-DIAG RESULTS** DATA MONITOR **ACTIVE TEST DTC & SRT CONFIRMATION ECM PART NUMBER** SEF673X Perform each diagnostic test mode according to each service procedure.

Manual.

PEF895K

CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

NGEC0555S02

			DIAGNOSTIC TEST MODE							
	Mana			SELF-DIAGNOSTIC RESULTS		DATA	DATA	DTC CONFIRMATION		
	Item		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	
		Camshaft position sensor		Х	Х	Х				
		Mass air flow sensor		Х		Х				
		Engine coolant temperature sensor		Х	Х	Х	Х			
		Front heated oxygen sensor		Х		Х		Х	Х	
		Rear heated oxygen sensor		Х		Х		Х	Х	
		Vehicle speed sensor		Х	Х	Х				
		Throttle position sensor		Х		Х				
RTS		Fuel tank temperature sensor		Х		Х	Х			
T P.		EVAP control system pressure sensor		Х		Х				
NEN		Absolute pressure sensor		Х		Х				
ENGINE CONTROL COMPONENT PARTS	10	EGR temperature sensor (If so equipped)		Х		Х				
0L 0	INPUT	Intake air temperature sensor		Х		Х				
NTR		Crankshaft position sensor (OBD)		Х						
8		Knock sensor		Х						
GINE		Ignition switch (start signal)				Х				
Ш		Closed throttle position switch		Х		Х				
		Closed throttle position switch (throttle position sensor signal)				Х				
		Air conditioner switch				Х				
		Park/neutral position (PNP) switch		Х		Х				
		Power steering oil pressure switch				Х				
		Battery voltage				Х				
		Ambient air temperature switch				Х				

CONSULT-II (Cont'd)

					DIAGNO	OSTIC TES	T MODE		
			Work	1	GNOSTIC ULTS	D.4.T.4		DTC CONFIRMATION	
	Item		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
		Injectors				Х	Х		
		Power transistor (Ignition timing)		X (Ignition signal)		х	х		
TS		IACV-AAC valve	X	X		Х	X		
IT PAR		EVAP canister purge volume control solenoid valve		Х		Х	Х		Х
NE		Air conditioner relay				Х			
MPC	5	Fuel pump relay	Х			Х	Х		
8	OUTPUT	Cooling fan		Х		Х	Х		
ENGINE CONTROL COMPONENT PARTS	ō	EGRC-solenoid valve (If so equipped)		Х		Х	Х		
В СС		Front heated oxygen sensor heater		Х		Х		Х	
N S		Rear heated oxygen sensor heater		Х		Х		Х	
6		EVAP canister vent control valve		Х		Х	Х		
		Vacuum cut valve bypass valve		Х		Х	Х		Х
		MAP/BARO switch solenoid valve		Х		Х	Х		
		Calculated load value			Х	Х			

X: Applicable

G[

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

CL

MT

AT

TF

PD

SU

BR

ST

RS

BT

HA

SC

EL

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-629.

VG33E

CONSULT-II (Cont'd)

	FUNCTION =NGEC0555503						
Diagnostic test mode	Function						
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.						
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly. *1						
Data monitor	Input/Output data in the ECM can be read.						
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.						
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.						
ECM part number	ECM part number can be read.						

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

WORK SUPPORT MODE

NGEC0555S04

WORK ITEM	CONDITION	USAGE
IACV-AAC VALVE ADJ	SET ENGINE SPEED AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. • ENGINE WARMED UP • NO-LOAD	When adjusting initial ignition timing and idle speed
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW ON ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM FUEL TANK TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system

SELF-DIAGNOSTIC MODE DTC and 1st Trip DTC

NGEC0555S05

Regarding items of "DTC and 1st trip DTC", refer to "TROUBLE DIAGNOSIS — INDEX" (See EC-581.)

Freeze Frame Data and 1st Trip F	Freeze Frame Data
----------------------------------	-------------------

	NGEC0555S050	2
Freeze frame data item *1	Description	G[
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to "TROUBLE DIAGNOSIS — INDEX", EC-581.)	- MA
FUEL SYS-B1 *2	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction 	EM
FUEL SYS-B2 *2	"MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop	LG
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.	EC
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.	
S-FUEL TRIM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed. The chart term fuel trim indicates dupomic as instanteness a feedback company to the base fuel.	
S-FUEL TRIM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.	CL
L-FUEL TRIM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim is all the moment a malfunction is detected is displayed.	_
L-FUEL TRIM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.	MT
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.	
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.	- AT
ABSOL PRESS [kPa] or [kg/cm ²] or [psi]	The absolute pressure at the moment a malfunction is detected is displayed.	TF
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.	PD
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.	

^{*1:} The items are the same as those of 1st trip freeze frame data.

SU

BR

ST

RS

BT

HA

SC

 $^{^{\}star}$ 2: Regarding D22 model, "-B1" indicates right bank and "-B2" indicates left bank.

VG33E

CONSULT-II (Cont'd)

DATA MONITOR MODE =NGEC0555S06 **ECM** Main sig-Monitored item [Unit] input sig-Description Remarks nals nals • Indicates the engine speed computed CMPS-RPM (POS) from the POS signal (1° signal) of the 0 \bigcirc [rpm] camshaft position sensor. • Indicates the engine speed computed CMPS-RPM (REF) \bigcirc from the REF signal (120° signal) of [rpm] the camshaft position sensor. The signal voltage of the mass air flow • When the engine is stopped, a certain MAS AIR/FL SE [V] \bigcirc \bigcirc sensor is displayed. value is indicated. • When the engine coolant temperature • The engine coolant temperature sensor is open or short-circuited, ECM COOLAN TEMP/S (determined by the signal voltage of \bigcirc \bigcirc enters fail-safe mode. The engine [°C] or [°F] the engine coolant temperature sencoolant temperature determined by the sor) is displayed. ECM is displayed. FR O2 SEN-B2 [V] \bigcirc \bigcirc • The signal voltage of the front heated oxygen sensor is displayed. \bigcirc FR O2 SEN-B1 [V] RR O2 SEN-B1 [V] \bigcirc \bigcirc • The signal voltage of the rear heated oxygen sensor is displayed. RR O2 SEN-B2 [V] 0 · Display of front heated oxygen sensor FR O2 MNTR-B2 signal during air-fuel ratio feedback \bigcirc \bigcirc After turning ON the ignition switch, control: [RICH/LEAN] "RICH" is displayed until air-fuel mix-RICH ... means the mixture became ture ratio feedback control begins. "rich", and control is being affected • When the air-fuel ratio feedback is toward a leaner mixture. clamped, the value just before the FR O2 MNTR-B1 LEAN ... means the mixture became \bigcirc \bigcirc clamping is displayed continuously. [RICH/LEAN] "lean", and control is being affected toward a rich mixture. • Display of rear heated oxygen sensor RR O2 MNTR-B1 signal: \bigcirc [RICH/LEAN] RICH ... means the amount of oxygen after three way catalyst is relatively • When the engine is stopped, a certain value is indicated. LEAN ... means the amount of oxygen RR O2 MNTR-B2 \bigcirc \bigcirc after three way catalyst is relatively [RICH/LEAN] • The vehicle speed computed from the VHCL SPEED SE vehicle speed sensor signal is dis- \bigcirc \bigcirc [km/h] or [mph] played. • The power supply voltage of ECM is BATTERY VOLT [V] 0 \bigcirc displayed. • The throttle position sensor signal volt-THRTL POS SEN [V] \bigcirc \bigcirc age is displayed. • The fuel temperature judged from the TANK F/TMP SE \bigcirc fuel tank temperature sensor signal [°C] or [°F] voltage is displayed. EGR TEMP SEN [V] • The signal voltage of the EGR tem- \bigcirc (If so equipped) perature sensor is displayed. • The intake air temperature determined INT/A TEMP SE by the signal voltage of the intake air \bigcirc [°C] or [°F] temperature sensor is indicated.

VG33E CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input sig-nals	Main sig- nals	Description	Remarks	((
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	After starting the engine, [OFF] is displayed regardless of the starter signal.	
CLSD THL/P SW [ON/OFF]			 Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch. 		
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 		[
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 		
P/N POSI SW [ON/OFF]	0	0	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 		[
PW/ST SIGNAL [ON/OFF]	0	0	[ON/OFF] condition of the power steering oil pressure switch deter- mined by the power steering oil pres- sure signal is indicated.		(
AMB TEMP SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the ambient air temperature switch signal.		
IGNITION SW [ON/OFF]	0		Indicates [ON/OFF] condition from ignition switch.		
INJ PULSE-B2 [msec] INJ PULSE-B1 [msec]		0	Indicates the actual fuel injection pulse width compensated by ECM according to the input signals.	When the engine is stopped, a certain computed value is indicated.	
B/FUEL SCHDL [msec]		0	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.		
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.	
IACV-AAC/V [%]		0	 Indicates the IACV-AAC valve control value computed by ECM according to the input signals. 		
PURG VOL C/V [%]		0	 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 		
A/F ALPHA-B2 [%]			The mean value of the air-fuel ratio foodback correction factor per cycle is	When the engine is stopped, a certain value is indicated.	
A/F ALPHA-B1 [%]			feedback correction factor per cycle is indicated.	This data also includes the data for the air-fuel ratio learning control.	
EVAP SYS PRES [V]			The signal voltage of EVAP control system pressure sensor is displayed.		
AIR COND RLY [ON/OFF]			The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.		

Monitored item [Unit]	ECM input sig- nals	Main sig- nals	Description	Remarks
FUEL PUMP RLY [ON/OFF]			Indicates the fuel pump relay control condition determined by ECM accord- ing to the input signals.	
COOLING FAN [ON/OFF]			Indicates the control condition of the cooling fan (determined by ECM according to the input signal). ON Operation OFF Stop	
EGRC SOL/V [ON/OFF] (FLOW/CUT) (If so equipped)			The control condition of the EGRC-solenoid valve (determined by ECM according to the input signal) is indicated. ON EGR is operational OFF EGR operation is cut-off	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
FR O2 HTR-B1 [ON/OFF]			Indicates [ON/OFF] condition of front heated oxygen sensor heater deter-	
FR O2 HTR-B2 [ON/OFF]			mined by ECM according to the input signals.	
RR O2 HTR-B1 [ON/OFF]			Indicates [ON/OFF] condition of rear heated oxygen sensor heater deter-	
RR O2 HTR-B2 [ON/OFF]			mined by ECM according to the input signals.	
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
ABSOL TH·P/S [%]			"Absolute throttle position sensor" indicates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.	
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal volt- age of the mass airflow sensor.	
MAP/BARO SW/V [MAP/BARO]			The control condition of the MAP/ BARO switch solenoid valve (determined by ECM according to the input signal) is indicated. MAP Intake manifold absolute pressure BARO Ambient air barometric pressure	

GI

MA

Monitored item [Unit]	ECM input sig-nals	Main sig- nals	Description	Remarks
ABSOL PRES/SE [V]			The signal voltage of the absolute pressure sensor is displayed.	
VOLTAGE [V]			Voltage measured by the voltage probe.	
PULSE [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured.

NOTE:

- Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
- Regarding D22 model, "-B1" indicates right bank and "-B2" indicates left bank.

ACTIVE TEST MODE NGEC0555S07 JUDGEMENT CONDITION CHECK ITEM (REMEDY) **TEST ITEM** • Engine: Return to the original Harness and connector **FUEL INJEC**trouble condition If trouble symptom disappears, see MT Fuel injectors TION · Change the amount of fuel injec-CHECK ITEM. Front heated oxygen sensor tion using CONSULT-II. AT • Engine: After warming up, idle the engine. IACV-AAC/V Engine speed changes according to · Harness and connector Change the IACV-AAC valve **OPENING** the opening percent. IACV-AAC valve TF opening percent using CON-SULT-II. • Engine: Return to the original Harness and connector PD **ENG COOLANT** trouble condition • Engine coolant temperature sen-If trouble symptom disappears, see **TEMP** · Change the engine coolant tem-CHECK ITEM. sor perature using CONSULT-II. Fuel injectors • Engine: Return to the original trouble condition **IGNITION TIM-**If trouble symptom disappears, see • Timing light: Set Adjust initial ignition timing CHECK ITEM. **ING** • Retard the ignition timing using CONSULT-II. • Engine: After warming up, idle Harness and connector Compression the engine. POWER BAL- A/C switch "OFF" Injectors Engine runs rough or dies. ST **ANCE** • Shift lever "N" Power transistor • Cut off each injector signal one at Spark plugs a time using CONSULT-II. Ignition coils • Ignition switch: ON Harness and connector COOLING FAN • Turn the cooling fan "ON" and Cooling fan moves and stops. · Cooling fan motor "OFF" using CONSULT-II. Cooling fan relay . Ignition switch: ON (Engine stopped) **FUEL PUMP** Fuel pump relay makes the operat- Harness and connector Turn the fuel pump relay "ON" HA **RELAY** ing sound. Fuel pump relay and "OFF" using CONSULT-II and listen to operating sound. SC • Ignition switch: ON EGRC SOLE-(Engine stopped) Harness and connector Solenoid valve makes an operating NOID VALVE Turn solenoid valve "ON" and sound. Solenoid valve "OFF" with the CONSULT-II and (If so equipped) listen to operating sound.

VG33E

CONSULT-II (Cont'd)

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)					
SELF-LEARN- ING CONT	• In this test, the coefficient of self-learning control mixture ratio returns to the original coefficient by touching "CLEAR" on the screen.							
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorSolenoid valve					
TANK F/TEMP SEN	Change the fuel tank temperature using CONSULT-II.							
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve					
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve					
MAP/BARO SW/V	Ignition switch: ON (Engine stopped) Turn the MAP/BARO switch solenoid valve between "MAP" and "BARO" using CONSULT-II and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve					

DTC CONFIRMATION MODE SRT STATUS Mode

NGEC0555S08

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-629.

SRT WORK SUPPORT Mode

NGEC0555S0803

SRT status and some of the data monitor item can be read.

VG33E CONSULT-II (Cont'd)

	DIC WORK	Support Mode	NGEC0555S0	802
Test mode	Test item	Condition	Reference page	_
	EVAP SML LEAK P0440		EC-947	
	EVAP SML LEAK P1440		EC-1065	
EVAPORATIVE SYSTEM	PURG VOL CN/V P1444		EC-1067	
	PURGE FLOW P1447		EC-1086	
	VC CUT/V BP/V P1491		EC-1112	_
	FR O2 SEN-B1 P0130		EC-763	
	FR O2 SEN-B1 P0131		EC-772	
	FR O2 SEN-B1 P0132		EC-780	
ED OO CENCOD	FR O2 SEN-B1 P0133		EC-788	
FR O2 SENSOR	FR O2 SEN-B2 P0150		EC-763	— [F
	FR O2 SEN-B2 P0151	Refer to corresponding	EC-772	_
	FR O2 SEN-B2 P0152	trouble diagnosis for DTC.	EC-780	— ©
	FR O2 SEN-B2 P0153		EC-788	
	RR O2 SEN-B1 P0137		EC-815	— MT
	RR O2 SEN-B1 P0138		EC-825	_
DD OO CENCOD	RR O2 SEN-B1 P0139		EC-835	
RR O2 SENSOR	RR O2 SEN-B2 P0157		EC-815	— T
	RR O2 SEN-B2 P0158		EC-825	_ "
	RR O2 SEN-B2 P0159		EC-835	
	EGR SYSTEM P0400		EC-919	
EGR SYSTEM (If so equipped)	EGRC-BPT/VLV P0402		EC-933	
oo oquippou/	EGR SYSTEM P1402		EC-1055	_

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

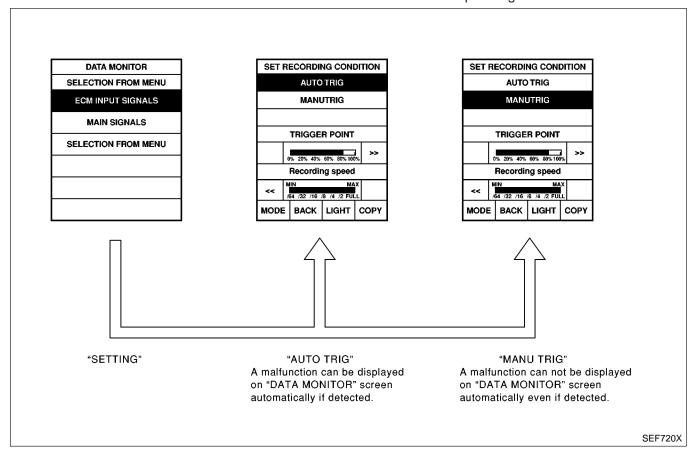
- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.
 In other words, DTC/1st trip DTC and malfunction item will be

In other words, DTC/1st trip DTC and malfunction item will be displayed at the moment the malfunction is detected by ECM. DATA MONITOR can be performed continuously until a malfunction is detected. However, DATA MONITOR cannot continue any longer after the malfunction detection.

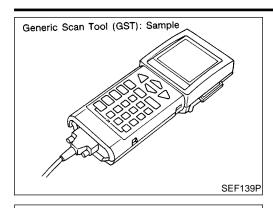
- 2) "MANU TRIG" (Manual trigger):
- DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.

DATA MONITOR can be performed continuously even though a malfunction is detected.

Use these triggers as follows:


- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the

BT


HA

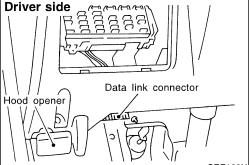
SC

- "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 When you are inspecting the circuit by gently shaking (or twist
 - ing) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", *GI-24*.
- 2) "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

Generic Scan Tool (GST)

Generic Scan Tool (GST) DESCRIPTION

=NGEC0556


Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 7 different functions explained on the next page. ISO9141 is used as the protocol.

GI

The name "GST" or "Generic Scan Tool" is used in this service manual.

MA

LC

GST INSPECTION PROCEDURE

NGEC0556S02

Turn ignition switch OFF.

Connect "GST" to data link connector for GST. (Data link connector for GST is located under LH dash panel near the fuse box cover.)

EC

FE

GL

MT

Turn ignition switch ON.

shown.)

Enter the program according to instruction on the screen or in

the operation manual. (*: Regarding GST screens in this section, sample screens are

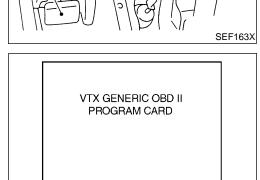
TF

PD

AX

Perform each diagnostic mode according to each service pro-

For further information, see the GST Operation Manual of the tool maker.


ST

BT

HA

SC

EL

OBD II FUNCTIONS

Press [ENTER]

Sample screen*

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT F9: UNIT CONVERSION

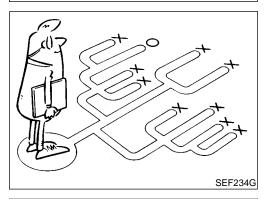
Sample screen*

AEC060B

AEC059B

VG33E

Generic Scan Tool (GST) (Cont'd)


		FUNCTION NGEC0556S03
Dia	agnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-654).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed. EVAP canister vent control valve open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch OFF Low fuel temperature Too much pressure is applied to EVAP system
MODE 9	CALIBRATION ID	This mode is to enable the off-board to request vehicle specific vehicle information such as Vehicle Identification Number (VIN) and calibration IDs.

TROUBLE DIAGNOSIS — INTRODUCTION

VG33E

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE Road conditions Operating conditions,

Weather conditions,

Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-667.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for the models with EVAP (SMALL LEAK) diagnosis].

MA

EC

MIT

AT

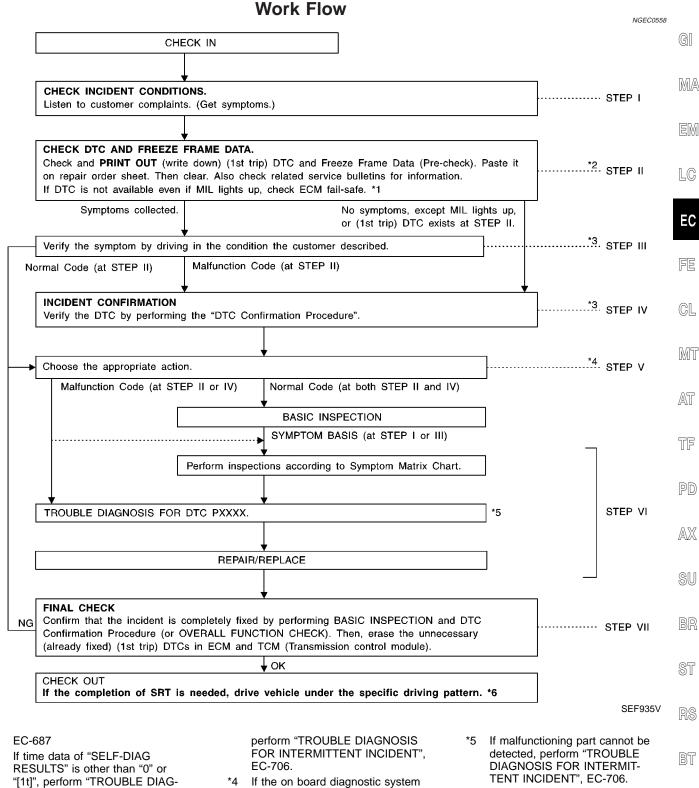
TF

PD

HA

SC

Worksheet Sample


NGEC0557S0101

Customer name MR/MS		Model & Year	VIN
Engine #		Trans.	Mileage
Incident Date		Manuf. Date	In Service Date
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly	y screwed on.
	☐ Startability	☐ Inpossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position d by throttle position
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece ☐ Just after stopping ☐ While loadi	elerating
Incident occu	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night [☐ In the daytime
Frequency		☐ All the time ☐ Under certain cond	ditions
Weather cond	ditions	☐ Not affected	
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F
		☐ Cold ☐ During warm-up ☐	After warm-up
Engine conditions		Engine speed	4,000 6,000 8,000 rpm
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway
Driving conditions		☐ While accelerating ☐ While cruis ☐ While decelerating ☐ While turni	•
		Vehicle speed 0 10 20	30 40 50 60 MPH
Malfunction in	ndicator lamp	☐ Turned on ☐ Not turned on	

MTBL0017

TROUBLE DIAGNOSIS — INTRODUCTION

- NOSIS FOR INTERMITTENT INCIDENT", EC-706.
- If the incident cannot be verified,
- cannot be performed, check main power supply and ground circuit. Refer to "TROUBLE DIAGNOSIS FOR POWER SUPPLY", EC-707.
- *6 EC-634

HA

	DESCRIPTION FOR WORK FLOW
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-666.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-640.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-688.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-669.) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-688.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-692, EC-697. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection", <i>GI-26</i> . Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code [DTC No. P0000 or 0505] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-640.)

NGEC0559

Basic Inspection

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

al G

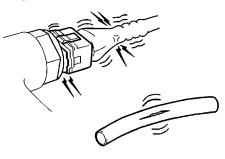
- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

EC

FE

GL

MT


AT

TF

MA

INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related problem, or the current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts

SEF983U

Models with CONSULT-II	>	GO TO 2.
Models with GST	•	GO TO 2.
Models with No Tools	•	GO TO 16.

/\\ \\\

PD

2 CONNECT CONSULT-II OR GST TO THE VEHICLE

(P) With CONSULT-II

Connect "CONSULT-II" to the data link connector for CONSULT-II and select "ENGINE" from the menu. Refer to EC-651.

Connect "GST" to the data link connector for GST.

Refer to EC-663.

1.0.0. 10 20 000.		
Models with CONSULT-II	>	GO TO 3.
Models with GST	\	GO TO 15.

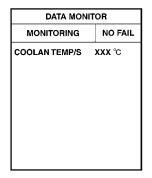
ST

BT

HA

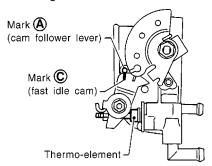
SC

EL


 \mathbb{N}

Basic Inspection (Cont'd)

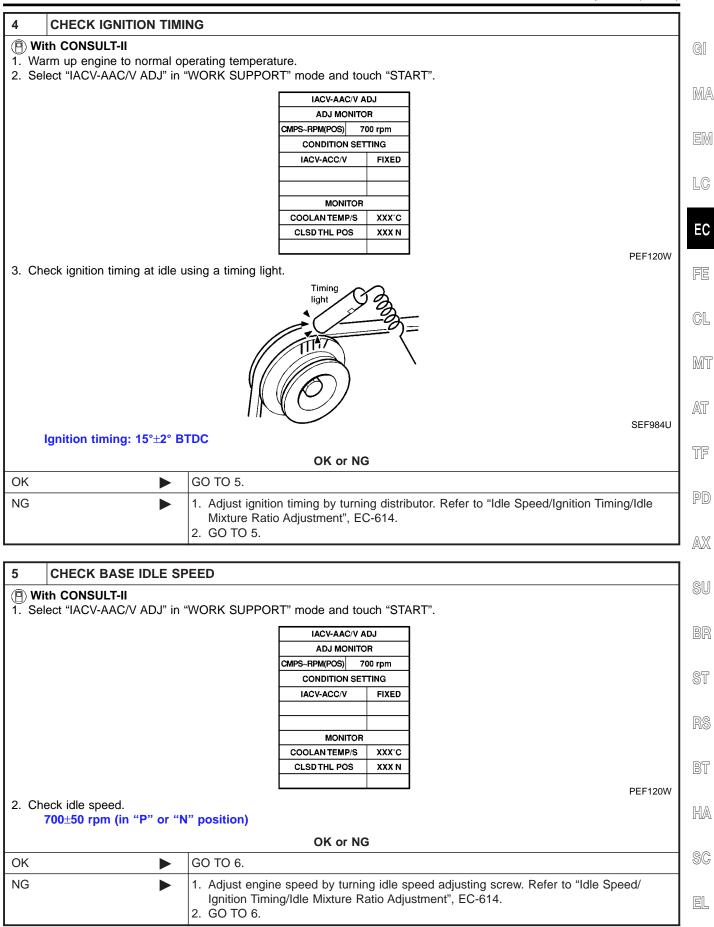
3 CHECK FI CAM FUNCTION


(I) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up.

PEF002P

- 4. When engine coolant temperature is 75 to 85°C (167 to 185°F), check the following.
- The center of mark A is aligned with mark C.
- The cam follower lever's roller is not touching the fast idle cam.


SEF971R

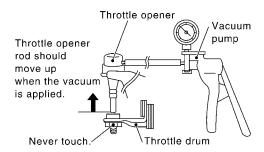
OK or NG

OK)	>	GO TO 4.
NG	>	Check FI cam. Refer to "Fast Idle Cam (FIC)", EC-612.

VG33E

Basic Inspection (Cont'd)

Basic Inspection (Cont'd)


CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION-I

(P) With CONSULT-II

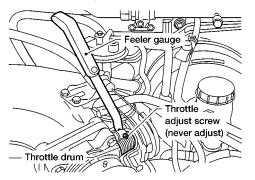
NOTE:

Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam, refer to procedure 3.
- 3. Stop engine.
- 4. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 5. Connect suitable vacuum hose to vacuum pump as shown below.

SEF793W

6. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)}


GO TO 7.

VG33E

Basic Inspection (Cont'd)

CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION-II

- 1. Turn ignition switch ON.
- 2. Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 3. Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.3 mm (0.012 in) and 0.4 mm (0.016 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure and check the signal.

AEC887A

DATA MONITOR			
NO FAIL			
ON			

PEF577W

"CLSD THL/P SW" signal should remain "ON" while inserting 0.3 mm (0.012 in) feeler gauge. "CLSD THL/P SW" signal should remain "OFF" while inserting 0.4 mm (0.016 in) feeler gauge.

OK	or	NG
----	----	----

OK •	GO TO 12.
NG ▶	GO TO 8.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

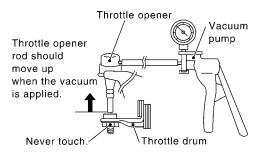
ST

KS

BT

HA

SC

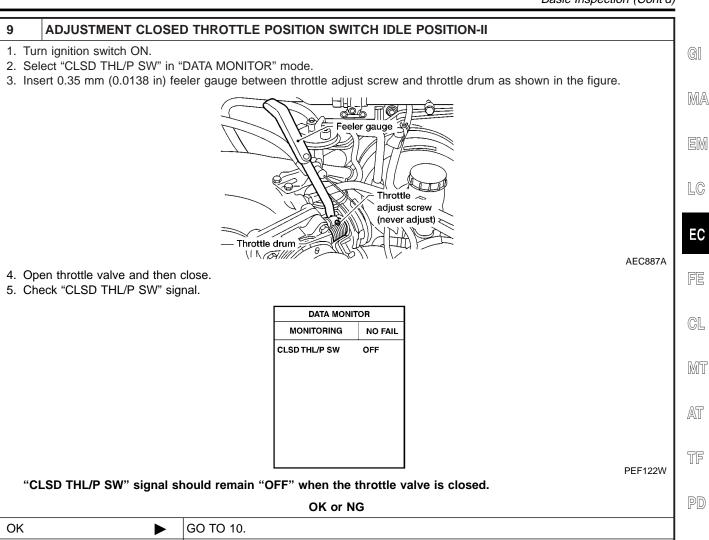

Basic Inspection (Cont'd)

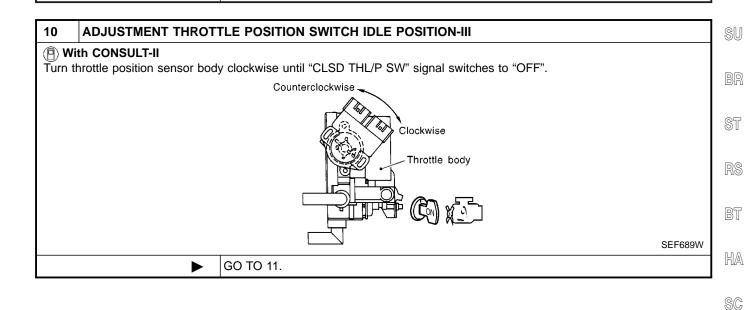
ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION

(P) With CONSULT-II

NOTE:

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "CLSD THL/P SW" signal, doing so may cause an incorrect adjustment.
- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 3.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.
- 5. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 6. Connect suitable vacuum hose to vacuum pump as shown below.




SEF793W

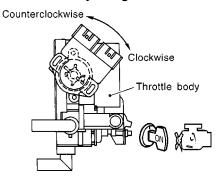
7. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.82 inHg)] until the throttle drum becomes free from the rod of the throttle opener. During adjustment procedure, vacuum should be applied.

GO TO 9.

Basic Inspection (Cont'd)

GO TO 8.

NG


Basic Inspection (Cont'd)

ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION-IV

(P) With CONSULT-II

11

- 1. Remove 0.35 mm (0.0138 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge.
- 2. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body counterclockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON", then temporarily tighten sensor body fixing bolts.

SEF689W

- 3. Make sure two or three times that the signal is "ON" when the throttle valve is closed and "OFF" when it is opened.
- 4. Remove 0.3 mm (0.012 in) feeler gauge then insert 0.4 mm (0.016 in) feeler gauge.
- 5. Make sure two or three times that the signal remains "OFF" when the throttle valve is closed.
- 6. Tighten throttle position sensor.
- 7. Check the "CLSD THL/P SW" signal again.

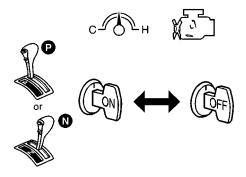
The signal remains "OFF" while closing throttle valve.

OK or NG

OK ▶	GO TO 12.
NG ►	GO TO 8.

VG33E

Basic Inspection (Cont'd)


12 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(P) With CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Remove feeler gauge.
- 2. Start engine.
- 3. Warm up engine to normal operating temperature.
- 4. Select "CLSD THL POS" in "DATA MONITOR" mode.
- 5. Stop engine. (Turn ignition switch OFF.)
- 6. Turn ignition switch ON and wait at least 5 seconds.

7. Turn ignition switch OFF and wait at least 5 seconds.

8. Repeat steps 5 and 6 until "CLSD THL POS" signal changes to "ON".

TOR
NO FAIL
ON

PEF123W

SEF864V

► GO TO 13.

13 REMOVE VACUUM PUMP

- 1. Release vacuum from the throttle opener.
- 2. Remove vacuum pump and vacuum hose from the throttle opener.
- 3. Reinstall the original vacuum hose to the throttle opener securely.

■ GO TO 14.

14 CHECK TARGET IDLE SPEED

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "CMPS-RPM (REF)" in "DATA MONITOR" mode.
- 3. Check idle speed.

750±50 rpm (in "P" or "N" position)

OK or NG

OK		INSPECTION END
NG	-	Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-614.

G

MA

LG

EC

FE

CL

ת מק

MT

AT

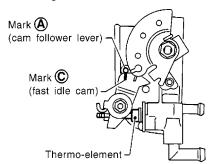
TF

PD

ST

KS

BT


HA

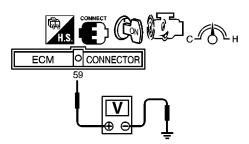
SC

15 CHECK FI CAM FUNCTION

® With GST

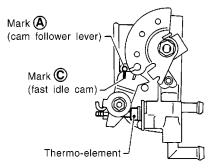
- 1. Turn ignition switch ON.
- 2. Select "MODE 1" with GST.
- 3. Start engine and warm it up.
- 4. When engine coolant temperature is 75 to 85°C (167 to 185°F), check the following.
- The center of mark A is aligned with mark C.
- The cam follower lever's roller is not touching the fast idle cam.

SEF971R


OK or NG

ОК	>	GO TO 17.
NG	•	Check FI cam. Refer to "Fast Idle Cam (FIC)", EC-612.

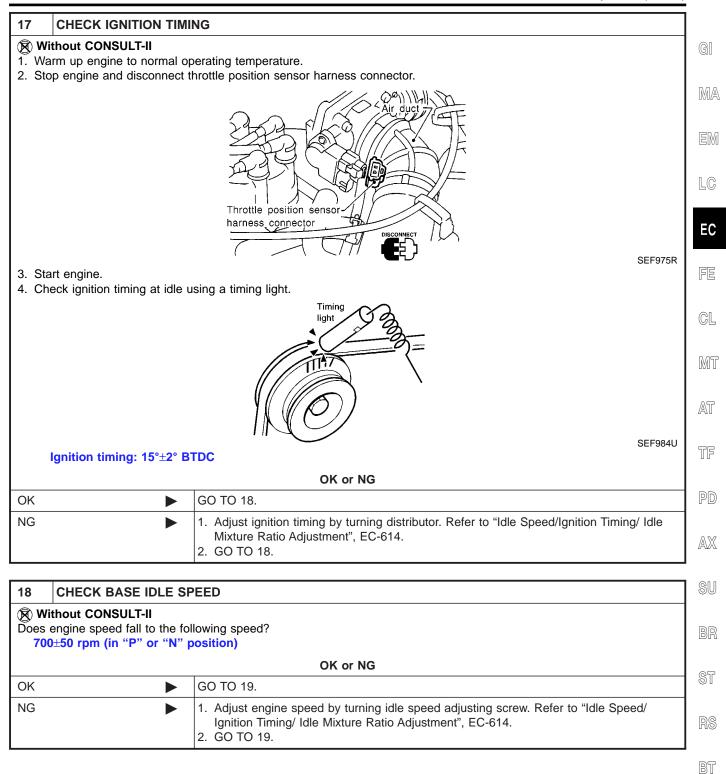
16 CHECK FI CAM FUNCTION


No Tools

- 1. Set the voltmeter between ECM terminal 59 (Engine coolant temperature sensor signal) and ground.
- 2. Start engine and warm it up.

SEF119W

- 3. When the voltage is between 1.10 to 1.36V, check the following.
- The center of mark A is aligned with mark C.
- The cam follower lever's roller is not touching the fast idle cam.


SEF971R

OK or NO	

OK •	•	GO TO 17.
NG	•	Check FI cam. Refer to "Fast Idle Cam (FIC)", EC-612.

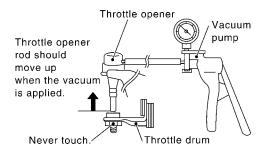
VG33E

Basic Inspection (Cont'd)

HA

SC

Basic Inspection (Cont'd)


19 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION

(Without CONSULT-II

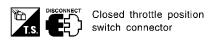
NOTE:

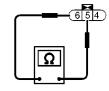
Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam, refer to procedure 12 or 13.
- 3. Stop engine.
- 4. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 5. Connect suitable vacuum hose to vacuum pump as shown below.

SEF793W

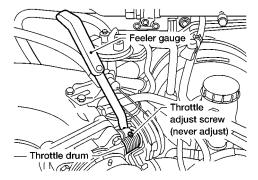
6. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener. During checking procedure, vacuum should be applied.




GO TO 20.

Basic Inspection (Cont'd)

20 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION-I


- 1. Disconnect closed throttle position switch harness connector.
- 2. Check continuity between closed throttle position switch terminals 5 and 6 under the following conditions.

EF862V

• Insert the 0.3 mm (0.012 in) and 0.4 mm (0.016 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure.

AEC887A

OK or NG

OK •	GO TO 25.
NG ►	GO TO 21.

GI

MA

EM

LC

EC

.0

FE

CL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

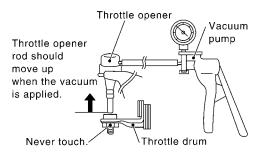
HA

SC

FI

[&]quot;Continuity should exist" while inserting 0.3 mm (0.012 in) feeler gauge.

[&]quot;Continuity should not exist" while inserting 0.4 mm (0.016 in) feeler gauge.

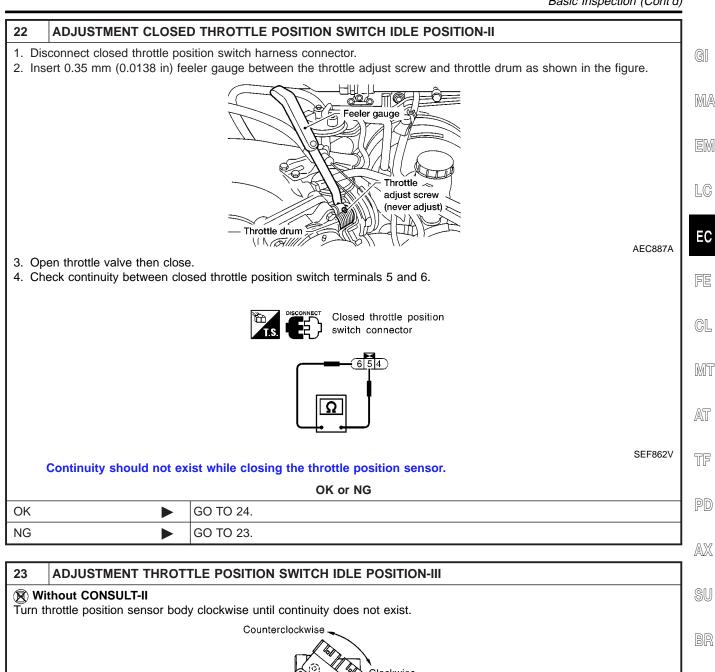

ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION

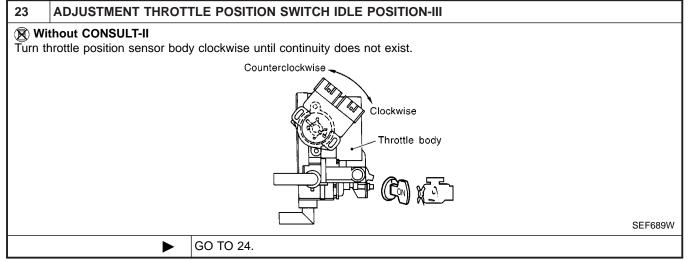
(R) Without CONSULT-II

NOTE:

21

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "continuity", doing so may cause an incorrect adjustment.
- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 12 or 13.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.
- 5. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 6. Connect suitable vacuum hose to vacuum pump as shown below.


SEF793W


7. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener. During adjustment procedure, vacuum should be applied.

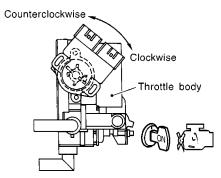
GO TO 22.

Basic Inspection (Cont'd)

ST

BT

HA


SC

Basic Inspection (Cont'd)

24 ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION-IV

(R) Without CONSULT-II

- 1. Remove 0.35 mm (0.0138 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge.
- 2. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body counterclockwise and stop it when the continuity comes to exist, then temporarily tighten sensor body fixing bolts.

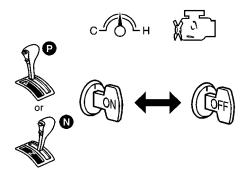
SEF689W

- 3. Make sure two or three times that the continuity exists when the throttle valve is closed and continuity does not exist when it is opened.
- 4. Remove 0.3 mm (0.012 in) feeler gauge then insert 0.4 mm (0.016 in) feeler gauge.
- 5. Make sure two or three times that the continuity does not exist when the throttle valve is closed.
- 6. Tighten throttle position sensor.
- 7. Check the continuity again.

Continuity does not exist while closing the throttle valve.

OK or NG

OK •	GO TO 25.
NG •	GO TO 21.


RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(R) Without CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Remove feeler gauge.
- 2. Start engine.
- 3. Warm up engine to normal operating temperature.
- 4. Stop engine. (Turn ignition switch OFF.)
- 5. Turn ignition switch ON and wait at least 5 seconds.

SEF864V

- 6. Turn ignition switch OFF and wait at least 5 seconds.
- 7. Repeat steps 4 and 5, 20 times.

► GO TO 26.

TROUBLE DIAGNOSIS — BASIC INSPECTION

VG33E

26 REINSTALLATION		d)
Without CONSULT-II		1
1. Release vacuum from the th		1
	vacuum hose from the throttle opener. n hose to the throttle opener securely.	1
	ensor harness connector and closed throttle position switch harness connector.	1
	0 to 3,000 rpm) two or three times under no-load and then run engine at idle speed.	1
• · · · · · · · · · · · · · · · · · · ·	GO TO 27.	1
		_
27 CHECK TARGET IDLE	SPEED	
(Without CONSULT-II		Ι.
	to normal operating temperature.	Ш
2. Check idle speed.		Ш
750±50 rpm (in "P" or "	N" position)	Ι'
	OK or NG	
OK •	GO TO 28.	_
NG ►	Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment",	
	EC-614.	╛
		_
28 ERASE UNNECESSA	RY DTC	Т
After this inspection, unnecessa	ary DTC No. might be displayed.	1
	M and TCM (Transmission control module).	
	ISSION-RELATED DIAGNOSTIC INFORMATION", EC-640 and "HOW TO ERASE DTC",	Т
AT-35.		
		Т
•	INSPECTION END	+
<u> </u>	INSPECTION END	
<u> </u>	INSPECTION END	_
<u> </u>	INSPECTION END	
<u> </u>	INSPECTION END	_
>	INSPECTION END	1
•	INSPECTION END	_
<u> </u>	INSPECTION END	_
<u>▶</u>	INSPECTION END	_
<u>▶</u>	INSPECTION END	1
•	INSPECTION END	_
<u>▶</u>	INSPECTION END	_
<u>▶</u>	INSPECTION END	1
<u>▶</u>	INSPECTION END	1
▶	INSPECTION END	_
	INSPECTION END	
	INSPECTION END	
	INSPECTION END	_
	INSPECTION END	_
	INSPECTION END	
	INSPECTION END	
	INSPECTION END	

SC

EL

DTC Inspection Priority Chart

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)
1	 P0100 Mass air flow sensor (0102) P0110 Intake air temperature sensor (0401) P0115 P0125 Engine coolant temperature sensor (0103) (0908) P0120 Throttle position sensor (0403) P0180 Fuel tank temperature sensor (0402) P0325 Knock sensor (0304) P0335 P1336 Crankshaft position sensor (OBD) (0802) (0905) P0340 Camshaft position sensor (0101) P0500 Vehicle speed sensor (0104) P0600 A/T communication line P0605 ECM (0301) P1320 Ignition signal (0201) P1400 EGRC-solenoid valve (1005) (If so equipped) P1605 A/T diagnosis communication line (0804) P1706 Park/Neutral position (PNP) switch (1003)
2	 P0105 Absolute pressure sensor (0803) P0130-P0134, P0150-P0154 Front heated oxygen sensor (0413-0415) (0503)(0509), (0303) (0409-0412) P0135 P0155 Front heated oxygen sensor heater (0901) (1001) P0137-P0140, P0157-P0160 Rear heated oxygen sensor (0510-0512) (0707), (0313-0315) (0708) P0141 P0161 Rear heated oxygen sensor heater (0902) (1002) P0443 P1444 EVAP canister purge volume control solenoid valve (1008) (0214) P0446 P1446 P1448 EVAP canister vent control valve (0903) (0215) (0309) P0450 EVAP control system pressure sensor (0704) P0510 Closed throttle position switch (0203) P0705-P0755 P1705 P1760 A/T related sensors, solenoid valves and switches (1101-1208) P1105 MAP/BARO switch solenoid valve (1302) P1401 EGR temperature sensor (0305) (If so equipped) P1447 EVAP control system purge flow monitoring (0111) P1490 P1491 Vacuum cut valve bypass valve (0801) (0311)
3	 P0171 P0172 P0174 P0175 Fuel injection system function (0115) (0114) (0210) (0209) P0217 Engine coolant overtemperature enrichment protection (0211) P0306 - P0300 Misfire (0603 - 0701) P0400 P1402 EGR function (0302) (0514) (If so equipped) P0402 EGRC-BPT valve function (0306) (If so equipped) P0420 P0430 Three way catalyst function (0702) (0703) P0440, P1440, P0455 EVAP control system (SMALL LEAK) (0705), (0213), (GROSS LEAK) (0715) P0505 IACV-AAC valve (0205) P0731-P0734 P0744 A/T function (1103 - 1106) (1107) P1148 P1168 Closed loop control (0307) (0308)

Fail-safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MIL illuminates.

DTC	No.				-
CONSULT-II GST	ECM*1	Detected items	Engine operatir	ng condition in fail-safe mode	MA
P0100	0102	Mass air flow sensor circuit	Engine speed will not rise more	e than 2,400 rpm due to the fuel cut.	- En
P0115	0103	Engine coolant tem- perature sensor circuit	after turning ignition switch ON	Il be determined by ECM based on the time or START. ne coolant temperature decided by ECM.	LC
			Condition	Engine coolant temperature decided (CONSULT-II display)	EC
			Just as ignition switch is turned ON or Start	40°C (104°F)	- FE
			More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	- GL
			Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	- _ M1
P0120	0403	Throttle position sensor circuit	Throttle position will be determ the engine speed. Therefore, acceleration will be	ined based on the injected fuel amount and poor.	- whi
			Condition	Driving condition	_
			When engine is idling	Normal	TF
			When accelerating	Poor acceleration	_
Unable to access ECM	Unable to access Diag- nostic Test Mode II	ECM	When the fail-safe system active condition in the CPU of ECM), warn the driver. However it is not possible to act Engine control with fail-safe When ECM fail-safe is operating	dition ECM was judged to be malfunctioning. Vates (i.e., if the ECM detects a malfunction the MIL on the instrument panel lights to cook ECM and DTC cannot be confirmed. Ing., fuel injection, ignition timing, fuel pump to operation are controlled under certain liminates.	- PC AX SU _ BF
				ECM fail-safe operation	
			Engine speed	Engine speed will not rise more than 3,000 rpm	- ST
			Fuel injection	Simultaneous multiport fuel injection system	- Rs
			Ignition timing	Ignition timing is fixed at the preset value	_
			Fuel pump	Fuel pump relay is "ON" when engine is running and "OFF" when engine stalls	Bī
			IACV-AAC valve	Full open	- H/
			Replace ECM, if ECM fail-safe	condition is confirmed.	_

^{*1:} In Diagnostic Test Mode II (Self-diagnostic results)

EL

SC

Symptom Matrix Chart

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

NGEC0562 NGEC0562S01

															NGEC0562S01
							SY	MPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	ymptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		3	2			3		1	EC-1153
	Injector circuit	'	'		3			2				3			EC-1145
	Fuel pressure regulator system														EC-611
	Evaporative emission system	4	4	4	4	4	4	4	3	3		4			EC-603
Air	Positive crankcase ventilation system												1		EC-609
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-614
	IACV-AAC valve circuit	2	1	3	3	3	2	2	2	2		3		1	EC-992
	IACV-FICD solenoid valve circuit		2	3	3	3	3	3	_			3			EC-1165
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-614
	Ignition circuit	1	1		2	2		2	2			2			EC-1028
EGR	EGRC-solenoid valve circuit		2	2	3	3						3			EC-1043
(If so equipped	EGR system	4	4	4	4	4	4	4	3	3		4			EC-919, 1055
Main powe	er supply and ground circuit	1	2	3	3	3		3	2		1	3		1	EC-707
Air condition	oner circuit	2	~	3	3	3	3] 3	~	2] 3		'	HA-22

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

VG33E

Symptom Matrix Chart (Cont'd)

						SY	MPT	ОМ							
	START/RESTART (EXCP. HA)		URGING/FLAT SPOT	SPARK KNOCK/DETONATION	FR/POOR ACCELERATION	W IDLE	HUNTING	NOL	URN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	FUEL CONSUMPTION	IL CONSUMPTION	D (UNDER CHARGE)	Reference page	GI MA EM
	HARD/NO STAF	ENGINE STALL	HESITATION/SURGING/FLAT	SPARK KNOCK	LACK OF POWER/POOR	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/M	EXCESSIVE FL	EXCESSIVE OIL	BATTERY DEAD		EC
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Camshaft position sensor circuit	_ 1			2				2						EC-912	GL
Mass air flow sensor circuit		1	2		2						2			EC-713	
Front heated oxygen sensor circuit				3			2							EC-763	Mī
Engine coolant temperature sensor circuit	1	2	3		3	3			2		3			EC-739, 758	Λ
Throttle position sensor circuit		1	2		2	2					2			EC-744	AT
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-669	72
Vehicle speed sensor circuit		2												EC-988	TF
Knock sensor circuit			3	3	3						3			EC-902	<u></u>
ECM	2	2		3		3	3	2	2	1				EC-1011, 687	PD
Start signal circuit	1													EC-1150	AX
Park/neutral position (PNP) switch circuit			3		3						3			EC-1124	ĮÄVA
Power steering oil pressure switch circuit		2					3	2						EC-1160	SU

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

EL IDX

BR

ST

RS

BT

HA

SC

VG33E

Symptom Matrix Chart (Cont'd)

		SY	STE	М -	– E	NG	NE	ME	CH	ANI	CAL	. &	OTH	HER	NGEC0562S02
							SY	MPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel tank	5													FE-4
	Fuel piping	3		5	5	5		5	4			5			
	Vapor lock		5												
	Valve deposit														
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	4			5			_
Air	Air duct														
	Air cleaner														
	Air leakage from air duct (Mass air flow sensor — throttle body)		5	5	5	5		5	4			5			
	Throttle body, Throttle wire	5					5			4					FE-3
	Air leakage from intake manifold/ Collector/Gasket				5	-									_
Cranking	Battery														
	Generator circuit	٦,	1	1		1		1	1			1		1	SC-3
	Starter circuit	1								1					
	Park/neutral position (PNP) switch														AT-99
	Drive plate/Flywheel	6	1												EM-110

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

							SY	MPT	MC							
		P. HA)		Т		ERATION					URE HIGH	z		(E)		(
		START/RESTART (EXCP. HA)		FLAT SPOT	MATION	R ACCELE		(I)) IDLE	EMPERAT	USUMPTIO	UMPTION	ER CHARGE)	Reference	
		TART/RES	님	/SURGING	CK/DETON	WER/POC	OW IDLE	HUNTING	ATION	ETURN TC	WATER 1	FUEL COI	OIL CONS	DEAD (UNDER	section	
		HARD/NO ST	ENGINE STALL	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DE		
Manua 11 to 1															-	
	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		
Engine	Cylinder head Cylinder head gasket	5	5	5	5	5		5	5		2	5	2			
	Cylinder block															
	Piston												3			
	Piston ring															
	Connecting rod	6	6	6	6	6		6	6			6				
	Bearing														EM-75, EM-84	
	Crankshaft														and <i>EM-102</i>	
/alve	Timing chain															
necha- nism	Camshaft															
	Intake valve	6	6	6	6	6		6	6			6				
	Exhaust valve												2			
	Hydraulic lash adjuster															
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	6	6	6	6	6		6	6			6			FE-8	
	Three way catalyst															
_ubrica- :ion	Oil pan/Oil strainer/Oil pump/Oil filter/ Oil gallery	6	6	6	6	6		6	6			6	2		MA-30, EM-72 and LC-20	
	Oil level (Low/Filthy) oil														MA-30	
Cooling	Radiator/Hose/Radiator filler cap															
	Thermostat						5			5						
	Water pump	6	6	6	6	6		6	6		2	6			LC-26	
	Water gallery															
	Cooling fan Coolant level (low)/Contaminated coolant						5			5					MA-27	

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

• If the real-time diagnosis results are NG and the on board diagnostic system results are OK when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CON	DITION	SPECIFICATION
CMPS-RPM (POS) CMPS-RPM (REF)	Tachometer: Connect Run engine and compare tachome value.	ter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.
MAS AIR/FL SE	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.7V
WAS AIIVI L SL	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.3V
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
FR O2 SEN-B2 FR O2 SEN-B1		Maintaining engine speed at 2,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR-B2 FR O2 MNTR-B1	Engine: After warming up	rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.
RR O2 SEN-B1 RR O2 SEN-B2	- Engine: After worming up	Maintaining engine speed at 2,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V
RR O2 MNTR-B1 RR O2 MNTR-B2	Engine: After warming up	rpm	LEAN ←→ RICH
VHCL SPEED SE	Turn drive wheels and compare sp SULT-II value	eedometer indication with the CON-	Almost the same speed as the CONSULT-II value
BATTERY VOLT	Ignition switch: ON (Engine stoppe	d)	11 - 14V
	Engine: After warming up, idle the engine	Throttle valve: fully closed (a)	0.15 - 0.85V
THRTL POS SEN	Engine: After warming up	Throttle valve: Partially open	Between (a) and (b)
	Ignition switch: ON (Engine stopped)	Throttle valve: fully opened (b)	3.5 - 4.7V
EGR TEMP SEN (If so equipped)	Engine: After warming up		Less than 4.5V
START SIGNAL	 Ignition switch: ON → START → C)N	$OFF \to ON \to OFF$
CLSD THL POS	Engine: After warming up, idle the	Throttle valve: Idle position	ON
CLSD THL/P SW	engine	Throttle valve: Slightly open	OFF
	Engine: After warming up, idle the	Air conditioner switch: OFF	OFF
AIR COND SIG	engine engine	Air conditioner switch: ON (Compressor operates.)	ON
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON
F/N FO31 3VV	• Igilillott Switch. ON	Except above	OFF
PW/ST SIGNAL	Engine: After warming up, idle the angine	Steering wheel in neutral position (forward direction)	OFF
	engine	The steering wheel is turned	ON

VG33E

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONI	DITION	SPECIFICATION	
**** TEMP 6*/	Ignition switch: ON	Below 19°C (66°F)	OFF	
AMB TEMP SW	Compare ambient air temperature with the following:	Above 25°C (77°F)	ON	
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$		$ON \to OFF \to ON$	
INJ PULSE-B2	Engine: After warming up Air conditioner switch: OFF	Idle	2.4 - 3.7 msec	
INJ PULSE-B1	Shift lever: "N"No-load	2,000 rpm	1.9 - 3.3 msec	
B/FUEL SCHDL	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.6 msec	i
_,,	Shift lever: "N"No-load	2,000 rpm	0.7 - 1.4 msec	
IGN TIMING	Engine: After warming up Air conditioner switch: OFF	Idle	15° BTDC	
	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC	
IACV-AAC/V	Engine: After warming up Air conditioner switch: OFF	Idle	10 - 20%	
IAO V-AAO/ V	Shift lever: "N"No-load	2,000 rpm	_	
DUDG VOL CAV	Engine: After warming up Air conditioner switch: OFF	Idle	0 %	
PURG VOL C/V	Shift lever: "N"No-load	2,000 rpm	_	
A/F ALPHA-B2 A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	54 - 155%	
EVAP SYS PRES	Ignition switch: ON	1	Approx. 3.4V	
AIR COND RLY	Air conditioner switch: OFF → ON		OFF → ON	
FUEL PUMP RLY	Ignition switch is turned to ON (Ope Engine running and cranking	erates for 5 seconds)	ON	
	Except as shown above		OFF	
COOLING FAN	After warming up engine, idle the	Engine coolant temperature is 94°C (201°F) or less	OFF	
COOLING FAN	engine. • Air conditioner switch: OFF	Engine coolant temperature is 95°C (203°F) or more	ON	
5000 001 A/	Engine: After warming up	Idle	OFF (CUT)	
EGRC SOL/V (If so equipped)	Air conditioner switch: OFFShift lever: "N"No-load	Engine speed: Revving from idle up to 3,000 rpm quickly	ON (FLOW)	
VENT CONT/V	Ignition switch: ON	•	OFF	
FR O2 HTR-B1	Engine speed: Below 3,200 rpm		ON	
FR O2 HTR-B2	Engine speed: Above 3,200 rpm		OFF	
RR O2 HTR-B1	Ignition switch: ON (Engine stopped) Engine speed: Above 3,200 rpm	d)	OFF	
RR O2 HTR-B2	Engine speed: Below 3,200 rpm [A 70 km/h (43 MPH) or more]	fter driving for 2 minutes at a speed of	ON	
VC/V BYPASS/V	Ignition switch: ON		OFF	

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF	Idle	18.5 - 26.0%
CAL/LD VALUE	Shift lever: "N"No-load	2,500 rpm	18.0 - 21.0%
ABSOL TH-P/S	 Engine: After warming up Ignition switch: ON More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. 	Throttle valve: fully closed	0.0%
	Engine: After warming upIgnition switch: ON (Engine stopped)	Throttle valve: fully opened	Approx. 80%
MASS AIRFLOW	Engine: After warming up Air conditioner switch: OFF	Idle	3.3 - 4.8 g·m/s
MASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	12.0 - 14.9 g·m/s
	Ignition switch: ON (Engine stopped)) (b)	MAP
MAP/BARO SW/V		For 5 seconds after starting engine	BARO
, 2,	Engine speed: Idle	More than 5 seconds after starting engine	MAP
	Ignition switch: ON (Engine stopped)	d)	Approx. 4.4V
ABSOL PRES/SE		For 5 seconds after starting engine	Approx. 4.4V
	Engine speed: Idle	More than 5 seconds after starting engine	Approx. 1.3V

Major Sensor Reference Graph in Data Monitor Mode

NGEC0564

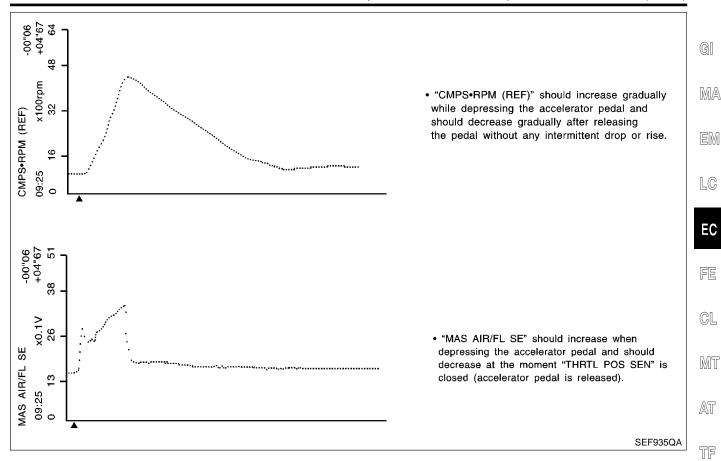

The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "HI SPEED" in "DATA MONITOR" with CONSULT-II.)

THRTL POS SEN, ABSOL TH-P/S, CLSD THL POS

NGEC0564S0

Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL POS" when depressing the accelerator pedal with the ignition switch ON.

The signal of "THRTL POS SEN" and "ABSOL TH-P/S" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".


CMPS-RPM (REF), MAS AIR/FL SE, THRTL POS SEN, RR O2 SEN-B1, FR O2 SEN-B1, INJ PULSE-B1

Below is the data for "CMPS-RPM (REF)", "MAS AIR/FL SE", "THRTL POS SEN", "RR O2 SEN-B1", "FR O2 SEN-B1" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

VG33E

Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

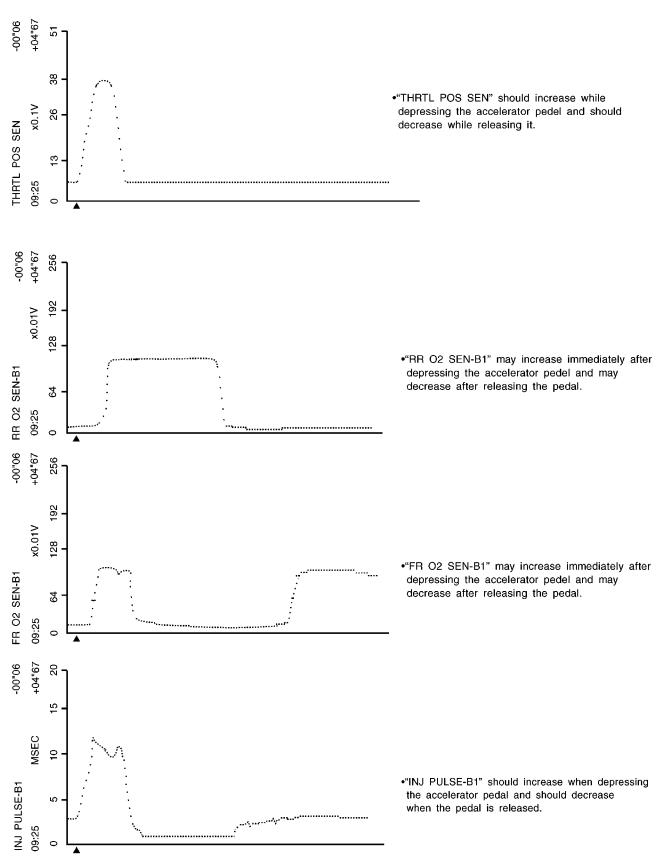
PD

 $\mathbb{A}\mathbb{X}$

SU

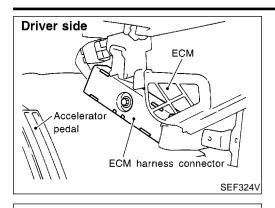
BR

ST


RS

BT

HA


SC

EL

SEF936Q

ECM Terminals and Reference Value

ECM harness protector

Tester probe-

105 106 107 108

114 115 116

Thin wire

101

109 110 111 112

102 103 104

AEC913

MEC486B

1 2 3

6 7 8 9

15 16 17 18

11 12 13 14

10

5

ECM Terminals and Reference Value PREPARATION

NGEC0565

- ECM is located behind the instrument lower cover. For this inspection:
- Remove instrument lower cover.

MA

GI

LC

2. Remove ECM harness protector.

FE

GL

MT

AT

- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
- Open harness securing clip to make testing easier.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

23

40 41

TF

PD

AX

SU

ECM HARNESS CONNECTOR TERMINAL LAYOUT

24 25

31 32

43 42

67

72

80

64 65 66

ST

BT

SEF533P

ECM INSPECTION TABLE

20 21 22

38 39

|26|27|28|29|30|

33 34 35 36 37

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

44 45 46 47

59 60 61 62 63

48 49 50 51 52 53 68 69 70 71

54 55 56 57 58 73 74 75 76

HA

SC

EL

EC-697

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	DUAM		[Engine is running] • Idle speed	Approximately 0.7V (V) 4 2 0 20 ms SEF988U
1	PU/W	Ignition signal	[Engine is running] ● Engine speed is 2,000 rpm	1.1 - 1.5V (V) 4 2 0 20 ms SEF989U
			[Engine is running] • Warm-up condition • Idle speed	Approximately 12V (V) 40 20 0 20 ms SEF990U
2	В	Ignition check	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 11V (V) 40 20 0 20 ms SEF991U
			[Engine is running] • Warm-up condition • Idle speed	1 - 2V (V) 10 5 0 20 ms SEF992U
3	R/L	Tachometer	[Engine is running] ● Engine speed is 2,000 rpm	3 - 5V (V) 10 5 0 20 ms SEF993U

VG33E

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	OR/B	ECM relay (Self shut-	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		off)	[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
		EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
5	R/Y	volume control sole- noid valve	[Engine is running] ● Engine speed is 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF995U
7	Y/G	A/T check signal	[Ignition switch ON] [Engine is running]	0 - 3.0V
			 [Engine is running] Idle speed Ambient air temperature is above 25°C (77°F) Air conditioner is operating 	ov
9	B/Y	Ambient air temperature switch	 [Engine is running] Idle speed Ambient air temperature is below 19°C (66°F) Air conditioner is operating 	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Idle speed • Ambient air temperature is below 19°C (66°F) • Air conditioner is not operating	Approximately 5V
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
11	W/R	Fuel pump relay	[Ignition switch ON] • For 5 seconds after turning ignition switch ON [Engine is running]	0 - 1V
	VV/IX	Tuel pullip leidy	[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)
10		Air conditionar valou	[Engine is running] • Both A/C switch and blower switch are ON*	0 - 1V
12	P	Air conditioner relay	[Engine is running] • A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)

		,		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch ON]	0 - 1V
18	18 R/W	Malfunction indicator lamp	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
20	L/OR	Start signal	[Ignition switch ON]	Approximately 0V
	LOK	Start signal	[Ignition switch START]	9 - 12V
21	G/R	Air conditioner switch	 [Engine is running] Both A/C switch and blower switch are ON (Compressor operates)* 	Approximately 0V
			[Engine is running] • A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)
22	L/B	Park/neutral position (PNP) switch	[Ignition switch ON] ■ Gear position is "N" or "P"	Approximately 0V
22	L/B		[Ignition switch ON] • Except the above gear position	Approximately 5V
23	L	Throttle position sensor	Engine is running Warm-up condition More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. Accelerator pedal fully released	0.15 - 0.85V
			[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.7V
		L Ignition switch	[Ignition switch OFF]	OV
24	W/L		[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
25	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground
26	PU/W	A/T signal No. 1	[Ignition switch ON] [Engine is running] • Idle speed	6 - 8V
27	P/B	A/T signal No. 2	[Ignition switch ON] [Engine is running] • Idle speed	6 - 8V
28	BR/W	Throttle position switch (Closed position)	 [Engine is running] Warm-up condition More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. Accelerator pedal fully released 	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch ON] • Accelerator pedal depressed	Approximately 0V

VG33E

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
29	G/B	Vehicle speed sensor	[Engine is running] ■ Lift up the vehicle. ■ In 2nd gear position ■ Vehicle speed is 40 km/h (25 MPH)	2 - 3V (V) 10 5 0 50 ms SEF996U	
32	B/Y	ECM ground	[Engine is running] ● Idle speed	Engine ground (Probe this terminal with (–) tester probe when measuring)	
35	G/R	A/T signal No. 3	[Ignition switch ON]	OV	
36	LG/R	Cooling fan relay	[Engine is running] ■ Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)	
JO	LG/K	Cooling lan felay	[Engine is running] • Cooling fan is operating	0 - 1V	
39	GY/R	Power steering oil	[Engine is running] • Steering wheel is being turned	Approximately 0V	
39	pressure switch		[Engine is running]Steering wheel is not being turned	Approximately 5V	
42	B/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V	
43	BR	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
44	PU	Camshaft position sen-	[Engine is running] ● Idle speed	0.3 - 0.5V (V) 10 5 0 20 ms	
	PU	sor (Reference signal)	sor (Reference signal) [Engine is running] • Engine speed is 2,000 rpm		0.3 - 0.5V (V) 10 5 0 20 ms
45	B/R	Absolute pressure sensor	[Ignition switch ON] • Engine is not running [Engine is running] • Idle (for 5 seconds after engine start)	Approximately 4.4V	
		SUI	[Engine is running] • Idle (More than 5 seconds after engine start)	Approximately 1.3V	

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	L	Crankshaft position sensor (OBD)	[Engine is running] ■ Warm-up condition ■ Idle speed	1 - 2V (AC range) (V) 10 5 0.2 ms
47			[Engine is running] ● Engine speed is 2,000 rpm	3 - 4V (AC range) (V) 10 5 0 0.2 ms
49	LG	Camshaft position sensor (Position signal)	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.5V (V) 10 5 0 0.2 ms SEF999U
			[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5V (V) 10 5 0 0.2 ms SEF001V
50	В	Front heated oxygen sensor RH	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 0.5 ms SEF002V
51	G	Front heated oxygen sensor LH	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0

VG33E

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
5.4			[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.7V	
54	R	Mass air flow sensor	[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm	1.7 - 2.3V	
55	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
56	OR	Rear heated oxygen sensor RH	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	0 - Approximately 1.0V	
57	Υ	Rear heated oxygen sensor LH	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	0 - Approximately 1.0V	
59	LG/R	Engine coolant tem- perature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature	
60	Y/B	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel temperature	
61	PU/R	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V	
			[Ignition switch ON]	[Ignition switch ON]	Less than 4.5V
**63	G/OR	EGR temperature sensor	[Engine is running]Warm-up conditionEGR system is operating	0 - 1.5V	
64	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V	
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	
69	LG/R	Data link connector for GST	[Engine is running] • Idle speed (GST is disconnected)	6 - 10V	
72	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	
75	Y/R	Data link connector for	[Engine is running]	0 - 4V	
76	GY/L	CONSULT-II	Idle speed (Connect CONSULT-II and turned on.)	3 - 9V	
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)	

SC

EL

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		IACV-AAC valve	[Engine is running] • Warm-up condition • Idle speed	8 - 11V (V) 20 10 5 ms SEF005V
101	OR/L		[Engine is running] • Warm-up condition • Engine speed is 3,000 rpm	7 - 10V (V) 20 10 0 5 ms SEF692W
102 104 106	W/B W/R W/G W/L W/PU W	Injector No. 1 Injector No. 3 Injector No. 5 Injector No. 2 Injector No. 4 Injector No. 6	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
109 111 113			[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
**103	G/W	EGRC-solenoid valve	 [Engine is running] Warm-up condition Engine speed is revving from idle up to 3,000 rpm quickly 	0 - 1.5V
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

VG33E

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
118 Y/B				[Ignition switch ON] • Engine is not running • For 5 seconds after ignition switch is turned ON [Engine is running] • Idle (for 5 seconds after engine start)	0 - 1V
	Y/B	MAP/BARO switch solenoid valve	 [Ignition switch ON] Engine is not running More than 5 seconds after ignition switch is turned ON [Engine is running] Idle (More than 5 seconds after engine start) 	BATTERY VOLTAGE (11 - 14V)	
440	DDA	Front heated oxygen	[Engine is running] • Engine speed is below 3,200 rpm	Approximately 0.4V	
119	BR/Y	sensor heater RH	[Engine is running] ■ Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)	
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	
121 BR		Front heated oxygen sensor heater LH	[Engine is running] ■ Engine speed is below 3,200 rpm	Approximately 0.4V	
	BR		[Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)	
122	R/B	R/B Rear heated oxygen sensor heater RH [Engine is running] • Engine speed is below 3,200 rpm • After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. [Ignition switch ON] • Engine stopped [Engine is running] • Engine speed is above 3,200 rpm	Engine speed is below 3,200 rpmAfter driving for 2 minutes at a speed of 70 km/h	Approximately 0.4V	
			BATTERY VOLTAGE (11 - 14V)		
123	DA	[Ignition switch ON] • Engine stopped [Engine is running]	Engine speed is below 3,200 rpmAfter driving for 2 minutes at a speed of 70 km/h	Approximately 0.4V	
	R/Y		Engine stopped	BATTERY VOLTAGE (11 - 14V)	
124	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground	

^{*:} Any mode except OFF, ambient air temperature is above 25°C (77°F).

HA

SC

^{**:} If equipped with EGR valve.

Description

IGEC0566

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

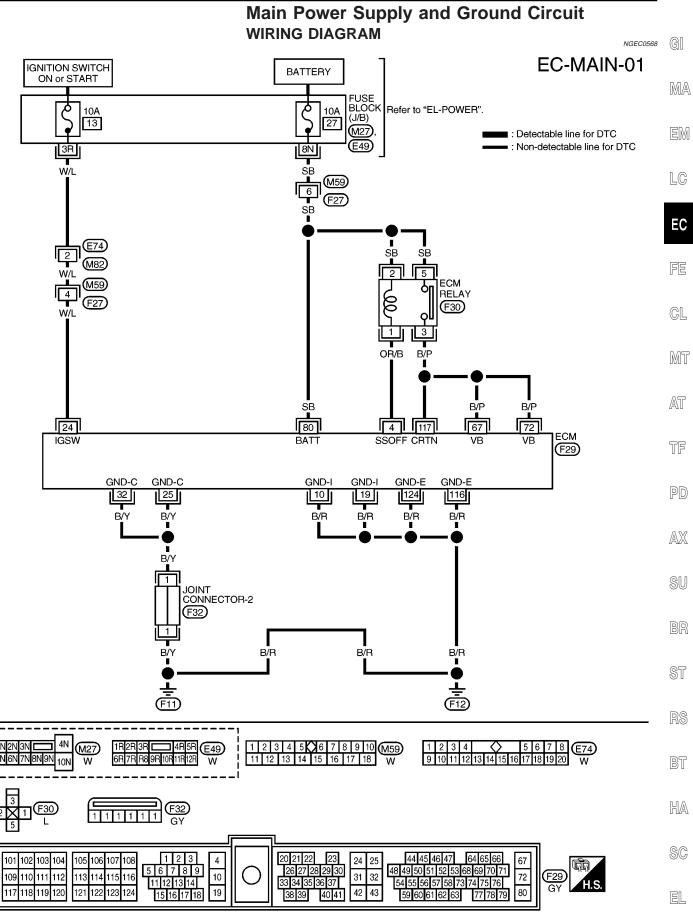
COMMON I/I REPORT SITUATIONS

NGEC0566S01

STEP in Work Flow	Situation		
II The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other th			
III	The symptom described by the customer does not recur.		
IV	(1st trip) DTC does not appear during the DTC Confirmation Procedure.		
VI	The Diagnostic Procedure for PXXXX does not indicate the problem area.		

Diagnostic Procedure

NGEC056


1	INSPECTION START				
Erase	Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION — RELATED INFORMATION", EC-640.				
	>	GO TO 2.			

2	CHECK GROUND TERMINALS					
	Check ground terminals for corroding or loose connection. Refer to "Circuit Inspection", "GROUND INSPECTION", <i>GI-29</i> .					
		OK or NG				
OK	•	GO TO 3.				
NG	•	Repair or replace.				

3	SEARCH FOR ELECTRICAL INCIDENT					
Perfor	Perform "Incident Simulation Tests", <i>GI-24</i> .					
		OK or NG				
OK	OK ▶ GO TO 4.					
NG	>	Repair or replace.				

4	CHECK CONNECTOR TERMINALS					
Refer	Refer to "How to Check Enlarged Contact Spring of Terminal", GI-21.					
		OK or NG				
OK	OK INSPECTION END					
NG	NG Repair or replace connector.					

Main Power Supply and Ground Circuit

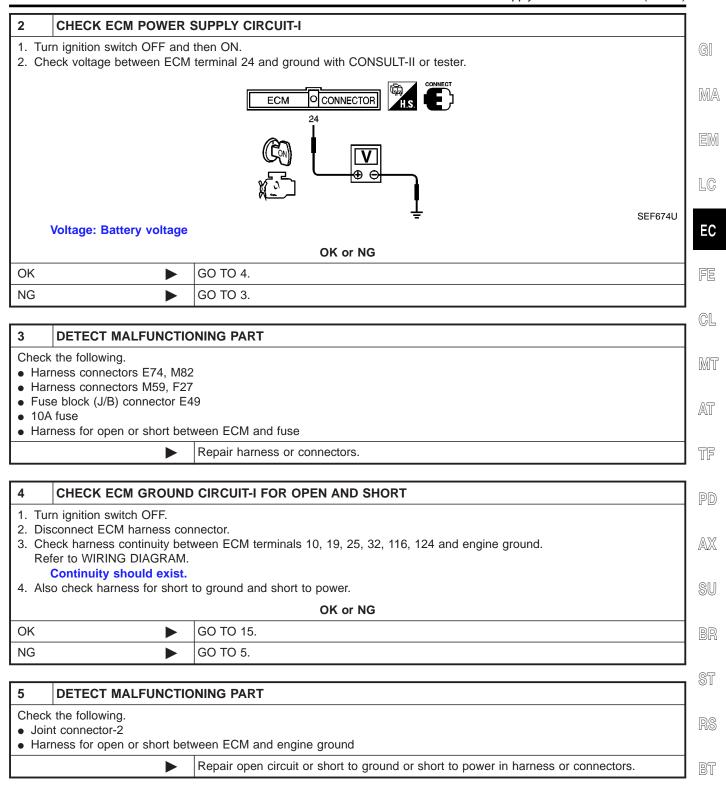
VG33E

Main Power Supply and Ground Circuit (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· · · · · · · · · · · · · · · · · · ·
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	OR/B	ECM relay (Self-shutoff)	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch OFF] ■ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
	W/L	Ignition switch	[Ignition switch OFF]	OV
24			[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
25	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground
32	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground (Probe this terminal with (–) tester probe when measuring)
67	B/P	Dower overly for ECM	Floridian quital CNI	BATTERY VOLTAGE
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
124	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground

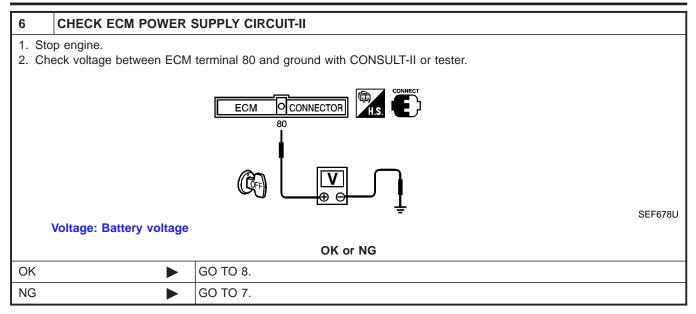

DIAGNOSTIC PROCEDURE

NGEC0570

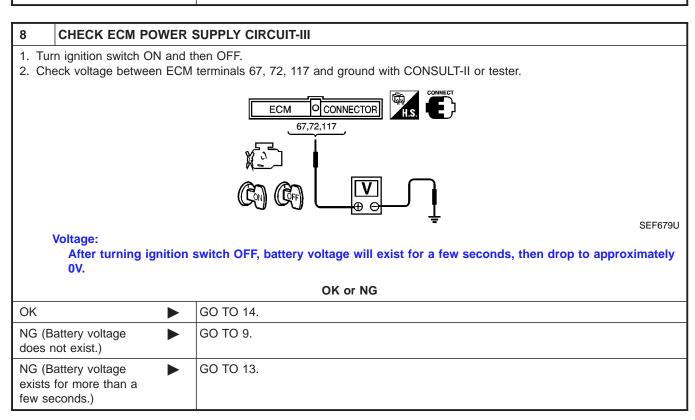
1	INSPECTION START				
Start e	Start engine. Is engine running?				
	Yes or No				
\/		GO TO 6.			
Yes		00 10 0.			

VG33E

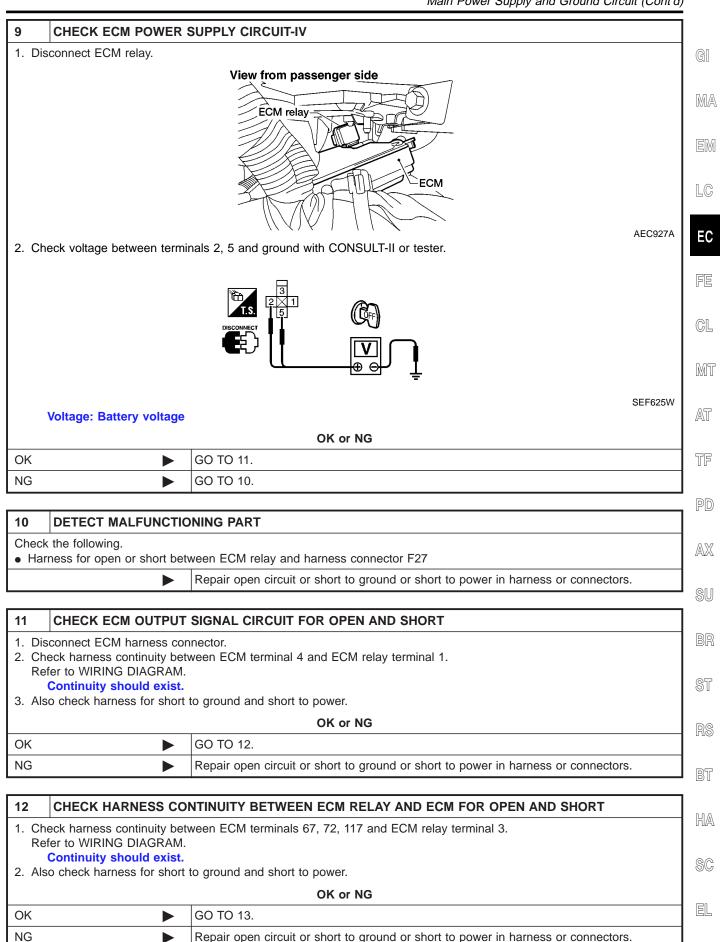
Main Power Supply and Ground Circuit (Cont'd)


 $\mathbb{D}\mathbb{X}$

HA


SC

VG33E


Main Power Supply and Ground Circuit (Cont'd)

7	DETECT MALFUNCTIO	NING PART	
Check the following. • Harness connectors M59, F27			
• Fus	Fuse block (J/B) connector M27 10A fuse		
	Harness for open or short between ECM and fuse		
	•	Repair harness or connectors.	

Main Power Supply and Ground Circuit (Cont'd)

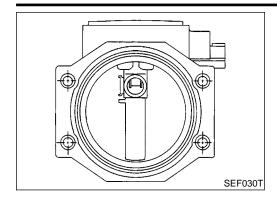
VG33E

Main Power Supply and Ground Circuit (Cont'd)

OK NG

1. Apply 12V direct current between relay terminals 1 and 2. 2. Check continuity between relay terminals 3 and 5. 2. Check continuity between relay terminals 3 and 5. 2. Check continuity between relay terminals 3 and 5. 3. Check continuity between relay terminals 1 and 2. 2. Check continuity between relay terminals 1 and 2. 3. Check continuity between relay terminals 1 and 2. 3. Check continuity between relay terminals 1 and 2. 3. Check continuity between relay terminals 1 and 2. 4. Check continuity between relay terminals 1 and 2. 5. Check continuity between relay terminals 1 and 2. 6. Check continuity between relay terminals 1 and 2. 6. Check continuity between relay terminals 1 and 2. 8. Check continuity between relay terminals 1 and 2. 8. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 1 and 2. 9. Check continuity between relay terminals 2 and 5.

14	CHECK ECM GROUND	CIRCUIT-II FOR OPEN AND SHORT			
2. Dis 3. Ch Re	1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminals 10, 19, 25, 32, 116, 124 and engine ground. Refer to WIRING DIAGRAM. Continuity should exist. 4. Also check harness for short to ground and short to power.				
	OK or NG				
OK	•	GO TO 15.			
NG	•	GO TO 5.			


GO TO 14.

Replace ECM relay.

15	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

Component Description

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

MA

LC

EC

MT

AT

TF

PD

ST

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
MAS AIR/FL SE	Engine: After warming upAir conditioner switch: OFF	Idle	1.0 - 1.7V	
MAS AIR/FL SE	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.3V	
CAL/LD VALUE	ditto	Idle	18.5 - 26.0%	
CAL/LD VALUE	ditto	2,500 rpm	18.0 - 21.0%	
MACC AIRELOW	alist o	Idle	3.3 - 4.8 g·m/s	
MASS AIRFLOW	ditto	2,500 rpm	12.0 - 14.9 g·m/s	

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
E4		Maga air flow agair	[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.7V	
54	R	Mass air flow sensor	[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm	1.7 - 2.3V	
55	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) an excessively high voltage from the sensor is sent to ECM when engine is not running,

(Malfunction B) an excessively low voltage from the sensor is sent to ECM when engine is running,

(Malfunction C) a high voltage from the sensor is sent to ECM under light load driving condition,

(Malfunction D) a low voltage from the sensor is sent to ECM under heavy load driving condition.

On Board Diagnosis Logic (Cont'd)

POSSIBLE CAUSE Malfunction A or C

NGEC0574S01

NGEC0574S0101

- Harness or connectors (The sensor circuit is open or shorted.)
- Mass air flow sensor

Malfunction B or D

NGEC0574S0102

- Harness or connectors (The sensor circuit is open or shorted.)
- Intake air leaks
- Mass air flow sensor

FAIL-SAFE MODE

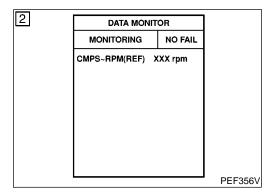
NGEC0574S02

When the malfunction B is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

NGEC0575


Perform "PROCEDURE FOR MALFUNCTION A" first.

If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C". If there is no problem on "PROCEDURE FOR MALFUNCTION C", perform "PROCEDURE FOR MALFUNCTION D".

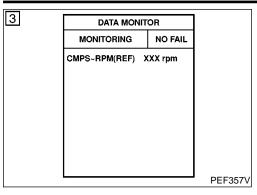
NOTE:

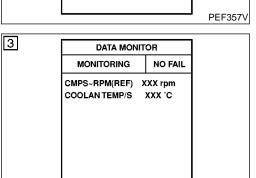
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NGEC0575S01

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 6 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-718.


With GST


Follow the procedure "With CONSULT-II".

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

NGEC0575S02

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

1) Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait 5 seconds at most.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-718.

With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION C

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

(P) With CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- Run engine for at least 10 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-718.

With GST

PEF361V

Follow the procedure "With CONSULT-II".

MA

GI

LC

EC

FE

GL

MT

AT

TF

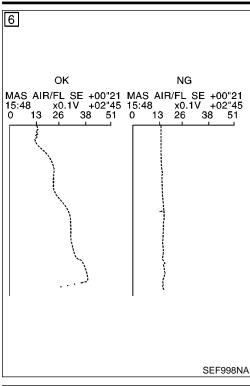
PD

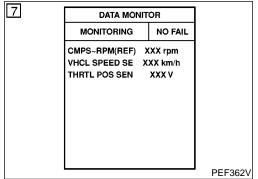
AX

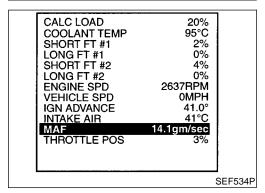
SU

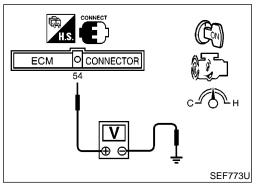
ST

BT


HA


SC


EL


NGEC0575S04

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION D

CAUTION:

Always drive vehicle at a safe speed.

(P) With CONSULT-II

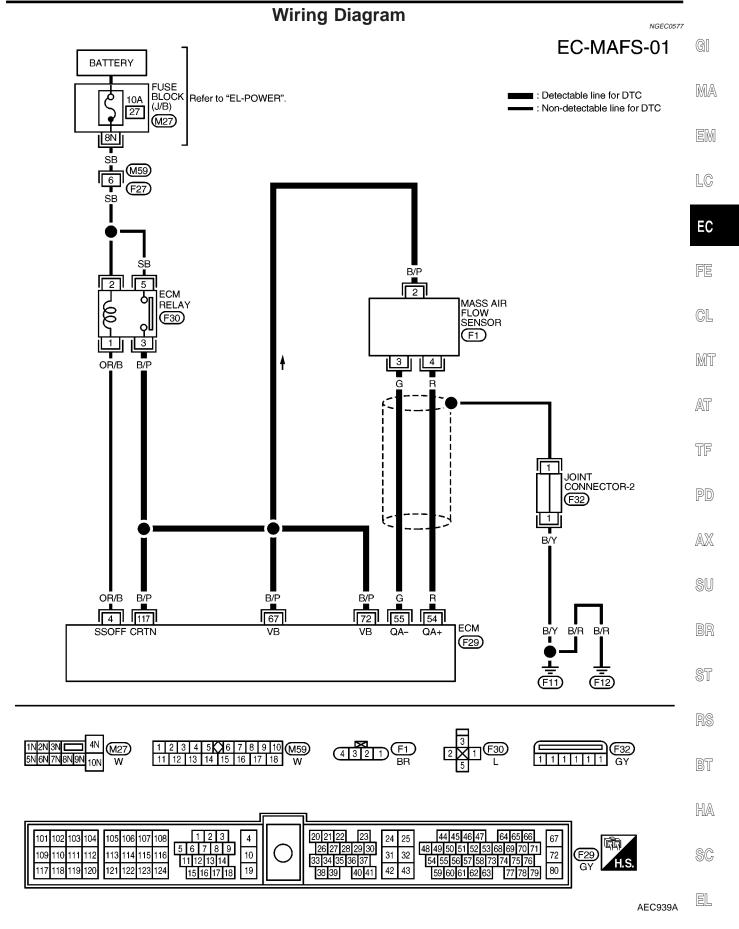
- Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to "Diagnostic Procedure", EC-718.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Check the voltage of MAS AIR/FL SE with "DATA MONITOR".
- Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.
 - If NG, go to "Diagnostic Procedure", EC-718. If OK, go to following step.
- Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (REF)	More than 2,000 rpm	
THRTL POS SEN	More than 3V	
Selector lever	Suitable position	
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.	

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-718.

Overall Function Check PROCEDURE FOR MALFUNCTION D

NGEC0576

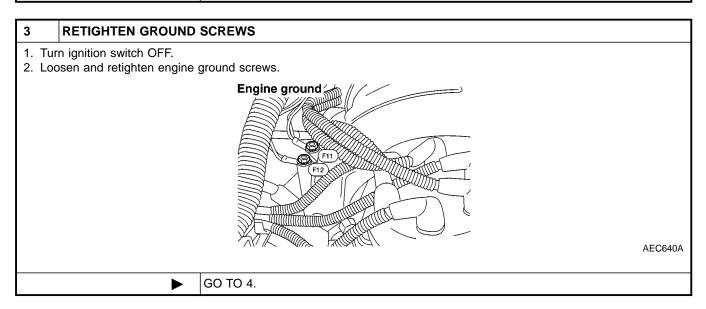

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

■ With GST

- 1) Start engine and warm it up to normal operating temperature.
- Select "MODE 1" with GST.
- Check the mass air flow sensor signal with "MODE 1".
- 4) Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5) If NG, go to "Diagnostic Procedure", EC-718.

No Tools

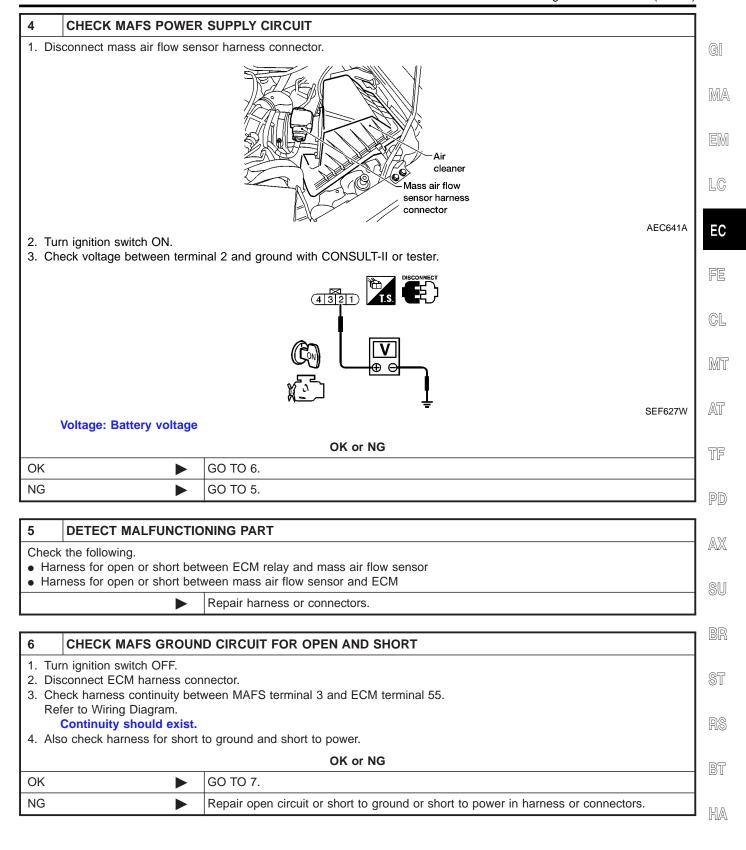
- Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.
- 3) Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- If NG, go to "Diagnostic Procedure", EC-718.



Diagnostic Procedure

IGEC057

				NGEC0578
1	INSPECTION START			
Which	n malfunction (A, B, C or D)	is duplicated?		
		MALFUNCTION	Туре	_
		A and/or C	I	
		B and/or D	II	_
				MTBL0063
		Type I or	Гуре II	
Туре	I >	GO TO 3.		
Туре	II >	GO TO 2.		


2	CHECK INTAKE SYSTEM			
AirVac	Check the following for connection. Air duct Vacuum hoses Intake air passage between air duct to intake manifold collector			
	OK or NG			
OK	•	GO TO 3.		
NG	•	Reconnect the parts.		

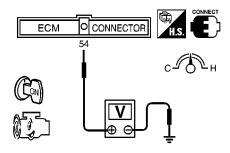
DTC P0100 MASS AIR FLOW SENSOR (MAFS)

VG33E

Diagnostic Procedure (Cont'd)

SC

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

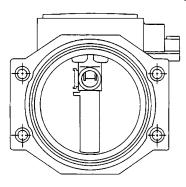

VG33E

Diagnostic Procedure (Cont'd)

7	CHECK MAFS INPUT	SIGNAL CIRCUIT FOR OPEN AND SHORT		
R	Check harness continuity between MAFS terminal 4 and ECM terminal 54. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.			
	OK or NG			
OK	OK ▶ GO TO 8.			
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.			

8 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF747U

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.3
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

MTBL0227

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF030T

ок	or	NG

OK I	>	GO TO 9.
NG		Replace mass air flow sensor.

DTC P0100 MASS AIR FLOW SENSOR (MAFS)

VG33E

Diagnostic Procedure (Cont'd)

9	CHECK MAFS SHIELD CIRCUIT FOR OPEN AND SHORT		
1. Tur	rn ignition switch OFF.		
2. Dis	sconnect joint connector-2.		
3. Ch	eck the following.		
• Cor	ntinuity between joint conne	ector terminal 1 and ground	
Ref	Refer to Wiring Diagram.		
	Joint connector		
	(Refer to "HARNESS LAYOUT", <i>EL-292</i> .)		
	Continuity should exist.		
	4. Also check harness for short to ground and short to power.		
5. The	5. Then reconnect joint connector-2.		
	OK or NG		
OK	>	GO TO 10.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

10	CHECK INTERMITTENT INCIDENT		
Refer t	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-706.	
► INSPECTION END			

GL MT

G[

MA

EM

LC

EC

FE

AT

PD

TF

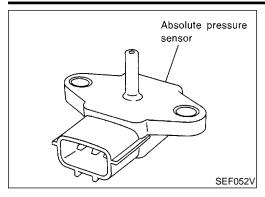
 $\mathbb{A}\mathbb{X}$

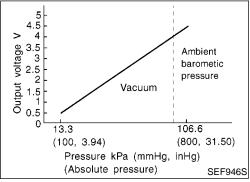
SU

BR

ST

RS


BT


 $\mathbb{H}\mathbb{A}$

SC

EL

Component Description

Component Description

The absolute pressure sensor is connected to the MAP/BARO switch solenoid valve by a hose. The sensor detects ambient barometric pressure and intake manifold absolute pressure and sends the voltage signal to the ECM. As the pressure increases, the voltage rises.

On Board Diagnosis Logic

NCECOEO

Malfunction is detected when

(Malfunction A) an excessively low or high voltage from the sensor is sent to ECM.

(Malfunction B) a high voltage from the sensor is sent to ECM under light load driving conditions,

(Malfunction C) a low voltage from the sensor is sent to ECM under heavy load driving conditions.

POSSIBLE CAUSE

NGEC0580S01 NGEC0580S0101

Malfunction A

- Harness or connectors (Absolute pressure sensor circuit is open or shorted.)
- Absolute pressure sensor

Malfunction B

NGEC0580S0102

- Hoses
 - (Hoses between the intake manifold and absolute pressure sensor are disconnected or clogged.)
- Intake air leaks
- MAP/BARO switch solenoid valve
- Absolute pressure sensor

Malfunction C

NGEC0580S0103

Absolute pressure sensor

DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

If the 1st trip DTC is not confirmed on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNC-TION C".

MA

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

LC

EC

FE

PROCEDURE FOR MALFUNCTION A

NGEC0581S01

1) Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-726.

GL

With GST

Follow the procedure "With CONSULT-II".

MT

PEF002P

PEF361V

AT

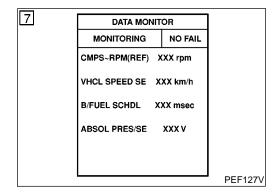
TF

PD

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

NGEC0581S02


- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle.
- Wait at least 15 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-726.

With GST

Follow the procedure "With CONSULT-II".

HA

SC

3

4

DATA MONITOR

DATA MONITOR

CMPS~RPM(REF) XXX rpm

COOLAN TEMP/S XXX °C

MONITORING

NO FAIL

NO FAIL

XXX °C

MONITORING

COOLAN TEMP/S

PROCEDURE FOR MALFUNCTION C

NGEC0581S03

CAUTION:

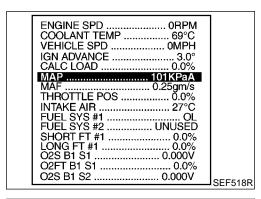
Always drive vehicle at a safe speed.

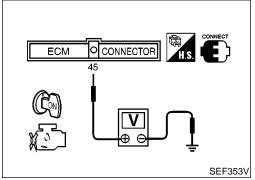
(P) With CONSULT-II

Turn ignition switch "ON".

Select "DATA MONITOR" mode with CONSULT-II.

The voltage of "ABSOL PRES/SE" should be more than 1.74 [V].


If the check result is NG, go to "Diagnostic Procedure",


If the check result is OK, go to following step.

- 3) Start engine and warm it up to normal operating temperature.
- 4) Turn ignition switch OFF and wait at least 5 seconds.
- 5) Start engine and let it idle for at least 13 seconds.
- 6) Select "DATA MONITOR" mode with CONSULT-II.
- 7) Drive the vehicle at least 3 consecutive seconds under the following conditions,

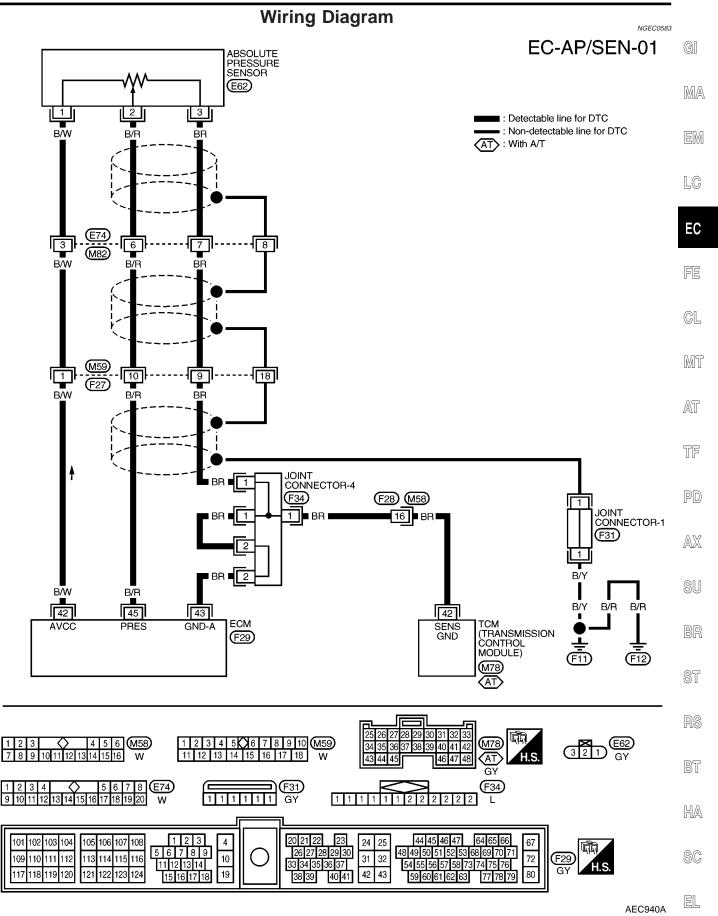
CMPS-RPM (REF)	3,000 - 4,800 rpm
B/FUEL SCHDL	More than 4.6 msec
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

8) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-726.

Overall Function Check PROCEDURE FOR MALFUNCTION C

NGEC0582

NGEC0582S01


Use this procedure to check the overall function of the absolute pressure sensor circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1) Turn ignition switch ON.
- 2) Select absolute pressure sensor signal in "MODE 1" with GST.
- Make sure that the signal is more than 46 kPa (0.47 kg/cm², 6.7 psi).
- 4) If NG, go to "Diagnostic Procedure", EC-726.

No Tools

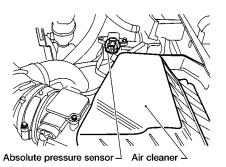
- Turn ignition switch ON.
- Make sure that the voltage between ECM terminal 45 (Absolute pressure sensor signal) and ground is more than 1.74 [V].
- 3) If NG, go to "Diagnostic Procedure", EC-726.

1. Turn ignition switch OFF.

Diagnostic Procedure

If the trouble is duplicated after "PROCEDURE FOR MAL-FUNCTION A or C", perform "PROCEDURE A" below. If the trouble is duplicated after "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE B", EC-730.

PROCEDURE A


NGEC0584S01 **RETIGHTEN GROUND SCREWS** 2. Loosen and retighten engine ground screws. **Engine ground**

AEC640A

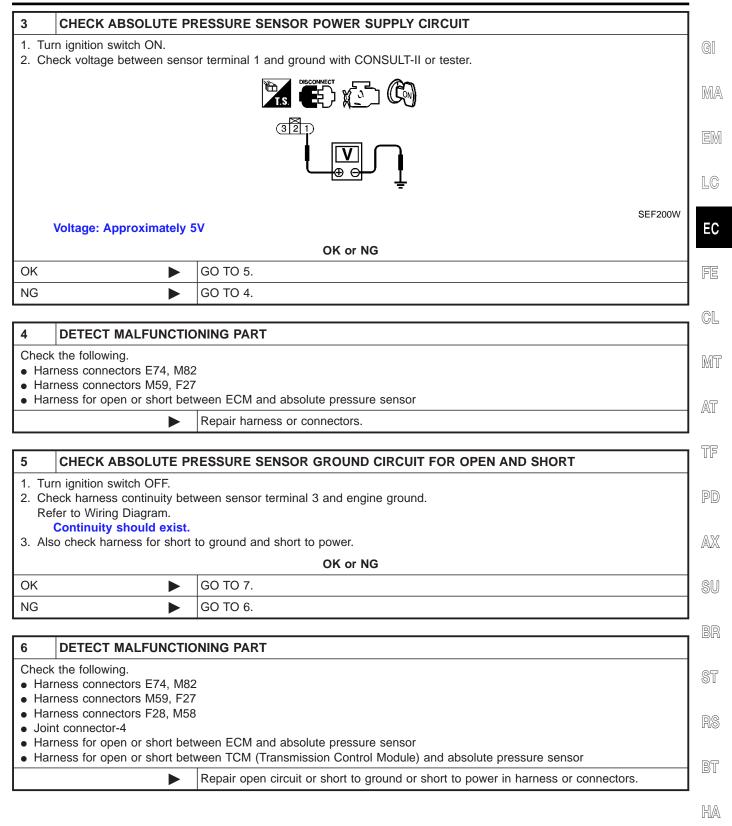
GO TO 2.

CHECK ABSOLUTE PRESSURE SENSOR CONNECTOR FOR WATER

1. Disconnect absolute pressure sensor harness connector.

AEC642A

2. Check sensor harness connector for water.


Water should not exist.

OK or NG

OK		GO TO 3.
NG	•	Repair or replace harness connector.

VG33E

Diagnostic Procedure (Cont'd)

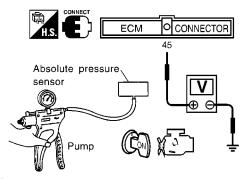
SC

VG33E

Diagnostic Procedure (Cont'd)

7	CHECK ABSOLUTE PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
2. Ch	Disconnect ECM harness connector. Check harness continuity between ECM terminal 45 and sensor terminal 2. Continuity should exist. Also check harness for short to ground and short to power.			
OK or NG				
OK	OK ▶ GO TO 9.			
NG	•	GO TO 8.		

8 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors E74, M82
- Harness connectors M59, F27
- Harness for open or short between ECM and absolute pressure sensor

Repair open circuit or short to ground or short to power in harness or connectors.

9 CHECK ABSOLUTE PRESSURE SENSOR

- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 and engine ground.

SEF749U

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK or NG

OK	•	GO TO 10.
NG	•	Replace absolute pressure sensor.

VG33E

G[

MA

EM

LC

Diagnostic Procedure (Cont'd)

10 CH	10 CHECK ABSOLUTE PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT			
1. Turn ig	nition switch OFF.			
	nect joint connector-1.			
	the following.			
		ctor terminal 1 and ground		
	o Wiring Diagram.			
	Joint connector A Control of the Control			
(Refer to "HARNESS LAYOUT", <i>EL-292</i> .)				
Continuity should exist. 4. Also check harness for short to ground and short to power.				
5. Then reconnect joint connector-1.				
, , , , , , , , , , , , , , , , , , ,				
OK or NG				
OK	OK ▶ GO TO 11.			
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.		

11	CHECK INTERMITTENT INCIDENT		
Refer t	to "TROUBLE DIAGNOSIS	S FOR INTERMITTENT INCIDENT", EC-706.	
► INSPECTION END			

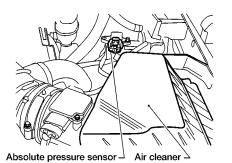
EC FE CL MT AT TF PD $\mathbb{A}\mathbb{X}$ SU BR ST

RS

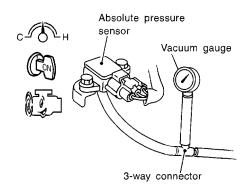
HA

BT

SC


EL

PROCEDURE B


=NGEC0584S02

1 INSPECTION START

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Attach the vacuum gauge between the absolute pressure sensor and the rubber tube connected to the MAP/BARO switch solenoid valve.

AEC642A

SEF385U

Models with CONSULT-II	>	GO TO 2.
Models without CON- SULT-II	>	GO TO 3.

2 CHECK VACUUM SOURCE TO ABSOLUTE PRESSURE SENSOR

(With CONSULT-II)

- 1. Start engine and let it idle.
- 2. Select "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "MAP" and "BARO" alternately and check for vacuum.

ACTIVE TEST		
MAP/BARO SW/V	MAP	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxxv	

ACTIVE TEST		
MAP/BARO SW/V	BARO	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
MAP/BARO SW/V	BARO	
ABSOL PRES/SE XXXV		

MAP/BARO SW/V	Vacuum
BARO	Should not exist
MAP	Should exist

SEF183X

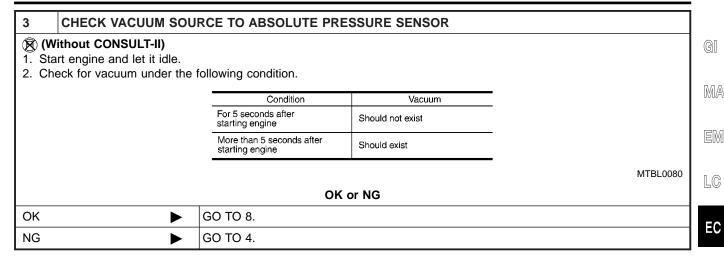
OK or NG

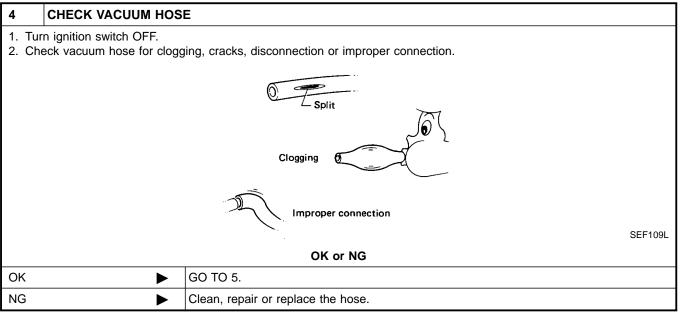
OK	>	GO TO 8.
NG		GO TO 4.

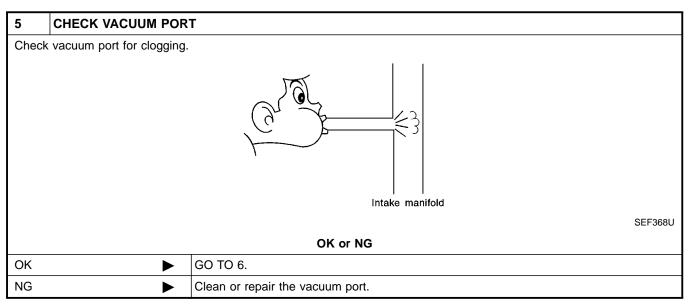
EC

MT

AT


TF

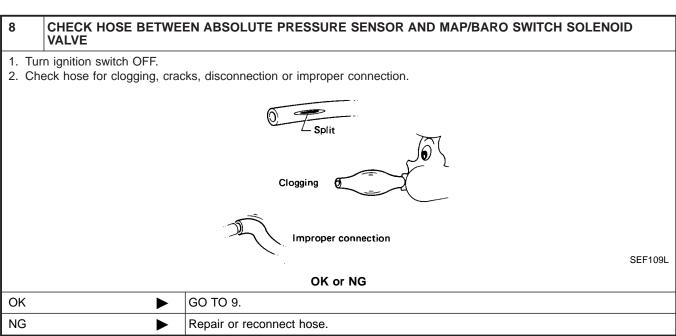

PD


SU

ST

Diagnostic Procedure (Cont'd)

HA

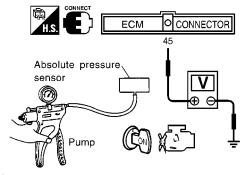

SC

VG33E

Diagnostic Procedure (Cont'd)

6	CHECK MAP/BARO SWITCH SOLENOID VALVE		
Refer	Refer to "Component Inspection", EC-669.		
OK or NG			
OK	>	GO TO 7.	
NG	•	Replace MAP/BARO switch solenoid valve.	

7	CHECK INTAKE SYSTEM		
Check	Check intake system for air leaks.		
	OK or NG		
OK	>	GO TO 11.	
NG	>	Repair it.	


9	CHECK ABSOLUTE PR	ESSURE SENSOR HARNESS CONNECTOR FOR WATER	
2. Ch	 Disconnect absolute pressure sensor harness connector. Check sensor harness connector for water. Water should not exist. 		
OK or NG			
OK	>	GO TO 10.	
NG	>	Repair or replace harness connector.	

VG33E

Diagnostic Procedure (Cont'd)

10 CHECK ABSOLUTE PRESSURE SENSOR

- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 and engine ground.

SEF749U

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK	or	NG
----	----	----

OK	>	GO TO 11.
NG	•	Replace absolute pressure sensor.

11	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

GI

MA

1 @

EC

FE

GL

MT

AT

TF

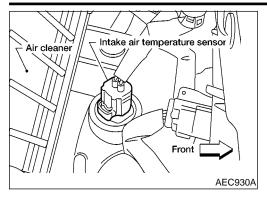
PD

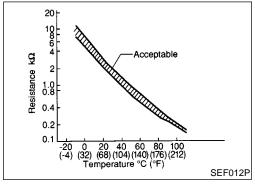
SU

BR

ST

D@


BT


HA

SC

FI

Component Description

Component Description

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* (V)	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

^{*:} These data are reference values and are measured between ECM terminal 61 (Intake air temperature sensor) and ECM terminal 32 (ECM ground).

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) an excessively low or high voltage from the sensor is sent to ECM.

(Malfunction B) rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.

POSSIBLE CAUSE

NGEC0586S01

- Harness or connectors (The sensor circuit is open or shorted.)
- Intake air temperature sensor

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MAL-FUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

VG33E

NGEC0587S01

DTC Confirmation Procedure (Cont'd)

3 DATA MONITOR MONITORING NO FAIL CMPS~RPM(REF) XXX rpm PEF356V

MONITORING

COOLAN TEMP/S

5

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Wait at least 5 seconds.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-737.

With GST

Follow the procedure "With CONSULT-II".

No Tools

1) Turn ignition switch ON and wait at least 5 seconds.

Turn ignition switch OFF, wait at least 5 seconds and then turn

Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-737.

DATA MONITOR NO FAIL XXX °C VHCL SPEED SE XXX km/h

PEF233U

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) With CONSULT-II

Wait until engine coolant temperature is less than 90°C (194°F).

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Check the engine coolant temperature. c)

If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.

Perform the following steps before engine coolant temperature is above 90°C (194°F).

Turn ignition switch ON. 2)

3) Select "DATA MONITOR" mode with CONSULT-II.

Start engine.

5) Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-737.

With GST

Follow the procedure "With CONSULT-II".

EC

LC

GI

MA

GL

MT

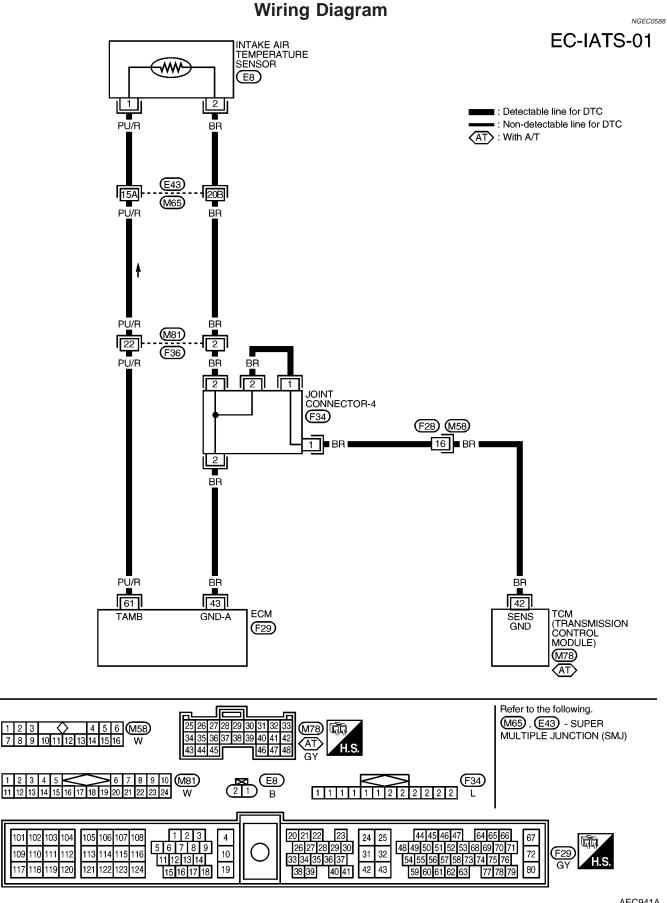
AT

TF

PD

NGEC0587S02

AX


SU

ST

HA

SC

EL

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Diagnostic Procedure

NGEC0589

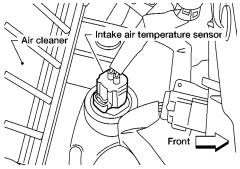
MA

LC

EC

FE

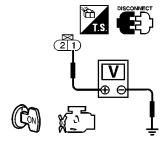
MT


AT

TF

PD

2. Disconnect intake air temperature sensor harness connector.



AEC930A

SEF203W

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground.

Voltage: Approximately 5V

OK or NG

OK •	GO TO 3.
NG •	GO TO 2.

AX

ST

BT

HA

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M81, F36
- Harness for open or short between ECM and intake air temperature sensor

Repair harness or connectors.

3 CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between sensor terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	•	GO TO 5.
NG	•	GO TO 4.

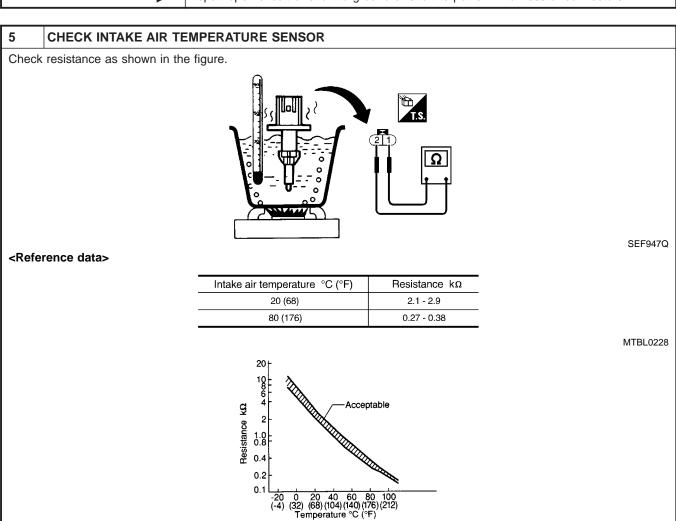
EL

SC

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

VG33E

SEF012P


Diagnostic Procedure (Cont'd)

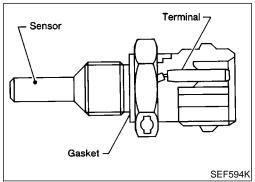
4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M81, F36
- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and intake air temperature sensor
- Harness for open or short between TCM (Transmission Control Module) and intake air temperature sensor

Repair open circuit or short to ground or short to power in harness or connectors.

NG Replace intake air temperature sensor.	OK ▶	GO TO 6.
	NG ▶	Replace intake air temperature sensor.


OK or NG

6	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
► INSPECTION END			

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

VG33E

Component Description

Acceptable

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

뎧

1.0 0.8 0.4

> 0.2 0.1

SEF012P

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

EM

LC

EC

FE

GL

<Reference data>

Engine coolant temperature °C (°F)	Voltage* (V)	Resistance (kΩ)
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ECM terminal 32 (ECM ground).

MT

On Board Diagnosis Logic

Malfunction is detected when an excessively high or low voltage from the sensor is sent to ECM.

TF

POSSIBLE CAUSE

Harness or connectors (The sensor circuit is open or shorted.)

Engine coolant temperature sensor

PD

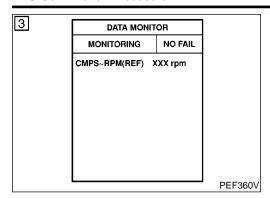
NGEC0591S01

FAIL-SAFE MODE

When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode		SU
Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.		BF
Condition	Engine coolant temperature decided (CONSULT-II display)	St
Just as ignition switch is turned ON or Start	40°C (104°F)	•
More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	RS
Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	BT
	Engine coolant temperature will be determined by ION or START. CONSULT-II displays the engine coolant temperatu Condition Just as ignition switch is turned ON or Start More than approx. 4 minutes after ignition ON or Start	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM. Condition Engine coolant temperature decided (CONSULT-II display) Just as ignition switch is turned ON or Start 40°C (104°F) More than approx. 4 minutes after ignition ON or Start 40 °C (176°F) Except as shown above

HA


SC

EL

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

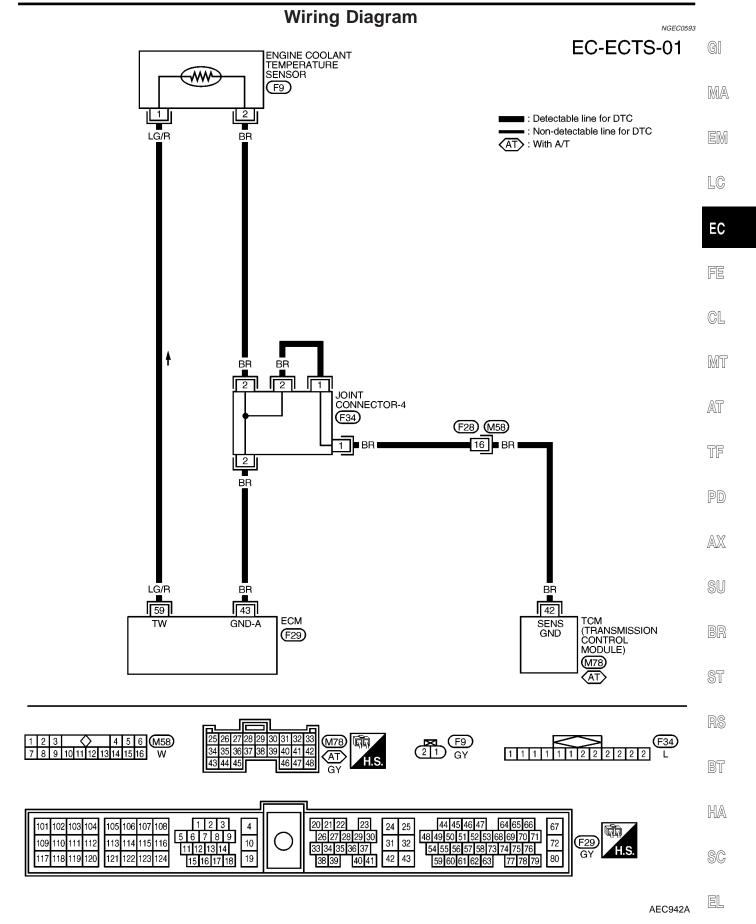
VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0592

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

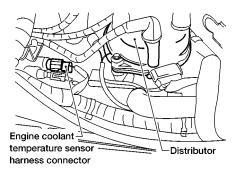
- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-742.

With GST

Follow the procedure "With CONSULT-II".

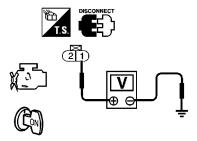
DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

Diagnostic Procedure


VG33E

Diagnostic Procedure

NGEC0594


1 CHECK ECTS POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.

AEC643A

- 3. Turn ignition switch ON.
- 4. Check voltage between ECTS terminal 1 and ground with CONSULT-II or tester.

SEF206W

Voltage: Approximately 5V

OK	0"	NG
UN	or	1417

OK	>	GO TO 2.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

2 CHECK ECTS GROUND CIRCUIT FOR OPEN AND CIRCUIT

- 1. Turn ignition switch OFF.
- Check harness continuity between ECTS terminal 2 and engine ground. Refer to Wiring Diagram.

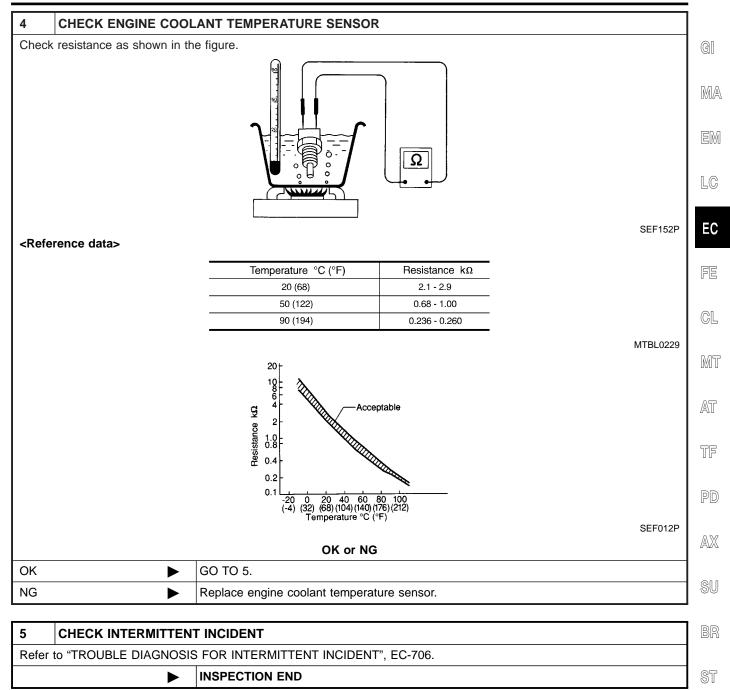
Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG	GO TO 3.

3 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and engine coolant temperature sensor
- Harness for open or short between TCM (Transmission Control Module) and engine coolant temperature sensor
 - Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

VG33E

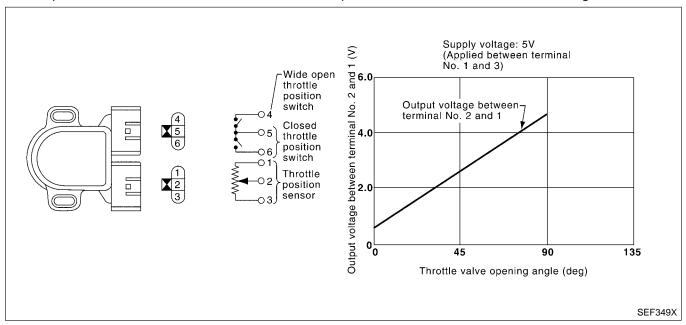
Diagnostic Procedure (Cont'd)

RS BT HA SC

Description

NOTE:

If DTC P0120 (0403) is displayed with DTC P0510 (0203), first perform the trouble diagnosis for DTC P0510. Refer to EC-998.


COMPONENT DESCRIPTION

GEC0595S01

NGEC0595

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0596

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up, idle the engine	Throttle valve: fully closed (a)	0.15 - 0.85V
THRTL POS SEN	Engine: After warming up	Throttle valve: Partially open	Between (a) and (b)
	Ignition switch: ON (Engine stopped)	Throttle valve: fully opened (b)	3.5 - 4.7V
ABSOL TH-P/S	 Engine: After warming up Ignition switch: ON More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. 	Throttle valve: fully closed	0.0%
	 Engine: After warming up Ignition switch: ON (Engine stopped) 	Throttle valve: fully opened	Approx. 80%

VG33E

MA

EC

GL

MT

AT

TF

PD

SU

ST

HA

SC

NGEC0598S01

NGEC0598S0101

NGEC0598S0102

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23	L	Throttle position sensor	[Engine is running]Warm-up conditionAccelerator pedal fully released	0.15 - 0.85V
		·	[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.7V
42	B/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	BR	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Malfunction is detected when

(Malfunction A) an excessively low or high voltage from the sensor is sent to ECM,

(Malfunction B) a high voltage from the sensor is sent to ECM under light load driving conditions,

(Malfunction C) a low voltage from the sensor is sent to ECM under heavy load driving conditions.

POSSIBLE CAUSE

Malfunction A

Harness or connectors
 (The throttle position sensor circuit is open or shorted.)

Throttle position sensor

Malfunction B

 Harness or connectors (The throttle position sensor circuit is open or shorted.)

Throttle position sensor

Fuel injector

Camshaft position sensor

Mass air flow sensor

Malfunction C

Harness or connectors

(The throttle position sensor circuit is open or shorted.)

Intake air leaks

Throttle position sensor

FAIL-SAFE MODE

When the malfunction A is detected, the ECM enters fail-safe mode and the MIL lights up.

EL

VG33E

On Board Diagnosis Logic (Cont'd)

Detected items	Engine operating condition in fail-safe mode	
	Throttle position will be determined based on the injected fuel amount and the engine speed. Therefore, acceleration will be poor.	
Throttle position sensor circuit	Condition	Driving condition
Circuit	When engine is idling	Normal
	When accelerating	Poor acceleration

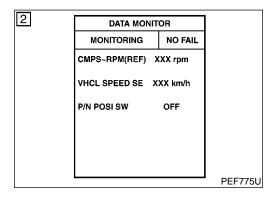
DTC Confirmation Procedure

NGEC0599

NOTE:

- Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".
- If there is no problem on "PROCEDURE FOR MALFUNC-TION B", perform "PROCEDURE FOR MALFUNCTION C".
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A


NGEC0599S01

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and maintain the following conditions for at least 5 consecutive seconds.

Vehicle speed	More than 5 km/h (3 MPH)
Selector lever	Suitable position except "P" or "N" position

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-750.

With GST

Follow the procedure "With CONSULT-II".

VG33E

DTC Confirmation Procedure (Cont'd)

3 DATA MONITOR MONITORING NO FAIL CMPS~RPM(REF) XXX rpm PEF357V

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle for at least 10 seconds. If idle speed is over 1,000 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,000 rpm.

Selector lever	Suitable position except "P" or "N"
Brake pedal	Depressed
Vehicle speed	0 km/h (0 MPH)

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-750.

With GST

Follow the procedure "With CONSULT-II".

NGEC0599S02

GI

MA

LC

EC

GL

MT

AT

TF

PD

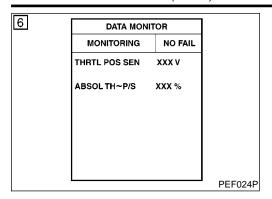
SU

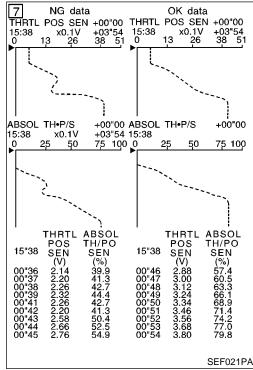
BR

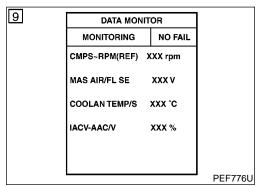
ST

BT

HA


SC


EL


VG33E

NGEC0599S03

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION C

CAUTION:

Always drive vehicle at a safe speed.

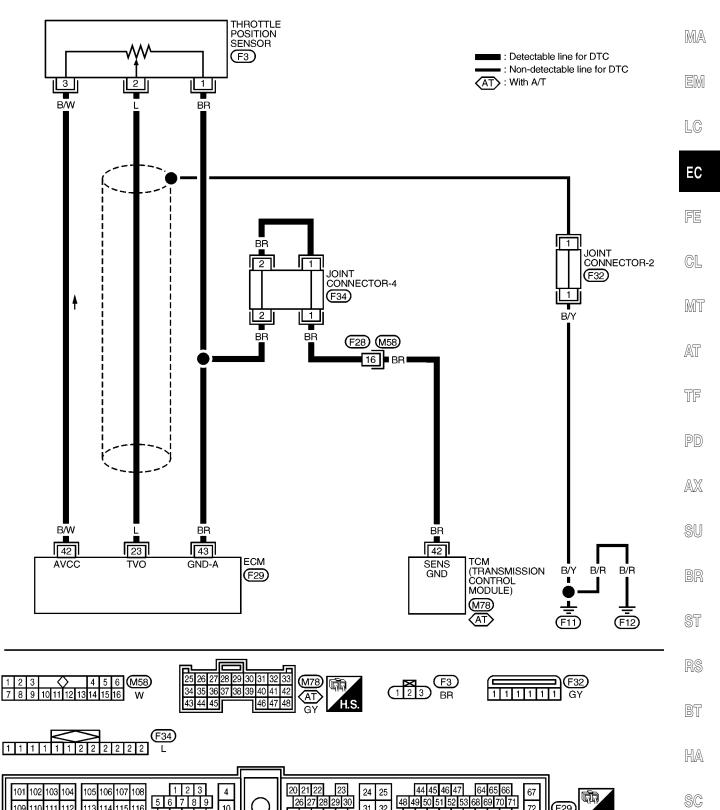
(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II.
- Select "THRTL POS SEN" and "ABSOL TH·P/S" in "DATA MONITOR" mode with CONSULT-II.
- 6) Press RECORD on CONSULT-II SCREEN at the same time accelerator pedal is depressed.
- 7) Print out the recorded graph and check the following:
- The voltage rise is linear in response to accelerator pedal depression.
- The voltage when accelerator pedal is fully depressed is approximately 4V.
 - If NG, go to "Diagnostic Procedure", EC-750.
 - If OK, go to following step.
- Select "AUTO TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (REF)	More than 2,000 rpm
MAS AIR/FL SE	More than 3V
COOLAN TEMP/S	More than 70°C (158°F)
IACV-AAC/V	Less than 80%
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

10) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-750.

® With GST


Follow the procedure "With CONSULT-II".

Wiring Diagram

NGEC0600

GI

EC-TPS-01

AEC943A

72

SC

EL

26 27 28 29 30

31 32

42 43

5 6 7 8 9

15 16 17 18

10

112

121

109 110 111 117 118 119 120 114 115 116

122 123 124

Diagnostic Procedure

NGEC0601

1 INSPECTION START

Which malfunction A, B or C is duplicated?

MALFUNCTION	Type
Α	Α
В	В
С	С

MTBL0066

Type A, B or C

Type A or B		GO TO 4.
Type C	•	GO TO 2.

2 ADJUST THROTTLE POSITION SENSOR

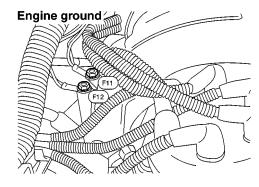
Check the following items. Refer to "Basic Inspection", EC-669.

Items	Specifications	
Ignition timing	15° ± 2° BTDC	
Base idle speed	700 ± 50 rpm (in "P" or "N" position)	
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
Target idle speed	750 ± 50 rpm (in "P" or "N" position)	

MTBL0226

■ GO TO 3.

3 CHECK INTAKE SYSTEM.

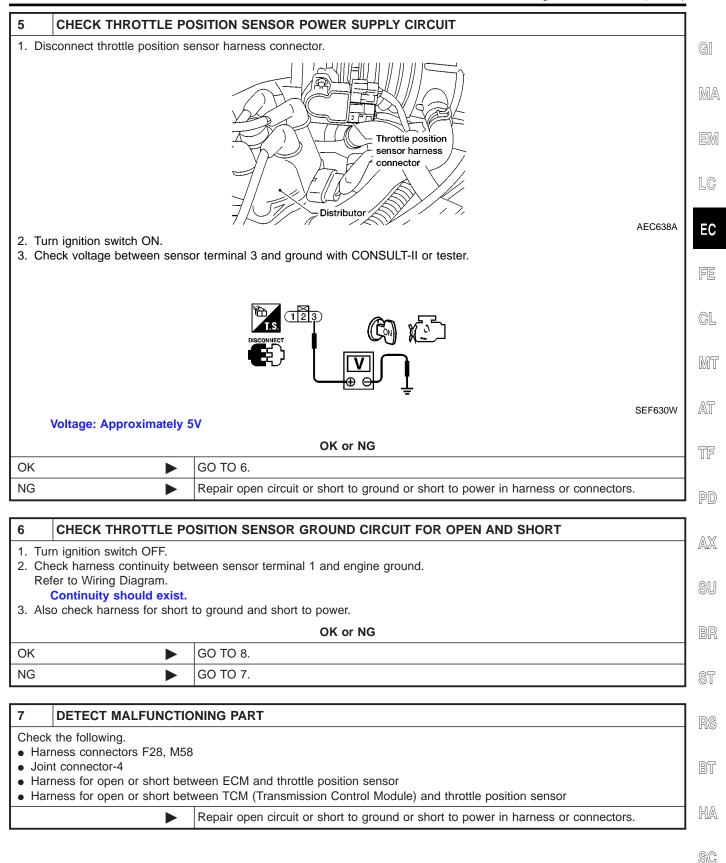

- 1. Turn ignition switch OFF.
- 2. Check the following for connection.
- Air duct
- Vacuum hoses
- Intake air passage between air duct to intake manifold collector

OK or NG

OK •	GO TO 4.
NG •	Reconnect the parts.

4 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.



AEC640A

▶ GO TO 5.

VG33E

Diagnostic Procedure (Cont'd)

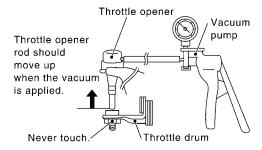
JD)X

VG33E

Diagnostic Procedure (Cont'd)

8 CHECK THROTT	LE PC	SITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
Disconnect ECM harness connector. Check harness continuity between ECM terminal 23 and sensor terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.		
OK or NG		
OK (With CONSULT-II)	•	GO TO 9.
OK (Without CONSULT-II)	•	GO TO 10.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

VG33E


Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SENSOR

(P) With CONSULT-II

9

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, 11.81inHG)] until the throttle drum becomes free from the rod of the throttle opener.

6. Turn ignition switch ON.

- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check voltage of "THRTL POS SEN".

DATA MONITOR		
MONITORING	NO FAIL	
CMPS~RPM(REF)	XXX rpm	
COOLAN TEMP/S	xxx .c	
THRTL POS SEN	xxx v	

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	THRTL POS SEN
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V

MTBL0230

PEF765W

OK or NG		
OK	•	GO TO 12.
NG	>	GO TO 11.

G

MA

LC

EC

FE

SEF793W

GL

MT

AT

TF

0.00

PD

@11

BR

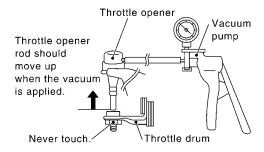
ST

BT

HA

SC

ΞL


VG33E

Diagnostic Procedure (Cont'd)

10 CHECK THROTTLE POSITION SENSOR

(Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, 11.81inHG)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

- 6. Turn ignition switch ON.
- 7. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground.

 Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V

MTBL0231

OK or NG

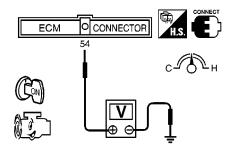
OK •	GO TO 12.
NG ►	GO TO 11.

11 ADJUST CLOSED THROTTLE POSITION SWITCH

Adjust closed throttle position switch. Refer to "Basic Inspection", EC-669.

Items	Specifications
Ignition timing	15° ± 2° BTDC
Base idle speed	700 ± 50 rpm (in "P" or "N" position)
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF
Target idle speed	750 ± 50 rpm (in "P" or "N" position)

MTBL0226


OK	or	NG
VIV	VI.	110

OK ▶	GO TO 12.
NG ►	Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-669.

Diagnostic Procedure (Cont'd)

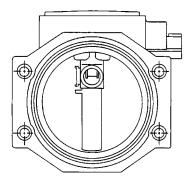
12 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.

Condition Voltage V

Ignition switch "ON" (Engine stopped.) Less than 1.0

Idle (Engine is warmed-up to normal operating temperature.) 1.0 - 1.7


2,500 rpm (Engine is warmed-up to normal operating temperature.) 1.7 - 2.3

Idle to about 4,000 rpm* 1.0 - 1.7 to Approx. 4.0

MTBL0227

SEF747U

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF030T

OK •	GO TO 13.
NG ▶	Replace mass air flow sensor.

OK or NG

GI

MA

LG.

EC

FE

CL

MT

AT

TF

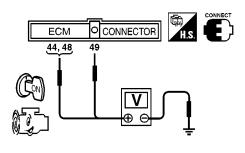
PD

SU

ST

RS

BT


HA

SC

EL

13 CHECK CAMSHAFT POSITION SENSOR

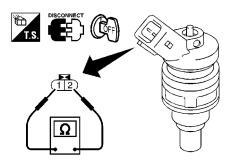
- 1. Install any parts removed.
- 2. Start engine.
- 3. Check voltage between ECM terminals 44, 48 and ground, ECM terminal 49 and ground with DC range.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm
Voltage	0.3 - 0.5V	0.3 - 0.5V
Pulse signal	(V) 10 5 0	(V) 10 5 0

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.5V	Approximately 2.5V
Pulse signal	(V) 10 5 0 0.2 ms	(V) 10 5 0 0.2 ms


AEC072B

OK or NG

OK •	GO TO 14.
NG ►	Replace distributor assembly with camshaft position sensor.

14 CHECK FUEL INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

SEF625V

Resistance: 10 - 14 Ω [at 25°C (77°F)]

OK ►	GO TO 15.
NG ►	Replace fuel injector.

DTC P0120 THROTTLE POSITION SENSOR

VG33E

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

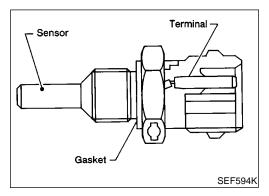
SC

EL

Diagnostic Procedure (Cont'd)

15	CHECK THROTTLE POSITION SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT				
1. Tur	1. Turn ignition switch OFF.				
2. Dis	sconnect joint connector-2.				
3. Ch	eck the following.				
• Con	ntinuity between joint conne	ector terminal 1 and ground			
Joir	nt connector				
`	fer to "HARNESS LAYOUT	", EL-292 .)			
	Continuity should exist.				
	4. Also check harness for short to ground and short to power.				
5. The	en reconnect joint connecto	or-2.			
	OK or NG				
OK	OK ► GO TO 16.				
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.				

16	CHECK INTERMITTENT INCIDENT			
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END			


VG33E

Description

NOTE:

NGEC0602

If DTC P0125 (0908) is displayed with P0115 (0103), first perform the trouble diagnosis for DTC P0115. Refer to EC-739.

COMPONENT DESCRIPTION

ICECO602S01

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

20 - 10 - 20 - 20 - 20 - 20 - 40 - 60 - 80 - 100 - 20 - (-4) (32) (68) (104) (140) (176) (212) Temperature °C (°F)

<Reference data>

Engine coolant temperature °C (°F)	Voltage* (V)	Resistance (kΩ)
-10 (14)	4.4	9.2
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

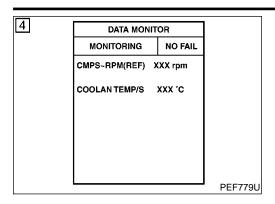
^{*:} These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ECM terminal 32 (ECM ground).

On Board Diagnosis Logic

NGEC060

Malfunction is detected when voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine, or engine coolant temperature is insufficient for closed loop fuel control.

POSSIBLE CAUSE


NGEC0603S01

- Harness or connectors (High resistance in the circuit)
- Engine coolant temperature sensor
- Thermostat

DTC P0125 ENGINE COOLANT TEMPERATURE SENSOR (ECTS)

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

CAUTION:

Be careful not to overheat engine.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- 4) Start engine and run it for 65 minutes at idle speed.

 If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-761.

With GST

Follow the procedure "With CONSULT-II".

=NGEC0604

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

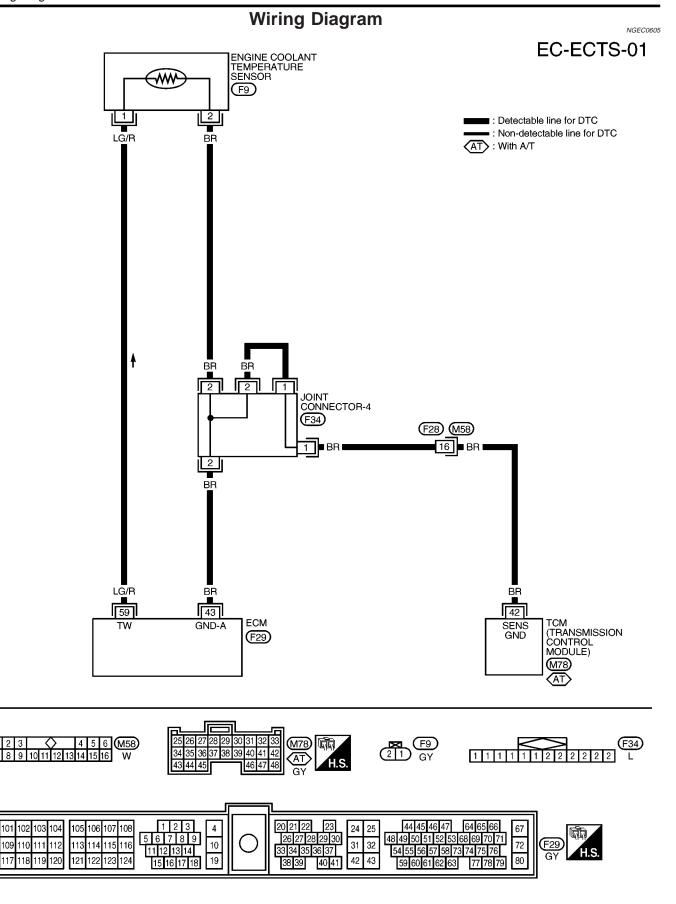
AX

SU

BK

ST

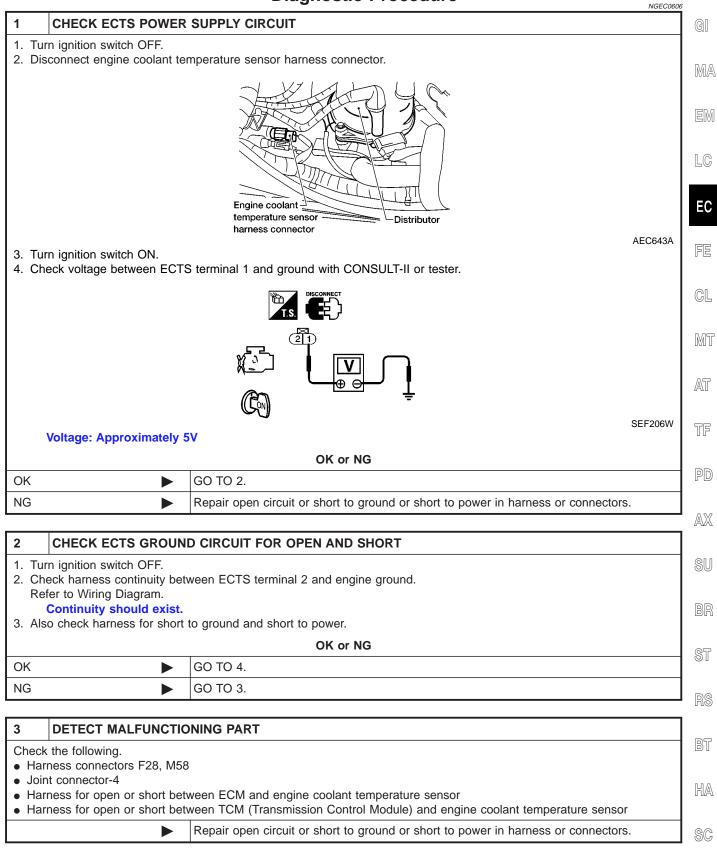
RS


BT

HA

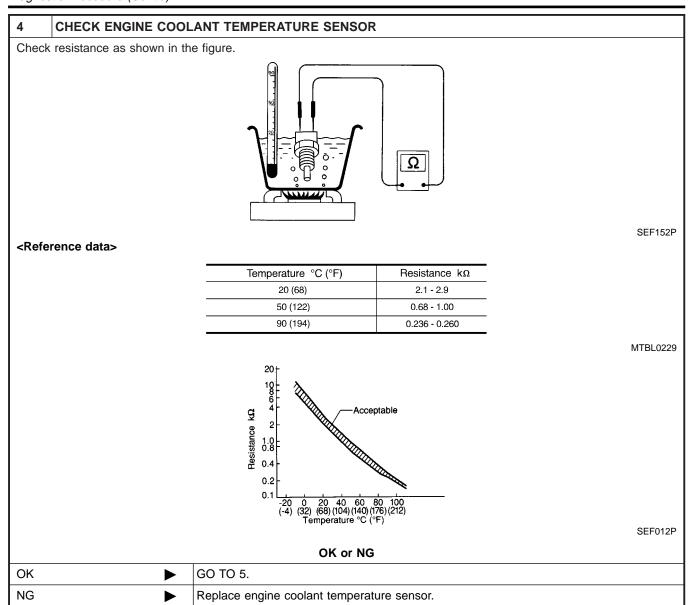
SC

EL


VG33E

DTC P0125 ENGINE COOLANT TEMPERATURE SENSOR (ECTS)

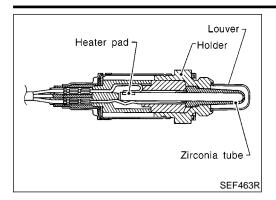
VG33E Diagnostic Procedure


Diagnostic Procedure

DTC P0125 ENGINE COOLANT TEMPERATURE SENSOR (ECTS)

VG33E

Diagnostic Procedure (Cont'd)



5	CHECK THERMOSTAT OPERATION				
	When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.				
	OK or NG				
OK	•	GO TO 6.			
NG	NG Repair or replace thermostat. Refer to "Thermostat", "ENGINE COOLING SYSTEM", <i>LC-13</i> .				

6	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.				
	► INSPECTION END				

VG33E

Component Description

Component Description

The front heated oxygen sensor is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

FE

GL

MT

CONSULT-II Reference Value in Data Monitor Mode

AT NGEC0608

Specification data are reference values.

Ideal ratio

Mixture ratio

Lean

SEF288D

Output voltage V, [v]

Rich

				TF
MONITOR ITEM	CON	DITION	SPECIFICATION	U U
FR O2 SEN-B1 FR O2 SEN-B2		Maintaining anging apped at 2 000	0 - 0.3V ←→ Approx. 0.6 - 1.0V	PD
FR O2 MNTR-B1 FR O2 MNTR-B2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	AX

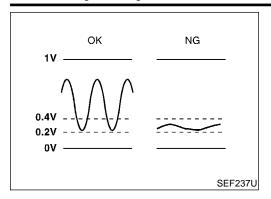
ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· 5 /
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor RH	[Engine is running]	0 - Approximately 1.0V
51	G	Front heated oxygen sensor LH	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm	0.5 ms

SC

ST


BT

HA

EL

VG33E

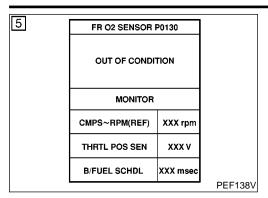
On Board Diagnosis Logic

On Board Diagnosis Logic

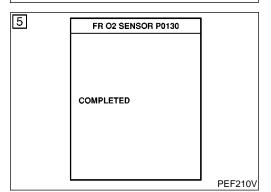
Under the condition in which the front heated oxygen sensor signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

Malfunction is detected when the voltage from the sensor is constantly approx. 0.3V.

POSSIBLE CAUSE


NGEC0610S01

- Harness or connectors (The sensor circuit is open or shorted.)
- Front heated oxygen sensor


VG33E

=NGEC0611

On Board Diagnosis Logic (Cont'd)

5 FR O2 SENSOR P0130 **TESTING** MONITOR CMPS~RPM(REF) XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec PEF139V

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(A) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "FR O2 SEN-B1 (-B2) P0130 (P0150)" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-
- Touch "START".
- 4) Let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 4.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

CMPS-RPM (POS)	1,800 - 2,600 rpm (A/T models) 1,900 - 2,700 rpm (M/T models)
Vehicle speed	70 - 100 km/h (43 - 62 MPH)
B/FUEL SCHDL	1.6 - 6.5 msec (A/T models) 1.4 - 5.5 msec (M/T models)
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-769.

During this test, P1148 and P1168 may be stored in ECM.

LC

GI

MA

EM

EC

FE

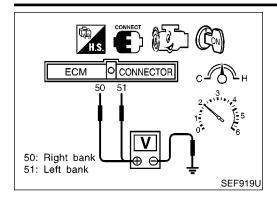
MT

AT

TF

PD

SU

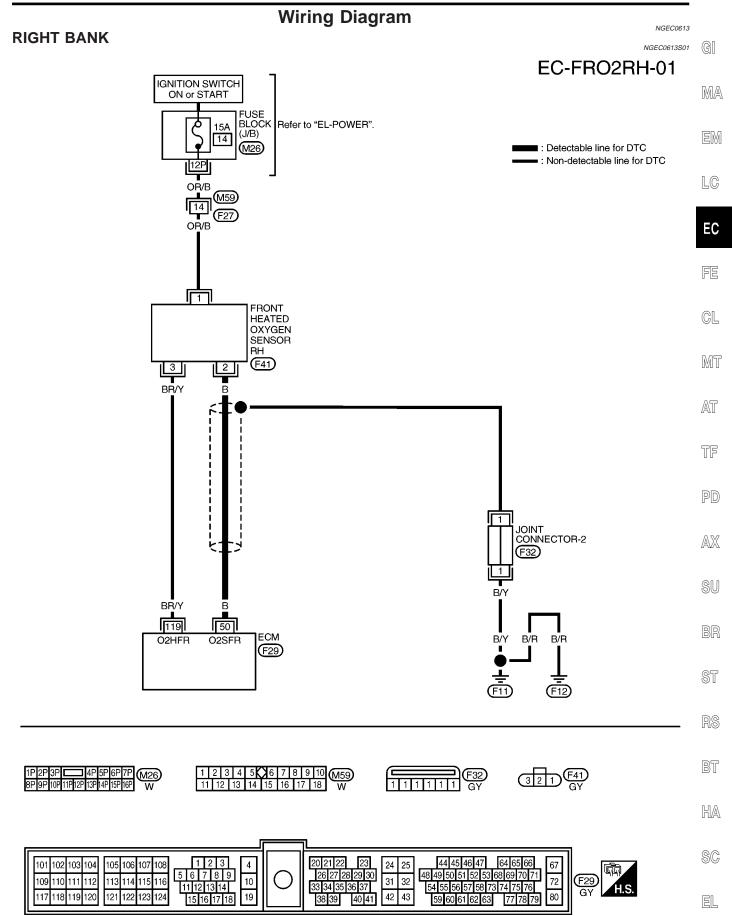

ST

HA

SC

VG33E

Overall Function Check

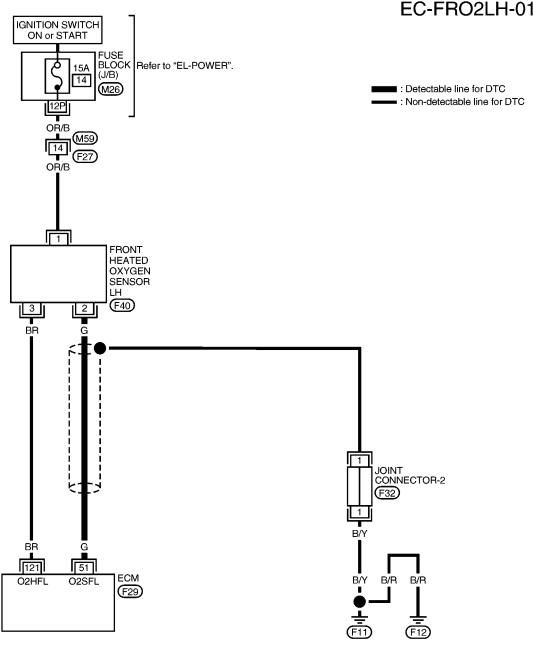

Overall Function Check

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4) If NG, go to "Diagnostic Procedure", EC-769.

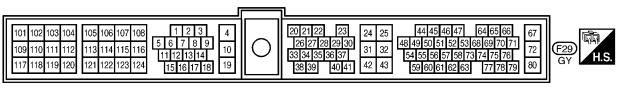
VG33E
Wiring Diagram



Wiring Diagram (Cont'd)

VG33E

LEFT BANK


EC-FRO2LH-01

AEC945A

VG33E

Diagnostic Procedure

Diagnostic Procedure

NGEC0614

MA

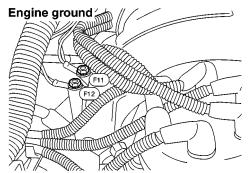
LC

EC

GL

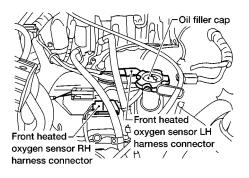
MT

AT


TF

PD

1 INSPECTION START


1. Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

AEC640A

3. Make sure front HO2S harness protector color, and disconnect corresponding front heated oxygen sensor harness connector.

AEC644A

>

CHECK FRONT HO2S INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

GO TO 2.

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and FRONT HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIO	ECM	Sensor	Бапк
P0130	50	2	Right
P0150	51	2	Left

AEC888A

Continuity should exist.

3. Check harness continuity between ECM terminal or FRONT HO2S terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIO	ECM or sensor	Ground	Dalik
P0130	50 or 2	Ground	Right
P0150	51 or 2	Ground	Left

AEC889A

Continuity should not exist.

4. Also check harness for short to power.

_			
\sim	ĸ	or	NG
U	n	UI	ING

OK (With CONSULT-II)		GO TO 3.
OK (Without CONSULT-II)	•	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

BT

HA

SC

Diagnostic Procedure (Cont'd)

VG33E

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

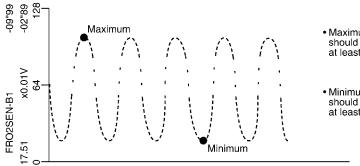
3

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MON	NITOR
MONITORING	NO FAIL
CMPS~RPM(REF)	XXX rpm
MAS AIR/FL SE	XXX V
COOLAN TEMP/S	XXX °C
FR O2 SEN-B1	XXX V
FR O2 MNTR-B1	LEAN
INJ PULSE-B1	XXX msec
A/F ALPHA-B1	XXX %
FR O2 HTR-B1	ON

PEF365V

- 5. Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.


Right bank

Left bank

R means FR O2 MNTR-B1(-B2) indicates RICH L means FR O2 MNTR-B1(-B2) indicates LEAN

SEF702W

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.3V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.3V at least one time.

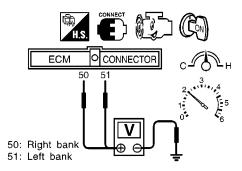
SEF154X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 5.
NG ►	Replace malfunctioning front heated oxygen sensor.


VG33E

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEF919U

- MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	>	GO TO 5.
NG	>	Replace malfunctioning front heated oxygen sensor.

5 CHECK FRONT HO2S SHIELD CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-2.
- 3. Check the following.
- Continuity between joint connector terminal 1 and ground
- Joint connector

(Refer to "HARNESS LAYOUT", EL-9.)

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect joint connector-2.

OK or NG

OK D		GO TO 6.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	INS	SPECTION END	

(II

MA

LG

EC

FE

GL

MT

AT

TF

PD

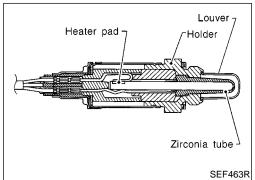
 \mathbb{A}

SU

RR

0 1

RS


BT

HA

SC

DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING) VG33E

Component Description

SEF463R SEF463R A polynomial to be provided to b

Component Description

The front heated oxygen sensor is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

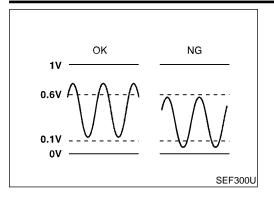
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

Mixture ratio

SEF288D

MONITOR ITEM	CONE	SPECIFICATION	
FR O2 SEN-B1 FR O2 SEN-B2		Maintini	0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.


ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· ,
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor RH	[Engine is running]	0 - Approximately 1.0V
51	G	Front heated oxygen sensor LH	After warming up to normal operating temperature and engine speed is 2,000 rpm	0.5 ms

DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING)

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the output from the front heated oxygen sensor is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

Malfunction is detected when the maximum and minimum voltage from the sensor are not reached to the specified voltages.

POSSIBLE CAUSE

- Front heated oxygen sensor
- Front heated oxygen sensor heater
- Fuel pressure
- Injectors
- Intake air leaks

......

G[

MA

VII*U*-1

EM

NGEC0618S01

LC

EC

U

_

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

 $\mathbb{D}\mathbb{X}$

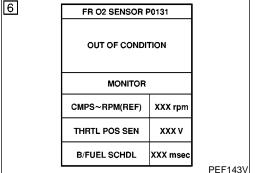
DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING)

DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0619

CAUTION:


Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

FR 02 SENSOR P0131

TESTING

MONITOR

CMPS~RPM(REF) XXX rpm

THRTL POS SEN XXX V

B/FUEL SCHDL XXX msec

6 FR 02 SENSOR P0131

COMPLETED

PEF211V

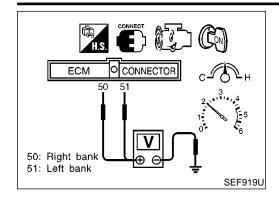
(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "FR O2 SEN-B1 (-B2) P0131 (P0151)" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)


CMPS-RPM (POS)	1,800 - 2,800 rpm (A/T models) 1,900 - 3,100 rpm (M/T models)
Vehicle speed	80 - 100 km/h (50 - 62 MPH)
B/FUEL SCHDL	1.6 - 6.5 msec (A/T models) 1.4 - 5.5 msec (M/T models)
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

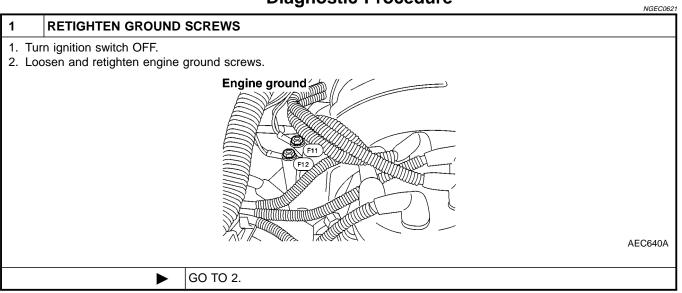
7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-775.

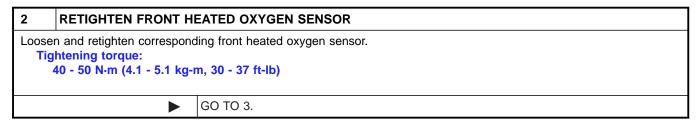
DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING)

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.


(R) Without CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.

MA

- Check one of the following with engine speed held at 2,000 rpm constant under no load.
 - LC
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- If NG, go to "Diagnostic Procedure", EC-775.

Diagnostic Procedure

EC

FE

GL MT

AT

PD

TF

AX

ST

BT

HA

SC

EL

DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

3

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST		
SELF-LEARN B1: XXX %		31: XXX %
CONTROL	B2: XXX %	
MONITOR		
CMPS·RPM(REF)		XXX rpm
COOLAN TEMP/S		XXX .C
FR O2 SEN-B1		xxx v
FR O2 SEN-B2		xxx v
A/F ALPHA-B1		XXX %
A/F ALPHA-B2		XXX %
	_	

PEF921U

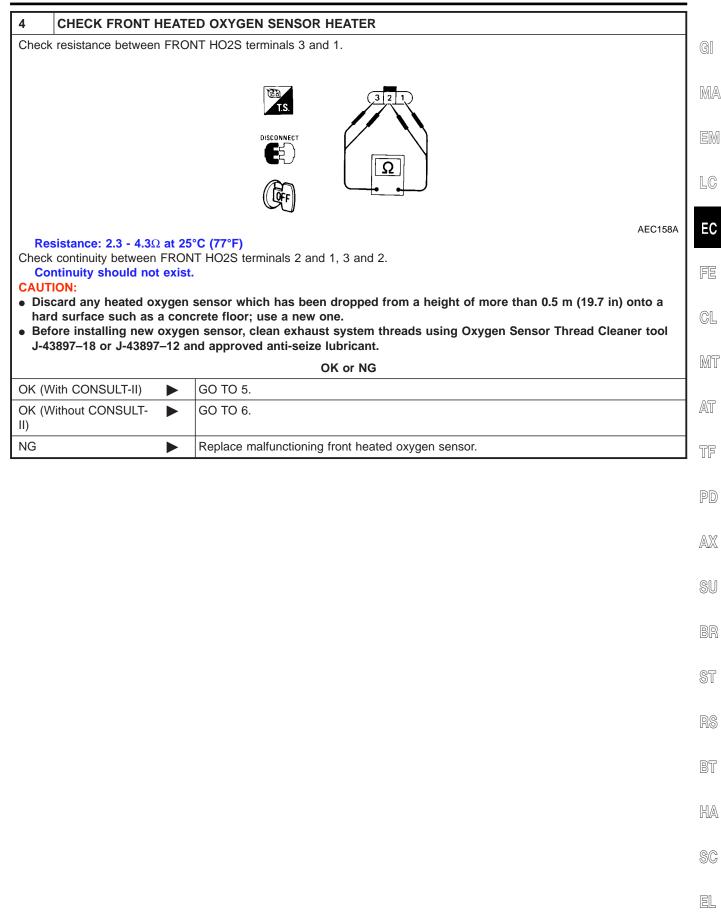
4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.
- 7. Make sure DTC No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0115 or 0210 detected?


Is it difficult to start engine?

Yes or No

Ye	s >	Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-860.
No	>	GO TO 4.

DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING) VG33E

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

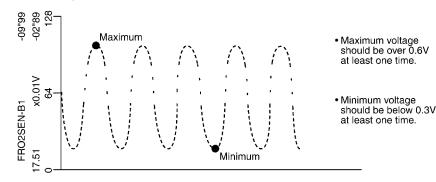
5

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MON	IITOR
MONITORING	NO FAIL
CMPS~RPM(REF)	XXX rpm
MAS AIR/FL SE	XXX V
COOLAN TEMP/S	XXX °C
FR O2 SEN-B1	XXX V
FR Q2 MNTR-B1	LEAN
INJ PULSE-B1	XXX msec
A/F ALPHA-B1	XXX %
FR O2 HTR-B1	ON

PEF365V

- 5. Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.


Right bank

Left bank

R means FR O2 MNTR-B1(-B2) indicates RICH L means FR O2 MNTR-B1(-B2) indicates LEAN

SEF702W

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.3V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

SEF154X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 7.
NG	Replace malfunctioning front heated oxygen sensor.

DTC P0131 (RIGHT, -B1), P0151 (LEFT, -B2) FRONT HO2S (LEAN SHIFT MONITORING) Diagnostic Procedure (Cont'd) 6 **CHECK FRONT HEATED OXYGEN SENSOR** (Without CONSULT-II GI 1. Start engine and warm it up to normal operating temperature. 2. Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine MA 3. Check the following with engine speed held at 2,000 rpm constant under no load. CONNECTOR ECM EC 50: Right bank 51: Left bank FE SEF919U • MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). GL The maximum voltage is over 0.6V at least one time. The minimum voltage is below 0.3V at least one time. • The voltage never exceeds 1.0V. MT **CAUTION:** • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. AT Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. TF

ı	OK OF NG		
	OK	•	GO TO 7.
	NG	•	Replace malfunctioning front heated oxygen sensor.

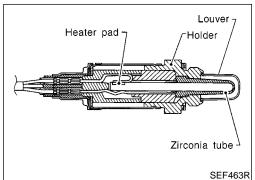
7 CHECK	FRONT HO2S	SHIELD CIRCUIT FOR OPEN AND SHORT			
1. Turn ignition	switch OFF.				
2. Disconnect jo	oint connector.				
 For circuit, refer to "DTC P0130 (RIGHT BANK, -B1), P0150 (LEFT BANK, -B2) FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (CIRCUIT)", EC-763. Check the following. 					
	0	ector terminal 1 and ground			
 Joint connects 	•	solo tominar rana ground			
	RNESS LAYOUT	F" EL-202\			
`		1 , EL-232 .)			
•	/ should exist.	to everyal and shout to narrow			
		to ground and short to power.			
6. Then reconn	ect joint connecto	Or.			
		OK or NG			
OK ▶ GO TO 8.					
NG		Repair open circuit or short to ground or short to power in harness or connectors.			
NG					
110					

	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. For circuit, refer to "DTC P0130 (RIGHT BANK, -B1), P0150 (LEFT BANK, -B2) FRONT HEATED OXYGEN SENSOI (FRONT HO2S) (CIRCUIT)", EC-763.		(RIGHT BANK, -B1), P0150 (LEFT BANK, -B2) FRONT HEATED OXYGEN SENSOR	
► INSPECTION END			

HA

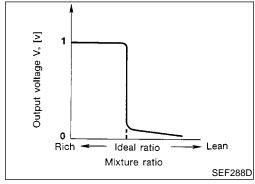
SC

PD


AX

SU

ST


DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING) VG33E

Component Description

Component Description

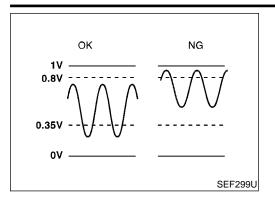
The front heated oxygen sensor is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0623

MONITOR ITEM	CONE	DITION	SPECIFICATION
FR O2 SEN-B1 FR O2 SEN-B2			0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.


ECM Terminals and Reference Value

NGEC0624 Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· · · · · · · · · · · · · · · · · · ·
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor RH	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V
51	G	Front heated oxygen sensor LH		0.5 ms

DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING)

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the output from the front heated oxygen sensor is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

Malfunction is detected when the maximum and minimum voltages from the sensor are beyond the specified voltages.

POSSIBLE CAUSE

- Front heated oxygen sensor
- Fuel pressure
- Injectors
- Front heated oxygen sensor heater

NCECOGRE

G[

MA

EM

NGEC0625S01

LC

EC

C

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

HA

SC

EL

 \mathbb{D}

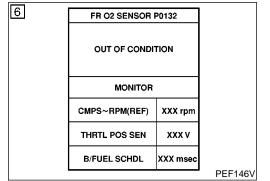
DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING)

DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0626

CAUTION:


Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

6			1
	FR O2 SENSOR		
	TESTING		
	MONITOR		
	CMPS~RPM(REF)	XXX rpm	
	THRTL POS SEN	xxx v	
	B/FUEL SCHDL	XXX msec	
			PEF147V

FR 02 SENSOR P0132

COMPLETED

PEF212V

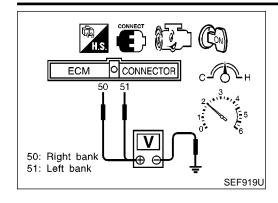
(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "FR O2 SEN-B1 (-B2) P0132 (P0152)" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)


CMPS-RPM (POS)	1,800 - 2,800 rpm (A/T models) 1,900 - 3,100 rpm (M/T models)	
Vehicle speed	80 - 100 km/h (50 - 62 MPH)	
B/FUEL SCHDL	1.6 - 6.5 msec (A/T models) 1.4 - 5.5 msec (M/T models)	
Selector lever	Suitable position	

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-783.

DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING)

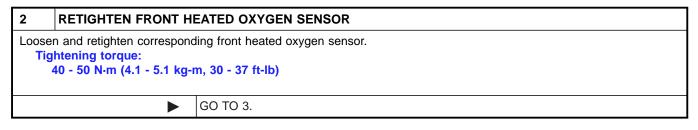
Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- If NG, go to "Diagnostic Procedure", EC-783.


EC

LC

MA

Diagnostic Procedure

RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground AEC640A GO TO 2.

FE

GL

MT

AT

TF

PD

AX

ST

BT

HA

SC

EL

DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING) VG33E

Diagnostic Procedure (Cont'd)

3 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST				
SELF-LEARN	31: XXX %			
CONTROL B2: XXX		32: XXX %		
MONITOR				
CMPS·RPM(REF)		XXX rpm		
COOLAN TEMP/S		XXX °C		
FR O2 SEN-B1	xxx v			
FR O2 SEN-B2	xxx v			
A/F ALPHA-B1	XXX %			
A/F ALPHA-B2		XXX %		

PEF921U

4. Run engine for at least 10 minutes at idle speed.

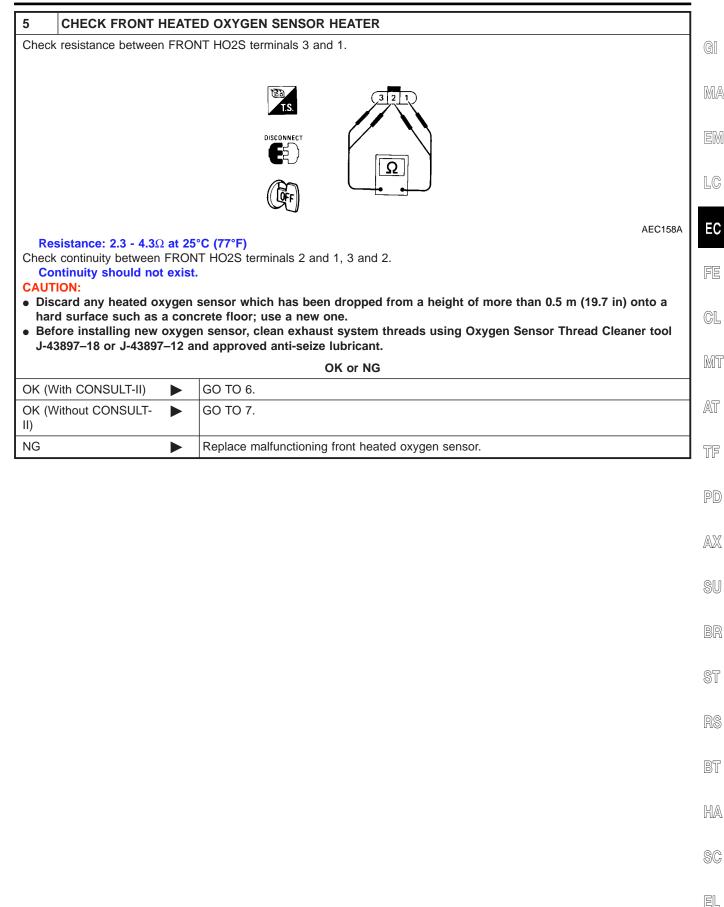
Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.
- 7. Make sure DTC No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0114 or 0209 detected?

Is it difficult to start engine?


Yes or No

Yes	Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-868.
No •	GO TO 4.

4 CHECK FRONT HO2S CONNECTOR FOR WATER 1. Turn ignition switch OFF. 2. Disconnect front heated oxygen sensor harness connector. 3. Check connectors for water. Water should not exist. OK or NG OK Repair or replace harness or connectors.

DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING)

Diagnostic Procedure (Cont'd)

DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING) VG33E

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

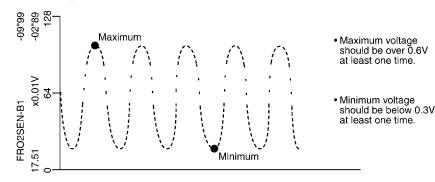
6

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITORING	NO FAIL		
CMPS~RPM(REF)	XXX rpm		
MAS AIR/FL SE	XXX V		
COOLAN TEMP/S	XXX °C		
FR O2 SEN-B1	XXX V		
FR Q2 MNTR-B1	LEAN		
INJ PULSE-B1	XXX msec		
A/F ALPHA-B1	XXX %		
FR O2 HTR-B1	ON		

PEF365V

- 5. Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.


Right bank

Left bank

R means FR O2 MNTR-B1(-B2) indicates RICH L means FR O2 MNTR-B1(-B2) indicates LEAN

SEF702W

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.3V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

SEF154X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK	GO TO 8.
NG	Replace malfunctioning front heated oxygen sensor.

DTC P0132 (RIGHT, -B1), P0152 (LEFT, -B2) FRONT HO2S (RICH SHIFT MONITORING) Diagnostic Procedure (Cont'd) 7 **CHECK FRONT HEATED OXYGEN SENSOR** Without CONSULT-II GI 1. Start engine and warm it up to normal operating temperature. 2. Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine MA 3. Check the following with engine speed held at 2,000 rpm constant under no load. CONNECTOR ECM EC 50: Right bank 51: Left bank FE SEF919U • MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR). GL The maximum voltage is over 0.6V at least one time. The minimum voltage is below 0.3V at least one time. • The voltage never exceeds 1.0V. MT **CAUTION:** • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. AT Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. TF

ı	OK OF NG		
	OK •	•	GO TO 8.
	NG	•	Replace malfunctioning front heated oxygen sensor.

NG Replace malfunctioning front heated oxygen sensor.					
8 CHE	CHECK FRONT HO2S SHIELD CIRCUIT FOR OPEN AND SHORT				
 CHECK FRONT HO2S SHIELD CIRCUIT FOR OPEN AND SHORT Turn ignition switch OFF. Disconnect joint connector. For circuit, refer to "DTC P0130 (RIGHT BANK, -B1), P0150 (LEFT BANK, -B2) FRONT HEATED OXYGEN SENSOR (FRONT HO2S) (CIRCUIT)", EC-763. Check the following. Continuity between joint connector terminal 1 and ground Joint connector (Refer to "HARNESS LAYOUT", <i>EL-292</i>.) Continuity should exist. Also check harness for short to ground and short to power. Then reconnect joint connector. 					
		OK or NG			
OK	•	GO TO 9.			
NG		Repair open circuit or short to ground or short to power in harness or connectors.			

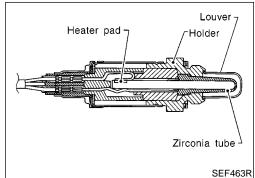
9	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. For circuit, refer to "DTC P0130 (RIGHT BANK, -B1), P0150 (LEFT BANK, -B2) FRONT HEATED OXYGEN SENSOR			
	(FRONT HO2S) (CIRCUIT)", EC-763.		
	•	INSPECTION END	

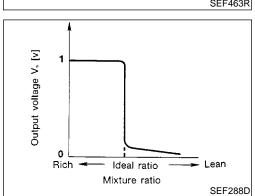
PD

AX

SU

ST


BT


HA

SC

DTC P0133 (RIGHT, -B1), P0153 (LEFT, -B2) FRONT HO2S (RESPONSE MONITORING) VG33E

Component Description

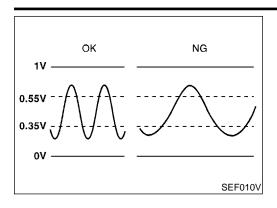
Component Description

The front heated oxygen sensor is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	COND	DITION	SPECIFICATION
FR O2 SEN-B1 FR O2 SEN-B2		Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
FR O2 MNTR-B1 FR O2 MNTR-B2	Engine: After warming up		LEAN ←→ RICH Changes more than 5 times during 10 seconds.


ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

	· · · · · · · · · · · · · · · · · · ·				
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
50	В	Front heated oxygen sensor RH	[Engine is running] ■ After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V	
51	G	Front heated oxygen sensor LH		0.5 ms	

DTC P0133 (RIGHT, -B1), P0153 (LEFT, -B2) FRONT HO2S (RESPONSE MONITORING)

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction of front heated oxygen sensor, this diagnosis measures response time of front heated oxygen sensor signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and front heated oxygen sensor temperature index. Judgment is based on whether the compensated time (front heated oxygen sensor cycling time index) is inordinately long or not.

Malfunction is detected when the response of the voltage signal from the sensor takes more than the specified time.

ignal ^{EM}

NGEC0632S01

MA

POSSIBLE CAUSE

 Harness or connectors (The sensor circuit is open or shorted.)

Front heated oxygen sensor

- Front heated oxygen sensor heater
- Fuel pressure
- Injectors
- Intake air leaks
- Exhaust gas leaks
- PCV valve
- Mass air flow sensor

MT

GL

AT

TF

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

LC

PD

SU

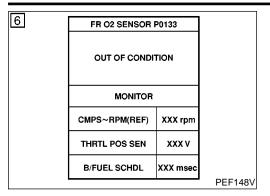
BR

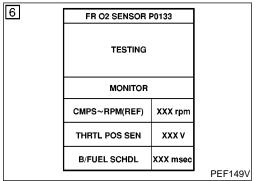
ST

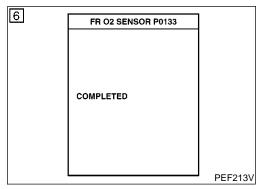
RS

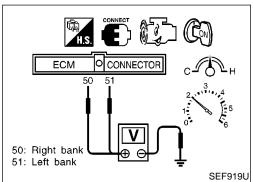
BT

HA


SC


EL


 \mathbb{Z}


DTC P0133 (RIGHT, -B1), P0153 (LEFT, -B2) FRONT HO2S (RESPONSE MONITORING)

DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "FR O2 SEN-B1 (-B2) P0133 (P0153)" of "FRONT O2 SENSOR" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 5) Start engine and let it idle for at least 3.5 minutes.

NOTE

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.)

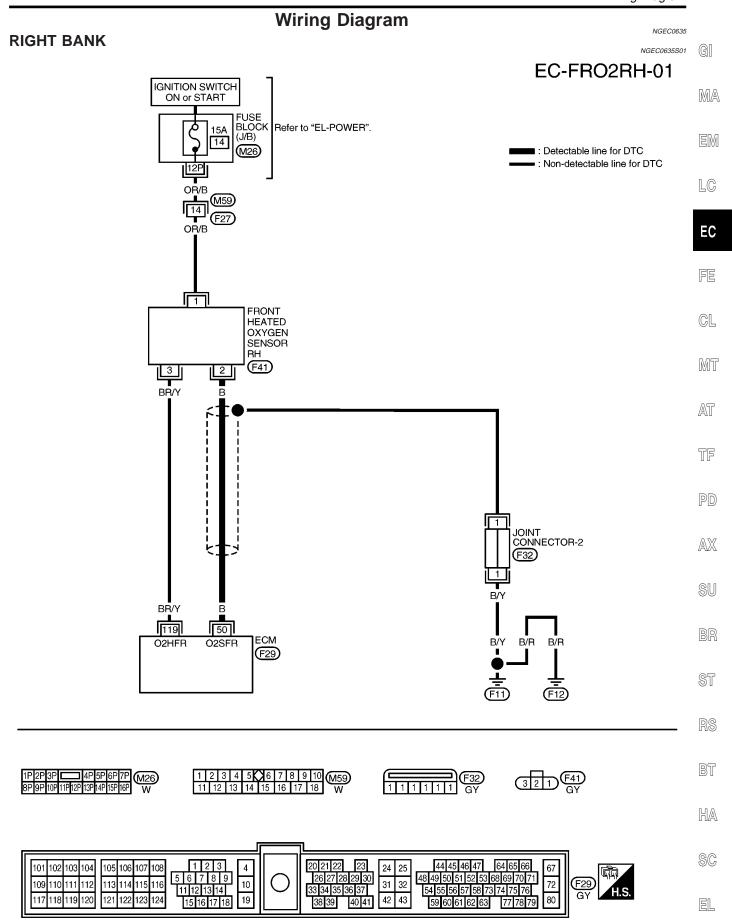
CMPS-RPM (POS)	1,800 - 2,800 rpm (A/T models) 1,900 - 3,300 rpm (M/T models)
Vehicle speed	80 - 120 km/h (50 - 75 MPH)
B/FUEL SCHDL	1.6 - 6.5 msec (A/T models) 1.4 - 5.5 msec (M/T models)
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

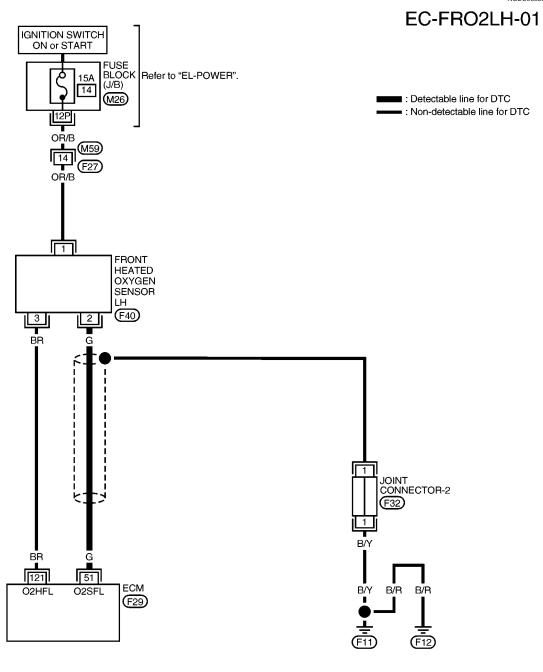
 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-793.

Overall Function Check

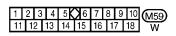
NGEC063


Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

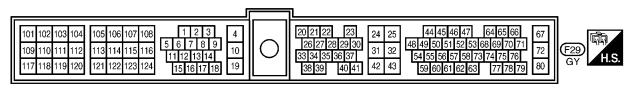
⋈ Without CONSULT-II

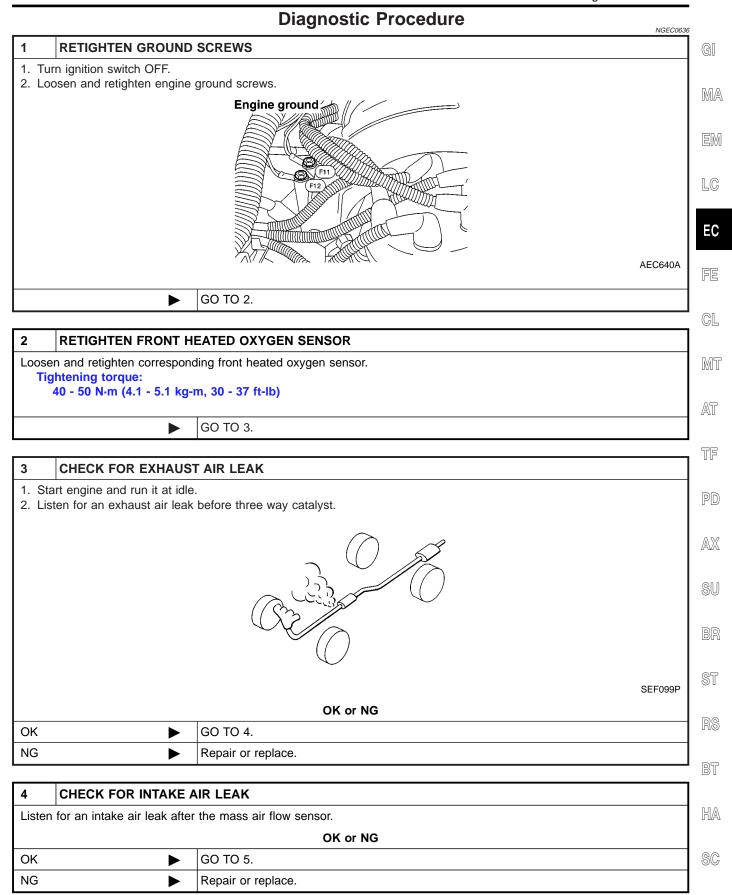

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- 4) If NG, go to "Diagnostic Procedure", EC-793.

DTC P0133 (RIGHT, -B1), P0153 (LEFT, -B2) FRONT HO2S (RESPONSE MONITORING) VG33E


Wiring Diagram

LEFT BANK





AEC945A

Diagnostic Procedure

EL

Diagnostic Procedure (Cont'd)

5 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

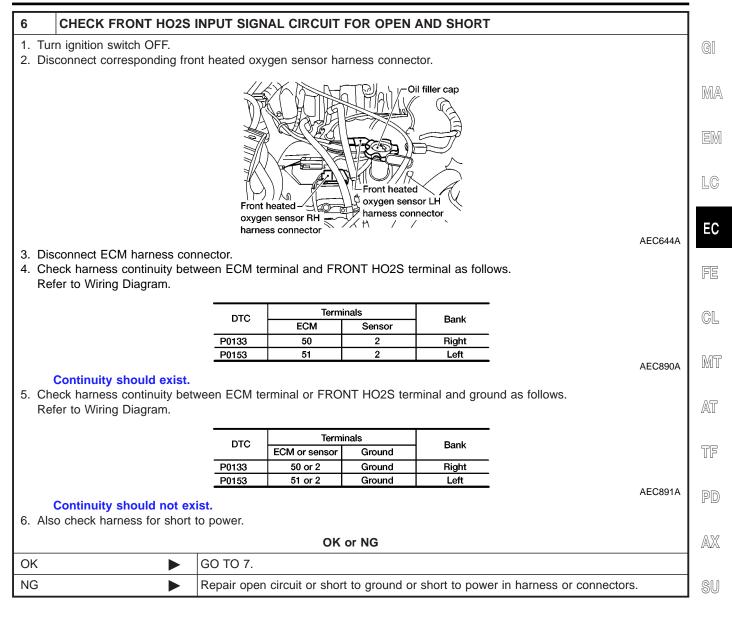
ACTIVE TEST				
SELF-LEARN	E	31: XXX %		
CONTROL	B2: XXX %			
MONITO	₹			
CMPS·RPM(REF)		XXX rpm		
COOLAN TEMP/S		XXX .C		
FR O2 SEN-B1		xxx v		
FR O2 SEN-B2		xxx v		
A/F ALPHA-B1		XXX %		
A/F ALPHA-B2		XXX %		
	_			

PEF921U

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

(R) Without CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.
- 7. Make sure DTC No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0114, 0115, 0209 or 0210 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-860, 868.
No	GO TO 6.

Diagnostic Procedure (Cont'd)

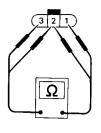
ST

BT

HA

SC

Diagnostic Procedure (Cont'd)


CHECK FRONT HEATED OXYGEN SENSOR HEATER

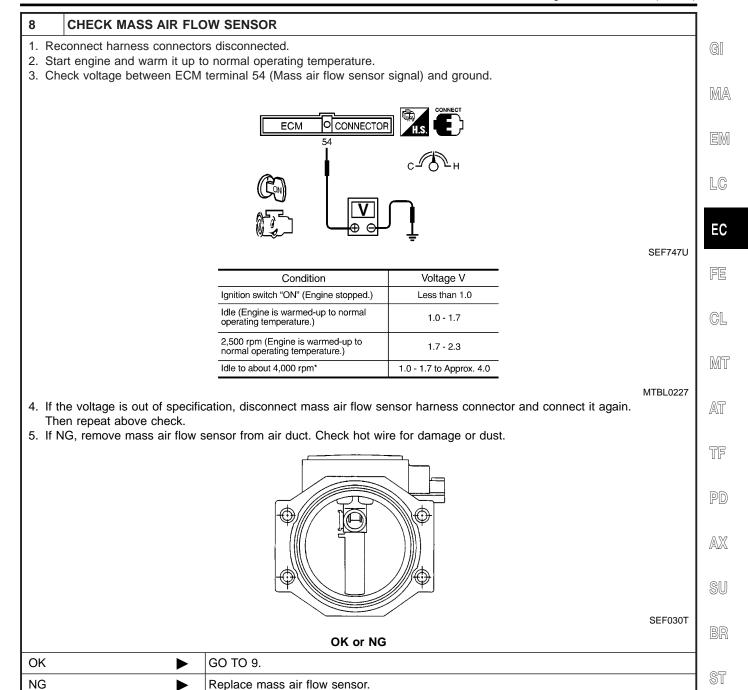
Check resistance between FRONT HO2S terminals 3 and 1.

AEC158A

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between FRONT HO2S terminals 2 and 1, 3 and 2.

Continuity should not exist.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

	OK I	GO TO 8.
I	NG	Replace malfunctioning front heated oxygen sensor.

Diagnostic Procedure (Cont'd)

BT

HA

SC

Diagnostic Procedure (Cont'd)

9	CHECK PCV VALVE				
noise	With engine running at idle, remove PCV valve ventilation hose from PCV valve; if the valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.				
	SEC137A				
014 (14	OK or NG				
OK (V	OK (With CONSULT-II)				
OK (V II)	OK (Without CONSULT- GO TO 11.				
NG	NG Replace PCV valve.				

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

10

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
NO FAIL			
XXX rpm			
XXX V			
XXX °C			
XXX V			
LEAN			
XXX msec			
XXX %			
ON			

PEF365V

MA

EC

FE

CL

MT

AT

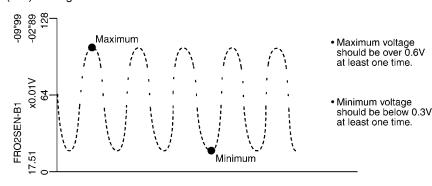
TF

PD

- 5. Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

Right bank

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R


Left bank

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B2 R-L-R-L-R-L-R-L-R

R means FR O2 MNTR-B1(-B2) indicates RICH L means FR O2 MNTR-B1(-B2) indicates LEAN

SEF702W

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.3V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

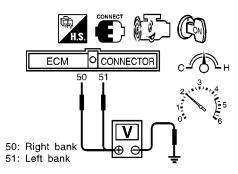
SEF154X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 12.
NG •	Replace malfunctioning front heated oxygen sensor.


HA

Diagnostic Procedure (Cont'd)

11 CHECK FRONT HEATED OXYGEN SENSOR

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEF919U

- MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 12.
NG ►	Replace malfunctioning front heated oxygen sensor.

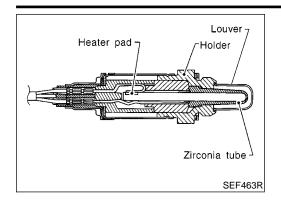
12 CHECK FRONT HO2S SHIELD CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector.
- 3. Check the following.
- Continuity between joint connector terminal 1 and ground
- Joint connector

(Refer to "HARNESS LAYOUT", EL-9.)

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect joint connector.


OK or NG

OK •	GO TO 13.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

13 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. INSPECTION END

VG33E

Component Description

Component Description

The front heated oxygen sensor is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The front heated oxygen sensor has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The front heated oxygen sensor signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

FE

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0638

Specification data are reference values.

Ideal ratio

Mixture ratio

Lean

SEF288D

Output voltage V, [v]

Rich

MONITOR ITEM	CONI	SPECIFICATION	TF	
FR O2 SEN-B1 FR O2 SEN-B2			0 - 0.3V ←→ Approx. 0.6 - 1.0V	PD
FR O2 MNTR-B1 FR O2 MNTR-B2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	AX

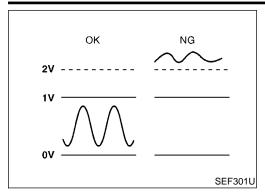
ECM Terminals and Reference Value

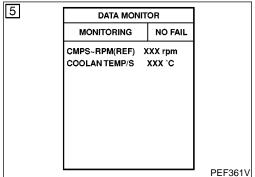
Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· · · · · ·
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Front heated oxygen sensor RH	[Engine is running] ■ After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V
51	G	Front heated oxygen sensor LH		0.5 ms

HA

BT


ST


SC

EL

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the front heated oxygen sensor output is not inordinately high.

Malfunction is detected when an excessively high voltage from the sensor is sent to ECM.

POSSIBLE CAUSE

NGEC0640S01

- Harness or connectors (The sensor circuit is open or shorted.)
- Front heated oxygen sensor

DTC Confirmation Procedure

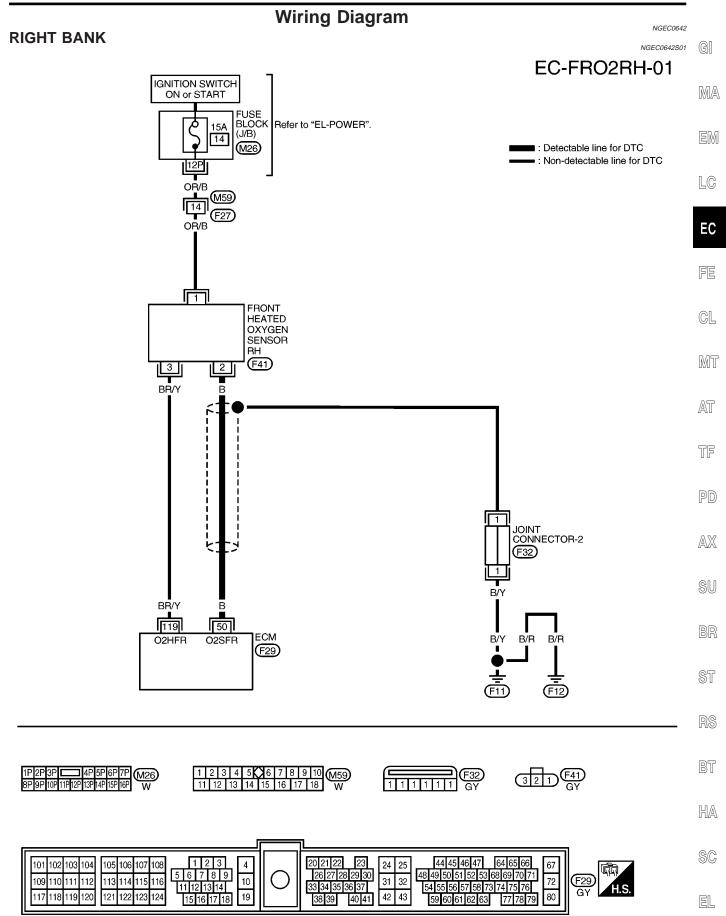
NGEC0641

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

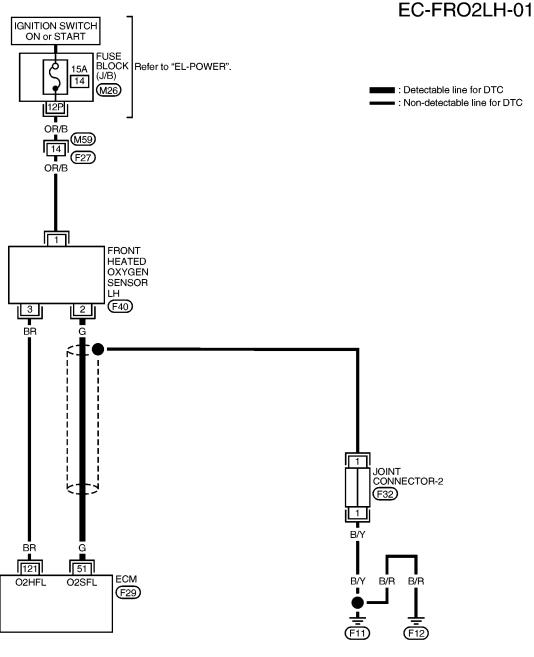
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Restart engine and let it idle for 20 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-805.

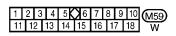

With GST

Follow the procedure "With CONSULT-II".

No Tools

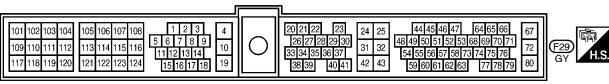
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Restart engine and let it idle for 20 seconds.
- Turn ignition switch OFF, wait at least 5 seconds and then turn "ON".
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-805.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.


VG33E
Wiring Diagram


Wiring Diagram (Cont'd)

VG33E

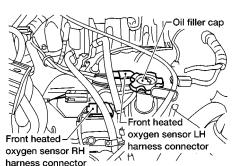
LEFT BANK



AEC945A

VG33E

Diagnostic Procedure


Diagnostic Procedure

NGEC0643

1. Turn ignition switch OFF.

INSPECTION START

2. Disconnect corresponding front heated oxygen sensor harness connector.

AEC644A

► GO TO 2.

RETIGHTEN FRONT HEATED OXYGEN SENSOR

1. Loosen and retighten corresponding front heated oxygen sensor.

Tightening torque:

40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

▶ GO TO 3.

3 CHECK FRONT HO2S INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal and FRONT HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Term	Domis	
	ECM	Sensor	Bank
P0134	50	2	Right
P0154	51	2	Left

Continuity should exist.

3. Check harness continuity between ECM terminal or FRONT HO2S terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM or sensor	Ground	Dank
P0134	50 or 2	Ground	Right
P0154	51 or 2	Ground	Left

Continuity should not exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

OK	•	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

G

MA

LC

EC

GL

MT

AT

TF

PD

AX

90

AEC892A

AEC893A

BK

ST

_

B

HA

SC

VG33E

Diagnostic Procedure (Cont'd)

4	CHECK FRONT HO	25 (CONNECTOR FOR WATER
 Disconnect front heated oxygen sensor harness connector. Check connectors for water. Water should not exist. 			
OK or NG			
OK (W	/ith CONSULT-II)	>	GO TO 5.
OK (W	/ithout CONSULT-	•	GO TO 6.
NG	•	-	Repair or replace harness or connectors.

VG33E

MA

EC

FE

GL

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR

(P) With CONSULT-II

5

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

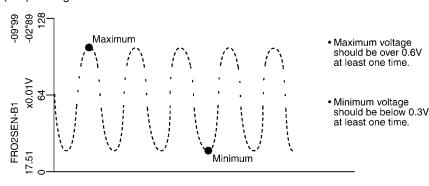
DATA MONITOR		
MONITORING	NO FAIL	
CMPS~RPM(REF)	XXX rpm	
MAS AIR/FL SE	XXX V	
COOLAN TEMP/S	XXX °C	
FR O2 SEN-B1	XXX V	
FR O2 MNTR-B1	LEAN	
INJ PULSE-B1	XXX msec	
A/F ALPHA-B1	XXX %	
FR O2 HTR-B1	ON	

PEF365V

- 5. Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown left:

Right bank

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R-L-R


Left bank

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B2 R-L-R-L-R-L-R-L-R

R means FR O2 MNTR-B1(-B2) indicates RICH L means FR O2 MNTR-B1(-B2) indicates LEAN

SEF702W

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.3V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

SEF154X

CAUTION:

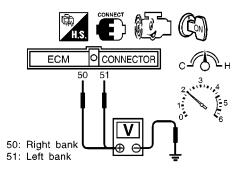
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG ►	Replace malfunctioning front heated oxygen sensor.

HA

Diagnostic Procedure (Cont'd)


VG33E

CHECK FRONT HEATED OXYGEN SENSOR

Without CONSULT-II

6

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEF919U

- MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG ►	Replace malfunctioning front heated oxygen sensor.

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	>	INSPECTION END	

DTC P0135 (RIGHT, -B1), P0155 (LEFT, -B2) FRONT HO2S

VG33E Description

	Description
YSTEM DESCRIPTION	

NGEC0644

NGEC0644S01

			110200011001	Q
Sensor	Input Signal to ECM	ECM func- tion	Actuator	\mathbb{N}
Camshaft position sensor	Engine speed	Front heated oxygen sensor heater control	Front heated oxygen sensor heaters	E

The ECM performs ON/OFF control of the front heated oxygen sensor heaters corresponding to the engine speed.

EC

OPERATION

Engine speed rpm	Front heated oxygen sensor heaters
Above 3,200	OFF
Below 3,200	ON

FE

GL

MT

NGEC0644S02

CONSULT-II Reference Value in Data Monitor Mode

NGEC0645

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FD O2 LITE D2	• Engine speed: Below 3,200 rpm	ON
	• Engine speed: Above 3,200 rpm	OFF

AT

TF

ECM Terminals and Reference Value

PD

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

AX

	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	119 (Right bank)	BR/Y		[Engine is running] • Engine speed is below 3,200 rpm	Approximately 0.4V
(121 (Left bank)	BR	sor heater	[Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)

ST

On Board Diagnosis Logic

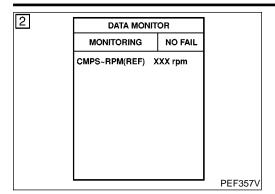
Malfunction is detected when the current amperage in the front heated oxygen sensor heater circuit is out of the normal range. (An improper voltage drop signal is sent to ECM through the front heated oxygen sensor heater.)

POSSIBLE CAUSE

NGEC0647S01

Harness or connectors (The front heated oxygen sensor heater circuit is open or shorted.)

EL


SC

Front heated oxygen sensor heater

DTC P0135 (RIGHT, -B1), P0155 (LEFT, -B2) FRONT HO2S HEATER

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0648

NOTE:

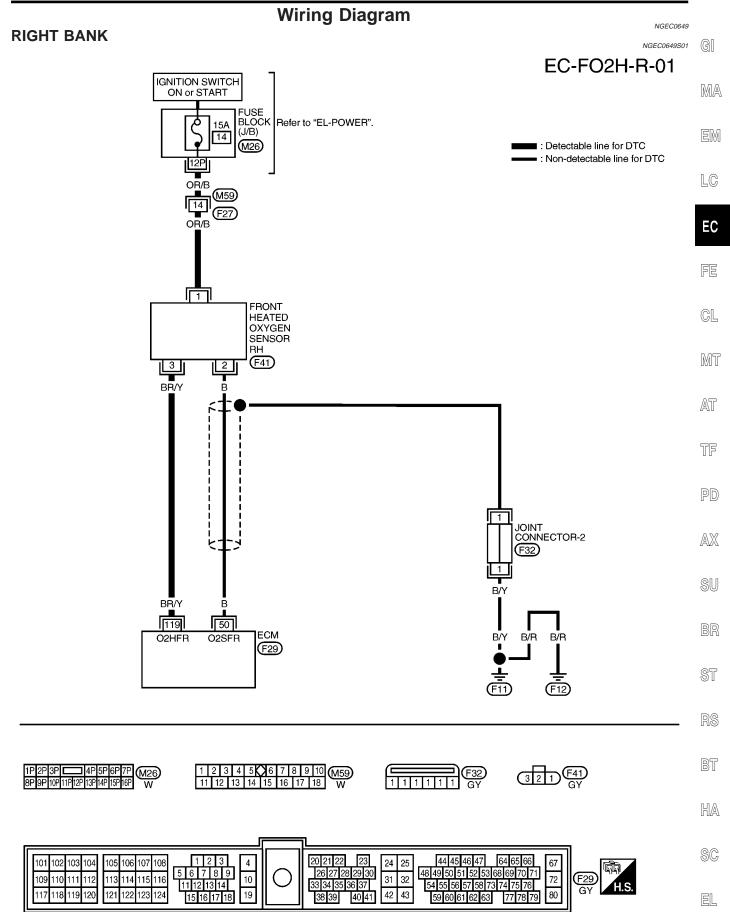
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) With CONSULT-II

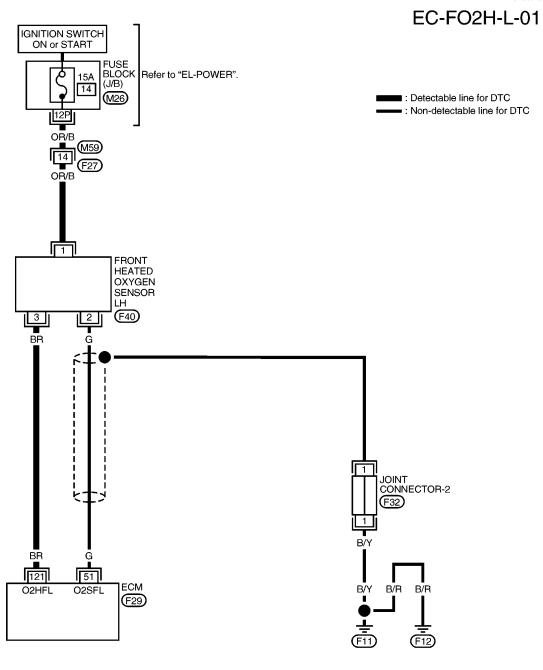
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 6 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-813.

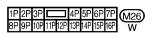

With GST

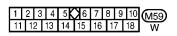
Follow the procedure "With CONSULT-II".

- No Tools
- 1) Start engine and run it for at least 6 seconds at idle speed.
- Turn ignition switch OFF, wait at least 5 seconds and then turn ON
- 3) Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-813.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

DTC P0135 (RIGHT, -B1), P0155 (LEFT, -B2) FRONT HO2S HEATER

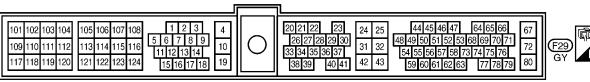

VG33E
Wiring Diagram



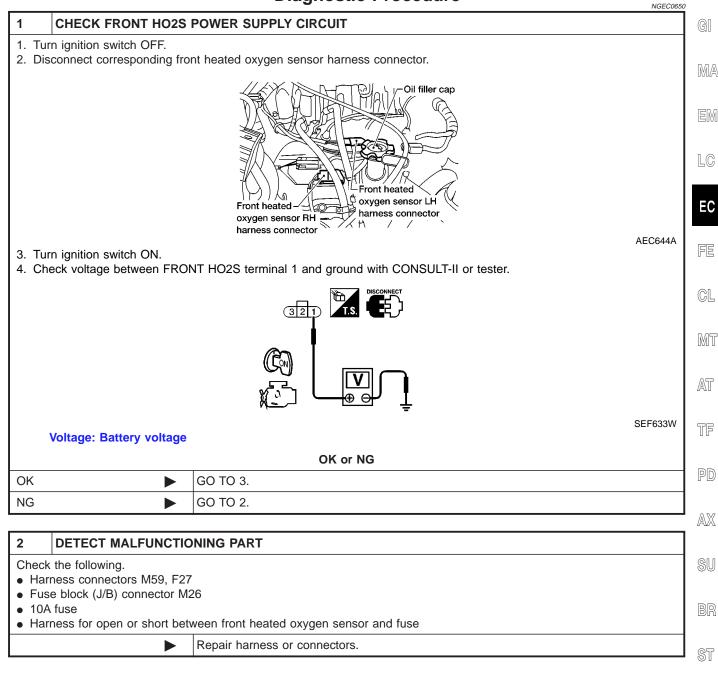

Wiring Diagram (Cont'd)

VG33E

LEFT BANK



H.S.


AEC947A

DTC P0135 (RIGHT, -B1), P0155 (LEFT, -B2) FRONT HO2S HEATER

VG33E

Diagnostic Procedure

BT

HA

SC

DTC P0135 (RIGHT, -B1), P0155 (LEFT, -B2) FRONT HO2S HEATER

VG33E

Diagnostic Procedure (Cont'd)

3 CHECK FRONT HO2S GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and FRONT HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Dank
P0135	119	3	Right
P0155	121	3	Left

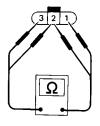
AEC894A

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.


4 CHECK FRONT HEATED OXYGEN SENSOR HEATER

Check resistance between FRONT HO2S terminals 3 and 1.

AEC158A

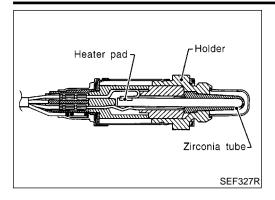
Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between FRONT HO2S terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 5.
NG ►	Replace malfunctioning front heated oxygen sensor.

5	CHECK INTERMITTENT INCIDENT		
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-706.	
	•	INSPECTION END	

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING)

Component Description

Component Description

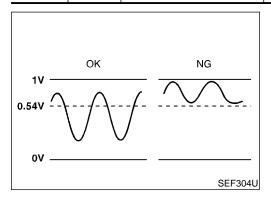
The rear heated oxygen sensor, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	_
RR O2 SEN-B1 RR O2 SEN-B2	Engine: After warming up	Revving engine from idle up to	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
RR O2 MNTR-B1 RR O2 MNTR-B2		2,000 rpm	LEAN ←→ RICH	•

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

				· · · · · · · · · · · · · · · · · · ·	1
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	L
56 (Right bank)	OR	Rear heated oxygen sen-	oxygen sen-	O. Approximately 4.0V	[
57 (Left bank)	Y	sor	 Warm-up condition Revving engine from idle up to 2,000 rpm 	0 - Approximately 1.0V	Д

On Board Diagnosis Logic

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

Malfunction is detected when the minimum voltage from the sensor is not reached to the specified voltage.

POSSIBLE CAUSE

 Harness or connectors (The sensor circuit is open or shorted.)

- Rear heated oxygen sensor
- Fuel pressure
- Injectors

GI

MA

LC

EC

FE

GL

MT

W25

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

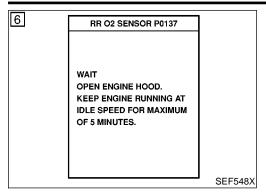
e e

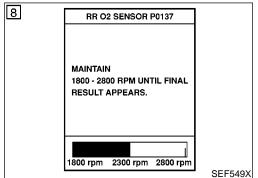
BR

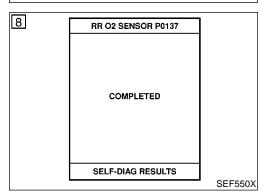
ST

1110

NGEC0654S01


HA


SC


EL

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING)

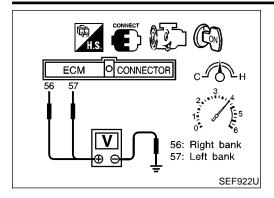
On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0655

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- 6) Select "RR 02 SEN -B1 (-B2), P0137 (P0157) of "RR 02 SEN-SOR" in DTC WORK SUPPORT" mode with CONSULT.
- Start engine and follow the instructions of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF_DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-820.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less than 70°C 158°F).
- b) Turn ignition switch ON.
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Perform from step 6) again when the "COOLANT TEMP/S" reaches to 70°C 158°F)

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE **MONITORING**)

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

N Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
- (depress and release accelerator pedal as soon as possible) The voltage should be below 0.54V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T). The voltage should be below 0.54V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-820.

EM

MA

EC

MT

AT

TF

PD

AX

SU

ST

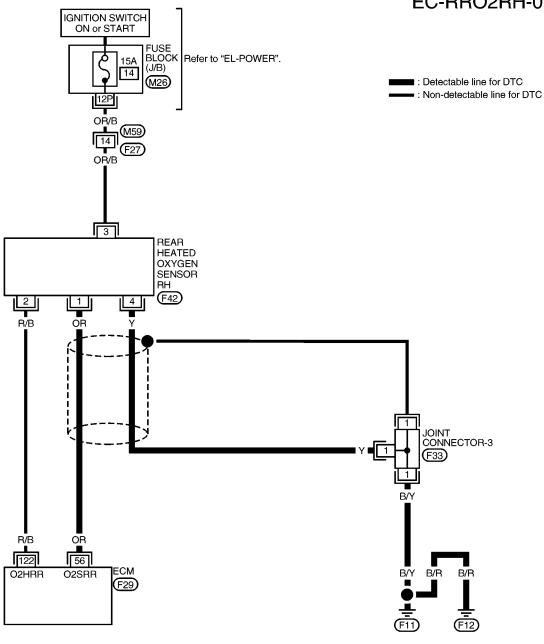
BT

HA

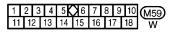
SC

EL

Wiring Diagram

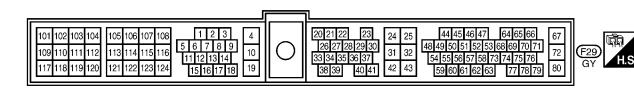

RIGHT BANK

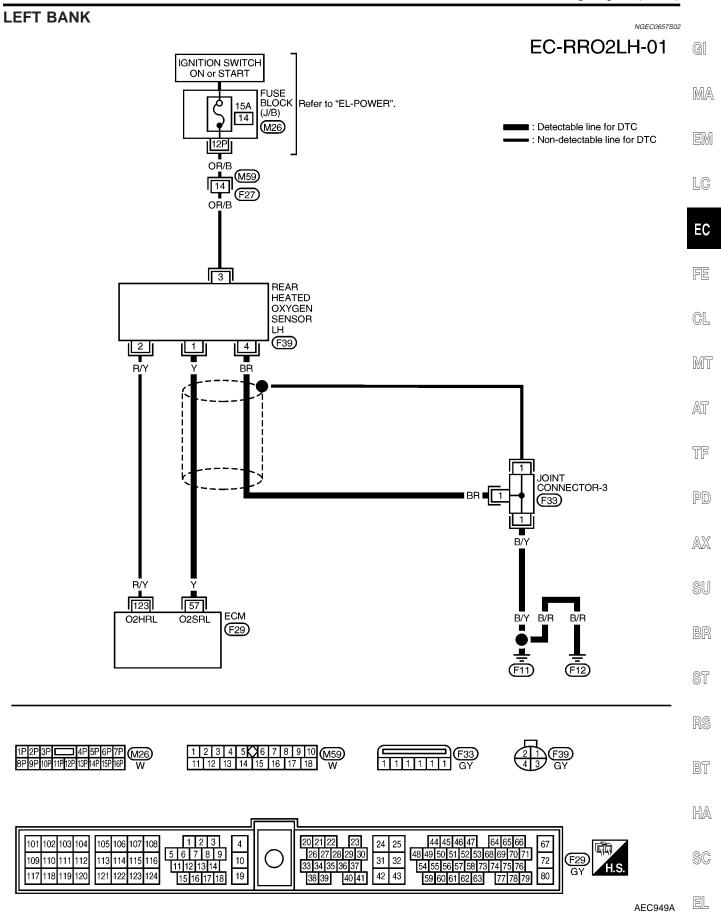
Wiring Diagram


NGEC0657

NGEC0657S01

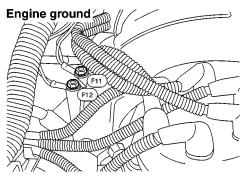
EC-RRO2RH-01





Wiring Diagram (Cont'd)

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING)


Diagnostic Procedure

Diagnostic Procedure

NGEC0658

1 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

AEC640A

GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TEST			
SELF-LEARN	SELF-LEARN B1: XXX %		
CONTROL	OL B2: XXX %		
MONITO	₹		
CMPS·RPM(REF)		XXX rpm	
COOLAN TEMP/S		XXX °C	
FR O2 SEN-B1		xxx v	
FR O2 SEN-B2		xxx v	
A/F ALPHA-B1		XXX %	
A/F ALPHA-B2		XXX %	

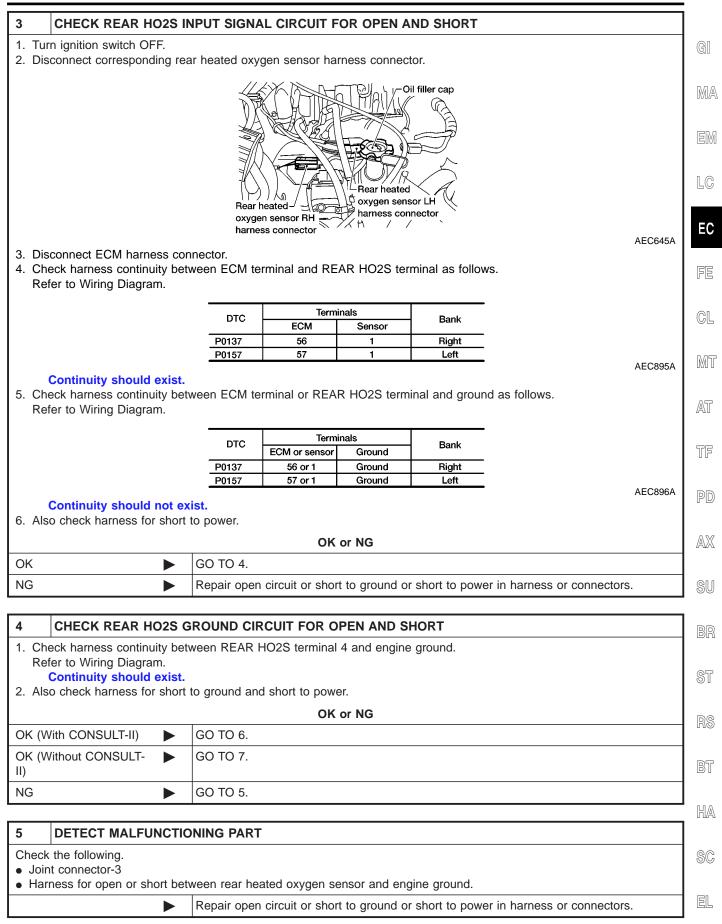
PEF921U

4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected?

Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.
- 7. Make sure DTC No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC 0114 or 0209 detected? Is it difficult to start engine?

Yes or No

Yes		Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-869.
No		GO TO 3.

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING)

Diagnostic Procedure (Cont'd)

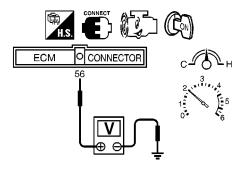
DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING) VG33E

Diagnostic Procedure (Cont'd)

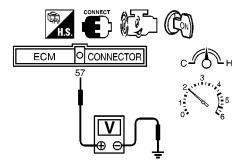
6 CHECK REAR HEATED OXYGEN SENSOR (P) With CONSULT-II 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. 2. Stop vehicle with engine running. 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SEN-B1 (-B2)" as the monitor item with CON-SULT-II. 4. Check "RR O2 SEN-B1 (-B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.56V at least one time. 64 The voltage should be below 0.54V at least one time. "RR O2 SEN-B1 (-B2)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SEN-B1 (-B2)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%. • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. • Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK OF NG		
OK	•	GO TO 8.
NG		Replace malfunctioning rear heated oxygen sensor.

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING)


Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR


(Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

SEF923U

SEF924U

The voltage should be above 0.56V at least once during this procedure. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.54V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

01/		
OK	or	NG

OK •	GO TO 8.
NG •	Replace malfunctioning rear heated oxygen sensor.

GI

MA

LC

EC

FE

MT

AT

TF

PD

AX

SU

ST

RS

₽£

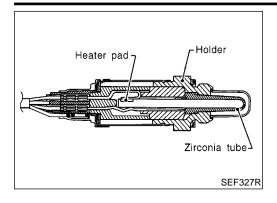
BT

HA

SC

EL

DTC P0137 (RIGHT, -B1), P0157 (LEFT, -B2) REAR HO2S (MIN. VOLTAGE MONITORING) VG33E


Diagnostic Procedure (Cont'd)

8	CHECK REAR HO2S S	HIELD CIRCUIT FOR OPEN AND SHORT	
1. Tur	n ignition switch OFF.		
2. Dis	sconnect joint connector-3.		
3. Ch	3. Check the following.		
Con	Continuity between joint connector terminal 1 and ground		
Join	Joint connector		
(Re	(Refer to "HARNESS LAYOUT", <i>EL-292</i> .)		
Cor	Continuity should exist.		
4. Als	4. Also check harness for short to ground and short to power.		
5. Then reconnect joint connector-3.			
	OK or NG		
OK	>	GO TO 9.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

9	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	•	INSPECTION END	

DTC P0138 (RIGHT, -B1), P0158 (LEFT, -B2) REAR HO2S (MAX. VOLTAGE MONITORING)

Component Description

Component Description

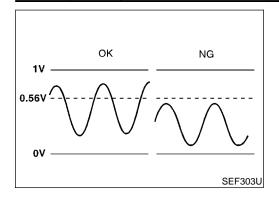
The rear heated oxygen sensor, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
RR O2 SEN-B1 RR O2 SEN-B2	Fasina Attanuaraina un	Revving engine from idle up to	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
RR O2 MNTR-B1 RR O2 MNTR-B2	● Engine: After warming up	2,000 rpm	LEAN ←→ RICH	_

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL	WIRE	ITEM	CONDITION	DATA (DC Voltage)	L
NO.	COLOR				
56 (Right bank)	OR	Rear heated oxygen sen-	[Engine is running] • Warm-up condition	0 - Approximately 1.0V	[
57 (Left bank)	Y	sor	Revving engine from idle up to 2,000 rpm	о - Арргохіпіасету 1.00	7

On Board Diagnosis Logic

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

Malfunction is detected when the maximum voltage from the sensor is not reached to the specified voltage.

POSSIBLE CAUSE

 Harness or connectors (The sensor circuit is open or shorted.)

- Rear heated oxygen sensor
- Fuel pressure
- Injectors
- Intake air leaks

EC

LC

GI

FF

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

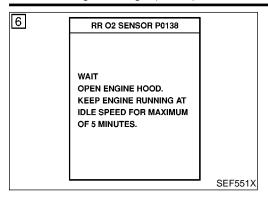
BR

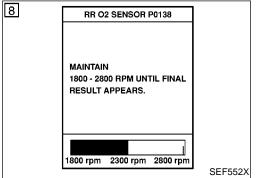
51

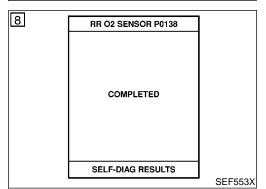
60

NGEC0662S01

HA


II II*I*∕~7


SC


EL

DTC P0138 (RIGHT, -B1), P0158 (LEFT, -B2) REAR HO2S (MAX. VOLTAGE MONITORING) VG33E

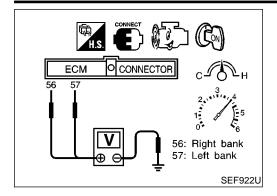
On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0663

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- Select "RR 02 SEN -B1 (-B2), P0138 (P0158) of "RR 02 SEN-SOR" in DTC WORK SUPPORT" mode with CONSULT.
- 7) Start engine and follow the instructions of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF_DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-830.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less than 70°C 158°F).
- b) Turn ignition switch ON.
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Perform from step 6) again when the "COOLANT TEMP/S" reaches to 70°C 158°F)

DTC P0138 (RIGHT, -B1), P0158 (LEFT, -B2) REAR HO2S (MAX. VOLTAGE **MONITORING**)

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

N Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
- (depress and release accelerator pedal as soon as possible) The voltage should be above 0.56V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T). The voltage should be above 0.56V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-830.

EM

MA

EC

MT

AT

TF

PD

AX

SU

ST

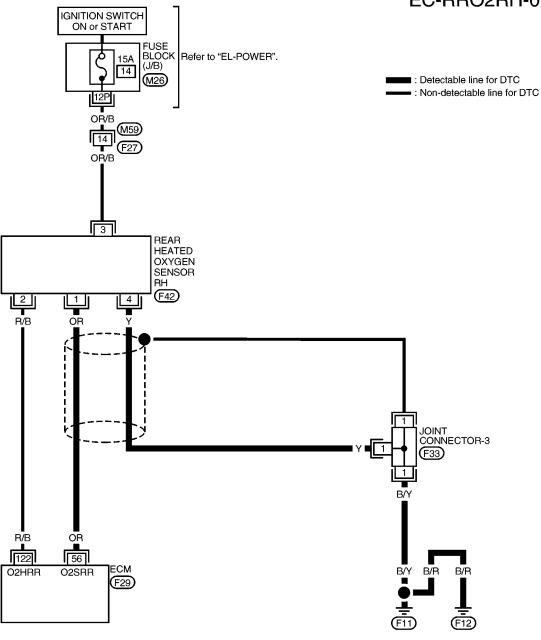
BT

HA

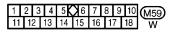
SC

EL

Wiring Diagram

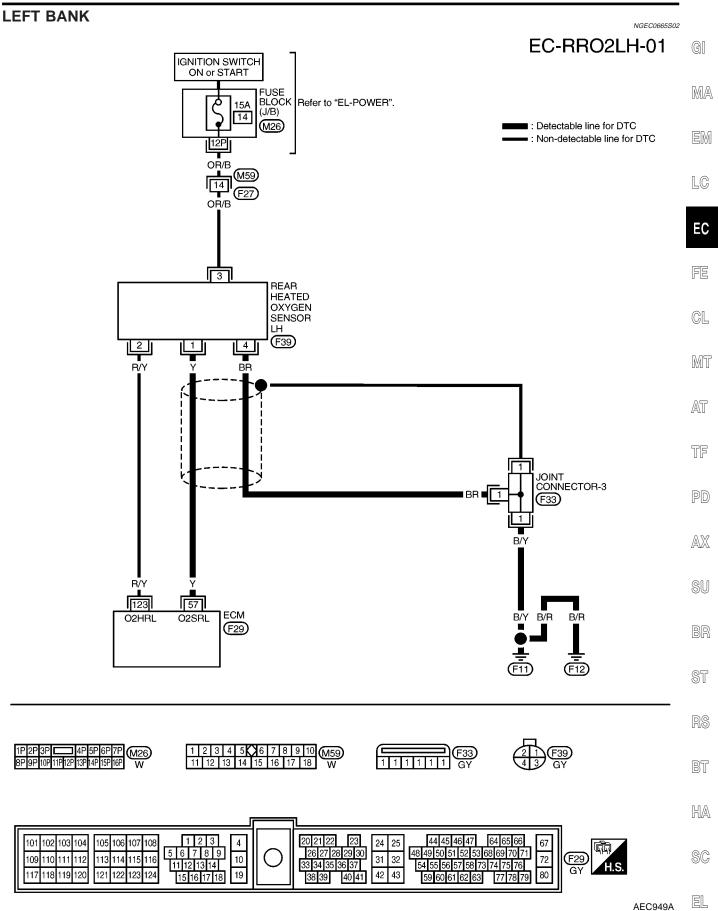

RIGHT BANK

Wiring Diagram


NGEC0665

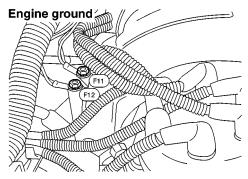
NGEC0665S01

EC-RRO2RH-01



101 102 103 104 105 106 107 108 1 2 3 4 1 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 115 116 117 118 119 120 121 122 123 124	0	20 21 22 23	F29 GY
117 113 113 112 112 112 112 112 112 113 115 115 117 118 113		38[39] 40[41] 42 40 [59[60]61[62[63] [77[78[79] 00]	

Wiring Diagram (Cont'd)


Diagnostic Procedure

Diagnostic Procedure

NGEC0666

1 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

AEC640A

GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

ACTIVE TE	S	Т	
SELF-LEARN	E	31: XXX %	
CONTROL	DL B2: XXX %		
MONITO	₹		
CMPS·RPM(REF)		XXX rpm	
COOLAN TEMP/S		XXX °C	
FR O2 SEN-B1		xxx v	
FR O2 SEN-B2		xxx v	
A/F ALPHA-B1		XXX %	
A/F ALPHA-B2		XXX %	

PEF921U

4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected?

Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.
- 7. Make sure DTC No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC 0115 or 0210 detected? Is it difficult to start engine?

Yes or No

Yes		Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-861.
No		GO TO 3.

Diagnostic Procedure (Cont'd)

3	CHECK REAR HO2S I	NPUT SIGNA	L CIRCUIT F	OR OPEN A	ND SHORT		
 Disc Disc 	n ignition switch OFF. connect corresponding re connect ECM harness co eck harness continuity be	nnector.					0
	er to Wiring Diagram.	tween Edwite	IIIIIai aliu NE	AR 11023 tel	ITIIITAI AS TOITOV	v5.	
		DTC	Term	inals			
		DTC	ECM	Sensor	Bank		
		P0138 P0158	56 57	1 1	Right Left		
5. Che	Continuity should exist. eck harness continuity be er to Wiring Diagram.		minal or REA	R HO2S term	inal and groun	AEC897A ad as follows.	
		DTC	Term		Bank		_
		P0138	ECM or sensor 56 or 1	Ground Ground	Right		F
		P0158	57 or 1	Ground	Left		
(Continuity should not e	xist.				AEC898A	(
	check harness for short						
			ОК	or NG			
OK	•	GO TO 4.					
NG		Repair open	circuit or shor	t to ground or	r short to powe	er in harness or connectors.	ļ
4			AUIT FAD A	DEN AND 0			ı
4 1 Cha	CHECK REAR HO2S						1
	eck harness continuity be er to Wiring Diagram.	tween REAR F	iO25 terminai	4 and engine	grouna.		
(Continuity should exist.						[
Z. AIS	check harness for short	to ground and	•				
	ith CONCLUTII)	CO TO 6	OK	or NG			ß
•	ith CONSULT-II)	GO TO 7					
OK (VV II)	ithout CONSULT-	GO TO 7.					9
NG	•	GO TO 5.					
5	DETECT MALFUNCTION	ONING PART					
Join	the following. t connector-3						9
• Harr	ness for open or short be	1			-		l li
	<u> </u>	Repair open	circuit or shor	t to ground or	r short to powe	er in harness or connectors.	

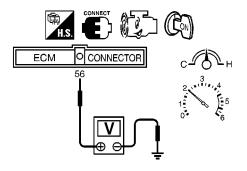
HA

SC

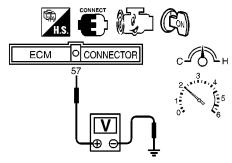
Diagnostic Procedure (Cont'd)

6 CHECK REAR HEATED OXYGEN SENSOR (P) With CONSULT-II 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. 2. Stop vehicle with engine running. 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SEN-B1 (-B2)" as the monitor item with CON-SULT-II. 4. Check "RR O2 SEN-B1 (-B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.56V at least one time. 64 The voltage should be below 0.54V at least one time. SEF989RB "RR O2 SEN-B1 (-B2)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SEN-B1 (-B2)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%. • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. • Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. OK or NG

OK		GO TO 8.
NG		Replace malfunctioning rear heated oxygen sensor.


Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR


(Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

SEF923U

SEF924U

The voltage should be above 0.56V at least once during this procedure. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.54V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 8.
NG •	Replace malfunctioning rear heated oxygen sensor.

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

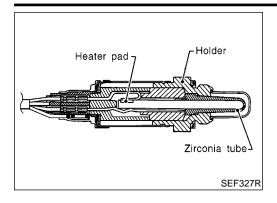
ST

RS

BT

HA

SC


Diagnostic Procedure (Cont'd)

8	CHECK REAR HO2S S	HIELD CIRCUIT FOR OPEN AND SHORT
1. To	urn ignition switch OFF.	
2. D	isconnect joint connector.	
3. C	heck the following.	
• Co	ontinuity between joint conne	ector terminal 1 and ground
Jo	int connector	
(R	efer to "HARNESS LAYOUT	", EL-9 .)
	Continuity should exist.	
4. A	lso check harness for short	to ground and short to power.
5. TI	hen reconnect joint connecto	or.
		OK or NG
ОК	>	GO TO 9.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

9	CHECK INTERMITTENT	T INCIDENT
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-706.
	•	INSPECTION END

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING)

Component Description

Component Description

The rear heated oxygen sensor, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

EM

GI

LG

EC

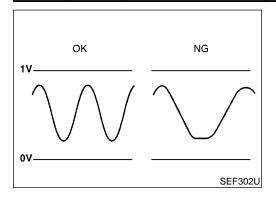
AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	FE
RR O2 SEN-B1 RR O2 SEN-B2	- Engine: After warming up	Revving engine from idle up to	0 - 0.3V ←→ Approx. 0.6 - 1.0V	- CL
RR O2 MNTR-B1 RR O2 MNTR-B2	Engine: After warming up	2,000 rpm	LEAN ←→ RICH	
				MT

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

					. //
TERMI NAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)	1
56 (Right bank)	OR	Rear heated oxygen sen-	[Engine is running]	O Approximately 1 0V	1
57 (Left bank)	Y	sor	Revving engine from idle up to 2,000 rpm	0 - Approximately 1.0V	[

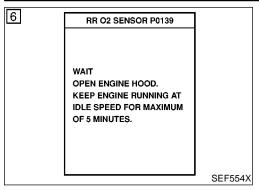
On Board Diagnosis Logic

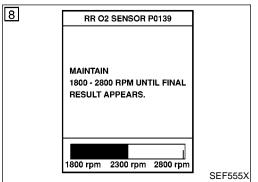
The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

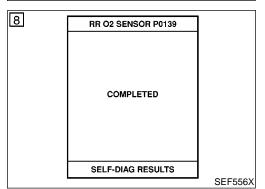
Malfunction is detected when it takes more time for the sensor to respond between rich and lean than the specified time.

POSSIBLE CAUSE

- Harness or connectors (The sensor circuit is open or shorted.)
- Rear heated oxygen sensor
- Fuel pressure
- Injectors
- Intake air leaks


NGEC0670S01


HA


SC

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING) VG33E

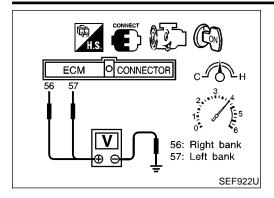
On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0671

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- Select "RR 02 SEN -B1 (-B2), P0139 (P0159) of "RR 02 SEN-SOR" in DTC WORK SUPPORT" mode with CONSULT.
- 7) Start engine and follow the instructions of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF_DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-840.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less than 70°C 158°F).
- b) Turn ignition switch ON.
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Perform from step 6) again when the "COOLANT TEMP/S" reaches to 70°C 158°F)

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE **MONITORING**)

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

N Without CONSULT-II

necessary.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load
- at least 10 times. (depress and release accelerator pedal as soon as possible)
 - The voltage should change at more than 0.06V for 1 second during this procedure. If the voltage can be confirmed in step 4, step 5 is not
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T)... The voltage should change at more than 0.06V for 1 second during this procedure.
- 6) IF NG, go to "Diagnostic Procedure", EC-840.

MA

EC

MT

AT

TF

PD

AX

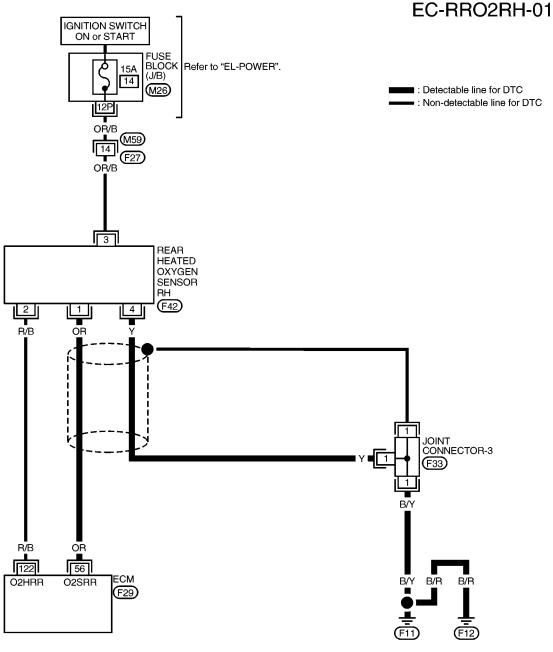
SU

ST

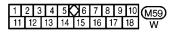
BT

HA

SC

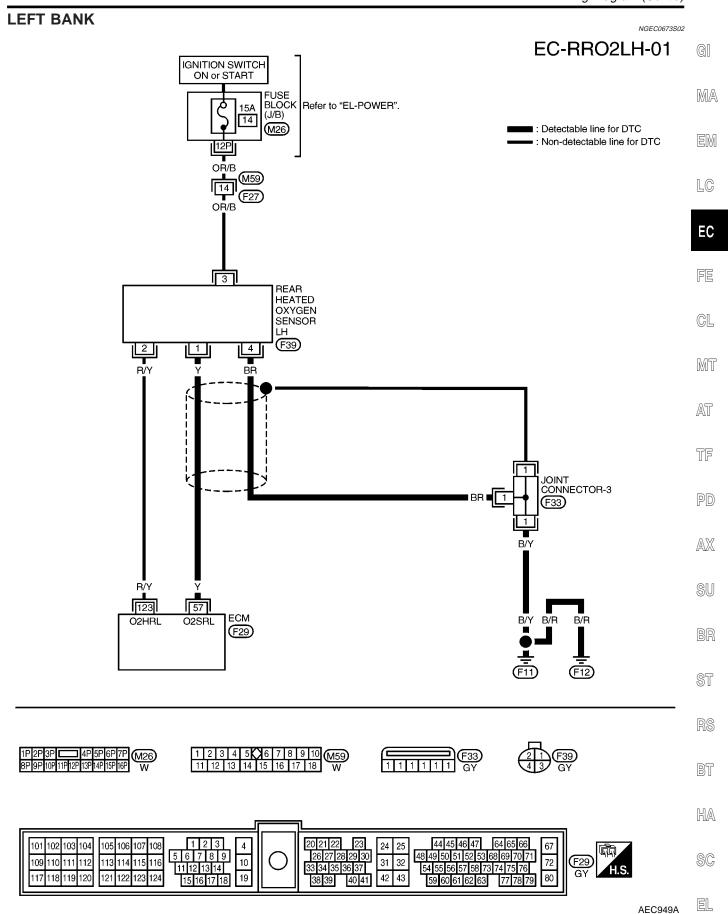

Wiring Diagram

RIGHT BANK


Wiring Diagram

NGEC0673

NGEC0673S01

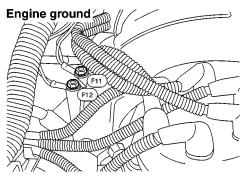


109 110 111 112 113 114 115 116 111 12 13 144 115 116 111 12 13 144 15 116 11 12 13 144 15 116 11 12 13 144 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	11 12 13 14	0	33 34 35 36 37 54 55 56 57 58 73 74 75 76	
--	-------------	---	---	--

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING) VG33E

Wiring Diagram (Cont'd)

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING) VG33E


Diagnostic Procedure

Diagnostic Procedure

NGEC0674

1 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

AEC640A

GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

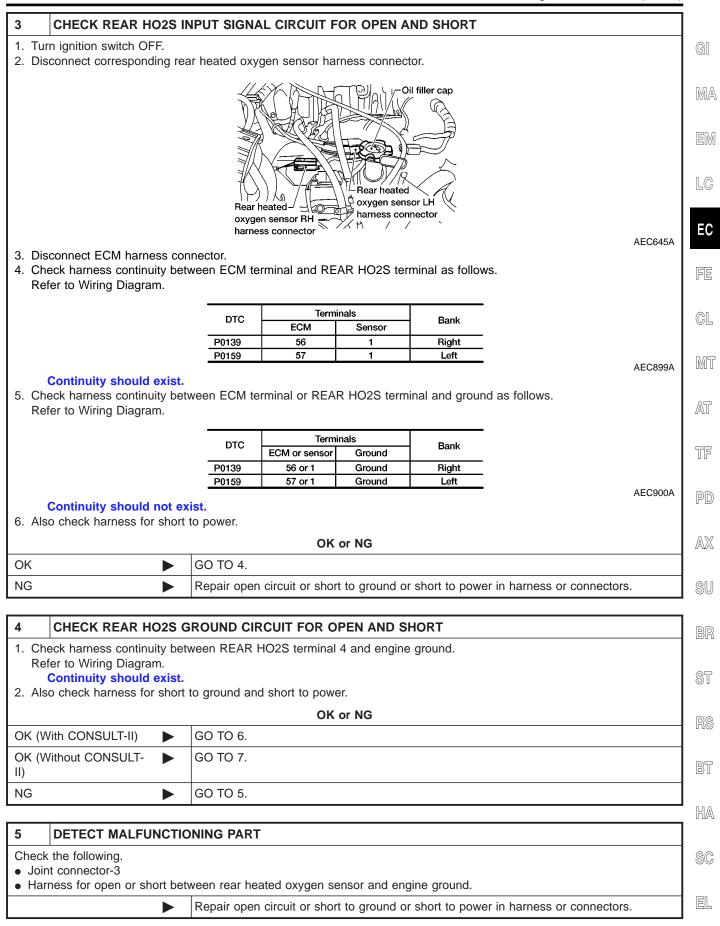
ACTIVE TE	S	Т
SELF-LEARN	E	31: XXX %
CONTROL	B2: XXX %	
MONITO	₹	
CMPS·RPM(REF)		XXX rpm
COOLAN TEMP/S		XXX .C
FR O2 SEN-B1		xxx v
FR O2 SEN-B2		xxx v
A/F ALPHA-B1		XXX %
A/F ALPHA-B2		XXX %

PEF921U

4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. 0102 is displayed in Diagnostic Test Mode II.
- 6. Erase the diagnostic test mode II (Self-diagnostic results) memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-640.
- 7. Make sure DTC No. 0505 is displayed in Diagnostic Test Mode II.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC 0114, 0115, 0209 or 0210 detected? Is it difficult to start engine?

Yes o	or No
-------	-------

Yes		Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-860, 868.
No	•	GO TO 3.

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING)

Diagnostic Procedure (Cont'd)

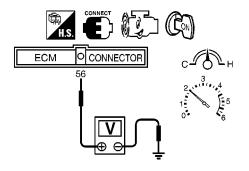
DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING) VG33E

Diagnostic Procedure (Cont'd)

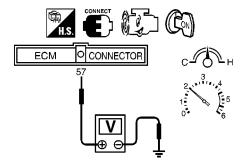
6 CHECK REAR HEATED OXYGEN SENSOR (P) With CONSULT-II 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. 2. Stop vehicle with engine running. 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SEN-B1 (-B2)" as the monitor item with CON-SULT-II. 4. Check "RR O2 SEN-B1 (-B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.56V at least one time. 64 The voltage should be below 0.54V at least one time. SEF989RB "RR O2 SEN-B1 (-B2)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SEN-B1 (-B2)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%. • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. • Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. OK or NG

OK ▶ GO TO 8.		GO TO 8.
NG		Replace malfunctioning rear heated oxygen sensor.

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING)


Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR


(Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

SEF923U

SEF924U

The voltage should be above 0.56V at least once during this procedure. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.54V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

O	ĸ	or	NG

OK •	GO TO 8.
NG ►	Replace malfunctioning rear heated oxygen sensor.

GI

MA

LG

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

RR

ST

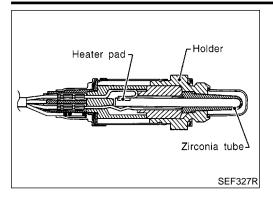
RS

BT

HA

SC

DTC P0139 (RIGHT, -B1), P0159 (LEFT, -B2) REAR HO2S (RESPONSE MONITORING) VG33E


Diagnostic Procedure (Cont'd)

8	CHECK REAR HO2S S	HIELD CIRCUIT FOR OPEN AND SHORT	
1. Tur	rn ignition switch OFF.		
2. Dis	sconnect joint connector.		
3. Ch	eck the following.		
Cor	ntinuity between joint conne	ector terminal 1 and ground	
	nt connector		
(Re	fer to "HARNESS LAYOUT	", <i>EL-9</i> .)	
Cor	ntinuity should exist.		
4. Als	o check harness for short t	o ground and short to power.	
5. The	5. Then reconnect joint connector.		
	OK or NG		
OK	>	GO TO 9.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

9	9 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
► INSPECTION END		INSPECTION END	

VG33E

Component Description

Component Description

The rear heated oxygen sensor, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the front heated oxygen sensor are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the rear heated oxygen sensor.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner

Under normal conditions the rear heated oxygen sensor is not used for engine control operation.

LC

EC

FE

GL

MT

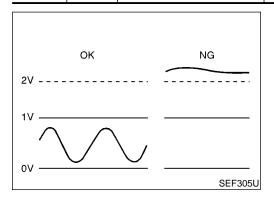
AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
RR O2 SEN-B1 RR O2 SEN-B2	Engine: After warming up	Revving engine from idle up to	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
RR O2 MNTR-B1 RR O2 MNTR-B2		2,000 rpm	LEAN ←→ RICH	,

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

	_ •			· · · · · · · · · · · · · · · · · · ·	
TERMI NAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)	
56 (Right bank)	1	Rear heated oxygen sen-	[Engine is running]	O Approximately 1.0V	
57 (Left bank)	Y	sor	 Warm-up condition Revving engine from idle up to 2,000 rpm 	0 - Approximately 1.0V	

On Board Diagnosis Logic

The rear heated oxygen sensor has a much longer switching time between rich and lean than the front heated oxygen sensor. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

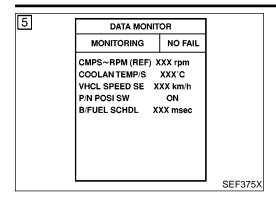
Malfunction is detected when an excessively high voltage from the sensor is sent to ECM.

POSSIBLE CAUSE

Harness or connectors (The sensor circuit is open or shorted.)

Rear heated oxygen sensor

NGEC0678S01


HA

SC

DTC Confirmation Procedure

VG33E

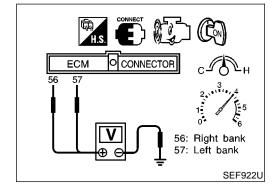
NGEC0679

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

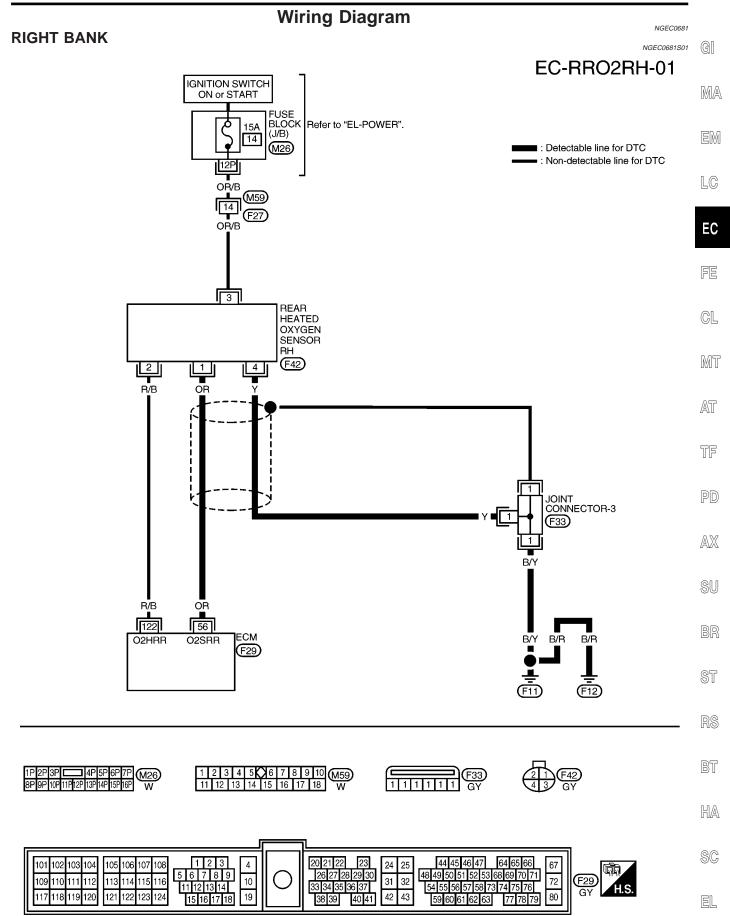
(A) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and drive vehicle at a speed of more than 70 km/h
 (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 4) Let engine idle for 1 minute.
- Maintain the following conditions for at least 5 consecutive seconds.

CMPS-RPM (REF)	1,300 - 3,100 rpm (A/T models) 1,500 - 3,600 rpm (M/T models)	
VHCL SPEED SE	64 - 130 km/h (40 - 80 MPH)	
B/FUEL SCHDL	0.5 - 6.4 msec (A/T models) 0.5 - 5.9 msec (M/T models)	
COOLAN TEMP/S	70 - 100°C (158 - 212°F)	
Selector lever	Suitable position	

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-849.

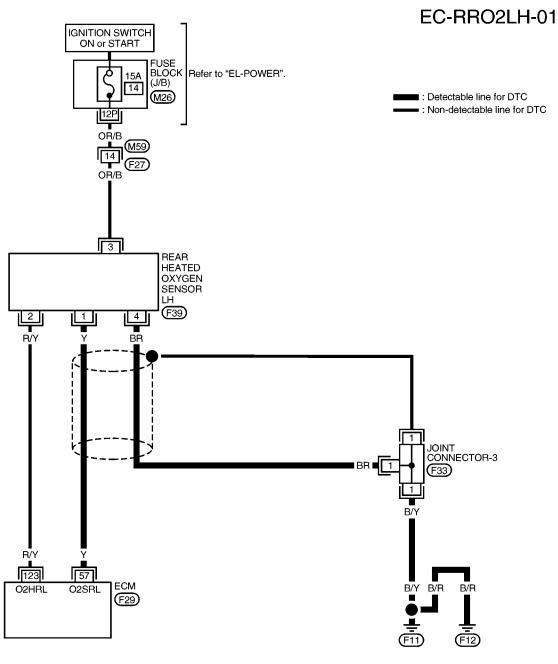
Overall Function Check

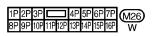

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

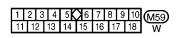
N Without CONSULT-II

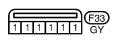
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
 - (depress and release accelerator pedal as soon as possible)

 The voltage should be below 2V during this procedure.
- 5) If NG, go to "Diagnostic Procedure", EC-849.

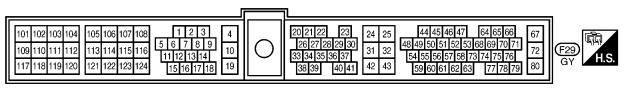

VG33E
Wiring Diagram




Wiring Diagram (Cont'd)


VG33E

LEFT BANK



AEC949A

VG33E

NGEC0682

MA

EC

FE

MT

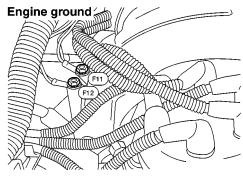
AT

TF

PD

AEC640A

AEC901A


AEC902A

Diagnostic Procedure

Diagnostic Procedure

INSPECTION START
 Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

3. Disconnect corresponding rear heated oxygen sensor harness connector.

4. Disconnect ECM harness connector.

2

▶ GO TO 2.

CHECK REAR HO2S INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and REAR HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Term	inals	Bank
DIO	ECM	Sensor	Dalik
P0140	56	1	Right
P0160	57	1	Left

Continuity should exist.

2. Check harness continuity between ECM terminal or REAR HO2S terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIO	ECM or sensor	Ground	Dalik
P0140	56 or 1	Ground	Right
P0160	57 or 1	Ground	Left

Continuity should not exist.

3. Also check harness for short to power.

OK J		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK REAR HO2S GROUND CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between REAR HO2S terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK d	∖r N	ĸ

OK •	GO TO 5.
NG ►	GO TO 4.

HA

ST

SC

VG33E

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIONING PART		
Join	the following. It connector-3 ness for open or short betw	veen rear heated oxygen sensor and engine ground.	
		Repair open circuit or short to ground or short to power in harness or connectors.	

5	CHECK REAR HO	D2S C	ONNECTORS FOR WATER
	Check rear heated oxygen sensor connector and harness connector for water. Water should not exist.		
	OK or NG		
OK (V	Vith CONSULT-II)	•	GO TO 6.
OK (W	Vithout CONSULT-	•	GO TO 7.
NG			Repair or replace harness or connectors.

CHECK REAR HEATED OXYGEN SENSOR

(P) With CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "RR O2 SEN-B1 (-B2)" as the monitor item with CON-SULT-II.
- 4. Check "RR O2 SEN-B1 (-B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"RR O2 SEN-B1 (-B2)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "RR O2 SEN-B1 (-B2)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

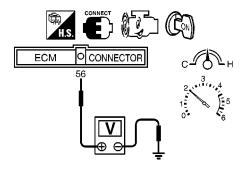
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

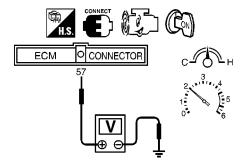
OK or NG

OK •	GO TO 8.
NG •	Replace malfunctioning rear heated oxygen sensor.

VG33E


Diagnostic Procedure (Cont'd)

CHECK REAR HEATED OXYGEN SENSOR


(Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (right bank sensor signal) or 57 (left bank sensor signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

SEF923U

SEF924U

The voltage should be above 0.56V at least once during this procedure. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.54V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

O	ĸ	or	NG

OK •	GO TO 8.
NG •	Replace malfunctioning front heated oxygen sensor.

GI

MA

1 @

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

VG33E

Diagnostic Procedure (Cont'd)

8	CHECK REAR HO2S SHIELD CIRCUIT FOR OPEN AND SHORT		
1. Tur	rn ignition switch OFF.		
2. Dis	sconnect joint connector.		
3. Ch	eck the following.		
Cor	Continuity between joint connector terminal 1 and ground		
Joir	Joint connector		
(Re	(Refer to "HARNESS LAYOUT", <i>EL-292</i> .)		
	Continuity should exist.		
4. Als	4. Also check harness for short to ground and short to power.		
5. The	5. Then reconnect joint connector.		
		OK or NG	
OK	>	GO TO 9.	
NG	Repair open circuit or short to ground or short to power in harness or connectors.		

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2) REAR HO2S

Description

SYSTEM DESCRIPTION

NGEC0683

NGEC0683S01

			11020000001	QII.
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed	Rear heated oxygen sensor heater con- trol	Rear heated oxygen sensor heaters	EM

The ECM performs ON/OFF control of the rear heated oxygen sensor heaters corresponding to the engine speed.

EC

OPERATION

Engine speed rpm	Rear heated oxygen sensor heaters	
Above 3,200	OFF	
Below 3,200	ON	

FE

GL

MT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0684

NGEC0683S02

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	Ignition switch: ON (Engine stopped)Engine is running above 3,200 rpm.	OFF
RR O2 HTR-B2	Engine is running below 3,200 rpm after driving for 2 minutes at a speed of 70 km/h (43 MPH) or more.	ON

TF

PD

AT

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
122 (Right bank)	R/B	Rear heated oxygen sen-	[Ignition switch "ON"] ■ Engine stopped [Engine is running] ■ Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
123 (Left bank)	R/Y	sor heater	 [Engine is running] Engine speed is below 3,200 rpm After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more 	Approximately 0.4V

SU

ST

On Board Diagnosis Logic

Malfunction is detected when the current amperage in the rear heated oxygen sensor heater circuit is out of the normal range. (An improper voltage drop signal is sent to ECM through the rear heated oxygen sensor heater.)

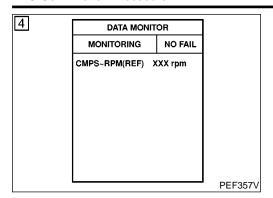
BT

POSSIBLE CAUSE

NGEC0686S01

Harness or connectors (The rear heated oxygen sensor heater circuit is open or shorted.)

EL


SC

Rear heated oxygen sensor heater

DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2) REAR HO2S HEATER

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0687

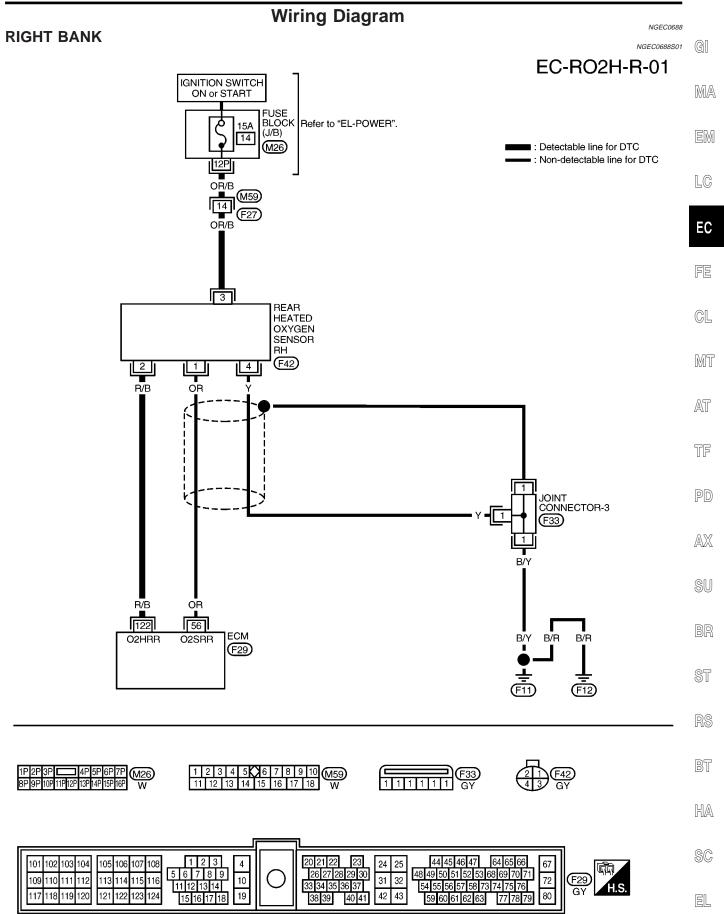
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

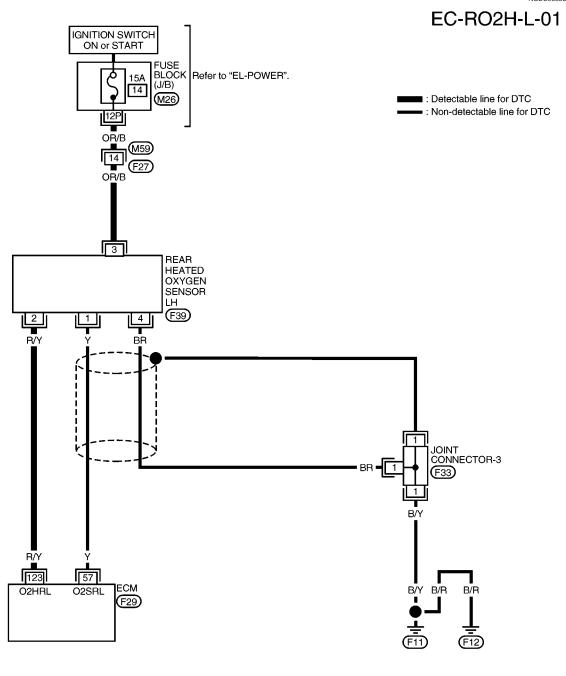
(P) With CONSULT-II

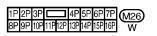

- 1) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- 3) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 4) Stop vehicle and let engine idle for at least 6 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-857.

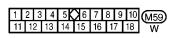
With GST

Follow the procedure "With CONSULT-II".

DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2) REAR HO2S HEATER

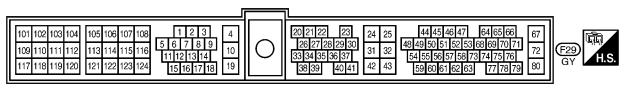

VG33E
Wiring Diagram




Wiring Diagram (Cont'd)

VG33E

LEFT BANK



AEC951A

DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2) REAR HO2S HFATER

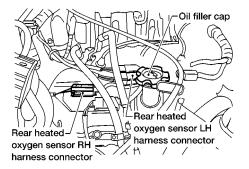
VG33E

Diagnostic Procedure

NGEC0689

GI

MA

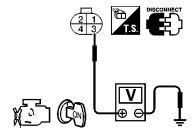

LC

EC

1. Turn ignition switch OFF.

2. Disconnect corresponding rear heated oxygen sensor harness connector.

CHECK REAR HO2S POWER SUPPLY CIRCUIT



AEC645A

SEF637W

3. Turn ignition switch ON.

4. Check voltage between REAR HO2S terminal 3 and ground.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Fuse block (J/B) connector M26
- 10A fuse
- Harness for open or short between rear heated oxygen sensor and fuse

Repair harness or connectors.

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SII

ST

RS

BT

HA

SC

DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2) REAR HO2S HEATER

VG33E

Diagnostic Procedure (Cont'd)

3 CHECK REAR HO2S GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and REAR HO2S terminal as follows. Refer to Wiring Diagram.

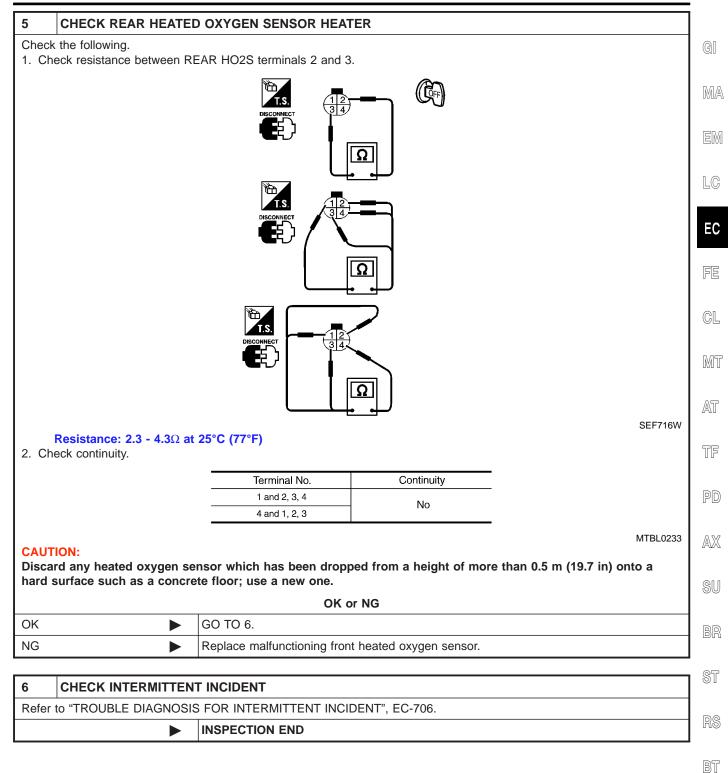
DTC	Terminals		Bank
DIO	ECM	Sensor	Dank
P0141	122	4	Right
P0161	123	4	Left

AEC903A

Continuity should exist.

4. Also check harness for short to ground and short to power.

0	K	or	N	G


OK •	GO TO 5.
NG ►	GO TO 4.

4	DETECT MALFUNCTIONING PART			
Check the following. • Joint connector-3 • Harness for open or short between rear heated oxygen sensor and engine ground.				
Repair open circuit or short to ground or short to power in harness or connectors.				

DTC P0141 (RIGHT, -B1), P0161 (LEFT, -B2) REAR HO2S HEATER

VG33E

Diagnostic Procedure (Cont'd)

HA

SC

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (LEAN) VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0690

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the front heated oxygen sensors. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Front heated oxygen sensors	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Injectors

Malfunction is detected when fuel injection system does not operate properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)

POSSIBLE CAUSE

NGEC0690S01

- Intake air leaks
- Front heated oxygen sensor
- Injectors
- Exhaust gas leaks
- Incorrect fuel pressure
- Lack of fuel
- Mass air flow sensor

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (LEAN)

DTC Confirmation Procedure

			-
[4]	ACTIVE TES		
	SELF-LEARN	B1: 100 %	
	CONTROL	B2: 100%	
	MONITOR	l	
	CMPS·RPM(REF)	XXX rpm	
	COOLAN TEMP/S	XXX .C	
	FR O2 SEN-B1	xxx v	
	FR O2 SEN-B2	xxx v	
	A/F ALPHA-B1	XXX %	
	A/F ALPHA-B2	XXX %	
			PFF717W

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

G

MA

=NGEC0691

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "ACTIVE TEST" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-864.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-864. If engine does not start, check exhaust and intake air leak visually.

B With GST

Follow the procedure "With CONSULT-II".

EC

FE

GL

MT

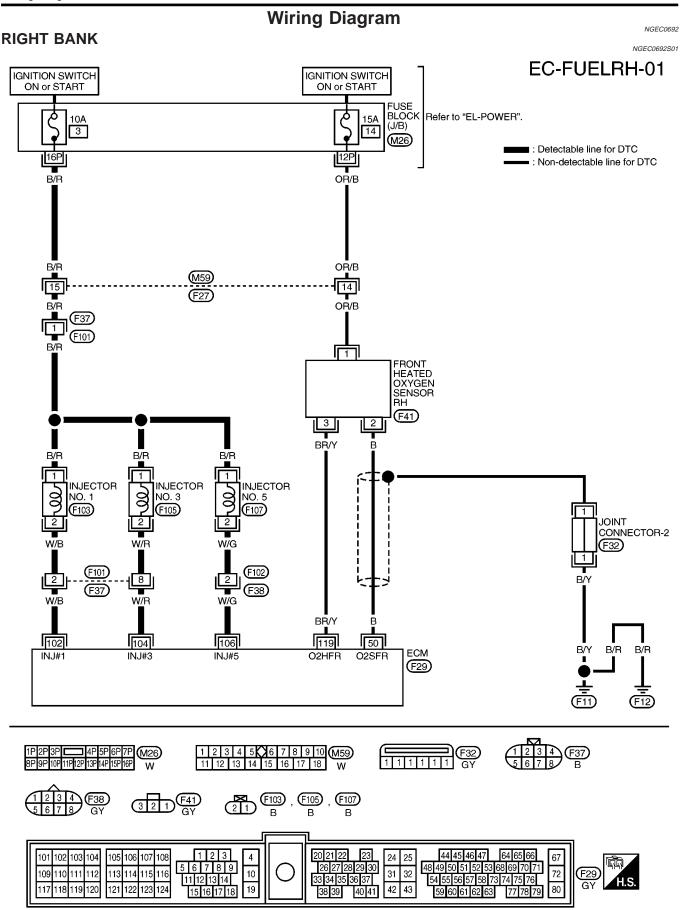
AT

TF

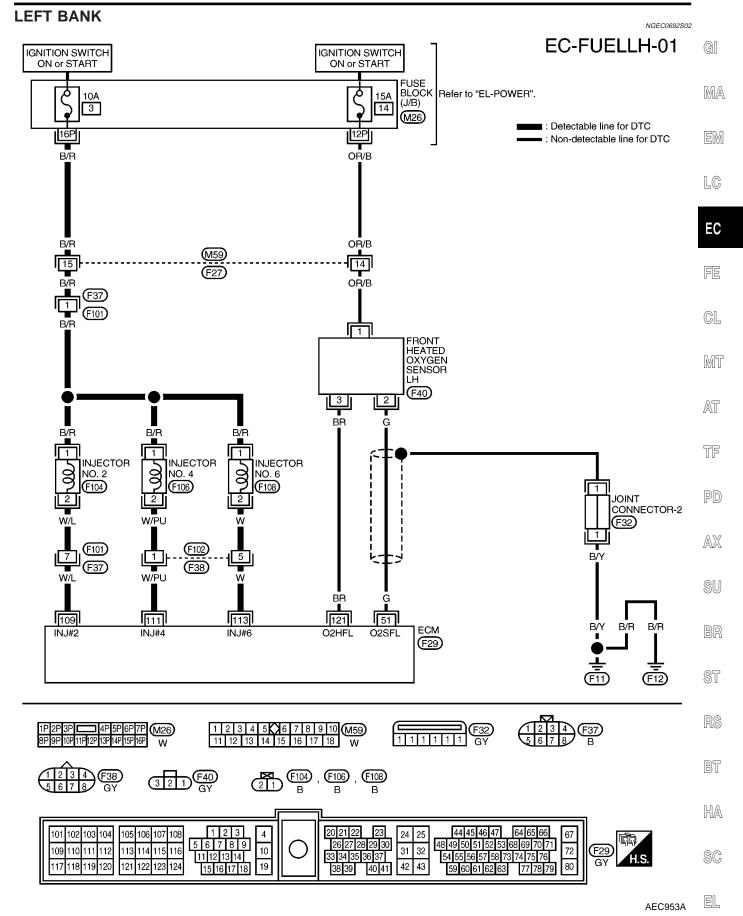
PD AX

ST

RS


BT

HA

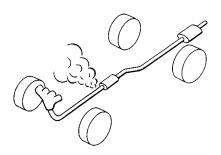

SC

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (LEAN) VG33E

Wiring Diagram

Wiring Diagram (Cont'd)

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (LEAN) VG33E


Diagnostic Procedure

Diagnostic Procedure

NGEC0693

1 CHECK EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

SEF099P

OK or NG

OK •	GO TO 2.
NG ▶	Repair or replace.

2	CHECK FOR INTAKE AIR LEAK				
Listen for an intake air leak after the mass air flow sensor.					
	OK or NG				
OK	OK ▶ GO TO 3.				
NG	>	Repair or replace.			

3 CHECK FRONT HEATED OXYGEN SENSOR CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding front heated oxygen sensor harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal and FRONT HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
DIO	ECM	Sensor	Dank
P0171	50	2	Right
P0174	51	2	Left

AEC904A

Continuity should exist.

Check harness continuity between ECM terminal or FRONT HO2S terminal and ground as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
	ECM or sensor	Ground	Dank
P0171	50 or 2	Ground	Right
P0174	51 or 2	Ground	Left

AEC905A

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (LEAN) VG33E

Diagnostic Procedure (Cont'd)

4 CHECK	FUEL PRESSURE	7
Release fuel Refer to EC-	pressure to zero.	GI
	ressure gauge and check fuel pressure.	
When	fuel pressure regulator valve vacuum hose is connected.	
When	kPa (2.4 kg/cm², 34 psi) fuel pressure regulator valve vacuum hose is disconnected. kPa (3.0 kg/cm², 43 psi)	EN
	OK or NG	
OK	▶ GO TO 6.] LC
NG	▶ GO TO 5.	
5 DETECT	TALL FUNCTIONING DART	EC
5 DETECT	F MALFUNCTIONING PART	l Fe
• Fuel pump an	nd circuit (Refer to EC-1153.)	
	e regulator (Refer to EC-611.) efer to "ENGINE MAINTENANCE", <i>MA-29</i> .) clogging	GL
	Repair or replace.	m J mt
		_
	MASS AIR FLOW SENSOR	AT
		TF
	-m/sec: at 2,500 rpm	 PD
With GST		1 ""
	ts removed. air flow sensor signal in MODE 1 with GST. //sec: at idling	
	-m/sec: at 2,500 rpm	SU
No Tools		
 Install all par Check voltag 1.0 - 1.7V: at 1.7 - 2.3V: at 	e between ECM terminal 54 and ground. tidling	BR
2.01. at	OK or NG	ST
OK	▶ GO TO 7.	1
NG	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-713.	RS
		- BT

HA

SC

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (LEAN) VG33E

Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS (P) With CONSULT-II 1. Start engine. 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II. ACTIVE TEST POWER BALANCE MONITOR CMPS~RPM(REF) XXX rpm MAS AIR/FL SE XXX V IACV-AAC/V XXX % PEF389V 3. Make sure that each circuit produces a momentary engine speed drop. (Without CONSULT-II 1. Start engine. 2. Listen to each injector operating sound. Suitable tool

Clicking noise should be heard.

OK or NG

MEC703B

OK •	GO TO 8.
NG ►	Perform trouble diagnosis for "INJECTORS", EC-1145.

DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2) FUEL INJECTION SYSTEM **FUNCTION (LEAN)**

Diagnostic Procedure (Cont'd)

8 **CHECK INJECTOR** 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle. 2. Turn ignition switch OFF. 3. Disconnect injector harness connectors on left bank (for DTC P0171), right bank (for DTC P0174). 4. Remove injector gallery assembly. Refer to EC-611. Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors on right bank (for DTC P0171), left bank (for DTC P0174) should remain connected. 5. Disconnect all ignition coil harness connectors. 6. Prepare pans or saucers under each injector. 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

SEF595Q

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

SU

ST

BT

HA

SC

EL

Fuel should be sprayed evenly for each injector.

OK ►	GO TO 9.
NG ►	Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
► INSPECTION END			

DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (RICH) VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0694

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the front heated oxygen sensors. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Front heated oxygen sensors	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Injectors

Malfunction is detected when fuel injection system does not operate properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)

POSSIBLE CAUSE

NGEC0694S01

- Front heated oxygen sensor
- Injectors
- Exhaust gas leaks
- Incorrect fuel pressure
- Mass air flow sensor

DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2) FUEL INJECTION SYSTEM **FUNCTION (RICH)**

DTC Confirmation Procedure

ACTIVE TE	3T
SELF-LEARN	B1: 100 %
CONTROL	B2: 100%
MONITOR	l
CMPS·RPM(REF)	XXX rpm
COOLAN TEMP/S	XXX °C
FR O2 SEN-B1	xxx v
FR O2 SEN-B2	XXX V
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %

DTC Confirmation Procedure

NOTE:

=NGEC0695

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "ACTIVE TEST" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR". 4)
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172, P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-872.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-872. If engine does not start, remove ignition plugs and check for fouling, etc.

With GST

Follow the procedure "With CONSULT-II".

EC

MA

FE

GL

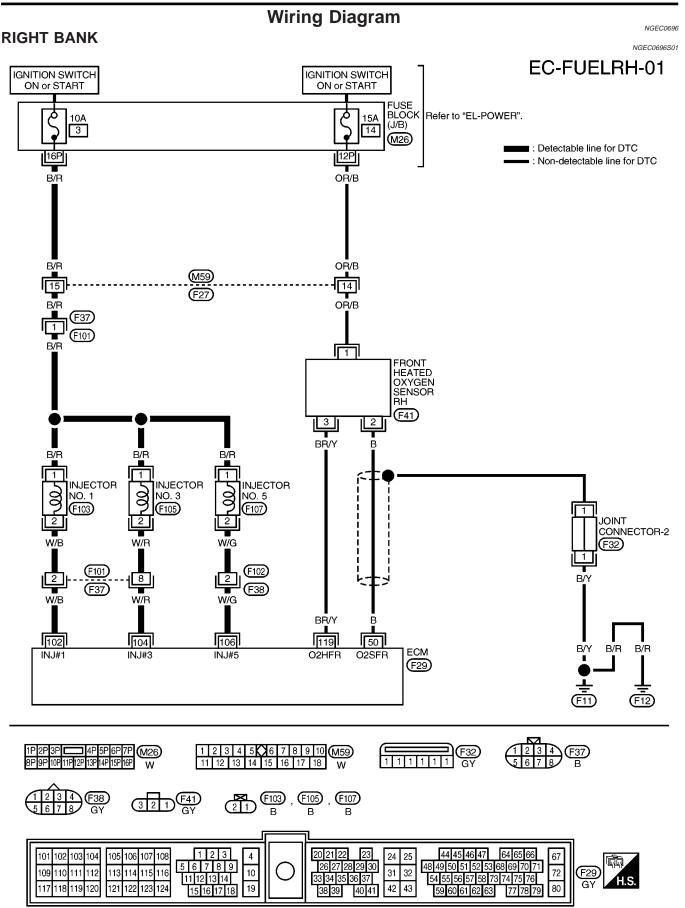
MT

AT

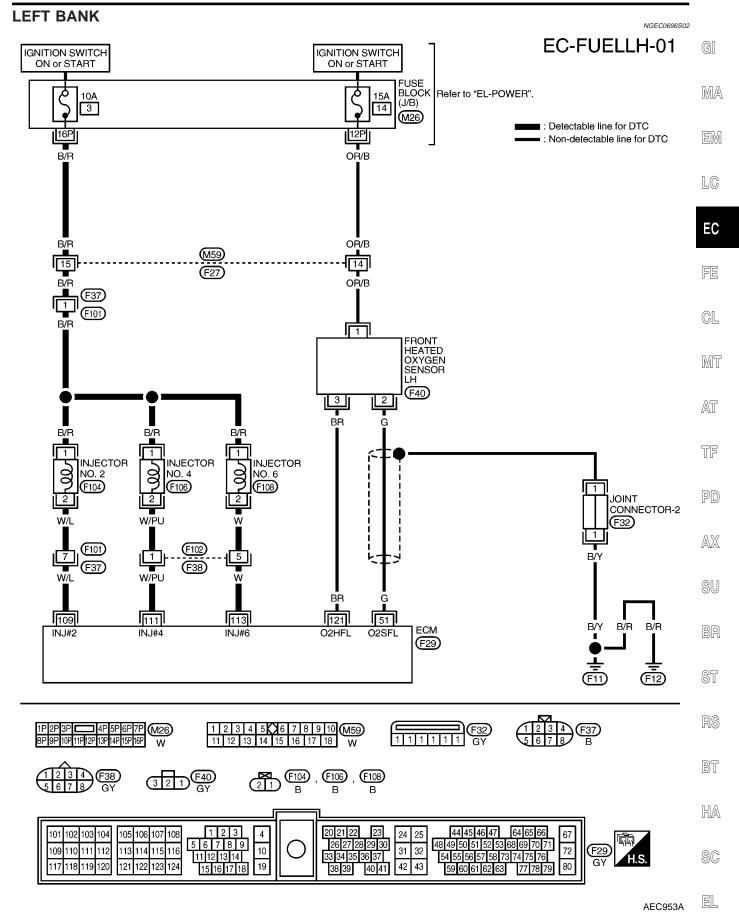
PD

TF

AX


ST

BT

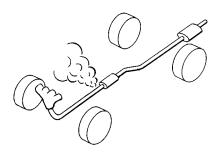

HA

SC

Wiring Diagram

Wiring Diagram (Cont'd)

DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (RICH) VG33E


Diagnostic Procedure

Diagnostic Procedure

NGEC0697

1 CHECK EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

SEF099P

OK or NG

OK •	GO TO 2.
NG ▶	Repair or replace.

2	CHECK FOR INTAKE AIR LEAK			
Listen for an intake air leak after the mass air flow sensor.				
OK or NG				
OK	OK ▶ GO TO 3.			
NG	>	Repair or replace.		

3 CHECK FRONT HEATED OXYGEN SENSOR CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding front heated oxygen sensor harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal and FRONT HO2S terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank	
DIO	ECM	Sensor	Darik	
P0172	50	2	Right	
P0175	51	2	Left	

AEC906A

Continuity should exist.

Check harness continuity between ECM terminal or FRONT HO2S terminal and ground as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank	
DIO	ECM or sensor	Ground	Darik	
P0172	50 or 2	Ground	Right	
P0175	51 or 2	Ground	Left	

AEC907A

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (RICH) VG33E

Diagnostic Procedure (Cont'd)

4 CHECK	FUEL PRESSU	JRE			
	I pressure to zero).			
Refer to EC- 2. Install fuel pr		nd check fuel pressure.	1		
At idling:		egulator valve vacuum hose is connected.	1		
235	kPa (2.4 kg/cm ²	² , 34 psi)	1		
When	fuel pressure re kPa (3.0 kg/cm ²	egulator valve vacuum hose is disconnected.	1		
254	Ki a (o.o kg/ciii	OK or NG			
OK	•	GO TO 6.	1		
NG	•	GO TO 5.	1		
			_		
	T MALFUNCTIO	ONING PART			
Check the follow	wing. nd circuit (Refer t	ro FC-1153)	1		
	e regulator (Refer		1		
	•	Repair or replace.	1		
			_		
	MASS AIR FLO	DW SENSOR			
With CONS 1 Install all par			1		
2. Check "MAS	S AIR FLOW" in	"DATA MONITOR" mode with CONSULT-II.	1. Install all parts removed. 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.		
	n/sec: at idling				
120 - 149 c	um/sec: at 2 500) rpm			
12.0 - 14.9 ς	g-m/sec: at 2,500) rpm			
) rpm			
With GST 1. Install all par	rts removed.		_		
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g-m	rts removed. air flow sensor s	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g-m	rts removed.	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g-m	rts removed. air flow sensor s	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g·m 12.0 - 14.9 g No Tools 1. Install all par	rts removed. air flow sensor s n/sec: at idling g-m/sec: at 2,500 rts removed.	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g·m 12.0 - 14.9 g No Tools 1. Install all par 2. Check voltage	rts removed. air flow sensor s n/sec: at idling g-m/sec: at 2,500 rts removed. ge between ECM	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g·m 12.0 - 14.9 g No Tools 1. Install all par	rts removed. a air flow sensor s n/sec: at idling g-m/sec: at 2,500 rts removed. ge between ECM t idling	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g·m 12.0 - 14.9 g No Tools 1. Install all par 2. Check voltag 1.0 - 1.7V: a	rts removed. a air flow sensor s n/sec: at idling g-m/sec: at 2,500 rts removed. ge between ECM t idling	signal in MODE 1 with GST.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g·m 12.0 - 14.9 g No Tools 1. Install all par 2. Check voltag 1.0 - 1.7V: a	rts removed. a air flow sensor s n/sec: at idling g-m/sec: at 2,500 rts removed. ge between ECM t idling	signal in MODE 1 with GST. Prpm terminal 54 and ground.			
With GST 1. Install all par 2. Check mass 3.3 - 4.8 g·m 12.0 - 14.9 g No Tools 1. Install all par 2. Check voltag 1.0 - 1.7V: a 1.7 - 2.3V: a	rts removed. a air flow sensor s n/sec: at idling g·m/sec: at 2,500 rts removed. ge between ECM t idling t 2,500 rpm	signal in MODE 1 with GST. Trpm terminal 54 and ground. OK or NG			

BT

HA

SC

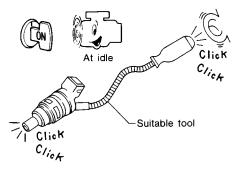
DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2) FUEL INJECTION SYSTEM FUNCTION (RICH)

Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TEST		
POWER BALANCE		
XXX rpm		
xxx v		
XXX %		

PEF389V

3. Make sure that each circuit produces a momentary engine speed drop.

(R) Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

MEC703B

Clicking noise should be heard.

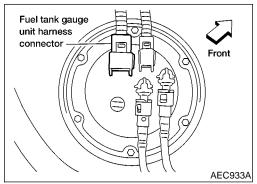
OK	or	NG
----	----	----

OK •	GO TO 8.
NG ▶	Perform trouble diagnosis for "INJECTORS", EC-1145.

8 CHECK INJECTOR

- 1. Remove injector assembly. Refer to EC-611.
 - Keep fuel hose and all injectors connected to injector gallery.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Disconnect injector harness connectors left bank (for DTC P0172), right bank (for P0175).
 - The injector harness connectors on right bank (for P0172), left bank (for P0175) should remain connected.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each injectors.
- 6. Crank engine for about 3 seconds.

Make sure fuel does not drip from injector.


OK or NG

OK (Does not drip)		GO TO 9.
NG (Drips)	•	Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

	9 CHECK INTERMITTENT INCIDENT		
Г	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
		•	INSPECTION END

DTC P0180 FUEL TANK TEMPERATURE SENSOR

Component Description

Acceptable 1.0 0.4 0.2 0.1 0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F) SEF012P

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

<Reference data>

Fluid temperature °C (°F)	Voltage* (V)	Resistance (kΩ)
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

*: These data are reference values and are measured between ECM terminal 60 (Fuel tank temperature sensor) and ECM terminal 32 (ECM ground).

MT

On Board Diagnosis Logic

Malfunction is detected when an excessively high or low voltage is sent to ECM, rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.

POSSIBLE CAUSE

Harness or connectors (The sensor circuit is open or shorted.)

Tank fuel temperature sensor

NGEC0699S01

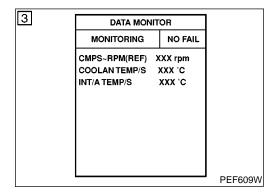
PD

SW

ST

BT

HA


SC

DTC Confirmation Procedure

=NGEC0700

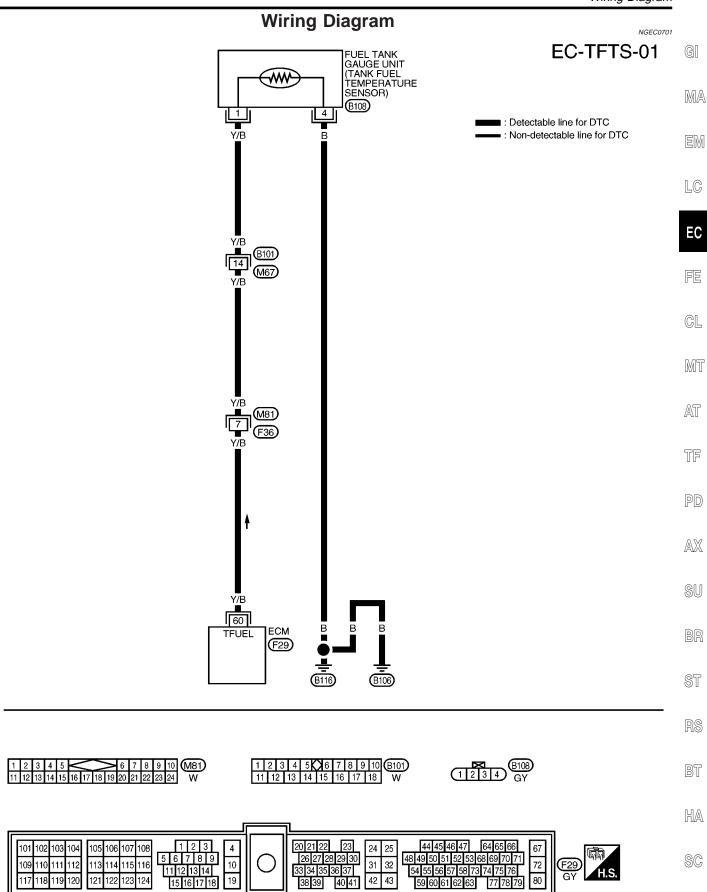
NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to "Diagnostic Procedure", EC-878.
 If the result is OK, go to following step.
- 4) Check "COOLAN TEMP/S" value.

 If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK.

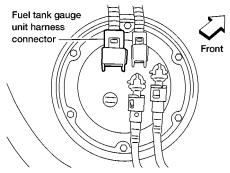

 If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- 6) Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-878.

® With GST

Follow the procedure "With CONSULT-II".

DTC P0180 FUEL TANK TEMPERATURE SENSOR

...


AEC954A

Diagnostic Procedure

NGEC0702

1 CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel tank gauge unit harness connector.

3. Turn ignition switch ON.

TS CE CONNECT CON SCIENCE TO SCIE

Voltage: Approximately 5V

SEF639W

AEC933A

OK •	GO TO 3.
NG •	GO TO 2.

OK or NG

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, M67
- Harness connectors M81, F36
- Harness for open or short between ECM and fuel tank temperature sensor

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Repair harness or connector.

3 CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

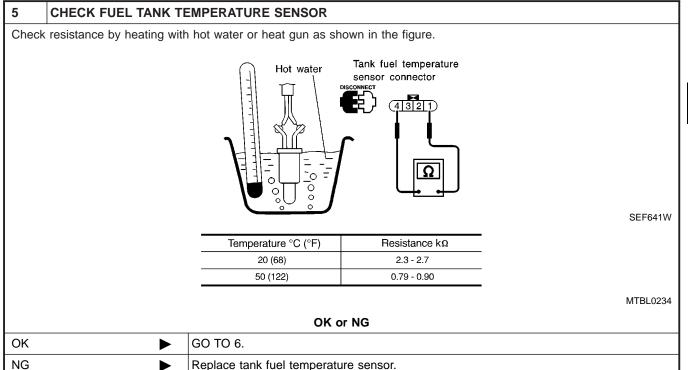
- 1. Turn ignition switch OFF.
- Check harness continuity between sensor terminal 4 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 5.
NG	GO TO 4.

DTC P0180 FUEL TANK TEMPERATURE SENSOR

VG33E


Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C1, M67
- Harness for open or short between fue tank temperature sensor and body ground

Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

GI

MA

EM

EC

GL

MT

AT

TF PD

SU

ى تا تا

ST

RS

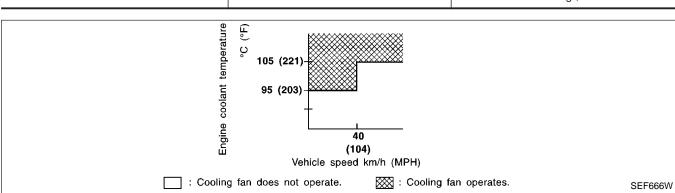
BT

HA

SC

VG33E

On Board Diagnosis Logic


On Board Diagnosis Logic

NGEC070

This diagnosis checks whether the engine coolant temperature is extraordinarily high, even though the driving condition is not high load.

When malfunction is detected, the malfunction indicator lamp (MIL) will light up even in the first trip.

Diagnostic Trouble	Malfunction is detected when	Check Items
P0217	Engine coolant temperature is excessively high under normal engine speed.	 Harness or connectors (The cooling fan circuit is open or shorted) Cooling fan Thermostat Improper ignition timing Engine coolant temperature sensor Blocked radiator Blocked front end (Improper fitting of front end cover) Crushed vehicle frontal area (Vehicle frontal area has been damaged from a collision but not repaired) Blocked air passage by improper installation of front fog lamp or fog lamps. Improper mixture ratio of coolant Damaged bumper For more information, refer to "Main 12 Causes of Overheating", EC-892.

VG33E

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the engine coolant over temperature enrichment protection check, a DTC might not be confirmed.

GI

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high-pressure fluid escaping from the radiator.

MA

Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

LC

(A) WITH CONSULT-II

 Check the coolant level and mixture ratio (Using coolant tester) in the reservoir tank and radiator.

EC

Allow engine to cool before checking coolant level and mixture ratio. If the coolant level in the reservoir and/or the radiator is below

the proper range, skip following steps and go to "Diagnostic Procedure", EC-885.

GL

If the coolant mixture ratio is out of range between 45 to 55%, replace the coolant. Refer to "Changing Engine Coolant", MA-27.

MT

Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", MA-16.

AT

b) After refilling coolant, run engine to ensure that no water-flow noise is emitted. After checking or replacing coolant, go to step 3) below.

2. Confirm whether customer filled the engine coolant or not. If customer filled the engine coolant, skip following steps and go to "Diagnostic Procedure", EC-885.

Turn ignition switch ON.

AX

Perform "COOLANT TEMP" in "ACTIVE TEST" mode with CONSULT-II.

Set "COOLANT TEMP" to 95°C (194°F) and make sure that cooling fan operates at low speed. If NG, go to "Diagnostic Procedure", EC-885.

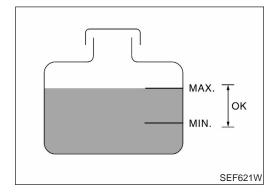
Set "COOLANT TEMP" to 105°C (221°F) and make sure that cooling fan operates at high speed. If NG, go to "Diagnostic Procedure", EC-885. After repair, go to next step.

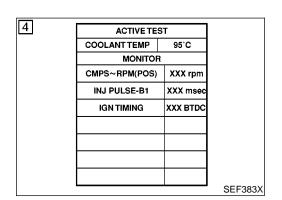
Check for blocked coolant passage.

Warm up engine to normal operating temperature, then grasp upper and lower radiator hoses and make sure that coolant flows.

If NG, go to step 6 of "Diagnostic Procedure", EC-885. After repair, go to next step.

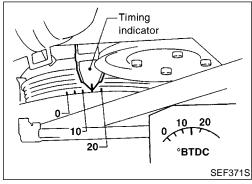
Be extremely careful not to touch any moving or adjacent


HA

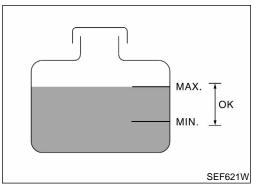

6. Check radiator for blocked air passage

EC-881

Check for blocked condenser or radiator (condenser or radiator fins damaged, condenser or radiator clogged), after market fog lamps ...etc. Check for condenser or radiator fin damage, shroud damage, vehicle front end for clogging of debris or insects ...etc.



VG33E


Check for improper fitting of front end cover, damaged radiator grille or bumper, vehicle frontal area damaged by collision but not repaired.

If NG, take appropriate action and then go to next step.

7. Check ECT sensor for proper operation. Refer to step 7 of "Diagnostic Procedure", EC-885. If NG, replace ECT sensor and go to next step.

8. Check ignition timing. Refer to "Basic Inspection", EC-669. Make sure that ignition timing is $15^{\circ} \pm 2^{\circ}$ at 700 ± 50 rpm. If NG, adjust ignition timing and then recheck.

® WITHOUT CONSULT-II

NGEC0704S0

- 1. Check the coolant level and mixture ratio (Using coolant tester) in the reservoir tank and radiator.
 - Allow engine to cool before checking coolant level and mixture ratio.
- If the coolant level in the reservoir and/or radiator is below the proper range, skip the following steps and go to step 3 of "Diagnostic Procedure", EC-885.
- If the coolant mixture ratio is out of range between 45 to 55%, replace the coolant. Refer to "Changing Engine Coolant", MA-27.
- a) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", *MA-16*.
- b) After refilling coolant, run engine to ensure that no water-flow noise is emitted. After checking or replacing coolant, go to step 3) below.
- Confirm whether customer filled the engine coolant or not. If customer filled engine coolant, skip following steps and go to "Diagnostic Procedure", EC-885.
- 3. Turn ignition switch OFF.
- Disconnect engine coolant temperature sensor harness connector.

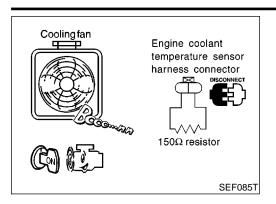
VG33E

GI

MA

EC

GL


MT

AT

TF

PD

Overall Function Check (Cont'd)

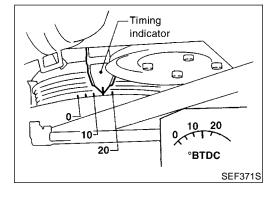
- Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- Start engine and make sure that cooling fan operates. Be careful not to overheat engine.

If NG, go to step 9 of "Diagnostic Procedure", EC-885. After repair, go to next step.

Check for blocked coolant passage.

Warm up engine to normal operating temperature, then grasp upper and lower radiator hoses and make sure that coolant flows.

If NG, go to step 6 of "Diagnostic Procedure", EC-885. After repair, go to next step.


Be extremely careful not to touch any moving or adjacent parts.

8. Check radiator for blocked air passage Check for blocked condenser or radiator (condenser or radiator fins damaged, condenser or radiator clogged), after market fog lamps,...etc. Check for condenser or radiator fin damage, shroud damage, vehicle front end for clogging of debris or insects ...etc.

Check for improper fitting of front end cover, damaged radiator grille or bumper, vehicle frontal area damaged by collision but not repaired.

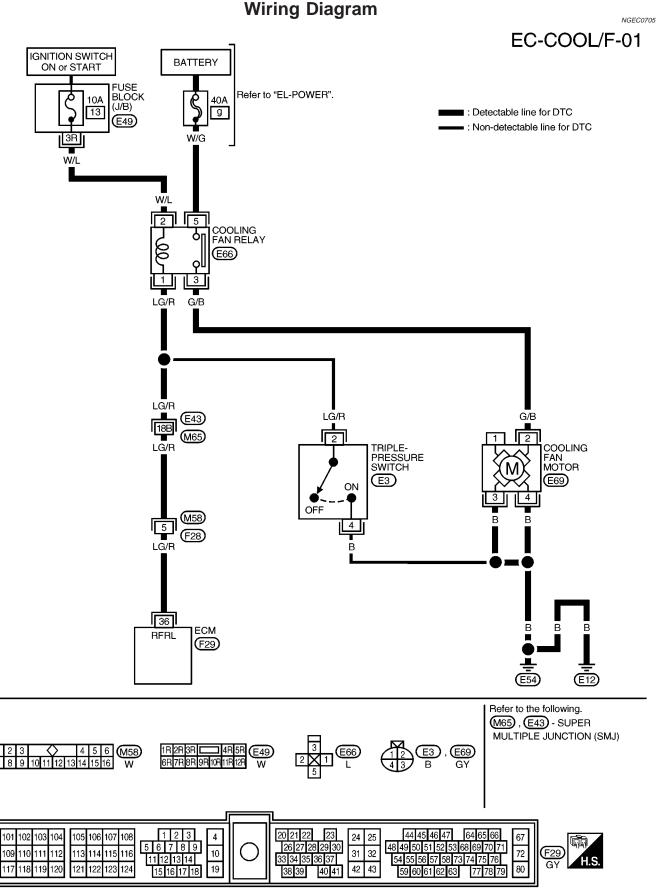
If NG, take appropriate action and then go to next step.

Check ECT sensor for proper operation. Refer to step 6 of "Diagnostic Procedure", EC-885. If NG, replace ECT sensor and go to next step.

10. Check ignition timing. Refer to "Basic Inspection", EC-669. Make sure that ignition timing is $15^{\circ} \pm 2^{\circ}$ at 700 ± 50 rpm. If NG, adjust ignition timing and then recheck.

AX

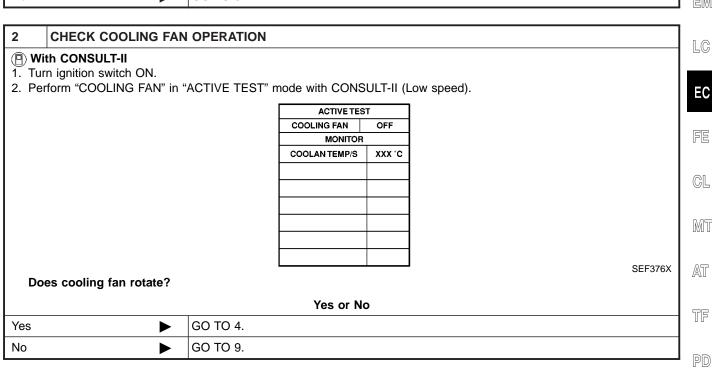
ST

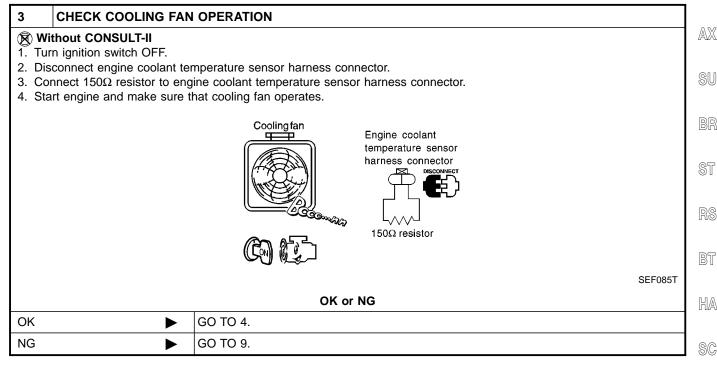

BT

HA

SC

Wiring Diagram

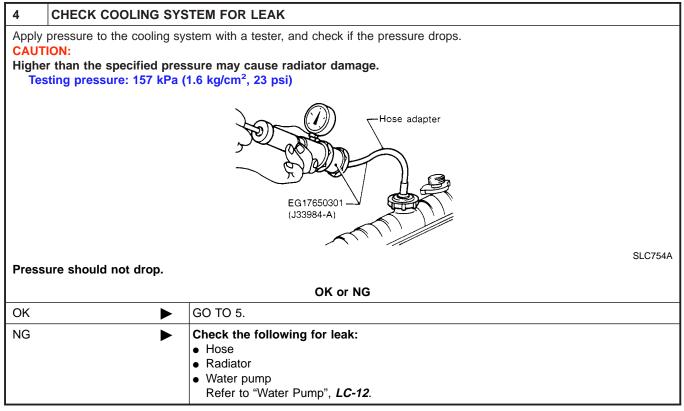

VG33E

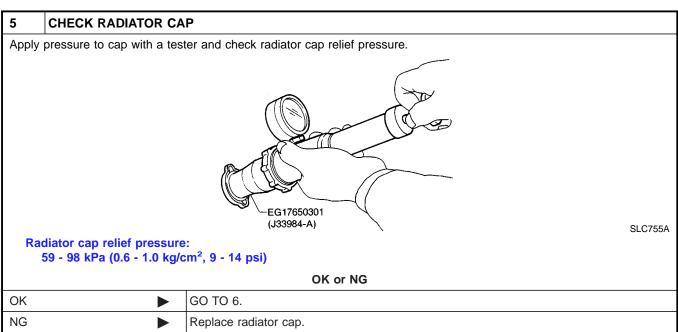


VG33E

Diagnostic Procedure

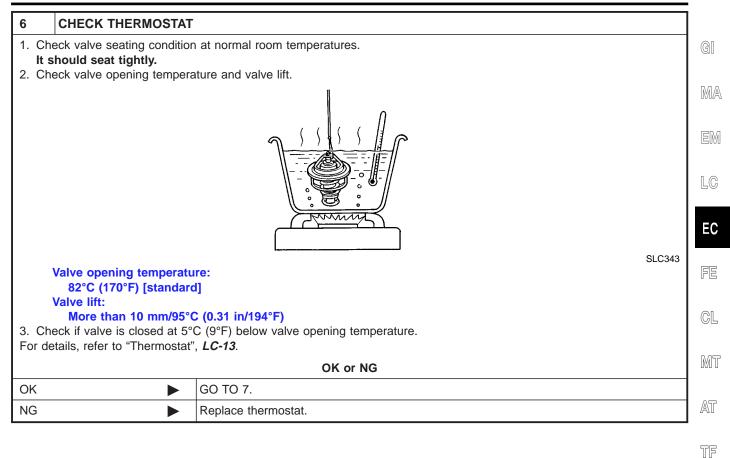
Diagnostic Procedure 1 INSPECTION START GI Do you have CONSULT-II? Yes or No Yes ▶ GO TO 2. No ▶ GO TO 3.





ΞL

Diagnostic Procedure (Cont'd)


VG33E

VG33E

Diagnostic Procedure (Cont'd)

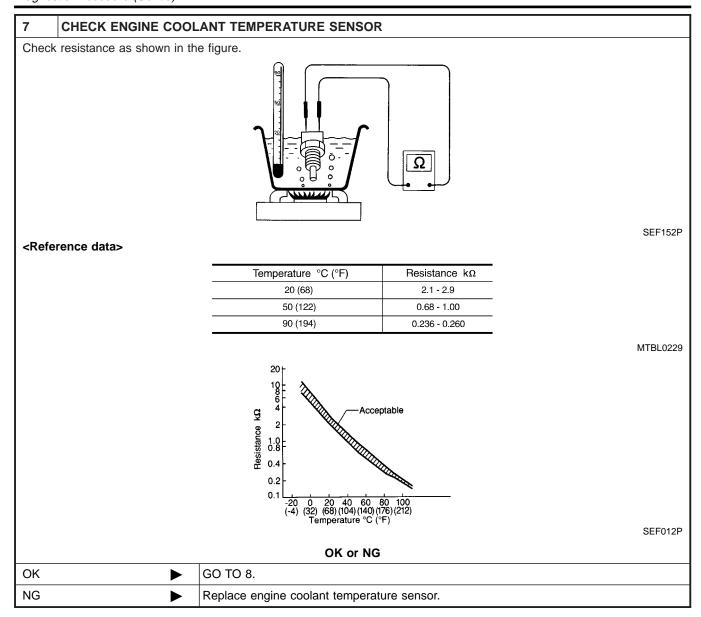
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

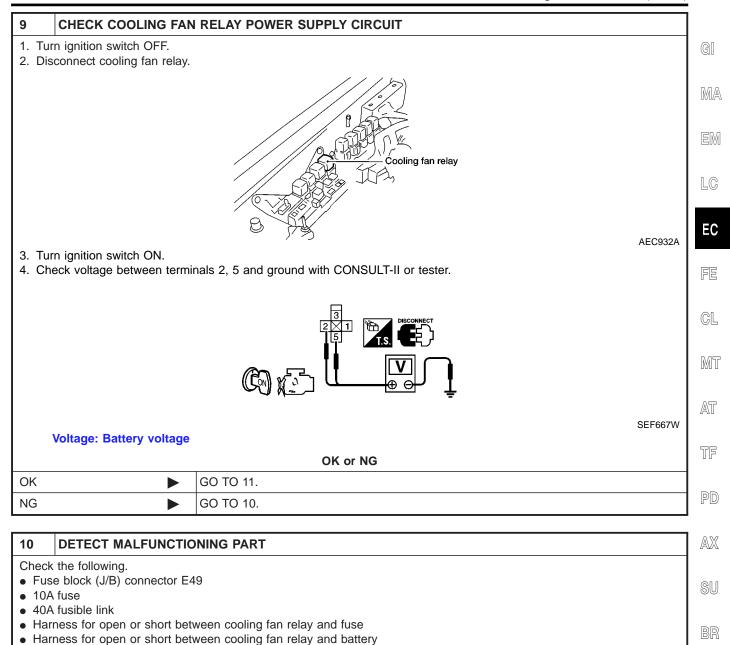
ST


BT

HA

SC

Diagnostic Procedure (Cont'd)


VG33E

8	CHECK MAIN 12 CAUSES		
If the o	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-892.		
	► INSPECTION END		

VG33E

Diagnostic Procedure (Cont'd)

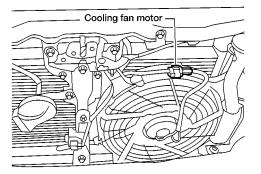
Repair open circuit or short to ground or short to power in harness or connectors.

 \mathbb{Z}

ST

BT

HA


SC

Diagnostic Procedure (Cont'd)

VG33E

11 CHECK COOLING FAN MOTOR POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan motor harness connector.

AEC931A

3. Check harness continuity between relay terminal 3 and motor terminal 2, motor terminals 3, 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

0	K	or	N	G

OK	•	GO TO 12.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

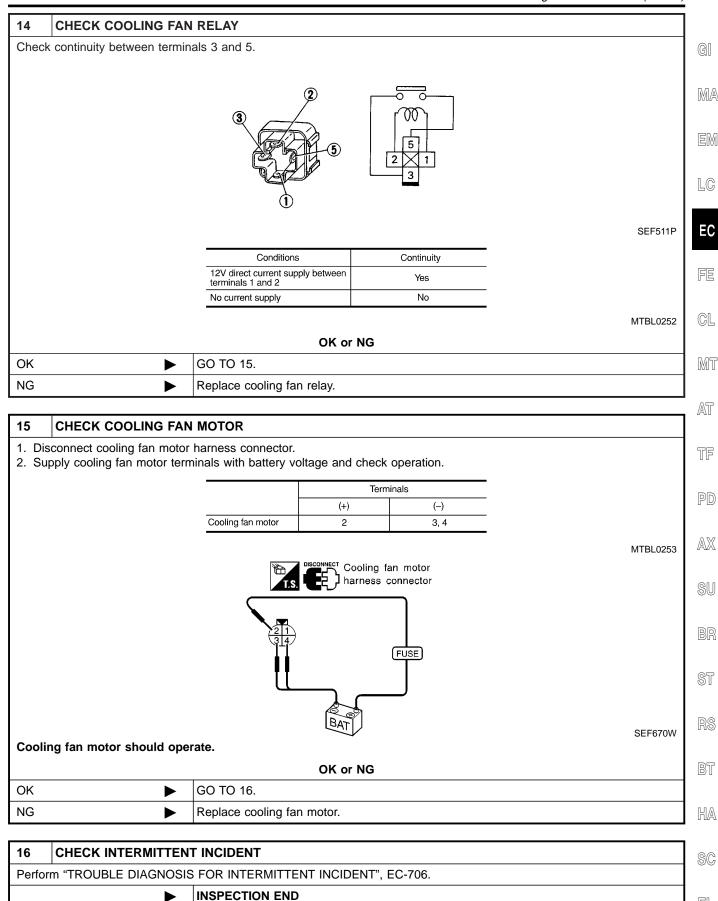
12 CHECK COOLING FAN RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 36 and relay terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 14.
NG •	GO TO 13.

13 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors E43, M65
- Harness connectors M58, F28
- Harness for open or short between cooling fan relay and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

Diagnostic Procedure (Cont'd)

Main 12 Causes of Overheating

VG33E

		-	Main 12 Cause	es of Overheating	NGEC0707
Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiatorBlocked condenserBlocked radiator grilleBlocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS" in <i>MA-14</i> .
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in MA-27.
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM" in <i>LC-11</i> .
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM" in <i>LC-11</i> .
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in <i>LC-13</i> , <i>LC-14</i> .
ON*1	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAG- NOSIS FOR OVER- HEAT" (EC-1132).
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in <i>MA-27</i> .
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in <i>MA-27</i> .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYLIN- DER HEAD" in <i>EM-88</i> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYLIN- DER BLOCK" in <i>EM-104</i> .

^{*1:} Turn the ignition switch ON.

For more information, refer to "OVERHEATING CAUSE ANALYSIS", LC-34.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the CKP sensor signal to vary, ECM can determine that a misfire is occurring.

G[

Sensor	Input Signal to ECM	ECM function	
Crankshaft position sensor (OBD)	Engine speed	On board diagnosis of misfire	

MA

The misfire detection logic consists of the following two conditions.

- One Trip Detection Logic (Three Way Catalyst Damage) On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink. When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change. When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.
- Two Trip Detection Logic (Exhaust quality deterioration)
 For misfire conditions that will not damage the TWC (but will
 affect vehicle emission), the MIL will only light when the mis fire is detected on a second trip. During this condition, ECM
 monitors the CKP sensor signal every 1000 revolutions. A mis fire malfunction can be detected on any one cylinder or on
 multiple cylinders.

Malfunction is detected when multiple cylinders misfire, No. 1 cylinder misfires, No. 2 cylinder misfires, No. 3 cylinder misfires, No. 4 cylinder misfires, No. 5 cylinder misfires and No. 6 cylinder misfires.

PD

POSSIBLE CAUSE

- Improper spark plug
- Insufficient compression
- Incorrect fuel pressure
- EGR valve
- The injector circuit is open or shorted
- Injectors
- Intake air leak
- The ignition secondary circuit is open or shorted
- Lack of fuel
- Drive plate
- Front heated oxygen sensor
- Incorrect distributor rotor

NGEC0708S01

01

KS

BT

HA

SC

EL

 $\mathbb{D}\mathbb{X}$

DTC Confirmation Procedure

DATA MONITOR MONITORING NO FAIL CMPS~RPM (REF) XXX rpm COOLAN TEMP/S XXX 'C VHCL SPEED SE XXX km/h THRTL POS SEN XXX V CLSD THL/P SW OFF P/N POSI SW OFF

DTC Confirmation Procedure

=NGEC0709

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine again and drive at 1,500 to 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

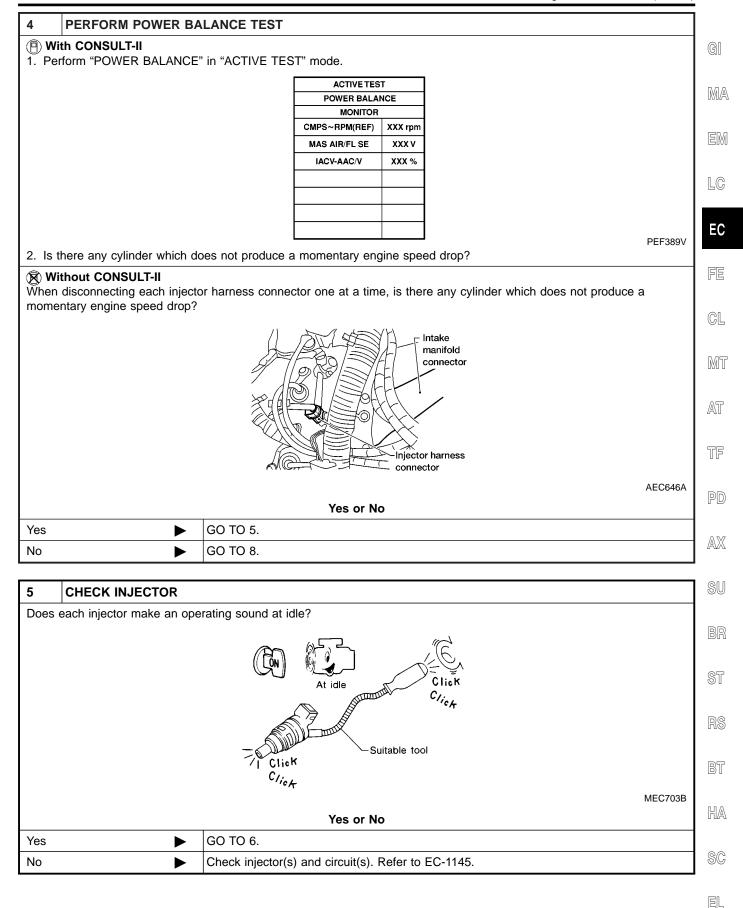
NOTE:

Refer to the freeze frame data for the test driving conditions.

- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-894.
- **®** With GST

Follow the procedure "With CONSULT-II".

Diagnostic Procedure

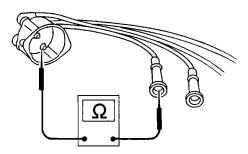

VGEC071

1	CHECK FOR INTAKE AIR LEAK			
	 Start engine and run it at idle speed. Listen for the sound of the intake air leak. 			
OK or NG				
OK	>	GO TO 2.		
NG	>	Discover air leak location and repair.		

2	CHECK FOR EXHAUST SYSTEM CLOGGING		
Stop 6	Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.		
	OK or NG		
OK	OK		
NG	>	Repair or replace it.	

3	CHECK EGR FUNCTION		
Perfor	Perform "DTC Confirmation Procedure" of "DTC P1402 EGR FUNCTION (OPEN)". Refer to EC-1056.		
	OK or NG		
ОК	OK ▶ GO TO 4.		
NG	>	Repair EGR system.	

Diagnostic Procedure (Cont'd)



Diagnostic Procedure (Cont'd)

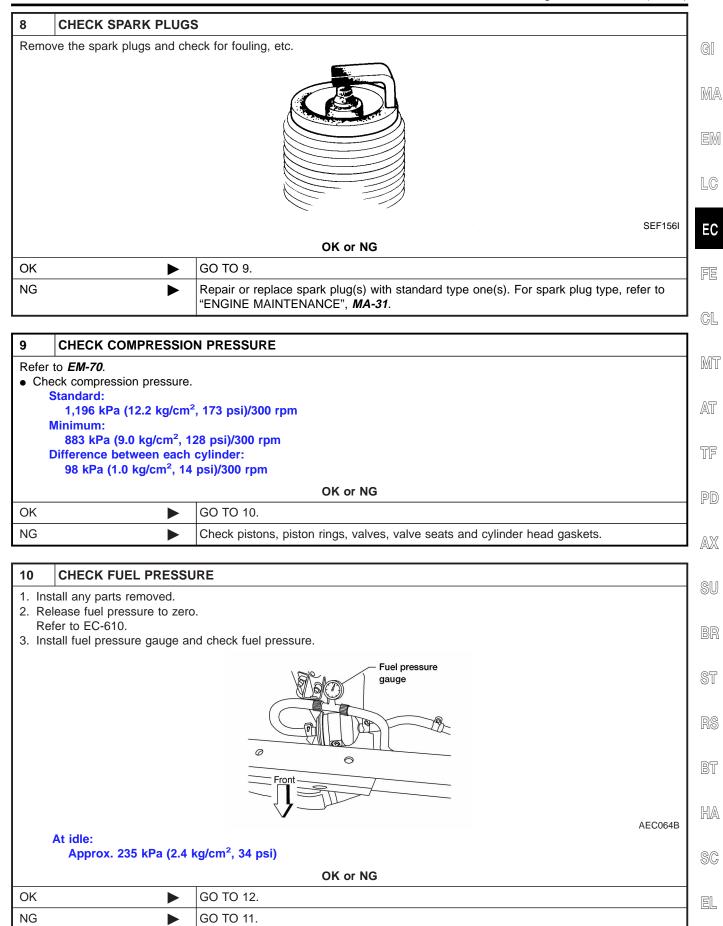
6 CHECK IGNITION SPARK 1. Disconnect ignition wire from spark plug. 2. Connect a known good spark plug to the ignition wire. 3. Place end of spark plug against a suitable ground and crank engine. 4. Check for spark. Ignition wire Spark plug OK or NG OK GO TO 8. NG GO TO 7.

7 CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

SEF174P

Resistance:


Cylinder No.	Resistance kΩ [at 25°C (77°F)]
1	Approximately 6.5
2	Approximately 10.0
3	Approximately 8.5
4	Approximately 12.5
5	Approximately 8.5
6	Approximately 11.0

MTBL0235

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

	 Check the following: Distributor rotor head for incorrect parts Ignition coil, power transistor and their circuits Refer to EC-1028.
NG ►	Replace.

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

11	DETECT MALFUNCTIONING PART		
	Check the following.		
Fue	Fuel pump and circuit (Refer to EC-1153.)		
Fuel pressure regulator (Refer to EC-611.)			
• Fuel lines (Refer to "ENGINE MAINTENANCE", <i>MA-28</i> .)			
Fuel filter for clogging			
	•	Repair or replace.	

12	CHECK IGNITION TIMING			
Check	the following items. Refer	to "Basic Inspection", EC-	-669.	
		Items	Specifications	•
		Ignition timing	15° ± 2° BTDC	•
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)	
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)	
				MTBL0226
		O	K or NG	
OK (V	Vith CONSULT-II)	GO TO 13.		
OK (V II)	Vithout CONSULT-	GO TO 14.		
NG	>	Adjust ignition timing.		

Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR LH/RH

(P) With CONSULT-II

13

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "FR O2 SEN-B1 (-B2)" and "FR O2 MNTR-B1 (-B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

IITOR
NO FAIL
XXX rpm
XXX V
XXX °C
XXX V
LEAN
XXX msec
XXX %
ON

PEF365V

MA

EC

FE

GL

MT

AT

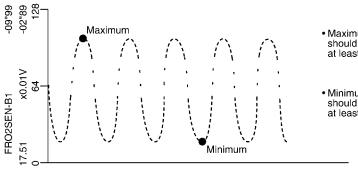
TF

PD

- 5. Check the following.
- "FR O2 MNTR-B1 (-B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown left:

Right bank

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B1 R-L-R-L-R-L-R-L-R


Left bank

cycle | 1 | 2 | 3 | 4 | 5 | FR O2 MNTR-B2 R-L-R-L-R-L-R-L-R

R means FR O2 MNTR-B1(-B2) indicates RICH L means FR O2 MNTR-B1(-B2) indicates LEAN

SEF702W

- "FR O2 SEN-B1 (-B2)" voltage goes above 0.6V at least once.
- "FR O2 SEN-B1 (-B2)" voltage goes below 0.3V at least once.
- "FR O2 SEN-B1 (-B2)" voltage never exceeds 1.0V.

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.3V at least one time.

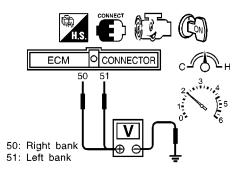
SEF154X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 15.
NG ►	Replace front heated oxygen sensor.


HA

Diagnostic Procedure (Cont'd)

14 CHECK FRONT HEATED OXYGEN SENSOR LH/RH

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

SEF919U

- MIL goes on more than 5 times within 10 seconds in Diagnostic Test Mode II (FRONT HEATED OXYGEN SENSOR MONITOR).
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897–18 or J-43897–12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 15.	
NG ►	Replace front heated oxygen sensor.	

15 CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.

3.3 - 4.8 g·m/sec: at idling 12.0 - 14.9 g·m/sec: at 2,500 rpm

® With GST

Check mass air flow sensor signal in MODE 1 with GST.

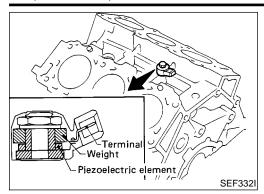
3.3 - 4.8 g·m/sec: at idling 12.0 - 14.9 g·m/sec: at 2,500 rpm

No Tools

Check voltage between ECM terminal 54 and ground.

1.0 - 1.7V: at idling 1.7 - 2.3V: at 2,500 rpm

OK or NG


OK ►	GO TO 16.
	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-713.

DTC P0300 - P0306 NO. 6 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE VG3

Diagnostic Procedure (Cont'd)

	Diagnostic F	roceaure (Conta)
16 CHECK S	SYMPTOM MATRIX CHART	
	he rough idle symptom in "Symptom Matrix Chart", EC-688.	
	OK or NG	
OK	▶ GO TO 17.	M
NG	Repair or replace.	
17 ERASE T	THE 1ST TRIP DTC	
	cause a 1st trip DTC to be set.	
Erase the 1st trip	DTC from the ECM memory after performing the tests. Refer to EC-640.	
	► GO TO 18.	
18 CHECK II	NTERMITTENT INCIDENT	
	SLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.	 F[
	INSPECTION END	
		©[
		M
		0.5
		A
		T
		U L
		P
		A
		S
		B
		D
		\$
		R
		B
		пп
		H
		S

EC-901

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction. The knock sensor has one trip detection logic.

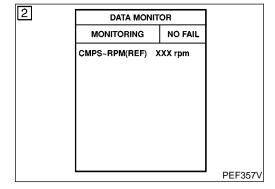
ECM Terminals and Reference Value

NGEC0712

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)
64	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V

On Board Diagnosis Logic


NOFOOTAG

Malfunction is detected when an excessively low or high voltage from the knock sensor is sent to ECM.

POSSIBLE CAUSE

NGEC0713S01

- Harness or connectors (The knock sensor circuit is open or shorted.)
- Knock sensor

DTC Confirmation Procedure

NGEC0714

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 5 seconds at idle speed.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-904.

® With GST

Follow the procedure "With CONSULT-II".

ECM F29

F37 6 F101 6

NGEC0715

JOINT CONNECTOR-1

F31

B/R

B/R

B/Y ■

EM

GI

MA

EC

FE

GL

MT

AT

TF

PD

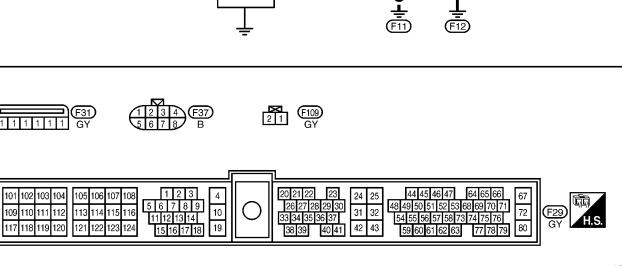
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL AEC955A

KNOCK SENSOR

(F109)

Diagnostic Procedure

NGEC0716

1 CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 64 and engine ground.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance:

Approximately 500 - 620 k Ω [at 25°C (77°F)]

4. Also check harness for short to ground and short to power.

_	v		NI.	
റ	ĸ	or	N	

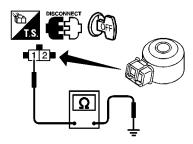
OK •	GO TO 5.
NG -	GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT-II

- 1. Disconnect knock sensor harness connector.
- Check harness continuity between ECM terminal 64 and knock sensor terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.


3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector F37, F101
- Harness for open or short between ECM and knock sensor
 - Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK KNOCK SENSOR

- ullet Use an ohmmeter which can measure more than 10 M Ω .
- 1. Disconnect knock sensor harness connector.
- 2. Check resistance between terminal 2 and ground.

SEF643W

Resistance: 500 - 620 k Ω [at 25°C (77°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

OK or NG

OK		GO TO 8.
NG		Replace knock sensor.

DTC P0325 KNOCK SENSOR (KS)

VG33E

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

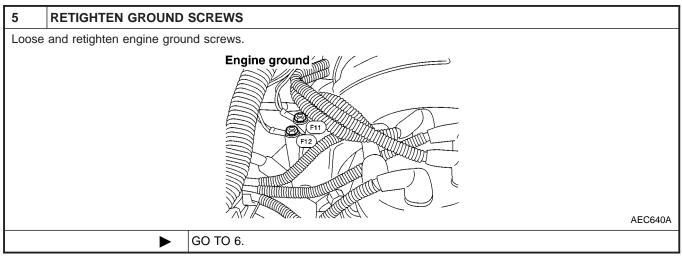
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

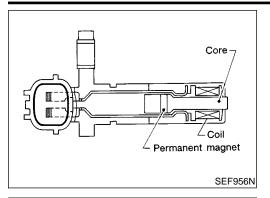

BT

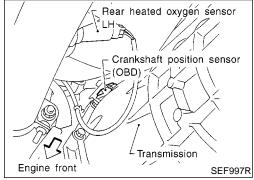
HA

SC

EL

Diagnostic Procedure (Cont'd)




6 CHEC	K KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT
2. Check harr	harness connectors F37, F101. ess continuity between harness connector F37 terminal 6 and engine ground. Refer to Wiring Diagram ty should exist.
3. Also check	harness for short to ground and short to power.
3. Also check	
3. Also check	harness for short to ground and short to power.

Check the following.			
 Harness connectors F37, F10⁻⁷ 	1		
 Joint connectors - 1 			
Harness for open or short between harness connector F37 and engine ground			
•	Repair open circuit or short to ground or short to power in harness or connectors.		

ı	8	CHECK INTERMITTENT INCIDENT		
ı	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
ı	► INSPECTION END			

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transaxle housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system. It is used only for the on board diagnosis.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	1 - 2V (AC range) (V) 10 5 0.2 ms
47	L	Crankshaft position sensor (OBD)	[Engine is running] ● Engine speed is 2,000 rpm	3 - 4V (AC range) (V) 10 5 0.2 ms

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when the proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed.

POSSIBLE CAUSE

NGEC0719S01

- Harness or connectors (The crankshaft position sensor (OBD) circuit is open.)
- Crankshaft position sensor (OBD)

EM

MA

LC

2	DATA MONIT		
	MONITORING	NO FAIL	
	CMPS~RPM(REF)	XX rpm	
			PEF357V
			F L F 33 / V

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

EC

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 15 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-909.

With GST

NOTE:

Follow the procedure "With CONSULT-II".

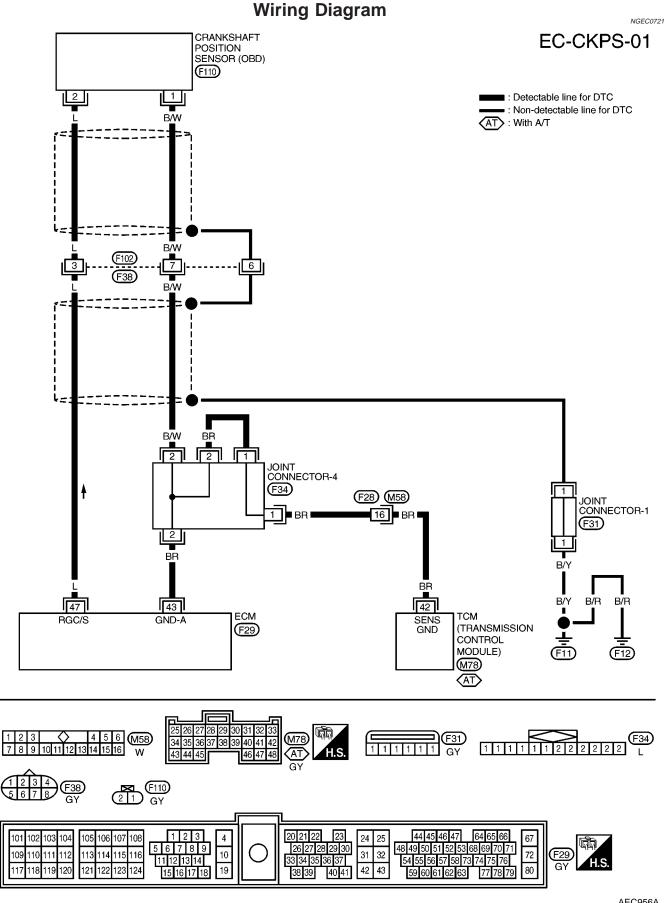
TF

AT

PD

AX

SU


ST

BT

HA

SC

EL

Diagnostic Procedure

NGEC0722

MA

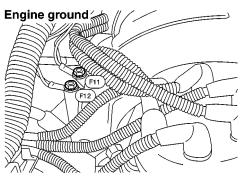
EC

FE

GL

MT

AT

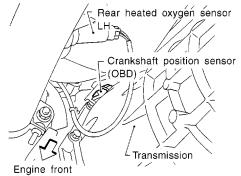

TF

PD

1. Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

RETIGHTEN GROUND SCREWS



AEC640A

GO TO 2.

CHECK CKPS (OBD) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect crankshaft position sensor (OBD) and ECM harness connectors.

SEF997R

2. Check continuity between ECM terminal 47 and sensor terminal 2. Refer to Wiring Diagram. Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 4.
NG	•	GO TO 3.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F38, F102
- Harness for open or short between ECM and crankshaft position sensor (OBD)

Repair open circuit or short to ground or short to power in harness or connectors.

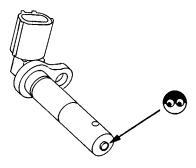
ST

HA

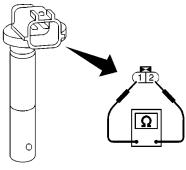
SC

Diagnostic Procedure (Cont'd)

4	CHECK CKPS (OBD) GROUND CIRCUIT FOR OPEN AND SHORT				
 Reconnect ECM harness connector. Check harness continuity between sensor terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 					
	OK or NG				
OK	OK ▶ GO TO 6.				
NG	•	GO TO 5.			


5 **DETECT MALFUNCTIONING PART**

Check the following.


- Harness connectors F38, F102
- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between crankshaft position sensor (OBD) and ECM
- Harness for open or short between crankshaft position sensor (OBD) and TCM (Transmission Control Module)
 - Repair open circuit or short to ground or short to power in harness or connectors.

CHECK CRANKSHAFT POSITION SENSOR (OBD)

- 1. Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

SEF504V

SEF960N

Resistance: Approximately 512 - 632Ω [at 20°C (68°F)]

OK or NG

OK •	GO TO 7.
NG ▶	Replace crankshaft position sensor (OBD).

EC

FE

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

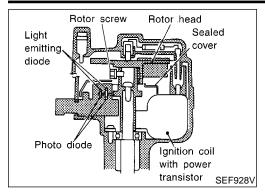
RS

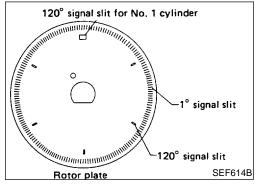
BT

HA

SC

EL


Diagnostic Procedure (Cont'd)


7 CHECK	CKPS (OBD) S	HIELD CIRCUIT FOR OPEN AND SHORT	
2. Check harne	•	rs F38, F102. veen harness connector F38 terminal 6 and engine ground. Refer to Wiring Diagram.	GI
	Continuity should exist. 3. Also check harness for short to ground and short to power.		
		OK or NG	
OK	•	GO TO 9.	
NG	•	GO TO 8.	
			_ _ [6

8	DETECT MALFUNCTIONING PART			
Check the following.				
Harness connectors F38, F102				
Join	Joint connector-1			
Harness for open or short between harness connector F38 and engine ground				
	Repair open circuit or short to ground or short to power in harness or connectors.			

9	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
► INSPECTION END			I Mi

Component Description

Component Description

The camshaft position sensor is a basic component of the engine control system. It monitors engine speed and piston position. These input signals to the ECM are used to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for a 1° (POS) signal and 6 slits for a 120° (REF) signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

NOTE:

The rotor screw which secures the distributor rotor head to the distributor shaft must be torqued properly.

: 3.6±0.3 N·m (37±3 kg-cm, 32±3 in-lb)

ECM Terminals and Reference Value

NGEC072

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

Specific	Specification data are reference values and are measured between each terminal and 32 (ECM ground).				
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
4	OR/B	ECM relay (Self shut- off)	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
			[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
44	PU	Camshaft position sensor (Reference signal)	[Engine is running] • Idle speed	0.3 - 0.5V (V) 10 5 0 20 ms SEF997U	
48	PU		[Engine is running] ● Engine speed is 2,000 rpm	0.3 - 0.5V (V) 10 5 0 20 ms SEF998U	

DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

VG33E

GI

MA

EC

FE

GL

MT

AT

TF

PD

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	LG	Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.5V (V) 10 5 0 0.2 ms SEF999U
49	LG	sor (Position signal)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5V (V) 10 5 0 0.2 ms SEF001V
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE
72	B/P	1 Ower supply for ECIVI	Industrial Cod	(11 - 14V)
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0725

Malfunction is detected when

(Malfunction A) either 1° or 120° signal is not sent to ECM for the first few seconds during engine cranking,

(Malfunction B) either 1° or 120° signal is not sent to ECM often enough while the engine speed is higher than the specified engine speed,

(Malfunction C) the relation between 1° and 120° signal is not in the normal range during the specified engine speed.

POSSIBLE CAUSE

IGEC0725S01

- Harness or connectors
 (The camshaft position sensor circuit is open or shorted.)
- Camshaft position sensor
- Starter motor (Refer to SC-6.)
- Starting system circuit (Refer to SC-6.)
- Dead (Weak) battery

BT

HA

SC

EL

NGEC0726

DTC Confirmation Procedure

MALFUNCTION B AND C".

NOTE:

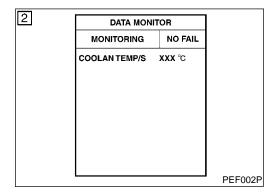
Perform "PROCEDURE FOR MALFUNCTION A" first. If DTC cannot be confirmed, perform "PROCEDURE FOR

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

PROCEDURE FOR MALFUNCTION A


NGEC0726S01

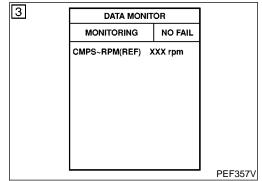
(P) With CONSULT-II

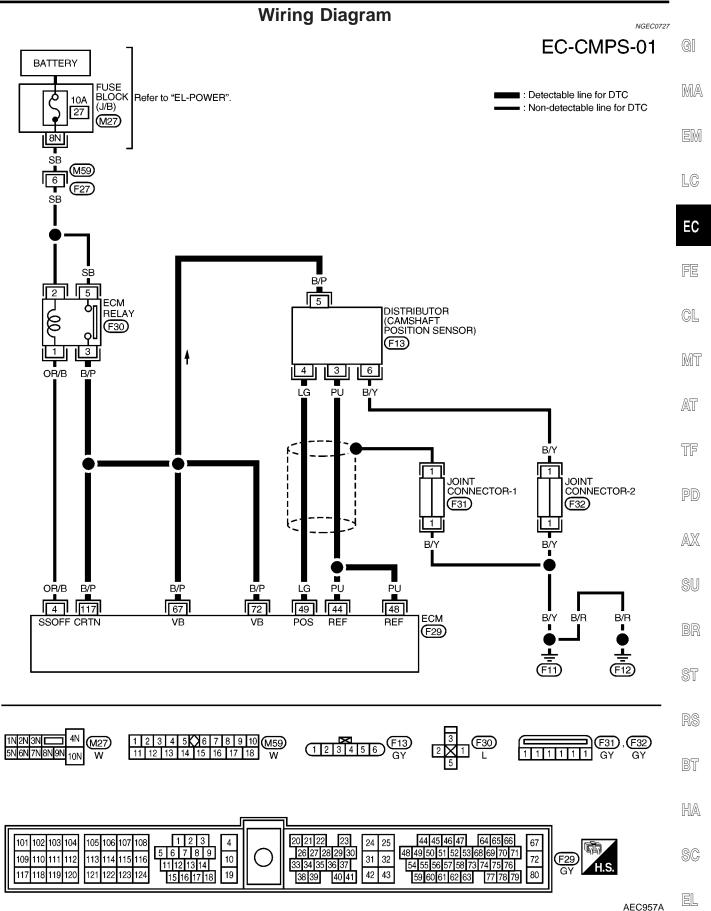
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-916.

With GST

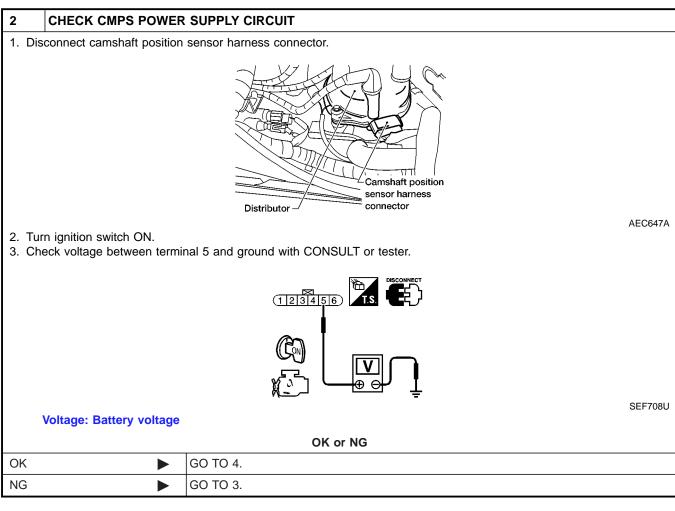
Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B AND C


NGEC0726S02


(II) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-916.


With GST

Follow the procedure "With CONSULT-II".

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground Fig. BO TO 2.

3	DETECT MALFUNCTIONING PART		
Check the following. • Harness for open or short between camshaft position sensor and ECM relay • Harness for open or short between camshaft position sensor and ECM			
	•	Repair harness or connectors.	

DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

VG33E

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

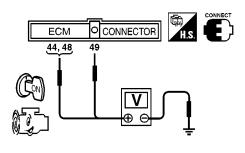
RS

BT

HA

Diagnostic Procedure (Cont'd)

4	CHECK CMPS INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
	1. Turn ignition switch OFF.			
	2. Disconnect ECM harness connector.			
48	 Check harness continuity between sensor terminal 4 and ECM terminal 49, sensor terminal 3 and ECM terminals 44, 48. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG			
OK	>	GO TO 5.	1	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	lc	


5	5 CHECK CMPS GROUND CIRCUIT FOR OPEN AND SHORT				
Turn ignition switch OFF. Check harness continuity between sensor terminal 6 and engine ground. Continuity should exist. Also check harness for short to ground and short to power.					
	OK or NG				
OK	OK ▶ GO TO 7.				
NG ▶ GO TO 6.					

	DETECT MALFUNCTIONING PART		
Check the following. • Joint connector-2			
Harness for open or short between camshaft position sensor and engine ground			
► Repair open circuit or short to ground or short to power in harness or connector.			

SC EL Diagnostic Procedure (Cont'd)

CHECK CAMSHAFT POSITION SENSOR

- 1. Install any parts removed.
- 2. Start engine.
- 3. Check voltage between ECM terminals 44, 48 and ground, ECM terminal 49 and ground with DC range.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm
Voltage	0.3 - 0.5V	0.3 - 0.5V
Pulse signal	(V) 10 5 0	(V) 10 5 0

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.5V	Approximately 2.5V
Pulse signal	(V) 10 5 0 0.2 ms	(V) 10 5 0

AEC072B

OK or NG

OK •	GO TO 8.
NG ►	Replace distributor assembly with camshaft position sensor.

8 CHECK CMPS SHIELD CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-1.
- 3. Check the following.
- Continuity between joint connector terminal 1 and ground
- Joint connector

(Refer to "HARNESS LAYOUT", EL-292.)

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Then reconnect joint connector-1.

OK or NG

OK •	GO TO 9.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

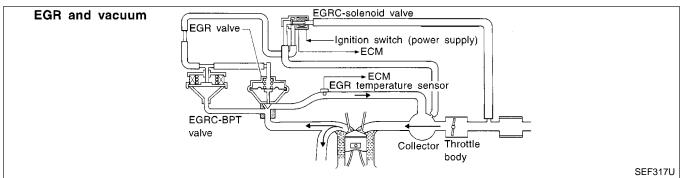
9	CHECK INTERMITTENT	CHECK INTERMITTENT INCIDENT		
Refe	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END			

DTC P0400 EGR FUNCTION (CLOSE)

VG33E

Description (If Equipped with EGR Valve)

Description (If Equipped with EGR Valve) SYSTEM DESCRIPTION


NGEC0729

729S01 ((29801	(
-----------	-------	---

				G[
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor Engine speed				0.007=7
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature	EGR con- trol EGRC-solend	EGRC-solenoid valve	LSUVU
Ignition switch	Start signal			LC
Throttle position sensor	Throttle position			

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current does not flow through the solenoid valve. This causes the intake manifold vacuum to be discharged into the atmosphere. The EGR valve remains closed.

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction

EC

GL

MT

AT

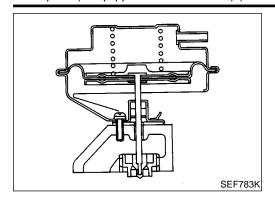
TF

PD

AX

SU

ST

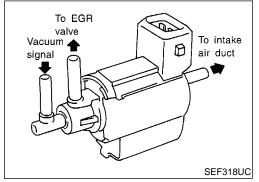

BT

HA

SC

EL

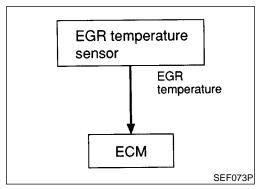
Description (If Equipped with EGR Valve) (Cont'd)



COMPONENT DESCRIPTION

Exhaust Gas Recirculation (EGR) Valve

=NGEC0729S02


The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening and EGRC-BPT valve operation. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

EGRC-solenoid Valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal (from the intake manifold collector to the EGR valve) passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal.

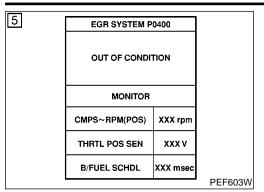
On Board Diagnosis Logic

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

Malfunction is detected when no EGR flow is detected under condition that calls for EGR.

POSSIBLE CAUSE

NGEC0730S01


- EGR valve stuck closed
- **EGRC-BPT** valve
- Vacuum hoses
- EGRC-solenoid valve
- EGR passage
- EGR temperature sensor
- Exhaust gas leaks

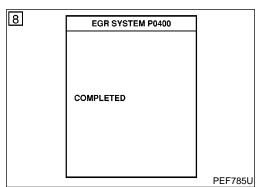
DTC P0400 EGR FUNCTION (CLOSE)

VG33E

NGEC0731

On Board Diagnosis Logic (Cont'd)

EGR SYSTEM P0400


TESTING

MONITOR

CMPS~RPM(POS) XXX rpm

THRTL POS SEN XXX V

B/FUEL SCHDL XXX msec

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

 P0400 will not be displayed at "SELF-DIAG RESULTS" mode with CONSULT-II even though DTC work support test result is NG.

TESTING CONDITION:

For best results, perform the test at a temperature of 5°C (41°F) or higher.

(II) With CONSULT-II

- Turn ignition switch ON
- Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.

Confirm COOLAN TEMP/S value is within the range listed below.

COOLAN TEMP/S: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the engine coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- Start engine and let it idle monitoring "COOLAN TEMP/S" value. When the "COOLAN TEMP/S" value reaches 70°C (158°F), immediately go to the next step.
- 4) Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".

to the following step.

6) Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle with engine running. If "COMPLETED" appears on CONSULT-II screen, go to step

9.
If "COMPLETED" does not appear on CONSULT-II screen, go

- Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 60 seconds or more.)

CMPS-RPM (POS)	1,600 - 2,400 rpm (A/T models) 1,800 - 2,600 rpm (M/T models)
B/FUEL SCHDL	3.0 - 4.5 msec
THRTL POS SEN	X – (X + 0.7) V X = Voltage value measured at step 7
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

9) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-924.

LC

GI

EC

CL

MT

AT

TF

PD

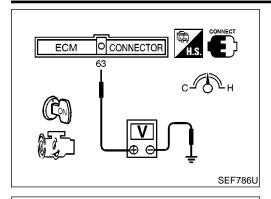
AVA

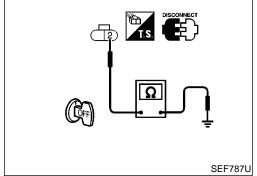
SU

BR

ST

RS


BT


HA

II II/~7

SC

EL

Overall Function Check

NGEC0732

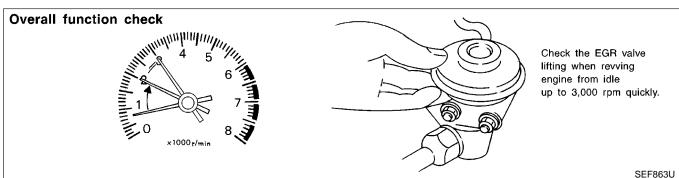
Use this procedure to check the overall EGR function. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check the EGR valve lifting when revving engine from idle up to 3,000 rpm quickly under no load.

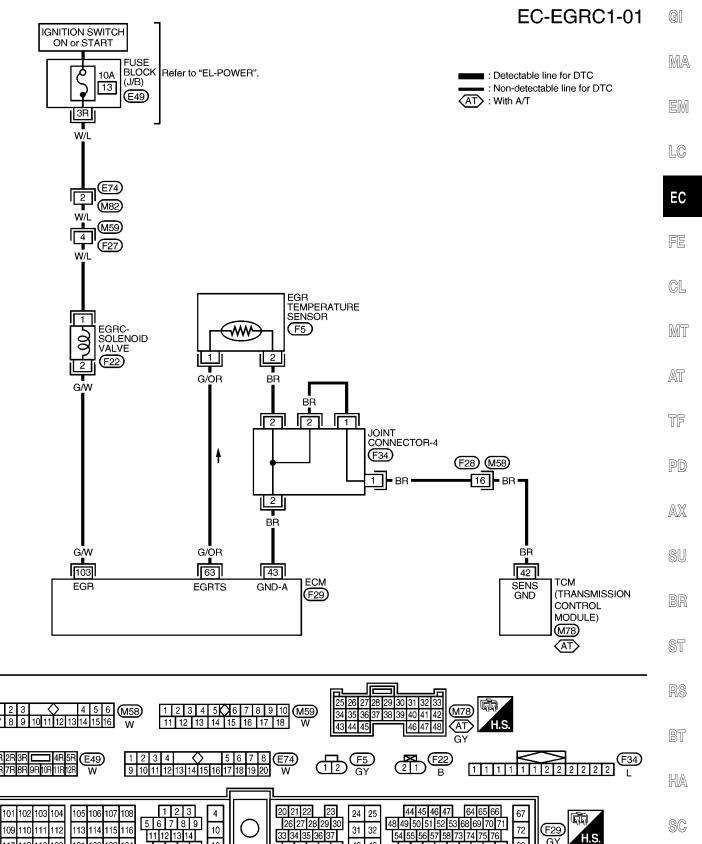
EGR valve should lift up and down without sticking. If NG, go to "Diagnostic Procedure", EC-924.

3) Check voltage between ECM terminal 63 (EGR temperature sensor signal) and ground at idle speed.


Less than 4.5V should exist.

If NG, go to next step.

- 4) Turn ignition switch OFF.
- 5) Disconnect EGR temperature sensor harness connector.
- Check harness continuity between EGR temperature sensor harness connector terminal 2 and ground.


Continuity should exist.

7) Perform "CHECK EGR TEMPERATURE SENSOR" in "Diagnostic Procedure".

NGEC0733

AEC958A

EL

72

54 55 56 57 58 73 74 75 76

59 60 61 62 63

(F29)

40 41

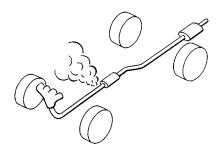
31 32

42 43

116

10

11 12 13 14


15 16 17 18

VG33E

Diagnostic Procedure

NGEC0734

- 1. Start engine.
- 2. Check exhaust pipes and muffler for leaks.

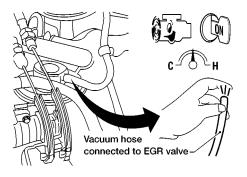
SEF099P

OK or NG

OK (With CONSULT-II)	>	GO TO 2.
OK (Without CONSULT-II)	>	GO TO 3.
NG	>	Repair or replace exhaust system.

DTC P0400 EGR FUNCTION (CLOSE)

VG33E


Diagnostic Procedure (Cont'd)

CHECK VACUUM SOURCE TO EGR VALVE

(P) With CONSULT-II

2

- 1. Warm engine up to normal operating temperature.
- 2. Disconnect vacuum hose to EGR valve.
- 3. Check for vacuum existence at idle.

AEC648A

Vacuum should not exist at idle.

- 4. Select "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode with CONSULT-II and turn the solenoid valve "ON".
- 5. Check for vacuum existence when revving engine from idle up to 3,000 rpm.

ACTIVE TEST				
EGRC SOL/V		ON		
(EGR)	(EGR) FLOW			
MONITO	7			
CMPS·RPM(REF)		XXX rpm		

Vacuum should exist when revving engine.

OK or NG

OK •	GO TO 4.
NG ►	GO TO 5.

GI

MA

EM

LC

EC

GL

MT

AT

TF

PD

PEF788U

AX

SU

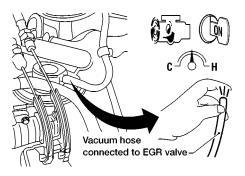
BR

ST

₽@

BT

HA


SC

FI

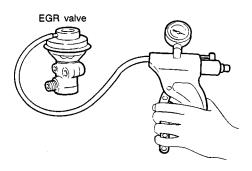
3 CHECK VACUUM SOURCE TO EGR VALVE

(X) Without CONSULT-II

- 1. Warm engine up to normal operating temperature.
- 2. Disconnect vacuum hose to EGR valve.
- 3. Check for vacuum existence at idle.

AEC648A

Vacuum should not exist at idle.


4. Check for vacuum existence when revving engine from idle up to 3,000 rpm quickly. **Vacuum should exist when revving engine.**

OK or NG

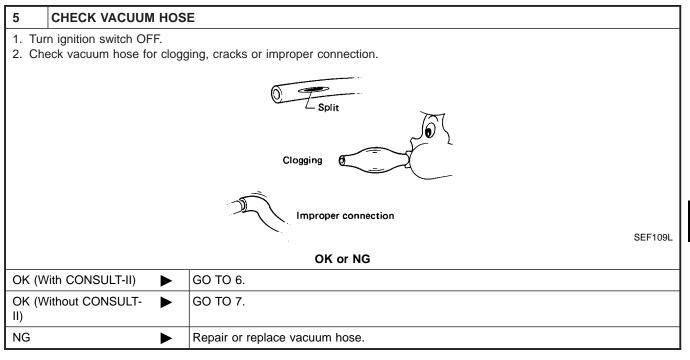
OK •	GO TO 4.
NG •	GO TO 5.

4 CHECK EGR VALVE

Apply vacuum to EGR vacuum port with a hand vacuum pump.

MEF137D

EGR valve spring should lift.


Check for sticking.

OK or NG

OK	•	GO TO 11.
NG	>	Replace EGR valve.

DTC P0400 EGR FUNCTION (CLOSE)

Diagnostic Procedure (Cont'd)

6 CHECK EGRC-SOLENOID VALVE OPE	ERATION
---------------------------------	----------------

(P) With CONSULT-II

1. Turn ignition switch ON.

2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST				
EGRC SOL/V ON				
(EGR)	FLOW			
MONITOR	₹			
CMPS~RPM(REF)	XXX rpm			

Clicking noise should be heard.

OK or NG

OK •	GO TO 8.
NG ►	Repair or replace EGRC-solenoid valve or repair circuit.

GI

MA

EM

LC

EC

GL

MT

AT

TF

PD

Ω 5\/7

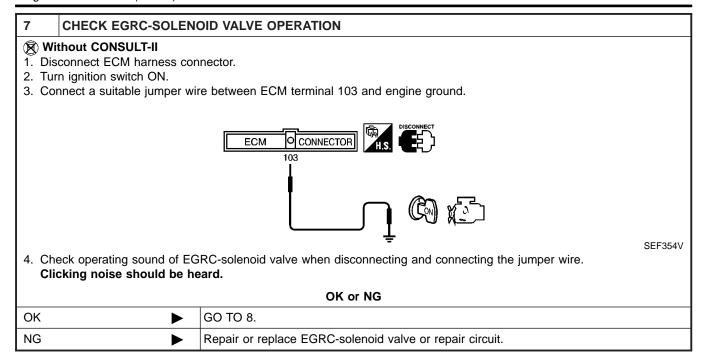
SU

BF

PEF789U

ST

RS


BT

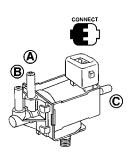
HA

SC

كاد

Diagnostic Procedure (Cont'd)

DTC P0400 EGR FUNCTION (CLOSE)

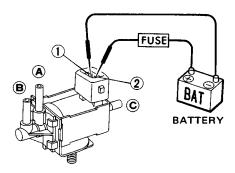

Diagnostic Procedure (Cont'd)

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

8

- 1. Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time.


ACTIVE TEST				
EGRC SOL/V (EGR) ON FLOW				
MONITOR				
CMPS~RPM (REF)	XXXrpm			

Conditions	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF155X

Without CONSULT-II

1. Check air passage continuity and operation delay time under the following conditions.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2		No
No supply	No	Yes

MTBL0237

OK or NG

OK •	GO TO 9.
NG ►	Replace EGRC-solenoid valve.

GI

MA

LC

EC

GL

MT

AT

TF

PD AX

SU

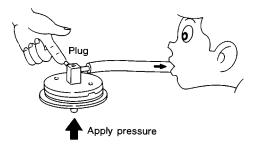
ST

RS

BT

HA

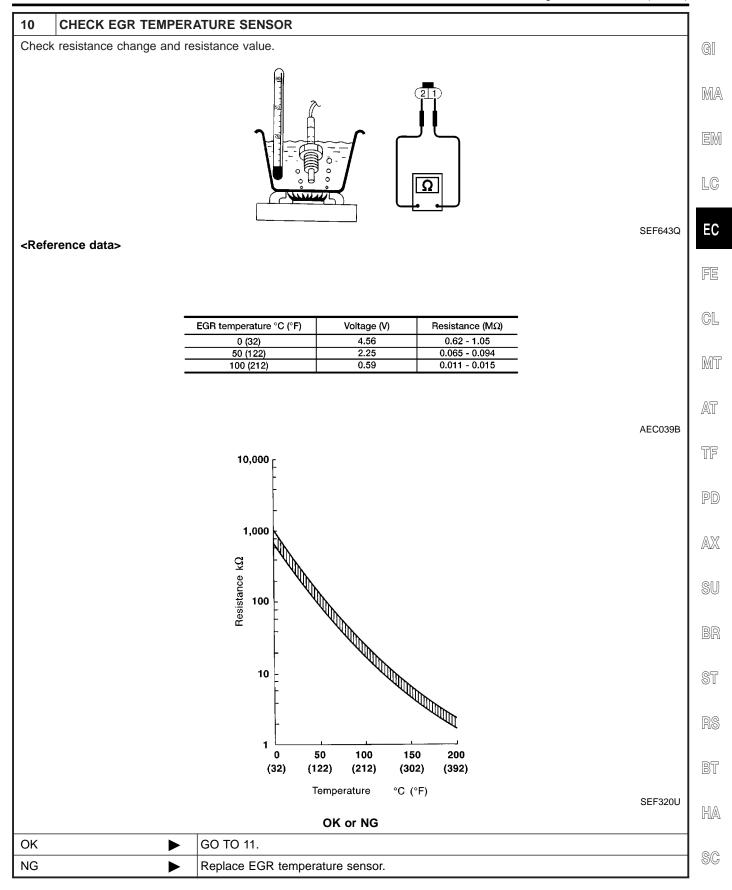
SC


EL

SEF083P

Diagnostic Procedure (Cont'd)

9 CHECK EGRC-BPT VALVE


- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mm H_2O , 3.94 in H_2O) from under EGRC-BPT valve.

Leakage should not exist.

OK or NG

OK J	>	GO TO 10.
NG I		Replace EGRC-BPT valve.

DTC P0400 EGR FUNCTION (CLOSE)

VG33E

Diagnostic Procedure (Cont'd)

11	1 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	•	INSPECTION END	

DTC P0402 EGRC-BPT VALVE FUNCTION

VG33E

GI

MA

LC

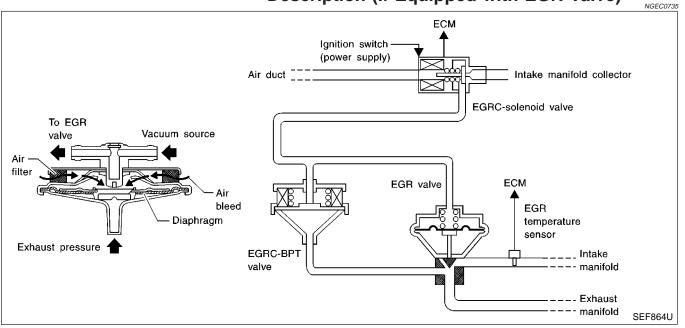
EC

FE

GL

MT

AT


TF

PD

AX

Description (If Equipped with EGR Valve)

Description (If Equipped with EGR Valve)

SYSTEM DESCRIPTION

GEC0735S01

The EGRC-BPT valve monitors exhaust pressure to activate the diaphragm, controlling intake manifold vacuum applied to the EGR valve. In other words, recirculated exhaust gas is controlled in response to positioning of the EGR valve or to engine operation.

On Board Diagnosis Logic

GEC0736

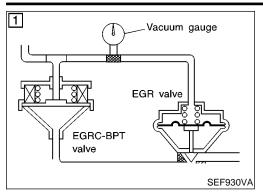
If too much EGR flow exists due to an EGRC-BPT valve malfunction, off idle engine roughness will increase. If the roughness is large, then the vacuum to the EGR valve is interrupted through the EGRC-solenoid valve. If the engine roughness is reduced at that time, the EGRC-BPT valve malfunction is indicated. Malfunction is detected when the EGRC-BPT valve does not operate properly.

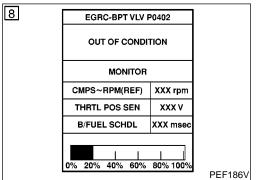
POSSIBLE CAUSE

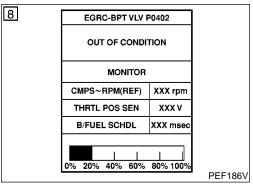
NGEC0736S01

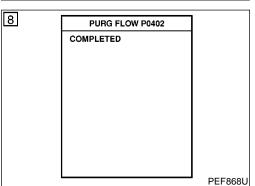
- EGRC-BPT valve
- EGR valve
- Loose or disconnected rubber tube
- Blocked rubber tube
- Camshaft position sensor
- Blocked exhaust system
- Orifice
- Mass air flow sensor
- EGRC-solenoid valve

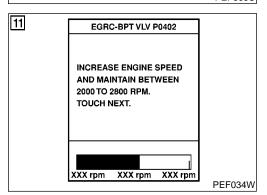
HA


ΞL


SC


 \mathbb{Z}


NGEC0737


On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

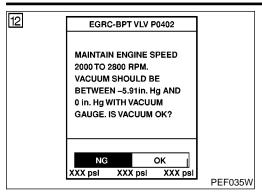
NOTE:

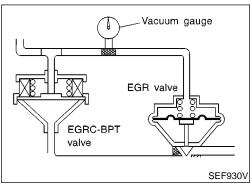
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION

For best results, perform the test at a temperature of 5°C (41°F) or higher.

(P) With CONSULT-II


- 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "EGRC-BPT/V P0402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 5) Start engine and let it idle.
- Touch "START".
- 7) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen and the bar chart may increase. Maintain the conditions many times until "COMPLETED" appears.


CMPS-RPM (POS)	1,400 - 2,000 rpm (A/T models) 1,400 - 1,800 rpm (M/T models)
Vehicle speed	30 - 60 km/h (19 - 37 MPH) (A/T models) 30 - 100 km/h (19 - 62 MPH) (M/T models)
B/FUEL SCHDL	2.3 - 2.8 msec
THRTL POS SEN	X – (X + 0.44) V X = Voltage value measured at step 7
Selector lever	Suitable position

- The bar chart on CONSULT-II screen indicates the status of this test. However, the test may be finished before the bar chart becomes full scale.
- If the bar chart indication does not continue to progress, completely release accelerator pedal once and try to meet the conditions again.
- If "TESTING" does not appear on CONSULT-II screen, retry from step 3.
- If CONSULT-II instructs to carry out "OVERALL FUNCTION CHECK", go to next step. If "NG" is displayed, refer to "Diagnostic Procedure", EC-935.
- 10) Open engine hood.
- 11) Raise engine speed to 2,000 to 2,800 rpm under no-load and hold it. Then touch "NEXT" on CONSULT-II screen.

DTC P0402 EGRC-BPT VALVE FUNCTION

DTC Confirmation Procedure (Cont'd)

12) Check vacuum gauge while keeping engine speed 2,000 to 2,800 rpm.

Vacuum should be 0 to -20 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

If NG, go to "Diagnostic Procedure", EC-935.

If OK, touch "YES" on the CONSULT-II screen.

Check the rubber tube between intake manifold collector. EGRC-solenoid valve, EGR valve and EGRC-BPT valve for cracks, blockages or twist.

If NG. repair or replace.

If OK, touch "YES" on the CONSULT-II screen.

Overall Function Check

Use this procedure to check the overall function of the EGRC-BPT valve. During this check, a 1st trip DTC might not be confirmed.

N Without CONSULT-II

- Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.
- Lift up vehicle.
- Start engine and shift to "1st" gear or "1" position.
- Check vacuum gauge while keeping engine speed 2,000 to 2,800 rpm.

Vacuum should be 0 to -20 kPa (0 to -150 mmHq, 0 to -5.91 inHg).

If NG, go to "Diagnostic Procedure", EC-935.

If OK, go to next step.

5) Check rubber tube between intake manifold collector, EGRCsolenoid valve, EGR valve and EGRC-BPT valve for misconnections, cracks or blockages.

If NG, repair or replace.

Diagnostic Procedure

1 CHECK	K HOSE	NGECO	
Turn ignition Check vacu		ing and improper connection.	
		OK or NG	
ОК	•	GO TO 2.	
NG	>	Repair or replace vacuum hose.	

2	CHECK EXHAUST SYSTEM			
Check exhaust system for collapse.				
OK or NG				
OK	>	GO TO 3.		
NG	>	Repair or replace exhaust system.		

EC-935

EC

MA

EM

LC

GL

MT

AT

TF

PD

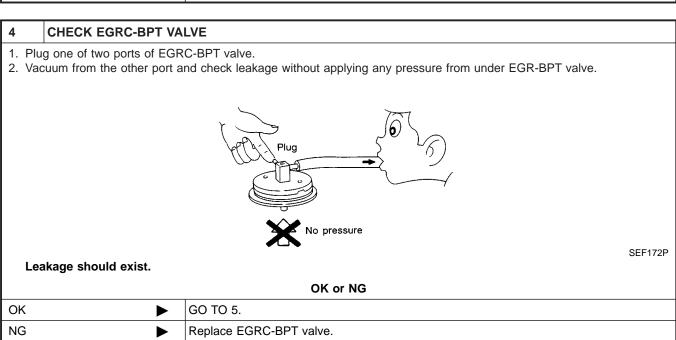
AX

ST

BT

HA

SC


EL

DTC P0402 EGRC-BPT VALVE FUNCTION

VG33E

Diagnostic Procedure (Cont'd)

3	CHECK ORIFICE			
Check if orifice is installed in vacuum hose between EGRC-BPT valve and EGRC-solenoid valve.				
OK or NG				
OK	>	GO TO 4.		
NG	•	Replace vacuum hose.		

DTC P0402 EGRC-BPT VALVE FUNCTION

VG33E

Diagnostic Procedure (Cont'd)

CHECK CAMSHAFT POSITION SENSOR

- 1. Install any parts removed.
- 2. Start engine.

5

3. Check voltage between ECM terminals 44, 48 and ground, ECM terminal 49 and ground with DC range.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm
Voltage	0.3 - 0.5V	0.3 - 0.5V
Pulse signal	(V) 10 5 0 20 ms	(V) 10 5 0

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.5V	Approximately 2.5V
Pulse signal	(V) 10 5 0 0.2 ms	(V) 10 5 0

AEC072B

OK	or	NG
----	----	----

OK •	GO TO 6.
NG ►	Replace distributor assembly with camshaft position sensor.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

@11

BR

ST

RS

BT

HA

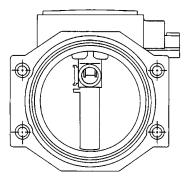
SC

EL

Diagnostic Procedure (Cont'd)

6 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF747U

Condition	Voltage (V)
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.3
Idle to about 4,000 rpm	1.0 - 1.7 to Approx. 4.0

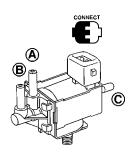
AEC040B

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF030T

OK or NG

OK •	GO TO 7.
NG ►	Replace mass air flow sensor.

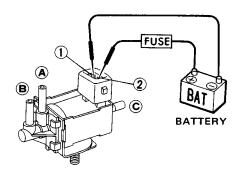

DTC P0402 EGRC-BPT VALVE FUNCTION

Diagnostic Procedure (Cont'd)

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

- 1. Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time.



ACTIVE TEST	
EGRC SOL/V (EGR) ON FLOW	
MONITOR	`
CMPS~RPM (REF)	XXXrpm

Conditions	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF155X

Without CONSULT-II Check air passage continuity and operation delay time under the following conditions.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0237

OK	or	NG

OK •	GO TO 8.
NG ►	Replace EGRC-solenoid valve.

GI

MA

LC

EC

GL

MT

AT

TF

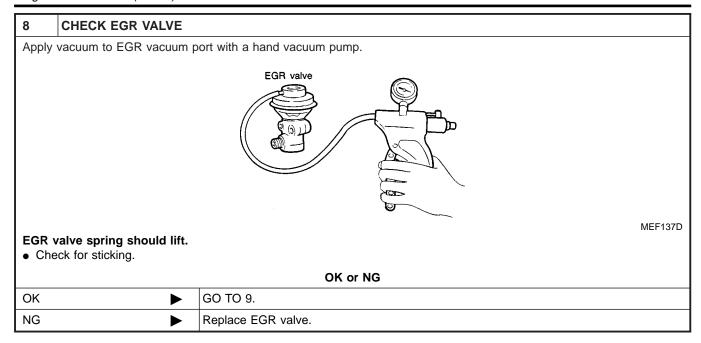
PD

AX

SU

ST

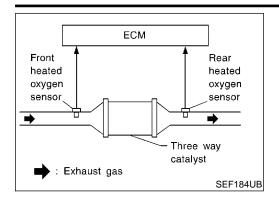
RS


BT

HA

SC

EL


Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.	
	► INSPECTION END	

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of front and rear heated oxygen sensors.

A warm-up three way catalyst with high oxygen storage capacity will indicate a low switching frequency of rear heated oxygen sensor. As oxygen storage capacity decreases, the rear heated oxygen sensor switching frequency will increase.

When the frequency ratio of front and rear heated oxygen sensors approaches a specified limit value, the warm-up three way catalyst malfunction is diagnosed.

Malfunction is detected when warm-up three way catalyst does not operate properly, warm-up three way catalyst does not have enough oxygen storage capacity.

POSSIBLE CAUSE

Warm-up three way catalyst

- Exhaust tube
- Intake air leaks
- Injectors
- Injector leaks
- Spark plug
- Improper ignition timing

GI

MA

EC

NGEC0740S01

FE

GL

MT

AT

TF

PD

SU

ST

BT

HA

SC

EL

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION VG33E

On Board Diagnosis Logic (Cont'd)

SRT WORK SUPPORT CATALYST INCMP **EVAP SYSTEM CMPLT 02 SEN HEATER CMPLT** 02 SENSOR **CMPLT** MONITOR **ENG SPEED** XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec AEC061B

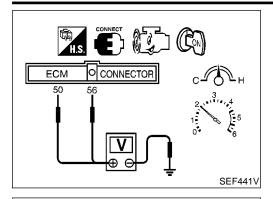
SRT WORK SUP			
CATALYST	INCMP		
EVAP SYSTEM	INCMP		
O2 SEN HEATER	INCMP		
O2 SENSOR	INCMP		
MONITOR	MONITOR		
ENG SPEED	XXX rpm		
THRTL POS SEN	xxx v		
B/FUEL SCHDL	XXX msec		
		SEF558X	

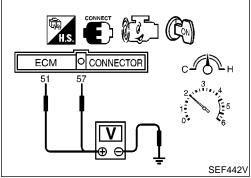
SRT WORK SUP		
CATALYST	CMPLT	
EVAP SYSTEM	INCMP	
O2 SEN HEATER	CMPLT	
O2 SENSOR	INCMP	
MONITOR		
ENG SPEED	XXX rpm	
THRTL POS SEN	xxx v	
B/FUEL SCHDL	XXX msec	
		SEF559X

SELF DIAG RES	ULTS	
DTC RESULTS	TIME	
NO DTC IS DETECTED FURTHER TESTING MAY BE REQUIRED.		
		SEF560X

DTC Confirmation Procedure

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


NGEC0741

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DTC & SRT CONFIRMATION" the SRT WORK SUP-PORT" mode with CONSULT-II.
- 3) Start engine.
- 4) Rev engine up to 2,500 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.
- 5) Wait 5 seconds at idle.
- 6) Rev engine up to 2,500 to 3,000 rpm and hold it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take maximum of approximately 5 minute.).
- 7) Select "SELF-DIAG RESULTS" mode with CONSULT-II. If the 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-944. If not "CMPLT", stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F) and retest from step 1).

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the warm-up three way catalyst. During this check, a 1st trip DTC might not be confirmed.

GI

MA

EM

LC

EC

FE

GL

MT

CAUTION:

Always drive vehicle at a safe speed.

(R) Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeters probes between ECM terminals 50 (front heated oxygen sensor right bank signal), 51 (front heated oxygen sensor left bank signal) and engine ground, and ECM terminals 56 (rear heated oxygen sensor right bank signal), 57 (rear heated oxygen sensor left bank signal) and engine ground.
- 4) Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminals 56 and engine ground, or 57 and engine ground is very less than that of ECM terminals 50 and engine ground, or 51 and engine ground.

Switching frequency ratio = A/B

A: Rear heated oxygen sensor voltage switching frequency

B: Front heated oxygen sensor voltage switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, it means warm-up three way catalyst does not operate properly. Go to "Diagnostic Procedure", EC-944.

PD

TF

NOTE:

If the voltage at terminal 50 or 51 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for "DTC P0133, P0153" first. (See EC-788.)

HA

SC

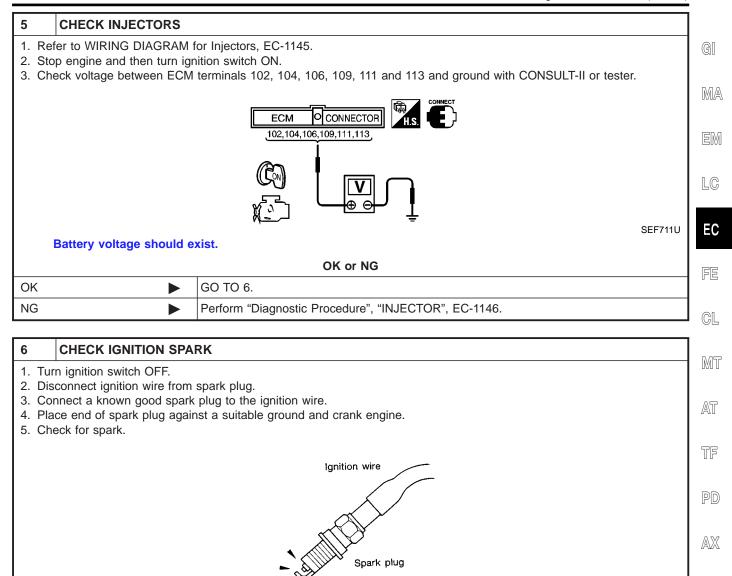
EL

 \mathbb{Z}

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION VG33E

Diagnostic Procedure

Diagnostic Procedure 1 CHECK EXHAUST SYSTEM Visually check exhaust tubes and muffler for dent. OK or NG OK NG Repair or replace it.



3	CHECK INTAKE AIR LEAK				
Listen	Listen for an intake air leak after the mass air flow sensor.				
	OK or NG				
OK	>	GO TO 4.			
NG	>	Repair or replace.			

4	CHECK IGNITION TIMIL	NG			
Chec	ck the following items. Refer				
		Items	Specifications	•	
		Ignition timing	15° ± 2° BTDC	-	
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)	_	
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF		
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)	-	
				MT	BL0226
		0	K or NG		
ОК	>	GO TO 5.			
NG	>	Adjust ignition timing.			

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

SU

ST

BT

HA

SC

EL

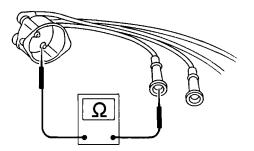
SEF282G

OK or NG

GO TO 8.

GO TO 7.

OK


NG

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION VG33E

Diagnostic Procedure (Cont'd)

7 CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

Resistance:

SEF174P

Cylinder No.	Resistance kΩ [at 25°C (77°F)]
1	Approximately 6.5
2	Approximately 10.0
3	Approximately 8.5
4	Approximately 12.5
5	Approximately 8.5
6	Approximately 11.0

MTBL0235

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK or NG

OK	>	Check ignition coil, power transistor and their circuits. Refer to EC-1028.
NG	>	Replace.

8 CHECK INJECTOR

- 1. Turn ignition switch OFF.
- 2. Remove injector assembly.

Refer to EC-611.

Keep fuel hose and all injectors connected to injector gallery.

- 3. Disconnect all ignition coil harness connectors.
- 4. Turn ignition switch ON.

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)		GO TO 9.
NG (Drips)	>	Replace the injector(s) from which fuel is dripping.

9	CHECK INTERMITTENT INCIDENT				
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.				
Trouble	Trouble is fixed		INSPECTION END		
Trouble	e is not fixed		Replace warm-up three way catalyst.		

DTC P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NOTF:

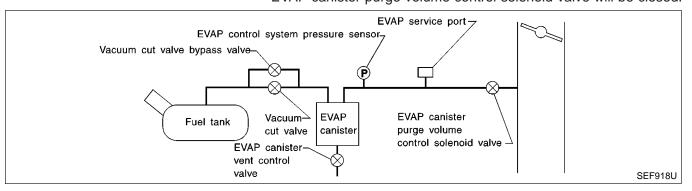
NGEC0744

If DTC P0440 or P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1098.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.


FE

GL

MT

AT

TF

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

CAUTION:

PD

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- $\mathbb{A}\mathbb{X}$
- If the fuel filler cap is not tightened properly, the MIL may come on.
 - SU

ST

BT

HA

SC

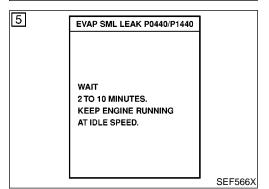
EL

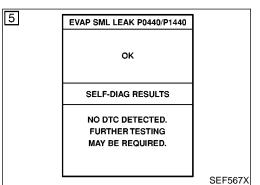
Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

NGEC0744S01

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close.
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Absolute pressure sensor
- Fuel tank temperature sensor


I MW



VG33E

- MAP/BARO switch solenoid valve and the circuit
- Blocked or bent rubber tube to MAP/BARO switch solenoid valve and the circuit
- O-ring of EVAP canister vent control valve is missing or damaged.
- Water separator
- EVAP canister is saturated with water.
- EVAP control system pressure sensor
- Fuel level sensor

EVAP SML LEAK P0440/P1440 1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F) -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON,STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.

DTC Confirmation Procedure

NGEC0745

NOTE:

- If DTC P0440 or P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1098.)
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (32 140°F)
- Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-669.

Make sure that "OK" is displayed.
If "NG" is displayed, refer to "Diagnostic Procedure", EC-949.

NOTF:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

With GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-634 before driving vehicle.

- 1) Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-634.
- Stop vehicle.
- Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch OFF and wait at least 5 seconds.

DTC P0440 EVAP CONTROL SYSTEM (SMALL LEAK)

NOTE:

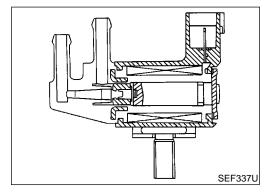
(NEGATIVE PRESSURE) VG33E DTC Confirmation Procedure (Cont'd) Start engine. It is not necessary to cool engine down before driving. Drive vehicle again according to the "Driving Pattern", EC-634. Stop vehicle. Select "MODE 3" with GST. MA If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-949. If P1440 is displayed on the screen, go to "Diagnostic Proce-dure" for "DTC P1440", EC-1066. If P1447 is displayed on the screen, go to "Diagnostic Proce-LC dure" for "DTC P1447", EC-1089. If P0440, P1440 and P1447 are not displayed on the screen, go to the following step. EC 10) Select "MODE 1" with GST. If SRT of EVAP system is set, the result will be OK. If SRT of EVAP system is not set, go to step 6. FE GL MT **Diagnostic Procedure** AT Refer to "P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-949. TF PD SU ST BT

EL

SC

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT) VG33E

Description


Description SYSTEM DESCRIPTION

NGEC0747

NGEC0747S01

			NGEC0747501
Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume
Throttle position switch	Closed throttle position	flow control	control solenoid valve
Front heated oxygen sensors	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Tank fuel temperature sensor	Fuel temperature in fuel tank		
Vehicle speed sensor	Vehicle speed		

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

1050074700

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0748

MONITOR ITEM	COND	OITION	SPECIFICATION
PURG VOL C/V	Engine: After warming upAir conditioner switch OFF	Idle (Vehicle stopped)	0%
	Shift lever: "N"No-load	2,000 rpm	_

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

Specifica	ation data	are reference value	s and are measured between each termina	al and 32 (ECM ground).	GI
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA
4 OR/B	OR/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V	EM
			[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	LG
				BATTERY VOLTAGE (11 - 14V)	EC
	R/Y	EVAP canister purge Y volume control sole- noid valve	[Engine is running] ● Idle speed	(V) 40 20	FE
				50 ms	GL
5				SEF994U	MT
			[Engine is running]	BATTERY VOLTAGE (11 - 14V) (V) 40	AT
			Engine speed is 2,000 rpm (More than 100 seconds after starting engine)	0	TF
				50 ms SEF995U	PD
67	B/P	Power supply for ECM	[lanition switch ON]	BATTERY VOLTAGE	AX
72	B/P	1 ower supply for ECIVI	[ignition switch ON]	(11 - 14V)	
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	SU

BR

ST

RS

BT

HA

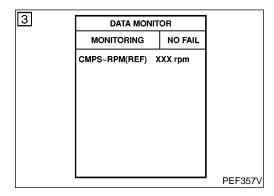
SC

EL

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT) VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic


=NGEC075

Malfunction is detected when an improper voltage signal is sent to ECM through the valve.

POSSIBLE CAUSE

NGEC0750S01

- Harness or connectors
 (The valve circuit is open or shorted.)
- EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

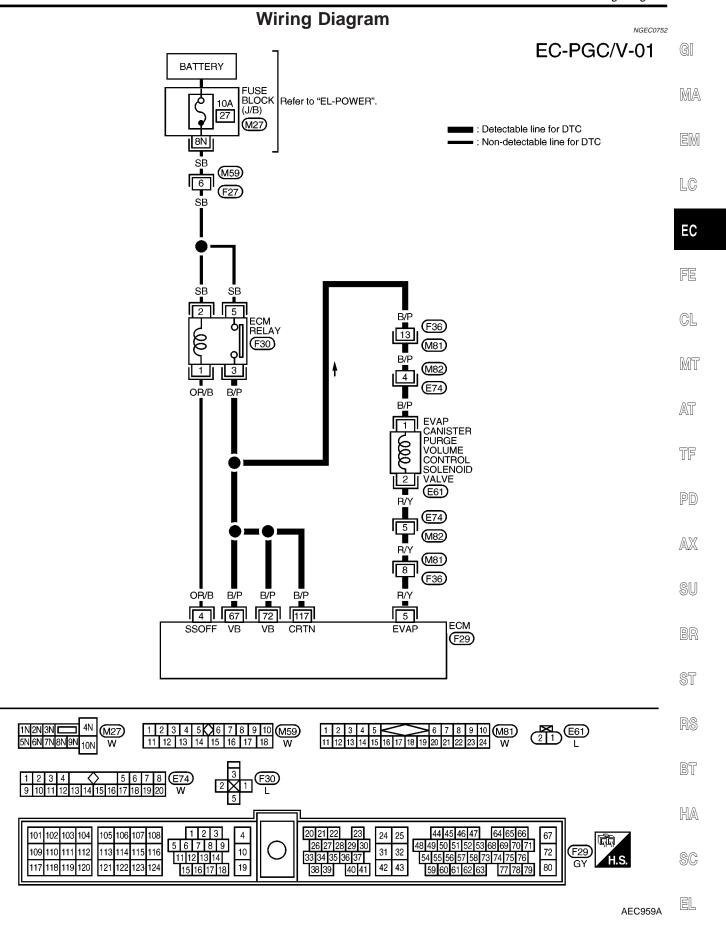
NGEC0751

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.


- (II) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 13 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-954.

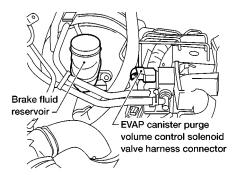
With GST

Follow the procedure "With CONSULT-II".

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT) VG33E

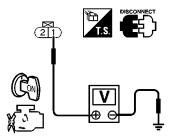
Wiring Diagram

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)


Diagnostic Procedure

Diagnostic Procedure

NGEC075


1 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

AEC652A

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF646W

Voltage: Battery voltage

OK or NG

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F36, M81
- Harness connectors M82, E74
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay

Repair harness or connectors.

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 5 and solenoid terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

ΛK	or	NIC
OI.	OI.	140

OK (With CONSULT-II)	>	GO TO 5.
OK (Without CONSULT-II)		GO TO 6.
NG	•	GO TO 4.

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

4 **DETECT MALFUNCTIONING PART** Check the following. GI Harness connectors E74, M82 Harness connectors M81, F36 Harness for open or short between EVAP canister purge volume control solenoid valve and ECM MA Repair open circuit or short to ground or short to power in harness or connectors. EM 5 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (P) With CONSULT-II LC 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. EC ACTIVE TEST PURG VOL CONT/V 0.0% MONITOR FE CMPS~RPM(REF) XXX rpm FR Q2 MNTR-B2 RICH FR O2 MNTR-B1 GL RICH A/F ALPHA-B2 XXX % A/F ALPHA-B1 XXX % MT THRTL POS SEN xxx v PEF882U AT OK or NG GO TO 7. OK TF GO TO 6. NG PD AX SU

ST

BT

HA

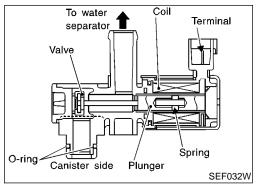
SC

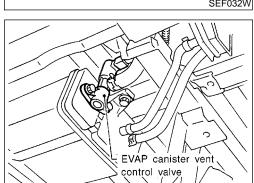
EL

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

NG


6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (P) With CONSULT-II 1. Check air passage continuity under the following conditions. SEF660U Condition PURG VOL CONT/V value Air passage continuity between A and B 100.0% Yes 0.0% No MTBL0241 Without CONSULT-II 1. Check air passage continuity under the following conditions. FUSE SEF661U Air passage continuity between A and B Condition 12V direct current supply between terminals 1 and 2 Yes No supply No MTBL0242 OK or NG OK GO TO 7.


7	7 CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.	
	► INSPECTION END	

Replace EVAP canister purge volume control solenoid valve.

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL **VALVE (CIRCUIT)**

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

GI

MA

EC

FE

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode NGEC0755

Specification data are reference values.

SEF143S

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

PD

SU

ST

BT

HA

SC

EL

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT) VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0757

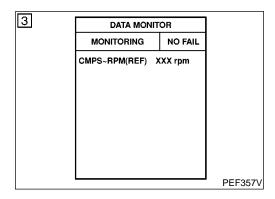
Malfunction is detected when an improper voltage signal is sent to ECM through EVAP canister vent control valve.

POSSIBLE CAUSE

NGEC0757S01

- Harness or connectors (The valve circuit is open or shorted.)
- EVAP canister vent control valve

DTC Confirmation Procedure


NGEC0758

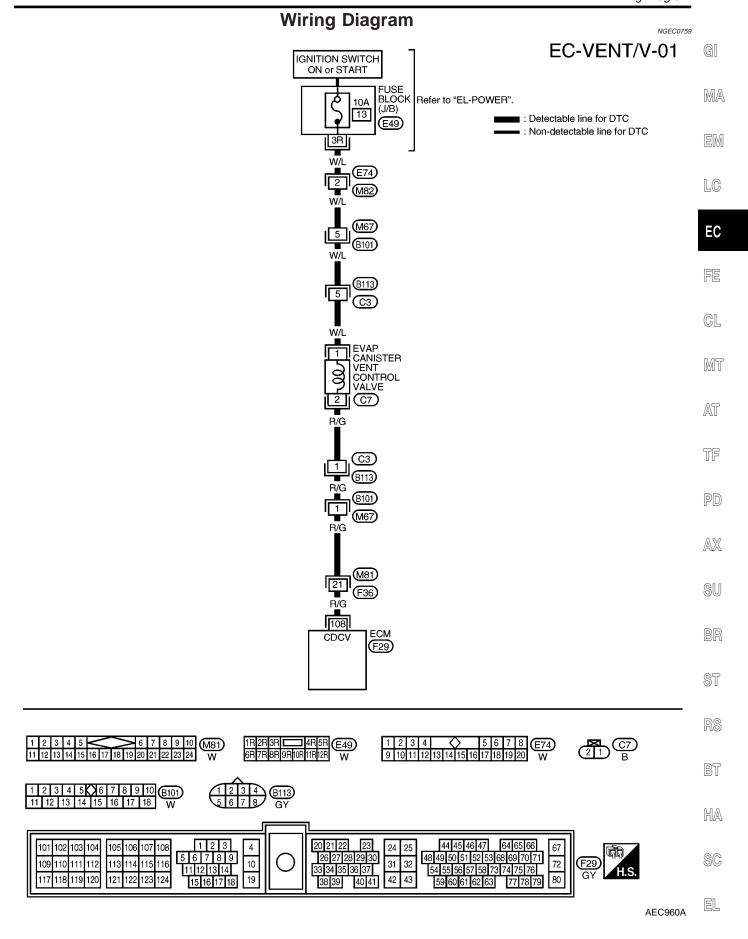
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(P) With CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 8 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-960.

With GST

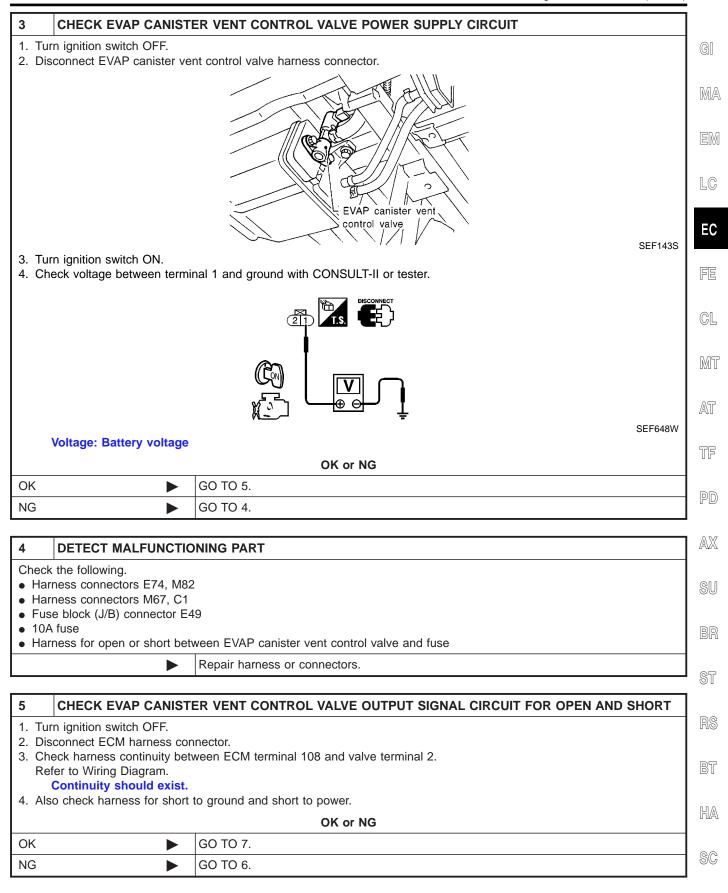
Follow the procedure "With CONSULT-II".

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT) VG33E

Wiring Diagram

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT) VG33 VG33E

Diagnostic Procedure


Diagnostic Procedure NGEC0760 **INSPECTION START** Do you have CONSULT-II? Yes or No GO TO 2. Yes GO TO 3. No 2 CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT 1. Turn ignition switch OFF and then turn ON. 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II. 3. Touch "ON/OFF" on CONSULT-II screen. ACTIVE TEST VENT CONTROL/V ON MONITOR CMPS~RPM (REF) XXX rpm FR O2 MNTR-B2 LEAN FR O2 MNTR-B1 A/F ALPHA-B2 XXX % A/F ALPHA-B1 XXX % THRTL POS SEN xxx v PEF883U 4. Check for operating sound of the valve. Clicking noise should be heard.

OK	or	NG
----	----	----

OK ►	GO TO 7.
NG ►	GO TO 3.

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT)

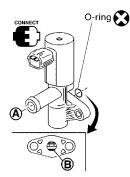
Diagnostic Procedure (Cont'd)

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors C1, M67
- Harness connectors M81, F36
- Harness for open or short between EVAP canister vent control valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK EVAP CANISTER VENT CONTROL VALVE

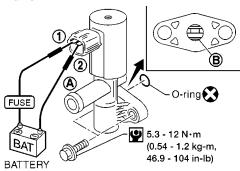
(P) With CONSULT-II

- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B1	XXX%	
THRTL POS SEN	xxxv	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

SEF156X


(R) Without CONSULT-II

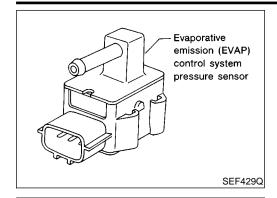
1. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A


Make sure new O-ring is installed properly.

oĸ	or	NG
----	----	----

OK ►	GO TO 8.
NG ►	Replace EVAP canister vent control valve.

8 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. INSPECTION END

Component Description

4.5

1.5 0.5

-9.3

(-70, -2.76, -1.35)

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

MA

LC

EC

FE

GL

MT

AT

TF

PD

SU

CONSULT-II Reference Value in Data Monitor Mode

NGEC0762

Specification data are reference values.

Pressure kPa (mmHg, inHg, psi)

(Relative to atmospheric pressure)

+4.0

(+30, +1.18, +0.58)

SEF954S

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V

ECM Terminals and Reference Value Specification data are reference values and are measured between each terminal and 32 (ECM ground).

AX

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	B/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	BR	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V

ST

BT

HA

SC

EL

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0764

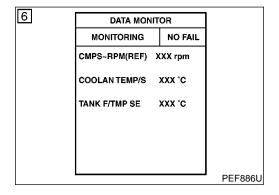
Malfunction is detected when an improper voltage signal from EVAP control system pressure sensor is sent to ECM.

POSSIBLE CAUSE

NGEC0764S01

- Harness or connectors (The EVAP control system pressure sensor circuit is open or shorted.)
- Rubber hose to EVAP control system pressure sensor is clogged, vent, kinked, disconnected or improper connection.
- EVAP control system pressure sensor
- EVAP canister vent control valve
- EVAP canister purge volume control solenoid valve
- EVAP canister
- Rubber hose from EVAP canister vent control valve to water separator

DTC Confirmation Procedure

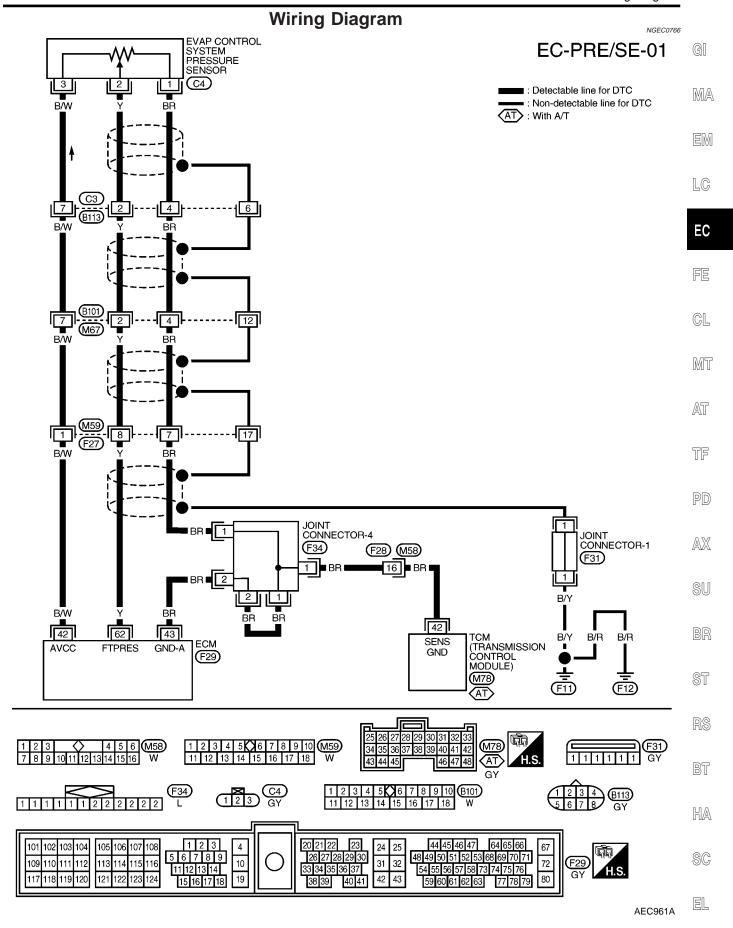

NOFCOTO

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

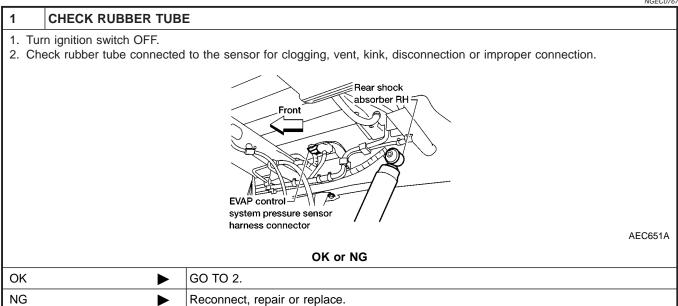
Always perform test at a temperature of 5°C (41°F) or more.

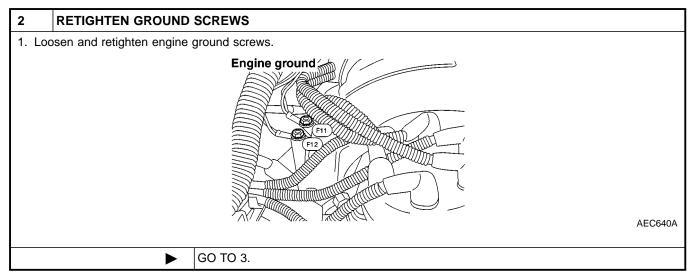


- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "TANK F/TEMP SE" is more than 0°C (32°F).
- 6) Start engine and wait at least 20 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-966.

With GST

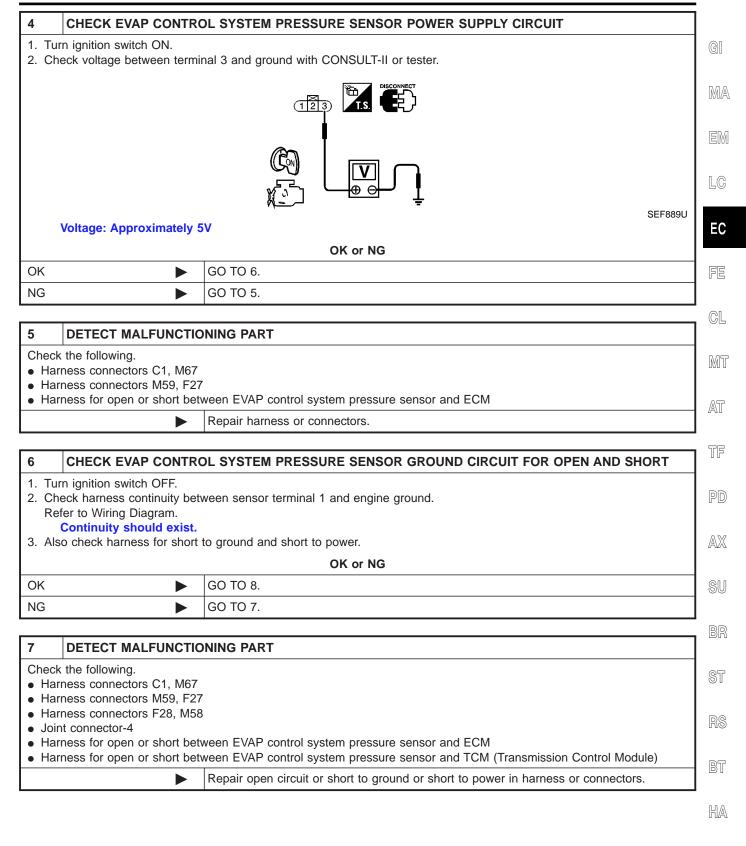
Follow the procedure "With CONSULT-II".


Wiring Diagram



Diagnostic Procedure

Diagnostic Procedure


NGEC0767

3	CHECK CONNECTOR		
Disconnect EVAP control system pressure sensor harness connector. Check sensor harness connector for water. Water should not exist. OK or NG			
ОК	OK ▶ GO TO 4.		
NG	>	Repair or replace harness connector.	

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

SC

Diagnostic Procedure (Cont'd)

8	CHECK EVAP CO SHORT	ONTRO	L SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND
2. Cho	 Disconnect ECM harness connector. Check harness continuity between ECM terminal 62 and sensor terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 		
			OK or NG
OK (W	/ith CONSULT-II)		GO TO 10.
OK (W	Vithout CONSULT-	•	GO TO 11.
NG		>	GO TO 9.

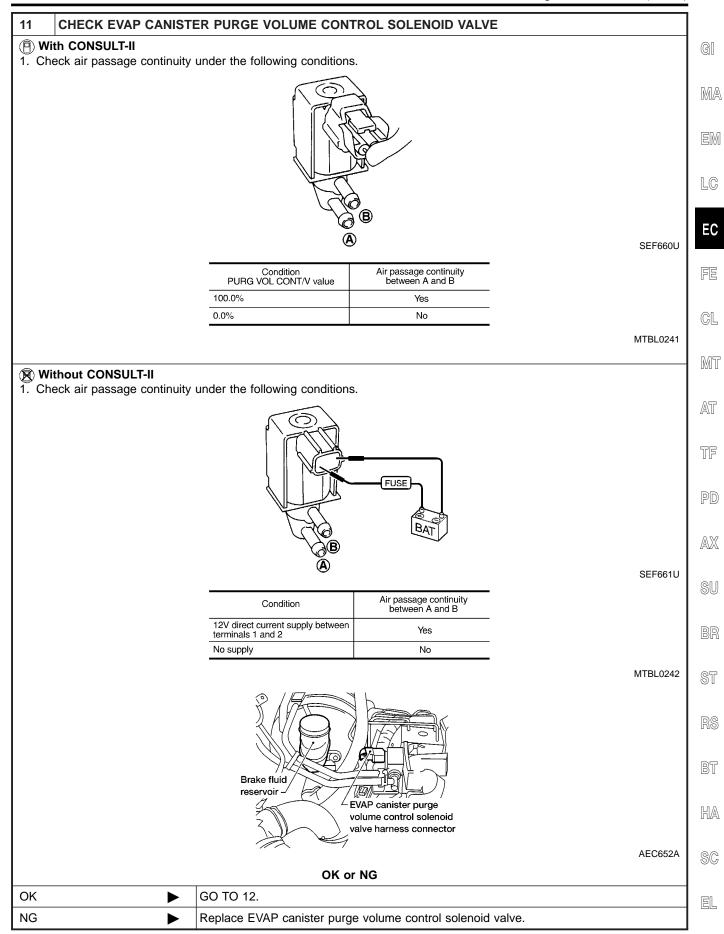
9	DETECT MALFUNCTIONING PART	
Check the following.		
Harness connectors C1, M67		
Harness connectors M59, F27		
 Harness for open or short between ECM and EVAP control system pressure sensor 		
	•	Repair open circuit or short to ground or short to power in harness or connectors.

10 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOIS	VALVE
--	-------

With CONSULT-II

1. Start engine.

2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

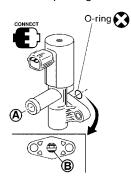

ACTIVE TEST		
PURG VOL CONT/V	0.0%	
MONITOR		
CMPS~RPM(REF)	XXX rpm	
FR O2 MNTR-B2	RICH	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B2	XXX %	
A/F ALPHA-B1	XXX %	
THRTL POS SEN	xxx v	

PEF882U

OK or NG

OK •	GO TO 12.
NG ▶	GO TO 11.

Diagnostic Procedure (Cont'd)



Diagnostic Procedure (Cont'd)

12 CHECK EVAP CANISTER VENT CONTROL VALVE

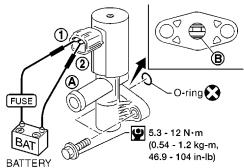
(P) With CONSULT-II

- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR	_	
CMPS~RPM (REF)	XXXrpm	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B1	XXX%	
THRTL POS SEN	XXXV	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

SEF156X


(R) Without CONSULT-II

1. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A

Make sure new O-ring is installed properly.

OK or NG

ОК	>	GO TO 13.
NG	>	Replace EVAP canister vent control valve.

Diagnostic Procedure (Cont'd)

GI

MA

LC

EC

MT

AT

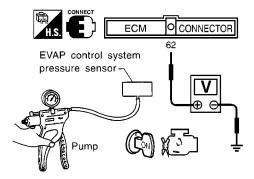
TF

PD

ST

BT

HA

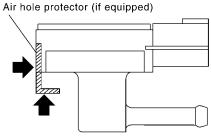

SC

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.

13

- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


Pressure (Relative to atmosphericpressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0246

SEF894U

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

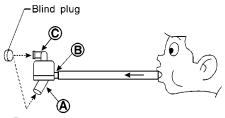
Never apply force.

SEF799W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG	

OK 🕨 GO TO 14.		GO TO 14.
	NG ►	Replace EVAP control system pressure sensor.


14	14 CHECK RUBBER TUBE		
Check obstructed rubber tube connected to EVAP canister vent control valve.			
OK or NG			
OK	>	GO TO 15.	
NG	>	Clean, repair or replace rubber tube.	

ΞL

Diagnostic Procedure (Cont'd)

15 CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

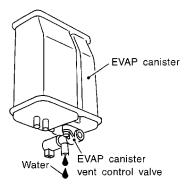
- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

16


• Do not disassemble water separator.

OK or NG

OK •	GO TO 16.
NG ►	Replace water separator.

CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes	GO TO 17.
No •	GO TO 19.

17 CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK		GO TO 19.
NG	•	GO TO 18.

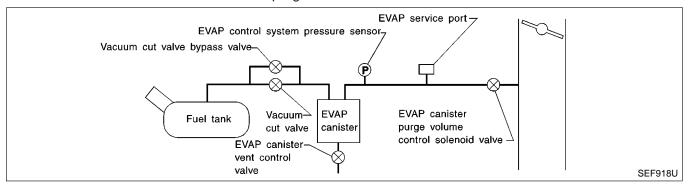
DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR VG33E

Diagnostic Procedure (Cont'd)

		Diagnostic Procedure (Cont	'd)
18 DETECT	MALFUNCTIO	NING PART	
Check the follow EVAP canister			
		nister and water separator for clogging or poor connection	
	•	Repair hose or replace EVAP canister.	1
			_
19 CHECK	EVAP CONTRO	DL SYSTEM PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT	╛
	arness connecto arness connecto		
. Check harnes	ss continuity bet	ween harness connector M67 terminal 12 and engine ground.	
	y should exist.	to ground and short to power.	1
. AISO CHECK H	arriess for short	OK or NG	Ш
DK		GO TO 21.	┦╹
NG		GO TO 20.	+
10		00 10 20.	┙
20 DETECT	MALFUNCTIO	NING PART	٦
Check the follow		·····	+
Harness conn	ectors C1, M67		
 Harness conn Joint connecto 	ectors M59, F27		
		ween harness connector M67 and engine ground	
	•	Repair open circuit or short to ground or short to power in harness or connectors.	1
			_
21 CHECK	INTERMITTEN	T INCIDENT	
Refer to "TROUE	BLE DIAGNOSIS	S FOR INTERMITTENT INCIDENT", EC-706.	4
	>	INSPECTION END	

SC

On Board Diagnosis Logic


On Board Diagnosis Logic

NGEC0954

NOTE:

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1102.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a very large leak, such as fuel filler cap fell off, EVAP control system does not operate properly.

CAUTION:

- Fuel filler cap remains open or fails to close.
- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

NGEC0954S01

- Fuel filler cap remains open or fails to close.
- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Absolute pressure sensor
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- EVAP control system pressure sensor

NGEC0955

DTC Confirmation Procedure

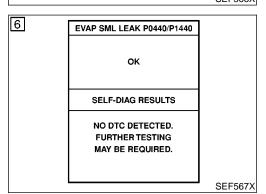
CAUTION:

Never remove fuel filter cap during the DTC confirmation procedure.

G

MA

LC


EVAP SML LEAK P0440/P1440

1)FOR BEST RSLT,PERFORM
AT FOLLOWING CONDITIONS.
-FUEL LEVEL: 1/4-3/4
-AMBIENT TEMP: 0-30 C(32-86F)
-OPEN ENGINE HOOD.
2)START ENG WITH VHCL
STOPPED. IF ENG IS ON,STOP
FOR 5 SEC. THEN RESTART.
3)TOUCH START.

EVAP SML LEAK P0440/P1440

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

NOTE:

- If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1102.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F). Open engine hood before conducting the following procedure.
- (P) With CONSULT-II
- 1) Tighten fuel filter cap securely until ratcheting sound is heard.
- 2) Turn ignition switch ON.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (32 140°F)
- Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-669.

7) Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455] is displayed, refer to "Diagnostic Procedure", EC-976.

If P0440 is displayed, perform "Diagnostic Procedure" for DTC P0440.

® With GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-634 before driving vehicle.

- 1) Start engine. 0956
- Drive vehicle according to "Driving Pattern", EC-634.
- Stop vehicle.

EC

E

CL

MT

AT

TF

PD

ru

 $\mathbb{A}\mathbb{X}$

SU

BR

@T

\$I

BT

HA

EL

SC

- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving Pattern", EC-634.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-949.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure" for "DTC P1447", EC-1089.
- If P0440, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

NGEC095

	3	NGEC0956
1	CHECK FUEL FILLER CAP DESIGN	
	urn ignition switch OFF.	
2. C	Check for genuine NISSAN fuel filler cap design.	
	NISSAN	SEF915U
	OK or NG	
OK	▶ GO TO 2.	
NG	Replace with genuine NISSAN fuel filler cap.	
		·

2	CHECK FUEL FILLER CAP INSTALLATION	
Check that the cap is tightened properly by rotating the cap clockwise.		
OK or NG		
OK	OK ▶ GO TO 3.	
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.

VG33E

GI

MA

LC

EC

FE

GL

MT

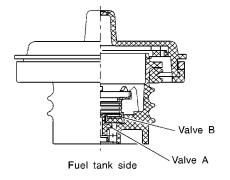
AT

TF

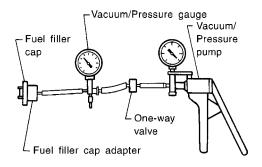
PD

AX

SU


ST

Diagnostic Procedure (Cont'd)


3	CHECK FUEL FILLER	CAP FUNCTION
Check for air releasing sound while opening the fuel filler cap.		
OK or NG		
OK	>	GO TO 5.
NG	>	GO TO 4.

4 CHECK FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF105W

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.

5 CHECK EVAP PURGE LINE

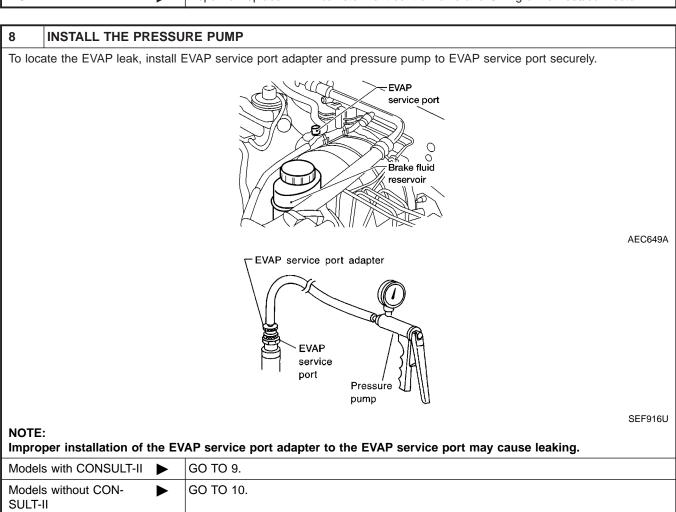
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection. Refer to "Evaporative Emission System", EC-604.

OK	or	NG	

OK ►	GO TO 6.
NG •	Repair or reconnect the hose.

EL

SC


HA

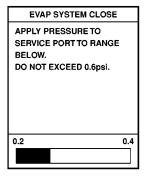
VG33E

Diagnostic Procedure (Cont'd)

6	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	>	GO TO 7.	

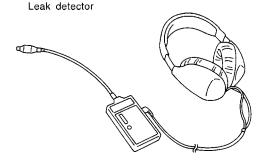
7	CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT		
Refer	Refer to "DTC Confirmation Procedure", EC-958.		
	OK or NG		
OK	>	GO TO 8.	
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.	

VG33E


Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

(P) With CONSULT-II


9

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. **NOTE:**
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-607.

SEF200U

OK	or	NG
----	----	----

OK ▶	GO TO 11.
NG ▶	Repair or replace.

GI

MA

G,

EC

FE

GL

MT

AT

TF

PD

SU

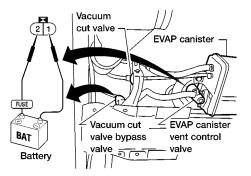
20

ST

RS

BT

HA

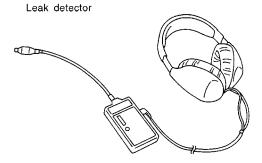

SC

Diagnostic Procedure (Cont'd)

10 CHECK FOR EVAP LEAK

(R) Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



AEC632A

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-607.

SEF200U

OK or NG

OK •	GO TO 12.
NG ►	Repair or replace.

VG33E

Diagnostic Procedure (Cont'd)

11 CHECK	EVAP CANIST	ER PURGE VO	LUME CONTRO	L SOL	ENOID VALVE OPERATION		l
(P) With CONS	SULT-II						(
	Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.						
2. Start engine	IRG VOL CONT/\	/" :- "ACTIVE TE	-CT"				
				ONT/\/"	opening to 100.0%.		
			g engine up to 2,0				
			ACTIVE TES	•	1		
			PURG VOL CONT/V	0.0%			
			MONITOR				
			CMPS~RPM(REF)	XXX rpm			
			FR O2 MNTR-B2	RICH			
			FR O2 MNTR-B1	RICH		I	
			A/F ALPHA-B2	XXX %			
			A/F ALPHA-B1	XXX %		I	
			THRTL POS SEN	xxx v			
						DEFORM	
Vacuum sho	ould exist.				-	PEF882U	
			OK or NO				(
		T	OK OF NO	,			
OK	<u> </u>	GO TO 14.					
NG	>	GO TO 13.					
		•					'
12 CHECK	EVAP CANIST	ER PURGE VO	LUME CONTRO	L SOL	ENOID VALVE OPERATION		l
─────────────────────────────────────	NSULT-II						
	and warm it up t	o normal operati	ng temperature.				
Stop engine.							
3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.							
4. Start engine and let it idle for at least 80 seconds. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.							
Vacuum sho		um when revving	y engine up to 2,0	JUU IPIII	•		
			OK or NO	2			
OK		GO TO 15.	OK OF NO	•			
	<u> </u>						
NG		GO TO 13.					, ,

13	3 CHECK VACUUM HOSE			BR
Check	vacuum hoses for	cloggir	ng or disconnection. Refer to "Vacuum Hose Drawing", EC-597.	
			OK or NG	ST
OK (V	Vith CONSULT-II)		GO TO 14.	
OK (V II)	Vithout CONSULT-	•	GO TO 15.	RS
NG			Repair or reconnect the hose.	

EL

HA

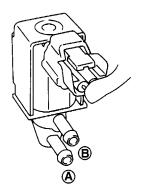
SC

VG33E

Diagnostic Procedure (Cont'd)

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II


- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR	₹		
CMPS~RPM(REF)	XXX rpm		
FR O2 MNTR-B2	RICH		
FR O2 MNTR-B1	RICH		
A/F ALPHA-B2	XXX %		
A/F ALPHA-B1	XXX %		
THRTL POS SEN	xxx v		

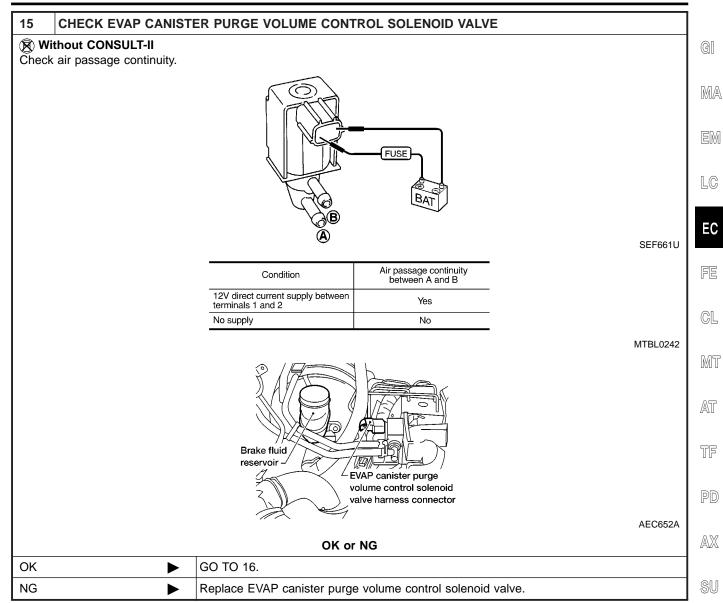
PEF882U

If OK, inspection end. If NG, go to following step.

3. Check air passage continuity.

SEF660U

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No


MTBL0241

ΟK	or	NG
----	----	----

OK •	>	GO TO 16.
NG	>	Replace EVAP canister purge volume control solenoid valve.

VG33E

Diagnostic Procedure (Cont'd)

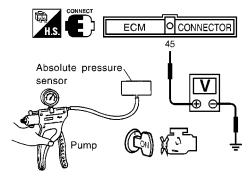
BR

ST

RS

BT

HA


SC

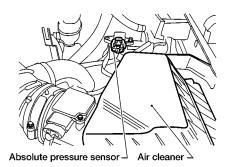
VG33E

Diagnostic Procedure (Cont'd)

16 CHECK ABSOLUTE PRESSURE SENSOR

- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 and engine ground.

SEF749U

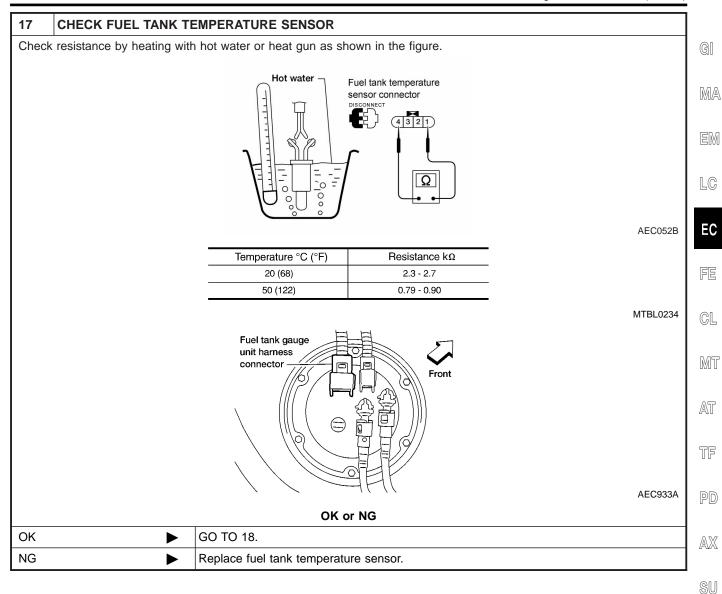

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.


AEC642A

OK or NG

OK •	GO TO 17.
NG >	Replace absolute pressure sensor.

VG33E

Diagnostic Procedure (Cont'd)

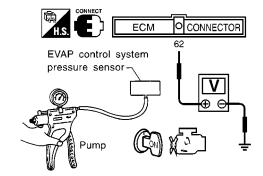
BR

ST

RS

BT

HA

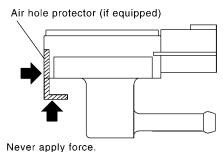

SC

VG33E

Diagnostic Procedure (Cont'd)

18 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


SEF894U

Pressure (Relative to atmosphericpressure)	Voltage (V)	
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6	
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6	

MTBL0246

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

SEE700W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

AEC651A

OK or NG

OK •	GO TO 19.
NG ▶	Replace EVAP control system pressure sensor.

VG33E

Diagnostic Procedure (Cont'd)

19	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
► INSPECTION END			

GI

MA

EM

LC

EC

FE

GL

MT

 $\mathbb{A}\mathbb{T}$

TF

PD

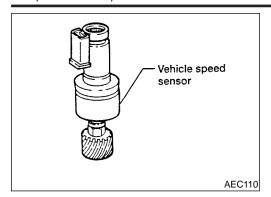
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

Component Description

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
29	G/B	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 1st gear position Vehicle speed is 40 km/h (25 MPH) 	2 - 3V (V) 10 5 0 50 ms SEF996U

On Board Diagnosis Logic

Malfunction is detected when the almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.

POSSIBLE CAUSE

NGEC0770S01

- Harness or connector (The vehicle speed sensor circuit is open or shorted.)
- Vehicle speed sensor

DTC Confirmation Procedure

NGEC0771

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

VG33E

DTC Confirmation Procedure (Cont'd)

DATA MONITOR

MONITORING NO FAIL

CMPS~RPM(REF) XXX rpm

COOLAN TEMP/S XXX °C

B/FUEL SCHDL XXX msec

PW/ST SIGNAL OFF

VHCL SPEED SE XXX km/h

(P) With CONSULT-II

- 1) Start engine
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to "Diagnostic Procedure", EC-991. If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4) Warm engine up to normal operating temperature.
- 5) Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (REF)	1,400 - 2,800 rpm (A/T models) 2,000 - 3,000 rpm (M/T models)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.3 - 4.5 msec (A/T models) 3.1 - 5.5 msec (M/T models)
Selector lever	Suitable position
PW/ST SIGNAL	OFF

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-991.

Overall Function Check

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed.

- **With GST**
- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4) If NG, go to "Diagnostic Procedure", EC-991.

MA

IVIIZ─7

EM

50

EC

FE

CL

MT

AT

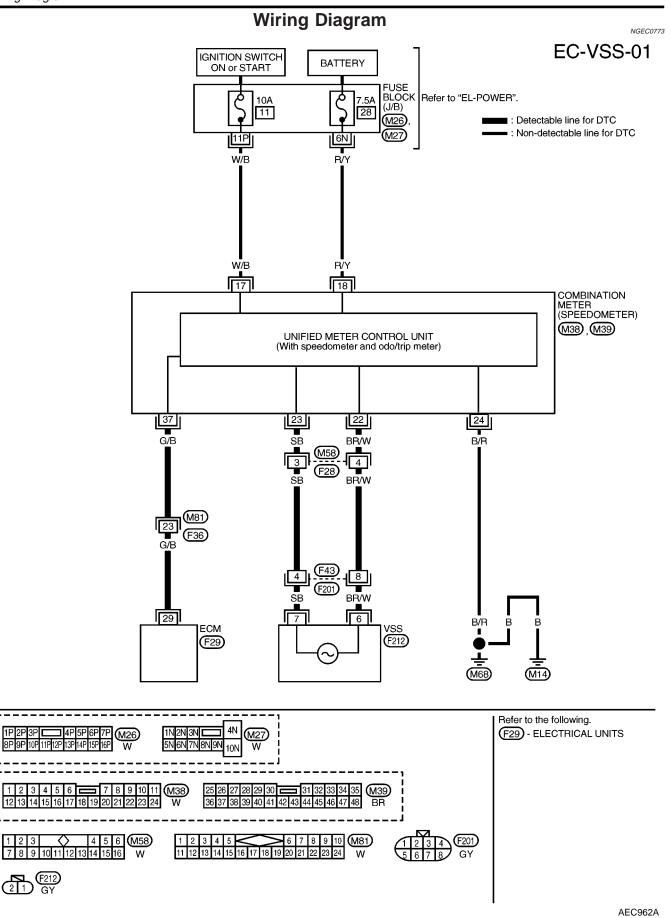
TF

PD

AX

SU

BF


ST

RS

BT

HA

SC

DTC P0500 VEHICLE SPEED SENSOR (VSS)

Diagnostic Procedure

NGEC0774

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

1	CHECK VEHICLE SPEED SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT				
	Turn ignition switch OFF. Disconnect ECM harness connector and combination meter harness connector.				
3. Cho	3. Check harness continuity between ECM terminal 29 and meter terminal 34. Refer to Wiring Diagram. Continuity should exist.				
4. Als	o check harness for short	to ground and short to power.			
	OK or NG				
OK	OK				
NG	NG GO TO 2.				

2	DETECT MALFUNCTIONING PART				
• Har	Check the following. • Harness connectors M81, F36 • Harness for open or short between ECM and combination meter				
	Repair open circuit or short to ground or short to power in harness or connectors.				

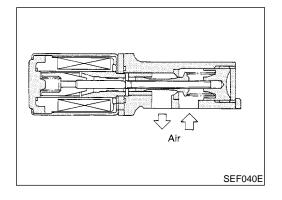
3	CHECK SPEEDOMETER FUNCTION				
Make	Make sure that speedometer functions properly.				
	OK or NG				
OK	•	GO TO 5.			
NG	•	GO TO 4.			

4	4 CHECK SPEEDOMETER CIRCUIT FOR OPEN AND SHORT				
HarHar	Check the following. • Harness connectors M58, F28 • Harness connectors F43, F201 • Harness for open or short between combination meter and vehicle speed sensor				
		OK or NG			
OK	OK Check combination meter and vehicle speed sensor. Refer to EL section.				
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.				

5	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

Description


Description SYSTEM DESCRIPTION

NGEC0775

NGEC0775S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed		
Mass air flow sensor	Amount of intake air]	
Engine coolant temperature sensor	Engine coolant temperature]	
Ignition switch	Start signal]	
Throttle position sensor	Throttle position	tle position	
Park/neutral position (PNP) switch	Park/neutral position	-	
Air conditioner switch	Air conditioner operation	Idle air control	IACV-AAC valve
Power steering oil pressure switch	Power steering load signal		
Battery	Battery voltage	1	
Vehicle speed sensor	Vehicle speed	-	
Ambient air temperature switch	Ambient air temperature	1	
Intake air temperature sensor	Intake air temperature	1	
Absolute pressure sensor	Ambient barometic pressure	1	

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which bypasses the throttle valve via IACV-AAC valve. The IACV-AAC valve repeats ON/OFF operation according to the signal sent from the ECM. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the ON/OFF time of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner and power steering).

COMPONENT DESCRIPTION IACV-AAC Valve

NGEC0775S02

The IACV-AAC valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of air that will flow through the valve. The more air that flows through the valve, the higher the idle speed.

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode NGEC0776

Specification data are reference values.

MONITOR ITEM	CONE	DITION	SPECIFICATION	Г
IACV-AAC/V	Engine: After warming upAir conditioner switch: "OFF"	Idle	10 - 20%	Ц
IAC V-AAC/V	Shift lever: "N"No-load	2,000 rpm	_	

ECM Terminals and Reference Value

NGEC0777 Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
	OR/L	DR/L IACV-AAC valve	[Engine is running]Warm-up conditionIdle speed	8 - 11V (V) 20	FE CL
				10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MT
101				7 - 10V	AT
			[Engine is running] • Warm-up condition	(V) 20 10	TF
			• Engine speed is 3,000 rpm	5 ms	PD
				SEF692W	AX

On Board Diagnosis Logic

Malfunction is detected when (Malfunction A) the IACV-AAC valve does not operate properly, (Malfunction B) the IACV-AAC valve does not operate properly.

POSSIBLE CAUSE

- Harness or connectors (The IACV-AAC valve circuit is open.)
- Harness or connectors (The IACV-AAC valve circuit is shorted.)
- IACV-AAC valve

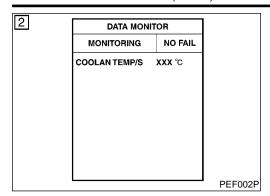
DTC Confirmation Procedure

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.
- Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

GI

MA


NGEC0778S01

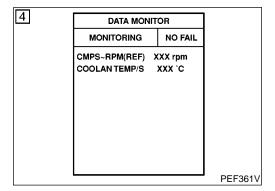
NGEC0779

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION A

NGEC0779S01


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 2 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-996.

With GST

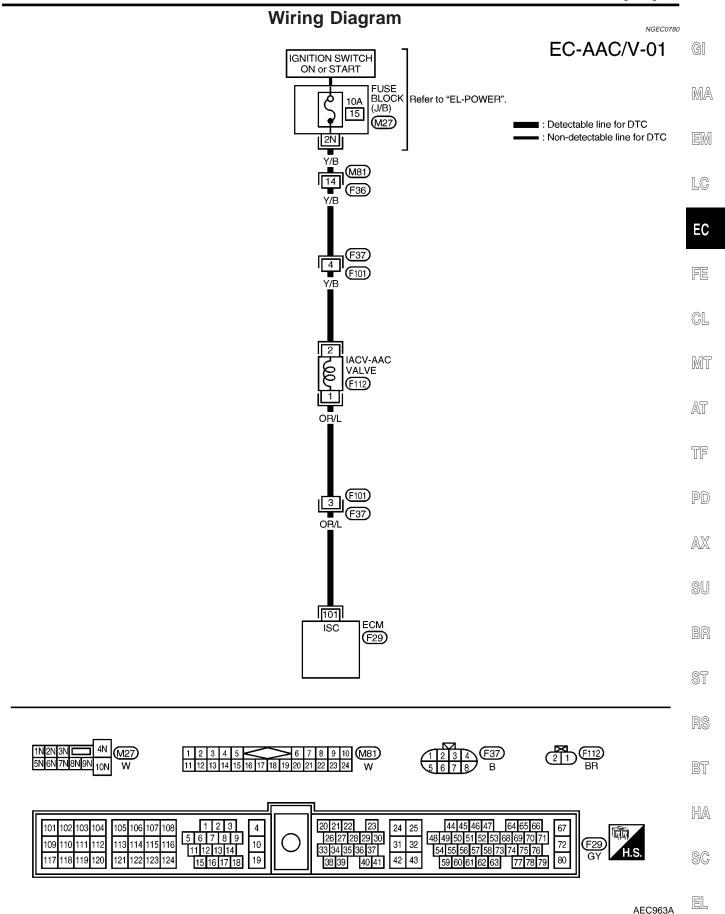
Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B

NGEC0779S02

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.


- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and run it for at least 1 minute at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-996.

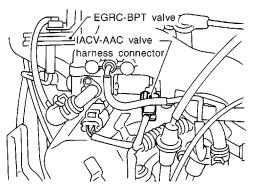
With GST

Follow the procedure "With CONSULT-II".

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE VG33E

Wiring Diagram

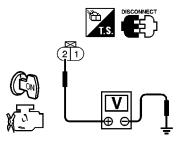
DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE


Diagnostic Procedure

Diagnostic Procedure

NGEC0781

1 Stop opging


2. Disconnect IACV-AAC valve harness connector.

SEF007S

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 2 and ground with CONSULT-II or tester.

CHECK IACV-AAC VALVE POWER SUPPLY CIRCUIT

SEF651W

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M81, F36
- Harness connectors F37, F101
- Fuse block (J/B) connector M27
- 10A fuse
- Harness for open or short between IACV-AAC valve and fuse

Repair harness or connectors.

3 CHECK IACV-AAC VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and IACV-AAC valve terminal 1. Refer to Wiring Diagram.

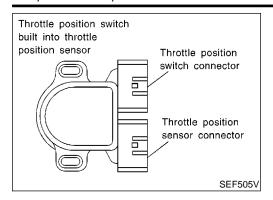
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ▶	GO TO 4.

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE


Diagnostic Procedure (Cont'd)

4 **DETECT MALFUNCTIONING PART** Check the following. GI Harness connectors F101, F37 Harness for open or short between IACV-AAC valve and ECM MA Repair open circuit or short to ground or short to power in harness or connectors. 5 **CHECK IACV-AAC VALVE** 1. Disconnect IACV-AAC valve harness connector. 2. Remove IACV-AAC valve. LC • Check IACV-AAC valve resistance. T.S. DISCONNECT OFF EC FE GL MT SEF202V **Resistance:** Approximately 10Ω [at 20° C (68°F)] AT • Check plunger for seizing or sticking. • Check for broken spring. 3. Supply battery voltage between IACV-AAC valve connector terminals. TF Plunger should move. OK or NG PD OK GO TO 6. NG Replace IACV-AAC valve. AX 6 **CHECK INTERMITTENT INCIDENT** Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706. SU **INSPECTION END** ST BT HA

SC

VG33E

Component Description

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge volume control solenoid valve when the throttle position sensor is malfunctioning.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0783

MONITOR ITEM	CONDITION		SPECIFICATION
CLSD THL/P SW	Engine: After warming up, idle	Throttle valve: Idle position	ON
CLOD THEF SW	the engine	Throttle valve: Slightly open	OFF

ECM Terminals and Reference Value

NGEC0784

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

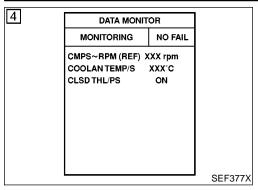
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
28		Throttle position switch (Closed position)	[Engine is running]Warm-up conditionAccelerator pedal fully released	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"] • Accelerator pedal depressed	Approximately 0V

On Board Diagnosis Logic

NGEC078

Malfunction is detected when battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.

POSSIBLE CAUSE


NGEC0785S01

- Harness or connectors (The closed throttle position switch circuit is shorted.)
- Closed throttle position switch
- Throttle position sensor

VG33E

NGEC0786

DTC Confirmation Procedure

6	DATA MONI	DATA MONITOR			
	MONITORING	NO FAIL			
	COOLAN TEMP/S	xxx °C			
	VHCL SPEED SE	XXX km/h			
	THRT POS SEN	xxx v			

ECM O CONNECTOR 28 C H

SEF872U

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF, wait at least 5 seconds and then start engine.
- 3) Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 4) Check the signal under the following conditions.

Condition	Signal indication	
Throttle valve: Idle position	ON	
Throttle valve: Slightly open	OFF	

If the result is NG, go to "Diagnostic Procedure", EC-1001. If OK, go to following step.

- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Drive the vehicle for at least 5 consecutive seconds under the following condition.

THRTL POS SEN	More than 2.5V
VHCL SPEED SE	More than 5 km/h (3 MPH)
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1001.

Overall Function Check

Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 28 (Closed throttle position switch signal) and ground under the following conditions.

At idle: Battery voltage
At 2,000 rpm: Approximately 0V

3) If NG, go to "Diagnostic Procedure", EC-1001.

EC

LC

0.5

FE

GL

MT

AT

I-7 II

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

102 103 104

112

121

109 110 111

117 118 119 120

106 107 108

122 123

115 116

5 6 7 8 9

11 12 13 14

15 16 17 18

10

Wiring Diagram NGEC0788 EC-TP/SW-01 **BATTERY** FUSE BLOCK (J/B) ■: Detectable line for DTC Refer to "EL-POWER". 10A : Non-detectable line for DTC 27 M27 8N SB 6 2 5 ECM RELAY (F30) B/P B/P 5 THROTTLE POSITION SWITCH (CLOSED THROTTLE POSITION SWITCH AND WIDE OPEN THROTTLE POSITION SWITCH) CTP SWITCH WOTP SWITCH WIDE OTHER (F4) OPEN CLOSED OTHER 6 BR/W OR/B ■OR/B ➡ To AT-TPS OR/B B/P B/P B/P 4 117 67 72 28 SSOFF CRTN IDLE (F29) (M59) W 1 2 3 4 5 6 7 8 9 10 (M27) 16 17 18

26 27 28 29 30

40 41

33 34 35 36 37

31

42 43

32

44 45 46 47

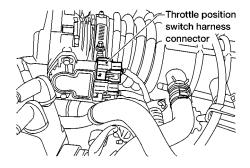
59 60 61 62 63

48 49 50 51 52 53 68 69 70 71

54 55 56 57 58 73 74 75 76

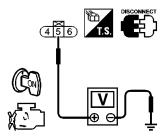
72

(F29)


Diagnostic Procedure

Diagnostic Procedure

NGEC0789


1 CHECK CLOSED THROTTLE POSITION SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle position switch harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 5 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between throttle position switch and ECM relay
- Harness for open or short between throttle position switch and ECM

Repair harness or connectors.

3 CHECK CLOSED THROTTLE POSITION SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 28 and switch terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK (or N	G
------	------	---

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

(

MA

LG

EC

AEC653A

SEF715U

GL

MT

AT

TF

PD

חש

ST

RS

BT

HA

SC

ΞL

VG33E

Diagnostic Procedure (Cont'd)

4	4 ADJUST THROTTLE POSITION SWITCH				
Check	the following items. Refer	to "Basic Inspection", EC-	-669.		
		Items	Specifications		
		Ignition timing	15° ± 2° BTDC		
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)		
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF		
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)		
				MTBI	_0226
with C	ONSULT-II	GO TO 5.			
withou	it CONSULT-II	GO TO 6.			

5 CHECK CLOSED THROTTLE POSITION SWITCH

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Remove vacuum hose connected to throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- 6. Turn ignition switch ON.
- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check indication of "CLSD THL/P SW".

Measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

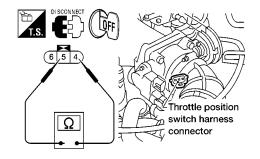
MTBL0247

OK or NG

OK ▶	GO TO 8.
NG •	GO TO 7.

VG33E

Diagnostic Procedure (Cont'd)


CHECK CLOSED THROTTLE POSITION SWITCH

Without CONSULT-II

6

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Remove vacuum hose connected to throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- 6. Disconnect closed throttle position switch harness connector.
- 7. Check continuity between closed throttle position switch terminals 4 and 5.

 Resistance measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

MTBL0247

AEC654A

		OK or NG
OK	GO TO 9.	

.		
NG	>	GO TO 7.

7 ADJUST THROTTLE POSITION SWITCH

Check the following items. Refer to "Basic Inspection", EC-669.

Items	Specifications
Ignition timing	15° ± 2° BTDC
Base idle speed	700 ± 50 rpm (in "P" or "N" position)
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF
Target idle speed	750 ± 50 rpm (in "P" or "N" position)

MTBI 0226

If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK	or	NG

OK (with CONSULT-II) OK (without CONSULT-		GO TO 8. GO TO 9.
II)		50 10 3.
NG	>	Replace throttle position switch.

G[

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

. .

BR

ST

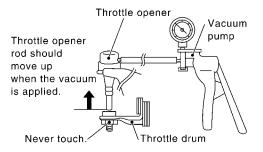
RS

BT

HA

SC

VG33E


Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SENSOR

(P) With CONSULT-II

8

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

- 6. Turn ignition switch ON.
- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check voltage of "THRTL POS SEN".

DATA MON	TOR
MONITORING	NO FAIL
CMPS~RPM (REF)	XXXrpm
COOLAN TEMP/S	XXX°C
THRTL POS SEN	XXXV

Throttle valve conditions	THRTL POS SEN	
Completely closed (a)	0.15 - 0.85V	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7V	

SEF182X

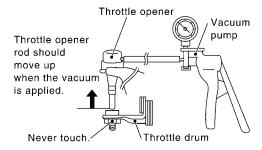
Voltage measurement must be made with throttle position sensor installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-669.

OK or NG

OK ▶	GO TO 10.
NG ►	Replace throttle position sensor.

VG33E


Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SENSOR

(Without CONSULT-II

9

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Remove the vacuum hose connected to the throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

6. Turn ignition switch ON.

7. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground. Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage	
Completely closed (a)	0.15 - 0.85V	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7V	

MTBL0231

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-669.

OK or NG

OK •	GO TO 10.
NG ►	Replace throttle position sensor.

10	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	•	INSPECTION END	

GI

MA

--

EC

FE

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

ST

കര

BT

HA

SC

System Description

These circuit lines are used to control the smooth shifting up and down of A/T during the hard acceleration/ deceleration.

Voltage signals are exchanged between ECM and TCM (Transmission Control Module).

ECM Terminals and Reference Value

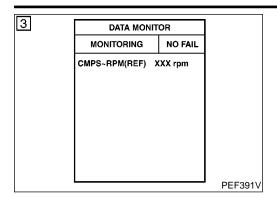
		NGEC0791
Specification data are refere	ence values and are measured betw	een each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	PU/W	A/T signal No. 1	[Ignition switch "ON"] [Engine is running] • Idle speed	6 - 8V
27	P/B	A/T signal No. 2	[Ignition switch "ON"] [Engine is running] • Idle speed	6 - 8V
35	G/R	A/T signal No. 3	[Ignition switch "ON"]	OV

On Board Diagnosis Logic

Malfunction is detected when ECM receives incorrect voltage from TCM (Transmission Control Module) continuously.

POSSIBLE CAUSE


NGEC0792S01

Harness or connectors [The circuit between ECM and TCM (Transmission Control Module) is open or shorted.]

DTC P0600 A/T CONTROL

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

foré

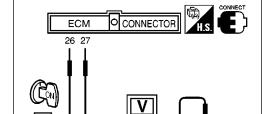
MA

LC

=NGEC0793

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine, and rev engine more than 1,000 rpm once, then let it idle for more than 40 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-1009.



CL

FE

MT

AT

Overall Function Check

Use this procedure to check the overall function of the A/T control circuit. During this check, a DTC might not be confirmed.

(R) Without CONSULT-II

1) Start engine.

SEF755U

 Check voltage between ECM terminal 26 and ground. ECM terminal 27 and ground.

Voltage: 6 - 8V

B) If NG, go to "Diagnostic Procedure", EC-1009.

PD

TF

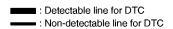
 $\mathbb{A}\mathbb{X}$

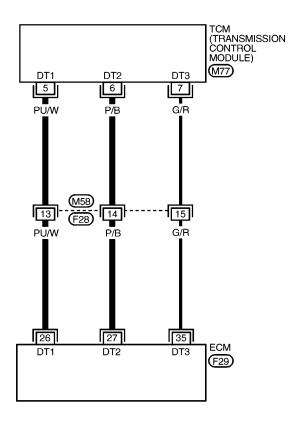
SU

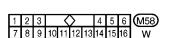
ST

RS

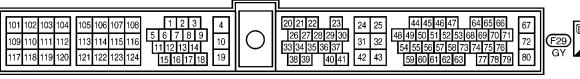
BT


HA


SC


Wiring Diagram

NGEC0795


EC-AT/C-01

DTC P0600 A/T CONTROL

Diagnostic Procedure

NGEC0796

MA

EC

FE

GL

MT

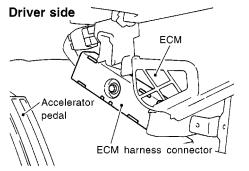
AT

TF

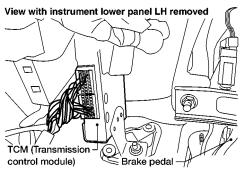
PD

AX

SU


ST

BT


HA

1 CHECK A/T CONTROL INPUT SIGNAL CIRCUIT FOR OPEN

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and TCM (Transmission Control Module) harness connector.

SEF324V

AEC655A

3. Check harness continuity between ECM terminal 26 and terminal 5, ECM terminal 27 and terminal 6, ECM terminal 35 and terminal 7.

Refer to Wiring Diagram.

Continuity should exist.

OK	or	NG
----	----	----

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- Harness for open or short between ECM and TCM (Transmission Control Module)

Repair harness or connectors.

3 CHECK A/T CONTROL INPUT SIGNAL CIRCUIT FOR SHORT

1. Check harness continuity between ECM terminal 26 and ground, ECM terminal 27 and ground, ECM terminal 35 and ground.

Refer to Wiring Diagram.

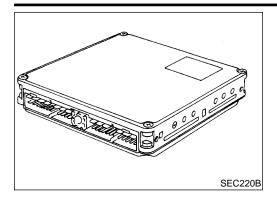
Continuity should not exist.

2. Also check harness for short to power.

OK or NG

OK •	GO TO 5.
NG •	GO TO 4.

ΞL


DTC P0600 A/T CONTROL

VG33E

4	4 DETECT MALFUNCTIONING PART		
Check the harness for open or short between ECM and TCM (Transmission Control Module).			
	Repair open circuit or short to ground or short to power in harness.		

5 CHECK INTERMITTENT INCIDENT			
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END		

DTC P0605 ECM

Component Description

The ECM consists of a microcomputer, diagnostic test mode selector, and connectors for signal input and output and for power supply. The unit controls the engine.

MA

LC

On Board Diagnosis Logic

Malfunction is detected when ECM calculation function is malfunctioning.

EC

POSSIBLE CAUSE

ECM

NGEC0798S01

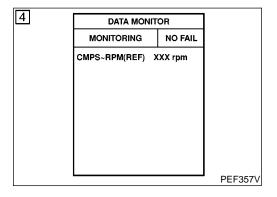
GL MT

AT

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TF

PD

AX

SU

- (P) With CONSULT-II
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- Run engine for at least 2 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1012.

With GST

Follow the procedure "With CONSULT-II".

BT

HA

SC

VG33E

Diagnostic Procedure

NGEC0800

1 INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-1011.

5. Is the 1st trip DTC P0605 displayed again?

- 1. Turn ignition switch ON.
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-1011.

5. Is the 1st trip DTC P0605 displayed again?

No Tools

- 1. Turn ignition switch ON.
- 2. Erase the Diagnostic Test Mode II (Self-diagnostic results) memory. Refer to EC-640.
- 3. Perform "DTC Confirmation Procedure".

See EC-1011.

4. Is the 1st trip DTC 0301 displayed again?

Yes or No

ľ	Yes	Replace ECM.
	No >	INSPECTION END

Description SYSTEM DESCRIPTION

NGEC0801

NGEC0801S01

		Cul		
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed			UVUZAL
Ignition switch	Start signal	On board	MAP/BARO switch solenoid	EM
Throttle position sensor	Throttle position	diagnosis	valve	الالاكا
Vehicle speed sensor	Vehicle speed			LC

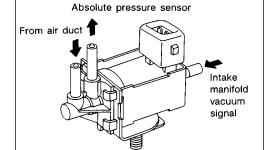
EC

This system allows the absolute pressure sensor to monitor either ambient barometric pressure or intake manifold pressure. The MAP/BARO switch solenoid valve switches between two passages by ON-OFF pulse signals from the ECM. (One passage is from the intake air duct, the other is from the intake manifold.) Either ambient barometric pressure or intake manifold pressure is applied to the absolute pressure sensor.

FE

Solenoid	Conditions
ON	 For 5 seconds after turning ignition switch ON (Engine is not running.) or For 5 seconds after starting engine or More than 5 minutes after the solenoid valve shuts OFF.

MT


GL

AT

TF

PD

AX

COMPONENT DESCRIPTION

The MAP/BARO switch solenoid valve switches its air flow passage according to the voltage signal sent from the ECM. When voltage is supplied from the ECM, the MAP/BARO switch solenoid turns "ON". Then, the absolute pressure sensor can monitor the ambient barometric pressure. When voltage is not supplied from the ECM, the MAP/BARO switch solenoid valve turns "OFF". Then, the sensor monitors intake manifold pressure.

ST

BT

HA

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM

SEF417Q

NGEC0802

SPECIFICATION	
	SC

EIL

 Ignition switch: ON (Engine stopped) MAP MAP/BARO **BARO** For 5 seconds after starting engine SW/V • Engine speed: Idle More than 5 seconds after starting MAP engine

CONDITION

ECM Terminals and Reference Value

ECM Terminals and Reference Value

NGEC0803 Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		MAP/BARO switch sole-	[Ignition switch ON] • Engine is not running • For 5 seconds after ignition switch is turned ON [Engine is running] • Idle (for 5 seconds after engine start)	0 - 1V
118	Y/B	noid valve	[Ignition switch ON] ■ Engine is not running ■ More than 5 seconds after ignition switch is turned ON [Engine is running] ■ Idle (More than 5 seconds after engine start)	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) MAP/BARO switch solenoid valve receives the voltage supplied though ECM does not supply the voltage to the valve, (Malfunction B) There is little difference between MAP/BARO switch solenoid valve input voltage at ambient barometric pressure and voltage at intake manifold pressure.

POSSIBLE CAUSE

NGEC0804S01

NGEC0804S0101

- Malfunction A
 - Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.)
- MAP/BARO switch solenoid valve

Malfunction B

NGEC0804S0102

- Harness or connectors (MAP/BARO switch solenoid valve circuit is open or shorted.)
- (Hoses are clogged, vent, kinked, disconnected or improper connection.)
- Absolute pressure sensor
- MAP/BARO switch solenoid valve

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

VG33E

DTC Confirmation Procedure (Cont'd)

DATA MONITOR
MONITORING NO FAIL
CMPS--RPM(REF) XXX rpm

PEF360V

PROCEDURE FOR MALFUNCTION A

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

NGEC0805S01

(P) With CONSULT-II

- 1) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- ode MA

- 2) Wait at least 10 seconds.
 -) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1017.

EM

LC

With GST

Follow the procedure "With CONSULT-II".

EC

FE

GL

MT

TF

PD

DATA MONITOR

MONITORING NO FAIL

CMPS~RPM(REF) XXX rpm

COOLAN TEMP/S XXX °C

TANK F/TMP SE XXX °C

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- NGEC0805S02
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that "TANK F/TMP SE" is more than 0°C (32°F).
- Start engine and let it idle for at least 10 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1017.

 $\mathbb{A}\mathbb{X}$

With GST

Follow the procedure "With CONSULT-II".

SU

ST

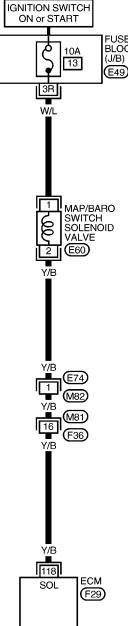
KS

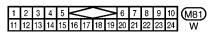
BT

HA

SC

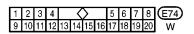
EL

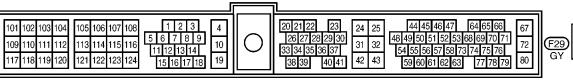

VG33E


Wiring Diagram

NGEC0806

EC-SW/V-01





AEC966A

VG33E

Diagnostic Procedure

Diagnostic Procedure

If the trouble is duplicated after "PROCEDURE FOR MAL-FUNCTION A", perform "PROCEDURE A" below. If the trouble is duplicated after "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE B" on next page.

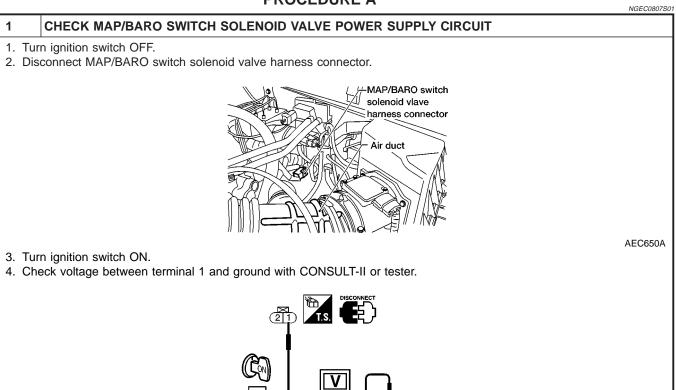
G[

MA

EC

FE

GL


MT

AT

TF

PD

PROCEDURE A

SEF653W

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E49
- 10A fuse
- Harness for open or short between MAP/BARO switch solenoid valve and fuse
 - Repair harness or connectors.

SU

HA

BT

SC

EL

 \mathbb{N}

VG33E

3	CHECK MAP/BARO SV	VITCH SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
1. T	1. Turn ignition switch OFF.			
2. Disconnect ECM harness connector.				
3. Check harness continuity between ECM terminal 118 and solenoid valve terminal 2.				
R	Refer to Wiring Diagram.			
Continuity should exist.				
4. Also check harness for short to ground and short to power.				
OK or NG				
OK	>	GO TO 5.		
NG	•	GO TO 4.		

4	DETECT MALFUNCTIONING PART		
Check the following.			
Harness connectors E74, M82			
Hari	Harness connectors M81, F36		
 Harness for open or short between MAP/BARO switch solenoid valve and ECM 			
	•	Repair open circuit or short to ground or short to power in harness or connectors.	

Diagnostic Procedure (Cont'd)

CHECK MAP/BARO SWITCH SOLENOID VALVE

(P) With CONSULT-II

5

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
- Condition: At idle under no-load
- CONSULT-II display

ACTIVE TEST		
MAP/BARO SW/V	MAP	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxxv	

ACTIVE TEST		
MAP/BARO SW/V	BARO	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
MAP/BARO SW/V	BARO	
ABSOL PRES/SE	xxxv	

MAP/BARO	ABSOL PRES/SE (Voltage)
BARO	More than 2.6V
MAP	Less than the voltage at BARO

• Time for voltage to change

MAP/BARO SW/V	Required time to switch	
BARO to MAP	Less than 1 second	
MAP to BARO	Less than I second	

4. If NG, check solenoid valve as shown below.

Without CONSULT-II

- 1. Remove MAP/BARO switch solenoid valve.
- 2. Check air passage continuity.

MEC488B

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2		No
No supply	No	Yes

MTBL0237

3. If NG or operation takes more than 1 second, replace solenoid valve.

OK	or	NG
----	----	----

OK ►	GO TO 6.
NG ►	Replace MAP/BARO switch solenoid valve.

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.

INSPECTION END

EC-1019

GI

MA

LC

EC

FE

SEF181X

MTBL0244

GL

MT

AT

TF

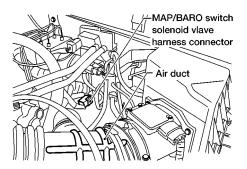
PD

SU

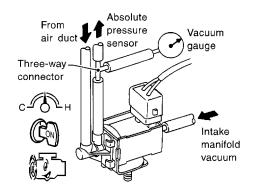
ST

HA

SC


Diagnostic Procedure (Cont'd)

PROCEDURE B


=NGEC0807S02

1 INSPECTION START

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Attach the vacuum gauge between MAP/BARO switch solenoid valve and rubber tube connected to absolute pressure sensor.

AEC650A

SEF676T

Models with CONSULT-II	>	GO TO 2.
Models without CON- SULT-II	>	GO TO 3.

2 CHECK VACUUM SOURCE TO ABSOLUTE PRESSURE SENSOR

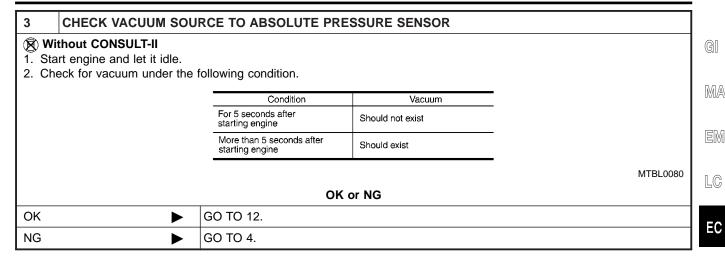
(P) With CONSULT-II

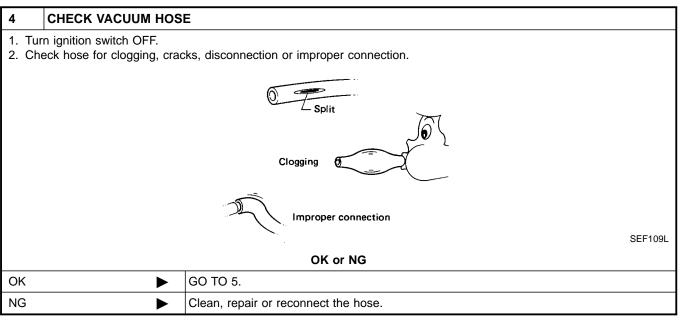
- 1. Start engine and let it idle.
- 2. Select "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "MAP" and "BARO" alternately and check for vacuum.

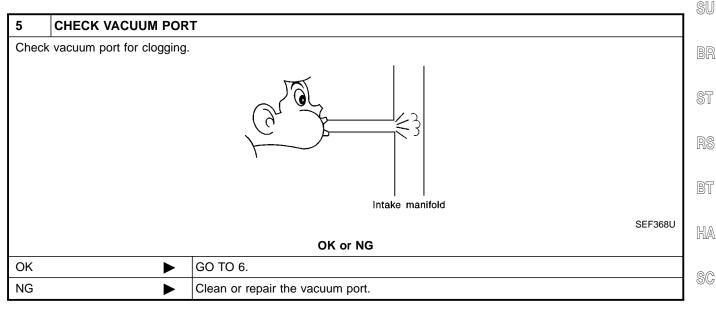
ACTIVE TEST		
MAP/BARO SW/V MAP		
MONITOR	1	
CMPS~RPM (REF)	XXXrpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE	xxxv	

ACTIVE TEST		
MAP/BARO SW/V	BARO	
MONITOR		
CMPS~RPM (REF) XXXrp		
MAP/BARO SW/V BAF		
ABSOL PRES/SE	xxxv	

MAP/BARO SW/V	Vacuum
BARO	Should not exist
MAP	Should exist


SEF183X


OK or NG


OK ▶	GO TO 12.
NG ▶	GO TO 4.

VG33E

Diagnostic Procedure (Cont'd)

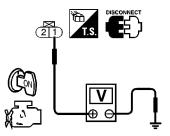
MT

AT

TF

PD

VG33E


Diagnostic Procedure (Cont'd)

6 CHECK MAP/BARO SWITCH SOLENOID VALVE POWER SUPPLY CIRCUIT 1. Turn ignition switch OFF.

2. Disconnect MAP/BARO switch solenoid valve harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF653W

OK		GO TO 8.
NG	•	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E49
- 10A fuse
- Harness for open or short between MAP/BARO switch solenoid valve and fuse

Repair harness or connectors.

8 CHECK MAP/BARO SWITCH SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 118 and solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 10.
NG ▶	GO TO 9.

9 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E74, M82
- Harness connectors M81, F36
- Harness for open or short between MAP/BARO switch solenoid valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

10 CHECK MAP/BARO SWITCH SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "MAP/BARO SW/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check the following.
- Condition: At idle under no-load
- CONSULT-II display

ACTIVE TEST		
MAP/BARO SW/V	MAP	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
MAP/BARO SW/V	MAP	
ABSOL PRES/SE XXX		

ACTIVE TEST		
MAP/BARO SW/V	BARO	
MONITOR		
CMPS~RPM (REF) XXXrpi		
MAP/BARO SW/V BAR		
ABSOL PRES/SE	xxxv	
_		

MAP/BARO	ABSOL PRES/SE (Voltage)	
BARO	More than 2.6V	
MAP	Less than the voltage at BARO	

• Time for voltage to change

MAP/BARO SW/V	Required time to switch	
BARO to MAP	Less than 1 second	
MAP to BARO		

4. If NG, check solenoid valve as shown below.

(Without CONSULT-II

- 1. Remove MAP/BARO switch solenoid valve.
- 2. Check air passage continuity.

MEC488B

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2		No
No supply	No	Yes

MTBL0237

3. If NG or operation takes more than 1 second, replace solenoid valve.

OK	or	NG
----	----	----

OK •	GO TO 11.
NG ►	Replace MAP/BARO switch solenoid valve.

GI

MA

EM

LC

EC

FE

SEF181X

GL

MT

AT

MTBL0244

TF

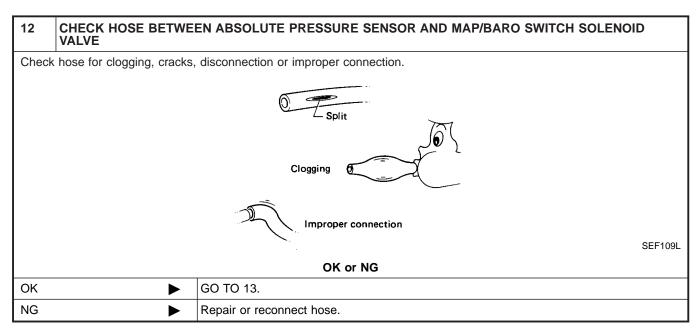
PD

AX

SU

ST

BT

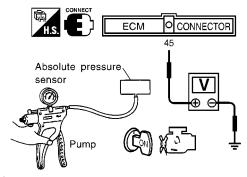

HA

SC

EL

VG33E

11	CHECK INTAKE SYSTEM		
Check	Check intake system for air leaks.		
	OK or NG		
OK	>	GO TO 15.	
NG	•	Repair it.	


13	3 CHECK HARNESS CONNECTOR		
2. Ch	 Disconnect absolute pressure sensor harness connector. Check sensor harness connector for water. Water should not exist. 		
	OK or NG		
OK	OK ▶ GO TO 14.		
NG	>	Repair or replace harness connector.	

VG33E

Diagnostic Procedure (Cont'd)

14 CHECK ABSOLUTE PRESSURE SENSOR

- 1. Remove absolute pressure sensor with its harness connector connected.
- 2. Remove hose from absolute pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 45 and engine ground.

SEF749U

The voltage should be 3.2 to 4.8V.

4. Use pump to apply vacuum of -26.7 kPa (-200 mmHg, -7.87 inHg) to absolute pressure sensor as shown in figure and check the output voltage.

The voltage should be 1.0 to 1.4V lower than the value measured in step 3.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg) of pressure.

OK	or	NG
----	----	----

OK •	GO TO 15.
NG •	Replace absolute pressure sensor.

15	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.	
► INSPECTION END		

GI

MA

. □Ω.Ω

LC

EC

FE

GL

MT

AT

TF

PD

SU

BK

ST

RS

BT

HA

SC

EL

DTC P1148 (RIGHT BANK, -B1), P1168 (LEFT BANK, -B2) CLOSED LOOP CONTROL VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0808

★ The closed loop control has the one trip detection logic. Malfunction is detected when the closed loop control function for right bank does not operate even when vehicle is driving in the specified condition, the closed loop control function for left bank does not operate even when vehicle is driving in the specified condition.

POSSIBLE CAUSE

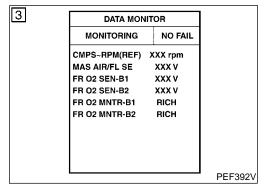
NGEC0808S01

- The front heated oxygen sensor circuit is open or shorted.
- Front heated oxygen sensor
- Front heated oxygen sensor heater

DTC Confirmation Procedure

NGEC0809

CAUTION:


Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,200 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Hold engine speed at 2,000 rpm and check one of the following.
- "FR O2 SEN-B1 (-B2)" voltage should go above 0.70V at least once.
- "FR O2 SEN-B1 (-B2)" voltage should go below 0.21V at least once.

If the check result is NG, perform "Diagnosis Procedure", EC-1027.

DTC P1148 (RIGHT BANK, -B1), P1168 (LEFT BANK, -B2) CLOSED LOOP CONTROL

DTC Confirmation Procedure (Cont'd)

If the check result is OK, perform the following step.

- Let engine idle at least 5 minutes.
- Maintain the following condition at least 50 consecutive sec-

GI

MA

B/FUEL SCHDL	1.6 msec or more (A/T models) 2.0 msec or more (M/T models)
CMPS-RPM (POS)	1,600 rpm or more (A/T models) 1,900 rpm or more (M/T models)
Selector lever	Suitable position
VHCL SPEED SE	More than 71 km/h (44 MPH)

LC

During this test, P0130 and/or P0150 may be displayed on CONSULT-II screen.

6) If DTC is detected, go to "Diagnostic Procedure", EC-1027.

EC FE

GL

MT

AT

TF

Overall Function Check

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

Nithout CONSULT-II

CONNECTOR

SEF925U

ECM

50

50: Right bank

51: Left bank

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (front heated oxygen sensor right bank signal) or 51 (front heated oxygen sensor left bank signal) and engine ground.
 - PD
- Check the following with engine speed held at 2,000 rpm constant under no-load.
- AX
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- If NG, go to "Diagnostic Procedure", EC-1027.

SU

ST

Diagnostic Procedure

Perform trouble diagnosis for "DTC P0133, P0153", EC-788.

BT

HA

SC

EL

EC-1027

Component Description

Component Description IGNITION COIL & POWER TRANSISTOR

NGEC0812

NGEC0812S01

The power transistor switches on and off the ignition coil primary circuit according to the ECM signal. As the primary circuit is turned on and off, the proper high voltage is induced in the secondary circuit. The distributor is not repairable except for the distributor cap and rotor head.

NOTE:

The rotor screw which secures the distributor rotor head to the distributor shaft must be torqued properly.

: 3.6±0.3 N·m (37±3 kg-cm, 32±3 in-lb)

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Ignition signal	[Engine is running] ● Idle speed	Approximately 0.7V (V) 4 2 0 20 ms SEF988U
1	PU/W		[Engine is running] ● Engine speed is 2,000 rpm	1.1 - 1.5V (V) 4 2 0 20 ms SEF989U
2	В	Ignition check	[Engine is running] • Warm-up condition • Idle speed	Approximately 12V (V) 40 20 0 20 ms SEF990U
			[Engine is running] ● Engine speed is 2,000 rpm.	Approximately 11V (V) 40 20 0 20 ms SEF991U

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC081

Malfunction is detected when the ignition signal in the primary circuit is not sent to ECM during engine cranking or running.

<u>-</u>

POSSIBLE CAUSE

NGEC0814S01

 Harness or connectors (The ignition primary circuit is open or shorted.)

n or MA

Power transistor unit.

Resistor

٧١١ڪا

Camshaft position sensor

LC

Camshaft position sensor circuit

DTC Confirmation Procedure NOTE:

NGEC081

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

=[=

EC

 If DTC P1320 (0201) is displayed with DTC P0340 (0101), perform trouble diagnosis for DTC P0340 first. Refer to EC-912.

CL

(P) With CONSULT-II

) Turn ignition switch ON.

MT

2) Select "DATA MONITOR" mode with CONSULT-II.

0.55

START for at least 5 seconds.)
4) If 1st trip DTC is detected, go to "Diagnostic Procedure"

Start engine. (If engine does not run, turn ignition switch to

AT

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1031.

TF

With GST

Follow the procedure "With CONSULT-II".

PD

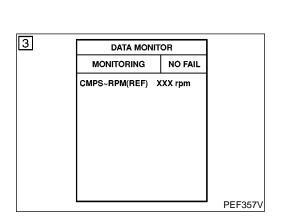
 $\mathbb{A}\mathbb{X}$

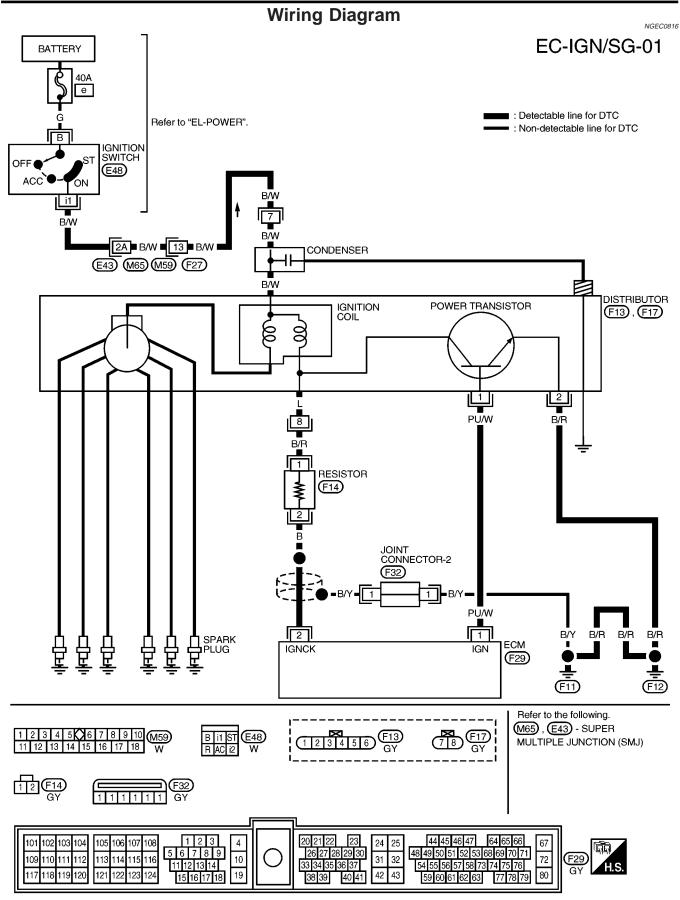
SU

BR

ST

RS


BT


HA

SC

EL

EC-1029

GI

MA

EC

FE

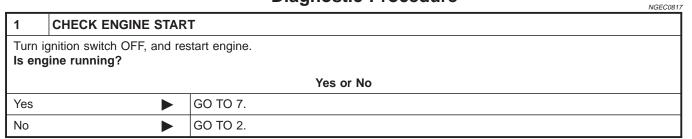
GL

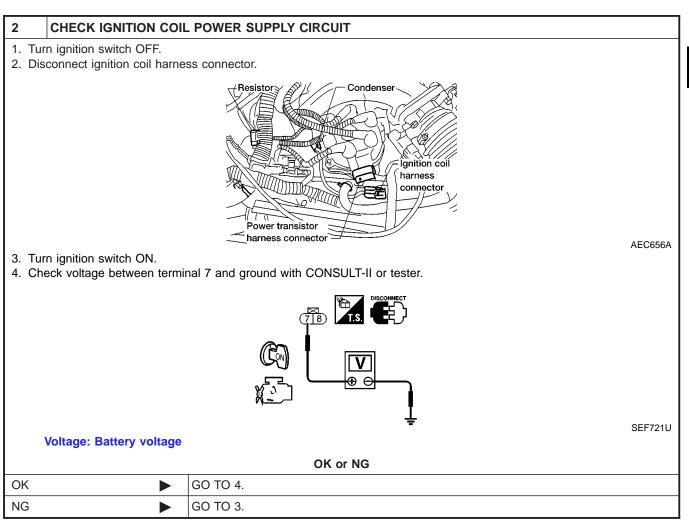
MT

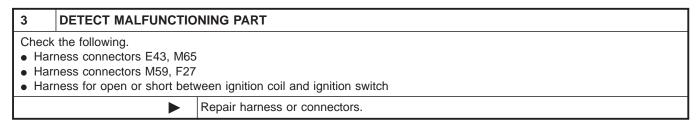
AT

TF

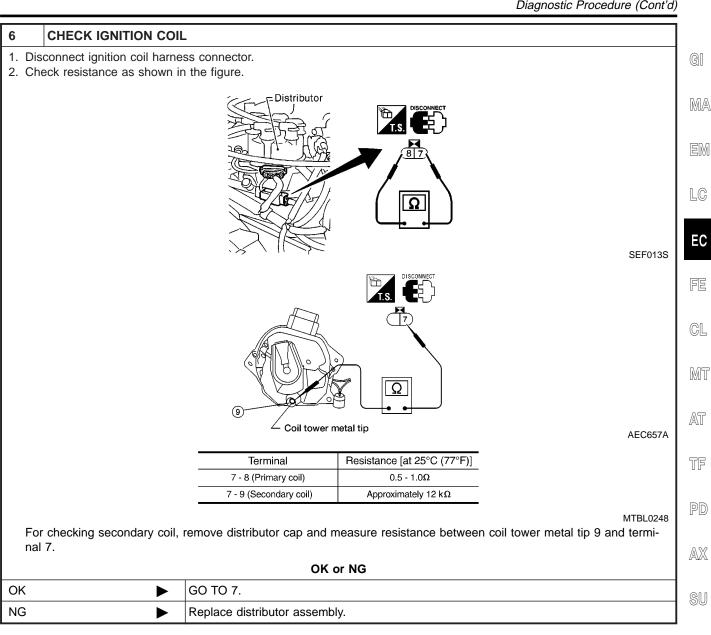
PD


ST


BT


HA

SC



 \mathbb{Z}

4	CHECK POWER TRANSISTOR GROUND CIRCUIT FOR OPEN AND SHORT		
 Turn ignition switch OFF. Disconnect power transistor harness connector. Check harness continuity between power transistor terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
OK or NG			
OK	>	GO TO 5.	
NG Repair open circuit or short to ground or short to power in harness or connectors.			

5	CHECK POWER TRANSISTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
Disconnect ECM harness connector. Check harness continuity between ECM terminal 1 and power transistor terminal 1. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.			
	OK or NG		
OK	>	GO TO 6.	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	

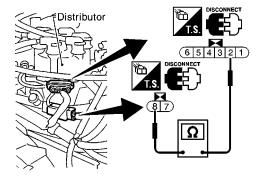
Diagnostic Procedure (Cont'd)

BR

ST

RS

BT


HA

SC

EL

CHECK POWER TRANSISTOR

- 1. Disconnect camshaft position sensor & power transistor harness connector and ignition coil harness connector.
- 2. Check power transistor resistance between terminals 2 and 8.

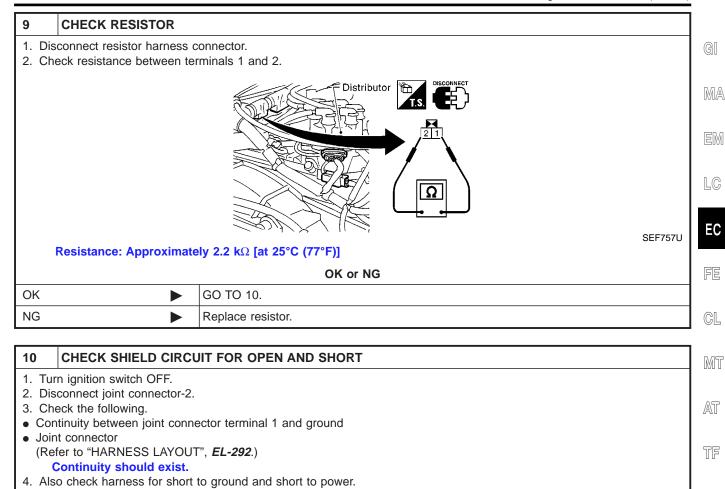
MTBL0249

SEF015S

OK or NG

OK •	GO TO 11.
NG ►	Replace distributor assembly.

8 CHECK IGNITION COIL INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Stop engine.
- 2. Disconnect ignition coil harness connector.
- 3. Strip tape covering resistor.
- 4. Disconnect resistor harness connector.
- 5. Disconnect ECM harness connector.
- 6. Check harness continuity between ignition coil terminal 8 and resistor terminal 1, resistor terminal 2 and ECM terminal
 - 2. Refer to Wiring Diagram.

Continuity should exist.

7. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 9.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

5. Then reconnect joint connector-2.				
OK or NG				
OK • GO TO 11.				
NG	Repair open circuit or short to ground or short to power in harness or connectors.			

11	CHECK INTERMITTENT INCIDENT		
Refer to	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

 $\mathbb{D}\mathbb{X}$

PD

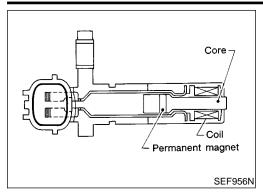
AX

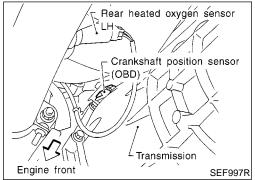
SU

BR

ST

BT


HA


SC

EL

VG33E

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

ECM Terminals and Reference Value

NGEC081

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

Specification data are reference values and are measured between each terminal and 32 (Low ground).					
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)	
		Crankshaft position	[Engine is running] • Warm-up condition • Idle speed	1 - 2V (AC range) (V) 10 5 0.2 ms SEF690W	
47	L	sensor (OBD)	[Engine is running] ● Engine speed is 2,000 rpm	3 - 4V (AC range) (V) 10 5 0.2 ms SEF691W	

VG33E

NGEC0820S01

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when a chipping of the flywheel or drive plate gear tooth (cog) is detected by the ECM.

GI

POSSIBLE CAUSE

- Harness or connectors
- Crankshaft position sensor (OBD)
- Drive plate/Flywheel

conducting the next test.

MA

FI

LC

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before

EC

CL

FE

MT

DATA MONITOR

MONITORING NO FAIL

CMPS-RPM(REF) XXX rpm

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode AT with CONSULT-II.
- 2) Start engine and run it for at least 2 minutes at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1039.
- **With GST**

PEF357V

Follow the procedure "With CONSULT-II".

AX

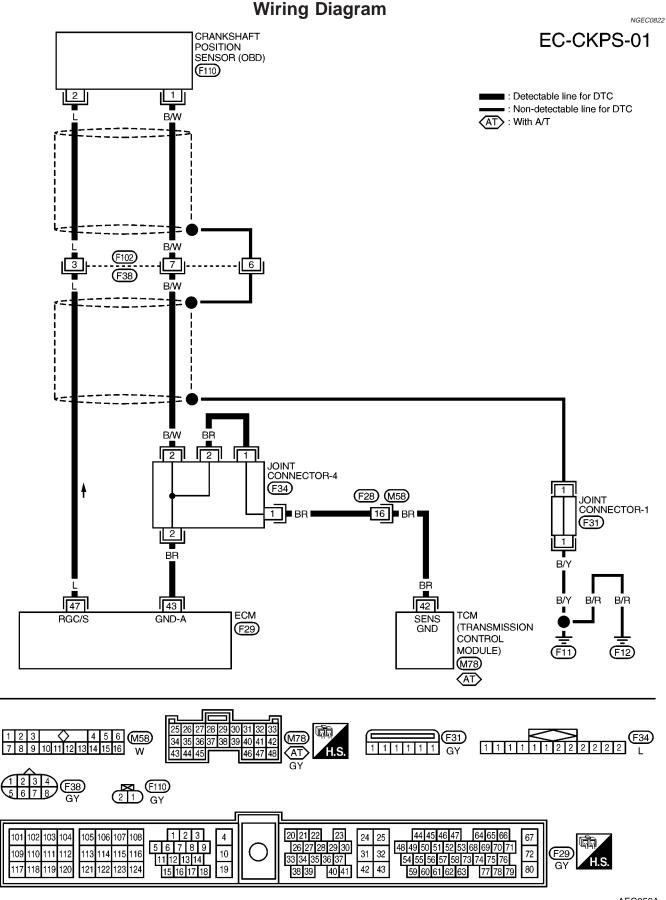
PD

TF

SU

ST

RS


BT

HA

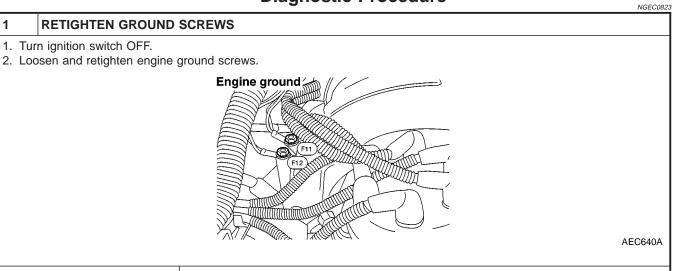
SC

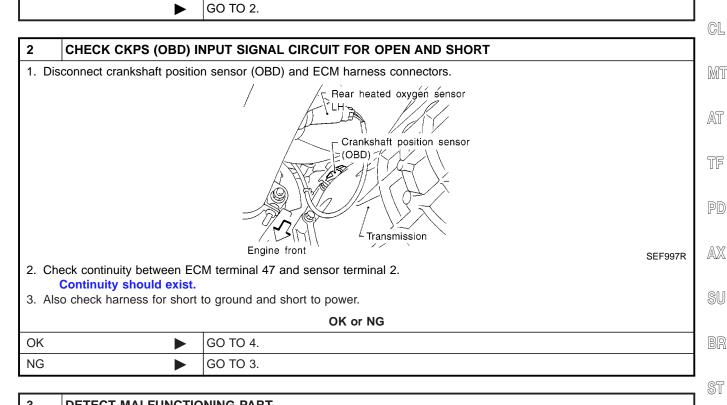
Wiring Diagram

VG33E

VG33E

GI


MA


LC

EC

Diagnostic Procedure

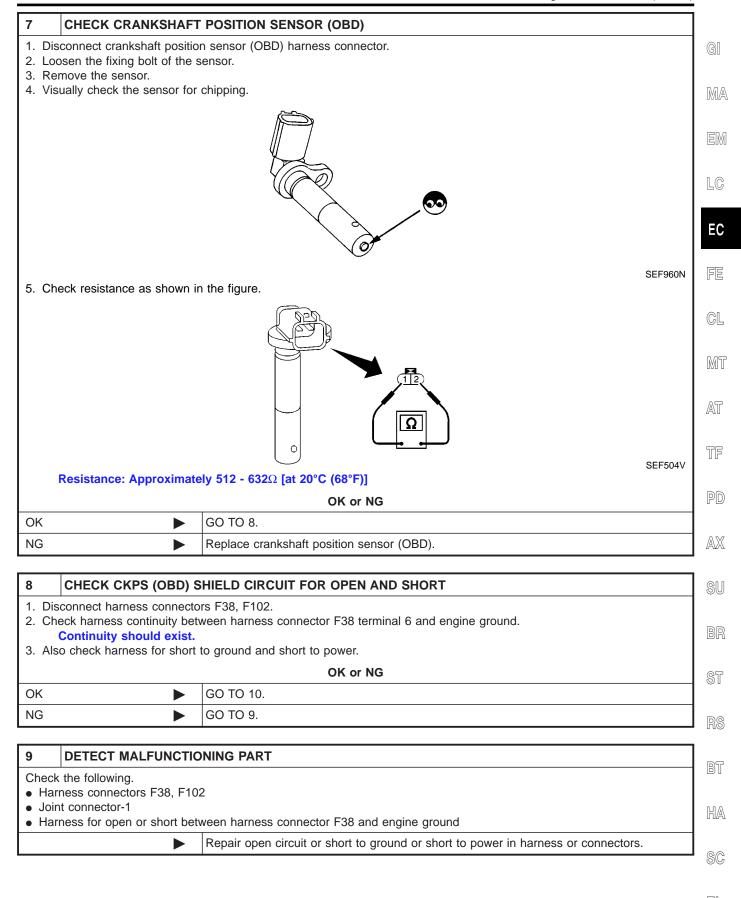
3	DETECT MALFUNCTIONING PART			
Check the following.				
	 Harness connectors F38, F102 Harness for open or short between ECM and crankshaft position sensor (OBD) 			
Repair open circuit or short to ground or short to power in harness or connectors.				

EL

BT

HA

SC


VG33E

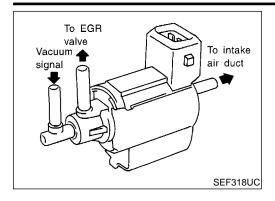
4	4 CHECK CKPS (OBD) GROUND CIRCUIT FOR OPEN AND SHORT			
2. Ch	 Reconnect ECM harness connectors. Check harness continuity between CKPS (OBD) terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG			
OK	>	GO TO 6.		
NG	•	GO TO 5.		

5	DETECT MALFUNCTIONING PART		
Check the following.			
Har	ness connectors F38, F102		
Har	Harness connectors F28, M58		
Join	• Joint connector-4		
Har	 Harness for open or short between crankshaft position sensor (OBD) and ECM 		
Har	• Harness for open or short between crankshaft position sensor (OBD) and TCM (Transmission Control Module)		
	•	Repair open circuit or short to ground or short to power in harness or connectors.	

6	CHECK IMPROPER INSTALLATION				
	Loosen and retighten the fixing bolt of the crankshaft position sensor (OBD). Perform "DTC Confirmation Procedure", EC-1037 again.				
	Is a 1st trip DTC P1336 (0905) detected?				
Yes	Yes ▶ GO TO 7.				
No	•	INSPECTION END			

VG33E

VG33E


10	10 CHECK GEAR TOOTH			
Visual	Visually check for chipping flywheel or drive plate gear tooth (cog).			
	OK or NG			
OK	OK ▶ GO TO 11.			
NG	•	Replace the flywheel or drive plate.		

11	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

DTC P1400 EGRC-SOLENOID VALVE

VG33E

Component Description (If Equipped with EGR Valve)

Component Description (If Equipped with EGR Valve)

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal (from the intake manifold collector) passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal.

G[

MA

LC

EC

FE

GL

CONSULT-II Reference Value in Data Monitor Mode

NGEC0825

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up Air conditioner switch: "OFF"	Idle	OFF
EGRC SOL/V	Shift lever: "N"	Engine speed: Revving from idle up to 3,000 rpm quickly	ON

ECM Terminals and Reference Value

MT

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
103 G/\	CAN		[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
		 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly 	0 - 1.5V	

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

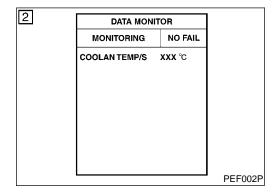
HA

SC

EL

 $\mathbb{D}\mathbb{X}$

On Board Diagnosis Logic


NGEC0827

Malfunction is detected when the improper voltage signal is sent to ECM through EGRC-solenoid valve.

POSSIBLE CAUSE

NGEC0827S01

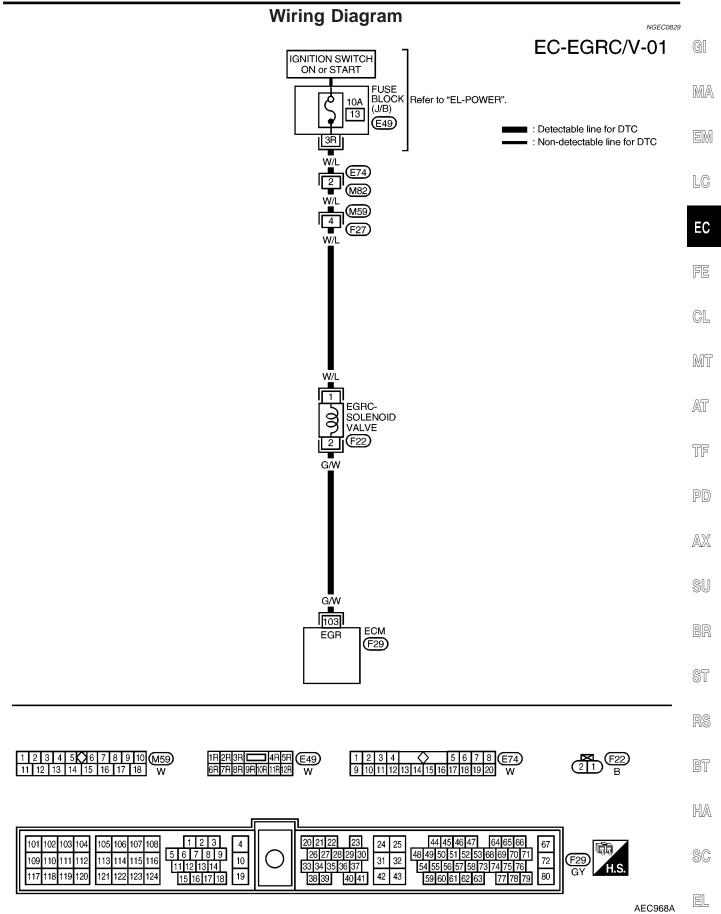
- Harness or connectors (The EGRC-solenoid valve circuit is open or shorted.)
- EGRC-solenoid valve

DTC Confirmation Procedure

NGEC0828

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

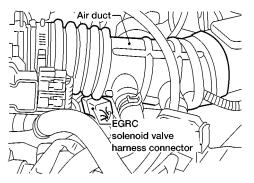

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II and wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1046.

With GST

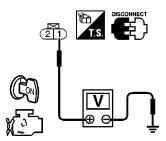
Follow the procedure "With CONSULT-II".

DTC P1400 EGRC-SOLENOID VALVE



Diagnostic Procedure

NGEC0830


1 CHECK EGRC-SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EGRC-solenoid valve harness connector.

AEC659A

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF657W

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E74, M82
- Harness connectors M59, F27
- Fuse block (J/B) connector E49
- 10A fuse
- Harness for open or short between EGRC-solenoid valve and fuse

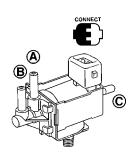
Repair harness or connectors.

3 CHECK EGRC-SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 103 solenoid valve and terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK •	•	GO TO 4.
NG •		Repair open circuit or short to ground or short to power in harness or connectors.

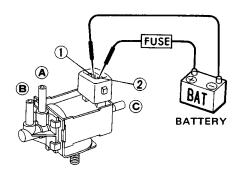

DTC P1400 EGRC-SOLENOID VALVE

Diagnostic Procedure (Cont'd)

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

- 1. Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.


ACTIVE TEST			
EGRC SOL/V (EGR) ON FLOW			
MONITOR			
CMPS~RPM (REF)	XXXrpm		

Conditions	Air passage continuity between A and B	Air passage continuity between A and C	
ON	Yes	No	
OFF	No	Yes	

SEF155X

(X) Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2		No
No supply	No	Yes

MTBL0237

OK or NG

OK •	GO TO 5.
NG •	Replace EGRC-solenoid valve.

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.

INSPECTION END

GI

MA

LC

EC

5X | =

GL

MT

AT

TF

PD

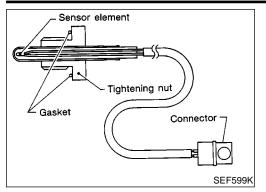
@1

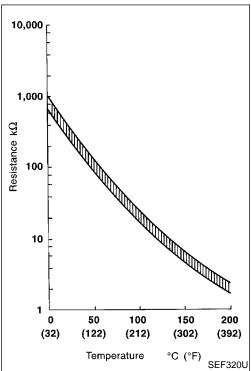
BR

ST

0.5

RS


BT


HA

SC

EL

Component Description (If Equipped with EGR Valve)

Component Description (If Equipped with EGR Valve)

The EGR temperature sensor detects temperature changes in the EGR passage way. When the EGR valve opens, hot exhaust gases flow, and the temperature in the passage way changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* (V)	Resistance (MΩ)
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

^{*:} These data are reference values and are measured between ECM terminal 63 (EGR temperature sensor) and ECM terminal 32 (ECM ground).

When EGR system is operating.

Voltage: 0 - 1.5V

On Board Diagnosis Logic

NGEC0832

Malfunction is detected when

(Malfunction A) an excessively low voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is low.

(Malfunction B) an excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.

POSSIBLE CAUSE

NGEC0832S01

Malfunction A

- Harness or connectors (The EGR temperature sensor circuit is shorted.)
- EGR temperature sensor
- Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve

Malfunction B

.___....

- Harness or connectors (The EGR temperature sensor circuit is open.)
- EGR temperature sensor
- Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve

EC-1048

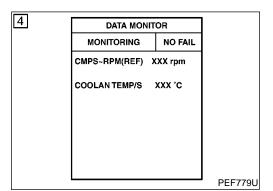
DTC P1401 EGR TEMPERATURE SENSOR

DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MAL-FUNCTION B".

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

LC

EC

FE

PROCEDURE FOR MALFUNCTION A

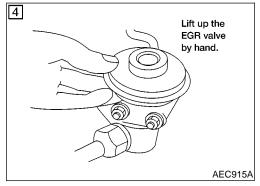
NGEC0833S01

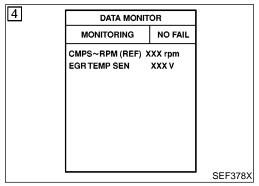
(P) With CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Verify that "COOLAN TEMP/S" is less than 40°C (104°F). If the engine coolant temperature is above the range, cool the engine down.
- Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1052.

MT

GL


With GST


Follow the procedure "With CONSULT-II".

AT

TF

PD

PROCEDURE FOR MALFUNCTION B

NGEC0833S02

ST

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature of 5°C (41°F) or higher.

(II) With CONSULT-II

CAUTION:

- Start engine and warm it up to normal operating temperature.
- Confirm that EGR valve is not lifting at idle. If the check result is NG, go to trouble diagnoses for "DTC P1402". (See page EC-1055.)
- Select "DATA MONITOR" mode with CONSULT-II.
- Read "EGR TEMP SEN" at about 1,500 rpm while holding the EGR valve in full open position by hand.

Voltage should decrease to less than 1.5V.

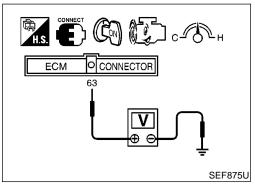
If the check result is NG, go to "Diagnostic Procedure", EC-1052.

If the check result is OK, go to following step.

- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON. 6)
- Check the output voltage of "THRTL POS SEN" at closed throttle position and note it.

SC

EL


HA

- 8) Start engine.
- Maintain the following conditions for at least 5 consecutive seconds.

CMPS-RPM (REF)	1,600 - 2,400 rpm (A/T models) 1,800 - 2,600 rpm (M/T models)
COOLAN TEMP/S	Above 70°C (158°F)
B/FUEL SCHDL	3.0 - 4.5 msec
THRTL POS SEN	X - (X + 0.70) V X = Voltage value measured at step 7
Selector lever	Suitable position

10) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1052.

Overall Function Check

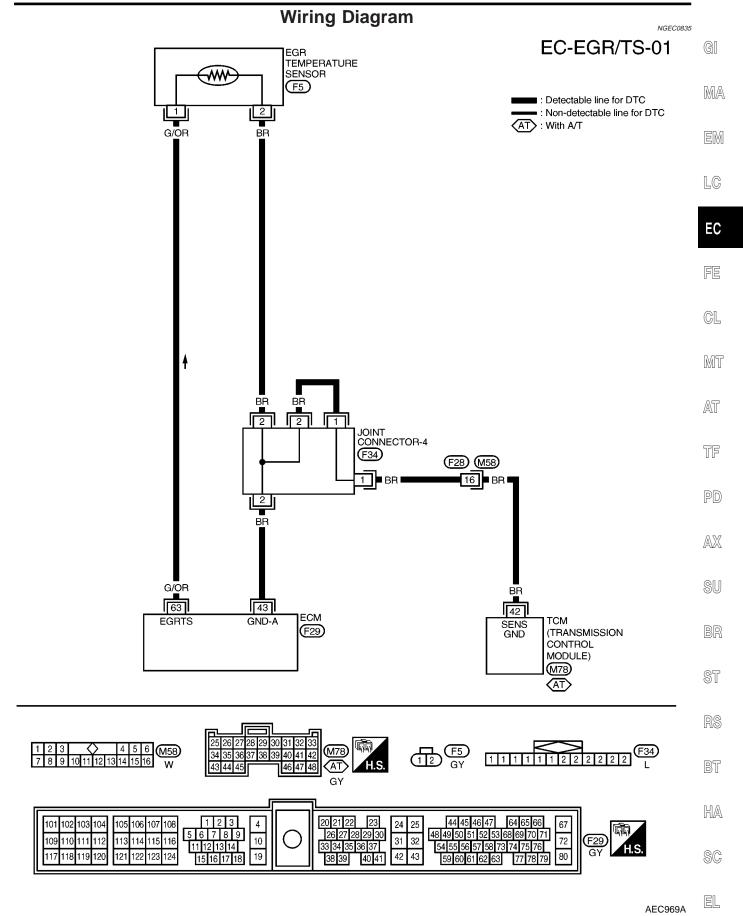
NGEC0834

Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION B

(R) Without CONSULT-II

NGEC0834S01

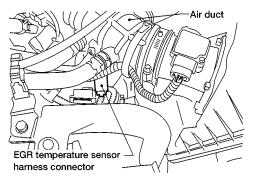

- Start engine and warm it up to normal operating temperature.
- 2) Confirm that EGR valve is not lifting at idle. If NG, go to trouble diagnoses for DTC P0400 and P0402 (See pages EC-919 and 933).
- 3) Check voltage between ECM terminal 63 (EGR temperature sensor signal) and ground at about 1,500 rpm with EGR valve lifted up to the full position by hand.

Voltage should decrease to less than 1.5V.

If NG, go to "Diagnostic Procedure", EC-1052.

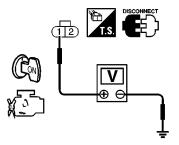
4) If step 4 is OK, perform trouble diagnoses for "DTC P0400, P1400" (See pages EC-919 and 1043).

DTC P1401 EGR TEMPERATURE SENSOR



Diagnostic Procedure

NGEC0836


1 CHECK EGR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EGR temperature sensor harness connector.

AEC660A

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF728U

Voltage: Approximately 5V

OK or NG

OK ►	GO TO 2.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

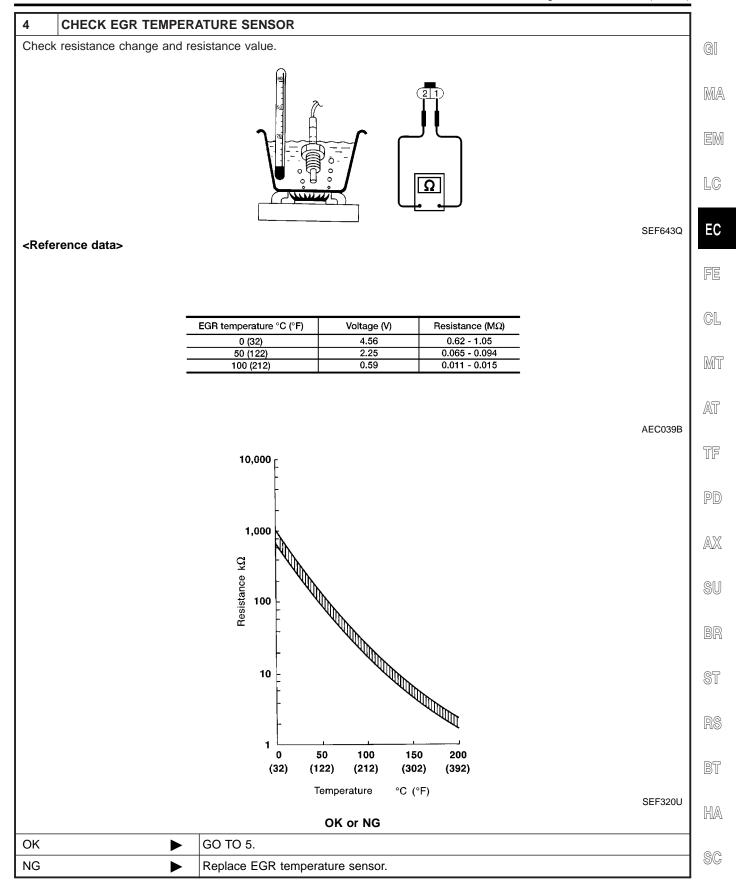
2 CHECK EGR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between sensor terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG


OK	GO TO 4.
NG	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and EGR temperature sensor
- Harness for open or short between TCM (Transmission Control Module) and EGR temperature sensor
 - Repair open circuit or short to ground or short to power in harness or connector.

Diagnostic Procedure (Cont'd)

DTC P1401 EGR TEMPERATURE SENSOR

VG33E

Diagnostic Procedure (Cont'd)

5	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END			

DTC P1402 EGR FUNCTION (OPEN)

VG33E

Description (If Equipped with EGR Valve)

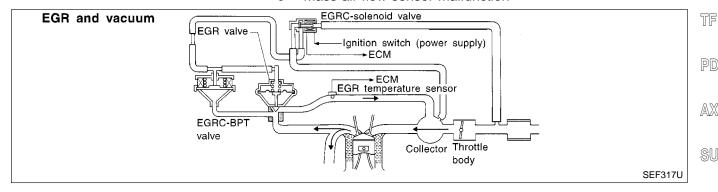
Description (If Equipped with EGR Valve) SYSTEM DESCRIPTION

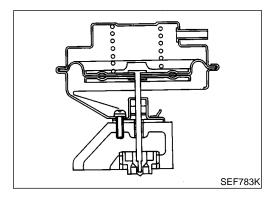
NGEC0837

NGEC0837S01

				C.
Sensor	Input Signal to ECM	ECM func- tion	Actuator	M
Camshaft position sensor	Engine speed			UVL
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature	EGR con- trol	EGRC-solenoid valve	
Ignition switch	Start signal			L(
Throttle position sensor	Throttle position			

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current does not flow through the solenoid valve. This causes the intake manifold vacuum to be discharged into the atmosphere. The EGR valve remains closed.


CL


MT

AT

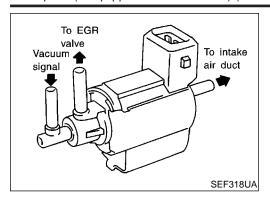
EC

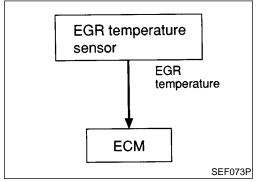
- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction

COMPONENT DESCRIPTION Exhaust Gas Recirculation (EGR) Valve

NGEC0837S02

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening and EGRC-BPT valve operation. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.


SC


ST

EL

 \mathbb{Z}

Description (If Equipped with EGR Valve) (Cont'd)

EGRC-solenoid Valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal (from the intake manifold collector) passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal.

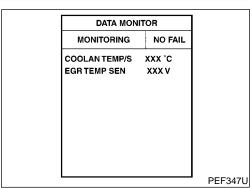
On Board Diagnosis Logic

NGEC083

If the EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.

Malfunction is detected when EGR flow is detected under condition that does not call for EGR.

NOTE:


Diagnosis for this DTC will occur when engine coolant temperature is below 50-60°C (122-140°F). Therefore, it will be better to turn ignition switch "ON" (start engine) at the engine coolant temperature below 30°C (86°F) when starting DTC confirmation procedure.

POSSIBLE CAUSE

NGEC0838S01

- EGRC-solenoid valve
- EGR valve leaking or stuck open
- EGR temperature sensor
- EGRC-BPT valve

CHECK ENGINE COOLANT TEMP WITH DATA MONITOR. IS COOLANT TEMP BETWEEN -10°C - 40°C (14°F - 104°F)?

DTC Confirmation Procedure

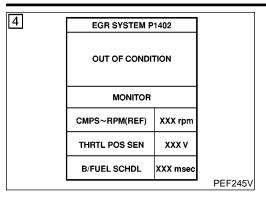
NGEC0839

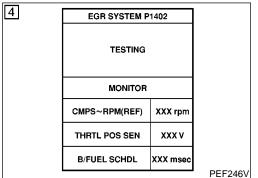
NOTE:

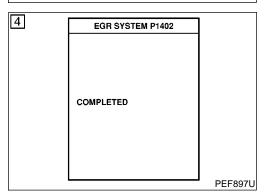
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

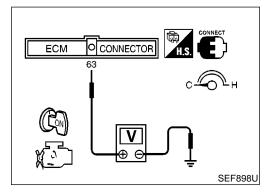
TESTING CONDITION:

- Always perform the test at a temperature of -10°C (14°F) or higher.
- Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.


COOLAN TEMP/S: -10 to 30°C (14 to 86°F)* EGR TEMP SEN: Less than 4.8V


If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the engine coolant temperature or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.


*: Although CONSULT-II screen displays "-10 to 40°C (14 to 104°F)" as a range of engine coolant temperature, ignore it.


DTC P1402 EGR FUNCTION (OPEN)

DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- Turn ignition switch OFF, and wait at least 5 seconds, and then turn "ON".
- Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Follow the CONSULT-II instructions.
- Start engine and let it idle until "TESTING" on CONSULT-II screen is turned to "COMPLETED". (It will take 60 seconds or

If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 30°C (14 to 86°F). Retry from step 1.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1059.

® With GST

- 1) Turn ignition switch ON and select "MODE 1" with GST.
- Check that engine coolant temperature is within the range of -10 to 30°C (14 to 86°F).
- Check that voltage between ECM terminal 63 (EGR temperature sensor signal) and ground is less than 4.8V.
- 4) Start engine and let it idle for at least 60 seconds.
- Stop engine. 5)
- 6) Perform from step 1 to 4.
- Select "MODE 3" with GST. 7)
- If DTC is detected, go to "Diagnostic Procedure", EC-1059.

MA

GI

LC

EC

FE

GL

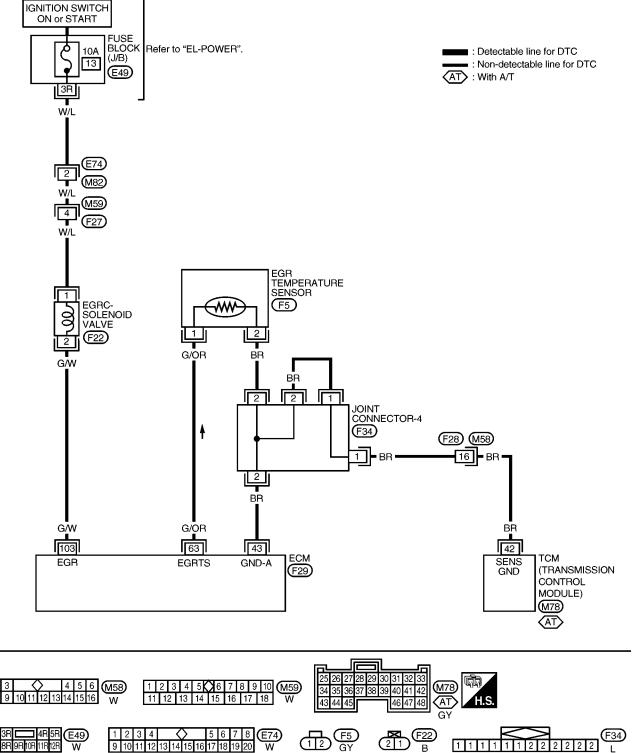
MT

AT

TF

PD

ST


HA

SC

Wiring Diagram

NGEC0840

EC-EGRC1-01

AEC958A

44 45 46 47

59 60 61 62 63

48 49 50 51 52 53 68 69 70 71

54 55 56 57 58 73 74 75 76

72

(F29)

20 21 22

38 39

26 27 28 29 30 33 34 35 36 37

40 41

31 32

42 43

1 2 3

5 6 7 8 9 11 12 13 14

15 16 17 18

116

4

10

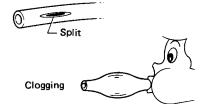
19

102 103 104

109 110 111 112

DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure


NGEC0841

_		٠.	0 ==	

CHECK VACUUM HOSE

1. Turn ignition switch OFF.

2. Check vacuum hose for clogging, cracks or improper connection. Refer to "Vacuum Hose Drawing", EC-597.

SEF109L

	OK or NG		
OK (with CONSULT-II)		GO TO 2.	
OK (without CONSULT-II)	>	GO TO 3.	
NG	>	Repair or replace vacuum hose.	

CHECK EGRC-SOLENOID VALVE CIRCUIT

- (a) With CONSULT-II
 1. Turn ignition switch ON.
- 2. Turn EGRC-solenoid valve ON and OFF in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST					
EGRC SOL/V		ON			
(EGR)		FLOW			
MONITOI	2				
CMPS~RPM(REF)	CMPS~RPM(REF) XXX rp				

Clicking noise should be heard.

OK or NG

OK	>	GO TO 5.
NG	>	GO TO 4.

GI

MA

EM

LC

EC

GL

MT

TF

PD

SU

PEF789U

ST

BT

HA

SC

OK

NG

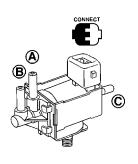
3 CHECK EGRC-SOLENOID VALVE CIRCUIT Without CONSULT-II 1. Disconnect ECM harness connector. 2. Turn ignition switch ON. 3. Connect a suitable jumper wire between ECM terminal 103 and engine ground. ECM OCONNECTOR Suitable jumper wire Check operating sound of EGRC-solenoid valve when disconnecting and connecting the jumper wire. Clicking noise should be heard.

OK or NG

Repair or replace EGRC-solenoid valve or repair circuit.

GO TO 4.

EC-1060

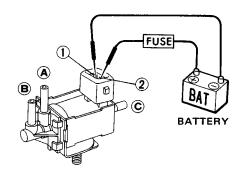

DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure (Cont'd)

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

- 1. Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.


ACTIVE TEST						
EGRC SOL/V (EGR)	EGRC SOL/V (EGR) ON FLOW					
MONITOR	ì					
CMPS~RPM (REF)	XXXrpm					

Conditions	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF155X

(R) Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

AEC919

Condition	Air passage continuity	Air passage continuity	
Condition	between A and B	between A and C	
12V direct current supply between terminals 1 and 2		No	
No supply	No	Yes	

MTBL0237

OK or NG

OK •	GO TO 5.
NG ▶	Replace EGRC-solenoid valve.

GI

MA

EM

LC

EC

GL

MT

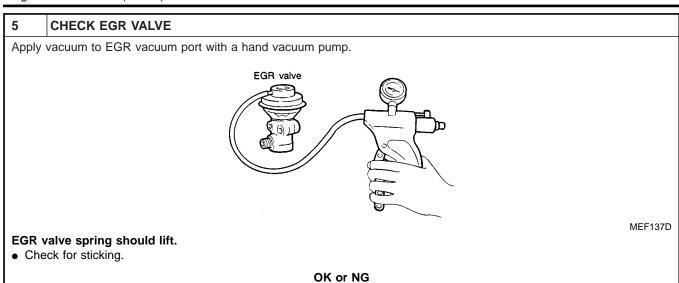
AT

TF

PD

ST

RS


BT

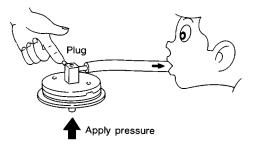
HA

SC

EL

SEF083P

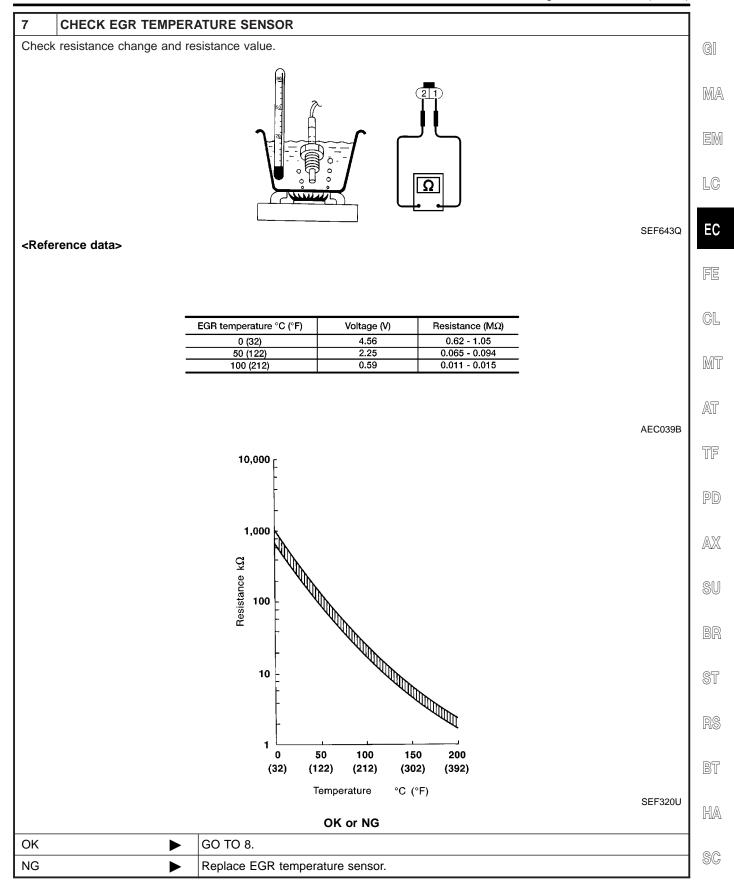
6 CHECK EGRC-BPT VALVE


OK NG

1. Plug one of two ports of EGRC-BPT valve.

GO TO 6.

Replace EGR valve.


2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mm H_2O , 3.94 in H_2O) from under EGRC-BPT valve.

Leakage should not exist.

OK ▶	GO TO 7.
NG ►	Replace EGRC-BPT valve.

OK or NG

EL

DTC P1402 EGR FUNCTION (OPEN)

VG33E

Diagnostic Procedure (Cont'd)

8	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.				
	► INSPECTION END				

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NOTF:

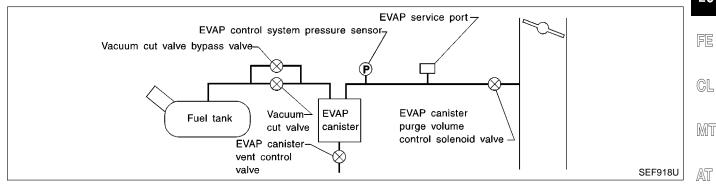
NGEC0842

If DTC P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1098.)

· MA

This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

MA


The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

EM

If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

LC

EC

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

TF

PD

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
 - If the fuel filler cap is not tightened properly, the MIL may $_{\mathbb{A}\mathbb{X}}$
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

come on.

NGEC0842S01

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close.
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve
- Absolute pressure sensor
- Fuel tank temperature sensor
- MAP/BARO switch solenoid valve

SU

BR

ST

RS

110

BT

HA

SC.

96

EL

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

VG33E

On Board Diagnosis Logic (Cont'd)

- Blocked or bent rubber tube to MAP/BARO switch solenoid valve
- O-ring of EVAP canister vent control valve is missing or damaged.
- Water separator
- EVAP canister is saturated with water.
- EVAP control system pressure sensor

DTC Confirmation Procedure

NGEC0843

NOTE:

Refer to "P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-948.

Diagnostic Procedure

NGEC0844

NOTE:

Refer to "P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-949.

VG33E

Description

Description SYSTEM DESCRIPTION

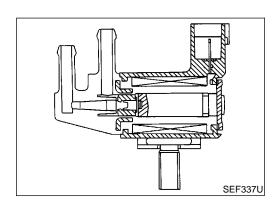
NGEC0845

MA

EC

FE

TF


PD

AX

NGEC0845S01

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature	7	
Ignition switch	Start signal		
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume
Throttle position switch	Closed throttle position	flow control	control solenoid valve
Front heated oxygen sensors	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Tank fuel temperature sensor	Fuel temperature in fuel tank	1	
Vehicle speed sensor	Vehicle speed		

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

NGEC0845S02

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

ST

BT

HA

SC

EIL

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0846

MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	Engine: After warming upAir conditioner switch OFF	Idle (Vehicle stopped)	0%
	Shift lever: "N" No-load	2,000 rpm	_

ECM Terminals and Reference Value

VG33E

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

<u> </u>	1	T	I	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		ECM relay (Self shut-	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
4	OR/B	off)	[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
5	EVAP canister purge	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms	
5	R/Y	volume control sole- noid valve	[Engine is running] • Engine speed is 2,000 rpm	SEF994U BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF995U
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE
72	B/P	1 ower supply for EOM	[ignition switch ON]	(11 - 14V)
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

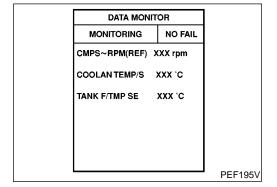
On Board Diagnosis Logic

Malfunction is detected when the canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.

POSSIBLE CAUSE

NGEC0848S01

- EVAP control system pressure sensor
- EVAP canister purge volume control solenoid valve (The valve is stuck open.)
- EVAP canister vent control valve
- **EVAP** canister


DTC Confirmation Procedure

Hoses (Hoses are connected incorrectly or clogged.)

GI

MA

LC

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

FE

EC

TESTING CONDITION:

NOTE:

Always perform test at a temperature of 5°C (41°F) or more.

GL

MT

TF

PD

AX

6 PURG VOL CN/V P1444 **OUT OF CONDITION** MONITOR CMPS~RPM(REF) XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec PEF900U

PURG VOL CN/V P1444

TESTING

MONITOR

XXX rpm

XXX V

XXX msec

CMPS~RPM(REF)

THRTL POS SEN

B/FUEL SCHDL

6

(P) With CONSULT-II

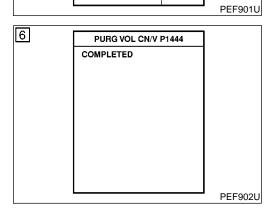
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take for approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

SU

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1071.

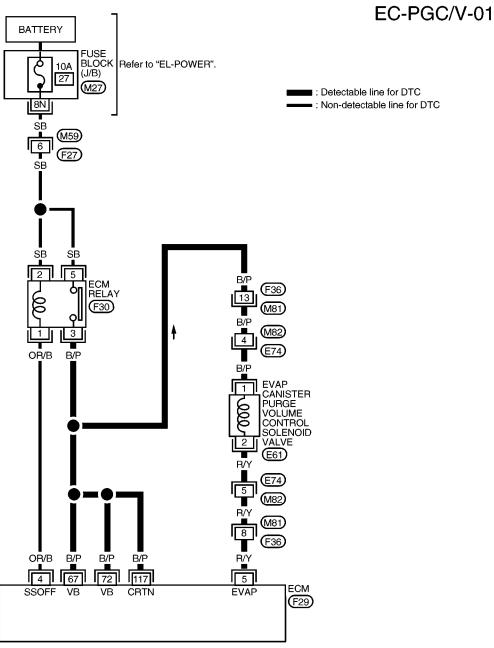
® With GST

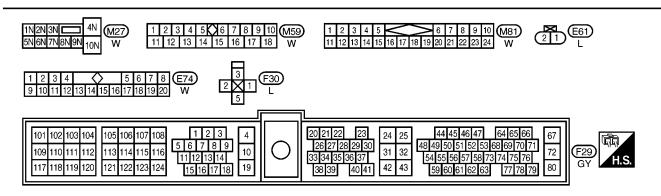

- Start engine and warm it up to normal operating temperature. 1)
- Turn ignition switch OFF and wait at least 5 seconds.
- Start engine and let it idle for at least 20 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1071.

ST

BT

HA


SC

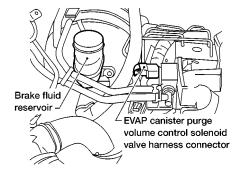


VG33E

NGEC0850

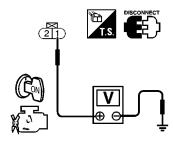
Wiring Diagram EC-PGC/V

VG33E


Diagnostic Procedure

Diagnostic Procedure

NGEC0851



- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F36, M81
- Harness connectors M82, E74
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

Repair harness or connectors.

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 5 and solenoid valve terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

\cap k	or	NG
UN	UI	146

OK •	GO TO 5.
NG ►	GO TO 4.

MA

EM

LG.

EC

FE

5

AEC652A

SEF646W

GL

MT

AT

TF

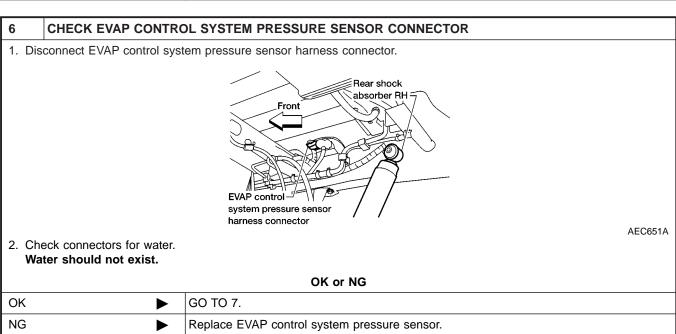
PD

ST

© I

RT

HA


SC

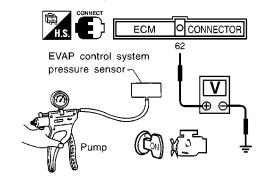
VG33E

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART Check the following. • Harness connectors E74, M82 • Harness connectors M81, F36 • Harness for open or short between EVAP canister purge volume control solenoid valve and ECM Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
Check	Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
	OK or NG		
OK	>	GO TO 6.	
NG	>	Repair it.	

VG33E

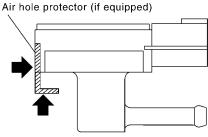

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.

7

- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


Pressure (Relative to atmosphericpressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0246

SEF894U

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG	

OK (with CONSULT-II)		GO TO 8.
OK (without CONSULT-II)	•	GO TO 9.
NG	>	Replace EVAP control system pressure sensor.

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

AX

ST

⊚ I

RS

BT

HA

SC

EL

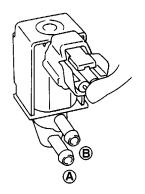
 \mathbb{N}

Diagnostic Procedure (Cont'd)

VG33E

8 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II


- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST		
PURG VOL CONT/V	0.0%	
MONITOR		
CMPS~RPM(REF)	XXX rpm	
FR O2 MNTR-B2	RICH	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B2	XXX %	
A/F ALPHA-B1	XXX %	
THRTL POS SEN	xxx v	

PEF882U

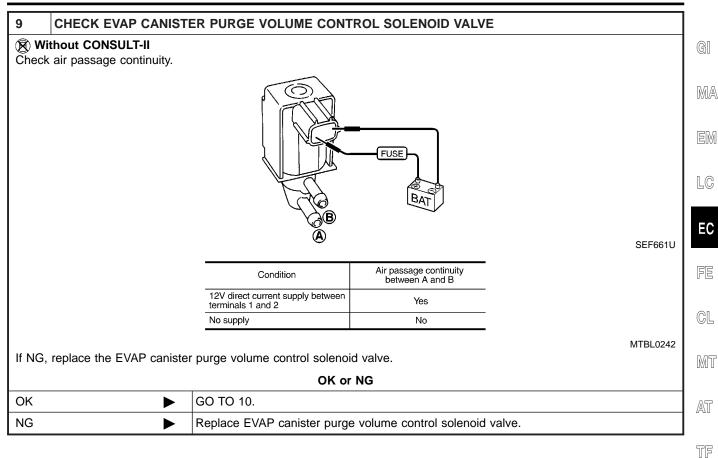
If OK, inspection end. If NG, go to following step.

3. Check air passage continuity.

SEF660U

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

MTBL0241


If NG, replace the EVAP canister purge volume control solenoid valve.

OK or NG

OK •	GO TO 10.
NG >	Replace EVAP canister purge volume control solenoid valve.

VG33E

Diagnostic Procedure (Cont'd)

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

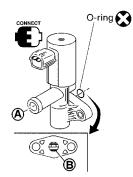
BT

HA

SC

EL

Diagnostic Procedure (Cont'd)


VG33E

10 CHECK EVAP CANISTER VENT CONTROL VALVE

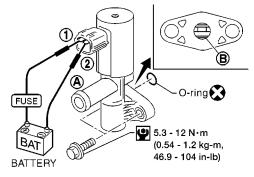
Check air passage continuity.

(P) With CONSULT-II

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST			
VENT CONTROL/V	T CONTROL/V OFF		
MONITOR			
CMPS~RPM (REF)	XXXrpm		
FR O2 MNTR-B1	RICH		
A/F ALPHA-B1	xxx%		
THRTL POS SEN	xxxv		

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes


SEF156X

(R) Without CONSULT-II

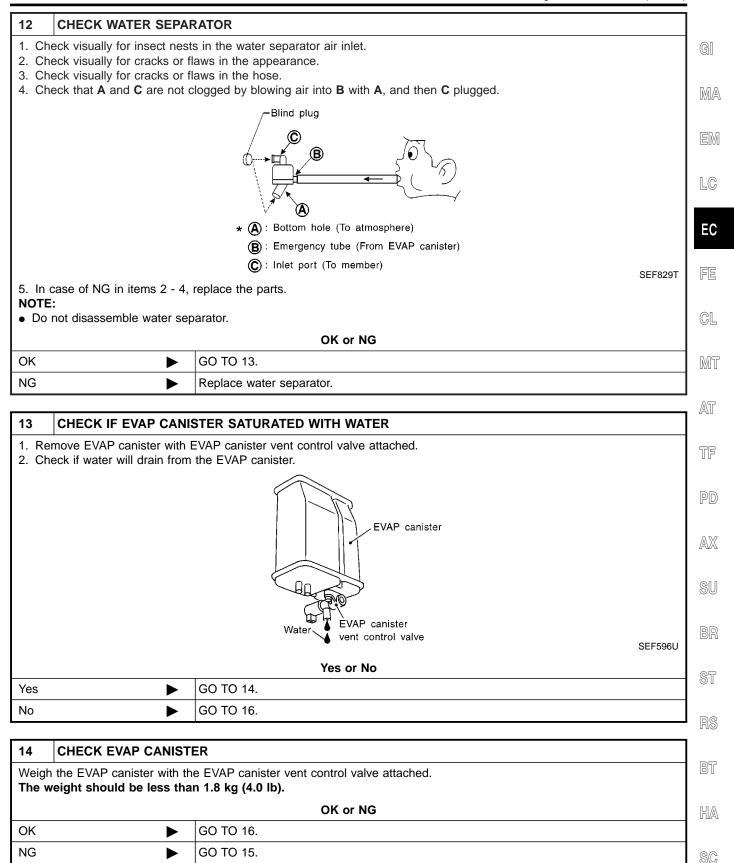
Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A

Make sure new O-ring is installed properly.


OK or NG

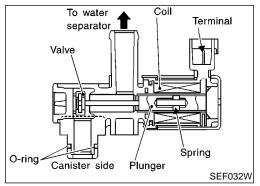
OK •	GO TO 11.
NG •	Replace EVAP canister vent control valve.

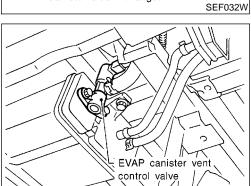
11 CHECK RUBBER TUBE Check for obstructed rubber tube connected to EVAP canister vent control valve. OK or NG OK GO TO 12. NG Clean, repair or replace rubber tube.

VG33E

Diagnostic Procedure (Cont'd)

VG33E


Diagnostic Procedure (Cont'd)


15	DETECT MALFUNCTIONING PART		
Check the following. • EVAP canister for damage			
EVAP hose between EVAP canister and water separator for clogging or poor connection			
	•	Repair hose or replace EVAP canister.	

16	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
► INSPECTION END			

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE)

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

GI

MA

EC

FE CL

MT

AT

PD

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

SEF143S

TF

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

ST

RS

BT

HA

SC

EL

 \mathbb{N}

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE) VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

=NGEC0855

Malfunction is detected when EVAP canister vent control valve remains closed under specified driving conditions.

POSSIBLE CAUSE

NGEC0855S01

- EVAP canister vent control valve
- EVAP control system pressure sensor and the circuit
- Blocked rubber tube to EVAP canister vent control valve
- Water separator
- EVAP canister is saturated with water.

DATA MONITOR MONITORING NO FAIL AIW

CMPS~RPM(REF) XXX rpm

COOLAN TEMP/S XXX °C

VHCL SPEED SE XXX km/h
THRTL POS SEN XXX V

B/FUEL SCHDL XXX msec

DTC Confirmation Procedure

NGEC0856

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

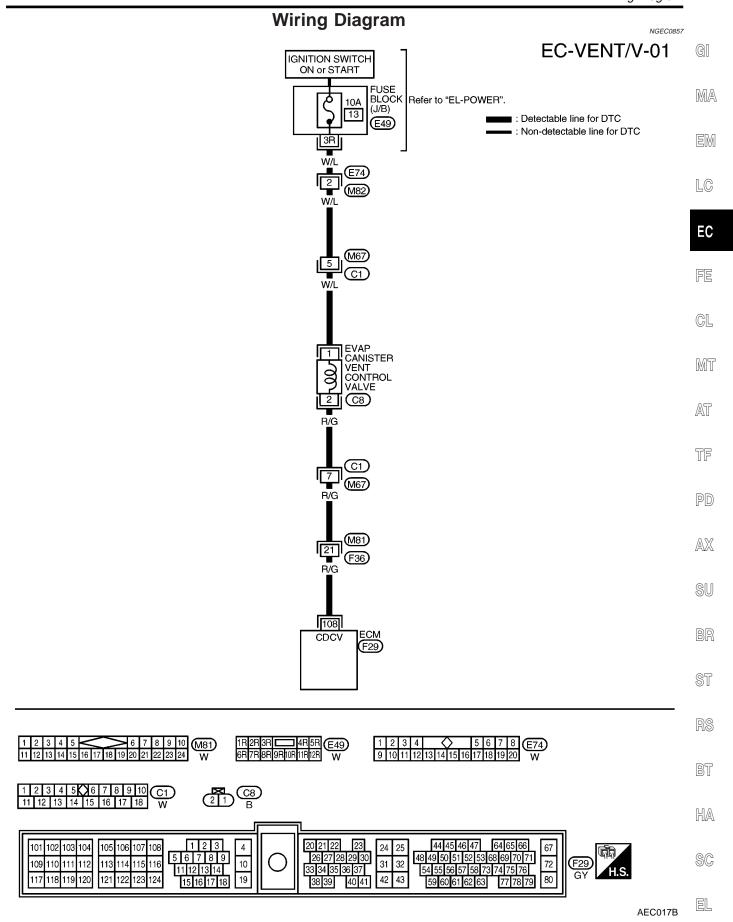
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine.
- 4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE:

PEF403V

If a malfunction exists, NG result may be displayed quicker.

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1082.

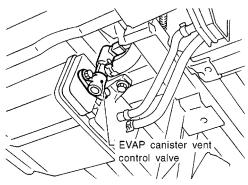

With GST

Follow the procedure "With CONSULT-II".

EC-1080

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE) VG33E

Wiring Diagram



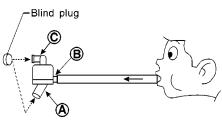
Diagnostic Procedure

NGEC0858

1 CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Check obstructed rubber tube connected to EVAP canister vent control valve.

SEF143S


OK or NG

OK	>	GO TO 2.
NG		Clean, repa

Clean, repair or replace rubber tube.

2 CHECK WATER SEPARATOR

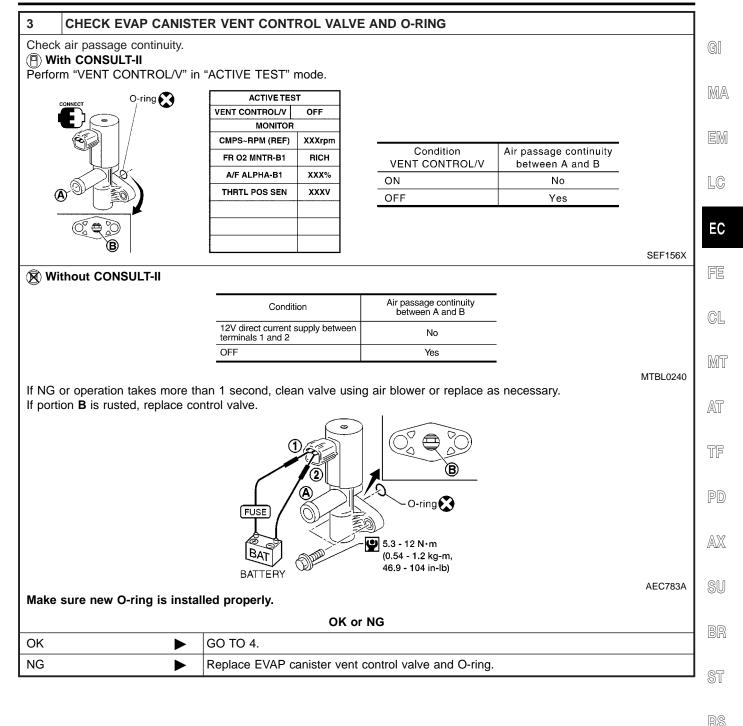
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

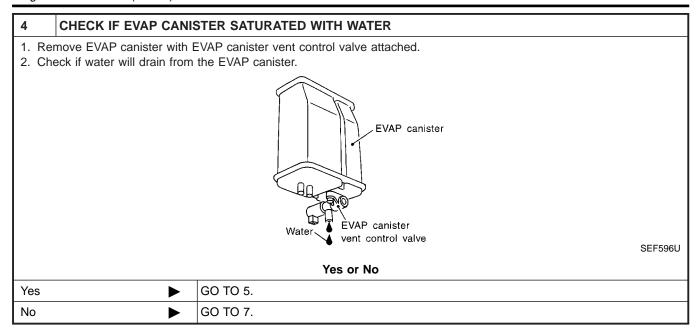

• Do not disassemble water separator.

OK or NG

OK		GO TO 3.
NG	>	Replace water separator.

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE)

Diagnostic Procedure (Cont'd)

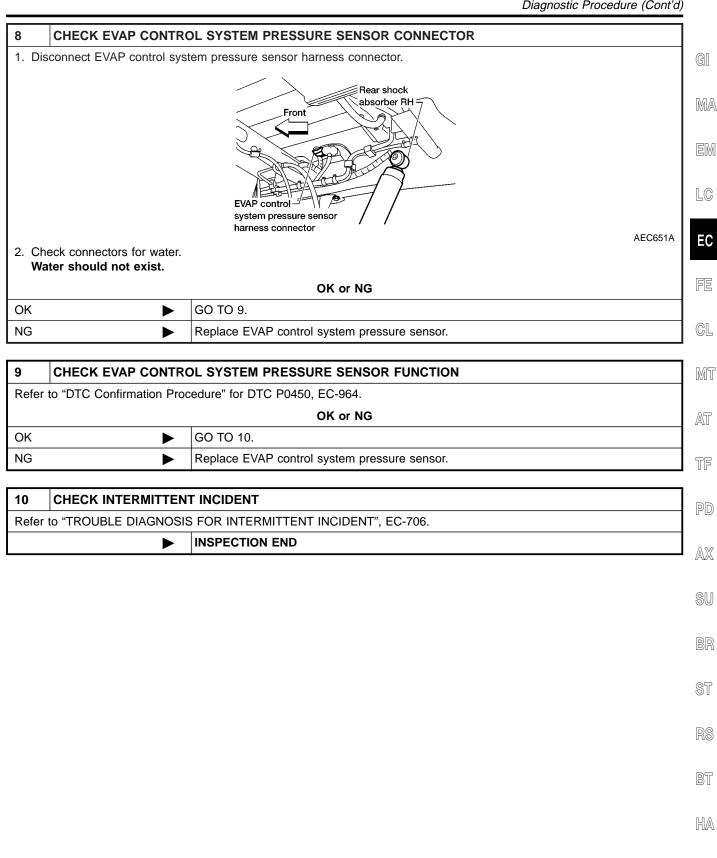

BT

HA

SC

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE)

Diagnostic Procedure (Cont'd)


5	CHECK EVAP CANISTE	ER			
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).					
	OK or NG				
OK	OK ▶ GO TO 7.				
NG	>	GO TO 6.			

6	DETECT MALFUNCTIONING PART		
• EVA	Check the following. • EVAP canister for damage • EVAP hose between EVAP canister and water separator for clogging or poor connection		
	Repair hose or replace EVAP canister.		

7	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.			
OK or NG			
ОК	OK ▶ GO TO 8.		
NG	>	Repair it.	

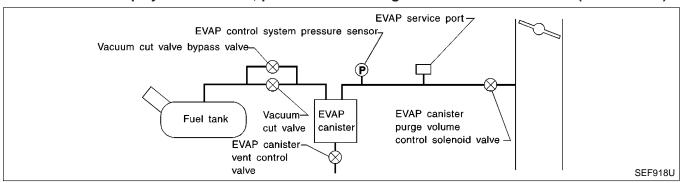
DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE)

Diagnostic Procedure (Cont'd)

SC

EL

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33E


System Description

System Description

NGEC0859

NOTE:

If DTC P1447 is displayed with P0510, perform trouble diagnosis for DTC P0510 first. (See EC-998.)

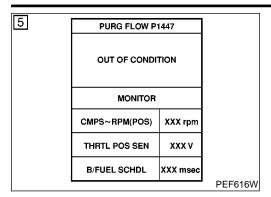
In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

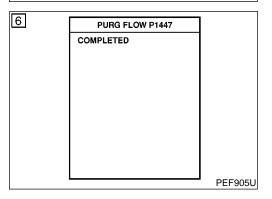
NGEC086

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

Malfunction is detected when EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.


POSSIBLE CAUSE

NGEC0860S


- EVAP canister purge volume control solenoid valve stuck closed
- EVAP control system pressure sensor and the circuit
- Loose, disconnected or improper connection of rubber tube
- Blocked rubber tube
- Blocked or bent rubber tube to MAP/BARO switch solenoid valve
- Cracked EVAP canister
- EVAP canister purge volume control solenoid valve circuit
- Closed throttle position switch
- Blocked purge port
- EVAP canister vent control valve

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

On Board Diagnosis Logic (Cont'd)

6		1	
	PURG FLOW P	1447	
	TESTING		
	MONITOR		
	CMPS~RPM(POS)	XXX rpm	
	THRTL POS SEN	xxx v	
	B/FUEL SCHDL	XXX msec	
			PEF617W

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Start engine and let it idle for at least 70 seconds.
- 4) Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
CMPS-RPM (POS)	500 - 3,400 rpm
B/FUEL SCHDL	Less than 4 msec
Engine coolant temperature	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1089.

GI

MA

NGEC0861

EC

FE

CL

MT

AT

TF

 $\mathbb{A}\mathbb{X}$

SU

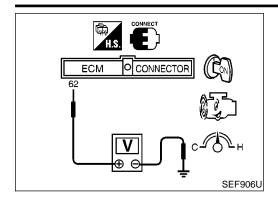
BR

ST

RS

BT

HA


SC

EL

 $\mathbb{D}\mathbb{X}$

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33E

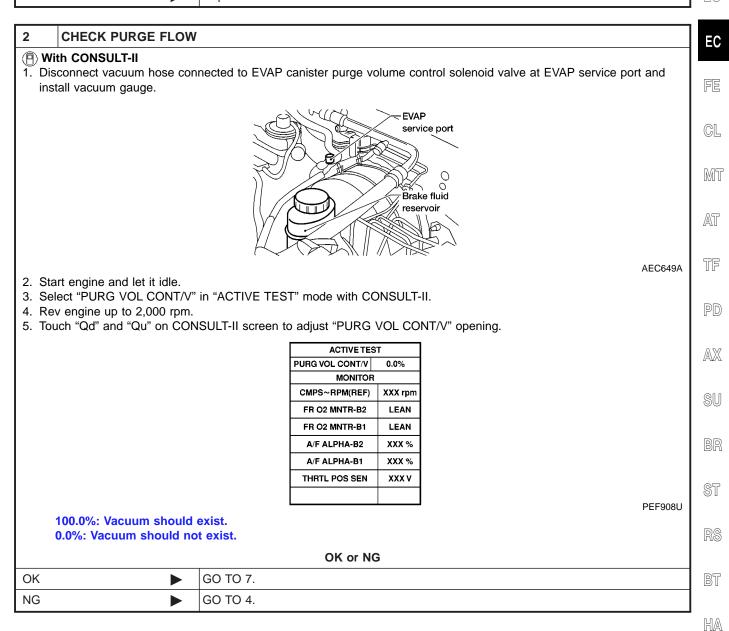
Overall Function Check

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Lift up drive wheels.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF, wait at least 5 seconds.
- 4) Start engine and wait at least 70 seconds.
- Set voltmeter probes to ECM terminals 62 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.


Air conditioner switch	ON
Steering wheel	Fully turned
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than "P", "N" or "R"

- 8) Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9) If NG, go to "Diagnostic Procedure", EC-1089.

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

Diagnostic Procedure

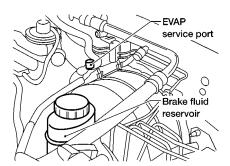
Diagnostic Procedure

SC

EL

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33E

Diagnostic Procedure (Cont'd)


CHECK PURGE FLOW

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.

3

3. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

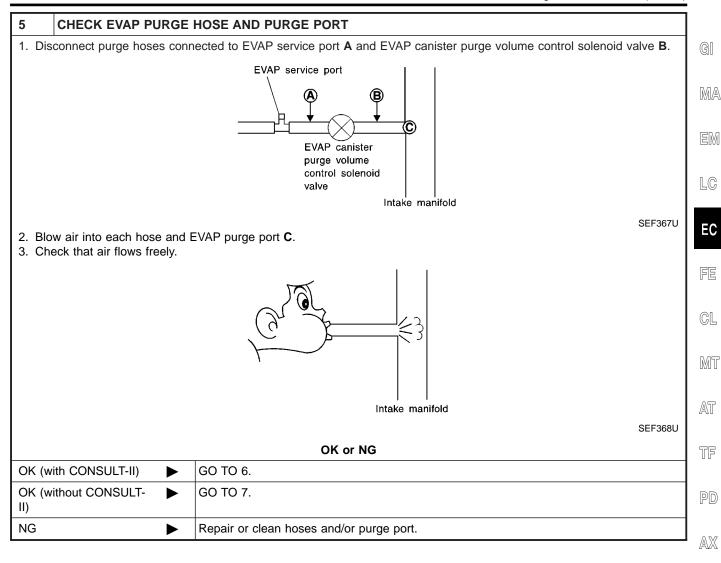
AEC649A

- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum gauge indication when revving engine up to 2,000 rpm.

Vacuum should exist.

6. Release the accelerator pedal fully and let idle.

Vacuum should not exist.


OK or NG

OK •	GO TO 7.
NG ▶	GO TO 4.

4	CHECK EVAP PURGE	INE	
Turn ignition switch OFF. Check EVAP purge line for improper connection or disconnection. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-607.			
	OK or NG		
OK	OK 🕨 GO TO 5.		
NG		Repair it.	

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33

Diagnostic Procedure (Cont'd)

SU

BR

ST

BT

HA

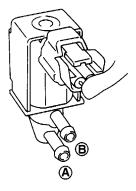
SC

EL

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33

Diagnostic Procedure (Cont'd)

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE


(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST		
PURG VOL CONT/V	0.0%	
MONITOR	₹	
CMPS~RPM(REF)	XXX rpm	
FR O2 MNTR-B2	RICH	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B2	XXX %	
A/F ALPHA-B1	XXX %	
THRTL POS SEN	xxx v	

If OK, inspection end. If NG, go to following step.

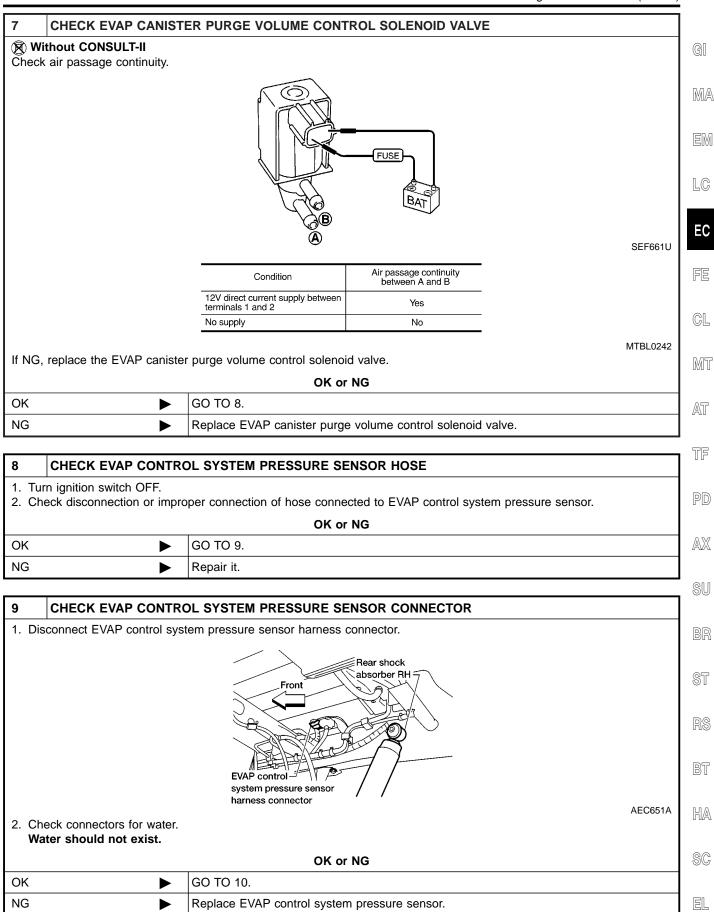
3. Check air passage continuity.

SEF660U

PEF882U

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

MTBL0241


If NG, replace the EVAP canister purge volume control solenoid valve.

OK or NG

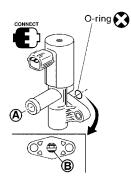
OK J	•	GO TO 8.
NG		Replace EVAP canister purge volume control solenoid valve.

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

Diagnostic Procedure (Cont'd)

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33

Diagnostic Procedure (Cont'd)


10	10 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION		
Refer to "DTC Confirmation Procedure" for DTC P0450, EC-964.			
	OK or NG		
OK	OK ▶ GO TO 11.		
NG	NG Replace EVAP control system pressure sensor.		

11 CHECK EVAP CANISTER VENT CONTROL VALVE

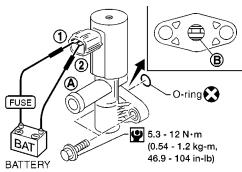
Check air passage continuity.

(P) With CONSULT-II

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST			
VENT CONTROL/V OFF			
MONITOR			
CMPS~RPM (REF)	XXXrpm		
FR O2 MNTR-B1	RICH		
A/F ALPHA-B1	XXX%		
THRTL POS SEN	xxxv		

Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	


SEF156X

(Without CONSULT-II

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A

Make sure new O-ring is installed properly.

OK or NG

ĺ	OK	>	GO TO 12.
	NG	>	Replace EVAP canister vent control valve.

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

Diagnostic Procedure (Cont'd)

CHECK CLOSED THROTTLE POSITION SWITCH

(P) With CONSULT-II

12

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Remove vacuum hose connected to throttle opener.
- 4. Connect suitable vacuum hose to vacuum pump and the throttle opener (If so equipped).
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, 11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- 6. Turn ignition switch ON.
- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check indication of "CLSD THL/P SW".

Measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

If NG, adjust closed throttle position switch.

Check the following items. Refer to "Basic Inspection", EC-669.

Items	Specifications	
Ignition timing	15° ± 2° BTDC	
Base idle speed	700 ± 50 rpm (in "P" or "N" position)	
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
Target idle speed	750 ± 50 rpm (in "P" or "N" position)	

MTBL0226

MTBL0247

9. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK or NG

OK ▶	GO TO 14.
NG ▶	Replace throttle position switch with throttle position sensor.

GI

MA

C

EC

55

MT

AT

TF

PD

@11

ST

29

BT

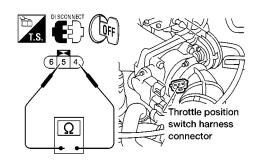
HA

SC

EL

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

Diagnostic Procedure (Cont'd)


CHECK CLOSED THROTTLE POSITION SWITCH

Without CONSULT-II

13

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Remove vacuum hose connected to throttle opener (If so equipped).
- 4. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 5. Apply vacuum [more than -40.0kPa (-300mmHg, 11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- 6. Disconnect closed throttle position switch harness connector.
- 7. Check continuity between closed throttle position switch terminals 4 and 5.

 Resistance measurement must be made with closed throttle position switch installed in vehicle.

AEC654A

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

MTBL0247

If NG, adjust closed throttle position switch.

Check the following items. Refer to "Basic Inspection", EC-669.

Items	Specifications	
Ignition timing	15° ± 2° BTDC	
Base idle speed	700 ± 50 rpm (in "P" or "N" position)	
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
Target idle speed	750 ± 50 rpm (in "P" or "N" position)	

MTBL0226

8. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK ▶	GO TO 14.
NG ►	Replace throttle position switch with throttle position sensor.

14	14 CHECK EVAP PURGE LINE		
	Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-607.		
	OK or NG		
OK	>	GO TO 15.	
NG	>	Replace it.	

15	15 CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	>	GO TO 16.	

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33E

Diagnostic Procedure (Cont'd)

16	CHECK INTERMITTENT INCIDENT		
Refer	o "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

GI

MA

EM

LC

EC

_

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

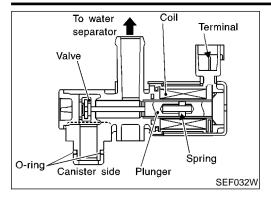
SU

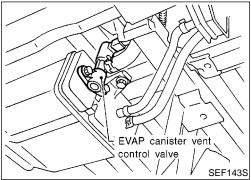
BR

ST

RS

BT


HA


SC

EL

DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN) VG33E

Component Description

Component Description

NOTE:

If DTC P1448 is displayed with P0440, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

valve

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

(11 - 14V)

NGEC0864

TERMINAL NO.

WIRE COLOR

ITEM

CONDITION

DATA (DC Voltage)

108

R/G

EVAP canister vent control [Ignition switch ON]

BATTERY VOLTAGE

On Board Diagnosis Logic

Malfunction is detected when EVAP canister vent control valve remains opened under specified driving conditions.

POSSIBLE CAUSE

NGEC0867S01

- EVAP canister vent control valve
- EVAP control system pressure sensor and circuit
- Blocked rubber tube to EVAP canister vent control valve
- Water separator
- EVAP canister is saturated with water.
- Vacuum cut valve

EC-1098

DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN)

DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0868

- If DTC P1448 is displayed with P0440, perform trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

LC

EC

FE

GL

EVAP V/S LEAK P0440 1)PERFORM TEST AT A LOCATION OF 0-30C (32-86F) 2)OPEN ENGINE HOOD. 3)START ENGINE WITH VEHICLE STOPPED. IF ENG IS ON, STOP FOR 5 SEC. THEN RESTART. 4)TOUCH START.

(P) With CONSULT-II **TESTING CONDITION:**

- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to
- It is better that the fuel level is low.
- Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

- If the CONSULT-II screen shown at left is displayed, stop the engine and stabilize the vehicle temperature at 25°C (77°F) or cooler. After "TANK F/TMP SE" becomes less than 30°C (86°F), retest.
 - (Use a fan to reduce the stabilization time.)
- If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-669.
- The engine idle portion of this test (See illustration at left.) will take approximately 5 minutes.
- Make sure that "OK" is displayed. If "NG" is displayed, go to the following step.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

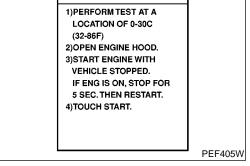
- Stop engine and wait at least 5 seconds, then turn ON.
- 8) Disconnect hose from water separator.
- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch ON and OFF alternately.

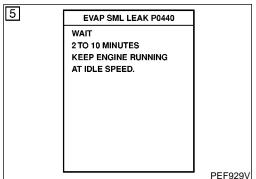
MIT

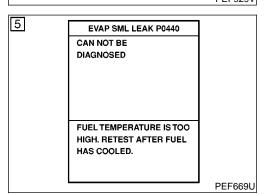
AT

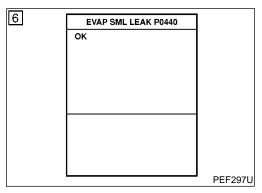
TF

PD

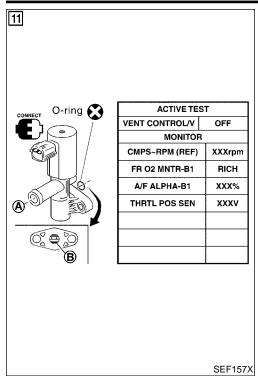

SU

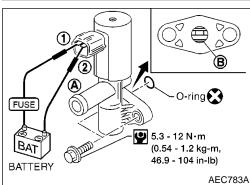

ST


BT


HA

SC




DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN) VG33E

DTC Confirmation Procedure (Cont'd)

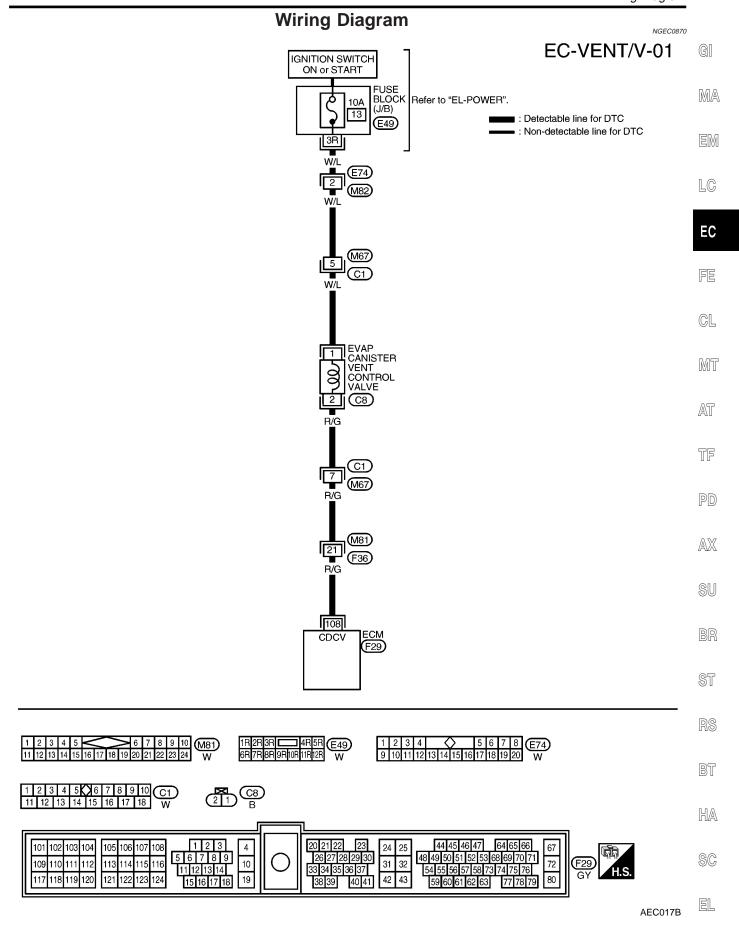
11) Make sure the following.	
Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to "Diagnostic Procedure", EC-1102. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-949.

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

Nithout CONSULT-II

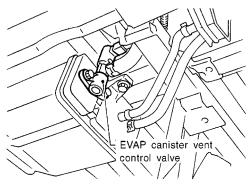

- 1) Disconnect hose from water separator.
- Disconnect EVAP canister vent control valve harness connector.
- 3) Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If the result is NG, go to "Diagnostic Procedure", EC-1102. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-949.

DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN) VG33E

Wiring Diagram

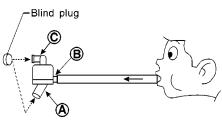

Diagnostic Procedure

NGEC0871

SEF143S

1 CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Check obstructed rubber tube connected to EVAP canister vent control valve.


OK or NG

OK	>	GO TO 2.

NG Clean, repair or replace rubber tube.

2 CHECK WATER SEPARATOR

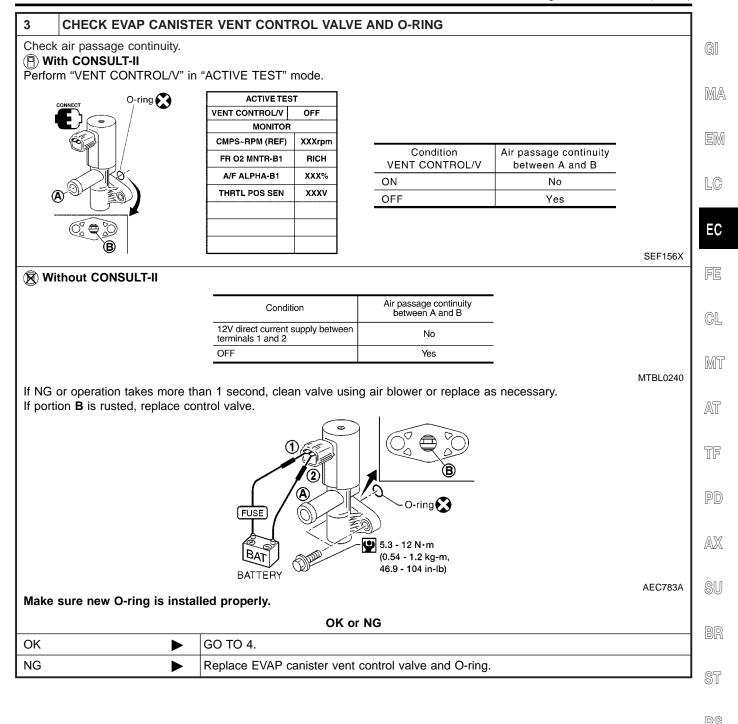
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

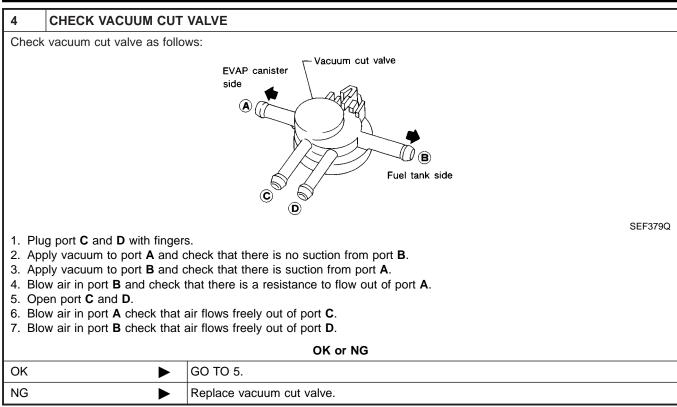

• Do not disassemble water separator.

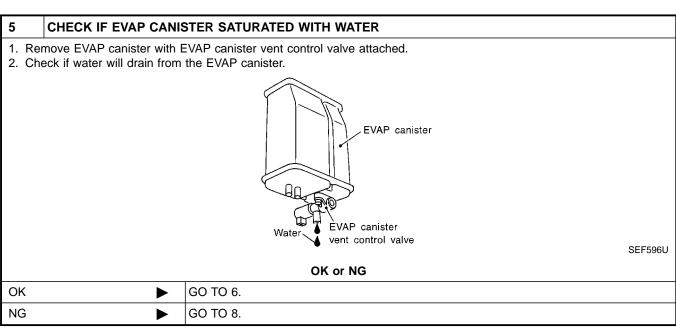
OK	or	NG

OK		GO TO 3.
NG		Replace water separator.

DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN)

Diagnostic Procedure (Cont'd)


BT


HA

SC

DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN)

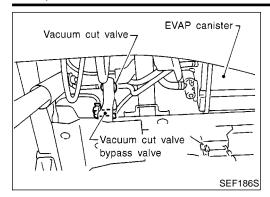
Diagnostic Procedure (Cont'd)

6	6 CHECK EVAP CANISTER					
	Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).					
	OK or NG					
OK	OK ▶ GO TO 8.					
NG	>	Replace the EVAP canister.				

DTC P1448 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (OPEN)

Diagnostic Procedure (Cont'd)

	TECT MALFUNCTIONING PART	- 1
Check the following. EVAP canister for damage		
	anister for damage ose between EVAP canister and water separator for clogging or poor connection	
	Repair hose or replace EVAP canister.	
		\equiv
	ECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE	
Check dis	connection or improper connection of hose connected to EVAP control system pressure sensor.	
	OK or NG	
OK	▶ GO TO 9.	
NG	Repair it.	
9 CH	ECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR	
	nect EVAP control system pressure sensor harness connector.	-
1. 2.0001.	2.7 iii oonii o oyolon proodalo oonioo namada oonii oolon	
	Rear shock absorber RH	
	Front	
	EVAP control system pressure sensor harness connector	
2 Chack	system pressure sensor / / harness connector AEC	C651A
	system pressure sensor / / harness connector	C651A
	system pressure sensor / / harness connector AEC	C651A
Water	system pressure sensor / / harness connector connectors for water. should not exist.	C651A
Water OK	system pressure sensor / / harness connector AEC connectors for water. should not exist. OK or NG	C651A
Water OK NG	system pressure sensor / harness connector Connectors for water. Should not exist. OK or NG GO TO 10. Replace EVAP control system pressure sensor.	C651A
Water OK NG CH	system pressure sensor / harness connector Connectors for water. Should not exist. OK or NG Description of the pressure sensor of the pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION	C651A
Water OK NG CH	system pressure sensor harness connector Connectors for water. Should not exist. OK or NG OK or NG Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964.	C651A
Water OK NG CH	system pressure sensor harness connector Connectors for water. Should not exist. OK or NG Page 100 To 10. Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964. OK or NG	C651A
Water OK NG 10 CH Refer to "I	system pressure sensor harness connector Connectors for water. Should not exist. OK or NG OK or NG Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964.	C651A
Water OK NG 10 CH Refer to "I	system pressure sensor harness connector Connectors for water. Should not exist. OK or NG Page 100 To 10. Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964. OK or NG	C651A
OK NG 10 CH Refer to "I	system pressure sensor harness connector OK or NG OK or NG GO TO 10. Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964. OK or NG GO TO 11. Replace EVAP control system pressure sensor.	C651A
Water OK NG 10 CH Refer to "I OK NG	system pressure sensor harness connector AEC connectors for water. Should not exist. OK or NG OK or NG Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964. OK or NG OK or NG Replace EVAP control system pressure sensor. ECK INTERMITTENT INCIDENT	C651A
Water OK NG 10 CH Refer to "I OK NG	system pressure sensor harness connector OK or NG OK or NG GO TO 10. Replace EVAP control system pressure sensor. ECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION OTC Confirmation Procedure" for DTC P0450, EC-964. OK or NG GO TO 11. Replace EVAP control system pressure sensor.	C651A


SC

EL

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

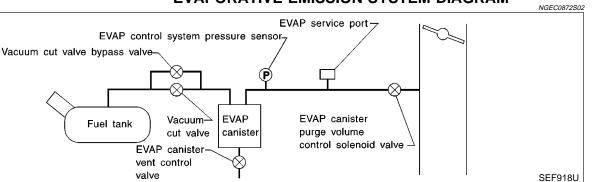
VG33E

Description

Description COMPONENT DESCRIPTION

NGEC0872

IGEC0872S01


The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

NGEC0874

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

) VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when an improper voltage signal is sent to ECM through vacuum cut valve bypass valve.

GI

POSSIBLE CAUSE

Harness or connectors
(The vacuum cut valve bypass valve circuit is open or shorted.)

Vacuum cut valve bypass valve

MA

pass valve

EM

LC

DTC Confirmation Procedure

NOTE:

NGEC0876

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

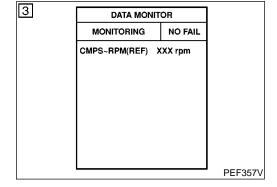
EC FE

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.

GL MT

(P) With CONSULT-II


AT

TF

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
 - 3) Start engine and wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1109.

With GST

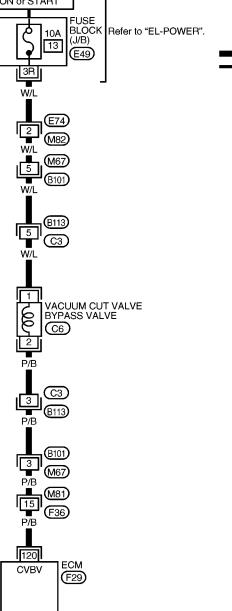
Follow the procedure "With CONSULT-II".

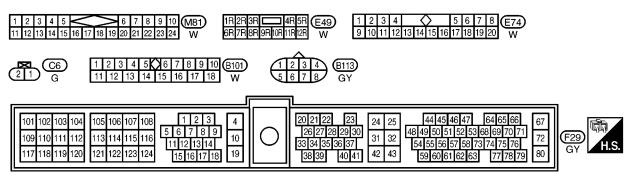
PD

SU

ST

BT


HA


SC

EL

 \mathbb{N}

Wiring Diagram NGEC0877 EC-BYPS/V-01 IGNITION SWITCH ON or START **FUSE** BLOCK Refer to "EL-POWER". 10A 13 E49 ■ : Detectable line for DTC : Non-detectable line for DTC

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT) VG33E

Diagnostic Procedure

Diagnostic Procedure

NGEC0878 INSPECTION START Do you have CONSULT-II? Yes or No Yes GO TO 2. No GO TO 3.

EM

EC

FE

GL

MT

AT

TF

MA

GI

2 CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT

(I) With CONSULT-II

- 1. Turn ignition switch OFF and then ON.
- 2. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.

ACTIVE TEST		
VC/V BYPASS/V	ON	
MONITOR	1	
CMPS~RPM(REF)	XXX rpm	
FR O2 MNTR-B2	LEAN	
FR O2 MNTR-B1 LE		
A/F ALPHA-B2	XXX %	
A/F ALPHA-B1 XXX %		
THRTL POS SEN	xxx v	

PEF909U

4. Make sure that clicking sound is heard from the vacuum cut valve bypass valve.

or NO

NG •	GO TO 3.
OK ▶	GO TO 7.

PD

SU

BR ST

RS

BT

HA

SC

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT) VG33E

Diagnostic Procedure (Cont'd)

3 CHECK VACUUM CUT VALVE BYPASS VALUE POWER SUPPLY CIRCUIT (Without CONSULT-II 1. Turn ignition switch OFF. 2. Disconnect vacuum cut valve bypass valve harness connector. EVAP canister Vacuum cut valve-Vacuum cut valve bypass valve SEF186S 3. Turn ignition switch ON. 4. Check voltage between terminal 1 and ground with CONSULT-II or tester. SEF659W

Voltage: Battery voltage

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E74, M82
- Harness connectors M67, C1
- Fuse block (J/B) connector E49
- 10A fuse
- Harness for open or short between vacuum cut valve bypass valve and fuse

Repair harness or connectors.

5 CHECK VACUUM CUT VALVE BYPASS VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 120 and valve terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG ►	GO TO 6.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

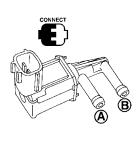
PD

SU

ST

6 DETECT MALFUNCTIONING PART

Check the following.

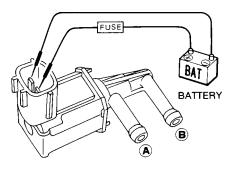

- Harness connectors C1, M67
- Harness connectors M81, F36
- Harness for open or short between vacuum cut valve bypass valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.


ACTIVE TE	ST
VC/V BYPASS/V	OFF
MONITOR	₹
CMPS~RPM (REF)	XXXrpm
FR O2 MNTR-B1	RICH
A/F ALPHA-B1	XXX%
THRTL POS SEN	xxxv

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

SEF158X

(Without CONSULT-II

1. Check air passage continuity and operation delay time under the following conditions.

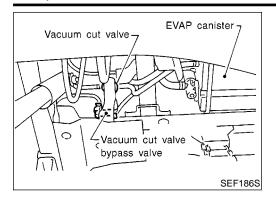
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

MTBL0242

SEF351Q

OK or NG

ı	OK		GO 10 8.
	NG		Replace vacuum cut valve bypass valve.


8	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END		

ΞL

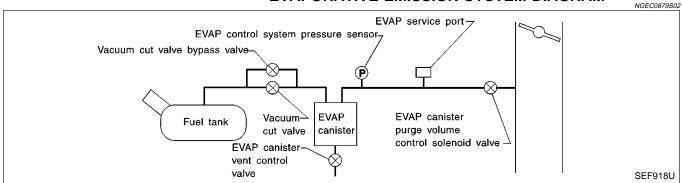
HA

SC

Description

Description **COMPONENT DESCRIPTION**

NGEC0879


The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0880

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V • Ignition switch: ON		OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

NGEC0882S01

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when vacuum cut valve bypass valve does not operate properly.

GI

MA

POSSIBLE CAUSE

- Vacuum cut valve bypass valve
- Vacuum cut valve
- Bypass hoses for clogging
- EVAP control system pressure sensor and circuit
- EVAP canister vent control valve
- Hose between fuel tank and vacuum cut valve clogged
- Hose between vacuum cut valve and EVAP canister clogged
- **EVAP** canister
- EVAP purge port of fuel tank for clogging

EC

LC

GL

MT

AT

TF

PD

AX

NGEC0883

7 VC CUT/V BP/V P1491 **OUT OF CONDITION** MONITOR CMPS~RPM(POS) XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec PEF618W

VC CUT/V BP/V I	P1491	
TESTING		
MONITOR		
CMPS~RPM(POS)	XXX rpm	
THRTL POS SEN	xxx v	
B/FUEL SCHDL	XXX msec	
		PEF619W

7 VC CUT/V BP/V P1491 COMPLETED PEF912U

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

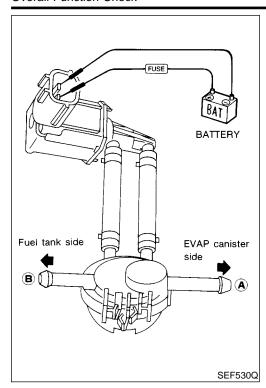
TESTING CONDITION:

Always perform test at a temperature of 5 to 30°C (41 to 86°F).

- (P) With CONSULT-II
- Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START". 6)
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

CMPS-RPM (POS)	500 - 3,000 rpm (A/T models) 500 - 3,300 rpm (M/T models)
Selector lever	Suitable position
Vehicle speed	36 - 120 km/h (22 - 75 MPH)
B/FUEL SCHDL	Less than 5 msec

If "TESTING" is not displayed after 5 minutes, retry from step 3.


Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1116.

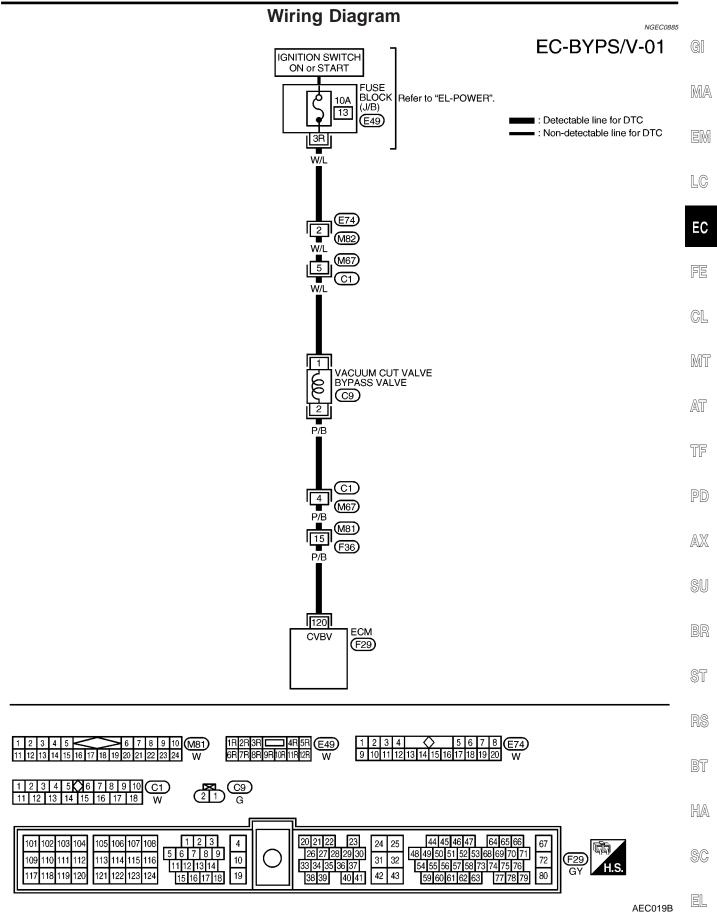
BT

HA

SC

Overall Function Check

Overall Function Check


NGEC0884

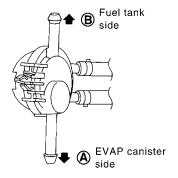
Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

N Without CONSULT-II

- Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 2) Apply vacuum to port **A** and check that there is no suction from port **B**.
- 3) Apply vacuum to port **B** and check that there is suction from port **A**.
- 4) Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 5) Supply battery voltage to the terminal.
- 6) Blow air in port **A** and check that air flows freely out of port **B**.
- 7) Blow air in port **B** and check that air flows freely out of port **A**.
- 8) If NG, go to "Diagnostic Procedure", EC-1116.

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

Diagnostic Procedure


ICECOO!

1	INSPECTION START		NGEC0886
Do you have CONSULT-II?			
Yes or No			
Yes	•	GO TO 2.	
No	•	GO TO 3.	

2 CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

(P) With CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Turn ignition switch ON.
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

ACTIVE TEST		
ACTIVE TEST		
VC/V BYPASS/V	ON	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
FR O2 MNTR-B2	LEAN	
FR O2 MNTR-B1	LEAN	
A/F ALPHA-B2	XXX%	
A/F ALPHA-B1	XXX%	
THRTL POS SEN	xxxv	

SEF159X

OK or NG

OK •	GO TO 4.
NG ►	GO TO 5.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

BT

HA

SC

EL

SEF914U

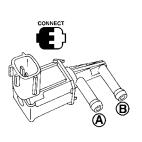
Diagnostic Procedure (Cont'd) 3 CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION (R) Without CONSULT-II 1. Turn ignition switch OFF. 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly. 3. Apply vacuum to port A and check that there is no suction from port B. 4. Apply vacuum to port B and check that there is suction from port A. 5. Blow air in port B and check that there is a resistance to flow out of port A. 6. Disconnect vacuum cut valve bypass valve harness connector. 7. Supply battery voltage to the terminal. 8. Blow air in port A and check that air flows freely out of port B. 9. Blow air in port B and check that air flows freely out of port A. ruel tank side FUSE EVAP canister side

ОК	>	GO TO 4.
NG	>	GO TO 5.

OK or NG

4	CHECK EVAP PURGE	LINE
 Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection. Check EVAP purge port of fuel tank for clogging. Check EVAP canister. Refer to EC-604. 		
OK or NG		
ОК	>	GO TO 8.
NG (S	tep 1)	Repair it.
NG (S	tep 2)	Clean EVAP purge port.
NG (S	tep 3)	Replace EVAP canister.

5	CHECK BYPASS HOSE	
Check bypass hoses for clogging.		
OK or NG		
OK	>	GO TO 6.
NG	>	Repair or replace hoses.

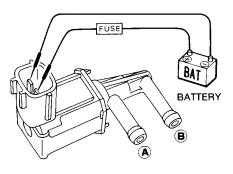

VG33E

Diagnostic Procedure (Cont'd)

6 CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.


ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR	}	
CMPS~RPM (REF)	XXXrpm	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B1	XXX%	
THRTL POS SEN	xxxv	

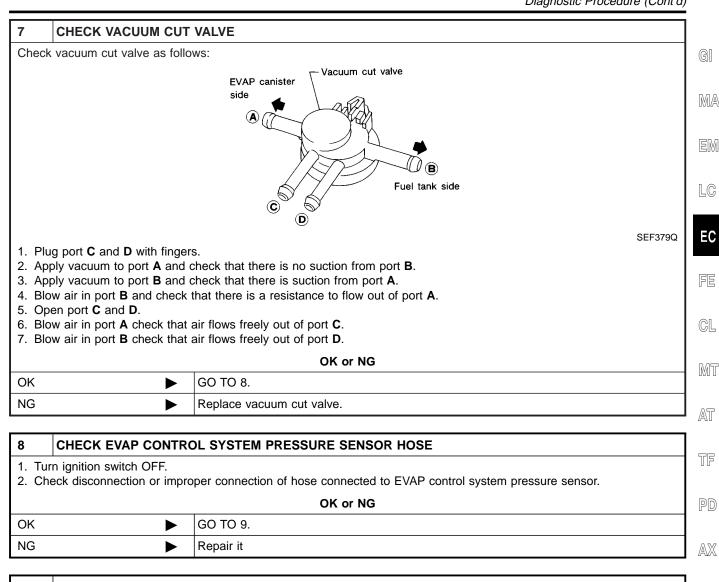
Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

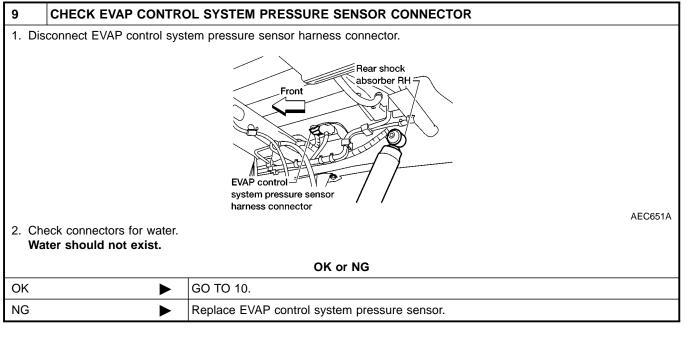
SEF158X

1. Check air passage continuity and operation delay time under the following conditions.

Without CONSULT-II

SEF351Q


Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No


MTBL0242

OK or NG

OK •	GO TO 7.
NG ►	Replace vacuum cut valve bypass valve.

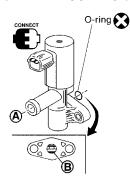
Diagnostic Procedure (Cont'd)

HA

SC

VG33E

Diagnostic Procedure (Cont'd)


10	10 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION	
Refer to "DTC Confirmation Procedure" for DTC P0450, EC-964.		
OK or NG		
OK	OK ▶ GO TO 11.	
NG	•	Replace EVAP control system pressure sensor.

11 CHECK EVAP CANISTER VENT CONTROL VALVE

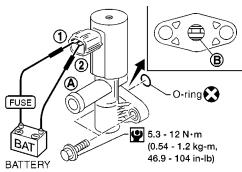
Check air passage continuity.

(P) With CONSULT-II

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
CMPS~RPM (REF)	XXXrpm	
FR O2 MNTR-B1	RICH	
A/F ALPHA-B1	XXX%	
THRTL POS SEN	xxxv	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes


SEF156X

(Without CONSULT-II

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A

Make sure new O-ring is installed properly.

OK ►	GO TO 12.
NG ►	Replace EVAP canister vent control valve.

12 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.

► INSPECTION END

DTC P1605 A/T DIAGNOSIS COMMUNICATION LINE

Component Description

Component Description

The malfunction information related to A/T (Automatic Transmission) is transferred through the line (circuit) from TCM (Transmission control module) to ECM. Therefore, be sure to erase the malfunction information such as DTC not only in TCM (Transmission control module) but also ECM after the A/T related repair.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
7	G/B	A/T check signal	[Ignition switch ON] [Engine is running]	0 - 3.0V

MA

LC

EC

GL

MT

On Board Diagnosis Logic

Malfunction is detected when an incorrect signal from TCM (Transmission control module) is sent to ECM.

TF

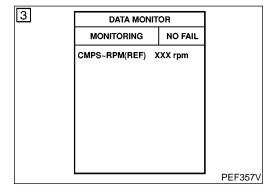
NGEC0889501

AT

POSSIBLE CAUSE

Harness or connectors

The communication line circuit between ECM and TCM (Transmission control module) is open or shorted.]



Dead (Weak) battery

TCM (Transmission control module)

AX

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(P) With CONSULT-II

1) Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and wait at least 40 seconds.

BT

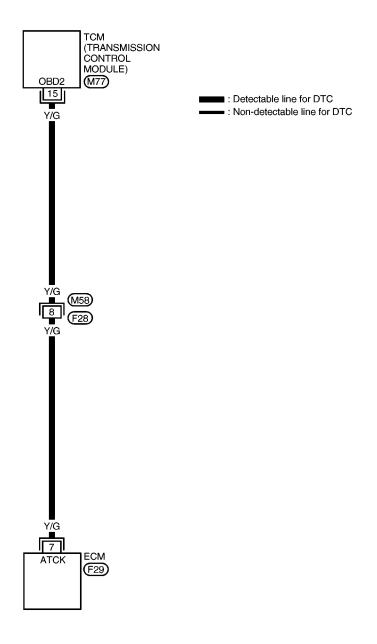
If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1123.

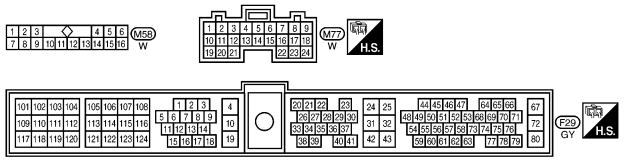
HA

With GST

Follow the procedure "With CONSULT-II".

SC


EL

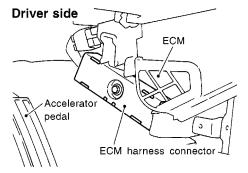


Wiring Diagram

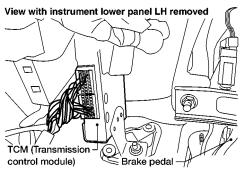
NGEC0891

EC-ATDIAG-01

DTC P1605 A/T DIAGNOSIS COMMUNICATION LINE


Diagnostic Procedure

Diagnostic Procedure


NGEC0892

1 CHECK A/T DIAGNOSIS COMMUNICATION LINE INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and TCM (Transmission Control Module) harness connector.

SEF324V

AEC655A

3. Check harness continuity between ECM terminal 7 and TCM (Transmission Control Module) terminal 15. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or l	NG
----	------	----

OK ►	GO TO 3.
NG ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- Harness for open or short between ECM and TCM (Transmission Control Module)

Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.

INSPECTION END

GL

MA

LG

EC

FE

GL

MT

AT

TF

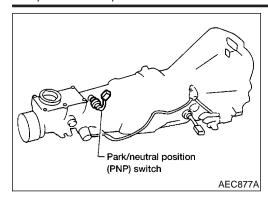
PD

SU

BR

ST

IUI@


BT

HA

SC

EL

Component Description

Component Description

When the gear position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON".

ECM detects the position because the continuity of the line (the "ON" signal) exists.

For A/T models, the park/neutral position (PNP) switch assembly also includes a transmission range switch to detect selector lever position.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0894

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON
		Except above	OFF

ECM Terminals and Reference Value

NGEC0895

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22	22 L/B Park/neutral position (PNF switch	Park/neutral position (PNP)	 [Ignition switch ON] Gear position is "N" or "P" (A/T models) Gear position is neutral (M/T models) 	Approximately 0V
		[Ignition switch ON] • Except the above gear position	Approximately 5V	

On Board Diagnosis Logic

NGEC089

Malfunction is detected when the signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.

POSSIBLE CAUSE

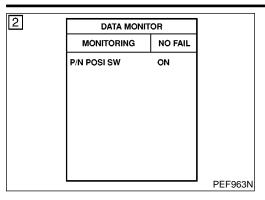
NGEC0896S01

- Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.]
- Park/neutral position (PNP) switch

DTC Confirmation Procedure

NGEC0897

CAUTION:


Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

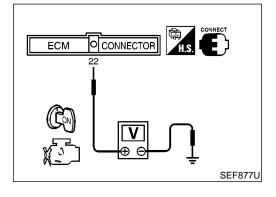
VG33E

DTC Confirmation Procedure (Cont'd)

5	DATA MONITOR	
	MONITORING NO FAIL	
	CMPS~RPM (POS) XXX rpm COOLAN TEMP/S XXX*C VHCL SPEED SE XXX km/h P/N POSI SW OFF B/FUEL SCHDL XXX ms	
		SEF381X

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.


Position (Selector lever)	Known good signal
"N" and "P" position	ON
Except the above position	OFF

If NG, go to "Diagnostic Procedure", EC-1127. If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- 5) Maintain the following conditions for at least 60 consecutive seconds.

CMPS-RPM (POS)	1,600 - 2,650 rpm (A/T models) 1,700 - 2,700 rpm (M/T models)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	1.6 - 6.5 msec (A/T models) 1.9 - 5.5 msec (M/T models)
VHCL SPEED SE	71 - 100 km/h (44 - 62 MPH)
Selector lever	Suitable position

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1127.

Overall Function Check

Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- Turn ignition switch ON.
- 2) Check voltage between ECM terminal 22 and body ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known good data)
"P" and "N" position	Approx. 0
Except the above position	Approx. 5

3) If NG, go to "Diagnostic Procedure", EC-1127.

MA

GI

EM LC

EC

FE

CL

MT

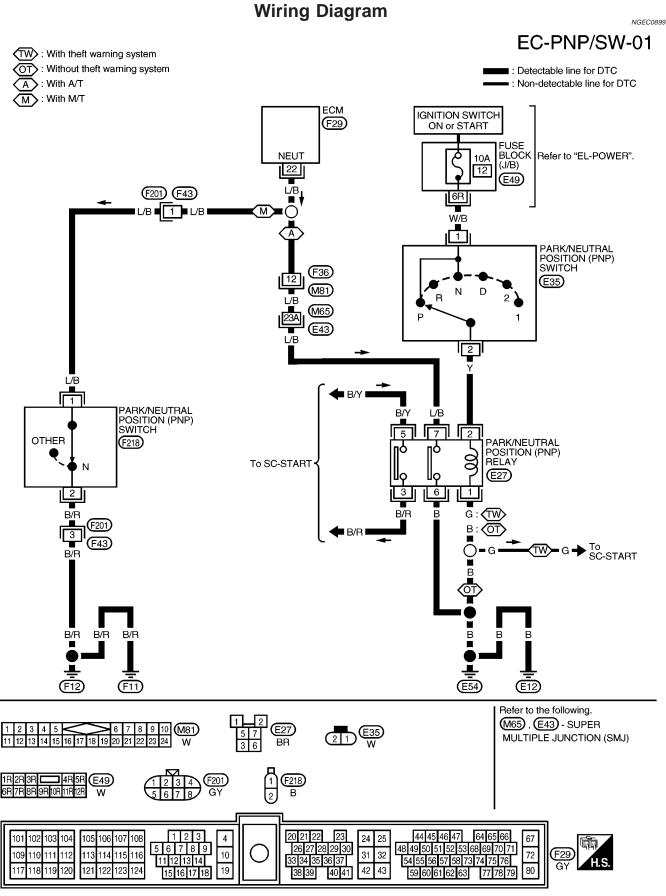
AT

PD

SU

BR

ST


50

BT

HA

SC

EL

VG33E

Diagnostic Procedure

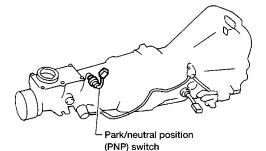
Diagnostic Procedure FOR M/T MODELS

NGEC0900

NGEC0900S01

MA

EC


MT

AT

TF

PD

- 1. Turn ignition switch OFF.
- 2. Disconnect park/neutral position (PNP) switch harness connector.

AEC877A

- 3. Check harness continuity between PNP switch terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F201, F43
- Harness for open or short between park/neutral position (PNP) switch and engine ground

CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- Repair open circuit or short to ground or short to power in harness or connectors.
- 3 CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 22 and PNP switch terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	>	GO TO 5.
NG	>	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F43, F201
- Harness for open or short between ECM and park/neutral position (PNP) switch
 - Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK PARK/NEUTRAL POSITION (PNP) SWITCH

Refer to "Position Switch Check", "ON-VEHICLE SERVICE", MT-8.

OK or NG

OK	GO TO 6.
NG	Replace park/neutral position (PNP) switch.

 \mathbb{Z}

HA

\$0

VG33E

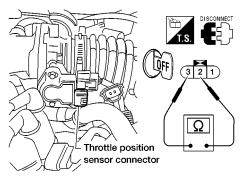
Diagnostic Procedure (Cont'd)

6	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END		

VG33E

=NGEC0900S02

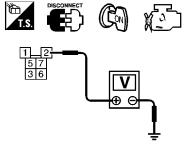
Diagnostic Procedure (Cont'd)


FOR A/T MODELS

...,

1. Turn ignition switch OFF.

2. Disconnect park/neutral position (PNP) relay.

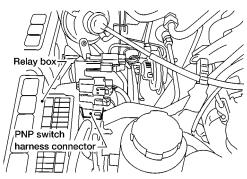

CHECK PNP SWITCH POWER SUPPLY CIRCUIT-I

3. Turn ignition switch ON.

4. Shift selector lever to "P" or "N" position.

5. Check voltage between terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage


OK or NG

OK		GO TO 6.
NG	•	GO TO 2.

2 CHECK PNP SWITCH POWER SUPPLY CIRCUIT-II

1. Turn ignition switch "OFF.

2. Disconnect park/neutral position (PNP) switch harness connector.

AEC662A

3. Check harness continuity between park/neutral position (PNP) switch terminal 2 and park/neutral position (PNP) relay terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK	GO TO 3.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

GL

MA

r n a

1 @

EC

FE

AEC665A

SEF661W

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

3T

RS

BT

HA

SC

EL

VG33E

Diagnostic Procedure (Cont'd)

3	CHECK PNP SWITCH POWER SUPPLY CIRCUIT-III		
2. Ch Wii	Turn ignition switch OFF. Check voltage between park/neutral position (PNP) switch terminal 1 and ground with CONSULT-II or tester. Refer to Wiring Diagram. Voltage: Battery voltage		
	OK or NG		
ОК	>	GO TO 5.	
NG	•	GO TO 4.	

4	DETECT MALFUNCTIONING PART		
Check the following.			
 Fuse block (J/B) connector E49 10A fuse 			
 Harness for open or short between park/neutral position (PNP) switch and fuse 			
		Repair open circuit or short to ground or short to power in harness or connectors.	

5	CHECK PARK/NEUTRAL POSITION (PNP) SWITCH		
Refer	Refer to "Component Inspection", AT-104.		
	OK or NG		
OK	OK ▶ GO TO 11.		
NG	>	Replace park/neutral position (PNP) switch.	

6	CHECK PNP RE	LAY G	ROUND CIRCUIT FOR OPEN AND SHORT
Turn ignition switch OFF. Check harness continuity between relay terminals 1, 6 and body ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.			
	OK or NG		
OK		•	GO TO 8.
NG (V syster	Vith theft warning m)	>	GO TO 7.
NG (Ving sy	Vithout theft warn-	•	Repair open circuit or short to ground or short to power in harness or connectors.

7	DETECT MALFUNCTIONING PART		
	Check the circuit between park/neutral position (PNP) relay and body ground. Refer to "STARTING SYSTEM", <i>SC-6</i> .		
	OK or NG		
OK	•	GO TO 11.	
NG	>	Repair or replace.	

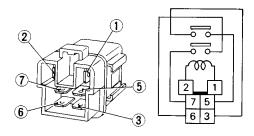
VG33E

Diagnostic Procedure (Cont'd)

8	CHECK PNP RELAY IN	PUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
2. Che	 Disconnect ECM harness connector. Check harness continuity between ECM terminal 22 and relay terminal 7. Refer to Wiring Diagram. Continuity should exist. 		
		o ground and short to power.	MA
	OK or NG		
OK	>	GO TO 10.	EM
NG	•	GO TO 9.	

9 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors F36, M81
- Harness connectors M65, E43
- Harness for open or short between ECM and park/neutral position (PNP) relay

Repair open circuit or short to ground or short to power in harness or connectors.

10 CHECK PARK/NEUTRAL POSITION (PNP) RELAY

1. Apply 12V direct current between park/neutral position (PNP) relay terminals 1 and 2.

2. Check continuity between park/neutral position (PNP) relay terminals 3 and 5, 6 and 7.

SEC202B

12V (1 and 2) applied: Continuity should exist. No voltage applied: Continuity should not exist.

OK or NG

OK ▶	GO TO 11.
NG •	Replace park/neutral position (PNP) relay.

11	CHECK INTERMITTENT	ECK INTERMITTENT INCIDENT	
Refer t	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-706.	
	>	INSPECTION END	

LC

EC

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

D@

BT

HA

SC

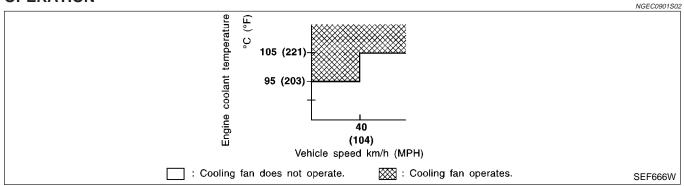
EL

VG33E

System Description

System Description

COOLING FAN CONTROL


NGEC0901

NGEC0901S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Vehicle speed sensor	Vehicle speed			
Engine coolant temperature sensor			Cooling fan relay(s)	
Ignition switch	Start signal			
Camshaft position sensor	Engine speed			

The ECM controls the cooling fan corresponding to the signals sent from the vehicle speed and engine coolant temperature. The control system has 2-step control [ON/OFF].

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC090

MONITOR ITEM	CONE	DITION	SPECIFICATION
COOLING FAN	Engine: Idling, after warming up	Engine coolant temperature is 94°C (201°F) or less.	OFF
COOLING I AIN	Air conditioner switch: OFF	Engine coolant temperature is 95°C (203°F) or more.	ON

ECM Terminals and Reference Value

NGEC09

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	1. C/D	Cooling for relay	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
36	LG/R	Cooling fan relay	[Engine is running] • Cooling fan is operating	0 - 0.6V

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise. When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Malfunction is detected when engine coolant temperature reaches an abnormally high temperature.

oboo MA

CAUTION:

When a malfunction is indicated be sure to replace the coolant, follow the procedure in "Changing Engine Coolant", "ENGINE MAINTENANCE", *MA-27*. Also, replace the engine oil.

1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS", MA-16.

EC

2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

FE

POSSIBLE CAUSE

 Harness or connectors (The cooling fan circuit is open or shorted.)

MT

AT

- Cooling fan
- Radiator hose
- Radiator
- Radiator cap
- Water pump
- Thermostat

TF

NGEC0904S01

For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-1143.

PD

 $\mathbb{A}\mathbb{X}$

SU

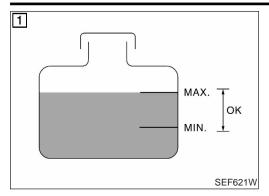
BR

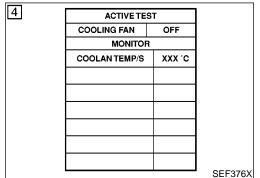
ST

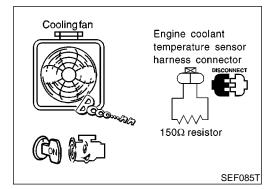
RS

BT

HA


SC


EL


 $\mathbb{D}\mathbb{X}$

VG33E

On Board Diagnosis Logic (Cont'd)

Overall Function Check

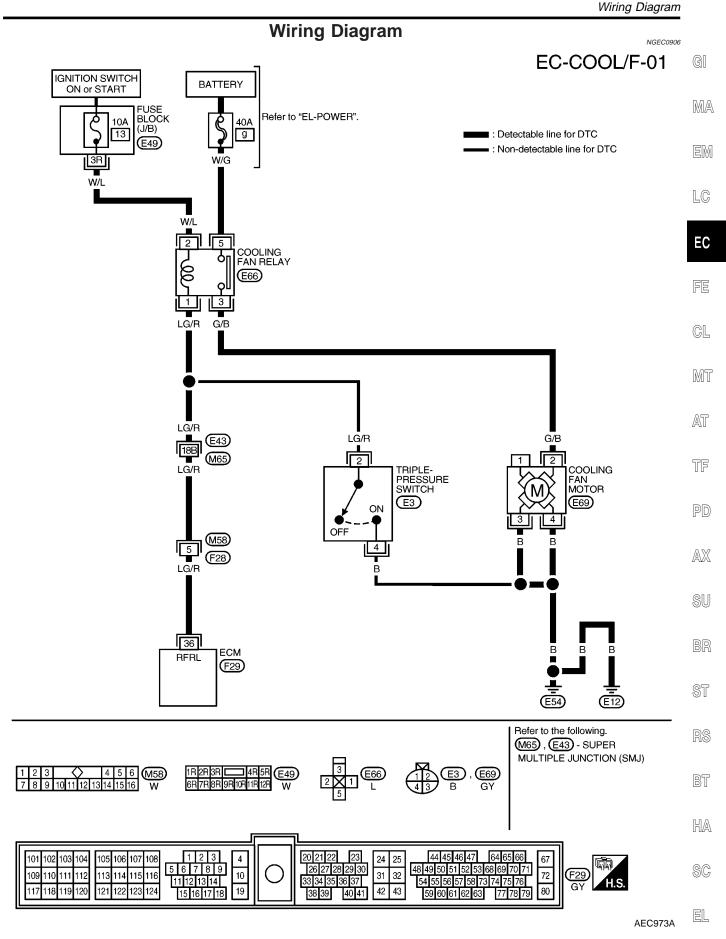
NGECOOOS

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.


(P) With CONSULT-II

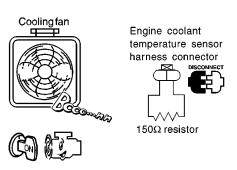
- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-1136.
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-1136.
- 3) Turn ignition switch ON.
- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- 5) Make sure that cooling fan operates.
- 6) If NG, go to "Diagnostic Procedure", EC-1136.

N Without CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-1136.
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-1136.
- 3) Turn ignition switch OFF.
- Disconnect engine coolant temperature sensor harness connector.
- 5) Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 6) Start engine and make sure that cooling fan operates. **Be careful not to overheat engine.**
- 7) If NG, go to "Diagnostic Procedure", EC-1136.

VG33E

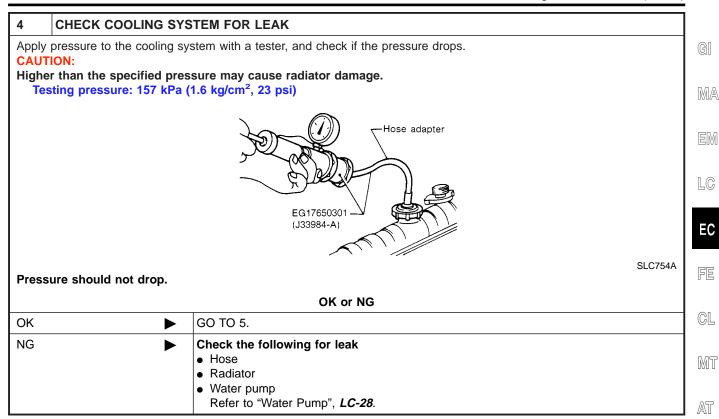
Diagnostic Procedure


Diagnostic Procedure NGEC0907 **INSPECTION START** Do you have CONSULT-II? Yes or No GO TO 2. Yes GO TO 3. No

2 **CHECK COOLING FAN OPERATION** (P) With CONSULT-II 1. Turn ignition switch ON. 2. Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II (Low speed). ACTIVE TEST COOLING FAN OFF MONITOR COOLAN TEMP/S XXX °C SEF376X Does cooling fan rotate? Yes or No Yes GO TO 4. GO TO 9. No

3 **CHECK COOLING FAN OPERATION**

(R) Without CONSULT-II


- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.
- 3. Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 4. Start engine and make sure that cooling fan operates.

SEF085T

OK or NG OK GO TO 4. GO TO 9. NG

Diagnostic Procedure (Cont'd)

CHECK RADIATOR CA	AP
pressure to cap with a tes	ster and check radiator cap relief pressure.
diator cap relief pressur 59 - 98 kPa (0.6 - 1.0 kg/	
	OK or NG
>	GO TO 6.
•	Replace radiator cap.
	pressure to cap with a testing diator cap relief pressure 59 - 98 kPa (0.6 - 1.0 kg/

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

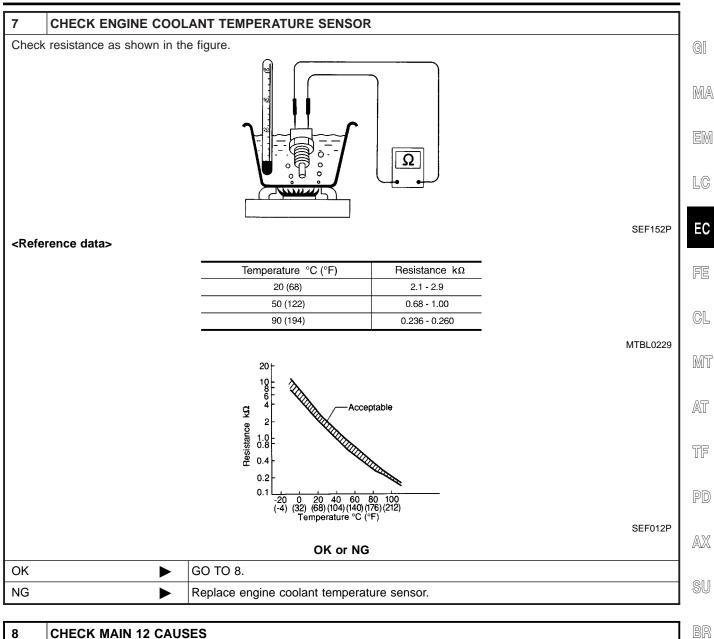
6 **CHECK THERMOSTAT**

- 1. Check valve seating condition at normal room temperatures. It should seat tightly.
- 2. Check valve opening temperature and valve lift.

SLC343

Valve opening temperature: 82°C (180°F) [standard] Valve lift:

More than 10 mm/95°C (0.39 in/203°F)


3. Check if valve is closed at 5°C (9°F) below valve opening temperature. For details, refer to "Thermostat", LC-29.

OK or NG

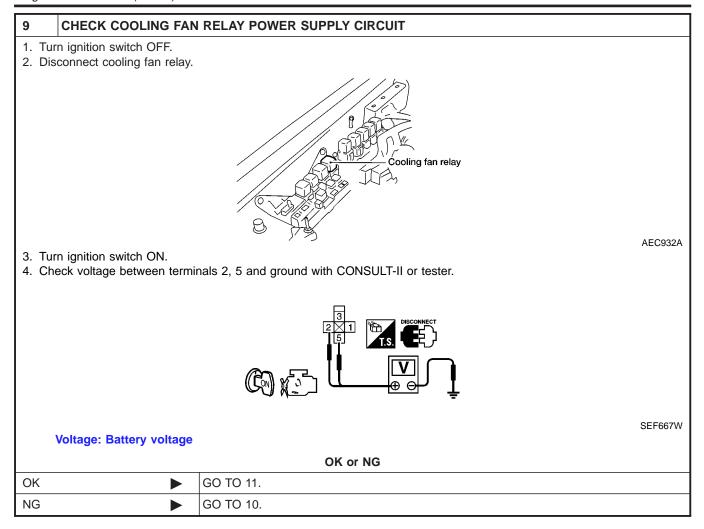
ОК	•	GO TO 7.
NG	•	Replace thermostat

VG33E

Diagnostic Procedure (Cont'd)

8	CHECK MAIN 12 CAUS	CK MAIN 12 CAUSES cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-1143.		
If the	cause cannot be isolated, ç	go to "MAIN 12 CAUSES OF OVERHEATING", EC-1143.		
	INSPECTION END			

EL IDX


RS

BT

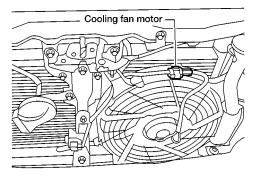
HA

SC

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART

Check the following.


- Fuse block (J/B) connector E49
- 10A fuse
- 40A fusible link
- Harness for open or short between cooling fan relay and fuse
- · Harness for open or short between cooling fan relay and battery
 - Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

Diagnostic Procedure (Cont'd)

11 CHECK COOLING FAN MOTOR POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan motor harness connector.

EC931A

3. Check harness continuity between relay terminal 3 and motor terminal 2, motor terminals 3, 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

0	K	or	N	G

OK •	GO TO 12.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

12 CHECK COOLING FAN RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 36 and relay terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 14.
NG ▶	GO TO 13.

13 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M58, F28
- Harness for open or short between cooling fan relay and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

(II)

MA

EM

LC

EC

FE

GL

MT

AT

TF

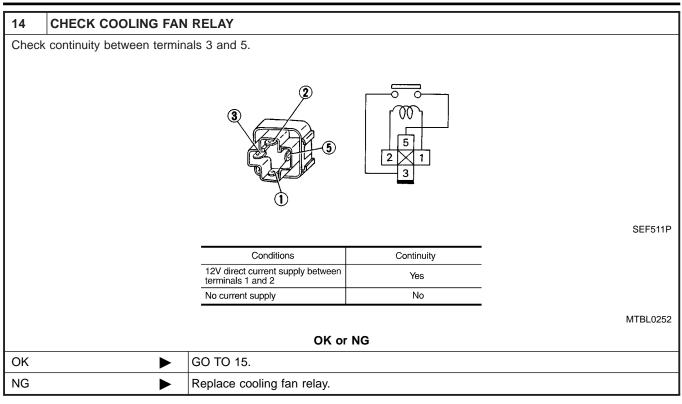
PD

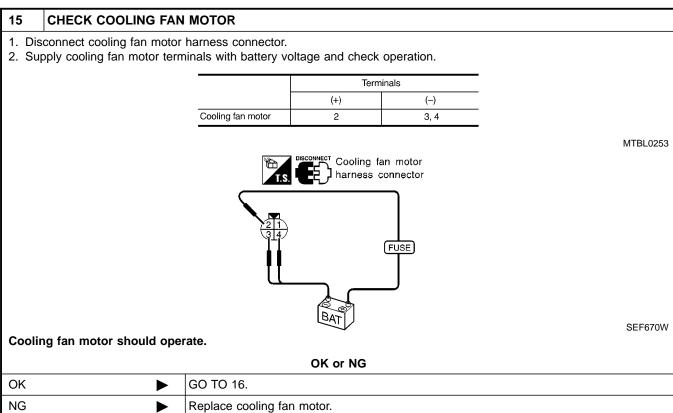
2 42 4

SU

מוש

ST


D@


BT

HA

SC

Diagnostic Procedure (Cont'd)

16	CHECK INTERMITTENT INCIDENT	
Perfor	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-706.
	>	INSPECTION END

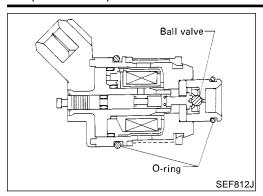
Main 12 Causes of Overheating

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS", MA-14 .
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE", <i>MA-27</i> .
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM", <i>LC-26</i> .
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM", <i>LC-26</i> .
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM", LC-29, LC-31.
ON*1	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAG- NOSIS FOR OVER- HEAT" EC-1132.
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE", <i>MA-27</i> .
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTENANCE", <i>MA-26</i> .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYLIN- DER HEAD DISTORTION", <i>EM-88</i> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYLIN- DER BLOCK DISTOR- TION AND WEAR", EM-105.

^{1:} Turn the ignition switch ON.

For more information, refer to "Engine Cooling System", "OVERHEATING CAUSE ANALYSIS", LC-34.

EL


HA

SC

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

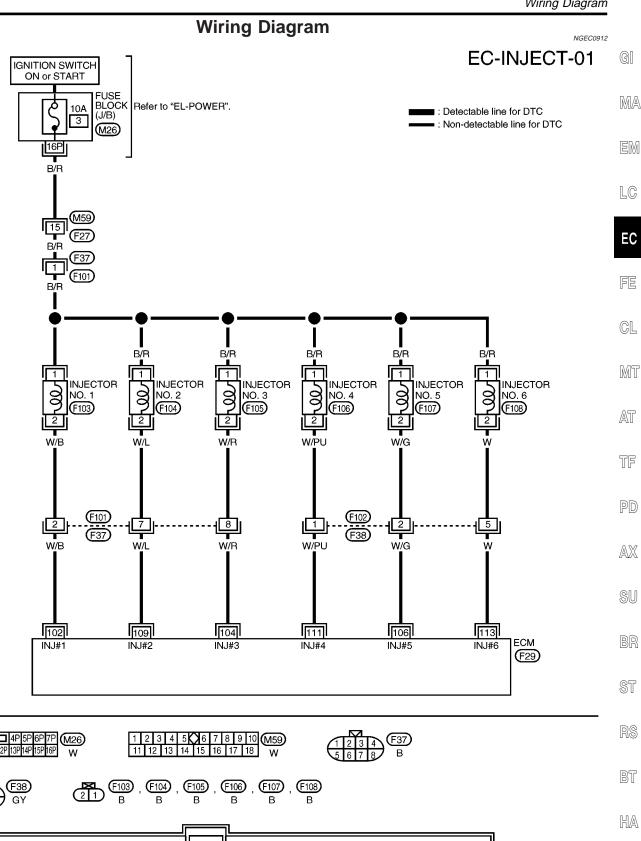
Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0910


MONITOR ITEM	CONDITION		SPECIFICATION
INJ PULSE-B2	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.4 - 3.7 msec
	Shift lever: "N"No-load	2,000 rpm	1.9 - 3.3 msec
B/FUEL SCHDL	ditto	Idle	1.0 - 1.6 msec
B/I OLL SCHOL	ditto	2,000 rpm	0.7 - 1.4 msec

ECM Terminals and Reference Value

NGEC091

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102 104	W/B W/R W/G	Injector No. 1 Injector No. 3	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
106 109 111 113	W/G W/L W/PU W	Injector No. 5 Injector No. 2 Injector No. 4 Injector No. 6	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms

AEC974A

SC

EL

26 27 28 29 30

33 34 35 36 37

31 32

42 43

48 49 50 51 52 53 68 69 70 71

72

(F29

102 103 104 105

109 110 111 112

117 118 119

106 107 108

114 115 116

122 123 124

113

120

5 6 7 8 9

11 12 13 14

10

19

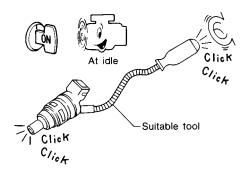
Diagnostic Procedure

1	INSPECTION START	
Turn i	gnition switch to START. / cylinder ignited?	
		Yes or No
Yes	•	Yes or No GO TO 2.

2 CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

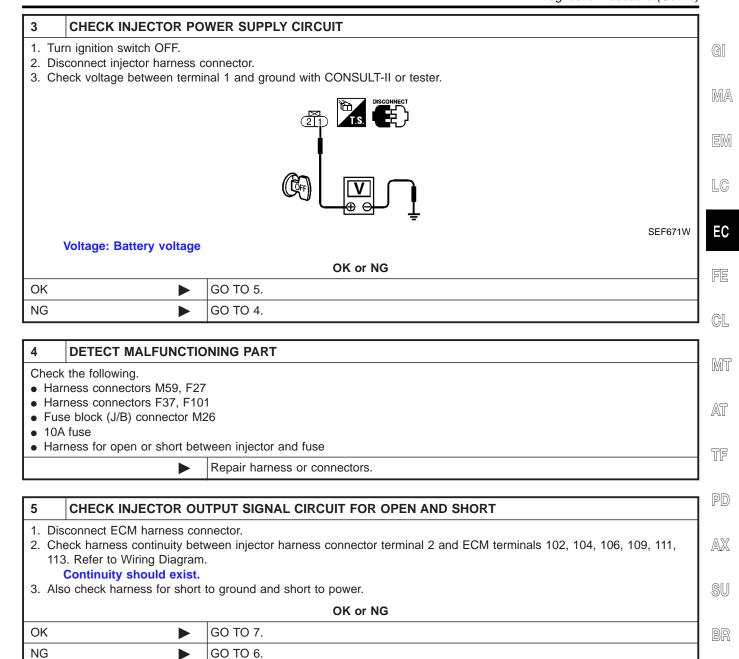

ACTIVE TEST		
POWER BALAN	1CE	
MONITOR		
CMPS~RPM(REF)	XXX rpm	
MAS AIR/FL SE	xxx v	
IACV-AAC/V	XXX %	

PEF389V

3. Make sure that each circuit produces a momentary engine speed drop.

(R) Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.


MEC703B

Clicking noise should be heard.

OK or NG

OK ►	INSPECTION END
NG ►	GO TO 3.

INJECTOR

6	DETECT MALFUNCTIONING PART	
Check	Check the following.	

• Harness connectors F37, F101

Harness connectors F38, F102

Harness for open or short between ECM and injector

Repair open circuit or short to ground or short to power in harness or connectors.

ST

BT

HA

SC

OK

NG

CHECK INJECTOR Disconnect injector harness connector. Check resistance between terminals as shown in the figure. PRECONNECT FINANCE OF THE PROPERTY OF THE PROPER

8	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.	
	•	INSPECTION END

GO TO 8.

Replace injector.

START SIGNAL

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0914

GI

MONITOR ITEM	CONDITION	SPECIFICATION	MA
START SIGNAL	Ignition switch: ON → START → ON	$OFF \to ON \to OFF$	UVU/A

ECM Terminals and Reference Value Specification data are reference values and are measured between each terminal and 32 (ECM ground).

NO.	OOLOIK		No. Water and All Child	A
TERMI- NAL	WIRE	ITEM	CONDITION	DATA (DC Voltage)

LC

EC

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch ON]	Approximately 0V
20	L/OR	Start signal	[Ignition switch START]	BATTERY VOLTAGE (11 - 14V)

GL

MT

AT

TF PD

 $\mathbb{A}\mathbb{X}$

SU

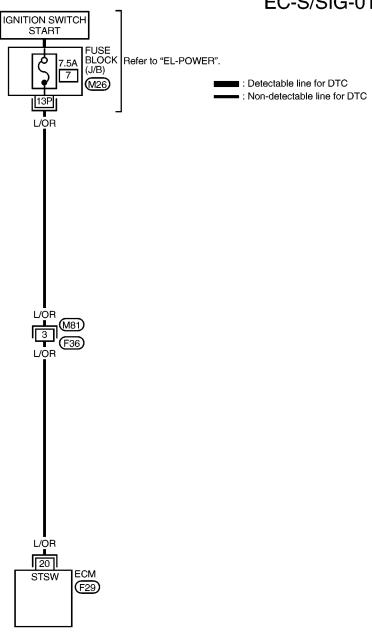
BR

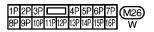
ST

RS

BT

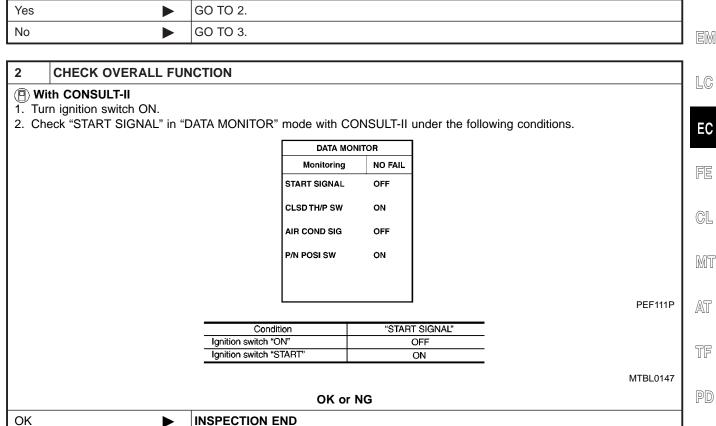
HA

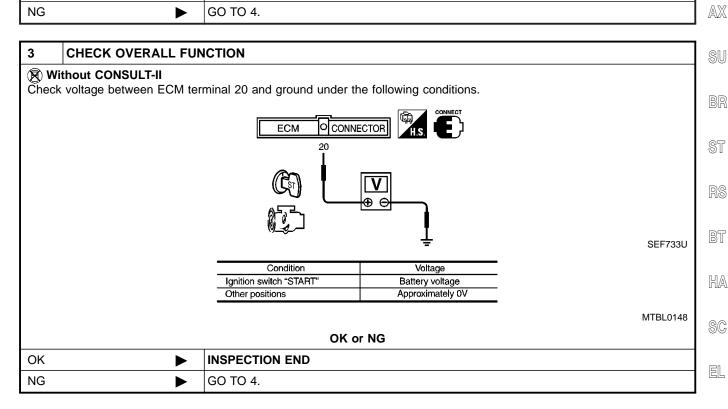

SC


EL

Wiring Diagram

NGEC0916




START SIGNAL

Diagnostic Procedure

NGEC0917 GI MA

1	INSPECTION START			
Do yo	Do you have CONSULT-II?			
		Yes or No		
Yes	>	GO TO 2.		
No	•	GO TO 3.		

4	CHECK STARTING SYSTEM				
Turn ignition switch OFF, then turn it to START.					
Does starter motor operate?					
Yes or No					
		00 70 5			
Yes		GO TO 5.			

5	CHECK FUSE				
	1. Turn ignition switch OFF.				
	 Disconnect 7.5A fuse. Check if 7.5A fuse is OK. 				
0. 0					
	OK or NG				
OK	•	GO TO 6.			
NG	•	Replace 7.5A fuse.			

6	CHECK START SIGNAL	INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT					
2. Che	Disconnect ECM harness connector. Check harness continuity between ECM terminal 20 and fuse block. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.						
	OK or NG						
OK	>	GO TO 8.					
NG	>	GO TO 7.					

7	DETECT MALFUNCTIONING PART		
Check the following. • Harness connectors M81, F36 • Harness for open or short between ECM and fuse			
	>	Repair open circuit or short to ground or short to power in harness or connectors.	

8	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.	
	•	INSPECTION END

FUEL PUMP

System Description

NGEC0918

Sensor	Input Signal to ECM	ECM func- tion	Actuator	Œ
Camshaft position sensor	Engine speed	Fuel pump	Fuel pump relay	M
Ignition switch	Start signal	control	Fuel pump relay	

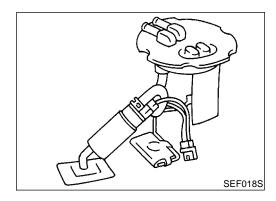
MA

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 120° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to operate. If the 120° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

EM

LC

Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 5 seconds
Engine running and cranking	Operates
When engine is stopped	Stops in 1.5 seconds
Except as shown above	Stops


EC

FE

MT

AT

GL

Component Description

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

TF

PD

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

NGEC0920

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	 Ignition switch is turned to ON. (Operates for 5 seconds.) Engine running and cranking 	ON
	Except as shown above	OFF

ST

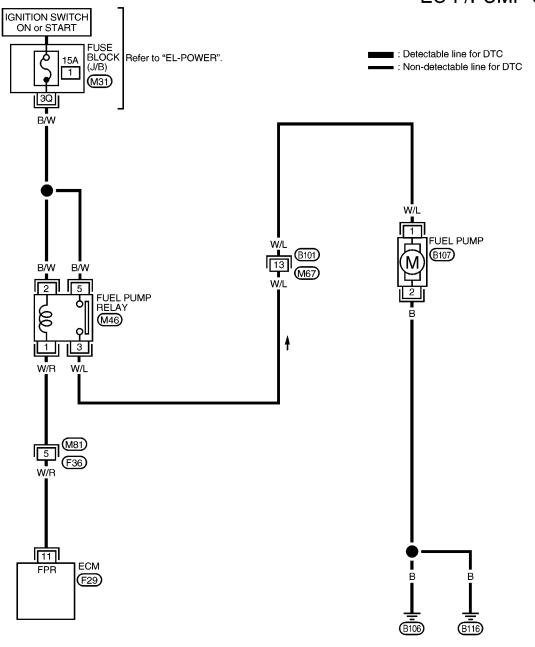
ECM Terminals and Reference Value

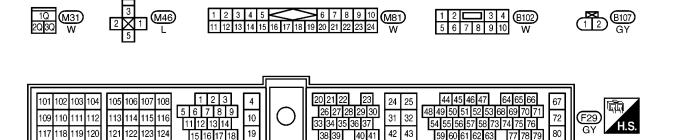
Specification data are reference values and are measured between each terminal and 32 (ECM ground).

_	_
D)	٦٢
\square	Ш
_	_

HA

SC


EL


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
44 W/D First supportation		Fuel nump relev	[Ignition switch ON] ● For 5 seconds after turning ignition switch "ON" [Engine is running]	0 - 1V
11	W/R	Fuel pump relay	[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

Wiring Diagram

NGEC0922

EC-F/PUMP-01

AEC976A

Diagnostic Procedure

NGEC0923

GI

MA

LC

EC

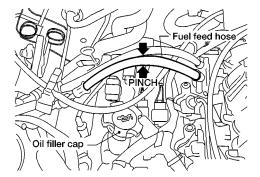
GL

MT

AT

TF

PD


AX

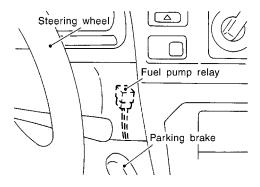
SU

ST

- Turn ignition switch ON.
- 2. Pinch fuel feed hose with fingers.

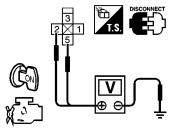
CHECK OVERALL FUNCTION

AEC663A


Fuel pressure pulsation should be felt on the fuel feed hose for 5 seconds after ignition switch is turned ON.

OK or NO	3
----------	---

OK	>	INSPECTION END
NG		GO TO 2.


2 CHECK FUEL PUMP RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.

SEF349V

- 3. Turn ignition switch ON.
- 4. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

SEF674W

Voltage: Battery voltage

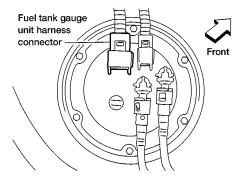
OK	or	NG
OI.	vı	110

OK ▶	GO TO 4.
NG ►	GO TO 3.

SC

HA

3 DETECT MALFUNCTIONING PART


Check the following.

- Fuse block (J/B) connector M31
- 15A fuse
- Harness for open or short between fuse and fuel pump relay

Repair harness or connectors.

4 CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump harness connector.

AEC933A

3. Check harness continuity between fuel pump terminal 2 and body ground, fuel pump terminal 1 and fuel pump relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

ОК	GO TO 6.
NG	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M67, C1
- Harness for open or short between fuel pump and body ground
- Harness for open or short between fuel pump and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 11 and fuel pump relay terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG •	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

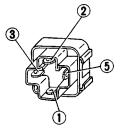
- Harness connectors M81, F36
- Harness for open or short between ECM and fuel pump relay

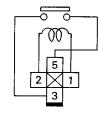
Repair open circuit or short to ground or short to power in harness or connectors.

FUEL PUMP

Diagnostic Procedure (Cont'd)

CHECK FUEL PUMP RELAY 8


(P) With CONSULT-II


- 1. Reconnect fuel pump relay, fuel pump harness connector and ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Turn fuel pump relay "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST			
ON			
XXX rpm			

SEF380X

Without CONSULT-II
Check continuity between terminals 3 and 5.

SEF511P

12V direct current supply between terminals 1 and 2 **Continuity exists**

No current supply

Continuity does not exist

OK or NG

OK	>	GO TO 9.
NG	>	Replace fuel pump relay.

GI

MA

LC

EC

MT

AT

TF

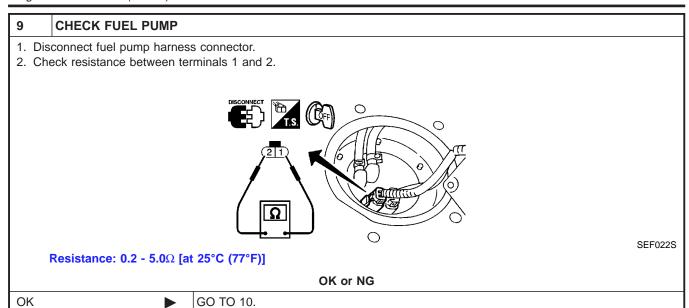
PD

SU

BR

ST

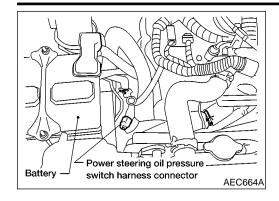
RS


BT

HA

SC

EL


NG

10	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.			
	► INSPECTION END			

Replace fuel pump.

POWER STEERING OIL PRESSURE SWITCH

Component Description

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

GI

MA

LC

EC

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	FE	
PW/ST SIGNAL	Engine: After warming up, idle the applies.	Steering wheel in neutral position (forward direction)	OFF	@I
	the engine	The steering wheel is fully turned.	ON	

ECM Terminals and Reference Value

MT

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
39	GY/R Power steer sure switch	Power steering oil pres-	[Engine is running] • Steering wheel is being fully turned	ov
		sure switch	[Engine is running] • Steering wheel is not being turned	Approximately 5V

AT

PD

TF

SU

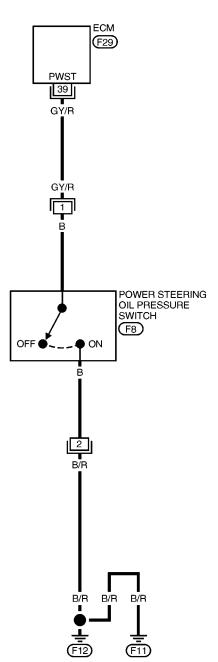
ST

BT

HA

SC

EL



Wiring Diagram

NGEC0927

EC-PST/SW-01

: Detectable line for DTC
: Non-detectable line for DTC

г			Ţ <u></u>	İ
	101 102 103 104 105 106 107 108 1 2 3 4 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 15 16 17 18 19 10	0	20 21 22	F29 GY H.S

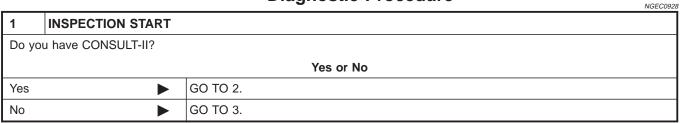
POWER STEERING OIL PRESSURE SWITCH

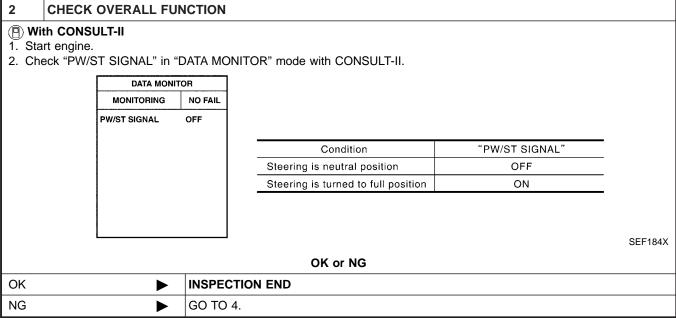
GI

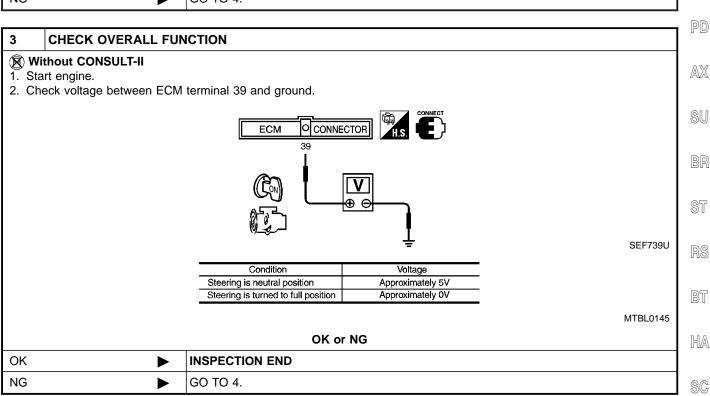
MA

EC

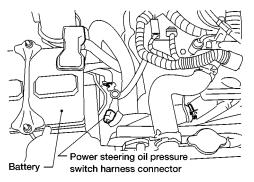
FE


GL


MT


AT

TF



4 CHECK POWER STEERING OIL PRESSURE SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect power steering oil pressure switch harness connector.

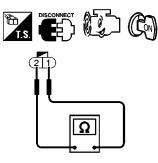
AEC664A

- Check harness continuity between switch terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK	•	GO TO 5.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK POWER STEERING OIL PRESSURE SWITCH INPUT SIGNAL CIRCUIT


- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 39 and switch terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 6.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK POWER STEERING OIL PRESSURE SWITCH

- 1. Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals 1 and 2.

SEF679W

Conditions	Continuity
Steering wheel is being fully turned	Yes
Steering wheel is not being turned	No

MTBL0254

OK or NG

ОК	•	GO TO 7.
NG	>	Replace power steering oil pressure switch.

POWER STEERING OIL PRESSURE SWITCH

VG33E

Diagnostic Procedure (Cont'd)

7	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-706.		
	► INSPECTION END		

GI

MA

LC

EC

FE

GL

MT

AT

TF

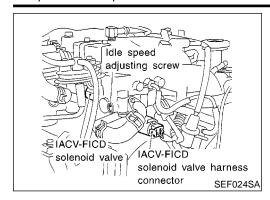
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

Component Description


When the air conditioner is on, the IACV-FICD solenoid valve supplies additional air to adjust to the increased load. For more information, refer to "FAST IDLE CONTROL DEVICE (FICD)", *HA-79*.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and 32 (ECM ground).

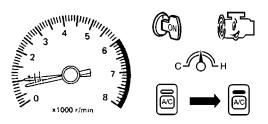
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			 [Engine is running] Idle speed Ambient air temperature is above 25°C (77°F) Air conditioner is operating 	ov
9	B/Y	Ambient air temperature switch	 [Engine is running] Idle speed Ambient air temperature is below 19°C (66°F) Air conditioner is operating 	BATTERY VOLTAGE (11 - 14V)
			 [Engine is running] Idle speed Ambient air temperature is below 19°C (66°F) Air conditioner is not operating 	Approximately 5V
12	Р	Air conditioner relay	[Engine is running] • Both A/C switch and blower fan switch are "ON"*	0 - 1V
12	P		[Engine is running] ■ A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
21	G/R	Air conditioner switch	[Engine is running] ■ Both A/C switch and blower fan switch are "ON" (Compressor operates)*	Approximately 0V
			[Engine is running] • Air conditioner switch is "OFF"	Approximately 5V

^{*:} Any mode except "OFF", ambient air temperature is above 25°C (77°F).

Diagnostic Procedure

NGEC0932

SEF742U


1 CHECK OVERALL FUNCTION

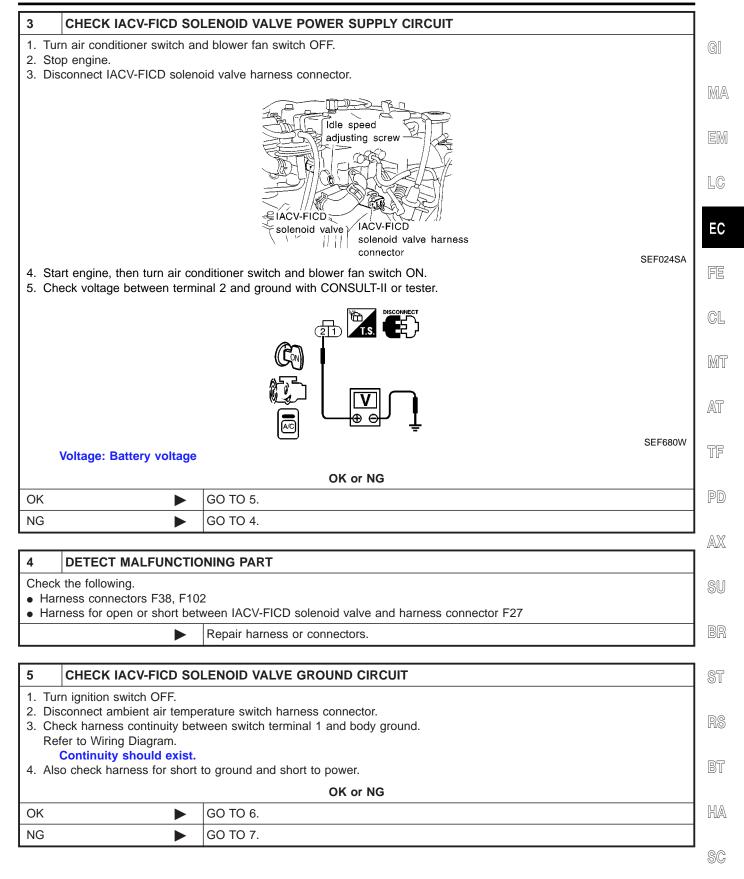
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

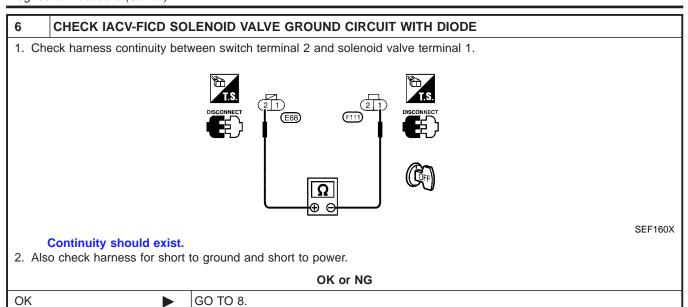
750±50 rpm (in "N" position)

If NG, adjust idle speed.

- 3. Turn air conditioner switch and blower fan switch ON.
- 4. Recheck idle speed.

850 rpm or more (in "P" or "N" position)


OK or NG


OK •	INSPECTION END
NG •	GO TO 2.

2	CHECK AIR CONDITIO	NER FUNCTION				
Check	Check if air conditioner compressor functions normally.					
	OK or NG					
OK	>	GO TO 3.				
NG	•	Refer to "Symptom Table", "TROUBLE DIAGNOSES", <i>HA-26</i> .				

IACV-FICD SOLENOID VALVE

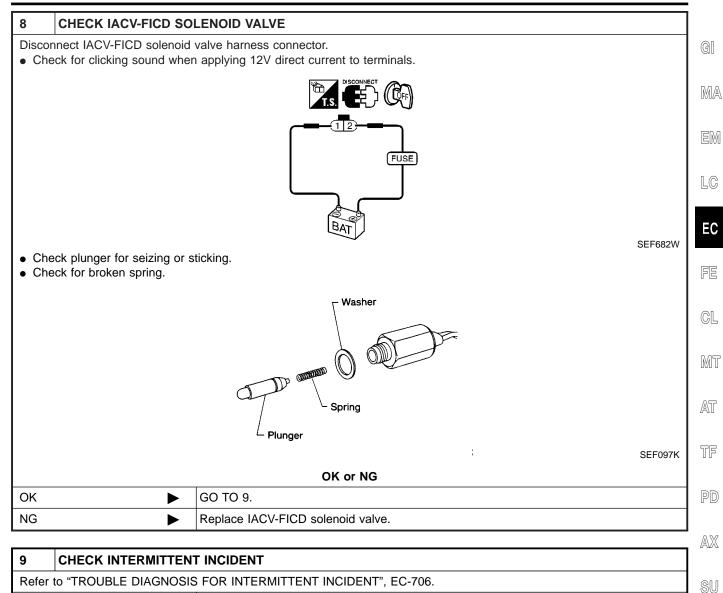
Diagnostic Procedure (Cont'd)

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F38, F102
- Harness connectors F36, M81
- Harness connectors M65, E43
- Diode F35

NG

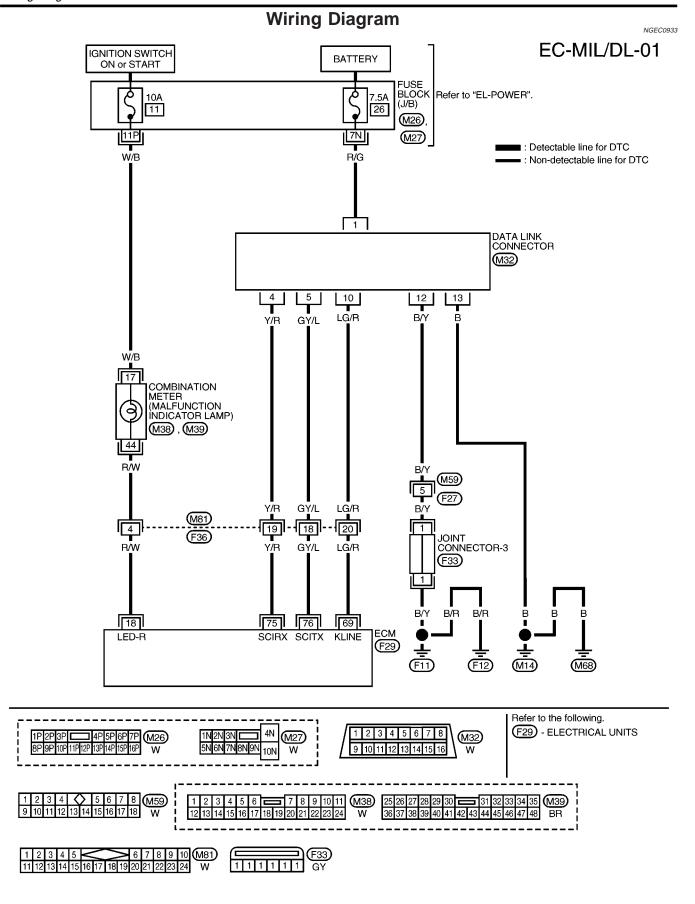

• Harness for open or short between ambient air temperature switch and body ground

GO TO 7.

- Harness for open or short between IACV-FICD solenoid valve and ambient air temperature switch
 - Repair open circuit or short to ground or short to power in harness or connectors.

IACV-FICD SOLENOID VALVE

Diagnostic Procedure (Cont'd)


BR
ST
RS

BT

HA

SC

INSPECTION END

SERVICE DATA AND SPECIFICATIONS (SDS)

Fuel Pressure Regulator

	Fuel Pressure Re	ydiator NGEC093
Fuel pressure at idling kPa (kg/cm², psi)		
Vacuum hose is connected		Approximately 235 (2.4, 34)
Vacuum hose is disconnected		Approximately 294 (3.0, 43)
	Idle Speed and Ig	nition Timing
Base idle speed*1	No-load*4 (in "P" or N" position)	700±50 rpm
Target idle speed*2	No-load*4 (in "P" or N" position)	750±50 rpm
Air conditioner: ON	In "P" or N" position	850 rpm or more
Ignition timing*3	In "P" or N" position	15°±2° BTDC
Throttle position sensor idle position		0.15 - 0.85V
3: Throttle position sensor harness con 4: Under the following conditions: Air conditioner switch: OFF Electric load: OFF (Lights, heater fa Steering wheel: Kept in straight-ahe	an & rear window defogger)	NGEC093
Primary voltage		12V
Primary resistance [at 20°C (68°F)]		Approximately 1.0Ω
Secondary resistance [at 20°C (68°F)]		Approximately 10 kΩ
	Mass Air Flow Se	nsor NGEC093
Supply voltage		Battery voltage (11 - 14)V
Output voltage at idle		1.0 - 1.7*V
Mass air flow (Using CONSULT-II or GST)		3.3 - 4.8 g·m/sec at idle* 12.0 - 14.9 g·m/sec at 2,500 rpm*
Engine is warmed up to normal opera	ting temperature and running under no-loa	d. emperature Sensor
		NGEC093
Temperature °C ((°F)	Resistance kΩ
20 (68)		2.1 - 2.9
		0.68 - 1.00
50 (122)		0.000 6.777
50 (122) 90 (194)		0.236 - 0.260
· · ·	EGR Temperature	0.236 - 0.260 Sensor (If So Equipped) NGECO93
· · ·	EGR Temperature Voltage (V)	Sensor (If So Equipped)
90 (194)		Sensor (If So Equipped)
90 (194) EGR temperature °C (°F)	Voltage (V)	Sensor (If So Equipped) Resistance (ΜΩ)
90 (194) EGR temperature °C (°F) 0 (32)	Voltage (V) 4.56	Resistance (MΩ) 0.62 - 1.05
90 (194) EGR temperature °C (°F) 0 (32) 50 (122)	Voltage (V) 4.56 2.25 0.59	Resistance (MΩ) 0.62 - 1.05 0.065 - 0.094

SERVICE DATA AND SPECIFICATIONS (SDS)

VG33E

Fuel Pump

Fuel	Pump	NGEC094
Resistance [at 25°C (77°F)]	0.2 - 5.0Ω	NGECU94
IACV	/-AAC Valve	
	1	NGEC094
Resistance [at 20°C (68°F)]	Approximately 10.0Ω	
Injec	tor	NGEC094
Resistance [at 25°C (77°F)]	10 - 14Ω	
Resis	stor	
		NGEC094
Resistance [at 25°C (77°F)]	Approximately 2.2 kΩ	
Thro	ttle Position Sensor	NGEC094
Throttle valve conditions	Voltage [at normal operating temperature, engine off, ignition switch ON, (throttle opener disengaged, if so equipped)]	
Completely closed (a)	0.15 - 0.85V	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7V	
Calcu	ulated Load Value	NGEC094
	Calculated load value % (Using CONSULT or GST)	
At idle	18.0 - 26.0	
At 2,500 rpm	18.0 - 21.0	
Intak	e Air Temperature Sensor	NGEC094
Temperature °C (°F)	Resistance kΩ	NGEC092
20 (68)	2.1 - 2.9	
80 (176)	0.27 - 0.38	
Rear	Heated Oxygen Sensor Heater	NGEC094
Resistance [at 25°C (77°F)]	2.3 - 4.3Ω	NGECUS
Cran	kshaft Position Sensor (OBD)	
Resistance [at 20°C (68°F)]	512 - 632Ω	NGEC094
Fuel	Tank Temperature Sensor	1105000
Temperature °C (°F)	- Resistance kΩ	NGEC095
20 (68)	2.3 - 2.7	
50 (122)	0.79 - 0.90	